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Secondary Structure Changes in ApoA-I Milano (R173C)
Are Not Accompanied by a Decrease in Protein Stability
or Solubility
Jitka Petrlova1, Jonathan Dalla-Riva1, Matthias Mörgelin2, Maria Lindahl1, Ewa Krupinska1,

Karin G. Stenkula1, John C. Voss3, Jens O. Lagerstedt1*

1 Department of Experimental Medical Science, Lund University, Lund, Sweden, 2 Department of Infection Medicine, Lund University, Lund, Sweden, 3 School of Medicine,

University of California Davis, Davis, California, United States of America

Abstract

Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL) and a principal mediator of the reverse
cholesterol transfer pathway. Variants of apoA-I have been shown to be associated with hereditary amyloidosis. We
previously characterized the G26R and L178H variants that both possess decreased stability and increased fibril formation
propensity. Here we investigate the Milano variant of apoAI (R173C; apoAI-M), which despite association with low plasma
levels of HDL leads to low prevalence of cardiovascular disease in carriers of this mutation. The R173C substitution is located
to a region (residues 170 to 178) that contains several fibrillogenic apoA-I variants, including the L178H variant, and
therefore we investigated a potential fibrillogenic property of the apoAI-M protein. Despite the fact that apoAI-M shared
several features with the L178H variant regarding increased helical content and low degree of ThT binding during
prolonged incubation in physiological buffer, our electron microscopy analysis revealed no formation of fibrils. These results
suggest that mutations inducing secondary structural changes may be beneficial in cases where fibril formation does not
occur.
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Introduction

Apolipoprotein A-I (apoA-I) is the main protein of high-density

lipoprotein (HDL) and mediates efflux of cellular cholesterol from

the peripheral tissues to the liver for excretion from the body in

feces [1]. This transport process, the so-called reverse cholesterol

transfer (RCT) pathway, involves a number of participating

membrane proteins and plasma enzymes including ATP-binding

cassette transporters A1 and G1 (ABCA1 and ABCG1), scavenger

receptor BI (SR-BI) [2,3], and lecithin cholesterol-acyl transferase

enzyme (LCAT), the latter being associated with maturation of

HDL in plasma [4]. In addition, HDL is involved in anti-

inflammatory and anti-oxidant processes that occur through non-

RCT pathways [5,6].

Several variants of apoA-I with altered functionality have been

identified. The first naturally occurring variant of apoA-I

described was the apoA-I Milano (apoAI-M) variant, which was

identified in a family originating from the village of Limone sul

Garda in northern Italy [7]. The single mutation of this variant

results in a substitution of Arg to Cys in the primary structure at

residue 173 [8]. Described carriers of the Milano variant of apoA-I

are heterozygotes and have very low plasma levels of apoA-I and

HDL cholesterol as well as normal or moderately elevated plasma

triglycerides [9]. Despite this pro-arteriosclerotic lipoprotein

profile, carriers of the apoAI-M variant display no increase in

cardiovascular disease or events at the preclinical level [10]. In

fact, the RCT capacity of apoAI-M carriers is enhanced and the

variant also exhibits anti-inflammatory and plaque stabilizing

properties [11]. The beneficial effect of infusion of recombinant

apoAI-M has been shown by reduction of atherosclerotic lesions in

experimental animal models [12,13]. Clinical trials have also

demonstrated a reduction of atheromas after repeated adminis-

tration of apoAI-M/phospholipid complexes to patients with

coronary disease [14,15]. Clearly, the Milano variant provides

positive effects on the cardiovascular system.

However, the location of the R173C amino acid substitution is

in a region of the apoA-I primary structure that is known to harbor

several fibrillogenic variants (i.e., variants that form fibrils

composed of beta-sheet rich amyloid structure, or other type of

fibril-structure), which lead to tissue specific plaque formation of

the fibrillogenic protein and consequent organ failure [16–18].

Considering the location of the amino acid substitution to this

region and that the Milano variant is currently under investigation

as an infusion therapy in cardiovascular disease, we wished to

understand its susceptibility to aggregation. We have here

examined the intrinsic propensity of the apoAI-M variant to

aggregate into fibrils.
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Materials and Methods

Production of Recombinant Protein
A bacterial expression system consisting of pNFXex plasmid in

Escherichia coli strain BL21(DE3) pLysS cells (Invitrogen) was used

to produce the apoAI-WT and apoAI-M proteins, as previously

described [16,19]. Primer-directed PCR mutagenesis was used to

create the R173C mutation. The mutation was verified by dideoxy

automated fluorescent sequencing (GATC Biotech). After purifi-

cation of apoA-I proteins on Ni2+-chelated columns (GE

Healthcare) and desalting to remove imidazole, Tobacco etch

virus (TEV) protease treatment was employed to cleave the His-

tag. This was followed by a second Ni2+- column passage where

the TEV protease and the cleaved His-tag were retained on the

column. The flow-through containing cleaved apoA-I proteins was

desalted into phosphate buffered saline, pH 7.4, 150 mM NaCl,

concentrated with 10 kDa molecular weight cut-off Amicon Ultra

centrifugal filter devices (Millipore) and stored at 4uC prior to use.

Protein purity was confirmed by sodium dodecyl sulfate (SDS)-

polyacrylamide gel electrophoresis with Coomassie blue staining

and protein concentrations were determined by use of a Nanodrop

2000c spectrophotometer (Thermo scientific).

Limited Proteolysis
Protein (5 mg) in phosphate buffered saline, pH 7.4, 150 mM

NaCl, was treated with 1:2000 ratio (wt/wt) of high purity

chymotrypsin (Sigma-Aldrich #C3142) for the indicated periods

of times. Reactions were stopped with protease inhibitor cocktail

(Roche #05892791001) followed by addition of SDS loading

buffer. Samples were stored at 220uC until analysis with SDS-

PAGE.

Circular Dichroism Spectroscopy
Circular dichroism spectroscopy (CD) measurements were

performed on a Jasco J-810 spectropolarimeter equipped with a

Jasco CDF-426S Peltier set to 25uC. Averages of five scans were

baseline-subtracted (PBS buffer; 25 mM phosphate, 150 mM

NaCl) and the alpha-helical content was calculated from the

molar ellipticity at 222 nm as previously described [16].

For thermal stability experiments, spectra were obtained from

25uC to 80uC with 2.5uC increments. ApoA-I was diluted to

0.2 mg/ml in PBS (final concentration was 25 mM phosphate,

150 mM NaCl, pH 7.4), placed in a 1 mm quartz cuvette and,

after extensive purging with nitrogen, scanned in the region 200 to

260 nm (scan speed was 20 nm/min). The Boltzmann function

within the GraphPad software (GraphPad Software, Inc., CA,

USA) was used to fit the molar ellipticity values at 222 nm of the

temperature gradient to a sigmoidal fit curve.

Thioflavin T (ThT) Binding Assay
ApoAI-M, apoAI-WT and apoAI-Iowa(G26R) variant (0.2 mg/

ml) were incubated at 37uC and diluted with ThT stock solution at

time of use. 180 ml of protein was incubated for 10 min in the dark

with 20 ml of a ThT (100 mM)/glycine (10 mM) solution (ThT

stock: 1 mM stored in the dark at 4uC; Glycine buffer stock: 0.1 M

at pH 8.5 stored at 4uC). ThT fluorescence was then measured

using a VICTOR3 Multilabel Plate Counter (PerkinElmer,

Waltham, MA, USA) spectrofluorometer at an excitation wave-

length of 450 nm and an emission wavelength of 545 nm, with

excitation and emission slit widths of 10 nm [16].

Electron Microscopy
Protein samples incubated at 37uC for 30 days were diluted and

analyzed by negative stain electron microscopy as described

previously [20]. Five microliter aliquots were adsorbed onto

carbon-coated grids for 1 min, washed with two drops of water,

and stained on two drops of 0.75% uranyl formate. The grids were

rendered hydrophilic by glow discharge at low pressure in air.

Specimens were observed in a JEOL JEM 1230 electron

microscope operated at 80 kV accelerating voltage, and images

were recorded with a Gatan Multiscan 791 CCD camera [16].

Control experiments comparing apoA-I-WT and apoA-I-Iowa are

shown in Figure S1.

ApoA-I in vivo Analysis
Male C57/Bl6 mice purchased from Taconic (Ry, Denmark)

were used at the age of 10–11 weeks. Mice fasted overnight (12 h)

were injected intraperitoneally (i.p.) with apoAI-WT or apoAI-M

(14 mg/kg) (control animals received NaCl). Blood samples were

collected three hours following treatment. Serum samples (2 mL)

were separated by SDS-PAGE, in the presence or absence of the

reducing agent dithiothreitol (Sigma), and transferred to nitrocel-

lulose membranes, probed with anti-human apoA-I antibodies

(Abcam) and immune detection performed with HRP-conjugated

secondary antibodies (GE Healthcare). Blots were imaged using

the Odyssey Fc system (LI-COR) and quantified using Image

studio v2.0 software. The animal procedures were approved by the

Malmö/Lund Committee for Animal Experiment Ethics.

Results and Discussion

Quality Assessment of apoAI-M Protein
Although the structural basis for the positive effect of the Milano

mutation on cardiovascular health is unclear, the protein is known

to form disulfide-linked dimers via R173C [21,22]. We therefore

carried out analyses to ensure adequate protein purity as well as

functional Cys-Cys-linked dimer formation of apoAI-M. SDS-

PAGE analysis in the absence or presence of reducing agent was

used to detect Cys-Cys-linked dimer formation of the human

apoAI-M protein. As can be seen in Figure 1, purified apoAI-M

protein formed covalently attached dimers (arrow in Figure 1A)

that can be separated with the addition of a reducing agent,

whereas apoAI-WT proteins did not form covalent bonds. To

confirm that the in vitro analyses of the proteins represent the in vivo

oligomeric organization, human apoAI-WT and apoAI-M pro-

teins were injected intraperitoneally in mice followed by serum

sampling at 3 hours post-injection. The serum samples were

separated on SDS-PAGE in the presence and absence of reducing

agent followed by western blot analysis with antibodies specific for

human apoA-I protein. The antibodies used do not detect mouse

apoA-I (see negative NaCl control in Figure 1B). The results

showed that Cys-Cys-linked apoAI-M dimers were also present

in vivo (arrow in Figure 1B). The results are in agreement with

earlier studies that describe the presence of monomer and homo-

dimer in human plasma of apoAI-M carriers and in the plasma of

a mouse model expressing human apoAI-M [21,22]. Finally,

native gel separation followed by western blot analysis of the serum

samples shows that both apoAI-M and apoAI-WT are fully

lipidated 3 hours post-injection, and have formed lipid-protein

complexes of comparable sizes (not shown). In conclusion, the

produced human apoAI-M protein forms disulfide-linkages in vitro

and in vivo, and is capable of assembly into HDL particles.

Comparison of Susceptibility to Proteolytic Cleavage
Our earlier analyses showed that the L178H and G26R

mutations lead to increased protease sensitivity in the N-terminus

(16, 18). We here used limited proteolysis to investigate if also the

R173C substitution led to increased susceptibility to proteolytic
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cleavage. Figure 2 shows protein and protein fragments of apoAI-

WT, apoAI-M, apoAI-L178H, and apoAI-Iowa (G26R) after

incubation with chymotrypsin at indicated times. In agreement

with earlier findings, chymotrypsin cleaves apoAI-WT at one main

site leading to a protein fragment corresponding to residues 1–225

that is stable also after 240 min of incubation (18). Similarly,

chymotrypsin treatment of apoAI-M resulted in one major cut in

the primary structure leading to stable protein fragments of

comparable sizes as the WT protein. In contrast, proteolytic

cleavage of the G26R and L178H proteins led to an array of

peptide fragments, and the case of L178H, eventually to complete

degradation of the protein. Based on the findings we conclude that

the R173C substitution is more protected than G26R and L178H

to limited proteolysis, but not different to apoAI-WT.

Changes in the Secondary Structure of apoAI-M as
Determined by CD

We have previously shown that the L178H variant aggregates

and form fibrils via a process that includes substantial increases in

alpha helical content of the protein (from about 50% helical

structure in the native, non-aggregated protein to about 80%

helical structure after fibrillization) [16]. Given the close proximity

of R173C to amino acid residue 178 in the primary structure, we

tested whether the R173C substitution also results in a time-

dependent increase of alpha helical structure.

Circular dichroism (CD) spectroscopy was first used to estimate

the secondary structure content of the purified apoAI-M and

Figure 1. Covalent Cys-Cys binding and dimer formation of
ApoAI-M. A, Purified apoAI-M (M) and apoAI-WT (WT) proteins (2 mg)
were analyzed by SDS-PAGE (4–15% Tris-glycine) in the presence or
absence of the reducing agent DTT. Formed apoAI-M dimers are
indicated (arrow). B, Western blot analysis of apoAI-M (M) and apoAI-WT
(WT) proteins in plasma samples from mice treated with the respective
apoA-I protein. The SDS-PAGE separation was performed in the
presence or absence of the reducing agent DTT to distinguish protein
in covalently attached Cys-Cys dimers (arrow). Analysis of mouse plasma
from control animals treated with saline (NaCl) was included to show
specificity of the antibodies for human apoA-I protein. Data shown is
representative of three experiments/animals.
doi:10.1371/journal.pone.0096150.g001

Figure 2. Limited proteolysis of apoA-I proteins to assay for
structure accessibility. ApoA-I proteins (0.3 mg/ml) were incubated
with chymotrypsin at 37uC for indicated times followed by SDS-PAGE
separation and coomassie staining of the gel. Arrows indicate migration
distance of full-length proteins.
doi:10.1371/journal.pone.0096150.g002
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apoAI-WT proteins in solution at a concentration of 0.2 mg/ml at

time zero. Using the 222 nm values the helical content was

estimated to 55.061.3% and 45.861.6% (SEM; n = 3; p,0.01) at

25uC for apoAI-M and apoAI-WT, respectively (Figure 3A). This

is in good agreement with Suurkkuss et al. [23] who reported an

alpha-helical content of apoAI-M to about 50–59% (depending on

oligomeric state), and with Alexander et al. [22] who reported an

alpha-helical content of 4464% for apoAI-WT.

CD analysis was then performed on 0.2 mg/ml of apoAI-M and

apoAI-WT during a 3-week incubation time period at 37uC in

PBS buffer, pH 7.4 (Figure 3B). The apoA-I variants Iowa (G26R)

[18] and L178H [16], which are both linked to hereditary

amyloidosis [17,24] and are known to display increased content of

beta-strand structure and alpha helical structure, respectively,

under these conditions were used as controls. While the CD

spectra for wild-type protein was unchanged throughout the time

course (Figure 3B, upper left), the Milano (R173C) variant showed

a change in spectra that corresponds to an increase in the alpha

helical content (Figure 3B, upper right). The t1/2 for this change

was about 8 days (alpha helical content is plotted in Figure 3C as a

function of time), which is significantly shorter than that previously

reported for the L178H variant (<12 days) [16], and as shown

here (Figure 3B, lower left). As expected the Iowa variant displayed

CD spectra that correspond to significant beta-strand structure

content (Figure 2B, lower right).

The structures of aggregation-prone variants of apoA-I are

typically less stable than wild-type apoA-I protein. CD spectros-

copy was therefore used to determine the thermal stability of

apoAI-M compared to apoAI-WT, which was compared to our

published results on the L178H variant [16]. Unfolding of apoAI-

M and apoAI-WT caused by step-wise increase of temperature

resulted in sigmoidal, monophasic transition with an apparent Tm

50.961.4uC and Tm 55.961.4uC (SEM; n = 3), respectively. The

difference was not significant (not shown). The apparent thermal

stability of the Milano variant was similar to those previously

described (Tm<53uC in [22,23]), whereas the apoA-I-WT Tm was

slightly lower compared to earlier analyses using CD spectroscopy

(Tm<58–60uC in [22,23,25,26,27]) and higher or comparable to

those determined by calorimetry (Tm<52–57uC in [27,28]). The

finding that the Tm of apoAI-M is clearly higher than that of

L178H (4560.6uC; as previously described in [16]) suggests that

the faster conversion to alpha helical structure of the apoAI-M

variant is not due to decreased protein stability.

Low Affinity of the Amyloidophilic Dye Thioflavin T to
Milano Variant

We next analyzed if the secondary structure conversion of the

Milano variant was associated with formation of beta sheet

containing amyloids (Figure 4). Thioflavin T (ThT) is a fluorescent

dye used to study the amyloidogenic properties of proteins by

specifically binding to beta sheet structure of amyloid fibrils with

resulting increase in fluorescence. In this experiment we compared

ThT binding to apoAI-M with apoAI-WT and the amyloidogenic

Iowa variant (G26R) as negative and positive controls respectively.

The results show that while the Iowa variant increasingly binds

ThT during the time course, the apoAI-M has approximately the

same low binding affinity to ThT as apoAI-WT. We therefore

conclude that amino acid substitution from Arg to Cys at residue

Figure 3. Structural transitions of apoA-I proteins assayed by CD spectroscopy. A, The alpha helical content was calculated from the value
of molar ellipticity at the wavelength 222 nm at the time point 0 days for apoAI-WT and apoAI-M (25uC). B, Circular dichroism spectroscopy was used
to analyze secondary structure changes over time. Scans ranging from 200 nm to 260 nm of apoAI-Iowa (G26R), apoAI-Milano (R173C), apoAI-L178H
and apoAI-WT proteins (at concentrations of 0.2 mg/ml) incubated at 37uC for up to 21 days (0, 7, 14 and 21 days of incubation) are shown. While the
secondary structure of apoAI-WT protein is unchanged during the time course, the spectral changes of the apoAI-Milano and the apoAI-L178H
proteins indicate increased alpha-helical content (as indicated by an increase in molar ellipticity at 222 nm), whereas the amyloidogenic apoAI-Iowa
displays a reduction in alpha helical secondary structure with time. C, The percentage of alpha helix was measured during 16 days of incubation at
37uC at different time points (0, 4, 8, 12 and 16 days). Boltzmann function was used to determinate the transition time of the apoAI-Milano variant.
ApoAI-WT did not exhibit any significant changes in the alpha helical content when incubated at identical conditions during same time period. **p,

0.01, n = 3.
doi:10.1371/journal.pone.0096150.g003
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173 of the apoAI-M protein does not lead to an elevated intrinsic

propensity to form beta-sheet containing amyloid.

Negative Stain Electron Microscopy Analysis
Our previous analyses on the L178H variant showed formation

of twisted, helical fibrils (with a diameter of about 10 nm and with

lengths ranging from 30 to 120 nm) despite no specific increase in

binding to ThT [16]. We reasoned that the R173C variant would

possibly form similar helical fibrils that were undetected by the

beta-amyloid specific ThT dye. Negative stain electron microscopy

(EM) was therefore used to analyze for a potential formation of

apoAI-M fibrils. Milano variant and wild-type protein were

incubated in PBS buffer at 37uC for 4 weeks followed by dilution

in tris-buffer saline (pH 7.4) and then analyzed by EM. As can be

seen in Figure 5 (left panel), rounded molecular aggregations, but

no elongated fibrils, were observed for the apoAI-M samples,

which was consistent with the appearance of the incubated apoAI-

WT protein (Figure 5, middle panel). Similar structures of apoA-I-

WT were previously shown by Ramella et al [29] when incubated

at physiological conditions. As a positive control for aggregate

formation, the amyloidogenic variant apoAI-Iowa was used, which

exhibited a strong propensity to aggregate as shown by formation

of elongated pre-fibrillar structures and aggregates (Figure 5, right

panel; Figure S1). Thus, in contrast to the L178H variant, the

apoAI-M protein does not form fibrils under the experimental

conditions used.

Conclusions

Our data suggest that despite the fact that the apoAI-M protein

shares several features with the L178H variant, including

increased helical secondary structure formation during incubation,

the R173C substitution does not carry an intrinsic propensity to

form fibrils and/or amorphous aggregates. The finding is partly

unexpected as the mutation is located to a domain of the apoA-I

structure where amino acid substitution can result in increased

susceptibility to proteolysis and/or subsequent fibril formation.

This may be explained by the ability of apoAI-M to maintain

protein stability via covalent disulphide bridge interaction.

Another distinct difference between the two variants is the change

in charge of the side-chains (hydrophobic to basic in L178H and

basic to neutral in R173C), which may be a contributing factor to

the observed differences. In addition, the increase in helical

structure can potentially be attributed to an increase in coiled-coil

formation in the dimeric organization of the protein, which is

likely induced by the –S-S- covalent bonds between the proteins.

Therefore, the occurrence of disulfide bridging by Milano proteins

may not only result in a therapeutically-beneficial form of the

protein, but may also prevent the formation of large fibril

assemblies, which would likely result in a pathogenic state.

Proteases, e.g. chymase and tryptase [30], are expected to be

crucial for the maturation of fibrils as N-terminal fragments (the

first 80–95 amino acids of the extreme N-terminal domain) are

commonly found in plaques [31]. However, there are also

examples of variants/conditions that lead to aggregation of full-

length apoA-I. Those include the presence of full-length apoA-I

protein in plaques of humans carrying the L178H variant [17],

aggregation of apoA-I-WT at low pH [29], and fibril-formation of

apoA-I-WT following methionine oxidation [25]. Thus, while our

study defines a lack of intrinsic propensity of the apoAI-M protein

to form fibrils in vitro, further experimental work will be needed to

analyze the potential role of extrinsic factors in vivo (plasma

proteins, proteases, extracellular matrix components, etc.) on

apoAI-M aggregation propensity.

Supporting Information

Figure S1 Transmission electron micoscopy (TEM) images of

WT and IOWA apoA-I. WT (A) and IOWA (B) apoA-I proteins at

a protein concentration of 0.2 mg/ml were incubated at 37 C for

28 days followed by TEM analyses. Size bars are 100 nm. (black

bars) or 2 mm (white bars).

(PDF)
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