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ABSTRACT OF THE DISSERTATION

Massive Mutant Screens to llluminate the Dark Side of the Cyanobacterium

by

Benjamin E. Rubin

Doctor of Philosophy in Biology

University of California, San Diego, 2017

Professor Susan S. Golden, Chair

Cyanobacteria are key primary producers in the environment, models for
photosynthesis and the circadian clock in the lab, and emerging biological
production platforms for industry. Despite their scope of importance some of the
most fundamental components of their biology are poorly understood. We know
little about the functions encoded by most of their genes, and research
traditionally focused on constant light has left the organisms’ physiology in day-
night conditions obscure. In the studies comprising my thesis, we worked to

illuminate both of these knowledge gaps in the model cyanobacterium

XV



Synechococcus elongatus PCC 7942. We employed traditional molecular biology
and -omic techniques, and developed and applied a high-throughput approach
for whole genome mutant screens in S. elongatus (RB-TnSeq). Chapter one
introduces what is known about cyanobacterial physiology in Light-Dark Cycles
(LDCs). It also describes RB-TnSeq, which is used here to elucidate gene
function both generally and specifically to LDCs. Chapter two reports the
characterization of cellular activities upon light transitions that facilitate survival in
LDCs. Chapter three presents the development of RB-TnSeq in S. elongatus
and its use for the assignment of gene importance, the development of an
improved metabolic model for S. elongatus, and the implementation of screens to
further our understanding of these genes. Chapter four reports the application of
RB-TnSeq to understand survival in LDCs. In it, we identified the set of genes
specifically important for survival of LDCs and followed up on prioritized
candidates. This work resulted in improved understanding for the roles of the
circadian clock and nucleotide signaling in LDC survival. Chapter five concludes
by synthesizing the core achievements of the dissertation and suggesting future
directions. Together, these chapters explain the development of a powerful
genomic approach, RB-TnSeq, and its use to illuminate the genetic unknowns in
Cyanobacteria as well as the organisms’ LDC physiology. These findings will be
applicable to the basic understanding of this important phylum, its industrial use,
and photosynthetic organisms more generally, for which Cyanobacteria are the

most tractable models.
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CHAPTER 1: Introduction

1.1 Summary

Cyanobacteria are the most genetically tractable models for
photosynthesis, the premier prokaryotic organisms for circadian clock research,
responsible for tremendous environmental impact as primary producers, and
increasingly popular chassis for industrial product production. Nevertheless,
there are two large dark spots in our understanding of the phylum. The first is
darkness itself. The pathways necessary to survive day-night cycles in
cyanobacteria are currently poorly understood because most research is
conducted in constant light, leaving half the lifecycle of this keystone phylum
shrouded in shadow. This shortcoming and the work that has been done so far to
rectify it is the topic of a review on which | am primary author and which is
included, in part, as section 1.2 Cyanobacterial Day-Night Physiology. The
second fundamental knowledge gap is gene annotation. Approximately 40% of
genes in cyanobacterial species have no-functional prediction and for those that
do, the annotation is largely inferred from distantly related non-photosynthetic
organisms. A newly developed approach for whole genome mutant screens
using barcoded transposon mutagenesis coupled with high-throughput
sequencing (RB-TnSeq) provides a powerful tool for the illumination of both
areas. The conceptual basis of this technique is introduced in section 1.3 RB-

TnSeq. In this dissertation, RB-TnSeq and traditional molecular genetic



approaches are used on the model cyanobacterium Synechococcus elongatus
PCC 7942 for genome-wide functional annotation of genes, as well as targeted

enquiries into the physiology of day-night cycles.



1.2 Cyanobacterial Day-Night Physiology

An Introduction to Day-Night Cycles in Cyanobacteria. The daily
fluctuation of light is a nearly universal evolutionary challenge to life. For
cyanobacteria, microorganisms that rely almost exclusively on light for energy,
the response to these day-night cycles is particularly extreme ranging from
redirection of central metabolism (Diamond et al., 2017, 2015) to sweeping
changes in the cell’s transcription (Hosokawa et al., 2011; Ito et al., 2009).
Moreover, as progenitors via endosymbiosis to all oxygen-evolving
photosynthetic organisms (de Vries and Archibald, 2017), their response to light-
dark cycles (LDCs) has broad implications for understanding photosynthesis, and
for characterizing a phylum that has tremendous ecological impact and
biotechnological potential (Flombaum et al., 2013; Oliver et al., 2016). However,
due to the practical advantages of experimentation in continuous light, most
research, and all reviews on cyanobacteria to date, have focused on these
unnaturally static conditions. As a result, half of the lifecycle of this keystone

phylum is largely unexplored.

New research has begun to address this shortcoming by probing the
physiology of cyanobacteria in LDCs. Here, we consolidate current knowledge on
the cyanobacterial response to LDCs by discussing functions of importance for
the day state, the night state, and the regulation that is required for the drastic
transitions between the two. We will also discuss how our paradigm for the

response to LDCs generalizes beyond cyanobacteria.



Surviving the Day. Each day, a cyanobacterium wakes to the formidable
task of turning inorganic carbon into the organic molecules of life via
photosynthetic carbon dioxide assimilation. Its metabolic challenges are
numerous. The cell must simultaneously duplicate its molecules to prepare for
division while also storing energy reserves for the night. These reactions take
place in the background of photosynthesis, which requires significant cellular
resources for efficient function and generates damaging reactive oxygen species
(ROS) as a secondary byproduct (Latifi et al., 2009). As a consequence,
cyanobacterial metabolism is carefully orchestrated in both space and time (Ito et
al., 2009; Stanier and Cohen-Bazire, 1977; Vijayan et al., 2009).

Central Carbon Metabolism. The temporal organization of cyanobacterial
metabolism can be generalized as anabolic during the day and catabolic at night.
Daytime metabolism begins with shifting flux from the catabolic oxidative pentose
phosphate pathway (OPPP) and initiating the anabolic Calvin-Benson-Bassham
Cycle (CBBC) via the activity of the photosynthetic light reactions (Knoop et al.,
2013; You et al., 2015; Young et al., 2011). One of the critical steps in this
process is inactivation of CP12, a redox-sensitive protein that is a master
regulator of the CBBC (Tamoi et al., 2005). During the night, oxidized CP12
structurally sequesters glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
and phosphribulokinase (PRK) and inhibits the CBBC. At the onset of light,
photosynthetic reducing equivalents are generated, CP12 is inhibited, and CBBC
activity resumes. Metabolomic analysis supports upregulation of anabolic

metabolism during this phase of the day including pathways related to amino



acid, nucleotide, and quinone biosynthesis (Diamond et al., 2015). Upregulation
of amino acid and nucleotide production agrees with historical observations that
protein translation and DNA replication largely occur only during the day (Mori et
al., 1996; Singer and Doolittle, 1975).

Energy Storage and Electron Sinks. A principal activity during the daytime
is accumulation of excess photosynthate, which is sequestered as the glucose
polymer glycogen. Under LDC growth, glycogen daytime accumulation serves
two primary purposes: it is synthesized as the primary storage polymer in
preparation for night (Diamond et al., 2015; Gaudana et al., 2013; Hanai et al.,
2014; Suzuki et al., 2007; Wyman and Thom, 2012), and it serves as a
“regulatory valve” for excess reducing power produced under conditions of
particularly high light intensity (Latifi et al., 2009; Li et al., 2014; Miao et al., 2003;
Work et al., 2015). The importance of glycogen storage is highlighted by the fact
that mutations targeting the its biosynthetic pathway genes glgA, glgC, and glgP
significantly attenuate the ability of cells to grow in LDC (Grindel et al., 2012;

Osanai et al., 2007).

Surviving the Night.

Transcription and Translation. It is perhaps not surprising that darkness
triggers widespread changes in transcription and translation in the cyanobacteria
Synechococcus elongatus. Rates of both processes generally decrease
(Doolittle, 1979; Hosokawa et al., 2011; Takano et al., 2015), but specific genes

are induced upon a transition to darkness. Many of these genes are of unknown



function, and some are annotated simply as dig, for dark-induced gene
(Hosokawa et al., 2011). Better-annotated examples within this list include a
protein with a high degree of sequence similarity to CP12, (Tamoi et al., 2005);
hpf (IrtA), a regulator of ribosomal status (Hood et al., 2016); and heat shock
protein A (hspA), a predicted chaperone. Learning more about the identities and
functions of these genes may provide us with clues about how S. elongatus
survives periods of darkness.

Are transcript decreases in darkness mirrored by protein level? The
answer to this question is less clear. Ansong et al. (Ansong et al., 2014) showed
that only 4% of proteins change in abundance between light and dark,
suggesting that overall protein levels remain relatively constant. However,
several studies have shown that translation rates decrease in the dark (Hood et
al., 2016; Singer and Doolittle, 1975), and that dark-synthesized proteins differ
from those synthesized in the light (Suranyi et al., 1987). Determining the
identities of these dark-synthesized proteins using a technique such as ribosomal
profiling represents an important next step in understanding translational
responses to darkness.

Though a cyanobacterium in darkness is typically viewed as being in a
dormant state, the cell is not inactive — many processes still operate dynamically.
Studies on transcription, translation, and metabolism have demonstrated a
specific, adaptive response to darkness in S. elongatus. While overall rates of
these processes may be lower or close to zero, as is the case with DNA

replication (Ohbayashi et al., 2013; Watanabe et al., 2012), they are coordinated



in such a way that the cell can conserve energy, ensuring its survival until the

light shines again.

Regulation.

Transcription factors. RpaA and RpaB are transcription factors in
cyanobacteria that act as control hubs of LDC physiology. RpaA has been studied
thoroughly as the output mechanism for the cyanobacterial circadian clock and controls
oscillation of thousands of genes in a clock-dependent manner (Shultzaberger et al.,
2015). While RpaA serves to connect the circadian clock and transcription, RpaB, an
essential response regulator of the histidine kinase NblS, integrates environmental
signals. RpaB has been studied extensively as a light-responsive regulator of gene
expression (Seino et al., 2009; Wilde and Hihara, 2016). Mutations that cause changes
in RpaB level and phosphorylation have fitness phenotypes in LDCs (Espinosa et al.,
2015). RpaB’s activity in LDCs appears to be independent of the circadian clock;
however, its output overlaps with that of the clock through antagonism of RpaA activity.
These studies suggest that whereas RpaA acts as the output of the clock, RpaB
integrates signals of LDCs into the transcriptional regime of the cell in a clock-
independent way, and that both signals are necessary for survival of LDCs.

Chromosome Topology. One of the best-described examples of spatial
organization changes in cyanobacteria during LDCs is that of chromosome compaction.
Several studies have shown that the extent of chromosome or plasmid compaction in S.
elongatus changes depending on the time of day (Murata et al., 2016; Smith and
Williams, 2006; Vijayan et al., 2009; Woelfle et al., 2007). This phenomenon persists in

constant light, but not constant darkness, and is thought to be circadian-regulated.



Furthermore, when supercoiling is altered using an inhibitor of DNA gyrase, gene
expression patterns change (Min et al., 2004; Vijayan et al., 2009).

These studies provide insight into how gene expression might be controlled
during circadian or diel cycles, but they are mostly correlative, relating DNA compaction
or supercoiling with transcriptional outputs. The mechanistic details of how chromatin
state and nucleoid organization are controlled — by the circadian oscillator, by histone-
like DNA-binding proteins, and/or by changes in DNA topology — remain largely
unknown.

Signaling nucleotides. Evidence is accumulating that signaling nucleotides act
as intracellular messengers of LDCs. Levels of cAMP, ¢c-di-AMP, c-di-GMP, and ppGpp
have all been found to be light dependent in cyanobacteria (Agostoni and Montgomery,
2014) (See Section 4.3). Synthesis of ppGpp in S. elongatus after a light-to-dark
transition leads to transcriptional responses, which in at least one case affect the
physiological status of the cell (Hood et al., 2016). Survival of a strain that cannot make
ppGpp is impaired after exposure to darkness, though the mechanisms behind this
phenotype are not yet known.

C-di-AMP, a newly discovered signaling nucleotide in cyanobacteria, is also
important for S. elongatus survival of darkness. Inactivation of its cyclase, dacA, leads to
increased oxidative stress and decreased survival of the night periods of LDCs (See
Section 4.3). C-di-AMP and ppGpp levels are linked in Firmicutes (Corrigan et al., 2015;
Whiteley et al., 2015), suggesting the possibility that their activity inLDCcycles is
coordinated, but evidence does not yet exist in cyanobacteria. Although there are many
unknowns in the roles of nucleotide signaling in Cyanobacteria, they appear to have a

role in regulation of LDC physiology.



Beyond Cyanobacteria. The response to changing light conditions induced by
diel cycles is also a dominating force for plants and eukaryotic algae and influences
global geochemical cycles such as CO, fixation and climate change. In plants, constant
adjustments to light quality, intensity, and duration are made through the use of
photoreceptors. Varying LDCs cue plants to undergo different phases of growth,
development, and metabolism (Seluzicki et al., 2017). In Arabidopsis, for example,
darkness elicits the expression of over 80 proteins that code for functions involved in
photosystem |l inhibition, starch degradation, chloroplastic translation inhibition, and
redox regulation, all common themes that are familiar to what we observe in
cyanobacteria (Wang et al., 2016).

There are also relevant responses plants make to darkness and LDCs from an
economic/agricultural point of view. It has been shown that post-harvest storage and
exposure of green leafy vegetables, such as kale and cabbage, compared to storage in
non-LDC conditions, resulted in significantly improved appearance and health value of
crops due to increased tissue integrity, chlorophyll content, and levels of glucoinoslates,
a phytonutrient (Liu et al., 2015). These consequences of crop storage in LDCs were
comparable to that of refrigeration and reiterate the importance of understanding
physiological responses to LDCs. As the most tractable photosynthetic model
organisms, cyanobacteria can inform the industrial and applied sciences. For further
discussion of how darkness, carbon storage, and plant productivity are interrelated, we
direct readers to a review by Graf and Smith (Graf and Smith, 2011).

Some of the mechanisms developed to deal with the stresses inherent to LDCs
in photosynthetic organisms may be conserved far beyond them. Cyanobacteria are not
alone in struggling with oxidative stress. Hovering flight of nectarivores is an immensely

energetic endeavor and comes with high metabolic turnover and ROS. In hawkmoths,
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like cyanobacteria, this oxidative stress is likely detoxified by activity of the OPPP during
rest, to produce the antioxidants NADPH and reduced glutathione (Levin et al., 2017).
Furthermore, this strategy for oxidative stress management after intense exercise may
be of importance in animals far beyond hawkmoths (Del Rio and Dillon, 2017).
Therefore, strategies evolved in cyanobacteria to support LDC survival are present at

distant ends of the tree of life for unique environmental concerns.
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1.3RB-TnhSeq

RB-Tn-seq is a method that exploits transposon mutagenesis coupled to
high throughput sequencing to elucidate gene function. In RB-TnSeq a dense
mutant library is created with transposons, each of which contains a unique
barcode. The library is grown up and genomic DNA is sequenced to connect
each barcoded transposon to the surrounding sequence, so the barcode serves
as an identity tag for each mutant in the S. elongatus library (Fig. 1-1). In addition
to linking barcode to surrounding sequence, library analysis can be used to
provide genomic essentiality information by looking for genes and intergenic
regions where transposons are underrepresented because the mutants are not
viable. In this way initial characterization of the library allows unique barcodes be
used as identifiers for each mutant, and provides genome wide essentiality data.

After initial linking of transposon barcodes to surrounding sequence the
library can be used for pooled screening for fithness contribution of individual loci
under specific growth conditions. In this approach the library is split into one
control condition and into any number of experimental conditions. After some
prescribed period of growth the culture grown in each condition is screened by
high throughput sequencing of the barcodes. The count of each barcode is
inversely correlated with the importance of the associated gene in the condition
sampled (Fig. 1.3-1). For example, in a screen conducted in high temperatures,
an underrepresented barcode indicates that the gene linked to the barcode is
important for survival in high heat because few mutants for that gene survived

the condition. By using pooled barcoded mutants, this approach plays into the
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strengths of next generation sequencing, resulting in an unbiased, inexpensive,
and quantitative whole-genome screen.

Another use of the library is arrayed screening for novel mutants. In this
approach the mutant library would be plated on agar in Petri dishes to separate
out single cloned mutants. The mutation responsible for any phenotype of
interest could be determined by PCR using universal primers surrounding the
barcode and then Sanger sequencing. The sequence of the barcode would

identify the mutation location, which was determined during library analysis.
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Figure 1.3-1. RB-TnSeq Aproach. In library analysis the location of each
barcoded transposon in the genome is found using high-throughput sequencing.
In pooled screening the survival of every mutant in the library is tracked in a
control and experimental conditions using high-throughput sequencing of the
barcodes. The representation of the mutants, as determined by the number of
barcodes specific to it, can be used to determine the survival of that mutant in the
experimental condition.
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CHAPTER 2: Physiology Under Light-Dark Transitions

2.1 Chapter Summary

Although it has long been known that the circadian clock provides a fitness
advantage under LDCs, nothing was previously known about how the output of
this simple yet robust time-keeping mechanism afforded such an advantage.
Through observation of the metabolic changes of S. elongatus upon transitions
into light and into darkness, many of the important roles of the circadian clock in
LDC survival have come into focus. Upon transition into light, the active state of
the clock, present at dawn, draws flux away from central metabolism and towards
the production of secondary metabolites that likely have small but significant
fitness roles. This transition is explained in the form of a PNAS paper on which |
was third author, in section 2.2 Physiology of the Dark to Light Transition.
Upon transition into darkness, the inactive state of the circadian clock, present at
dusk, allows for a remarkable metabolic stability to be maintained despite the
perturbation of darkness. This active maintenance of metabolism is likely
necessary to detoxify oxidative stress that can become lethal at night if not
subdued. Mutants in which the circadian clock is constituently active and that are
unable to achieve the normal night-time state have catastrophic phenotypes in
LDCs. These findings are elaborated in a PNAS paper on which | was second
author, in section 2.2 Physiology of the Dark to Light Transition. Together, the
beneficial roles of each state of the circadian clock shed light on the necessity of

its oscillation between a dawn and dusk state.
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2.2 Physiology of the Dark to Light Transition
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The circadian oscillator in Synechococcus elongatus
controls metabolite partitioning during diurnal growth
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Synechococcus elongatus PCC 7942 is a genetically tractable model
cyanobacterium that has been engineered to produce industrially
relevant biomolecules and is the best-studied model for a prokary-
otic circadian clock. However, the organism is commonly grown in
continuous light in the laboratory, and data on metabolic processes
under diurnal conditions are lacking. Moreover, the influence of the
circadian clock on diurnal bolism has been investigated only
briefly. Here, we demonstrate that the circadian oscillator influences
rhythms of metabolism during diurnal growth, even though light-
dark cycles can drive metabolic rhythms independently. Moreover,
the phenotype associated with loss of the core oscillator protein,
KaiC, is distinct from that caused by absence of the circadian output
transcriptional regulator, RpaA (regulator of phycobilisome-associated
A). Although RpaA activity is important for carbon degradation
at night, KaiC is dispensable for those processes. Untargeted metab-
olomics analysis and glycogen kinetics suggest that functional KaiC
is important for metabolite partitioning in the morning. Addition-
ally, output from the oscillator functions to inhibit RpaA activity in
the morning, and kaiC-null strains expressing a mutant KaiC phos-
phomimetic, KaiC-pST, in which the oscillator is locked in the most
active output state, phenocopies a ArpaA strain. Inhibition of RpaA
by the oscillator in the morning suppresses metabolic processes that
normally are active at night, and kaiC-null strains show indications
of oxidative pentose phosphate pathway activation as well as in-
creased abundance of primary metabolites. Inhibitory clock output
may serve to allow secondary metabolite biosynthesis in the morn-
ing, and some metabolites resulting from these processes may feed
back to reinforce clock timing.

metabolomics | metabolism | circadian clock | cyanobacteria | diurnal

'yanobacteria comprise a promising engineering platform for
the production of fuels and industrial chemicals. These
organisms already have been engineered to produce ethanol,
isobutyraldehyde, alkanes, and hydrogen (1-4). However, the
efficient industrial-scale application of these photosynthetic
organisms will require their growth and maintenance in the
outdoors where they will be subjected to light-dark (LD) cycles
(5). Phototrophic cyanobacteria present a completely different
engineering challenge relative to heterotrophic bacteria such as
Escherichia coli: their cellular activities respond strongly to the
presence and absence of light because their metabolism is cen-
tered on photosynthesis (6, 7). Diverse cyanobacteria also pos-
sess a true circadian clock that synchronizes with external LD
cycles and has been demonstrated to drive both gene expression
and metabolic rhythms (8-10). It is important to understand how
signals from the external environment and the internal circadian
clock are integrated to modulate metabolic processes in envi-
ronmentally relevant LD cycles to optimize the engineering of
these organisms. In this work we attempt to separate the
influences of environment and circadian control using the cya-
nobacterium Synechococcus elongatus PCC7942, because it is
both a highly tractable genetic system and the foundational
model for the prokaryotic circadian clock.
The circadian clock in S. elongatus is based on a central os-
cillator formed by the proteins KaiA, KaiB, and KaiC (11). The
reversible phosphorylation of KaiC over a 24-h period sets the

timing of the clock mechanism. The clock synchronizes to the
environment through KaiA and a histidine protein kinase, CikA.
Both proteins bind quinone cofactors, likely plastoquinone
present in the photosynthetic membrane, that reflect the cellular
redox state (12, 13). KaiC activity also is modulated by the cel-
lular ATP/ADP ratio (14), and both the cellular redox state and
ATP/ADP ratio are dependent on the availability of external
light. Thus, it has been demonstrated that changes in energy
metabolism feed back in setting the timing of clock oscillations
(15). The output of the clock is relayed to gene expression
through the Synechococcus adaptive sensor (SasA)-regulator of
phycobilisome-associated A (RpaA) two-component system (16)
in which RpaA is a transcription factor that binds more than 170
gene targets. Many of the genes strongly activated by RpaA
function in nighttime metabolic processes, including glycogen
degradation, glycolysis, and the oxidative pentose phosphate
pathway (OPPP) (17).

Under constant-light (LL) growth conditions circadian control
in S. elongatus is quite pervasive, with up to 64% of transcripts
displaying 24-h clock-dependent oscillations (10). Gene expres-
sion has roughly two distinct phases in LL: genes with an ex-
pression peak at subjective dusk (class 1) and genes with an
expression peak at subjective dawn (class 2) (18). Recent work by
Paddock et al. (19) suggests that a single output from the central
oscillator is responsible for both out-of-phase rhythms and that
the oscillator has maximum output activity in the morning when
KaiC-pST becomes the most prevalent phosphorylation state.
Furthermore, there is evidence that oscillator activity is in-
hibitory (20), and rhythms may manifest as different responses to

Significance

Cyanobacteria are increasingly being considered for use in
large-scale outdoor production of fuels and industrial chem-
icals. Cyanobacteria can anticipate daily changes in light avail-
ability using an internal circadian clock and rapidly alter their
metabolic processes in response to changes light availability.
Understanding how signals from the internal circadian clock
and external light availability are integrated to control met-
abolic shifts will be important for engineering cyanobacteria
for production in natural outdoor environments. This study
has assessed how “knowing” the correct time of day, via the
circadian clock, affects metabolic changes when a cyanobac-
terium goes through a dark-to-light transition. Our data show
that the circadian clock plays an important role in inhibiting
activation of the oxidative pentose phosphate pathway in
the morning.
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the alleviation and return of this inhibition over a daily period. It
also is likely that metabolism is strongly influenced by the clock
in constant light, because a statistically high proportion of genes
involved in energy metabolism are rhythmic in LL (21). How-
ever, no metabolic pathways are specifically enriched in class 1 or
class 2 genes with the exception of ribosome biogenesis and
photosynthesis, respectively (10).

A few studies have investigated the transcriptome, proteome,
and physiological dynamics of particular species of cyanobacteria
over a 24-h period under LD growth (6, 22, 23). In general,
systems for oxygenic photosynthesis are activated during the day,
and systems for respiratory metabolism are activated at night.
Additionally, the day and night periods are used by cyanobac-
teria to segregate incompatible metabolic processes (22). For ex-
ample, S. elongatus activates light-independent protochlorophilide
reduction, which is an oxygen-sensitive process, at night, a time
when oxygen is not being produced by photosystem II (24).
However, the degree to which the circadian clock and light avail-
ability independently affect metabolic events is poorly understood.
In S. elongatus, only two studies have investigated the behavior
of mutants that lack a functional clock under an LD cycle (21, 25).
The available studies investigate these effects only over a light-
to-dark transition, so currently there is an incomplete under-
standing of the circadian influence on cellular events over a full
24-h LD cycle. Finally, although there is a proteomics dataset for
S. elongatus that covers a full 24-h LD period, that study tracked
only WT cells and does not decouple clock and environmental
influences (23).

When cyanobacteria are grown in a 24-h LD cycle, cells per-
form photosynthesis and store fixed carbon as the branched
glucose polymer glycogen during the day. Glycogen subsequently
is degraded at night for energy and reducing power via the OPPP
(26, 27). Pattanayak et al. (15) recently showed that glycogen in
S. elongatus oscillates in LL and that this oscillation depends on
a functional clock. Rhythms of glycogen accumulation and deg-
radation also have been observed during LD growth in S. elongatus
(28); however, the influence of the clock under LD conditions is
not clear. In fact, enzymes in glycogen metabolism are sensitive to
the cellular redox state, and LD transitions alone may trigger
changes in glycogen content (29). Glycogen is essential for survival
in LD: Mutants defective for the glg4 (glycogen synthase) or gigC
(ADP-glucose pyrophosphorylase) genes, which are required for
glycogen synthesis, are not viable under LD growth regimes (30).
In turn, the deletion of the OPPP gene zwf (glucose-6-phosphate
1-dehydrogenase) or glycolysis gene gapl (glyceraldehyde
3-phosphate dehydrogenase), both of which participate in pathways
that consume glycogen, results in mutants that are impaired in LD
growth (31, 32). Null mutations in the circadian oscillator, in-
cluding deletions of kaiA, kaiB, or kaiC, do not impair LD growth.
However, disruptions in the SasA-RpaA clock output pathway
dramatically stifle growth in LD (16, 33), and genes involved in
catabolism of carbon, including gigP (glycogen phosphorylase),
gapl, and zwf, are all known RpaA targets (17). Thus, although the
clock output pathway likely activates important metabolic pro-
cesses that occur at night, it is not clear if or how the circadian
oscillator modulates these processes.

In this study we applied genetic, biochemical, and metab-
olomic methods to S. elongatus to dissect how the circadian os-
cillator and activation of the clock output pathway specifically
control metabolism under an LD growth regime. We tracked
glycogen content in WT S. elongatus and a AkaiC mutant over
a 72-h time course under both LL and LD conditions. Sub-
sequently, we characterized glycogen kinetics at LD transitions in
WT, AkaiC, ArpaA, and a AkaiC::KaiC-pST phosphomimetic
mutant (KaiC-ET) to address whether circadian oscillator output
exerts a negative or positive control over glycogen levels. Finally,
we performed untargeted metabolic profiling of WTcells and
AkaiC mutants to investigate how oscillator activity affects global

metabolite abundance at the transition from darkness into light.
We present a hypothesis for clock regulation of diurnal metab-
olism that combines our data with previous reports on S. elon-
gatus transcript and protein rhythms (17, 21, 23) and that
highlights the importance of circadian output for proper me-
tabolite partitioning under LD growth regimes.

Results

The Circadian Clock Segregates Anabolic and Catabolic Carbon
Metabolism in LL. To determine whether carbon metabolic path-
ways are under circadian control, we mined existing datasets
using a bioinformatic approach that breaks larger pathways into
anabolic and catabolic components. Using the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG), we determined which
reactions of glycolysis, OPPP, and the Calvin cycle act exclusively
within the OPPP (catabolic) or the Calvin cycle (anabolic). We
subsequently annotated the enzymes that enable these reactions
with their circadian class of transcript [class 1 (peaks at dusk) and
class 2 (peaks at dawn)] using available microarray data collected
from cells grown in LL (10). Our analysis showed that catabolic
reactions are catalyzed exclusively by enzymes with class 1 gene-
expression profiles, whereas anabolism is catalyzed almost ex-
clusively by enzymes with class 2 gene-expression profiles (Fig. 1
A and B).

Like the OPPP and the Calvin cycle, glycogen metabolism
shows strong temporal segregation in the expression of anabolic
and catabolic pathway genes (gray box in Fig. 14). To gauge
circadian influence on cellular flux of carbon, we tracked glycogen
content for 72 h in WT and in a clockless AkaiC mutant grown in
a photobioreactor under constant and stringently controlled tur-
bidity, temperature, and light conditions (Materials and Methods).
A recent report from Pattanayak, et al. (15) demonstrated that
WT cells show 24-h glycogen oscillations under LL conditions,
whereas AkaiC mutants lack these oscillations. Our data con-
firmed a kaiC-dependent 24-h rhythm of glycogen oscillation in
LL (period = 24.7 + 0.13 h) (Fig. 24). We propose that oscil-
lations in glycogen content under LL conditions result from clock-
controlled oscillations of gene expression that segregate pathways
for storage and degradation of carbon temporally.

During LD Growth KaiC Has a Repressive Effect on Glycogen Synthesis
and Is Not Required for Glycogen Degradation. The daily oscil-
lations in glycogen abundance that occur when cells are grown in
a 24-h LD cycle (28) could be controlled by the circadian oscil-
lator or driven by the environmental cycle. We observed glyco-
gen synthesis and degradation rhythms in both WT cells and
a AkaiC mutant during growth in a 12:12 LD cycle over a 72-h
period (Fig. 2B). Thus, the environment can drive cycles of gly-
cogen accumulation independently of the clock. However, the
kinetics of glycogen accumulation were different in the WT and
AkaiC strains. Kinetic profiling revealed that glycogen accumu-
lation occurs significantly faster in AkaiC mutants than in WT
cells during the 12-h light period, particularly within the first 6 h
of light exposure (Fig. 3). More rapid accumulation resulted in
glycogen reaching its peak content 4-5 h earlier in the AkaiC
mutants than in WT cells. The AkaiC mutant had different rates
of glycogen accumulation in the first and last 6-h blocks of the
light period, whereas accumulation in WT cells was maintained
at a steady rate over the full 12-h period (Fig. 3B). Also, AkaiC
mutants had higher overall glycogen levels than WT cells
through the time course (Fig. S1). Thus, the observed rapid ac-
cumulation kinetics is not the result of normalization to a smaller
starting pool but occurs despite elevated glycogen content in
these cells.

In contrast, kinetic profiling of glycogen degradation when
cultures were transferred to darkness showed little difference
between WT and AkaiC strains (Fig. 44 and Fig. S2). In all tested
cases glycogen degradation could be modeled as a first-order
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timing of circadian gene expression onto each pathway. Genes exclusively part of the OPPP generally peak at dusk (red), whereas genes exclusively part of the
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sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate; X5P, xylose-5-phosphate.

decay process. The decay constant for AkaiC was slightly higher
than that for WT (Agaic = 0.318 + 0.069; Awr = 0.210 + 0.022).
However, the terminal glycogen fraction after a night period
was not significantly different for the two strains (G_24hgaic =
0.186 + 0.062; G_24wr = 0.125 + 0.039). Thus, although gly-
cogen degradation occurs slightly faster in the AkaiC strain,
both strains degrade a similar fraction of their glycogen during
the overnight period. These data demonstrate that the circadian
oscillator refines the timing of glycogen accumulation so that it
occurs at a constant rate through the light period, whereas dark-
ness is sufficient to drive glycogen degradation. The kinetics ob-
served when the clock is disrupted suggests that oscillator output
has a negative effect on the rate of glycogen accumulation. This
effect is supported further by the increased overall glycogen con-
tent observed when the oscillator is not present.

RpaA Activity Is Important for Glycogen Degradation and Viability in
LD and Is Negatively Regulated by Oscillator Output. Mutations in
the SasA-RpaA circadian output pathway result in acute LD
sensitivity (16). To determine whether disruptions in the circa-
dian output pathway affect carbon catabolism at night, we
tracked glycogen degradation kinetics in a Arpad mutant. Sub-
sequently, we evaluated how the circadian oscillator affects
RpaA activity by additionally tracking glycogen degradation ki-
netics in a AkaiC::KaiC-pST phosphomimetic mutant, KaiC-ET.
In the KaiC-ET mutant the circadian oscillator is locked in the

most active output state, which is most prevalent in the morning
of a circadian cycle (19). Thus we can assess how active output
from KaiC affects downstream RpaA activity with respect to
glycogen metabolism.

The RpaA-null mutant displayed an initial drop in glycogen
content but terminated glycogen degradation much earlier than
the WT strain (Fig. 4B and Fig. S2). The terminal glycogen frac-
tion determined by our model for Arpad (G_24hgrpas = 0.585 +
0.071) is significantly higher than that determined for WT
(G_24hwrsKanamycin (km) = 0.222 + 0.085). However, the decay
constant during the time glycogen degradation is active in each
strain is not significantly different for the Arpad (Agpaa = 0.607 +
0.364) and WT (Awrixm = 0.291 + 0.077) strains. The primary
difference between the two strains is that glycogen degradation in
ArpaA is incomplete, and an unusually large fraction of glycogen
remains in these strains at the end of a night period. The KaiC-ET
mutant showed a glycogen degradation defect similar to that of
ArpaA (Fig. 4C and Fig. S2). The decay constant does not differ
significantly from WT (Awrispsm = 0.165 + 0.062; AkaiceT =
0.294 + 0.085) (SpSm, spectinomycin/streptomycin); however,
the terminal glycogen fraction again was significantly higher in this
strain (G_24hwr,spsm = 0.238 + 0.154; G_24hg,icer = 0.466 +
0.062). KaiC-ET mutants also exhibit an LD growth defect similar
to, but less severe than, that of Arpad. (Fig. 4D).

The results suggest that KaiC output activity has a negative
effect on RpaA activity, because the KaiC-ET phosphomimetic
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Fig. 2. Average of normalized glycogen content in WT (blue) and AkaiC
(red) strains of S. elongatus over a 72-h period under both LL and LD growth
conditions. The area of shaded color around the solid lines represents SEM.
ZTO represents subjective dawn after circadian entrainment (Materials and
Methods). (A) Glycogen sampling every 4 h from cells grown in LL for 72 h.
The WT strain shows a 24-h rhythm of glycogen content, whereas AkaiC has
arrhythmic fluctuations. Glycogen was normalized for each biological replicate
to the maximum value in that replicate’s 72-h period; the solid line is the av-
erage of these values. The experiment was performed in triplicate for each
strain. (B) Glycogen sampling every 4 h from cells grown in alternating periods
of 12 h light and 12 h darkness; darkness is indicated by the gray bars. Both WT
and AkaiC strains display a 24-h rhythm of glycogen content. Glycogen was
normalized for each biological replicate to the maximum value in that repli-
cate’s 24 h period; the solid line is the average of these values. The experiment
was performed in duplicate for WT cells and in triplicate for AkaiC.

is locked in the most active output state of the clock and phe-
nocopies an RpaA-null strain. This finding agrees with previous
reports that overexpression of KaiC has a repressive effect on

expression of class 1 genes, which normally are activated by
RpaA (17, 20). Finally, this result demonstrates that RpaA has
a positive effect on carbon catabolism; moreover, the ability to
grow in a diel cycle strongly correlates with the extent to which
glycogen is metabolized in the dark.

Metabolomic Profiling During Dark-to-Light Transition Reveals That
the Clock Is Important for Proper Metabolite Partitioning in the
Morning. Because disruption of kaiC does not cause major
changes in glycogen degradation (Fig. 44), the difference in
glycogen accumulation observed between WT and AkaiC strains
(Fig. 34) suggests that a functioning circadian oscillator may be
important for metabolite partitioning in the morning. To gain
a clearer understanding of early-day metabolic changes in an LD
cycle, we performed untargeted metabolic profiling using gas
chromatography-time of flight-mass spectrometry (GC-TOF-MS)
on both entrained WT and AkaiC strains directly before (0 h) and
4 h after a dark-to-light transition. The analysis successfully
identified 130 known metabolites across a broad array of meta-
bolic pathways and an additional 195 unknown metabolites that
correspond to previously observed mass spectra to which no pu-
rified standard compound has been matched (Dataset S1) (34).
Factors contributing to metabolite variability. Because both sampling
time and genotype potentially contribute to differences between
samples, we first used partial least squares discriminate analysis
(PLS-DA) to determine which factors contribute most of the
variability in the dataset (35). Plotting PLS-DA components
1 and 2 showed that the sample replicates are well segregated
from each other and that the variability from genotype differ-
ences is captured by component 1, whereas the variability from
sampling time is captured by component 2 (Fig. 54). Given the
association of time and genotype with the respective compo-
nents, it is apparent that genotype explains a much larger per-
centage of dataset variability than response to an environmental
signal (41.2 and 14.3%, respectively). Also, samples collected at
0 h are not very different from each other, because there is
a slight overlap of the 95% confidence interval (CI) ellipse be-
tween these groupings (Fig. 54).

A loading plot was produced that gives a relative score
showing how much an individual compound influences the var-
iability of each component among samples (Fig. 5B). Unknown
compounds contribute strongly to genotype-derived variability
(component 1), whereas many compounds that contribute to
sampling time-derived variability (component 2) are known pri-
mary metabolites such as glucose-6-phosphate and branched-
chain amino acids. The connection of primary metabolites to
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Fig. 3. Summary of glycogen accumulation data over a 12-h light period collected from WT and AkaiC cells growing in a 12:12 LD cycle. (A) Normalized
glycogen content from WT (blue circles) and AkaiC (red circles) cells collected at 1-h intervals after cells were released into the light. Glycogen content for each
replicate was normalized to the maximum value in the 12-h period. The data indicate that AkaiC accumulates glycogen more rapidly than WT early in the day.
Best-fit curves were calculated for WT (blue line) and AkaiC (red line) cells using LOESS regression; the gray shaded area indicates the 95% Cl for the re-
gression line. Sampling for each strain was conducted in triplicate. (B) Slope calculated using liner regression of normalized glycogen content for the given
time intervals. The glycogen accumulation rate for WT does not significantly differ over the time course, whereas AkaiC displays significantly different rates of
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time is indicative of the activation of primary metabolism after
a dark-to-light transition. Some metabolites also contribute
strongly to both components. These metabolites, such as sucrose
and tryptophan, are interesting because, although they change
after the dark-to-light transition, the nature of their variability
is strongly affected by the presence or absence of KaiC. Over-
all, the status of the circadian oscillator contributes more to
the variability than a dark-to-light transition. Strikingly, the
compounds that contribute most strongly to genotype-related
differences are unknowns. Finally, it is likely that metabolic
differences accumulate over the time course, because the most
divergent samples are the WT and AkaiC mutant strains at 4 h
after lights on.

Metabolites significantly altered in dynamics or abundance. We identi-
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Fig. 4. Summary of glycogen degradation data and LD growth phenotypes
for WT, AkaiC, ArpaA, and KaiC-ET strains. Samples for all glycogen degra-
dation rate experiments were collected at 0, 0.5-, 1-, 2-, 3-, 4-, 6-, 8-, and 12-h
time points after cells entered a dark period during a 12:12 LD diurnal cycle.
Glycogen content for each replicate was normalized to the glycogen value at
12 h after lights on. The best fit for each set of data was modeled using first-
order decay and is indicated by a solid line; coefficients are given in the text.
(A) Normalized glycogen content from WT (blue circles) and AkaiC (red cir-
cles). First-order decay model for WT (blue line) and AkaiC (red line) indicates
that glycogen degradation is similar in these strains. The experiment was
performed in duplicate for both strains. (B) Normalized glycogen content
from WT (blue circles) and ArpaA (green circles). The first-order decay model

fied 21 known and 29 unknown compounds that differed sig-
nificantly in at least one pairwise comparison between sample
types (Dataset S1). Based on PLS-DA, we focused on com-
pounds that (i) changed significantly between the 0 h and 4 h
time points (Fig. 64) and (i) had significantly different abun-
dances in the WT and AkaiC strains at the 4-h time point (Fig.
6B). The metabolites that changed significantly over time in both
the WT and AkaiC strains are primarily known metabolites (Fig.
64 and Table S1). Also, the direction of change over time was
similar for many of these compounds in both strains. In contrast
the majority of metabolites (11 of 12) that change over time only
in the WT strain are unknown species. Some of these metabo-
lites, such as BBID#106943 and BBID#101299, change strongly
with time in WT cells but show effectively no change over time in
the kaiC mutant (Fig. 64 and Table S1). Only four compounds
changed significantly over time uniquely in AkaiC. One target,
fructose-6-phosphate, is a known intermediate of the OPPP and
shows a fourfold increase. Previous work on S. elongatus suggests
that flux through this compound is indicative of OPPP activity
(36). Additionally, the AkaiC mutant showed a 2.5-fold decrease
of the unknown BBID#106921. This compound shows opposite
metabolic movement between genotypes over the time course.
In AkaiC a number of primary metabolites were elevated
relative to WT by 4 h in the light (Fig. 6B). Most notably, sucrose
was elevated more than sixfold. Glucose-6-phosphate, fructose-
6-phosphate, and inulotriose, which are connected to glycolysis,
the OPPP, and glycogen biosynthesis, were also elevated sig-
nificantly (Fig. 6 B and C). Tryptophan, a product of the shi-
kimate pathway, which is fed directly by the OPPP, was ~4.5-fold
more abundant in AkaiC at 4 h. In contrast, a number of un-
known compounds that were very abundant in the WT strain
had extremely depressed levels in AkaiC mutants. Two of these
compounds, BBID#106921 and BBID#1721, were more than
100-fold less abundant in AkaiC, but, respectively, they were the
third and sixth most abundant compounds detected in WT cells
at 4 h (Fig. 6B and Table S2). In AkaiC these metabolites are
only the 219th and 187th most abundant at 4 h, respectively.
In summary, the inactivation of kaiC appears to have a direct
impact on how metabolites are partitioned in the cell after a dark-
to-light transition. Both strains increase pool sizes of primary
metabolites over the time course; however; AkaiC accumulates

for WT (blue line) and ArpaA (green line) indicates that glycogen degrada-
tion is severely attenuated in the ArpaA strain. The experiment performed in
quadruplicate because of the known high variability in the ArpaA strain.
(C) Normalized glycogen content from WT (blue circles) and KaiC-ET (orange
circles). The first-order decay model for WT (blue line) and KaiC- ET (green
line) indicates that glycogen degradation is attenuated in the KaiC-ET strain.
The experiment was performed in duplicate. (D) Dilution series of strains
grown on solid BG-11 medium for 5-7 d in a 12:12 LD cycle. (Top) WT and
AkaiC have similar growth kinetics under these conditions. However, KaiC-ET
(Middle) and ArpaA (Bottom) have severely attenuated growth when grown
in a diel cycle. Images are representative of multiple experiments.
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letters A, B, and C represent the three biological replicates taken for each
indicating the importance of each metabolite to the variability of a given

component. Points in red are compounds for which one of the loadings was at least £0.1. Points in gray are compounds for which no loading was greater than

+0.1. The plot shows that many unknown compounds drive variability in comp
ponent 2.

much larger amounts of primary metabolites, specifically those
involved in and directly connected to the OPPP, such as fructose-
6-phosphate and sucrose. In contrast, WT cells mobilize carbon
into a number of unknown compounds that are present only at
low levels in AkaiC and make up a significant portion of the
overall WT sample.

Correlations in Metabolite Abundance Can Help Classify Unknown
Compounds. To identify shared pathways and suggest the bio-
chemical context for the unknown metabolites that change re-
markably in WT, we applied intermetabolite correlation analysis
to look for groups of metabolites that share similar patterns of
abundance (37). We compared the set of 50 metabolites with
significant changes identified by ANOVA, which includes our
unknown metabolites of interest (Dataset S1), with all of the
known metabolites that were used in the ANOVA analysis
(Materials and Methods). Pearson correlations were computed
between the abundances of compounds in these two groups,
which contained 50 and 111 compounds, respectively (Dataset
S2). This analysis yielded 5,550 correlation coefficients from all
possible pairwise comparisons. Subsequently, we used hierarchical
clustering to group the correlation coefficients into clusters with
similarity to each other. For the 50 metabolites with at least one
significant change between samples, we could identify three dis-
tinct groups that we call “target clusters” (TC), for which the
correlations to the 111 known metabolites formed a unique pat-
tern. Similarly, when we looked at all 111 known metabolites we
could identify six distinct groups, which we call “metabolite clus-
ters” (MC), for which a group of known metabolites has a unique
pattern of correlations across TCs. The correlations are presented
as an ordered heat map with TCs on the x axis and MCs on the
y axis (Fig. 7, Table S3, and Dataset S2).

We found that 11 of the 14 metabolites identified as more
abundant in AkaiC at 4 h are clustered in TC2, whereas all seven
metabolites significantly depressed in KaiC cells relative to WT
cells at 4 h are found in TC3 (Table S3). Although TC1 and TC2
share similar correlation patterns across the six metabolite
clusters, this pattern is very different from the pattern of TC3
across the same clusters (Fig. 7). TC1 and TC2 correlate posi-
tively with MC3 and MCS5 and negatively with MC1 and MC2,

onent 1 whereas known and unknown compounds drive variability in com-

whereas TC3 has the opposite pattern, correlating negatively
with MC3 and MC5 and positively with MC1 and MC2 (Fig. 7).
The compounds that make up MC3 and MC5 are strongly
enriched for roles in primary metabolic pathways, such as starch
and sucrose metabolism (P = 9.95e-7), the pentose phosphate
pathway (P = 2.20e-6), branched chain amino acid biosynthesis
(P = 3.26e-3), and purine metabolism (P = 9.99e-4) (Fig. S3).
Thus, TC1 and TC2 represent groupings of metabolites that
increase together with primary metabolic activity, including sugar
phosphates, nucleotides, and amino acids. This pattern is clearly
evident in TC1, because this cluster contains many of the primary
metabolites that increase in both strains after a dark-to-light
transition (Table S3). In contrast, the compounds that make up
MC1 and MC2 are enriched for roles in secondary metabolic
pathways, such as fatty acid biosynthesis (P = 1.96e-3) and
glycerolipid metabolism (P = 5.97¢-3) (Fig. S3). MC1 and MC2
also contain a number of benzoate compounds that have been
detected previously in cyanobacteria, including benzoic acid and
4-hydroxybenzoate (4HB) (Fig. S4 and Dataset S2) (38). Recent
work has shown that plastoquinone biosynthesis in cyanobacteria
uses 4HB as an intermediate (39, 40). Indeed, the benzoate
compounds in MC1 and MC2 correlate negatively with the ar-
omatic amino acids, which are consumed in plastoquinone bio-
synthesis (Fig. S4). Thus, it is likely MC1 and MC2 also are
enriched in compounds with roles in biosynthesis of plastoqui-
none or other quinone-like molecules. Overall, our correlation
analysis suggests that unknown compounds elevated in AkaiC
are located primarily in TC2 and likely function in primary
metabolic pathways or increase during their activation. In con-
trast, the unknown compounds elevated in the WT strain, which
are exclusively found in TC3, likely function in secondary met-
abolic roles associated with lipid, glycerolipid, and possibly qui-
none biosynthesis.

Discussion

Before this work very limited data were available on the diurnal
metabolism of S. elongatus, and no study had attempted to de-
couple the influences of the circadian clock and dark-to-light
transitions on metabolism when cells are grown in a diurnal cy-
cle. Our major conclusions from the collected data are that
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polymers were elevated also.

(i) the output from the core oscillator is dispensable for the
degradation of carbon at night in a diel cycle; (i) KaiC output
inhibits RpaA, which serves to block activation of nighttime
metabolic processes in the morning; and (iii) the importance of
the circadian oscillator with respect to metabolism is primarily to
modulate the balance between the Calvin cycle and the OPPP
under diurnal growth conditions. The data are consistent with
a model in which the clock serves to regulate RpaA activity
negatively, and hence class 1 gene expression, in the morning. A
decrease in inhibitory oscillator output over the day would allow
RpaA to activate class 1 genes closer to dusk. This model agrees
with data from Paddock et al. (19) suggesting that maximum
output activity from the circadian oscillator occurs when KaiC
is in the KaiC-pST (KaiC-ET) phospho-state, which is most
abundant at dawn. The question remains as to what metabolic
processes are driven by RpaA that are important for LD viability.
Inactivation of a number of RpaA targets, such as zwf and gnd in
the OPPP, also causes an LD sensitivity phenotype. However, it is
unclear where carbon flows at night in S. elongatus and why these
pathways are so critical for survival under these conditions. Our
data suggest that normal KaiC output activity primarily affects
metabolic processes that occur in the morning, because the largest
differences between the WT and AkaiC strains in both glycogen
kinetics and global metabolite partitioning are seen at this time.

The AkaiC mutant accumulates larger pools of glycogen pre-
cursors and primary carbon metabolites early in the day period
(Figs. 34 and 6B). However, gene-expression data from LL
conditions show that, relative to WT, the AkaiC mutant has
significantly higher morning expression of transcripts involved in
glycogen and carbon catabolism (21). Under diurnal growth
conditions it is likely that multiple factors influence the flow of
carbon in S. elongatus, including transcription, allosteric regula-
tion of enzymes, and stoichiometric ratios of metabolites. Upon
entering a morning period, when glycogen stores are low and
photosynthesis is active, glycogen levels may not be strongly
influenced by transcript levels from catabolism genes and instead
reflect changes in other connected metabolic processes and al-
losteric regulation of glycogen biosynthetic enzymes. Indeed,
GlgC is allosterically activated by the photosynthetic product
3-phosphoglycerate and a reducing cellular environment (29, 41).
Alternatively, when cells enter a dark period, glycogen content is
high, and GlgC is allosterically inactive. Under these conditions
transcriptional activation by RpaA and the availability of deg-
radative transcripts is a primary driving factor in glycogen ca-
tabolism. Activation of the OPPP in the morning by RpaA may,
in fact, increase the availability of precursors for glycogen bio-
synthesis during a time when GlgC is strongly activated.
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Fig. 7. Heatmap of the correlation between the groupings of metabolites
identified by ANOVA to have some significant change (TCs) and a filtered set
of all detected known compounds (MCs). More intense red color indicates
the abundance patterns between two compounds in all collected samples
are more positively correlated; more intense blue color indicates a negatively
correlated abundance pattern. TC1 and TC2 have similar patterns of corre-
lations across all known compounds, whereas TC3 displays a unique pattern
of correlation. Almost all the unknown compounds that are highly abundant
in WT and significantly reduced in AkaiC can be found in TC3. Thus, TC3 may
give metabolic context to the possible placement of these unknown com-
pounds in metabolism.

Other transcriptional changes in the AkaiC strain also may
indirectly affect the regulatory protein CP12 (Calvin cycle
protein 12), a master regulator of the Calvin cycle conserved
between cyanobacteria and plants (36, 42). Reexamining the
transcriptomics data from LL reveals that two of the most highly
up-regulated genes in a AkaiC mutant are the pyridine nucleo-
tide transhydrogenase subunits A and B (pntA and pntB), which
also are known RpaA targets (17, 21). Products of these genes
allow the interconversion of NADP(H) to NAD(H), and their
overexpression may lower the normally high NADP(H)/NAD(H)
ratio present during active photosynthesis. In S. elongatus low
NADP(H)/NAD(H) levels activate CP12, causing a shift from
the reductive Calvin cycle to the OPPP (36). In S. elongatus in-
activation of CP12 resulted in decreased OPPP activity, in which
a decrease in cellular fructose-6-phosphate could be detected di-
rectly (36). Additionally, in tobacco plants more active CP12 was
associated with more starch, soluble sugars (including sucrose),
and amino acids (43). The metabolic shifts observed in a AkaiC
mutant in the morning mirror those seen when CP12 is active,
including increased levels of fructose-6-phosphate, sucrose,
nucleotides, and amino acids (Fig. 6 B and C). In contrast, the

repression of CP12 in tobacco resulted in accumulation of com-
plex insoluble metabolites such as protein and cell wall compo-
nents (43). In WT S. elongatus we observe increased abundance of
unknowns that correlate strongly with compounds involved in fatty
acid and glycerolipid biosynthesis; both these biosynthetic path-
ways would be important for cell wall and membrane biosynthesis
in cyanobacteria. Thus, clock control may be important for regu-
lating a shift between Calvin cycle activity and OPPP activity.

These data suggest a model in which KaiC output activity is
important for inhibiting RpaA-driven OPPP activity in the
morning. Inhibition of OPPP and other primary metabolic
pathways frees up carbon so that it can be used in secondary bio-
synthetic processes. When inhibition of RpaA is relieved, it can
activate its targets (including pntA4 and pntB) so that a lowering of
the NADP(H)/NAD(H) ratio and activation of CP12 occurs. The
strong correlation in WT samples of elevated unknown compounds
with metabolites that participate in plastoquinone biosynthesis
suggests that inhibition of primary metabolism by the clock in the
morning may be important for this process (Fig. S4). Accumulation
of plastoquinone in the morning not only would support photo-
synthesis through the day period but also would be important for its
known role in resetting the circadian clock (44). The influence of
the clock on accumulation of these compounds may represent
a metabolic feedback loop in which the oscillator output is im-
portant for the biosynthesis of compounds that reinforce the cor-
rect oscillator timing in LD. In fact, both circadian control over
starch metabolism and metabolic feedback to circadian timing have
been observed previously in plants (45, 46). Thus, already there is
some precedent for the existence of circadian timing reinforcement
by metabolism in photosynthetic organisms.

Overall, this study highlights the importance of understanding
the interaction of the circadian clock with light-to-dark tran-
sitions to gain insights into diurnal physiology and metabolism
under day-night cycles. Some aspects of metabolism may be
heavily dependent on the circadian clock, whereas others in-
tegrate both circadian influences and light availability. The ex-
pansion of mass spectral libraries and metabolic networks in
photosynthetic organisms will be highly beneficial in determining
the response to both internal circadian control and the external
environment.

Materials and Methods

Cyanobacterial Strains, Media, and Culture Conditions. All strains were con-
structed in the S. elongatus PCC 7942 WT strain archived as AMCO06 in our
laboratory. Strains were constructed using standard procedures for cyano-
bacterial transformation (47) and are described in Table S4. All gene dis-
ruptions were validated by PCR of native loci. For all experiments precultures
were prepared first by transferring 3 mL of stationary-phase culture into
100-mL flasks of fresh BG-11 medium (48) with appropriate antibiotics (5 pg/mL
kanamycin or 2 pg/mL combination streptomycin/spectinomycin). Pre-
cultures were grown for 3-4 d at 30 °C, 150 rpm shaking (Thermo Fisher
MaxQ 2000 Orbital Shaker), and 150 pE-m~2s~" constant light.

For all glycogen tracking and metabolomics experiments, the precultures
were used to inoculate Phenometrics ePBR v1.1 photobioreactors (Pheno-
metrics Inc.). Polycarbonate bioreactor vessels were inoculated to a volume of
400 mL, OD;s0 = 0.1 in medium that contained appropriate antibiotics. For
all experiments temperature was maintained at 30 °C, 0.2 um filtered air was
sparged at a rate of 50 mU/min, and light intensity was 150 pE-m~2s7",
provided from the top of the culture, whenever lights were on. Controlled
airflow was important for reproducibility of glycogen levels. After in-
oculation, all cultures were allowed to grow in LL until OD5o = 0.3. Cells
then were maintained turbidostatically at this density for the duration of the
experiments. For all strains, with the exception of the dark-sensitive strains
ArpaA and KaiC-ET, circadian rhythms were entrained by growth ina 12:12 LD
cycle for 3 d before release into experimental conditions and sampling. Dark-
sensitive strains were maintained in LL before sampling periods.

For testing LD sensitivity, precultures were diluted initially to OD7so =
0.2, and subsequently were serially diluted five times 1:5 in fresh BG-11
medium. Drops of 4 pL from each dilution were plated on solid BG-11 me-
dium with appropriate antibiotics and 1 mM Na,S,0s3. Plates were placed
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at 30 °C/150 pE-m~2s~" constant light for 24 h and subsequently were
transferred to 30 °C/150 pE-m~2:s~" in a 12:12 light:dark cycle for 5-7 d.

KEGG Pathway Analysis. The KEGG pathways syf00030 (pentose phosphate
pathway), syf00710 (carbon fixation in photosynthetic organisms), and syf00010
(glycolysis and gluconeogenesis) were cross-referenced for shared and
unshared metabolic reactions. Peak circadian expression of genes that control
metabolic pathway reactions was determined by data from Vijayan et al. (10).
The number of dawn- or dusk-peaking genes unique to each pathway was
compared with expected numbers of dawn- or dusk peaking genes in a random
sample of genes, and P values were calculated using Fisher's exact test.

Glycogen Extraction and Analysis. For glycogen assay, 10 mL of culture (ODzso
~0.3) was collected and placed on ice. Cells were collected by centrifu-
gation for 10 min at 4,000 x g and 4 °C. The supernatant fraction was
discarded, and pellets were frozen at —80 °C. Glycogen was extracted using
methods modified from Ernst et al. (49). Specifically, a solution of 50 pL of
sterile water and 200 pL of KOH [30% (wt/vol)] was used to resuspend cell
pellets, which then were placed at 100 °C for 1.5 h. Glycogen was pre-
cipitated from extracts by adding 1 mL of 100% EtOH, and placing extracts
on ice for 1 h. Precipitated glycogen was collected by centrifugation. Su-
pernatant was discarded, and extracted glycogen was washed two times
with 1 mL of 100% ethanol. Extracts were dried in a Speed-Vac (catalog no.
7810010; Labconco) for 15 min at 60 °C. Extracted glycogen was resuspended
in 500 pL of 25 mM sodium acetate buffer (pH = 5) and stored overnight at
4 °C before assay. To quantify glycogen, 200 pL of each sample as well as
purified glycogen standards (250, 200, 150, 100, 50, 25, 0 pg/mL) were mixed
with 5 pL (5.5 U) of amyloglucosidase (catalog no. 10115; Sigma) and in-
cubated at 37 °C for 1 h. Glucose in the resulting digest was determined by
mixing 10 pL of digested glycogen with 190 pL of a solution containing 0.5 U
glucose oxidase/0.1U peroxidase (catalog no. G3660; Sigma), 50 pM Amplex
Red (catalog no. 10010469; Cayman Chemical), and 25 mM sodium acetate
(pH 5). Reactions were incubated for 45 min at 23 °C, and absorbance at
540 nm was determined with a Tecan Infinite M200 plate reader. Unknown
glycogen content was determined by comparison with purified standards,
and background glucose content was determined by assay of samples un-
treated with amyloglucosidase.

Glycogen Kinetic Analysis. Glycogen accumulation was modeled using the
LOcal regrESSion (LOESS) algorithm for local fitting with default parameters
in the R plotting package ggplot2 (50). Accumulation rates for early and late
time points were modeled using the linear modeling function in the base R
statistical package (51). Glycogen degradation was modeled as a first-order
decay process using the following mathematical expression:

Gr=(1-Gr12) ™7 +Grra.

Glycogen values (Gy) at the indicated time points (T) were provided to the
model. The model was solved for the degradation rate constant (1) and
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terminal glycogen content (Gr;,) using the nonlinear least squares function
in the base R statistical package (51). Errors indicated for all modeled coef-
ficients and graphs are presented as values encompassing the 95% CI of
the data (52). All graphics were produced using the R plotting package
ggplot2 (50).

and Data Analysis. Strains for metabolomics analysis were
grown in photobioreactors as described above. At sampling time points
40 mL of culture was collected over ice in a 50-mL conical tube (n = 3 for
all samples). Cells were collected immediately by centrifugation for 10 min
at 4,000 x g at —10 °C. Cell pellets were frozen rapidly in liquid nitrogen
and placed at —80 °C before analysis. During sampling, the glycogen
content of cells was tracked and confirmed to be similar to the accumu-
lation behavior observed in Fig. 3A. Cell pellets were shipped on dry ice to
the West Coast Metabolomics Center at the University of California, Davis
for subsequent analysis. Metabolite extraction, derivatization, and analy-
sis by GC-TOF-MS have been described in previous publications by Fiehn,
et al. (34, 53). Metabolites were identified from MS spectra using the
BinBase algorithm (34).

Raw abundance data for all known and unknown metabolites, consisting
of unique ion peak heights, were analyzed with MetaboAnalyst (54). Principal
component analysis (PCA) was applied to raw data as a quality-control
measure to observe sample replicate groupings (Fig. S5). Raw data sub-
sequently were filtered using interquartile range (IQR) to remove metabo-
lites that showed very little variability over all samples. Filtered data were
plotted using log, normalization (Fig. S6). A mixture of univariate and
multivariate statistics then was applied to investigate changes between
genotypes and through dark-to-light transitions. PLS-DA was applied using
default settings and was cross-validated using a maximum of two compo-
nents (permutation P < 0.01). Differences in mean abundance between
metabolites in different samples were assessed with ANOVA, and signifi-
cance was determined using Tukey’s honestly significant difference with
a threshold of P < 0.05. To build the correlation matrix, metabolites iden-
tified as statistically significant by ANOVA were compared with all known
metabolites present in the IQR-filtered set. Correlation between metabolites
was calculated using Pearson’s correlation statistic (r). Metabolite correla-
tions were clustered with hierarchical clustering using Pearson correlation
for the distance measure and average linkage for leaf ordering (Multiple
Array Viewer v10.2). Cluster groupings were selected by eye, and KEGG
pathway enrichment analysis was conducted on clusters using MBRole (55)
with a false discovery rate (FDR) of 5% (q < 0.5).
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Fig. S1. Glycogen content in WT and AkaiC measured during the 12-h light period as cells entered a light period following a dark period (Fig. 3A). Best-fit
curves were calculated for WT (blue line) and AkaiC (red line) cells using LOESS regression. The gray shaded area indicates the 95% CI for the regression line.
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Fig. S2. Graphical representation of coefficients calculated from glycogen degradation rate data in Fig. 4 A-C and presented in the main text. The coefficient
being compared is indicated at the top of the graph. Error bars indicate the 95% CI of the coefficient fit.
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Fig. $3. KEGG functional category analysis of MCs from the heatmap in Fig. 7. Enrichment of compounds in a KEGG category was calculated using the online
web server MBRole (1). A colored box indicates the presence of an enriched KEGG category in a given MC. The color of the box represents the FDR-corrected
P value for that functional category.

1. Chagoyen M, Pazos F (2011) MBRole: Enrichment analysis of metabolomic data. Bioinformatics 27(5):730-731.
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Fig. S4. Enlarged area of heatmap from Fig. 7 where compound names are visible for TC1, TC2, TC3, MC1, and MC2. This figure highlights the strong cor-
relation of TC3 with the metabolites found in MC1 and MC2. Compounds highlighted in red are known to or may contribute to plastoquinone biosynthesis in
cyanobacteria. A number of compounds present likely are used for extracellular matrix biosynthesis also.
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Table S1. Metabolites with significant change between
Oand4 h
WT fold AKaiC fold
Compound change* change* Significant®
Valine 2.83 2.41 Both
’ Tyrosine 2.01 1.83 Both
T Threonine 171 1.59 Both
‘ Sucrose 14.14 22.32 Both
" Phytol 0.66 0.71 Both
Palmitoleic acid 0.63 0.72 Both
n Lysine 0.60 0.16 KaiC
Hexose-6-phosphate 1.90 1.98 Both
Glucose-6-phosphate 2.12 4,04 Both
Glucose 1.87 1.42 WT
Fructose-6-phosphate 1.83 4.08 KaiC
106943 3.00 1.00 WT
106922 1.85 1.16 WT
106921 2.56 0.39 KaiC
103870 2.29 1.78 WT
101299 0.51 0.97 WT
97452 0.67 0.79 WT
64546 2.32 1.55 WT
33386 1.58 0.85 WT
26725 1.83 1.42 WT
14688 2.10 1.06 WT
9489 0.77 0.57 KaiC
1878 0.52 0.69 wWT
1681 1.72 2.33 Both
1665 0.61 0.77 WT
*Fold-change values are reported without log2 normalization.
TStrains named had a significant fold change (P < 0.05).
Table S2. Metabolites with significant difference in abundance at 4 h
Compound WT_4h* WT rank’ KaiC_4h* AKaiC rank’ High strain*
Tryptophan 12.45 90 14.61 27 KaiC
Sucrose 12.76 7 15.44 19 KaiC
Inulotriose 8.54 308 10.03 226 KaiC
Guanosine 12.59 83 13.26 55 KaiC
Glucose-6-phosphate 10.69 182 12.16 98 KaiC
Fructose-6-phosphate 9.73 246 11.15 154 KaiC
Cytidine 9.37 265 10.45 197 KaiC
3-Hydroxypalmitic acid 8.99 290 10.48 193 KaiC
106952 10.60 191 12.84 67 KaiC
106948 10.67 185 1211 102 KaiC
106944 9.16 281 1213 100 KaiC
106941 10.65 187 14.31 29 KaiC
106929 12.86 67 9.46 260 wWT
106927 12.58 84 13.48 51 KaiC
106921 17.93 3 10.21 219 WT
101706 14.94 23 9.51 256 WT
97452 12.51 87 11.57 129 WT
62391 11.82 117 12.57 77 KaiC
33386 9.72 247 8.89 290 WT
26062 13.39 56 11.58 128 WT
1721 17.53 6 10.58 187 WT

*Log, normalized abundance value at 4-h time point.
TRank of metabolite’s abundance at 4 h among the 325 identified metabolites.
*Strain with the highest overall abundance of the compound at the 4-h time points.



Table S3. Target cluster information

Compound Time*

Abundance®

Target cluster 1
Valine Both
Tyrosine Both
Threonine Both
Sucrose Both
Hexose-6-phosphate Both
Glucose-6-phosphate Both
Glucose WT
Fructose-6-phosphate KaiC
Behenic acid —
103870 WT
WT
WT

ENASN |

64546

26725

14688 wT
1681 Both

Target cluster 2
Tryptophan —
Phytol Both
Lysine KaiC
Inulotriose —
Guanosine -
Cytidine —
5’-methylthioadenosine —
3-hydroxypalmitic acid —
106952 —
106949 -
106948 -
106944 —
106943 WT
106941 —
106930 —
106927 —_
106924 —_
106922 WT
105630 —_
62391 —
9489 KaiC
Target cluster 3

Palmitoleic acid Both
Palmitic acid —
Benzoic acid —
2-oxoadipate —
106929 —
106921 KaiC
101706 —
101299 WT
97452 WT
33386 WT
26062 -
3083 —
1878 WT
1721 —
1665 WT

Elevated

Elevated

Elevated

Elevated

Elevated
Elevated
Elevated

Elevated
Elevated
Elevated
Elevated

Elevated

Elevated
Elevated

Depressed
Depressed
Depressed
Depressed
Depressed
Depressed

Depressed

*Strain in which a metabolite changed from 0 to 4 h.
TSignificantly elevated or depressed in AkaiC relative to WT at 4 h.



Table S4. Cyanobacterial strains used in this study

Strain Genetic background Antibiotic* Source
WT AMC 06 None S.5.G. collection
WTKmR AMC 06 transformed with pAM1579 Km 5.5.G. collection
WTSPSmR AMC 06 transformed with pAM1303 SpSm 5.5.G. collection
AkaiC (AMC704) AkaiC in-frame deletion in AMC541 Cm (1)
KaiC-ET AMC 704 transformed with pAM4685 SpSmCm )
ArpaA AMCO6 transformed with pAM4420 Km S.S.G. collection
AMC541 AMCO06 with Py,;g-luc reporter in NS2 Cm S.5.G. collection

*Antibiotics were not applied to the AkaiC strain. Cm, chloramphenicol; Km, kanamycin; Sm, streptomycin; Sp,
spectinomycin.

<
V4
N

1. Ditty JL, Canales SR, Anderson BE, Williams SB, Golden SS (2005) Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
Microbiology 151(Pt 8):2605-2613.
2. Paddock ML, Boyd JS, Adin DM, Golden SS (2013) Active output state of the Synechococcus Kai circadian oscillator. Proc Natl Acad Sci USA 110(40):E3849-E3857.
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Redox crisis underlies conditional light—dark lethality
in cyanobacterial mutants that lack the circadian

regulator, RpaA

Spencer Diamond®®, Benjamin E. Rubin®®, Ryan K. Shultzaberger®, You Chen®?, Chase D. Barber?,

and Susan S. Golden®?3

2Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093; ®Center for Circadian Biology, University of California, San Diego, La
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Contributed by Susan S. Golden, December 14, 2016 (sent for review August 8, 2016; reviewed by Robert L. Burnap and Louis A. Sherman)

Cyanobacteria evolved a robust circadian clock, which has a
profound influence on fitness and metabolism under daily light-
dark (LD) cycles. In the model cyanobacterium Synechococcus elon-
gatus PCC 7942, a functional clock is not required for diurnal
growth, but mutants defective for the response regulator that
mediates transcriptional rhythms in the wild-type, regulator of
phycobilisome association A (RpaA), cannot be cultured under LD
conditions. We found that rpaA-null mutants are inviable after
several hours in the dark and compared the metabolomes of
wild-type and rpaA-null strains to identify the source of lethality.
Here, we show that the wild-type metabolome is very stable
throughout the night, and this stability is lost in the absence of
RpaA. Additionally, an rpaA mutant accumulates excessive reac-
tive oxygen species (ROS) during the day and is unable to clear it
during the night. The rpaA-null metabolome indicates that these
cells are reductant-starved in the dark, likely because enzymes of
the primary nighttime NADPH-producing pathway are direct tar-
gets of RpaA. Because NADPH is required for processes that de-
toxify ROS, conditional LD lethality likely results from inability of
the mutant to activate reductant-requiring pathways that detoxify
ROS when photosynthesis is not active. We identified second-site
mutations and growth conditions that suppress LD lethality in the
mutant background that support these conclusions. These results
provide a mechanistic explanation as to why rpaA-null mutants die
in the dark, further connect the clock to metabolism under diurnal
growth, and indicate that RpaA likely has important unidentified
functions during the day.

cyanobacteria | metabolism | circadian clock | metabolomics | diurnal

yanobacteria are both key agents of global carbon and ni-

trogen cycles and promising platforms for renewable chem-
icals, fuels, and nutraceuticals (1-3). Understanding the control
mechanisms that govern the flow of carbon and nitrogen through
these organisms is crucial for predicting their behavior in natural
environments as well as for improving engineering strategies.
Although the basic pathways for carbon and nitrogen metabo-
lism, and their regulation, are well understood in heterotrophic
bacteria, cyanobacteria exhibit important deviations in these
core metabolic pathways (4-7). Additionally, metabolic control
mechanisms in cyanobacteria evolved to be compatible with
photoautotrophic metabolism and the dramatic shifts that are
imposed on those pathways by predictable daily light-dark (LD)
cycles. Examples include enzymatic activity that responds to
light-dependent cellular redox changes (8-11); the preference
for NADPH, the reductant produced by the photochemical re-
actions, over NADH by many biosynthetic enzymes (12, 13); and
a circadian clock that drives 24-h transcriptional rhythms in most
genes (14-16).

A daily LD cycle presents a strong metabolic driver for the
photosynthetic cyanobacteria, but a circadian clock also imposes
daily cycles in transcription and redox regulatory systems (17,
18). Circadian measurements historically have been performed

in constant light (LL) conditions to distinguish internal circadian
regulation from that which is environmentally driven (16, 17).
However, diurnal physiology in a natural environment must in-
tegrate the two sources of regulation. We recently showed that
the circadian clock regulates carbon metabolism in Synecho-
coccus elongatus PCC 7942 as cells transition from the dark into
the light during diurnal growth (19). Specifically, in the morning
the clock represses the activity of the conserved circadian tran-
scriptional regulator regulator of phycobilisome association A
(RpaA), which normally activates nighttime metabolic processes
(19, 20). This action suppresses primary metabolic processes in
the morning, allowing carbon to flow toward secondary meta-
bolic processes when light energy is not limiting (19).

The circadian clock in S. elongatus comprises a core oscillator
formed by the proteins KaiA, KaiB, and KaiC (16). The oscillator
relays timing information to the SasA-RpaA two-component
output pathway, in which RpaA is a transcription factor that binds
170 known downstream gene targets (20, 21). RpaA was first
identified in another cyanobacterium, Synechocystis sp. strain PCC
6803, as an OmpR-type response regulator that influences the
ratio of light energy transfer from light-harvesting phycobilisomes
to photosystem I (PSI) vs. PSII (22). Thus, it is not surprising that
RpaA affects core energy-producing pathways when cells are ex-
posed to light. RpaA protein activity is directly controlled by the

Significance

The evolution of photosynthetic cyanobacteria under 24-h cy-
cles of light and darkness selected for a robust circadian clock.
Understanding how cyanobacteria integrate circadian clock
signals with natural light-dark cycles to control metabolism is
critical, because these organisms are central to global carbon
cycling and hold promise for development of renewable en-
ergy. Here we assess how the circadian transcription factor
regulator of phycobilisome association A (RpaA) influences
metabolism as a cyanobacterium goes through a light-to-dark
transition. The data show that RpaA plays a key role in main-
taining metabolic stability during the night period. Addition-
ally, RpaA is important in controlling redox balance, which in
turn is very important for regulating metabolism at night.
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circadian oscillator, which represses the activity of RpaA in the
late night/early morning, and subsequently relieves repression
throughout the day such that RpaA reaches its peak activity at
dusk (19, 20, 23). This temporal activity pattern, and the fact that
RpaA directly binds and activates nighttime metabolism genes
(20, 24), suggests that it also plays an important role in metabolic
control at night. Although the transcriptional targets of RpaA
have been identified, and it is clear that LD conditions are dele-
terious to rpaA4-null mutants (25), the metabolic and physiological
changes that attenuate growth under LD conditions have not
been explored.

Under LD conditions, S. elongatus performs photosynthesis
and carbon fixation during the day via the Calvin-Benson cycle,
with excess fixed carbon stored as the branched chain glucose
polymer glycogen (19). As cells enter a dark period, glycogen is
rapidly degraded via the oxidative pentose phosphate pathway
(OPPP), which serves as the primary source of energy and re-
ducing power (NADPH) at night (26, 27). The OPPP shares many
reactions with the Calvin-Benson cycle, and the transition from
photosynthetic to oxidative metabolism occurs through both
transcriptional and redox-regulated steps (28-30). Strict control of
cellular redox via the NADPH/NADP" ratio is a common and
important mechanism across plant and cyanobacterial species
(28). Additionally, RpaA transcriptionally activates genes that
code for sugar catabolic and OPPP enzymes at the end of the day,
before entering the dark, including glgP (glycogen phosphorylase),
gapl (glyceraldehyde-3-phosphate dehydrogenase 1), opcA (OxPP
cycle protein A), and the OPPP rate-limiting enzyme zwf (glucose-
6-phosphate dehydrogenase) (20). In rpad mutants, glycogen
degradation is strongly attenuated, which reflects an inability to
activate these sugar catabolic pathways (19).

In this study, we investigated whether the LD growth defect in
a rpaA-null mutant is attributable to specific misregulation of
metabolism and physiology as S. elongatus transitions into
darkness and over the night period. We initially addressed the
viability of an rpad-null mutant (hereafter Arpad) over a 12-h
dark period. Subsequently, we used untargeted metabolic profiling
to investigate how loss of RpaA affects the abundance of primary
metabolites at time points after cells enter the dark. Finally, we
identified both second-site mutations and physiological growth
conditions that suppress LD lethality in the Arpa4 mutant and
correlated these data with metabolomics, gene expression, and
measurements of global oxidative stress. We present a model in
which RpaA acts as a critical transcriptional activator of re-
ductant-producing pathways and show that its activity is impor-
tant to maintain strict metabolic stability at night. This work
shows that, even in cyanobacteria that do not carry out obvious
nighttime programs such as nitrogen fixation, carbon catabolism
and reductant production at night are crucial for homeostasis.
Thus, metabolic quiescence is not sustainable under diurnal
growth conditions.

Results

Darkness Initiates Pigmentation Changes and Rapid Cell Death in the
ArpaA Mutant. Although it is known that ArpaA strains do not
grow under LD conditions (19, 25), the nature of the defect has
not been characterized. We initially examined changes in cell
viability and whole-cell absorbance as cultures entered the dark.
‘WT and ArpaA cultures were sampled immediately before entry
into the dark (0 h) and at intervals thereafter. Before dark ex-
posure, the ArpaA strain had significantly elevated absorbance at
440 and 680 nm relative to WT (Fig. 14), indicating an increase
in chlorophyll absorbance. Although this study did not directly
address changes in photosynthesis, a similar relative increase in
chlorophyll was observed in Synechocystis sp. strain PCC 6803
ArpaA mutants (22). The broad differences in pigmentation at
0 h between WT and Arpad (Fig. 14) may indicate that the
S. elongatus ArpaA mutant has altered energy-transfer kinetics
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Fig. 1. Absorbance and viability data from WT and the ArpaA mutant.

(A) Mean absorbance of WT subtracted from the ArpaA mutant at 0 h, im-
mediately before entering darkness. Shaded area indicates SD of mean, sig-
nificance of difference between WT and ArpaA calculated by Student’s t test
(n = 8). *P < 0.05; ***P < 0.001. (B) Change in absorbance of WT and ArpaA
from 0 h immediately before entering darkness to 8 h of dark exposure.
Shaded area indicates SD of mean, significance of difference between 0 and
8 h for each strain calculated by Student's t test (n = 8). *P < 0.05. (C) Mean
viable cells counted at time points after WT and the ArpaA mutant entered
the dark. Error bars indicate SEM. Significance was calculated by using Stu-
dent’s t test (n = 4).
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Fig. 2. Summary of metabolic changes in WT and ArpaA. (A) Heatmap
showing the autoscaled abundances of all metabolites where a significant
difference was detected between WT and ArpaA over the time course as
analyzed by two-way ANOVA and Tukey’s honest significant difference (n =
4 for WT; n = 5 for ArpaA; P < 0.05). Autoscaling represents a Z-score dif-
ference from the mean value of the metabolite across all time points. (B) Plot
of PLS-DA components 1 and 2 for all metabolomics samples. Components 1
and 2 account for 35.5% of the variance in the dataset and are significant

between phycobilisomes, PSI, and PSII, as is true for Synecho-
cystis sp. strain PCC 6803. Beginning 1-2 h after entering the
dark and reaching a maximal change at 8 h after dark exposure,
ArpaA had a significant decrease in absorbance at 630 nm and a
further increase in absorbance at 440 nm, whereas WT showed
no significant change in its absorbance spectrum (Fig. 1B and
Fig. S14). The decrease in absorbance at 630 nm indicates a loss
of phycobilisome-specific pigmentation, which is a well-characterized
response to stress and macronutrient deprivation (31).

In parallel, separate samples were removed and plated under
LL conditions to assess viable cell counts (colony-forming units)
at each time point. Samples taken immediately before dark ex-
posure (0 h) showed similar numbers of viable cells in the two
strains (Fig. 1C). After 4 h of dark exposure, a large reproducible
decrease in cell number was evident for the ArpaA strain, with no
corresponding decrease for WT (Fig. 1C); by 8 h of darkness,
only ~1% of ArpaA cells were viable (Fig. 1C). Optical density
measurements of the sampled cultures also showed that the
ArpaA strain did not resume growth during a following light
period, even when transitioned back to LL growth conditions
(Fig. S1B). These data indicate that Arpad cells die soon after
entering the dark. Together, the speed of the cell death response,
the rapid changes in pigment absorbance, and an inability to
regain viability in LL support an active mechanism that drives
cell death in LD, as opposed to simple failure to thrive under
LD conditions.

Temporal Metabolic Changes in the ArpaA Mutant. Previous data
showing attenuated glycogen degradation in the Arpa4 mutant
(19) and RpaA transcriptional regulation of carbon catabolic
pathways (20), and our observation of active nutrient depriva-
tion-like bleaching (Fig. 1B), suggest that broad changes in
central carbon metabolism likely occur in ArpaAd cells after a
light-to-dark transition. To characterize metabolic changes, we
applied untargeted gas chromatography time-of-flight mass spec-
trometry (GC-TOF-MS) to samples collected from photobioreactors
under LD (12-h light:12-h dark) growth conditions. Samples were
collected directly before the dark onset (0 h) and at 1,2, 4, and 6 h
thereafter. A total of 114 known compounds were identified and
measured (Dataset S1). Dramatic differences in primary carbon
metabolites and metabolites that require NADPH for their bio-
synthesis were found between WT and ArpaA samples, suggesting
that RpaA-mediated reductant production via the OPPP at night is
critically important to keep metabolite levels stable. Additionally, the
detection of stress-associated metabolites before dark exposure
suggests that RpaA also plays a role in mitigating cellular stress
during the day.

Elevated polyamines in ArpaA before entering dark indicate stress. Be-
fore entering the dark (0 h), polyamines were highly elevated in
ArpaA with spermidine and putrescine showing a 48.8- and
4.5-fold increase relative to WT, respectively (Fig. 24 and Fig.
S2). Correspondingly, ornithine, which is a known precursor for
polyamines (32), was one-third less abundant in Arpad, suggesting
mobilization of carbon toward polyamines. Accumulation of
polyamines is a known general stress response in cyanobacteria
(33), and the observed differences indicate that ArpaA cells may
be stressed even before they enter the dark. Thus, in addition to
nighttime functions, RpaA may have other, less understood,
functions during the day.

WT maintains strict metabolic stability at night, which is lost in ArpaA.
Over the first half of the dark period, a large number of additional
metabolite differences rapidly formed between WT and the Arpad
mutant. Using two-way ANOVA, we identified 50 compounds

predictors of class membership (Materials and Methods). Ellipses indicate the
95% confidence interval (Cl) for each sample grouping (n = 4 for WT; n=5
for ArpaA; 114 metabolites per sample).
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with significant differences in abundance patterns over the time
course (Fig. 24 and Dataset S1). We also applied a multivariate
modeling method, partial least-squares discriminate analysis (PLS-
DA), to visualize and statistically test the overall similarity of sample
groups, as well as determine which metabolites were more associ-
ated with differences in genotype or time (Fig. 2B).

One of the most striking observations from both analysis
methods was the overall stability of metabolite levels in WT
relative to ArpaA (Fig. 2). We had expected that WT would show
significant metabolic changes downstream of the OPPP, because
cyanobacteria have significant flux through glycogen degradation
and the OPPP at night (19, 34, 35). However, WT maintained a
stable metabolic profile, whereas Arpad exhibited broad metabolic
changes. Metabolites in the first and second clusters of the heatmap
(Fig. 24) showed large increases and decreases, respectively, over
time in ArpaA. In WT, the corresponding metabolites showed very
gradual or no change in abundance (Fig. 24). This effect was also
pronounced in the plot of PLS-DA components 1 and 2 (Fig. 2B).
Component 1 discriminated well between the two sample geno-
types, and component 2 discriminated based on sampling time
(Fig. 2B). The ArpaA mutant shows a clear separation across
component 2, with temporally close samples more similar to each

A

other than temporally distant samples (Fig. 2B). This pattern was
absent in WT samples, indicating that these samples were globally
similar over the time course (Fig. 2B). Thus, ANOVA and PLS-DA
both indicated that WT cells maintain a high level of metabolic
stability in the early night period, which is lost in Azpa4 mutants.
Metabolic changes in ArpaA indicate OPPP depression and NADPH deficit.
Metabolites connected to the OPPP and those that require
NADPH for biosynthesis rapidly decrease in ArpaAd after dark
exposure. The OPPP-connected compounds sucrose, glucose-
1-phosphate (G1P), glucose-6-phosphate (G6P), and fructose-
6-phosphate (F6P) all showed a precipitous drop in abundance
as soon as ArpaA entered the dark (Figs. 24 and 34). WT also
showed decreases in these metabolites over time, which was
expected as glycogen stores are used, but the decrease was
much more gradual (Fig. 24). However, WT, unlike ArpaA,
showed an increase in F6P at the 1-h time point after dark onset.
F6P is a known indicator of OPPP activation in cyanobacteria (28),
and its stark decrease in ArpaA cells is consistent with highly atten-
uated OPPP activity (Fig. 24).

A primary sink of NADPH in cyanobacteria is amino acid
biosynthesis, and many amino acids showed strong decreases in
the ArpaA mutant (Fig. 24). The primary nitrogen donors to
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Fig. 3. Metabolic changes in the context of central carbon and nitrogen metabolism. (A) Diagram of relevant reactions in central carbon and nitrogen
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amino acid synthesis, glutamine and glutamate, dropped in
abundance rapidly when ArpaA cells entered the dark (Figs. 24
and 34). In turn, Arpad showed a corresponding increase in
a-ketoglutarate (AKG), the precursor metabolite for nitrogen
assimilation (Fig. 3B). The conversion of AKG into glutamate in
cyanobacteria is catalyzed by ferredoxin-dependent enzymes that
use NADPH exclusively in their oxidation/reduction cycle (12,
13). A decrease in amino acid pools with a corresponding in-
crease in AKG is consistent with an NADPH deficit in Arpad
cells. Additionally, elevated AKG can activate a nitrogen-starvation
transcriptional response in cyanobacteria (36, 37), and although
these cells were not nitrogen-starved, we found that elevated AKG
levels in ArpaA were accompanied by this transcriptional response
(Fig. S3 and ST Texr).

Fatty acid accumulation in ArpaA likely causes damage and may result
from redox imbalance. Intracellular accumulation of free fatty acids
(FFAs) is uncommon in cyanobacteria, because they are acti-
vated and recycled into membrane lipids in an ATP-dependent
reaction catalyzed by acyl-ACP synthetase (AAS) (38). However,
in Arpad, we observed a large increase in the abundance of
palmitic acid, palmitoleic acid, and myristic acid at the 4- to 6-h
time points after dark exposure (Figs. 24 and 34). The accu-
mulation of intracellular FFAs in S. elongatus is generally toxic
and directly causes damage to photosystem complexes, poten-
tially exacerbating redox stress (39, 40). We saw that the accu-
mulation of FFAs in Arpad temporally coincided with the
observed decrease in ArpaA cell viability (Figs. 1C and 24),
which is consistent with accumulation of these compounds con-
tributing to the LD lethality phenotype.

Fatty acid recycling in S. elongatus increases dramatically un-
der high light, and functional AAS is important to maintain cell
viability under these conditions (40). In the Arpa4 mutant, the
presence of elevated lysopalmitoyl monogalactosylglycerol and
3-hydroxypalmiticacid indicated that active membrane remod-
eling and fatty acid recycling are taking place (Figs. 24 and 34).
Although the mechanism that drives membrane remodeling
and subsequent lipid accumulation in cyanobacteria is still un-
clear, de novo synthesis of lipids would be unlikely in ArpaAd
cells that are reductant-poor. We hypothesize that regulation of
membrane lipid turnover and FFA accumulation may be re-
sponsive to a change in cellular redox state. This hypothesis is
consistent with membrane remodeling occurring under both high
light (40) and in ArpaA cells that lack sufficient reductant
(NADPH) to control cellular redox state in the dark. We posit
that, although both WT and Arpad may respond to oxidative
stress by activation of lipid recycling, only the mutant reaches a
triggering threshold of activation under moderate-light growth
and does so during the night period, when AAS activity may be
limited by ATP availability.

Interventions That Suppress the ArpaA LD Lethality Phenotype
Support Reductant Imbalance as a Cause of Cell Death.

Suppression of ArpaA LD lethality by second-site mutagenesis. Older
cultures of ArpaA mutants accumulate cells with the ability to
grow under normally restrictive LD conditions (Fig. S44). These
clones still maintain fully segregated deletions at the rpaA locus;
thus, it was surmised that they have accumulated compensatory
changes at secondary genetic loci. To investigate the types of
mutations that could suppress Arpad LD lethality, we muta-
genized freshly constructed, and still LD-sensitive, Arpa4 mutant
cells with ethyl methanesulfonate (EMS). Both EMS-exposed
and unexposed ArpaA samples were then incubated under a
restrictive LD growth condition. Hundreds of colonies with a
wide degree of coloration and morphology appeared exclusively
on the plate containing EMS-exposed ArpaA cells (Fig. S4B). We
isolated 20 colonies, confirmed that all maintained fully segre-
gated deletions at the rpad locus (Fig. S4C), and performed full
genome resequencing on each. Comparison of the mutagenized

genomes to both a WT control and the ArpaA parent strain
revealed a total of 63 single nucleotide changes across all strains
with an average of 3.15 + 1.2 new mutations per strain. Sub-
sequently, we filtered the mutations (Materials and Methods) and
identified a subset of 56 that we categorized as “high confidence
for biological effect” (Dataset S2).

Of the mutations, 47% occurred in genes that code for met-
abolic enzymes (Dataset S2). Pathways that synthesize and use
amino acids were significantly enriched in these mutations, in-
cluding valine, leucine, and isoleucine (VLI) biosynthesis [false
discovery rate (FDR) = 2.8e-4]; aminoacyl-tRNA biosynthesis
(FDR = 0.01); and global amino acid biosynthesis (FDR = 2.8¢-4)
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Fig. 4. Summary of enriched KEGG functional categories identified by
suppressor mutations and metabolic pathway topology represented by
mutated genes. (A) Plot of KEGG metabolic categories that were enriched in
the gene set of suppressor mutations. The x axis indicates the number of
times a specific KEGG pathway was matched to genes in the set; dots scale
from small to large with increasing number of matches, and color of dots
scales from yellow to red with increasing significance. Significance was cal-
culated by using the binomial distribution, corrected for multiple testing
using the method of Benjamini-Hochberg, and significance cutoff is in-
dicated with a gray dotted line (FDR < 0.05). (B) Subpathway diagram of VLI
biosynthesis indicating locations of ArpaA suppressor mutations and aver-
age abundance of compounds in the ArpaA strain relative to WT over the
metabolomics time course. Genes were named for reactions where a sup-
pressing mutation was identified, and colors are detailed in the key.
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(Fig. 44 and Dataset S2). Additionally, multiple independent
strains carried mutations affecting the same biochemical step in
some of these pathways (Fig. 4B). These mutations affecting the
same biochemical step included independent point mutations in
ilvG and ilvH (acetolactate synthase catalytic and regulatory sub-
units), the rate-limiting enzyme complex in VLI biosynthesis (41),
and two in pyk (pyruvate kinase), which produces pyruvate, the
substrate of ivGH (Fig. 4B) (42). Although mutations were found
that could affect a number of metabolic pathways (Dataset S2),
the high concentration of mutations in pathways that produce and
consume amino acids was interesting, considering the large de-
creases observed for these compounds in ArpaA at night (Figs. 24
and 4B).
Blocking VLI biosynthesis suppresses LD lethality in ArpaA. Because
each suppressed Arpad strain carries multiple EMS generated
mutations, we targeted the VLI biosynthetic pathway to test
whether manipulation of a single pathway identified through EMS
mutagenesis is sufficient for the suppression of LD lethality in
ArpaA. VLI biosynthesis was chosen because a known herbicide,
metsulfuron methyl (MSM), specifically and potently inhibits
TIIvGH (6, 43), and two suppressor mutations mapped to genes
coding for this complex (Fig. 4B). Suppression of LD sensitivity
with MSM, if successful, would also imply that the point mutations
identified have a negative impact on complex activity.
Treatment of ArpaA with MSM under LD growth suppressed
cell death of ArpaA on solid (100 nM MSM) and in liquid (25 pM
MSM) media (Fig. 54 and Fig. S54). Additionally, although all
MSM-treated cultures showed a change in pigmentation (Fig.

A 11 155 152 158 1

5A4), we confirmed that when Arpad entered the dark, treated
cells no longer showed phycobilisome-specific pigment bleaching
or the activation of a nitrogen-deprivation transcriptional re-
sponse (Fig. 5B and Fig. S3). Therefore, inhibition of the VLI
biosynthetic pathway is sufficient to rescue ArpaA cells from LD
lethality, as well as inhibit specific phenotypes associated with
cell death in the dark. Additionally, the fact that MSM exerts its
suppressive effect by ilvGH inhibition suggests that the point
mutations identified in ilvG and ilvH reduce native enzyme
complex activity.

Suppression of VLI biosynthesis lowers phycobilisome content during the
daytime. ArpaA strains treated with MSM and those that carry
VLI pathway mutations had a strong yellow color (Fig. 54 and
Fig. S5B). Absorbance scans taken before genomic DNA ex-
traction for sequencing revealed that these mutants had a de-
creased phycobilisome-to-chlorophyll ratio (630/680 nm) relative
to WT (Table S1). To investigate whether pigmentation changes
occur during repression of VLI biosynthesis, we incubated WT
and ArpaA with 25 pM MSM in the light for 12 h and compared
whole-cell absorbance spectra of treated and untreated cells.
Cultures exposed to MSM visibly appeared more yellow. WT
treated with MSM had decreases in all three pigment absorption
maxima: 440, 630, and 680 nm, with the phycobilisome peak at
630 nm showing the largest difference (Fig. 5C). MSM-treated
ArpaA samples also had a significant reduction in absorbance at
the 630-nm phycobilisome absorbance peak (Fig. 5C). These
results show that treatment with MSM reduces phycobilisome
content in both WT and ArpaA. Because phycobilisomes are the
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Fig. 5. Summary of data on MSM- and light intensity-mediated suppression of the ArpaA LD lethality phenotype. (A) Representative photo of dilution series
of WT and ArpaA cells treated (Left) and not treated (Right) with 100 nM MSM (n = 6 biological replications of experiment). Pictured samples were grown in
an LD cycle with a light intensity of 120 uE-m~2s~". (B) Difference in absorbance of ArpaA cells treated with 25 uM MSM between 0 and 8 h after dark
exposure. Shaded region indicates SD of mean, and black arrow points to absorbance at 630 nm highlighting no significant change. Significance was cal-

culated by using Student’s t test for absorbance at 440, 630, and 680 nm, with

no significant change observed (n = 3). (C) Mean absorbance values of WT and

ArpaA untreated (solid line) and treated (dotted line) with 25 pM MSM after 12 h in the light. Shaded area indicates SEM. MSM-exposed cells show sig-

nificantly lower absorption values at 440, 630, and 680 nm, as calculated by a one-sided Student’s t test (n = 3 for MSM treated samples and n = 4 for
untreated samples). *P < 0.05. (D) Representative photo of dilution series of WT and ArpaA cells grown in an LD cycle with decreasing daytime light intensity

(indicated below each image; n = 2).
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primary light-collecting pigment proteins in S. elongatus, the
MSM-mediated decrease at 630 nm represents a significant
change in the ability of cells to collect light and likely alters both
photosynthetic output and cellular redox state (44, 45).

Decreasing light intensity suppresses ArpaA LD lethality. Given that
reducing the light-collecting ability of cells is one effect of MSM
treatment, we tested whether modulating growth light intensity
has an effect on the Arpad LD lethality phenotype. WT and an
ArpaA mutant were serially diluted, plated, and incubated under
three light intensities in LL and LD. At the highest light intensity
tested (120 pE-M~>s™"), we observed the expected Arpad le-
thality phenotype under LD conditions gFig. 5D). However, at an
intermediate light intensity (33 pE-M~%s™"), the Arpad mutant
had slightly improved growth in LD (Fig. 5D), and at the lowest
light intensity (17 pE-M~>s™"), ArpaA cells grew to almost WT
levels (Fig. 5D). Thus, a low-light LD cycle creates a permissive
condition where ArpaA cells can survive. These results show that
light intensity during the day period is at least one factor that
contributes to the ArpaA LD lethality phenotype. Thus, the re-
duction of phycobilisome pigment associated with MSM treat-
ment may partially contribute to its mechanism for suppressing
LD lethality via reducing absorbed light energy during the day.

Redox Stress Is Associated with Cell Death in the ArpaA Mutant.
Although ArpaA strains can tolerate high light intensity under
LL conditions (Fig. S64), we observed that ArpaA cells had high
levels of metabolites, indicating cellular stress before entering
the dark (Fig. 24 and Fig. S2). Additionally, the protective ef-
fects of MSM treatment (Fig. 54) and decreased light intensity
(Fig. 5D) suggest that photosynthetically generated reactive ox-
ygen species (ROS) may act as a destructive agent that drives
ArpaA LD lethality. S. elongatus maintains a strict cellular redox
balance and controls ROS using multiple systems, including
modulation of phycobilisome abundance, glutathione redox
control, and enzymatic ROS scavenging (46, 47). Glutathione
biosynthesis is particularly important for modulating redox state
and counteracting ROS in cyanobacteria (46, 48, 49). Regener-
ation of reduced glutathione requires NADPH, and our data
suggest that Arpad cells are NADPH-limited at night (Figs. 24
and 34). Additionally, metabolites of the glutathione biosynthetic
pathway, including oxoproline, glycine, glutamate, and glutamyl-
valine all showed large decreases in ArpaA after dark transition
(Fig. 24). To determine the influence of redox stress on Arpad
LD phenotypes, we tracked total ROS in WT and ArpaA over a
24-h LD cycle (at high light intensity) using the fluorescent marker
2',7"-dichlorodihydrofluorescein diacetate (H,DCFDA) (50, 51).
Samples were taken every 2 h during the 12-h day period and
every hour during the 12-h night period. Additionally, we assessed
whether MSM addition impacted the ROS detected in WT and
ArpaA cells over the 24-h LD cycle.

ROS levels were similar for all strains at the start of the ex-
periment (Fig. 6). ROS increased gradually in all strains through
the first 6 h of the day, then rapidly increased in the ArpaAd
mutant exclusively, and by the end of the light period (12 h),
were 3.5-fold higher than in the WT or MSM-treated ArpaAd
cultures (Fig. 6). Upon entering the dark, all strains showed a
rapid drop in ROS within the first 2 h (Fig. 6). ROS continued to
drop in WT and the MSM-treated ArpaA mutant throughout the
night, reaching a level similar to the start of the experiment. In
contrast, the untreated Arpad4 mutant maintained high static
ROS levels after the first 2-3 h of darkness (Fig. 6). MSM
treatment had no significant effect on WT ROS levels (Fig. S6B).

Comparison of ROS levels with cell viability (Fig. 1C) showed
that cell death begins in ArpaA cells around the time ROS levels
stabilize. Overall, the Arpad mutant accumulates high levels of
ROS under the restrictive light condition and has trouble clearing
ROS over the night period. However, treatment with MSM alle-
viates the elevated ROS phenotype. We propose that the rapid
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Fig. 6. Plot of H,DCFDA fluorescence over a 24-h LD cycle indicating total
cellular ROS in WT, ArpaA, and ArpaA treated with 25 pM MSM. Cells were
grown at a light intensity in bioreactors empirically determined to support
ArpaA growth in LD, and the experiment began after a 12-h dark period for
all cells. Curves shown are best-fit lines calculated using LOESS regression to
all data points in a given sample; the gray shaded area indicates the 95% C|
of the regression line (n = 21 data points for day samples; n = 42 data points
for night samples). Day and night from the same experiment were split to
more effectively fit regressions. Places where the Cl does not overlap in-

dicate a statistically significant difference in the model.

lethal effect of darkness on a Arpa4 mutant results from a failure
to clear ROS that accumulates late in the day period. This hy-
pothesis is consistent with the observation that cell death begins
in ArpaA cells when ROS levels stop decreasing at night and that
the ArpaA metabolome indicates an NADPH deficit. Detoxifica-
tion of ROS at night places an additional strain on the reductant
pool, which likely exacerbates the metabolic imbalances we ob-
serve in this strain.

Discussion

This study highlights three functions of RpaA in WT cells that
are critical for survival under LD growth conditions: (i) RpaA
has daytime functions that are important for limiting ROS
buildup; (i/) RpaA activates genes that encode the enzymes of
the OPPP, which are critical for NADPH production in the ab-
sence of photosynthesis, and inability to generate sufficient re-
ductant at night results in failure to detoxify ROS accumulated
during the day and cell death; and (iii) overall, RpaA exerts a
strong influence over the control of redox balance, which seems to
be critical for maintaining the inherent metabolic stability of WT
cells at night. These results are consistent with recent findings in
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Synechocystis PCC 6803 that show proper NADPH balance is
important for appropriate diurnal regulation of metabolic pro-
cesses (52), as well as data indicating that the fitness advantage
conferred by the S. elongatus circadian clock is more likely due to
the ability to anticipate a coming dark period rather than a
morning period (53).

One of the surprising findings is that events during the day
ultimately affect death of the Arpa4 mutant in the dark. This
outcome was not anticipated because the level of light that is
lethal under LD growth was well tolerated by ArpaAd cells when
they are grown under LL (Fig. S64). Thus, it was originally hy-
pothesized that events exclusively occurring at night were driving
cell death. However, the original identification of RpaA derived
from its effect on the association of phycobilisomes with pho-
tosystem reaction centers in Synechocystis sp. strain PCC 6803. In
that strain, rpa4-null mutants have an increased efficiency of
energy transfer to PSII relative to PSI (22). Our pigment ab-
sorbance data collected at 0 h support the hypothesis that RpaA
also affects photosynthetic parameters in S. elongatus (Fig. 14).
If energy transfer to PSII relative to PSI is also increased in
ArpaA S. elongatus cells, this alteration could both serve as a
source of redox stress via excess excitation energy in PSII as well
as a decrease the cells’ ability to produce NADPH via PSI-driven
reduction. Regardless of the source, the ROS and metabolomics
data both indicate that once cells reach the light-to-dark transi-
tion, the Arpa4 mutant is already under a great deal of cellular
redox stress (Figs. 14, 24, and 6 and Fig. S2) (33, 46).

‘We propose that high redox stress generated from photosyn-
thetic activity is a critical component of the Arpad LD lethality
phenotype. Manipulations that reduce light energy absorbed by
cells, including reduction of growth light intensity (Fig. 5D) and
treatment with MSM (Fig. 54), rescue ArpaA from death under
LD conditions. These results are consistent with overstimulation
of photosynthetic pathways as a source of ROS. Although we
focused on the EMS suppressor mutations that affect the VLI
biosynthetic pathway, via treatment with MSM, strains that carry
other mutations in amino acid and aminoacyl-tRNA biosynthesis
exhibited similarly depressed phycobilisome absorbance (Fig. S5B
and Table S1). As some of the most abundant proteins in cya-
nobacteria (54), phycobilisome levels are affected significantly by
amino acid limitation. Cells with reduced phycobilisome content
would collect less light energy and generate less ROS during the
day period. Additionally, amino acid biosynthetic pathways
consume large amounts of NADPH, and partially blocking
these pathways may serve to preserve the limited NADPH
pools present in ArpaA at night, which are needed for ROS-
scavenging pathways.

The viability of the Arpa4 mutant in LL (Fig. S64), at a light
intensity that generates high ROS, suggests that NADPH pro-
duced via photosynthesis can drive the ROS detoxification
mechanisms necessary to maintain viability while ArpaA cells are
in the light; however, when the Arpad4 mutant enters the dark
under redox stress, it lacks a source of NADPH because of an
attenuated ability to degrade glycogen and activate the OPPP
(19, 20). Consistent with an inability to activate the OPPP in the
dark, ArpaA cells rapidly deplete soluble sugars connected to this
pathway (Fig. 24). Because glycolysis is still active in Arpa4 and
the OPPP functions as a cycle at night, recycling its inputs (34,
35), we saw a significant increase only in metabolites downstream
of glycolysis in the Arpad mutant, including pyruvate and AKG
(Figs. 24 and 34). Although glycolysis can produce some NADH
as reducing power, NADH is a poor electron source for ROS-
detoxifying processes in S. elongatus (46). AKG buildup normally
results in its conversion to glutamine and glutamate via nitrogen
assimilation (12, 13). The rapid depletion of glutamine, gluta-
mate, and many other amino acid species in the Arpa4 mutant,
concurrent with AKG elevation (Figs. 24 and 3B), is consistent
with an NADPH deficit that precludes cells from performing

AKG to amino acid biosynthesis. Additionally, the activation of a
nitrogen-deprivation transcriptional response (Fig. S3) and
phycobilisome degradation (Fig. 1B) indicate that ArpaA cells
accumulate AKG to a level that is perceived as C/N imbalance.
The EMS mutations in amino acid biosynthetic and utilization
pathways slow the mobilization of carbon toward amino acids
and lower NADPH consumption, allowing ArpaA to more easily
achieve homeostasis with limited NADPH pools. This hypothesis
is consistent with the fact that Arpad cells treated with MSM no
longer show nitrogen-deprivation transcriptional or bleaching
responses at night (Fig. 5B and Fig. S3).

Protein redox modifications drive important metabolic shifts
in cyanobacteria and plant chloroplasts (10, 28, 55, 56). Recent
work has shown that redox modifications are pervasive across all
metabolic pathways in cyanobacteria and that LD transitions
drive global changes in the oxidation state of redox-modified
proteins (8, 9, 49). Because de novo transcription is limited to
the early night period in S. elongatus (57), redox modifications on
metabolic enzymes likely play a major role in modulating enzy-
matic activity and dictating metabolic flux over the dark period.
Some of the metabolic changes in the Arpad4 mutant after the
termination of ROS detoxification may be driven by an inability
to further modulate the protein redox state. Specifically, there is
evidence that accumulation of lipids can be driven by redox
changes and may contribute directly to LD lethality (40, 58).

Lipids are particularly sensitive to oxidative stress, and their
turnover is important because oxidized lipid species can further
perpetuate oxidative damage (59). Activation of lipid recycling
by high light in S. elongatus is consistent with a redox-driven
mechanism to signal this process. The increase of lysopalmitoyl
monogalactosylglycerol and 3-hydroxypalmitic acid in Arpad
indicates that a lipid-recycling response has been activated at
night (43). We propose that ROS detoxification terminates in
the ArpaA mutant when the limited NADPH pool is exhausted,
and subsequent redox stress activates the membrane recycling
process (46). We propose that the ArpaA mutant, but not WT,
has reached an ROS threshold that would trigger lipid recycling
by the end of the day. Although both WT and ArpaA cells should
properly express the AAS protein required to activate lipids for
recycling (20), AAS is ATP-dependent, and its functionality at
night in cyanobacteria would likely be impaired (39). Thus, the
activation of lipid recycling in ArpaAd occurs when ATP levels are
dropping in the dark, and AAS may be unable to deal with FAA
load. Indeed, we observed bleaching (Fig. 1B), AKG elevation
(Figs. 24 and 3B), fatty acid accumulation (Fig. 24), and the
start of cell death (Fig. 1C) around the time that ROS de-
toxification terminated (Fig. 6). Thus, the primary mechanisms
directly driving cell death likely occur between the 2- to 6-h
period after entering the dark, and these mechanisms are likely
the result of a strong redox imbalance.

The daytime functions of RpaA are unexpected and should be
further explored. In particular, the pigmentation changes during
LL growth of the Arpa4 mutant (Fig. 14) suggest that core pho-
tosynthetic parameters are altered. Metrics such as photosystem
efficiency, capacity, and oxygen evolution in S. elongatus have not
been explored in the context of circadian rhythms. Additionally, it
is interesting that ROS levels in the ArpaA mutant consistently
increase at ~6 h after a transition from darkness into light (Fig. 6),
because this mutant lacks a clock output mechanism and does not
exhibit transcriptional rhythms (20, 21). This timing may represent
a point where ROS scavenging resources are naturally exhausted,
or it may indicate that other known rhythmic processes, such as
24-h peroxiredoxin rhythms, may be important for modulating
ROS (18, 60). The participation of peroxiredoxins in ROS
modulation would be consistent with their roles in oxidative
stress-mediated signaling (61). This observation hints that Kai-
mediated and other rhythmic processes may interact to control
the cellular redox state. Overall, the integration of light conditions,
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circadian rhythms, and the cellular redox state in the control of
cyanobacterial metabolism will be of crucial importance to ad-
vance the engineering and understanding of cyanobacteria grow-
ing under natural diurnal conditions.

Materials and Methods

The full description of experimental techniques is provided in S/ Materials
and Methods.

Cyanobacterial Strains, Media, and Culture Conditions. All ArpaA mutants
were constructed by transformation in a WT S. elongatus background with
plasmid pAM4420 (25) and were validated by PCR. For all experiments,
precultures were first prepared in 100 mL of fresh BG-11 medium as in Di-
amond et al. (19).

For metabolomics experiments, precultures were used to inoculate Phe-
nometrics ePBR photobioreactors (Version 1.1; Phenometrics Inc.) at an initial
density of OD;50 = 0.1 in 400 mL of BG-11 medium without antibiotics.
Temperature was maintained at 30 °C; filtered (0.2 pm) air was sparged at a
rate of 50 mL/min; and light intensity was either 150 or 500 pE-m=2s~"
provided from the top of the culture while lights were on. After inoculation,
cultures were grown at a constant light intensity of 150 pE-m~2s~" until
0OD;50 = 0.3, then maintained turbidostatically at this density for the duration
of the experiment. In the metabolomics experiment, WT circadian rhythms
were entrained by growth in a 12:12 LD at a light intensity of 150 pE-m—2s~"
cycle for 1 d and subsequently at a light intensity of 500 uE-m=2s~" for 2 d
before release into experimental conditions and sampling. The ArpaA strains
were maintained in constant light at the same intensities as for the WT
strain before the sampling procedure (Fig. 57).

For absorbance scanning, viable cell counts, quantitative reverse transcrip-
tion-polymerase chain reaction (qQRT-PCR), MSM-treatment absorbance mea-
surements, and oxidative stress measurements precultures were used to
inoculate the photobioreactors at an initial density of OD;so = 0.2 in 400 mL of
BG-11 medium without antibiotics. Temperature, airflow rate, and light in-
tensity settings were the same as above. For these experiments, both WT and
ArpaA mutants were maintained at a constant light intensity of 150 pE-m=2s~"
for 1 d. Subsequently, both strains were subjected to growth in a 12:12 LD
cycle at a light intensity of 150 pE-m~2s~" for 2 d. Light intensity was then
increased to 500 pE-m~2s~" over the final 12:12 LD period, during which
sampling took place.

For viable cell plating, 200 pL of the indicated sample was serially diluted
1:5 in fresh BG-11 medium without antibiotics five times. For LD sensitivity
testing, samples were first all diluted to an ODs5o = 0.2, and the same di-
lution scheme was then followed. Subsequently, 4 pL of each sample was
spotted onto solid BG-11 plates without antibiotics. Plates were incubated at
30 °C and 150 pE-m~2s~" constant light for 5-6 d. For LD sensitivity testing,
samples were plated in duplicate, with one set incubated in constant light
for 5-6 d, and a second set under a 12:12 LD cycle for 6-8 d.
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and Data Analysis. Strains for metabolomics were grown in
Photobioreactors and sampled (n = 5 at each time point and for each ge-
notype) as described above (Fig. $7). Metabolite extraction and GC-TOF-MS
were conducted by the West Coast Metabolomics Center (WCMC) at the
University of California, Davis identically to the methods used in Diamond
et al. (19) and Fiehn et al. (62, 63).

Raw metabolite abundance data for known metabolites (Dataset S1)
were analyzed by using a combination of the online analysis platform
MetaboAnalyst (Version 3.0) (64) and the statistical package R (65). Principal
component analysis (PCA) was applied to log,-normalized and autoscaled
data to detect outlying samples. Based on PCA, replicate A of the WT sample
was removed from the dataset before statistical analysis (Fig. S8A). In ad-
dition, WT replicate C time T6 and ArpaA replicate C time T4 were removed
before analysis because of problems during sample extraction reported by
the WCMC. Statistical analysis of metabolomics data are detailed in SI Ma-
terials and Methods. Further details and statistical methods are provided in
Sl Text.

Mutagenesis and Identification of ArpaA Suppressing Mutations. EMS muta-
genesis of fresh ArpaA mutant cyanobacterial strains was carried out as in
Kondo et al. (66). Absorbance scans were taken of all cultures, as detailed in
SI Materials and Methods, and genomic DNA was extracted by using stan-
dard methods (67). Before sequencing genomic DNA, the disruption of rpaA
in all strains was verified by PCR (Fig. S4C). Genomic library preparation for
lllumina short-read sequencing was performed by using the NEBNext DNA
library preparation kit (NEB, catalog no. E60405/L) with NEXTflex barcoded
<DNA adaptors (BIOO Scientific, catalog no. 514104). Samples were run on
an lllumina HiSeq 2500 DNA sequencer at the University of California, Berkeley
QB3 Genomics Sequencing Laboratory. Sequencing runs resulted in 50-bp
reads with a median coverage depth of 45.7x per sample over the S. elongatus
genome. Reads from all sequencing methods were mapped against the
S. elongatus genome (GenBank accession no. NC_007604) and the large plas-
mid pANL (GenBank accession no. AF441790), and polymorphisms were called
by using the program breseq (68). Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis of mutated genes was conducted by using a cus-
tom-written R script and the metabolic categories in Dataset S2. Statistical
overrepresentation was determined by using the binomial test, and P values
were corrected by using the method of Benjamini and Hochberg (69).
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The ArpaA Mutant Activates a Nitrogen-Starvation
Transcriptional Response

In cyanobacteria, elevated AKG is the primary signal for nitrogen
deprivation, and activation of this system results in a coordinated
transcriptional response with the subsequent degradation of
phycobilisome proteins (36, 37). The result is a bleaching process
termed chlorosis. The observed AKG elevation in Arpad mutants
temporally precedes a rapid decrease in phycobilisome absor-
bance at 630 nm in ArpaA4 mutants that is evident after 8 h in the
dark (Figs. 1B and 3B and Fig. S1). However, a variety of stress
conditions can cause chlorosis (31). To determine whether ele-
vated AKG is accompanied by a transcriptional response linked
to nitrogen deprivation, we tracked transcript levels of ginN
(glutamine synthase), a primary transcriptional target of this
transcriptional response, before and 2 h after WT and the ArpaA
mutant entered the dark (37). WT showed a slight decrease in
gInN transcript levels after the dark transition, whereas the
ArpaA mutant showed a statistically significant approximately
fourfold increase in g/nN transcripts (Fig. S3). Combined, these
results are consistent with a transcriptionally activated nitrogen
starvation response and indicate that AKG reaches high enough
levels in ArpaA cells to activate this response in the dark. The
activation of this response is normally repressed at night, and its
activation may squander already limited cellular resources.

S| Materials and Methods

Cyanobacterial Strains, Media, and Culture Conditions. All ArpaA
mutants were constructed by transformation in a WT S. elongatus
background with plasmid pAM4420 (25) and were validated by
PCR. For all experiments, precultures were first prepared in 100 mL
of fresh BG-11 medium as described in Diamond et al. (19).

For metabolomics experiments, precultures were used to in-
oculate Phenometrics ePBR photobioreactors (Version 1.1;
Phenometrics Inc.) at an initial density of OD7so = 0.1 in 400 mL
of BG-11 medium without antibiotics. Temperature was main-
tained at 30 °C; filtered (0.2 pm) air was sparged at a rate of
50 mL/min, and light intensity was either 150 or 500 pE-m~%s~*
provided from the top of the culture while lights were on. After
inoculation, cultures were grown at a constant light intensity of
150 pE-m™2s™" until OD;sy = 0.3, then maintained turbidostati-
cally at this density for the duration of the experiment. In the
metabolomics experiment, WT circadian rhythms were entrained
by growth in a 12:12 LD cycle with the light portion at an intensity
of 150 pE-m~2s~" for 1 d and subsequently at 500 pE-m~2s™" for
2 d before release into experimental conditions and sampling.
The ArpaA strains were maintained in constant light at the same
intensities as for the WT strain before the sampling procedure
(Fig. S7).

For absorbance scanning, viable cell counts, qRT-PCR, MSM-
treatment absorbance measurements, and oxidative stress
measurements, precultures were used to inoculate the photo-
bioreactors at an initial density of OD7s¢ = 0.2 in 400 mL of BG-
11 medium without antibiotics. Temperature, airflow rate, and
light intensity settings were the same as above. For these ex-
periments, both WT and Arpa4 mutants were maintained at a
constant light intensity of 150 pE-m~2s™! for 1 d. Subsequently,
both strains were subjected to growth in a LD cycle with the light
portion at an intensitl of 150 pE-m~2s~! for 2 d, and then in-
creased to 500 pE-m~%s~" over the final LD period during which
sampling took place.

For viable cell plating, 200 pL of the indicated sample was
serially diluted 1:5 in fresh BG-11 medium without antibiotics
five times. For LD sensitivity testing, samples were first all di-
luted to an OD7s = 0.2, and the same dilution scheme was then
followed. Subsequently, 4 pL of each sample was spotted onto
solid BG-11 plates without antibiotics. Plates were incubated at
30 °C and 150 pE-m~2s~! constant light for 5-6 d. For LD
sensitivity testing, samples were plated in duplicate, with one set
incubated in constant light for 5-6 d and a second set under a LD
cycle for 6-8 d.

Whole-Cell Absorbance Spectra Analysis. For all reported absor-
bance spectra, the absorbance between 400 and 750 nm was
determined for 200 pL of the indicated sample by using a Tecan
Infinite M200 plate reader. Raw absorbance values were normal-
ized to ODys of each sample. Statistical analyses used the Stu-
dent’s ¢ test, with a P value < 0.05 considered as significant (n > 3).

Metabol and Data Analysis. Strains for metabolomics sam-
pling were grown in photobioreactors and sampled (z = 5 at each
time point and for each genotype) as described above (Fig. S7).
Metabolite extraction and GC-TOF-MS were conducted by the
WCMC at the University of California, Davis identically to the
methods used in Diamond et al. (19) and Fiehn et al. (62, 63).
Raw metabolite abundance data for known metabolites (Dataset
S1) were analyzed by using a combination of the online analysis
platform MetaboAnalyst (Version 3.0) (64) and the statistical
package R (65). PCA was applied to log-normalized and auto-
scaled data to detect outlying samples. Based on PCA, replicate
A of the WT sample was removed from the dataset before sta-
tistical analysis (Fig. S84). Also, WT replicate C time T6 and
ArpaA replicate C time T4 were removed before analysis because
of problems during sample extraction reported by the WCMC.
To detect metabolites that changed between WT and ArpaA at
the initial sampling time point (0 h), we used a ¢ test on logy-
normalized data (FDR corrected P value < 0.05) (69) and re-
quired significant metabolites to show a greater than twofold
change between genotypes. To detect metabolites that changed
between WT and ArpaA over the entire time course, we applied
two separate statistical methods to logy-normalized abundance
data: two-way ANOVA analysis [Tukey’s honest significant dif-
ference (HSD); P < 0.05] using the MetaboAnalyst platform
(Version 3.0) and a linear mixed-effect model via the Ime4
package in R (65, 70). For mixed-effect linear models, genotype
and time were set as fixed effects, while biological replicate and
time of sampling were allowed to contribute random effects.
Models produced using genotype and an interaction of genotype
and time as fixed effects were compared with a base model
without genotype or the interaction effect using ANOVA. Final
P values generated for each metabolite were corrected by using
the method of Benjamini and Hochberg (69) (FDR < 0.05 was
considered significant). Both the ANOVA and Ime4 methods
produced almost identical lists of significant metabolites (Data-
set S1); we chose to use the output from two-way ANOVA in our
analysis, because of the broader understanding of this method
and for simplification of downstream analysis. Hierarchical
clustering of significant metabolites for heatmap ordering (Fig.
24) was performed by using the R package pheatmap, with
Euclidian distance and complete linkage for leaf ordering.
PLS-DA modeling was carried out on logy-normalized and
autoscaled data with genotype and time as class factors. Using
leave-one-out cross-validation indicated that the PLS-DA model

46



%
vd
=

providing the most prediction accuracy used two components
(Fig. S8B). Permutation testing was used to confirm that our
PLS-DA model had a statistically significant ability to correctly
predict class membership of samples based on the top 25 dis-
criminating metabolites relative to a random permuted model
(P = 0.008; n = 1,000) (Fig. S8C).

Metabolite KEGG enrichment analysis was conducted by using
a custom-written R script and the metabolic categories in Dataset
S2. Statistical overrepresentation was determined by using
Fisher’s exact test. Because of the difficulty in achieving high
statistical significance with the low numbers of tested metabo-
lites, we did not apply a multiple-testing correction to P values,
but required more than three metabolites to be present in a
pathway with a P value < 0.05 to be considered significant.

qRT-PCR Analysis. For each cyanobacterial sample, 10 mL of cul-
ture at an ODsg of 0.2-0.4 was collected and immediately placed
on ice. The cultures were then centrifuged for 10 min at 4,000 X g
and —10 °C. Pellets were then frozen at —80 °C until extraction.
Total RNA was extracted by using the TriZol reagent (Life
Technologies) and the Direct-zol RNA MiniPrep Kit (Zymo
Research). Briefly, the frozen pellets were thawed on ice and
resuspended thoroughly in 1 mL of TriZol reagent. Cell sus-
pensions were then transferred to 1.5-mL microcentrifuge tubes
on ice, and cells were lysed by 5-10 cycles of vortexing for 30 s at
room temperature and then allowed to sit on ice for 30 s. Cell
debris was pelleted by centrifuging at 16,000 x g at room tem-
perature for 5 min. After transferring the supernatant fraction to
an RNase-free 2-mL tube, 1 volume of 100% ethanol for every
volume of TriZol (typically 1 mL) was added and mixed by
pipetting up and down. Total RNA was isolated from the Tri-
Zol-ethanol mixture following the manual of the Direct-zol
RNA MiniPrep Kit. The RNA quality was checked with agarose
gel imaging (1% agarose, 0.5x TBE, 75 V/60 min), using 10,000x
SYBR green II RNA gel stain (Lonza). The extracted RNA
samples were treated with DNasel (Thermo Scientific) to
remove contaminating genomic DNA. cDNA was synthesized
with the SuperScript III First-Strand Synthesis System for RT-
PCR (Life Technologies) following the kit manual. For qRT-
PCR experiments, standard reactions in triplicate were set up
with the Power SYBR Green PCR Master Mix (Life Technol-
ogies) and run on a StepOnePlus Real-Time PCR System (Life
Technologies) following the instructions of the manufacturer.
Significance for a change in glnN expression was calculated by
using one-way ANOVA and Tukey’s HSD (n = 3).

Mutagenesis and Identification of ArpaA Suppressor Mutations. EMS
mutagenesis of fresh Arpad mutant cyanobacterial strains was
carried out as described in Kondo et al. (66). Mutagenized cul-
tures were resuspended in 5 mL of BG-11 medium with appro-
priate antibiotics and incubated at 30 °C, using 150 rpm shaking,
under 30 pE-m~%s~! constant light for 2 d. Subsequently 300 L
of mutagenized ArpaA cells (as well as untreated controls) were
plated on BG-11 plates with appropriate antibiotics. Plates were
prepared in duplicate, and one set was incubated at 30 °C and
150 uE-m~2s~! constant light for 15 d, with the second set being
incubated at 30 °C and a LD cycle with a light intensity of
150 pE-m~2s~! for 15 d. Colonies (40) that formed on the LD-
grown plate that contained EMS-mutagenized Arpad cells were
picked and patched onto BG-11 plates with appropriate antibi-
otics and grown for a further 10 d at 30 °C and a LD cycle with a
light intensity of 150 pE-m~2s~! to confirm suppression of the
LD death phenotype. Patches of surviving Arpa4 EMS mutants
were then transferred to 10 mL BG-11 medium and incubated at
30 °C, using 150 rpm shaking, with a LD cycle and light intensity
of 120 pE-m~2s~! for between 11 and 16 d. Absorbance scans
were taken of all cultures as described above, and genomic DNA

was extracted by using standard methods (67). Before sequenc-
ing genomic DNA, the disruption of rpad in all strains was
verified by PCR (Fig. S4C).

Genomic library preparation for Illumina short-read se-
quencing was performed by using the NEBNext DNA library
preparation kit (NEB, catalog no. E6040S/L) with NEXTflex
barcoded cDNA adaptors (BIOO Scientific, catalog no. 514104).
Samples were run on an Illumina HiSeq2500 DNA sequencer at
the University of California, Berkeley QB3 Genomics Sequencing
Laboratory. Sequencing runs resulted in 50-bp reads with a
median coverage depth of 45.7x per sample over the S. elongatus
genome. However, for samples 1.1, 1.25, and 2.3, (Dataset S2),
genome resequencing was performed at Bio Applied Technolo-
gies Joint, Inc., by using the Ion PGM system (Life Technolo-
gies) following the standard workflow illustrated in the manuals
of the Life Technologies kits. Sequencing libraries were prepared
with the Ion Xpress Plus Fragment Library Kit. In brief, 1 pg of
total gDNA was sheared into desired fragment size (200-400 bp)
via enzymatic digestion and then ligated to specified sequencing
adapters and/or barcode adapters. The sequencing templates
were amplified from constructed libraries by using the Ion
OneTouch 2 System and the Ion PGM Hi-Q OT2 Kit. Amplified
templates were processed with the Ion PGM Hi-Q Sequencing
Kit and loaded on an Ion 316 Chip Kit (Version 2) for sequencing
on a Ion PGM system with 500 sequencing flows (200 bp reads).
Reads from all sequencing methods were mapped against the S.
elongatus genome (GenBank accession no. NC_007604) and the
large plasmid pANL (GenBank accession no. AF441790), and
polymorphisms were called by using the program breseq (68).
Polymorphisims were filtered for “high confidence” mutations by
removing all mutations that resulted in a high-use codon coding
for the same amino acid. All mutations in noncoding regions were
included in the high-confidence set.

KEGG enrichment analysis of mutated genes was conducted by
using a custom-written R script and the metabolic categories in
Dataset S2. Statistical overrepresentation was determined by
using the binomial test, and P values were corrected by using the
method of Benjamini and Hochberg (69).

MSM Treatment. Initially by testing decreasing concentrations of
MSM (Sigma-Aldrich catalog no. N12482) on WT and ArpaA
cells, we were able to determine that concentrations of 100 nM
and 25 pM, in solid and liquid media, respectively, were non-
lethal to WT and Arpad, yet resulted in slightly suppressed
growth and suppression of LD lethality. For all experiments
using MSM, a stock solution was filter-sterilized (0.2 pm), and
subsequently added to sterile medium to reach the desired
working concentration. For experiments on solid medium, MSM
was directly added to plate agar before plating and growing cells
as described above. For experiments in photobioreactors, cells
were grown as described above, and sterile MSM was added to a
concentration of 25 pM at the beginning of a 12-h light period
that preceded the transition into darkness for ArpaA cultures.

Quantification of ROS. ROS were quantified by using the fluores-
cent marker H,DCFDA (Life Technologies catalog no. D399).
Briefly, 2 mL of photobioreactor-grown (see above) culture was
collected and split into 1-mL aliquots. H,DCFDA was added to
one sample at a final concentration of 5 pM. Tubes were pro-
tected from light and shaken at 30 °C for 30 min. After in-
cubation, 200 pL of each tube was added to a separate well in a
96-well plate. Fluorescence was quantified at an excitation of
480 nm and an emission of 520 nm on a Tecan Infinite M200
plate reader with the gain manually set to 120. Fluorescence data
were normalized to OD7sg of each sample, and untreated-sample
background fluorescence was then subtracted from treated-
sample fluorescence values.

47



ENAS |

>

WT ODgyo Absorbance (Photobioreactor)

Before Dark Exposure

0 12 24 36 48 60 72 84 96 108
Time From Start (h)

ArpaA ODgy Absorbance (Photobioreactor)

After 8 h Dark Exposure

0 12 24 36 48 60 72 84 96
Time From Start (h)

108

Fig. S1. Summary of phenotypic effects of darkness on WT and the ArpaA mutant. (A) Representative photographs of WT and ArpaA before and after 8 h of
dark exposure. Chlorotic bleaching is evident in the ArpaA strain after incubation in darkness (A, Lower). (B) Representative data collected from the pho-
tobioreactor optical density sensor (900 nm) over the course of an experiment where WT and the ArpaA mutant were exposed to darkness. Time is given from
the inoculation of photobioreactors, and gray bars indicate 12-h periods of darkness. Turbidostatic growth of both cultures can be observed at ~72-84 h from
the start of the experiment. Both cultures show a decrease in optical density in the final dark period; however, the WT culture resumes growth in the following
light period (B, Upper, black arrow), whereas the optical density of the ArpaA mutant continues to decrease despite being in a light period (B, Lower, black
arrow).
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Fig. S2. Comparison of metabolite abundance between WT and ArpaA before entering the dark. This volcano plot of metabolites highlights metabolites that
show a significant difference in abundance between WT and ArpaA at 0 h (named red points) vs. those without a detectable difference (gray points). Dotted
lines indicate required thresholds for significance. Metabolites on the right and left sides of the plot were elevated and decreased in ArpaA relative to WT,
respectively. Significance was calculated using Student’s t test (n = 4 for WT and n = 5 for ArpaA), and correction for multiple testing used the method of
Benjamini-Hochberg.
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Fig. $3. Changes in expression of g/nN. Relative expression levels of the ginN transcript at 0 h (before entering darkness) and 2 h after exposure to darkness as
measured by qRT-PCR. Log, values were calculated relative to WT at 0 h. +MSM sample indicates ArpaA treated with 25 uM MSM for a 12-h period in the light
before entering the dark. Error bars indicate SEM. Significance calculated using one-way ANOVA and Tukey’s HSD (n = 3). *P < 0.05; **P < 0.01. Additionally,
there was no significant difference between ArpaA treated with MSM, a WT control treated with MSM, and WT untreated with MSM at any time point,
indicating that transcript abundance of g/nN was not generally affected by MSM treatment.
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Fig. S4. Supporting data for EMS mutagenesis of the ArpaA mutant. (A) A representative photo of an older ArpaA culture that was plated as a serial dilution
and grown in an LD cycle. Black arrows indicate ArpaA colonies showing robust growth even under normally restrictive LD conditions. (B) Photographs of plates
of unmutagenized and EMS-mutagenized ArpaA cultures after incubation in an LD cycle for 15 d. The photographs show that hundreds of colonies form on
the EMS-mutagenized ArpaA plate (B, Right), but not on the plate that received unmutagenized cells (B, Left). (C) PCR amplification of the rpaA locus from
ArpaA cells carrying second-site mutations and from WT controls. The recombination at the rpaA locus with the pAM4420 vector to produce the ArpaA strain
results in an expected amplified fragment of 1.8 kb. This region is larger than the 1.2-kb amplicon expected from WT cells. Comparison with amplification from
WT cells (white arrows) shows that all ArpaA strains tested in this study produce the expected increased amplicon size for a strain that carries the ArpaA
mutation. Additionally, no WT-size bands are present in the ArpaA strains, indicating that the mutation is fully segregated.
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Fig. S5. Supporting data for potential mechanisms that suppress LD lethality in the ArpaA mutant. (A) Representative data collected from the photo-
bioreactor optical density sensor (900 nm; y axis) over the course of an experiment where ArpaA mutants were exposed to darkness and not treated (Upper) or
treated (Lower) with MSM. Time (x axis) starts at inoculation of photobioreactors, gray bars indicate 12-h periods of darkness, and light intensity during the
light periods is noted with black text. The black arrow in the bottom panel indicates when 25 pM MSM was added to one culture. The ArpaA mutant receiving
MSM was able to continue growth even after an LD cycle (Lower) that was lethal to the ArpaA mutant not receiving MSM (Upper). (B) Photographs of EMS-
mutagenized ArpaA strains before genomic DNA extraction. Strains are organized by the type of mutation they were found to carry, and only strains with
mutations that affected amino acid metabolism in some way are included. The general metabolic pathway affected is indicated above each photograph panel
and the specific EMS mutant number is indicated below each test tube (Dataset S2). The photos highlight the altered pigmentation that is present in these
strains relative to WT cells.
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Fig. S6. Controls for LD plating and ROS experiments. (A) Serial dilutions of WT and ArpaA grown at a light intensity of 150 pE-m~2.s~" using 24-h LL (Upper)
and 12 h:12 h LD (Lower) light regimes for 7 d. These data show the ability of ArpaA to tolerate high light conditions as long as a 24-h constant light regime is
used. (B) Plot of H,DCFDA fluorescence over a 24-h LD cycle indicating total cellular ROS in WT untreated (solid line) and treated (dashed line) with 25 pM MSM.
Curves are best-fit lines calculated by using LOESS regression to all data points in a given sample; the gray-shaded area indicates the 95% Cl of the regression
line (n = 21 data points for day samples; n = 42 data points for night samples). The data show that treatment of WT with 25 uM MSM does not significantly
affect levels of ROS over the 24-h LD cycle.
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Fig. S7. Diagram of the growth and sampling scheme used for experiments conducted in photobioreactors. Each box indicates a 12-h period with white boxes
corresponding to periods of light and black boxes corresponding to periods of darkness. Where indicated, only the WT strain was exposed to darkness. Light
intensity during each light period is indicated in black text within each white box. Times when samples were taken during the metabolomics experiment are
indicated by red arrows. Red arrows correspond to time points ZT12 (0 h), ZT13 (1 h), ZT14 (2 h), ZT16 (4 h), and ZT18 (6 h), from left to right.
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Fig. S8. Supporting data for metabolomics statistical analysis. (A) Plot of PCA components 1 and 2 for log; autoscaled metabolite abundance data for all WT
samples. Ellipses indicate the 95% CI for each sample group. The black arrow indicates all time points collected for WT biological replicate A. The statistically
significant separation of the WT_A replicate indicates that this sample is an outlier relative to the other WT samples collected. (B) Plot showing result from
LOOCV performed on the PLS-DA model. The red star indicates the accuracy of the model is highest when it includes only two components. Due to a high
degree of variability in the data, which is typical of metabolomics datasets, we chose prediction accuracy as a metric to select a number of components over
other metrics such as model fit (Q2). (C) Plot showing the results of accuracy permutation testing on the PLS-DA model. The red arrow indicates the test
statistic. The data indicate that our PLS-DA model is significantly better at predicting class membership than a random model (P < 0.01; n = 1,000 permu-
tations).
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Table S1. Absorbance ratio (630/680 nm) of select ArpaA suppressor mutants

EMS mutant Gene affected* Color Ratio Significant®
WT controls No
WT_1 None Green 0.939
WT_2 None Green 0.944
WT_3 None Green 0.970
Purine biosynthesis No
1.9 guaA (0189) Light green 0.914
1.10 guaA (0189) Light green 1.004
1.3 guaB (1831) Very light green 1.056
1_1 guaB (1831) Light green 0.979
23 guaA (0189) Yellow green 0.929
BCAA biosynthesis Yes (P < 0.01)
1.6 pyk (0098) Yellow green 0.847
219 AHAS (0139) Yellow green 0.853
2.8 ilvD (0626) Strong yellow 0.915
210 eno (0639) Light green 0.874
2_15 ilvH (2434) Yellow green 0.892
tRNA-related Yes (P < 0.05)
2.4 ileS (2437) Yellow green 0.807
26 glyQ (2457) Yellow green 0.889
2.7 tRNA-Arg (R0O011) Pale yellow green 0.890
29 leusS (1920) Strong yellow green 0.854
Other amino acid No
biosynthetic
11 trpB (2143) Pale green 0.931
1_15 thrA (2090) Pale yellow 0.861
1.25 hisD (1519) Pale yellow/clear 1.049

*SynPCC7942_# of gene given in parentheses next to gene name.

*Average of ratio from a functional gene group was different from WT average by Student's t test.

Other Supporting Information Files

Dataset S1 (XLSX)
Dataset 52 (XLSX)
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CHAPTER 3: Associating Genotype to Phenotype with

RB-ThSeq

3.1 Chapter Summary

Chapter 3 describes the development and use of RB-TnSeq in S.
elongatus to achieve improved functional understanding of genes and intergenic
regions throughout the genome. Section 3.2 RB-TnSeq Development and
Essential Genes in S. elongatus describes the creation of a pooled library of
approximately 250,000 barcoded transposon mutants. The tracking of these
mutants by sequencing led to identification of the first essential gene set in a
photosynthetic organism, and was also used to make individual and global
conclusions about the importance of intergenic regions throughout the genome.
This work is presented here in the form of a PNAS paper on which | was first
author. The data on gene essentiality was next used in the generation of a
whole-genome metabolic model presented in section 3.3 RB-TnSeq Guided
Metabolic Modeling as a PNAS paper on which | was co-first author. This model
has improved accuracy over those previously available for S. elongatus and
revealed unique facets of the organism’s biology.

The library is also a powerful tool for identifying genes that are beneficial
or detrimental under different growth conditions. Identification of key genes
involved in biofilm formation and amoeba grazing using RB-TnSeq are presented
in 3.4 RB-TnSeq Screens: Biofilm Formation and 3.5 RB-TnSeq Screens:

Amoeba Grazing. These sections include information from manuscripts that are
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in preparation for publication on which | will be second and third author,
respectively. Finally, section 3.6 RB-TnSeq Screens: Analysis Across
Conditions contains a brief description of meta-analysis of RB-TnSeq data
across multiple conditions and organisms for wholesale gene functional
annotation. This section cites, but does not include, a manuscript under review at
Nature on which I'm a middle author and which currently resides in the bioRxiv
preprint server. Together, these genome-wide datasets of the essential and
conditionally relevant loci of S. elongatus improve our understanding of the
organism’s basic physiology, aid efforts to develop S. elongatus as a
bioproduction platform, and serve as the only resource of their kind for a

photosynthetic organism.



3.2 RB-TnSeq Development and Essential Genes in S. elongatus
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Synechococcus elongatus PCC 7942 is a model organism used for
studying photosynthesis and the circadian clock, and it is being
developed for the production of fuel, industrial chemicals, and
pharmaceuticals. To identify a comprehensive set of genes and
intergenic regions that impacts fitness in S. elongatus, we created
a pooled library of ~250,000 transposon mutants and used sequencing
to identify the insertion locations. By analyzing the distribution and
survival of these mutants, we identified 718 of the organism’s 2,723
genes as essential for survival under laboratory conditions. The validity
of the essential gene set is supported by its tight overlap with well-
conserved genes and its enrichment for core biological processes. The
differences noted between our dataset and these predictors of essen-
tiality, however, have led to surprising biological insights. One such
finding is that genes in a large portion of the TCA cycle are dis-
pensable, suggesting that S. el does not require a cyclic
TCA process. Furthermore, the density of the transposon mutant
library enabled individual and global statements about the essen-
tiality of noncoding RNAs, regulatory elements, and other inter-
genic regions. In this way, a group | intron located in tRNA"Y,
which has been used extensively for phylogenetic studies, was
shown here to be essential for the survival of S. elongatus. Our
survey of essentiality for every locus in the S. elongatus genome
serves as a powerful resource for understanding the organism’s
physiology and defines the essential gene set required for the
growth of a photosynthetic organism.

RB-TnSeq | transposon mutagenesis | Tn-seq | cyanobacteria |
photosynthesis

Determining the sets of genes necessary for survival of diverse
organisms has helped to identify the fundamental processes
that sustain life across an array of environments (1). This research
has also served as the starting point for efforts by synthetic biologists
to design organisms from scratch (2, 3). Despite the importance of
essential gene sets, they have traditionally been challenging to
gather because of the difficulty of observing mutations that result in
lethal phenotypes. More recently, the pairing of transposon muta-
genesis with next generation sequencing, referred to collectively as
transposon sequencing (Tn-seq), has resulted in a dramatic advance
in the identification of essential gene sets (4-7). The key charac-
teristic of Tn-seq is the use of high-throughput sequencing to screen
for the fitness of every transposon mutant in a pooled population to
measure each mutation’s impact on survival. These data can be
used to quantitatively ascertain the effect of loss-of-function mu-
tations at any given locus, intragenic or intergenic, in the conditions
under which the library is grown (8). Essential gene sets for 42 di-
verse organisms distributed across all three domains have now been
defined, largely through the use of Tn-seq (9). A recently developed
variation on Th-seq, random barcode transposon site sequencing
(RB-TnSeq) (10), further minimizes the library preparation and
sequencing costs of whole-genome mutant screens.

Despite the proliferation of genome-wide essentiality screens, a
complete essential gene set has yet to be defined for a photo-
synthetic organism. A collection of phenotyped Arabidopsis thali-
ana mutants has been created but extends to only one-tenth of
Arabidopsis genes (11). In algae, efforts are underway to produce a
Tn-seq-like system in Chlamydomonas reinhardtii; however, the

mutant library currently lacks sufficient saturation to determine
gene essentiality (12). To date, the essential genes for photo-
autotrophs have only been estimated by indirect means, such as
by comparative genomics (13). The absence of experimentally
determined essential gene sets in photosynthetic organisms, de-
spite their importance to the environment and industrial pro-
duction, is largely because of the difficulty and time required for
genetic modification of these organisms.

Cyanobacteria comprise an extensively studied and ecologi-
cally important photosynthetic phylum. They are responsible for
a large portion of marine primary production and have played a
foundational role in research to decipher the molecular com-
ponents of photosynthesis (14, 15). Synechococcus elongatus PCC
7942 is a particularly well-studied member of this phylum be-
cause of its genetic tractability and streamlined genome (16). As
a result, it has been developed as a model photosynthetic organism
and a production platform for a number of fuel products and high-
value chemicals (17). Despite the importance of S. elongatus for
understanding photosynthesis and industrial production, 40% of
its genes have no functional annotation, and only a small portion
of those that do have been studied experimentally.

Here, we use RB-TnSeq, a method that pairs high-density
transposon mutagenesis and pooled mutant screens, to probe the
S. elongatus genome for essential genes and noncoding regions.
We categorized 96% of 2,723 genes in S. elongatus as either
essential (lethal when mutated), beneficial (growth defect when
mutated), or nonessential (no phenotype when mutated) under
standard laboratory conditions. Furthermore, we determined the
genome-wide essentiality of noncoding RNAs (ncRNAs), regula-
tory regions, and intergenic regions. Our investigation has pro-
duced an extensive analysis of the loci essential for the growth of a
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Cyanobacteria are model organisms for photosynthesis in the
laboratory, are key producers of the chemical energy that
drives life, and are being developed as biofuel and chemical
producers for industry. Despite the importance of these or-
ganisms for environmental and biotechnological applications,
only a small percentage of cyanobacterial genes and intergenic
regions have been experimentally evaluated for their impact on
the organisms’ survival. Here, we present experimental analysis
of the complete set of genomic regions necessary for survival in
a cyanobacterium achieved by screening for the fitness of hun-
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photosynthetic organism and developed a powerful genomic tool
that can be used for additional screens under a wide array of
ecologically and industrially relevant growth conditions.

Results

Transposon Library Creation and Insertion Site Mapping. Our RB-
TnSeq library in S. elongatus was constructed by mutagenesis
with a Tn5-derived transposon delivered by conjugation. The
transposon contains a kanamycin resistance cassette for selection
of mutants. As an addition to the traditional Tn-Seq approach, in
RB-TnSeq, a 20-bp random DNA barcode is also inserted with
the resistance marker. These unique barcodes, after being linked
to the surrounding sequences, serve as identifier tags for each
insertion’s location and simplify downstream genome-wide
screens using BarSeq (10, 18). To achieve the efficiency of
transposition necessary to create a high-density insertion library
and minimize contamination by Escherichia coli DNA in se-
quencing reactions, several improvements were made to tradi-
tional S. elongatus conjugation protocols (16, 19), including
increasing the light intensity during conjugation approximately
fourfold, decreasing the conjugation time, and using an addi-
tional outgrowth step (Materials and Methods and Table S1). In
total, ~375,000 individual transposon mutants were pooled to
create the final library. The pooled library was sequenced before
storage or outgrowth to map the location of each transposon in-
sertion as well as its random DNA barcode (Tn-Seq). We iden-
tified 246,913 mutants with unique insertion locations that were
supported by at least two sequencing reads. Insertion locations
showed a relatively even distribution, with an average density of
one insertion mutation present in the population for every 11 bp
of the 2.7-Mbp genome (Fig. 1). The locations of all transposon
insertions are presented in Dataset S1. The associated barcodes
that could be mapped with high confidence are presented in
Dataset S2.

S. elongatus maintains three to six copies of its genome (20,
21). Therefore, mutants containing a transposon insertion in an
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Fig. 1. The distribution of transposon mutations in the library overlaid
across the S. elongatus main chromosome and two plasmids. Upper, the
number of transposons (in 1,000-bp bins for the main chromosome and 100-bp
bins for the plasmids) is represented by the length of the green bars in the
outer circles. The locations of essential genes are shown in red in the inner
circles. Lower shows a blown-up view of a region with underrepresentation of
transposon insertions that encodes subunits of RNA polymerase. Lengths of
black vertical bars represent numbers of sequence reads, and green bars
indicate positions of insertions. Essential genes are in red, and nonessential
genes are in blue (numbers represent SynPCC7942 gene numbers from the
Joint Genome Institute annotation).

essential region can acquire a kanamycin resistance insertion on
one copy of the chromosome and retain viability by maintaining
at least one copy of the essential WT allele. Indeed, removal of
the selective agent from a transposon library in Methanococcus
maripaludis has been previously shown to cause heterozygous
mutants to lose their resistance-encoding insertions (22). To test
the possibility that the pooled S. elongatus library is harboring
heterozygous mutants, we performed an outgrowth of an aliquot
of the mutant library in the absence of kanamycin alongside a
control aliquot of the library containing kanamycin. Before and
after this outgrowth, the abundances of the mutants comprising
these library aliquots were assayed by sequencing only their
DNA barcodes (BarSeq), which had been previously associated
with insertion sites. The kanamycin and no kanamycin libraries
had minimal divergence over seven to eight generations (R” =
0.89) (Fig. S1). These data suggest that heterozygosity had largely
been resolved before analysis of the library and should have
minimal impact on the conclusions drawn from this library.

Determining Gene Essentiality. To use the distribution of trans-
posons in the library to make conclusions about essential geno-
mic regions, it was necessary to first rule out potential sources of
bias in our transposon insertion data. Polar effects, in which a
transposon disrupts expression of downstream genes in a tran-
script, seem to have some influence but are not pervasive in the
data (SI Results). Although previous studies have shown in-
creased transposon insertion density around the origin of repli-
cation (23), our library did not contain such skewing (Fig. 1).
Another concern was bias toward insertions occurring at specific
sequence motifs; however, there was not strong enrichment for
specific sequences around the insertion site (24) (Fig. S2). There
was, however, a positive bias for insertion into guanine-cytosine
(GC) rich regions. Thus, during the determination of gene es-
sentiality, insertion frequency was normalized to GC content
(Fig. S3).

To identify essential genes, we determined the number of in-
sertions present in the library that mapped to each S. elongatus
gene. Insertions within essential genes were expected to be un-
derrepresented in the library, because such mutants should not
be viable. To create a comparable measure of insertion density
for genes, an insertion index, we normalized for the GC% bias of
insertions (Fig. S34) and divided the number of insertions in
each gene by its length to get an insertion density. We also re-
moved 25 genes from consideration that were either too short or
too similar to other genes to measure confidently, and excluded
the beginning and end 10% of every gene from analysis, because
the extremes of otherwise essential genes can be permissive of
insertions (25). In this way, we calculated an insertion index for
2,698 of 2,723 genes in S. elongatus (details are in Materials and
Methods). The index had a bimodal distribution, with a group of
putative essential genes with zero or very few insertions and a
group of putative nonessential genes that could tolerate inser-
tions (Fig. 24). Using methods developed previously (5), we
found a subset of genes that was four times more likely to be-
long to the distribution of genes with low insertion indexes and
categorized them as essential genes. Genes that were four times
more likely to be part of the set of genes with high insertion
indexes were classified as nonessential genes, whereas those
genes that fell in between these cutoffs were put in the am-
biguous category. This initial survey of essentiality allowed the
categorization of 1,889 nonessential genes, 764 likely essential
genes, and 45 ambiguous genes.

These essentiality calls were further refined by thawing an ali-
quot of the library, growing it for an additional six generations,
and assaying the abundance of its constitutive mutants by BarSeq.
The results of this outgrowth were made more generalizable by
conducting it in four commonly used laboratory conditions (Ma-
terials and Methods). Mutant abundance before and after out-
growth was used to determine a fitness score for each gene in the
library over approximately six generations (Fig. 2B). Thus, in ad-
dition to both essential and nonessential genes, we were able to
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Fig. 2. The determination of gene essentiality. (A) The distribution of in-
sertion indexes of all analyzed genes immediately after creation of the li-
brary, which was used to determine gene essentiality. The y axis indicates
the number of genes, with the insertion index shown on the x axis. (B) The
distribution of fitness for each gene after six generations used to refine the
essentiality measurements and assign genes that are beneficial (growth
defect when mutated). The y axis indicates the number of genes, with the
fitness score shown on the x axis. The cutoff for beneficial genes that have
significant growth defects when mutated is denoted by a dotted vertical
line. Each gene’s fitness is averaged from four growth samples in control
conditions and normalized to zero, which represents a neutral fitness con-
tribution. (C) The number of genes in the genome that are nonessential,
essential, beneficial, ambiguous, or not analyzed.

identify 157 genes where insertions reduced average fitness
across the four common laboratory conditions (average fitness
<-1.32) over the period of the outgrowth [P < 0.01 and false
discovery rate (FDR) < 0.1; ¢ test]. These genes were assigned to
the new category of beneficial genes, which cause a growth defect
when they are mutated in standard laboratory conditions. In-
terestingly, we identified no deleterious genes for which insertion

mutations conferred a growth advantage to S. elongatus under
the conditions tested.

Data from these outgrowths were also used to make our es-
sentiality calls more stringent. Genes were moved to the am-
biguous bin when the data from the prefreeze characterization of
the library and the outgrowth were conflicting (Materials and
Methods). In this way, the final essentiality calls were made, in
which 1,748 S. elongatus genes were called as nonessential, 718
were categorized as essential, 157 were binned as beneficial, and
75 were considered ambiguous (Fig. 2C and Dataset S3).

Comparisons to Other Essentiality Measures. The essential gene set
experimentally derived in this study was compared with indirect
measurements of gene importance to both provide support for
our experimental results and identify potentially informative
disagreements. One indirect assessment of gene importance
was provided by gene conservation among different species of
cyanobacteria. We compared 682 genes conserved across 13
diverse cyanobacterial genomes (26) with the set of essential
genes identified in our study. Sixty percent of these conserved
genes were also part of our essential gene set (Fig. 34 and
Dataset S3), which represents a significant enrichment over
random chance (P < 0.001; Fischer’s exact test) and thus, a
strong correlation between essentiality and conservation. The
analysis was repeated with two other cyanobacterial conserved
gene sets, which had very similar size overlaps with our essential
gene set (27, 28), providing validation of the essentiality calls
made using the library.

The genes that fall outside the overlap of essential and con-
served genes are also of interest; 312 S. elongatus genes that we
identified as essential but are not in the conserved gene set il-
lustrate the limitation of determining gene importance by con-
servation and the necessity of using experimental approaches,
such as RB-TnSeq, to determine essentiality. Conversely, 276
genes that are conserved but not essential may be important under
environmental conditions that were not tested in this study.

The essential gene set was also probed for any enrichment in
particular functional categories. The set was highly enriched for
genes involved in synthesis of proteins, nucleic acids, and small
molecules as well as lipid metabolism (P < 0.05 and FDR < 0.05)
(Fig. 3B and Dataset S3). Very similar enrichment patterns have
previously been observed in the E. coli set of essential genes (29),
with the notable exception of energy metabolism, which is sig-
nificantly enriched among S. elongatus essential genes and sig-
nificantly underrepresented in the essential genes of E. coli. This
discrepancy may be explained by the necessity of photosynthesis
and carbon fixation in S. elongatus, which is extremely limited in
the types of metabolism that it can perform; in contrast, E. coli
can be grown on a wide variety of carbon sources. The enrich-
ment in the S. elongatus essential gene set for conserved genes
and core functional groups as well as its tight correlation with
E. coli essential genes offer significant support to the validity of
our essentiality calls.

A much broader measure of gene functionality is the mere
presence or absence of a functional annotation. S. elongatus
genes were divided into those that are annotated with functional
predictions and those that are not (hypothetical genes). Hypo-
thetical genes make up 40% of the genome; however, in the
essential gene set, the portion of unannotated genes is only 15%.
This difference likely represents the conservation of essential
genes in other well-studied organisms as well as a bias toward
studying genes that can be linked to measurable phenotypes.
Despite their underrepresentation in the essential gene set, there
are 109 genes called as essential that have no functional anno-
tation in S. elongatus (Fig. 34 and Dataset S3). Among these
genes, 21 are conserved throughout cyanobacteria (26), and 10
are conserved throughout the Greencut2 dataset of green plant
and algae conserved genes (30) (Dataset S3). These unstudied
but indispensable genes and specifically, those that are broadly
conserved represent important targets for future research.
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For each pathway, we identified the S. elongatus genes and any
functional redundancy of these genes using BioCyc (31). Our
expectation was that genes in these essential pathways of me-
tabolism that are not functionally redundant and are conserved
among cyanobacteria are likely to be essential. Of a total of 27
conserved nonredundant genes in these pathways, 22 agreed with
this expectation and were called as likely essential from our li-
brary (Fig. 44 and Table S2), significantly more than could be
expected by chance (P < 0.001; Fischer’s exact test). Of five
nonessential “disagreements” to this expectation, four were in
the pentose phosphate pathway. One of these, transaldolase (tal;
SynPCC7942_2297), acts in the nonoxidative phase of the pentose
phosphate pathway. To validate its nonessentiality, we regenerated
an insertion mutant in the za/ gene to show that it is not required for
growth under standard laboratory conditions (Fig. S4). The other
three disagreements in the pentose phosphate pathway encode
6-phosphogluconolactonase (pgl; SynPCC7942_0529), glucose-
6-phosphate 1-dehydrogenase (zwf; SynPCC7942_2334), and
6-phosphogluconate dehydrogenase (gnd; SynPCC7942_0039).
These proteins make up the oxidative branch of the pathway,
where reducing equivalents are produced in the form of NADPH.
This finding is supported by previous literature, which has shown
that both zwf and gnd mutants are viable (32, 33), although both
mutants have decreased growth in light—dark cycles. This defect
is likely because the cell relies on the oxidative branch of the
pentose phosphate pathway for reducing equivalents when cells
are in the dark and photosynthesis is inactive, whereas this
pathway would be dispensable under the constant light of stan-
dard laboratory conditions.

The only other nonredundant member of central metabolism
that is conserved but not essential is fumarate hydratase (fumC;
SynPCC7942_1007). This finding was unexpected, because the
absence of furmC would likely block cyclic flow through the TCA
cycle. Furthermore, fumC is thought to be important for the
recycling of fumarate in another freshwater cyanobacterium,
Synechocystis sp. PCC 6803 (34). To validate this finding, we
regenerated an insertion mutant of fumC. In accordance with
our library-based call, we were able to obtain a fully segregated
mutant (Fig. 4B) that grew at a statistically indistinguishable rate
from the WT (Fig. 4C). Furthermore, the nonconserved enzyme
directly upstream of fumC, succinate dehydrogenase (sdhB;
SynPCC7942_1533), is also nonessential (Fig. 4D). The dispens-
ability of these enzymes suggests that a complete TCA cycle is not
required in S. elongatus under standard laboratory conditions.

Dh, P

0.1 1.0 10.0
Fold Enrichment (Log Scale)

Fig. 3. Comparing the essential gene set with other predictors of gene
importance. (A) The numbers of essential, conserved (26), and hypothetical
genes that are overlapping and unique. (B) Fold enrichment for functional
categories (TIGR function roles) that were significantly enriched or un-
derrepresented in the essential gene sets of E. coli (29) (black bars) and
S. elongatus (white bars).

Essentiality of Energy Metabolism.
Carbon metabolism. To further validate our essential gene set and
explore any inconsistencies that it may have with predictions of
gene importance based on conservation and functionality, we
examined central carbon metabolism. This area is ideal for the
verification of our essentiality predictions, because it is at the
core of all life and must be leveraged for the development of
cyanobacteria as a bioproduction platform. Any differences be-
tween our expectations for gene importance in these pathways
and the experimental evidence from the transposon library sug-
gest either incorrect calls of essentiality or interesting and un-
expected biological findings.

We first examined genes in the following pathways of central
carbon metabolism for their essentiality: the pentose phosphate
pathway, glycolysis, the Calvin-Benson cycle, and the TCA cycle.

f is. Because S. elongatus serves as a model for pho-
tosynthesm, we examined the essentiality of some of the central
components of the photosynthetic lifestyle. To provide a broad
overview of core genes in the green lineage, we produced Table
S3 of the S. elongatus genes called as essential here that are also
present in the greencut2 dataset (30), which contains genes
conserved among plants and green algae that are not present in
nonphotosynthetic organisms (Table S3). These data provide a
synopsis of some of the most conserved and important components
of photoautotrophism. However, central components of photo-
synthesis that are not ubiquitous are not included in Table S3. As
an example, carboxysome components are not contained in Table
S3 because of their absence in most plants and algae, although
many of them are essential for survival in S. elongatus according the
literature (35) and the essential gene set (Dataset S3).

We also examined the main complexes of photosynthetic light
reactions for their essentiality in our dataset. We could not analyze
the photosystem II core reaction center genes using our library,
because the high sequence identity within the paralogous psbA
(SynPCC7942_0424, SynPCC7942_0893, and SynPCC7942_1389)
and psbD (SynPCC7942 0655 and S}mPCC7942 1637) genes
complicated transposon mapping; however, previous work has
shown that the psbA genes and psbDII (SynPCC7942_1637) are
not individually necessary (36, 37). The genes encoding the cy-
tochrome bssy complex, psbE (SynPCC7942_1177) and psbF
(SynPCC7942_1176), and the internal antenna proteins, psbB
(SynPCC7942_0697) and psbC (SynPCC7942_0656), of photosystem
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Fig. 4. Gene essentiality in central metabolism. (A) The number of genes
that are conserved and nonredundant members of the Calvin-Benson cycle
(CBQ), the TCA cycle, glycolysis (Gly), and the pentose phosphate pathway
(PPP). In the disagreements column, conserved nonredundant members of
these pathways that are not essential are shown. (B) Genotypic character-
ization of the recreated fumC mutant. Lane 1, standard 1-kb ladder (New
England BioLabs); lane 2, amplification of WT DNA with primers surrounding
the fumC gene; lane 3, amplification of fumC mutant (8542-06), in which a
1.3-kb insertion is present, with the same primers. Each band is represen-
tative of three colonies tested. (C) Growth curves of the WT and fumC mu-
tant strain. The error bars indicate the SDs for three independent replicates.

II were all classified as essential. These data are in agreement with
studies in Synechocystis sp. PCC 6803, where cytochrome bsso, PsbB,
and PsbC are required for photoautotrophic growth (38-40). Of the
remaining 16 supportive and stabilizing proteins in photosystem II,
only 4 [psbH (SynPCC7942_0225), psbM (synPCC7942_0699),
psbL (SynPCC7942_1175), and psbV (SynPCC7942_2010)] were
classified as essential. In the cytochrome b4f complex, the genes
that encode the four large core subunits [pet4 (SynPCC7942_1231),
petB (SynPCC7942_2331), petC (SynPCC7942_1232), and petD
(SynPCC7942_2332)] were all called as essential. In accordance
with the literature, the smaller subunits petG (SynPCC7942_1479)
and petN (SynPCC7942_0475) were classified as essential (41),
whereas petM (SynPCC7942 2426) was ambiguous. In photosys-
tem I, the core genes, psad (SynPCC7942_2049) and psaB
(SynPCC7942_2048) were classified as essential along with two
of three proteins that make the docking site for ferredoxin: psaC
(SynPCC7942_0535) and psaD (SynPCC7942_1002). Only one
of five remaining supporting genes, psaJ (SynPCC7942_1249),
was called as essential. Overall, as expected, the genes at the core
of the photosynthetic light reactions were largely classified as
essential, whereas genes with a more supportive role were largely
predicted by the library to be nonessential or beneficial.

Beyond Coding Sequence.
Essentiality of ncRNAs. The saturation of the library is such that it
was possible to do an extensive analysis of ncRNAs. There are
currently three ncRNA loci in the National Center for Bio-
technology Information (NCBI) S. elongatus genome annotation
(NC_007604.1) that do not encode ribosomal or tRNAs. These
widely conserved ncRNAs are ssr4 (SynPCC7942_R0017),
which mediates tagging of polypeptides for degradation, rnpB
(SynPCC7942_R0036), a member of the RNase P complex in-
volved in tRNA processing, and ffs (SynPCC7942_R0047), the
RNA component of the signal recognition particle (SRA), a ri-
bonucleoprotein that targets proteins to the plasma membrane.
We classified all three of these ncRNAs as essential in S. elongatus,
which corresponds to findings in E. coli that mpB and ffs are es-
sential (42, 43). Although not essential in E. coli, sstA is essential in
a number of other species (44). These three ncRNAs are in-
cluded in the 718-gene essential gene set (Dataset S3).
Recently, 1,579 putative ncRNAs beyond those in the current
NCBI annotation were identified in S. elongatus by RNA se-
quencing (45). To address the importance of these ncRNAs to
the survival of the organism, we used the same approach taken
for determining the gene essentiality of the previously annotated
genes. Those ncRNAs that overlap each other or are too small to
confidently predict essentiality were eliminated from the analy-
sis. In addition, the ncRNAs encoded within genes that had been
characterized by the library as essential, beneficial, ambiguous,
or unanalyzed were not considered. This elimination was made,
because ncRNAs in this set may be falsely called as essential
when the gene surrounding or overlapping them is the true es-
sential element. For the remaining 847 putative ncRNAs, we
calculated insertion density and normalized it for GC bias to
create an insertion index (Fig. S3B). The insertion indexes of these
recently discovered ncRNAs, unlike the NCBI annotated genes
described in Fig. 24, did not contain a clear “essential peak” of
ncRNA with low insertion indexes (Fig. 54). The ncRNA in-
sertion distribution was very similar to the previously analyzed
nonessential genes, with a larger variance, presumably because
of the short average length of the ncRNAs. Therefore, under
standard laboratory conditions, these recently identified ncRNAs

(D) Essentiality in the TCA cycle. For enzymes that are present in S. elongatus,
their names are shown: acnB (SynPCC7942_0903), icd (SynPCC7942_1719),
sdhB (SynPCC7942_1533), fumC (SynPCC7942_1007), gitA (SynPCC7942_0612),
maeA (SynPCC7942_1297), and ppc (SynPCC7942_2252). Abbreviations for
enzymes that are missing are shown in white boxes: MDH, malate de-
hydrogenase; MQO, malate:quinone oxidoreductase; 2-OGDH, 2-oxogluta-
rate dehydrogenase; STK, succinate thiokinase.
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have little effect on survival of the organism relative to the largely
protein-coding set of genes, which were previously annotated.

Although most of the analyzed ncRNAs are nonessential, we
identified 35 ncRNAs with normalized insertion densities below
the essentiality cutoff as determined for annotated genes (Dataset
S4). We manually examined the transposon insertion coverage
around each of these 35 ncRNAs to ensure that the ncRNA did
not fall in an area where transposons were underrepresented, such
as regulatory regions for essential genes, or nonessential genes
with below-average transposon numbers. Of 35 ncRNAs with
normalized insertions densities below the cutoff, 10 were both
visually and statistically considered to be underrepresented for
insertions (P < 0.01 and FDR < 0.05; Poisson distribution) and
called as likely essentials. Overall, we identified 13 likely essential
ncRNAs that are not tRNAs or ribosomal: 10 from the recently
discovered ncRNAs (45) and 3 with loci that had previously
been annotated.

The 10 ncRNAs from the recently discovered set were

searched against known ncRNAs families using the RNA fami-
lies database (RFAM) (46). One of the likely essential ncRNAs,
ncRNA136, was identified as a putative group I intron (Fig. 5B).
These introns are inserted into some cyanobacterial tRNA™" genes
(47, 48) and have been shown to catalyze their own splicing out of
pre-tRNA™ transcripts in vitro (49). In S. elongatus, ncRNA136
interrupts tRNA" (UAA). There are four other uninterrupted
tRNA™"s in S. elongatus with anticodons that were determined by
tRNAscan-SE (50). Taking wobble into account, the anticodons of
these four tRNAs cover five of six possible leucine codons. The
ncRNA136 identified here as likely essential represents the fifth
and final tRNA* anticodon necessary to complement all six
leucine codons. Therefore, this group I intron is likely essential
to S. elongatus, because proper splicing of this nonredundant
tRNA™" (UAA) cannot occur when it is mutated. The essenti-
ality of this ncRNA was supported by our failure to regenerate
insertion loss-of-function mutants for ncRNA136 in parallel with
successful generation of mutants for both surrounding genes (Fig.
5C). In conclusion, there is no evidence for nonribosomal, non-
tRNA ncRNAs having global importance close to that of protein-
coding genes, but there is a smaller set of 13 likely essential
ncRNAs, including ncRNA136, a group I intron.
Essential regulatory regions. To characterize the essential regulatory
regions of S. elongatus, we examined insertion frequencies up-
stream from the predicted start codon of every essential gene. It
might be expected that insertions in the regulatory regions of
essential genes would have a lesser effect if the promoter for the
transposon’s antibiotic resistance gene lay in the same direction
as the essential gene. However, we found that the average insertion
frequency in the 100 bp upstream of essential genes was very similar
for insertions in the same or opposite orientation as the essential
gene (0.044 and 0.050, respectively). Therefore, we ignored di-
rectionality of upstream transposon insertions and analyzed them as
a group. To define the average regulatory region for essential genes,
we compared the insertion density upstream of the translation start
site for essential genes with that of nonessential genes. We found
that the region from the start codon to 52 bp upstream had a sig-
nificantly lower transposon insertion rate in essential genes relative
to nonessential genes (P < 0.05 and FDR < 0.05; Poisson distri-
bution) (Fig. 64). This region is large enough to encompass the
Shine-Dalgarno sequence and basal promoter (51, 52).

It is of note that, even in the regulatory positions with the
lowest average insertion density, the upstream regions of essential
genes are still reasonably permissive of insertions. The density of
insertions at this low point is one insertion mutant every 15 bp
compared with a genome-wide average of one insertion mutant
every 11 bp. Therefore, it is likely that many essential genes can
still be transcribed sufficiently to support cell survival, even with
transposon mutations directly upstream of the start codon.

To further explore the essential genes with insertions directly
upstream of their start codons, essential genes were examined
individually. Of those 557 essential genes that contained an in-
sertion within either 200 bp upstream of their translation start
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Fig. 5. Essentiality of ncRNAs. (A) The distribution of insertion indexes for

the recently discovered ncRNAs (45). Axes are the same as in Fig. 2A. (B) The
insertion distribution in and around the group | intron: ncRNA136. Lengths
of black vertical bars represent numbers of sequence reads, and green bars
indicate positions of insertions. The nonessential genes surrounding the es-
sential NcRNA136 (red arrow) are shown as blue arrows. Black triangles in-
dicate the locations of insertion mutations used to support the essentiality of
ncRNA136. (C) Genotypic characterization of the failure to create a mutant of
ncRNA136. Lane 1, standard 1-kb ladder (New England BioLabs); lane 2, am-
plification of WT DNA with primers surrounding ncRNA136 and both flanking
genes; lane 3, amplification with the same primers of the region, in which the
gene that flanks the ncRNA136 on the left, SynPCC7942_0413 (2E11-E-C4),
carries a 1.3-kb insertion; lane 4, amplification with the same primers of a
putative transformant, in which interruption of ncRNA136 (2E11-E-N7) was
attempted, but the 1.3-kb insertion is absent; lane 5, amplification with the
same primers of the region, in which the gene that flanks the ncRNA136 on
the right, SynPCC7942_0414 (2E11-E-N11), carries a 1.3-kb insertion. Each band
is representative of genotyping of three colonies.

site or before the closest upstream gene, 382 were able to sustain
transposon insertions within 20 bp of the translation start site
(Fig. 6B). Only 138 of the essential genes had no upstream in-
sertions or genes within 40 bp of the start codon, and these
upstream regions were categorized as likely essential (P < 0.01
and FDR < 0.05). For all essential genes, the regulatory regions
and the length for which they are uninterrupted by a transposon
insertion are presented in Dataset S5. The small number of es-
sential upstream regions that we identified and the prevalence of
insertions near start codons suggest that sufficient transcription
can occur in the absence of typical regulatory elements or that
the polymerase is able to read through the transposon cassette.
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Essential intergenic regions. To ensure that no essential regions had
been missed by our survey for essentiality in genes, ncRNAs, and
regulatory regions, we performed an unbiased analysis of insertion
mutants present in the library to identify essential intergenic
regions that we had not otherwise analyzed. Specifically, we
searched the genome for regions of at least 100 bp for which
there are no insertion mutants in the library. Forty-eight such
regions were identified, with a maximum uninterrupted region of
222 bp and an average size of 130 bp (Dataset S6). Many of these
regions, however, have very low GC%, and because insertion rate
is GC%-dependent (Fig. S3), we only called the regions with
GC% above 40% as “high-likelihood essentials.” There are 15
of these high-likelihood essential intergenic regions in the genome.
Therefore, there are no large previously undetected essential re-
gions; however, a small number of short likely essential regions
could be detected, which may be regulatory regions or previously
undiscovered ncRNAs.

Discussion
The density of the transposon library created for this study, with
one insertion per 11 bp on average, enabled a rich and complete
investigation of the genes and intergenic regions that are necessary
for the photosynthetic lifestyle. In summary, we identified 718 pu-
tative essential genes, 13 likely essential non-tRNA, nonribosomal
ncRNAs, 138 potential essential regulatory regions, and 15 other
likely essential intergenic regions. The RB-TnSeq approach greatly
extends the utility of the library, because it enables fast and in-
expensive resequencing of the barcoded transposons in the pop-
ulation after an outgrowth period under standard laboratory
conditions and can be used similarly to query the fitness contribu-
tions of each locus under additional growth conditions in the future.
There are certain limitations to the essentiality information
determined here. Although we identified genes that are essential
to the organism when individually mutated, they do not repre-
sent a minimal gene set. Essential processes for which there are
redundant genes will not be discovered using an approach based
on single mutants. In S. elongatus, however, this complication is
of lesser concern than in most other cyanobacteria because of its
small genome size, which at a streamlined 2.7 Mbp, harbors little
redundancy. In addition, the findings of essentiality reported
here apply only to the specific laboratory conditions used and are
likely to be different for a subset of genes under other growth
conditions. Finally, because ncRNAs, regulatory regions, and
other intergenic regions are much smaller, on average, than
protein-coding genes, the essentiality calls for these regions are
inherently of lower confidence than those made for protein-
coding genes. Therefore, conclusions of essentiality for non-
coding loci and to a lesser extent, protein-coding genes must be
validated by targeted mutation before definitive statements can
be made about their essentiality.

TCA Cycle in Cyanobacteria. The ability to compare our essentiality
results and predictions of gene importance based on conser-
vation and function yielded fresh insights into fundamental
S. elongatus biological processes. An example is the finding that
two of the genes of the TCA cycle, including the widely conserved
fumC, are dispensable in S. elongatus. The nature of the TCA
cycle in cyanobacteria has been a subject of frequent debate.
Until recently, it was assumed that the TCA cycle in cyanobacteria
is incomplete because of the absence of the enzyme 2-oxoglutarate
dehydrogenase (53, 54). More recent research, however, has closed
the cyanobacterial TCA cycle with a number of bypasses, such as
the 2-oxoglutarate decarboxylase pathway (55), the GABA shunt
(56), and the glyoxylate cycle (57). The search for bypasses around
missing elements of the TCA cycle presumes that having a complete
cycle is important. Here, we found that the TCA cycle enzymes
sdhB and fumC are nonessential in S. elongatus. Furthermore, no
functionally annotated genes in S. elongatus account for the function
of the TCA cycle enzymes malate dehydrogenase, malate:quinone
oxidoreductase, succinate thiokinase, or 2-oxoglutarate dehydroge-
nase, and the 2-oxoglutarate decarboxylase bypass seems to be ab-
sent (Fig. 4D) (28). In agreement with the finding that these
enzymes are nonessential or missing, the metabolites whose
synthesis that they catalyze, with the exception of oxaloacetate,
are not required for essential biosynthetic pathways in Syn-
echocystis sp. PCC 6803 (58). Oxaloacetate is required for as-
partate biosynthesis but can be produced without cyclic flux
through the TCA cycle by phosphoenolpyruvate carboxylase (ppc;
SynPCC7942_2252), shown here to be essential. Therefore, a large
portion of the TCA cycle between 2-oxoglutarate and oxaloacetate
seems to be nonessential for S. elongatus survival (Fig. 4D).

In light of these data, the traditional complete TCA cycle
should be reconsidered in S. elongatus. The relevant pathways of
the TCA cycle for the organism may resemble more closely the
metabolism of certain obligate autotrophs, where cyclic flow
through the TCA cycle is replaced by two separate braches that
produce the metabolic precursors succinyl-CoA and 2-oxoglu-
tarate independently (59). In S. elongatus, however, none of the
necessary enzymes for the succinyl-CoA branch are functionally
annotated (31) other than fumC, which is nonessential. This
branch of the TCA cycle is likely dispensable because of the
succinyl-CoA-independent pathway for heme biosynthesis in
photosynthetic organisms (60). Therefore, the traditional under-
standings of the TCA cycle should be reassessed in S. elongatus,
with consideration that its importance is likely not a result of its
completeness or its role as an energy generator but in its provision
of a few important precursor metabolites, such as oxaloacetate
and 2-oxogluterate, which likely require only short linear portions
of the TCA cycle. This interpretation is compatible with the or-
ganism’s strict photosynthetic metabolism, where the degradation
of carbon for energy using cyclic flux through the TCA cycle would
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be counterproductive at times when the organism is spending its
energy to fix CO,.

Beyond Coding Sequences. Although cyanobacterial n.cRNAs have
been studied extensively in silico, little is known about their in-
dividual importance in vivo. Mutants of yrfI (nc549) have been
shown to be sensitive to several stresses in the closely related
S. elongatus PCC 6301 (61). Another iron stress-dependent ncRNA,
IsrR (nc468), regulates photosynthesis in Synechocystis sp. PCC
6803 (62). However, none of the nonribosomal, non-tRNA ncRNAs
have been shown previously to be essential for survival under
standard laboratory conditions in S. elongatus. In our study, we
revealed 13 likely nonribosomal, non-tRNA essential ncRNAs:
10 from the recently discovered set of S. elongatus ncRNAs (45)
and 3 that were previously annotated. One is a group I intron
(ncRNA136), which catalyzes its own splicing out of the sur-
rounding tRNA™" that carries the nonredundant UAA antico-
don. Because the corresponding UUA codon is found 7,908
times in the S. elongatus genome (63), the inability of the pre-
tRNAM" to correctly splice when this group I intron is mutated
likely explains its essentiality. Although the tRNA™* (UAA)
group I introns have been well-reported in cyanobacteria (48, 49,
64—67), there has been no previous work showing their impor-
tance in vivo. The other likely essential and so far unexplored
ncRNAs discovered in this study represent interesting targets for
additional research.

Library Stability. Although we examined the outgrowth of the li-
brary for genes whose loss improves growth, we found none. This
finding is in contrast to other Tn-seq studies on various microbial
species, in which some mutants outcompeted the rest of the li-
brary under standard laboratory conditions (5, 68). It is to be
expected that, in novel environments to which a microbe has not
adapted, there will be loss-of-function mutants that increase
fitness (69). The lack of beneficial mutations found in this study
likely speaks to the unusual culturing practice used for cyano-
bacteria: because inoculation from a frozen sample is a lengthy
process, WT cultures are repeatedly passaged on benchtops and not
inoculated from a freezer stock before each use. Thus, most
S. elongatus cultures have been selected for laboratory conditions
for years, and it is unsurprising that the laboratory-evolved ge-
notype has no detrimental genes in these conditions. This caveat
suggests that the strains on which experimentation is performed
are no longer representative of the strains found in nature. For
the purposes of the RB-TnSeq library created here, however, the
absence of detrimental genes and the relatively small number of
beneficial genes mean that the library loses little of its diversity
over each generation (Fig. 2B). After reviving the library from
frozen stocks and growing it for seven to eight generations,
93% of the mutant strains barcoded before freezing could still
be found in the population. This robustness enables its use
in screens under conditions of interest outside of standard
laboratory conditions.

Future Uses of the Library. Essential and beneficial genes make up
only about 32% of 2,723 genes in S. elongatus. Many of the
remaining genes are likely important for specific biological
conditions not experienced in standard laboratory conditions.
We are currently exposing the library to an array of alternative
conditions to determine genes specifically important for the
survival of the organism under variations, such as high osmolarity
and oxidative stress. We are also probing the library with tar-
geted conditions to elucidate specific questions in cyanobacterial
biology, such as the set of genes important for resistance to amoeba
and the survival of light-dark cycles. This library can additionally be
used for screens of phenotypes other than fitness if mutants with the
phenotype of interest can be identified from the population and
sequenced separately. With the use of RB-TnSeq, every additional
screen requires minimal time, library preparation, and sequencing.
This process is compared with previous screening techniques in
Cyanobacteria, in which thousands of mutants had to be maintained

and phenotyped individually (70, 71). Finally, although we have
maintained the pooled nature of the library for this study, it can be
easily arrayed into individual clones when viewing the mutants un-
der noncompetitive conditions is advantageous or when the phe-
notype of interest cannot be screened for in a pooled library. Using
these approaches, the RB-TnSeq library, used here to delve into
essentiality, will be a valuable tool for improving our understanding
of S. elongatus, cyanobacteria, and photosynthetic organisms.

Materials and Methods

Strains and Culture Conditions. The library and individual insertion mutants
were constructed in WT S. elongatus PCC 7942 stored in our laboratory as
AMCO06. All cultures were grown at 30 °C. Liquid cultures were shaken at
150 rpm (Thermo Fisher MaxQ 2000 Orbital Shaker) and grown in 100-mL
flasks unless otherwise noted.

Mutant Library Creation. The conjugal recipient S. elongatus was inoculated
and grown in BG-11 liquid medium (72) in light levels of 174-199 umol
photons:-m™2s~" for 3 d. For the E. coli donor, we used the diaminopimelic
acid (DAP) auxotrophic strain APA766 that carried the library of barcoded
Tn5 elements (pKMW?7) (10). The donor E. coli was grown overnight in LB
broth with 60 pg/mL DAP and 50 pg/mL kanamycin. E. coli cells were washed
two times to remove kanamycin and resuspended in LB. The washed E. coli
were mixed with S. elongatus at a 1:1 donor cell:recipient cell ratio on 0.45 pM
nitrocellulose filters (Millipore) overlaid on LB agar plates with 60 pg/mL DAP.
The conjugation reaction was performed for 7 h under 100-140 pmol
photons-m~2:s™" of illumination. For selection of exconjugants, the filters
were transferred to BG-11 kanamycin agar plates. To minimize E. coli
contamination of the library, after 8 d of growth under 100-140 pmol
photons:m™2s~", the colonies on the filters were stamped onto new BG-11
kanamycin agar plates by pressing the filters face down onto the new plates.
After 3 more d of growth with the same illumination, we scraped and
flushed the colonies into BG-11 kanamycin liquid medium. At this point, cells
were collected for DNA extraction (for Tn-Seq), and the remainder was
frozen at —80 °C in 1-mL aliquots after adding 80 pL DMSO.

Library P and DNA for Tn-seq. To determine transposon
insertion sites and link them to random DNA barcodes within each insertion,
we created an lllumina-compatible sequencing library as described previously
(10). Briefly, genomic DNA was extracted by phenol-chloroform extraction
(16), sheared to 300 bp (Covaris), size-selected (Ampure SPRI), end-repaired,
A-tailed, and ligated with adapters. Amplification of transposon insertions
and flanking DNA was conducted using the transposon-specific primer,
Nspacer_barseq_universal (ATGATACGGCGACCACCGAGATCTACACTCT-
TTCCCTACACGACGCTCTTCCGATCTNNNNNNGATGTCCACGAGGTCT), and
the adaptor-specific primer, P7_MOD_TS_index 12 primer (CAAGCAGAAGAC-
GGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT) (10).
For PCR, 100-pL reaction volumes were used with JumpStart Taq DNA Po-
lymerase (Sigma) and the following thermocycler protocol: 94 °C for 2 min;
25 cycles of 94 °C for 30 s, 65 °C for 20 s, and 72 °C for 30 s; and a final
extension at 72 °C for 10 min. The amplicons were then purified with
AMPure XP Beads (Beckman Coulter), quantified on an Agilent Bioanalyzer
with a DNA1000 Chip, and sequenced on a single lane of HiSeq2500 (lllumina)
in rapid run mode.

Analysis of Tn-seq Data. Tn-seq reads were analyzed as described previously
(10). Briefly, for each sequencing read, we identified the flanking sequence
around the transposon and used BLAT (73) to map it to the S. elongatus
genome. The part of the sequencing read internal to the transposon was
used to link each transposon’s unique barcode to its location within the
genome. We identified 20,401,559 reads with insertions that mapped to
the genome.

Library Outgrowths. Two sets of outgrowth experiments were conducted to
examine the library for segregation and growth under control conditions. In
both cases, library aliquots were thawed in a 37 °C water bath for 2 min and
diluted 1:300 into BG-11 kanamycin liquid medium. The cultures were allowed
to recover at 30 pmol photons-m™2s~" without shaking for 1 d, moved back to
standard shaking conditions, and allowed to grow for 4 d under 70 pmol
photons:-m™2s~", at which point we collected cells for DNA extraction as the
time 0 point of the outgrowth.

Aliquots of this culture were reinoculated into fresh BG-11 at ODys of
0.025. For segregation testing of the library, the culture was grown in par-
allel in the presence and absence of 5 pg/mL kanamycin for approximately
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seven generations under 199 pmol photons:m=2s~", at which point both
cultures were sampled for DNA extraction as the end point of the out-
growth. Approximately halfway through the growth period, the culture was
reinoculated into fresh BG-11 liquid at OD;s, of 0.025 to prevent the culture
from reaching stationary phase.

For testing growth under standard laboratory conditions, cultures
were grown in four conditions: on solid BG-11 kanamycin under 116 pmol
photons:m™2s~", in liquid BG-11 kanamycin under 199 pmol photons:m™2s~",
in liquid BG-11 kanamycin under 60 pmol photons-m~2:s~", and in a
Phenometrics ePBR v1.1 Photobioreactor (Phenometrics Inc.) maintained at a
constant OD7sp of 0.1 under 500 pmol photonsm‘zs". All liquid cultures were
collected for BarSeq after six to eight generations. The growth on solid BG-11
kanamycin was conducted by spreading 100 pL library culture, diluted to have
an OD;s, of 0.086, onto the agar. The colonies were collected for BarSeq
after 3 d of growth. The photobioreactor was inoculated with 400 mL library
culture at an OD7s5 of 0.05 and bubbled at 50 mL/min of 0.2-um filtered air.

BarSeq. To use barcodes to quantify the survival of each mutant in the
population, we first isolated genomic DNA through phenol-chloroform ex-
traction (16). The procedure for sample preparation, sequencing, and pre-
liminary analysis was described previously (10). Briefly, amplification of the
barcode was done using 1 of 96 indexed forward primers for later multi-
plexing, BarSeq_P2_ITXXX (CAAGCAGAAGACGGCATACGAGATXXXXXXGTG-
ACTGGAGTTCAGACGTGTGCTCTTCCGATCTGATGTCCACGAGGTCTCT), and a
common reverse primer, BarSeq_P1 (AATGATACGGCGACCACCGAGATCTA-
CACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTCGACCTGCAGCGTACG).
For PCR, 50-pL reaction volumes were used with Q5 DNA polymerase, Q5 GC
Enhancer (New England Biolabs), and the following thermocycler conditions:
98 °C for 4 min; 25 cycles of 30s at 98 °C, 30 s at 55 °C, and 30sat 72°C;and a
final extension at 72 °C for 5 min. The PCR products were then combined,
purified with the DNA Clean & Concentrator Kit (Zymo Research), quantified
using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific), and sequenced
using lllumina HiSeq 2500. Barcodes were mapped to their previously identi-
fied positions in the genome using an R script. The fitness of each transposon
mutant strain is its log, change in abundance between the beginning of the
experiment and the end:

e Nend + €
strain fitness =log, (%) +C,
egin * Ebegin

where Neng and Npegin are the read counts of the strain’s barcode from the
end and the beginning of the experiment, eeng and epeqin are small constants
that prevent infinite fitness values, and C is a normalization constant. The
fitness of each gene is the weighted average of the fitness of strains within
the central 10-90% of each gene. The normalization constant is chosen so
that the peak of the gene fitness values is at zero (10).

Essentiality Analysis.

Genes. To determine gene essentiality, a normalized insertion index was
created for the initial Tn-seq of the library and statistically analyzed for genes
with underrepresentation of insertions. The JGI gene annotation was used for
this mapping (chromosomes are stored under the GenBank accession nos.
CP000100.1, CP000101.1, and S89470.1). The first step of creating the nor-
malized insertion index was the elimination of genes from analysis that were
shorter than 70 bp. The likelihood of the central 80% of a 70-bp gene having
zero insertions by chance is P < 0.01 as calculated by the Poisson distribution.
We used BLAT (73) to identify parts of genes that are nearly identical to
other parts of the genome. Genes with any nearly identical parts were ex-
cluded from analysis. For the remaining genes, we divided the insertions in
the middle 80% of each by the length of the middle 80% to create an in-
sertion density for each gene. The insertion densities for all genes were then
plotted against their GC%. A linear trend line was fitted to this plot and
used to normalize gene insertion density by GC content (Fig. S3A). This
normalized insertion density for each gene was given the label of insertion
index. Finally, a preliminary essentiality measure was determined using an
approach described previously (5). Briefly, y-distributions were fit to the
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essential and nonessential peaks in insertion index, and log; likelihood ratios
were calculated from these distributions. Genes with log, likelihood ratios
below —2 were called as essential genes, and those with log; likelihood
ratios above 2 were called as nonessential genes; genes that fell between
these log, likelihood ratios were called as ambiguous. Scripts were adapted
from the Bio::Tradis pipeline (github.com/sanger-pathogens/Bio-Tradis) (74).
To improve the accuracy and precision of these essentiality calls, data from
the outgrowths under standard laboratory conditions were used. A t test was
used to find genes that had significantly lower or higher fitness under the
four control conditions (Library Outgrowths), and a false discovery rate was
determined for each P value. Genes for which insertions reduced gene fit-
ness below —1.32 (P < 0.01 and FDR < 0.1; t test) were called as beneficial.
Furthermore, to make our calls of essentiality more stringent, genes that
were previously called as essential but were not significantly different from
the mean gene fitness from the outgrowth were added to the ambiguous
group. Conversely, those genes that had previously been called as non-
essential but were not present in the outgrowth were also added to the
ambiguous group.
ncRNAs. To determine essential ncRNAs, we calculated an insertion index
using the same procedure as that used for previously annotated genes. We
again only counted insertions in the middle 80% of ncRNAs and eliminated
ncRNAs that overlapped each other. A length of 50 bp was set as the lower
limit, because by using that cutoff, we would expect only one ncRNA that had
zero insertions by chance as determined by the Poisson distribution. As had
been done for essential genes, we again corrected for GC content (Fig. S3B)
but in this case, also discarded ncRNAs with GC content below 35% because
of the lower GC% of ncRNAs. We also eliminated ncRNAs that were over-
lapping essential, beneficial, ambiguous, or uncategorized genes, because it
would be difficult to know whether essentiality of these ncRNAs was be-
cause of the ncRNAs themselves or the surrounding genes. The same cutoff
for essentiality that had been applied to the gene insertion indexes was
again applied to the ncRNAs. Those that fell on the essential side of this
cutoff were visually examined to determine if they fell in likely essential
regulatory regions or other areas of below-average insertion density. If they
did not, they were categorized as likely essential ncRNAs.
Essential regulatory regions. Essentiality of the region upstream of the trans-
lation start site was determined for essential genes using the distance up-
stream of the start site for which there was no transposon mutants and
no upstream gene. The minimum uninterrupted region necessary to be
considered as a likely essential regulatory region was determined to be
40 bp, because a Poisson distribution predicted only one false positive
using this cutoff.

Targeted Mutants: Transformation, Genotyping, and Growth Assays. Plasmids
for targeted insertional mutation were taken from the unigene set, an
existing insertion mutant library for S. elongatus (70, 75). Transformation of
S. elongatus was achieved using standard protocols (16). Genotyping was
done using colony PCR with Taq DNA Polymerase (NEB). Growth assays were
done in liquid culture under 199 pmol photons-m™2s~" of illumination.
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SI Results

As an additional measure of bias in our calls of essential genes, we
assayed these calls for polar effects, in which transposon inser-
tions disrupt expression of downstream genes. We reasoned that,
if there were strong polar effects, mutations in a nonessential gene
would be lethal if they stopped expression of the downstream
essential gene in the transcript; thus, we would not expect to find
an operon with a nonessential gene upstream of an essential gene.

To check for this possibility, we examined all adjacent genes
within annotated operons (45) for essentiality. There were 87
instances of nonessential genes upstream from essential genes
and 125 instances of essential genes upstream of nonessential
genes. The similar frequency of these two arrangements indicates
that there are not pervasive polar effects of the transposon, and
conclusions of essentiality within an operon can be made for
individual genes.
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kanamycin (x axis) for seven generations. Negative values represent genes that had negative effects when mutated (beneficial genes), and positive values
represent genes that had positive effects when mutated (disadvantageous genes).



s

V4

- C

= < —
a.n?hwmvai:n.-ov-mnvmwhmmo
g

0

-10
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Fig. S4. Genotypic characterization of the recreated ta/ mutant. Lane 1, standard 1-kb ladder (New England BioLabs); lane 2, amplification of WT DNA with
primers surrounding the tal gene; lane 3, amplification of tal mutant (UGS-3-C-11), which carries a 1.3-kb insertion, with the same primers. Each band is
representative of three colonies tested.

Table S1. The major variations of techniques used for conjugation

Conjugation light Ratio (mL:mL) of Synechococcus Conjugation

intensity (umol-m=2.s~") elongatus:Escherichia coli Conjugation medium time (h) Efficiency*

10-40 5:1 Filter (directly transferred 6-8 11%x108(n=1)
to selective plate)

10-40 2:1 Filter 6-8 15%x108(=1)

10-40 10:1 Filter 24 22x108(n=1)

10-40 10:1 Filter 6-8 33x10°%(n=1)

10-40 10:1 Agar transferred by wash 24 44x108(n=2)
to selective plate

10-40 10:1 Agar transferred by wash 6-8 47 %108 (n=2)
to selective plate

100-140 5:1 Filter 24 21x107 (n=1)

100-140 5:1 Filter 6-8 21%x107 (n=1)

100-140 21 Filter 24 28x107 (n=1)

10-40 1:1 Filter 6-8 3.0x107 (n=2)

100-140 2:1 Filter 6-8 33x107 (h=1)

10-40 11 Filter 24 50x 107 (n=2)

10-40 1:1 Agar with selective 24 78x107(n=1)
agent underlayed

10-40 11 Filter 48 11%x10°%(=1)

100-140 1:1 Filter 24 20x10°(n=1)

100-140 11 Filter 6-8 3.9x10° (n=4)"

*Colony forming units (CFU) of conjugated mutants per CFUs of S. elongatus culture.
*The conditions used for generation of the RB-TnSeq library.



Table S2. Essential genes in central carbon metabolism

Synechococcus elongatus
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identification Name Pathway* Essentiality Conserved’ Redundant*
SynPCC7942_2297 tal Pentose phosphate pathway Nonessential 1 0
SynPCC7942_0538 tktA Pentose phosphate pathway Essential 1 0
SynPCC7942_0604 cbbE Pentose phosphate pathway Essential 1 0
SynPCC7942_0584 rpiA Pentose phosphate pathway Essential 1 0
SynPCC7942_0529 pal Pentose phosphate pathway Nonessential 1 0
SynPCC7942_2334 zwf Pentose phosphate pathway Nonessential 1 0
SynPCC7942_0039 gnd Pentose phosphate pathway Nonessential 1 0
SynPCC7942_0098 pyk Glycolysis Essential 1 0
SynPCC7942_0639 eno Glycolysis Essential 1 0
SynPCC7942_0469 pgmM Glycolysis Essential 1 1
SynPCC7942_1116 pgk Glycolysis Essential 1 0
SynPCC7942_1939 gap3 Glycolysis Nonessential 0 1
SynPCC7942_0245 gap1 Glycolysis Nonessential 0 1
SynPCC7942_1261 tpiA Glycolysis Essential 1 0
SynPCC7942_1443 cbbA Glycolysis Essential 1 0
SynPCC7942_0592 pfkA Glycolysis Nonessential 0 0
SynPCC7942_2029 pgi Glycolysis Essential 1 0
SynPCC7942_0781 ppsA Glycolysis Nonessential 0 0
SynPCC7942_2335 fbp Glycolysis Nonessential 0 1
SynPCC7942_0505 fbpl Glycolysis Essential 1 1
SynPCC7942_0485 pgam1 Glycolysis Essential 1 1
SynPCC7942_1516 pgam2 Glycolysis Essential 0 1
SynPCC7942_2078 pgam3 Glycolysis Nonessential 0 1
SynPCC7942_0612 gltA TCA cycle Essential 1 0
SynPCC7942_0903 acnB TCA cycle Essential 0 0
SynPCC7942_1007 fumC TCA cycle Nonessential 1 0
SynPCC7942_1719 icd TCA cycle Essential 0 0
SynPCC7942_1533 sdhB TCA cycle Nonessential 0 0
SynPCC7942_1427 cbbs Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_1426 cbbL Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_1116 pgk Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_1742 gap2 Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_1261 tpiA Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_1443 cbbA Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_2335 fbp Calvin-Benson-Bassham cycle Nonessential 0 1
SynPCC7942_0538 tktA Calvin-Benson-Bassham cycle Essential 1 0
2 SynPCC7942_0505 fbpl Calvin-Benson-Bassham cycle Essential 1 1
‘ SynPCC7942_0604 cbbE Calvin-Benson-Bassham cycle Essential 1 0
SynPCC7942_0977 prk Calvin-Benson-Bassham cycle Essential 0 0
SynPCC7942_0584 rpiA Calvin-Benson-Bassham cycle Essential 1 0

*Metabolic pathway as taken from the BioCyc database (31).
*Refers to conservation among all 13 of the cyanobacterial genomes studied in the work by Shi and Falkowski (26).
*Functional redundancy as shown in the BioCyc database (31).
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Table S3. Essential genes for the photosynthetic lifestyle

Synechococcus elongatus Cyano
identification Name Description conserved*
SynPCC7942_0027 bioF 8-Amino-7-oxononanoate synthase No
SynPCC7942_0203 ribD 5-Amino-6-(5-phosphoribosylamino)uracil reductase. .. Yes
SynPCC7942_0222 Hypothetical protein No
SynPCC7942_0226 Sec-independent protein translocase TatA No
SynPCC7942_0257 Protein of unknown function DUF92, transmembrane Yes
SynPCC7942_0297 ftsH FtsH peptidase homolog, chloroplast; metallopeptidase No
SynPCC7942_0320 galE UDP-galactose 4-epimerase No
SynPCC7942_0322 ycfa4 c-Type cytochrome biogenesis protein Yes
SynPCC7942_0323 ccdA Cytochrome ¢ biogenesis protein-like Yes
SynPCC7942_0330 atp1 Hypothetical protein Yes
SynPCC7942_0333 atpG FOF1 ATP synthase subunit B’ Yes
SynPCC7942_0439 chim Mg-protoporphyrin IX methyl transferase Yes
SynPCC7942_0450 nifu Putative NifU-like protein Yes
SynPCC7942_0485 gpmB Phosphoglycerate mutase Yes
SynPCC7942_0492 ribF Bifunctional riboflavin kinase/FMN adenylyltransferase Yes
SynPCC7942_0537 fabF 3-Oxoacyl-(acyl carrier protein) synthase Il Yes
SynPCC7942_0560 ATPase No
SynPCC7942_0584 rpiA Ribose-5-phosphate isomerase A Yes
SynPCC7942_0632 rplJ 50S ribosomal protein L10 Yes
SynPCC7942_0684 fabG 3-oxoacyl-[acyl-carrier-protein] reductase Yes
SynPCC7942_0694 rps1 30S ribosomal protein S1 Yes
SynPCC7942_0775 Hypothetical protein No
SynPCC7942_0853 dapL1 LL-diaminopimelate aminotransferase No
SynPCC7942_0884 EF-Tu Elongation factor Tu Yes
SynPCC7942_0894 aroK Shikimate kinase Yes
SynPCC7942_0897 minE Cell division topological specificity factor MinE Yes
SynPCC7942_0912 dnaX DNA polymerase IlI, t-subunit Yes
SynPCC7942_0928 Outer envelope membrane protein No
SynPCC7942_0942 ftsH FtsH peptidase homolog, chloroplast, metallo peptidase No
SynPCC7942_0959 obgE GTPase ObgE Yes
SynPCC7942_0977 prk Phosphoribulokinase No
SynPCC7942_0978 petH Ferredoxin-NADP oxidoreductase Yes
SynPCC7942_0988 ycf54 Conserved hypothetical protein YCF54 No
SynPCC7942_1002 psaD Photosystem | reaction center subunit Il Yes
SynPCC7942_1068 pdhC Branched-chain a-keto acid dehydrogenase subunit E2 Yes
SynPCC7942_1083 Probable glycosyltransferase Yes
SynPCC7942_1086 hemE Uroporphyrinogen decarboxylase Yes
SynPCC7942_1198 phdD Dihydrolipoamide dehydrogenase Yes
SynPCC7942_1232 petC Cytochrome b6-f complex iron-sulfur subunit Yes
SynPCC7942_1274 ycf37 TPR repeat Yes
SynPCC7942_1351 HAD-superfamily hydrolase subfamily IA, variant 3 No
SynPCC7942_1359 Coenzyme F420 hydrogenase No
SynPCC7942_1427 rbcS Ribulose 1,5-bisphosphate carboxylase small subunit Yes
SynPCC7942_1457 plsC 1-Acyl-sn-glycerol-3-phosphate acyltransferase Yes
SynPCC7942_1497 Hypothetical protein No
SynPCC7942_1499 petF Ferredoxin (2Fe-2S) No
SynPCC7942_1520 rpsT 30S ribosomal protein 520 Yes
SynPCC7942_1590 Hypothetical protein No
SynPCC7942_1673 Hypothetical protein Yes
SynPCC7942_1734 ftrC Ferredoxin-thioredoxin reductase catalytic chain No
SynPCC7942_1737 sufD Iron-regulated ABC transporter permease protein SufD Yes
SynPCC7942_1830 trxA Thioredoxin Yes
SynPCC7942_1883 ycf53 Conserved hypothetical protein YCF53 No
SynPCC7942_1907 acskF Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase No
SynPCC7942_1959 proS Prolyl-tRNA synthetase Yes
SynPCC7942_1983 pds {-Carotene desaturase/three-step phytoene desaturase No
SynPCC7942_2017 Hypothetical protein Yes
SynPCC7942_2062 crtL Lycopene cyclase (CrtL-type) No
SynPCC7942_2084 chlG Bacteriochlorophyll/chlorophyll a synthase Yes
SynPCC7942_2089 Thioredoxin domain 2 Yes
SynPCC7942_2113 kprS Ribose-phosphate pyrophosphokinase Yes
SynPCC7942_2117 gatA Aspartyl/glutamyl-tRNA amidotransferase subunit A Yes
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Table S3. Cont.

Synechococcus elongatus Cyano
identification Name Description conserved*
SynPCC7942_2136 dapB Dihydrodipicolinate reductase Yes
SynPCC7942_2274 chID Protoporphyrin IX magnesium-chelatase Yes
SynPCC7942_2312 murG UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide). . . Yes
SynPCC7942_2330 ctpA C-terminal processing peptidase-2; serine peptidase No
SynPCC7942_2359 nha3 Na*/H+ antiporter No
SynPCC7942_2415 lysS Lysyl-tRNA synthetase Yes
SynPCC7942_2503 por Protochlorophyllide oxidoreductase Yes
SynPCC7942_2524 tig Trigger factor Yes
SynPCC7942_2531 tsf Elongation factor Ts Yes
SynPCC7942_2537 clpPIll ATP-dependent Clp protease proteolytic subunit Yes
SynPCC7942_2538 clpr ATP-dependent Clp protease-like protein Yes
SynPCC7942_2581 petF Ferredoxin (2Fe-2S) Yes

S. elongatus essential genes conserved in the green lineage (plants and green algae) but not in nonphotosynthetic organisms as
determined using the greencut2 dataset (30). GTPase, guanosine triphosphate hydrolase.

*Refers to conservation among all 13 of the cyanobacterial genomes studied in the work by Shi and Falkowski (26).

Other Supporting Information Files

Dataset S1 (XLSX)
Dataset 52 (XLSX)
Dataset S3 (XLSX)
Dataset 54 (XLSX)
Dataset S5 (XLSX)
Dataset S6 (XLSX)
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The model cyanobacterium, Synechococcus elongatus PCC 7942, is
a genetically tractable obligate phototroph that is being devel-
oped for the bioproduction of high-value chemicals. Genome-scale
models (GEMs) have been successfully used to assess and engineer
cellular metabolism; however, GEMs of phototrophic metabolism
have been limited by the lack of experimental datasets for model
validation and the challenges of incorporating photon uptake.
Here, we develop a GEM of bolism in S. el using ran-
dom barcode transposon site sequencing (RB-TnSeq) essential
gene and physiological data specific to photoautotrophic metabo-
lism. The model explicitly describes photon absorption and ac-
counts for shading, resulting in the characteristic linear growth
curve of photoautotrophs. GEM predictions of gene essentiality
were compared with data obtained from recent dense-transposon
mutagenesis experiments. This dataset allowed major improve-
ments to the accuracy of the model. Furthermore, discrepancies
between GEM predictions and the in vivo dataset revealed biolog-
ical characteristics, such as the importance of a truncated, linear
TCA pathway, low flux toward amino acid synthesis from photo-
respiration, and knowledge gaps within nucleotide metabolism.
Coupling of strong experimental support and photoautotrophic
modeling methods thus resulted in a highly accurate model of
S. elongatus metabolism that highlights previously unknown areas
of S. elongatus biology.

cyanobacteria | constraint-based modeling | TCA cycle | photosynthesis |
Synechococcus elongatus

he unicellular cyanobacterium Synechococcus elongatus PCC
7942 is being developed as a photosynthetic bioproduction
platform for an array of industrial products (1-3). This model
strain is attractive for this purpose because of its genetic trac-
tability (4) and its reliance on mainly CO,, H,O, and light for
metabolism, reducing the environmental and economic costs of
cultivation. For low-cost, high-volume products, such as biofuels,
however, one of the biggest challenges is attaining profitable
product yields (5, 6). Genome-scale models (GEMs) of metabo-
lism provide a valuable tool for increasing product titers by opti-
mizing yield in silico and then, reproducing the changes in vivo (7).
For instance, GEMs were used to select the optimal synthetic
pathway for 3-hydroxypropanoate biosynthesis in Saccharomyces
cerevisiae (8). In Escherichia coli, GEM optimization was used to
realize heterologous production of 1,4-butanediol synthesis and
increase titers three orders of magnitude (9). Although there have
been numerous modeling efforts in Synechocystis sp. PCC 6803
(here in referred to as PCC 6803), this organism is highly divergent
from S. elongatus, where limited modeling has been done (10).
This deficit can partially be explained by the lack of in vivo
validation datasets, such as *C metabolic flux analysis (MFA),
for obligate phototrophs (11). Development of metabolic models
of S. elongatus with strong experimental support is necessary to

exploit the organism as a bioproduction platform and advance
models of obligate phototrophic metabolism.

A metabolic network reconstruction is a representation of all
metabolic reactions, the enzymes responsible for their catalysis,
and the genes that encode them. Genome-scale reconstructions have
a proven record of contextualizing organism-specific information and
facilitating the characterization and engineering of cellular metabo-
lism (12, 13). When complete, the reconstruction enables quantita-
tive prediction of metabolic phenotypes represented as reaction
fluxes. The overall predictive power of a GEM is naturally de-
pendent on its quality (14). Essentiality datasets have been suc-
cessfully used to increase the accuracy of GEMs (15). We recently
determined genome-wide gene essentiality by screening ~250,000
pooled mutants for their survival under standard laboratory con-
ditions with continuous light via random barcode transposon site
sequencing (RB-TnSeq) (16). This dataset facilitated the genera-
tion and testing of a high-quality genome-scale reconstruction
through comparison of the model outputs and in vivo phenotypes
at the genome scale. Inconsistencies between model predictions
and in vivo data can highlight parts of S. elongatus metabolism
where current understanding is inadequate (17).

Another key characteristic of an accurate GEM is the appli-
cation of constraints that place physical, chemical, and biological
limitations on a culture and generate biologically relevant phe-
notypic predictions. Incorporating light, a dominant constraint
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on phototrophic growth, into a GEM remains a challenge (18).
Photon uptake is typically fixed based on experimental results, an
approach that allows retrospective analysis but not predictive
modeling (19). Therefore, no current model inputs light quantity,
quality, and shading, resulting in a linear growth curve charac-
teristic of photoautotrophic batch culture.

Here, we present a comprehensive GEM of obligate photo-
trophic metabolism. We performed a complete reannotation and
reconstruction of metabolic genes in the S. elongatus genome and
developed an approach to incorporate light absorption that
factors in the effects of cell shading. In addition, GEM predic-
tions have been compared with and improved by essentiality data
(16). These comparisons are also used to reveal unique attributes
of the organism’s metabolism. The result is a comprehensive
metabolic model of S. elongatus metabolism.

Results
Genome-Scale Reconstruction of Phototrophic Metabolism. A meta-
bolic reconstruction is a knowledge base that places biochemical,
genetic, and genomic information into a structured framework.
The reconstruction contains the functional annotation of the ge-
nome and defines the organism’s metabolic capability: the sub-
strates that it can use and the reactions that it can perform. To
properly define the metabolic capability of S. elongatus, we curated
the genome annotation, leveraged state of the art in silico methods,
incorporated comprehensive in vivo essentiality data, and included
a detailed reconstruction of light harvesting. The resulting model
is an organized collection of the extensive data available for
S. elongatus in a format that enables accurate predictions of
phototrophic metabolism (Fig. S1).
Manual curation of S. elong Because the met-
abolic capability reflected in a reconstructed network is dependent
on the functional annotation of the organism, we reannotated the
metabolic genes using amino acid as well as protein functional
domain homology-based methods. This functional reannotation
enabled the conversion of an initial draft reconstruction to a
completed GEM (20) (SI Materials and Methods). Of 2,723 genes
in the S. elongatus genome, 785 (29%) were included in the final
version of the model, and 118 of these genes (15%) had updated
functional annotations. This GEM is named iJB785 (model files
are in Dataset S1, and the Excel file is in Dataset S2) following
convention (21).
Protein structure-guided reconstruction. Amino acid and protein do-
main-based annotations often do not provide sufficient detail to
assign enzyme function. Therefore, enzymes are often incorrectly
annotated as functionally equivalent (isozymes). In S. elongatus,
this challenge resulted in instances where multiple genes that are
essential in vivo were assigned to the same reaction; however, if the
enzymes were truly compensatory, none should be essential. The
importance of enzyme structure in catalytic activity suggests that
structural homology modeling, which uses in silico-derived 3D
analysis of a target protein based on the crystal structure of a similar
enzyme, may provide additional insight into protein function.
Protein structure data have recently been applied in the global
analysis of GEMs (22). We set out to apply structural modeling to
protein annotation by determining the functional difference between
four annotated phosphoglycerate mutases (PGMs; Synpcc7942 2078,
Synpec7942_1516, Synpec7942_0485, EC 5.4.2.11; and Synpec7942_0469,
EC 54.1.12) in the S. elongatus genome, three of which are es-
sential in vivo. Previous work in S. elongatus suggested that mul-
tiple PGMs work in concert to regulate metabolic flux during shifts
in CO; availability (23). However, it seemed unlikely that three
of four PGMs would be essential for regulation in a stable CO,
environment. To test the hypothesis of divergent functions be-
tween the S. elongatus PGMs, structural homology models were
generated and compared with published control crystal structures
(SI Materials and Methods, Table S1).

Based on the structural comparison, it was possible to ascribe
a more detailed function to each of the annotated PGMs. The
Synpcc7942_0469 protein is structurally distinct from the three
other PGMs and was annotated as the primary glycolytic PGM in
S. elongatus based on its canonical PGM structure and the fact
that it is essential. Previous work indicated that two PGMs are re-
quired to regulate central carbon flux during a transition from high
to low CO; (23). The Synpcc7942 2078 protein shares structural
features with an E. coli PGM control but is nonessential; thus, it
was annotated as a PGM performing this regulatory function.
Synpcc7942_0485 shares strong structural similarity to a phos-
phoserine phosphatase (PSP) in Hydrogenobacter thermophiles (24)
and has sequence homology to the recently characterized PSP in
PCC 6803 (25). Thus this gene was confidently annotated as a PSP
in S. elongatus. Synpcc7942_1516, however, has structural features
that could not be classified as a traditional PGM or PSP and is es-
sential in vivo. Based on genomic neighborhood analysis and tran-
scriptome mapping data (26), we hypothesized that Synpec7942 1516
plays a regulatory role in an uncharacterized signaling network. As a
regulatory enzyme, it fell outside the scope of the metabolic
model. These results indicate that structural homology modeling
is a promising annotation tool to increase the quality of genome-
scale reconstructions and hypothesize enzyme function.
Improved reconstruction through incorporation of essential gene data.
The essential gene calls for S. elongatus determined by RB-TnSeq-
enabled refinement of the gene reaction annotations during de-
velopment of the reconstruction (16). This in vivo dataset provides
a gauge of gene importance by identifying genes that cannot sustain
insertion mutants, which are interpreted to be essential, and the
growth rate of those that can, which are interpreted to be beneficial
or nonessential. Alternatively, in silico essentiality calls are made by
quantifying the impact on growth when the flux through each en-
zyme in the model is independently set to zero (SI Materials and
Methods). Discrepancies between essential gene calls in the in silico
draft model and the RB-TnSeq results were investigated, and with
sufficient evidence, the gene assignment for the model reaction
was updated accordingly. For example, the S. elongatus genome
encodes two annotated uroporphyrinogen methyltransferases
(Synpcc7942_0271 and Synpec7942_2610, EC 2.1.1.107), catalyzing
an early step of both vitamin B12 and siroheme biosynthesis.
However, both genes are essential in vivo, suggesting that they are
not compensatory. Genomic neighborhood analysis indicated that
synpcc7942_2610 is adjacent to an iron chelatase gene; thus, we
proposed that it is dedicated to the biosynthesis of siroheme, not
vitamin B12. However, discrepancies between the in silico and
in vivo essential gene data were not forced into agreement without
additional evidence, and these remaining discrepancies are
contained in Dataset S3. For example, S. elongatus has two genes
annotated for type II NADH oxidoreductases (synpcc7942_0101
and synpcc7942_0198, EC 1.6.5.9); however, the in vivo data in-
dicated that one is essential (synpcc7942_0101) and thus, the en-
zymes are not redundant. Nevertheless, the manual curation
process did not reveal any significant difference between the two
genes, and they were annotated as isozymes, although the RB-
TnSeq data suggest divergent functions.

Discrepancies also led to a more complete representation of
cellular biomass. For example, alkanes were not initially included
in the biomass, because their function is unknown. However, their
synthesis is essential. Recently, it was discovered that alkanes can
play a role in cyclic electron flow in PCC 6803 (27). Hypothesizing
a homologous function in S. elongatus, they were added to the
biomass equation. Thus, applying the essential gene data to the
curation process increased the quality of the reconstruction.
Explicit modeling of light absorp The dominant constraints on
photoautotrophic growth are light and CO, availability. A fun-
damental barrier to predictive modeling of photoautotrophic
growth has been the inability to translate light irradiance into a
metabolite. Traditionally, light uptake has been inferred and not
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explicitly determined. A two-step optimization method is commonly
used, where the CO, uptake rate is fixed based on experimental
values at the observed growth rate followed by minimization of
the photon flux (19, 28). However, the resulting values reflect
only the photons that perform metabolic work, not the totality of
absorbed light. Excess photon absorption has a significant impact
on growth rate and metabolism. Reactive oxygen species, such as
singlet oxygen generated in the pigment antenna and photosystem
II (29) as well as superoxide at photosystem I (30), damage the
photosynthetic apparatus and consume metabolic resources. Thus,
the two-step optimization method does not accurately account for
total light absorption and is incapable of predictive modeling of
phototrophic metabolism.

In a more extensive description of photon capture, a metabolic
reconstruction of Chlamydomonas reinhardtii accounted for light
source quality (31). This approach was more mechanistic than
the two-step optimization but still did not consider cellular pig-
mentation as a factor in photon absorption, and therefore, light
uptake could not be quantified into a typical modeling input flux.
In another paper, a light distribution function was combined with
flux-balance analysis to model cyanobacterial growth in photo-
bioreactors; however, a mechanistic model of light harvesting
was not included (32). Our approach goes further by combining
light source irradiance with in vivo absorption to define photon
use from measurements of incident light. We incorporated the
chlorophyll-normalized optical absorption cross-section (33),
derived from the in vivo absorption spectrum, to link photon
uptake to cellular composition. Because the model’s biomass ex-
plicitly defines the cellular composition, the biomass-normalized
photon absorption rate was calculated from the combination of
irradiance, optical absorption cross-section, and the chlorophyll
component of the biomass. This approach enabled comparison
between the photon absorption capacity of the cell and the photon
delivery rate of the light source at a given irradiance (Fig. 1).

Accurate modeling of obligate phototrophic metabolism also
required a new level of detail in the reconstruction of the pho-
tosystem. We used recent proteomics (34) and fluorescence mi-
croscopy data (35) to reconcile membrane localization of electron
transport complexes that previous cyanobacterial models had in-
cluded inaccurately in the cytoplasmic membrane. Additionally,
the ferredoxin:plastoquinone oxidoreductase complex gene asso-
ciations were updated to include additional subunits and the use
of ferredoxin as the electron donor (36, 37). We also included
the photoinactivation of the D1 subunit of photosystem II. Using
the photodamage rates in PCC 6803 (38), we were able to cal-
culate a D1 repair metabolic cost as a proportion of flux through
photosystem II. Finally, we generated stoichiometric reactions
accounting for the energy transfer efficiencies of each of the
photosynthetic pigments. Targeted excitation of S. elongatus per-
maplasts provided relative efficiency metrics for the transfer of
energy from a given pigment to the photosystems (39). Reactions
including these efficiencies enabled the model to account for light
spectrum-specific photosynthetic efficiency. This comprehensive
reconstruction of light gathering set the framework for accurate
constraint-based modeling of phototrophic metabolism.

The completed reconstruction, iJB785, consists of 785 genes,
850 metabolic and transport reactions, and 768 nonunique me-
tabolites distributed over seven cellular compartments (Dataset
S2). The reconstruction was completed in the BIGG Models
format (40), enabling standardization and cross-referencing to
external databases (bigg.ucsd.edu). Combining an updated an-
notation, whole-genome RB-TnSeq data, and an advanced rep-
resentation of light harvesting resulted in a comprehensive
phototrophic model.

Modeling Phototrophic Growth. Conversion of a reconstruction into
a mathematical model and the subsequent application of bi-
ologically relevant constraints enable the simulation of cellular
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Fig. 1. Deriving light uptake rates for the GEM. (A) The chlorophyll a-nor-
malized optical absorption cross-section was calculated from the cellular
absorbance in the photosynthetically active range (400-700 nm) and com-
pared with the spectral distribution of the incident light. (B) The photon
absorption rate as a function of cell biomass [millimoles photons gram dry
weight (DW)~" hour~"] was determined by combining the optical absorption
cross-section and incident light. (C) The GEM was constrained by setting the
photon uptake flux to the calculated absorption rate, which was split into 15
20-nm bins across the photosynthetic range.

phenotypes. Modeling cellular growth is typically computed as
either yield or specific growth rate, which assumes exponential
growth (41). In both cases the inputs are normalized, such that
the simulation reports a single value representative of cellular
growth as long as there is a constant ratio between the biomass
and the input flux. However, as the culture becomes denser, the
photon absorption capacity can exceed the amount of light
delivered by the light source and in the process, alter the ratio
of uptake to biomass. When this phenomenon occurs, it results
in a linear growth curve caused by self-shading-induced light
limitation. Cells closest to the light source absorb excess pho-
tons, preventing cells in the inner culture from achieving their
maximum growth rate. We accounted for shading with an un-
steady-state growth modeling methodology (42), which resulted
in an accurate model of linear photoautotrophic growth over the
duration of a batch culture.

An additional constraint was required to capture the point when
light absorption became excessive. As the other dominant con-
straint on growth, the maximum carbon uptake rate marks the
transition between a light- and a carbon-limited culture. It is de-
pendent on the availability of inorganic carbon in the media (43)
and the acclimated state of the cell (44). However, an approxi-
mation of maximum photosynthetic output, a proxy for carbon
uptake, can be captured in a single parameter: the oxygen evolution
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rate (45). We used experimentally determined oxygen evolu-
tion rates to constrain the maximum photosynthetic output at a
given irradiance (Fig. S2). Excess photon absorption was allowed
to leave the system in a manner that did not incur a metabolic
cost, simulating loss as heat or fluorescence. Reactive oxygen
species production in the light-harvesting antenna caused by
excess light is currently not modeled.

A growth curve for a typical S. elongatus culture was simulated
using the oxygen evolution constraint and the calculated photon
uptake rate. To account for self-shading, at 1-h intervals, the
flask was sectioned into 50 concentric rings, with each ring
modeling the biomass production of a 2% fraction of the culture.
Light was modeled from the side of the flask, and the photon
absorption of an outer ring was made unavailable to the re-
mainder of the inner rings (Fig. S3). For the nonshading simu-
lation, the growth rate matched the in vivo culture until light
limitation, at which point the in silico growth remained expo-
nential, whereas the in vivo curve became linear (Fig. 2). Growth
simulations factoring in self-shading transitioned into linear
phase on light limitation, characteristic of in vivo growth. This
more accurate prediction of photoautotrophic growth was made
possible by the combination of modeling photon uptake and
shading as a function of culture density.

Model parameters are specific to the cellular phenotype: in
particular, the chlorophyll-normalized optical absorption cross-
section, which depends on the photoacclimation state of the cell.
The primary photon-harvesting complex in S. elongatus, the
phycobilisome, which can efficiently deliver light energy to both
photosystems (39), is highly adaptive (46) but devoid of chloro-
phyll. Photosystem I contains 80-95% of the chlorophyll a in
S. elongatus (39). Because photoacclimation causes fluctuation in
the photosystem I to photosystem II ratio and changes to the
phycobilisome (47), a given chlorophyll-normalized optical ab-
sorption cross-section may no longer be representative. The
model can be easily reparameterized to account for this adap-
tation. Additionally, the oxygen evolution rate can be adjusted to
account for phenotypic changes in different carbon environ-
ments. The mechanistic nature of this approach is generally
applicable to any phototrophic reconstruction and expands ge-
nome-scale modeling into new phenotypes, such as photo-
acclimation and with additional constraints, photoinhibition.

lidation and Refi of the GEM Througk ial Gene Comy

The RB-TnSeq data served as not only a powerful guide during
reconstruction but also a validation metric of the resulting model.
The accuracy of the model was determined through a comparison
of the in silico essential gene calls with the in vivo dataset. The gap

between model predictions and in vivo realities highlights the
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Fig.2. Modeling the self-shading of cultures increases the accuracy of growth
rate prediction. OD;s; values for the in vivo culture were the mean of three
individual cultures. SE is represented by the shaded areas. SE for the in silico
growth rate was determined from the SE of the in vivo inputs to the model.

limitations of the model as well as additional constraints on cel-
lular metabolism. Evaluation of the disagreements enabled de-
velopment of additional constraints beyond simple network
connectivity (nonnetwork constraints), increasing the accuracy of
the model predictions.

Essential gene-based model validation. We compared the in silico es-
sential gene calls between our reconstructed model, JJB785, and a
previous model of S. elongatus, iSyf715 (48) (Table 1). Minimal
standardized constraints were applied to both models, allowing a
direct comparison of the metabolic flexibility of the two networks. Of
752 genes in iJB785 with in vivo data, 587 (78%) were correctly
assigned as either essential or nonessential (Fig. 34 and Dataset S3).
The 165 disagreements were separated into explanatory categories
(Fig. 3B). iSyf715 contained 683 genes with in vivo data, of which 377
(55%) were correctly assigned. Neither model was able to accurately
predict the reduced growth rate phenotype indicative of genes cat-
egorized as beneficial (growth defect when mutated). The 319 genes
essential in vivo that were not included in iJB785 participate in
cellular processes, such as protein synthesis and transcription,
that are out of scope for this GEM (Fig. S4). Incorporating the
RB-TnSeq data during manual curation prevented the addition
of excess metabolic flexibility (i.e., metabolic capabilities that
are implied from the genome annotation but not observed
in vivo) as evident by the increased accuracy of iJB785 compared
with iSyf715.

Although both models incorporate only 25-30% of the ORFs
identified in the S. elongatus genome, ~50% of the experimentally
shown essential genes and 44% of functionally annotated ORFs
are represented in iJB785. Additionally, of 157 genes labeled
beneficial in vivo, 46% are present in iJB785. This enrichment of
genes that impact cellular fitness underscores the value of GEMs
for contextualizing meaningful in vivo genetic perturbations.
Increased model accuracy through nonnetwork constraints. GEMs offer
a tool for visualizing the metabolic network use for a given KO ge-
notype. The resulting flux map identifies alternate routes available to
the network to respond to genetic perturbations. However, there are
instances where the network connectivity indicates a metabolic
pathway, but an additional constraint prevents its use in vivo. Such
nonnetwork constraints resulted in a disagreement in the essentiality
call for the pyruvate dehydrogenase (PDH) complex. Single-gene
deletion of PDH in silico indicated that phosphoketolase
(Synpcc7942_2080, EC 4.1.2.9) enables bypass of lower glycolysis
by generating acetyl phosphate from the Calvin cycle intermediate
fructose-6-phosphate or xylose-5-phosphate. Acetyl phosphate is
converted to acetyl-CoA by the combined action of reversible
acetate kinase and acetyl-CoA synthase, enabling bypass of PDH.
This bypass has been investigated in PCC 6803 (49), and flux
balance analysis in that organism also bypassed lower glycolysis
with this pathway (50). The essential nature of PDH in vivo in-
dicated an additional constraint that prevents this bypass from
carrying sufficient flux to satisfy the acetyl-CoA needs of the cell.
However, proteomics (51) and transcriptomics (26) datasets for
S. elongatus indicated phosphoketolase abundance on the same
order of magnitude as PDH subunits.

Because enzyme abundance could not explain the essentiality
of PDH, we investigated metabolite channeling as a factor.
Channeling is the result of spatial aggregation of pathway en-
zymes that prevents the intermediates from being acted on by
enzymes outside of the pathway. MFA in PCC 6803 suggested
metabolite channeling of Calvin cycle intermediates (11). This
phenomenon can be modeled by coupling the flux between two
reactions, forcing a ratio, and analyzing the result on the
metabolic network. The analysis in silico of metabolite chan-
neling indicated that, if more than 1% of Calvin cycle inter-
mediates were allowed to enter the phosphoketolase bypass,
PDH would be nonessential. These results indicate that either
substantial metabolite channeling occurs in the Calvin cycle of
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Table 1. Comparison of essentiality results between iJB785 and iSyf715

S. elongatus PCC 7942

iJB785 (this study)

iSyf715 (previous model)

Gene category ORFs Included in GEM  Essentiality prediction

Correct* (%)

Included in GEM  Essentiality prediction  Correct* (%)

Essential 718 399 457
Beneficial 157 72 5
Nonessential 1,748 281 323
No in vivo data 100 33 0
Total genes 2,723 785 785

350 (88) 360 134 118 (33)
0(0) 56 1 0(0)
237 (85) 266 579 258 (97)
N/A 32 0 N/A
587 (78") 714 714 376 (557)

N/A, not applicable due to a lack of in vivo data.
*Equal to the number of genes correctly predicted to be essential in silico.

Total correct genes/(total genes included in GEM — model genes with no in vivo data) x 100%.

S. elongatus or the phosphoketolase pathway is functioning in a
yet uncharacterized way.

An additional nonnetwork constraint suggested by discrep-
ancies between the model and the in vivo data is the phototrophic
reaction catalyzed by ferredoxin-NADP oxidoreductase (FNOR;
Synpcc7942_0978, EC 1.18.1.2), an essential reaction in vivo.
The model indicated that FNOR was bypassed by NADPH:NAD*
transhydrogenase (Synpcc7942_1610, Synpcc7942_1611, and
Synpcc7942_1612, EC 1.6.1.2), resulting in a discrepancy between
the model and in vivo data. The canonical function of trans-
hydrogenase is to provide metabolic flexibility by interconverting the
two primary redox carriers. However, previous work in PCC 6803
had called into question the presence of an active transhydrogenase
in cyanobacteria (52, 53). Previous modeling of PCC 6803 also ob-
served dramatic changes in flux predictions depending on the ac-
tivity of the transhydrogenase reaction (50), with the authors
retaining the canonical transhydrogenase function. However, when
we repeated the in silico essential gene assessment setting the trans-
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Fig. 3. Comparison of in vivo vs. in silico gene essentiality. (A) Comparison
of in silico gene essentiality results for the model iJB785 and the previous
model of S. elongatus iSyf715. The agreements/disagreements are based on
the comparison with in vivo RB-TnSeq results. (B) Sources of disagreements
between in silico iJB785 and in vivo gene essentiality.

hydrogenase reaction bounds to zero; along with additional non-
network constraints, such as routing flux through PDH, 13 genes
that had previously been discrepancies fell into alignment with
in vivo data. These additional constraints, suggested for modeling in
constant light, are provided in SI Results.

Central carbon metabolism flux predictions. The intracellular flux distri-
bution maps the metabolic reaction use in a given condition. This
visualization provides insight into highly used pathways that can be
drawn on for product synthesis. The photoautotrophic flux distri-
bution for central carbon metabolism in S. elongatus predicted by
our GEM is shown in Fig. 4. Our flux values were in close alignment
with PCC 6803 *C MFA data (11), the in vivo equivalent of these in
silico data. In PCC 6803, the flux ratio between carbon uptake and
fixation was 1:1.27, whereas our model prediction for S. elongatus
was 1:1.14. The flux ratio between the Calvin cycle and lower
glycolysis, indicative of the biosynthetic carbon requirements of the
cell, was 7.9:1 in our model prediction, in good agreement with the
ratio of 9.8:1 observed in PCC 6803. The differences may be at-
tributed to variations in the biomass composition for the two
species or the fact that the model predicts optimality, whereas the
in vivo data reflect inefficiencies naturally present in a living or-
ganism. Overall, the high accuracy of the essential gene assess-
ments and consistency with published photoautotrophic flux data
underscore the quality of the GEM.

Unusual Attributes of S. elongatus Metabolism. Taking into account
the essential gene dataset (16) during the modeling process greatly
improved the consistency of the model and the in vivo data. Still,
reactions for which no evidence existed to bring the in silico pre-
diction into agreement with the in vivo data deserved additional
attention. The network reconstruction represents a repository of
current knowledge; thus, discrepancies between in silico and in vivo
results highlighted potential gaps in understanding of S. elongatus
metabolism. Disagreements between iJB785 and the RB-TnSeq
essential gene calls were separated into categories reflecting the
hypothesized source of the discrepancies (Fig. 3B and Dataset S3).
Some categories, such as the Network Bypass and Annotated Iso-
zymes, have already been discussed. Only 7% of discrepancies were
categorized as Out of Scope, and these reactions were included in
iJB785 for completeness but operate in cellular processes not
necessary for in silico growth. For example, the tRNA modification
queuosine (54) is beneficial according to the RB-TnSeq data but
was not explicitly modeled in silico, resulting in a discrepancy for all
genes in the pathway.

The Nonessential Biomass discrepancies include enzymes
that synthesize biomass components of the WT cellular com-
position but do not result in a significant in vivo growth defect
when missing. Because every component of the defined biomass
is required for in silico growth, this category represents in vivo
flexibility not present in iJB785. Two such examples of known
nonessential biomass components are sulfoquinovosyl diacylglycerol,
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Fig. 4. Central carbon metabolism. In silico flux values are given numerically
next to each reaction. The model essentiality calls are given by the color of
the enzyme name, whereas arrow color indicates in vivo gene essentiality.
Beneficial indicates a growth defect phenotype when the gene is mutated.
Reaction and metabolite abbreviations are given in BiGG format (bigg.ucsd.
edu) and found in Dataset S2.

a component of the photosynthetic membranes (55), and the
O-antigen polysaccharide, which even confers a fitness advantage
against predators when mutated (56).

We also identified Nonessential Subunits of multiprotein
complexes. If one gene in the complex is essential in silico,
every subunit associated with that reaction is considered es-
sential, even if the loss is tolerated in vivo. These disagree-
ments included known nonessential subunits of the PCC 6803
photosynthetic electron transport chain (57) and ferredoxin:
plastoquinone oxidoreductase complex (36).

Nucleotide salvage metabolism. Other discrepancies were placed
into the categories Steady-State Assumption and Knowledge Gaps.
Examples of both can be found in nucleotide salvage metabolism.
Although S. elongatus encodes a complete set of enzymes for de
novo biosynthesis of both purine and pyrimidine nucleotides, salvage
reactions are mostly absent (Fig. S5). One exception is adenine
phosphoribosyltransferase (Synpcc7942_2454, EC 2.4.2.7), which
recycles adenine into AMP and is nonessential in vivo but essential
in silico. Without this reaction, adenine produced during biosynthesis
of polyamines would accumulate and violate the Steady-State As-
sumption in the model. However, the in vivo data suggest that ad-
enine accumulation is not lethal to the organism, likely because of
the small predicted flux through this pathway. Conversely, the ca-
tabolism of uracil into UMP by the enzyme uracil phosphoribosyl-
transferase (Synpcc7942_1715, EC 2.4.2.9) is essential in vivo but not
in silico. The in vivo source of uracil and the metabolic requirement
to salvage it to UMP represent a Knowledge Gap in our under-
standing of S. elongatus. Therefore, overlaying in vivo essentiality
information over the model’s predictions reveals multiple classes of
unknowns in nucleotide salvage alone.

Photorespiration. The key carbon-fixing enzyme of the Calvin cycle
in photosynthetic metabolism is ribulose-1,5-bisphosphate carbox-
ylase/oxygenase (RuBisCO; Synpcc7942_1426 and Synpcc7942
1427, EC 4.1.1.39). This enzyme can fix not only CO, but O, as
well, generating 2-phosphoglycolate. Buildup of this molecule is
toxic and needs to be recycled through the process of photorespi-
ration (58). To represent photorespiration in silico, a basal level of
oxygenase activity needed to be added to the model’s RuBisCO
reaction. Based on extrapolation from '3C flux analysis in PCC
6803 (11) and metabolite concentrations in low- vs. high-carbon
experiments in S. elongatus (59), we set the model RuBisCO
oxygenase flux at 1% of total RuBisCO activity. Interestingly,
the first step of the photorespiratory pathway is nonessential
in vivo, although the model predicts it to be essential. In this
step, phosphoglycolate phosphatase catalyzes the conversion of
2-phosphoglycolate to glycolate (Fig. S6). This enzyme, present
upstream of the branching of photorespiration, has no high-
confidence isozymes in S. elongatus. The nonessentiality of phos-
phoglycolate phosphatase suggests either an unknown enzyme for
this function or dispensability of the pathway.

It is improbable that the photorespiratory pathway is non-
essential. In PCC 6803, three pathways of photorespiration exist
and have been included in previous GEMs of this species (50):
the plant-like C2 cycle, full decarboxylation, and the glycerate
pathway—which when disrupted in concert, cause a high-CO,
dependency (60). S. elongatus may be missing the last of these
pathways (Fig. S6). The glycerate pathway begins with glyoxylate
carboligase (GCL), an enzyme that combines two molecules of
glyoxylate and ends with the central carbon metabolite 3-phos-
phoglycerate after the investment of ATP, NAD(P)H, and the
release of CO,. The gene found in PCC 6803 (s//I981) that
is most similar to GCL in E. coli does not have a homolog in
S. elongatus. Therefore, it is possible that only the plant-like C2
cycle and full decarboxylation via formate occur in S. elongatus.

The potential to generate glycine through photorespiration
raised the possibility that the process could compensate for de
novo glycine/serine biosynthesis. When RuBisCO oxygenase ac-
tivity was set at 1%, the model predicted that sufficient glycine
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would be created to support growth, similar to predictions in
previous cyanobacterial GEMs (50, 61). Therefore, even when
the de novo synthesis pathway of glycine from 3-phosphoglyc-
erate via serine was broken in the model, it still predicted that
cells grow at 72% of their normal rate. This finding runs counter
to the in vivo data, which show that the entire biosynthesis pathway
of serine from 3-phosphoglycerate is essential. The experimental
data suggest low flux to amino acid biosynthesis through photores-
piration, which could be explained by lower than expected photo-
respiration activity. Along these lines, in silico essential gene results
became consistent with the in vivo data only when RuBisCO’s
oxygenase activity was lowered to 0.15% of its carbon-fixing ac-
tivity. Another possibility is decreased flux specifically toward the
amino acid biosynthesis pathway of photorespiration. Glycine
hydroxymethyltransferase (Synpcc7942_0282, EC 2.1.2.1) in PCC
6803 is a choke point for the conversion of glycine from photo-
respiration into serine (62); it is possible that the same limitation
exists in S. elongatus. There is also evidence for essentiality of the
de novo serine biosynthetic pathway beyond simple metabolic re-
quirements in PCC 6803 (25). Therefore, because of lower than
expected photorespiration, limited flux toward glycine synthesis, or
undiscovered requirements of de novo serine synthesis, photores-
piration is not able to replace de novo amino acid biosynthesis
from 3-phosphoglycerate.

A truncated TCA cycle. The completeness of the cyanobacterial
TCA cycle has been an oft-debated subject (63). Since the dis-
covery that 2-oxogluterate dehydrogenase is missing in cyano-
bacteria, it was accepted for many years that the TCA cycle is
incomplete (64). However, a complete TCA cycle is responsible
for the majority of energy intermediates created by oxygenic
metabolism and nearly ubiquitous throughout nature (65). For
this reason, extensive effort has been applied to uncover routes
that complete cyanobacterial TCA cycles. A number of bypasses
of the missing 2-oxoglutarate dehydrogenase have been discov-
ered, such as the 2-oxoglutarate decarboxylase pathway (66), the
GABA shunt (67), and the glyoxylate shunt (68). These bypasses
revealed that cyanobacteria harbor complete, albeit noncanonical
TCA cycles (63). More recently, however, the necessity of the
newly circularized TCA cycles of cyanobacteria has been called
into question by experimental (16) and modeling studies (50).
Therefore, the structure and biological relevance of a TCA cycle
remains an open question in cyanobacteria.

For these reasons, we were particularly interested in discrepancies
between the draft model simulations and the in vivo essentiality for
two enzymes of the TCA cycle: fumarase (Synpcc7942_1007, EC
4.2.1.2) and malic enzyme (Synpcc7942_1297, EC 1.1.1.40). These
enzymes are required by the model’s steady-state assumption for the
recycling of fumarate, a by-product of both purine and arginine
synthesis. However, the overlay of the in vivo data on the model not
only suggests that this recycling is not an essential function but more
broadly, led us to evaluate the importance of a complete TCA cycle
in S. elongatus.

‘We began by examining the bypasses that complete TCA cycles in
other model cyanobacteria (63) for their potential presence in
S. elongatus. Our reconstruction, however, revealed none of the
known cyanobacterial bypasses (Fig. 54). Additionally, we were
unable to find evidence of the core TCA-cycle enzymes malate de-
hydrogenase (EC 1.1.1.37), malate:quinone oxidoreductase (EC
1.1.5.4), and succinyl-CoA synthetase (EC 6.2.1.5). Furthermore, the
succinate dehydrogenase genes (synpcc7942_0314, synpcc7942_0641,
and synpcc7942_1533, EC 1.3.5.1) are nonessential in vivo in addi-
tion to genes for fumarase and malic enzyme. Together, these data
provide evidence that the metabolically important portion of the
TCA cycle in S. elongatus is highly abridged. We call this oxidative,
noncyclic portion of the TCA cycle that is essential in S. elongatus the
TCA pathway (Fig. 5B). To explain the feasibility of this TCA
pathway, we examined whether it would be sufficient to accomplish

the central functions of the TCA cycle: precursor metabolite pro-
duction, by-product recycling, and energy generation.

The TCA pathway preserves the enzymes necessary for the
synthesis of oxaloacetate and 2-oxoglutarate, which are pre-
cursors for many required biomass components; additionally,
2-oxoglutarate serves as the gateway to nitrogen assimilation.
Therefore, functionality in producing precursor metabolites
and nitrogen assimilation can be provided by the TCA pathway.

The TCA pathway does not include functionality for the recycling
of fumarate. Fumarate is created as a by-product of nucleotide and
arginine synthesis, the salvage of which is posited by previous
models to be essential (69). However, loss of function mutants for
fumarase and malic enzyme show that this recycling function is not
required for viability on solid media or in liquid culture (Fig. 5C and
Fig. S7 A and B). The dispensability of fumarate salvage could be
explained by the ability of S. elongatus to excrete fumarate into the
media (70), and when this possibility was added into the model, the
in silico predictions for fumarase and malic enzyme become non-
essential in agreement with the in vivo data. In addition, {JB785
shows a minor cost of excreting useable carbon backbones (Fig.
S7C). This cost is commensurate with the in vivo data that show a
significant decrease in colony size in the fumarase and malic enzyme
mutants (Fig. 5C). Therefore, fumarate recycling is a dispensable
function of the TCA cycle, despite a slight fitness cost.

The final core function of the TCA cycle is energy production.
During photosynthetic metabolism in S. elongatus, however, full
oxidation of pyruvate by the TCA cycle would amount to
“metabolic suicide,” in which the cell is fixing and degrading the
same carbon compounds concurrently (71). The wastefulness of
a complete TCA cycle for energy generation in S. elongatus is
supported by viability of mutants defective for succinate de-
hydrogenase subunit B (Synpcc7942_1533, EC 1.3.5.1) (Fig. 5C),
which in addition to its importance for cycle flux, is an electron
donor to the electron transport chain in PCC 6803 (53). At
nighttime, however, when the cell switches from photosynthesis
to glycogen as its energy source (72), we might expect that a
cyclic TCA process would become essential, because it would
enable further energy generation from glycogen. In fact, ex-
pression of TCA cycle enzymes has been shown to occur in the
dark period during light-dark cultivation (73), and modeling has
shown cyclic flux through the cycle in PCC6803 under these
conditions (50). Therefore, we repeated the viability assay under
day-night conditions but found that fumarase, malic enzyme, and
succinate dehydrogenase remain nonessential (Fig. 5SD). Further-
more, {JB785 simulations of dark metabolism indicated that full
oxidation of glycogen through the oxidative pentose phosphate
(OPP) pathway could generate equivalent ATP compared with a
complete TCA cycle in S. elongatus (24.4 mol ATP/mol glucose in
OPP vs. 24.7 mol ATP/mol glucose via TCA bypass). This pre-
diction is supported by previous experimental evidence that the
OPP pathway is important for diurnal survival in S. elongatus (74—
76). Taken together, the model, the essential gene dataset, and our
loss of function mutants support the hypothesis that an abridged
TCA pathway, focused on generation of precursor metabolites, and
not the traditional TCA cycle is the physiologically relevant TCA
process for S. elongatus. This finding diverges from the current
paradigm of complete TCA cycles in cyanobacteria (63).

TCA cycles focused on biosynthesis instead of energy generation
have precedents. Green sulfur bacteria run their TCA cycle in re-
verse to fix CO, in a process called the reductive TCA cycle (77). It
also is common for obligate autotrophs to lack the enzyme 2-oxo-
glutarate dehydrogenase (71). The hypothesized TCA mechanism in
the absence of 2-oxoglutarate is a bifurcated process, in which a
reductive branch leads to succinyl-CoA and an oxidative branch leads
to 2-oxoglutarate (71). According to iJB785, however, S. elongatus
does not require succinyl-CoA or any other metabolites of the re-
ductive branch of this TCA process. Thus, it is likely that just the
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Fig. 5. The TCA pathway. (A) The canonical TCA cycle is shown, with bypasses and alternative reactions present in other cyanobacterial species indicated by
dotted lines. (B) The TCA pathway, the proposed biologically relevant TCA process. Insertion loss of function mutants in fum (8542-06; synpcc7942_1007), me2
(8529-J6; synpcc7942_1297), and sucd (851-1J4; synpcc7942_1533) were made (S/ Materials and Methods, Table S2), and growth was compared with the WT in
both (C) continuous light and (D) cycles of alternating light-dark (12-12 h). Colony area was measured using ImageJ (80). Reaction and metabolite abbre-
viations are given in BiGG format (bigg.ucsd.edu) and found in Dataset S2. ***Significance level of 0.001 (t test).

oxidative wing of the TCA cycle, represented as the TCA pathway, is
important largely as a biosynthetic pathway in S. elongatus.

The truncated TCA pathway of S. elongatus probably generalizes
to other members of the phylum. Even if we artificially model
the complete TCA cycle in S. elongatus by adding malate de-
hydrogenase and the 2-oxoglutarate dehydrogenase bypass present

in Synechococcus sp. PCC 7002 (66), the model still predicts no
cyclic flux through the completed TCA cycle. In PCC 6803, which
contains a complete TCA cycle, both flux balance analysis (50) and
13C MFA (78) show negligible flux from 2-oxoglutarate to the rest
of the TCA cycle. Furthermore, when the complete TCA cycle of
PCC 6803 is blocked, only minor decreases in growth rate are
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observed (67). Finally, a bifurcated TCA cycle with a reductive
branch for succinyl-CoA synthesis is likely to be nonessential in
many cyanobacteria because of the presence of a heme biosynthesis
pathway that begins with 2-oxoglutarate instead of succinyl-CoA
(79). Based on these data, the abridged TCA pathway as opposed to
a complete or bifurcated TCA process is likely relevant in other
cyanobacteria, even those with genes making a complete TCA cycle.

Conclusions

The iJB785 GEM of metabolism in S. elongatus presented here is a
comprehensive representation of obligate phototrophic metabolism.
Our mechanistic modeling of photon absorption and self-shading
addresses the persistent challenge of accurately modeling light as a
metabolite. This approach can be applied to any phototrophic
GEM, enabling modeling of core aspects of light-driven metabo-
lism. The predictive nature of the method also enables tailored light
regimes for bioprocess optimization of photosynthetic platforms.
In addition to iJB785’s value for metabolic engineering and its
technical improvement to phototrophic modeling, it serves as a
platform for biological discovery. In synthesizing much of the
physiological understanding available for S. elongatus, iJB785 re-
veals the holes in this knowledge. Some of these holes include
missing elements of the nucleotide salvage system, the reason that
phosphoketolase is unable to bypass lower glycolysis, and the ap-
parent noncanonical activity of the transhydrogenase. Further-
more, the incorporation of essential gene data both improved the
model’s accuracy and highlighted disagreements, which could not

1. Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of
cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33(6):
352-361.

Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon di-
oxide to isobutyraldehyde. Nat Biotechnol 27(12):1177-1180.

Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of
carbon dioxide to 2,3-butanediol. Proc Nat/ Acad Sci USA 110(4):1249-1254.

Clerico EM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mu-
tagenesis in cyanobacteria. Methods Mol Biol 362:155-171.

Gudmundsson S, Nogales J (2015) Cyanobacteria as photosynthetic biocatalysts: A
systems biology perspective. Mol Biosyst 11(1):60-70.

. Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel pro-
duction from CO2. Curr Opin Biotechnol 33:8-14.

Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict
metabolic and associated cellular functions. Nat Rev Genet 15(2):107-120.

. Borodina |, et al. (2015) Establishing a synthetic pathway for high-level production of
cerevisiae via p-alanine. Metab Eng 27:

[

w

>

w

o

~N

®

3-hydroxypropionic acid in Sacct

57-64.

Yim H, et al. (2011) Metabolic engineering of Escherichia coli for direct production of

1,4-butanediol. Nat Chem Biol 7(7):445-452.

10. Shih PM, et al. (2013) Improving the coverage of the cyanobacterial phylum using
diversity-driven genome sequencing. Proc Nat/ Acad Sci USA 110(3):1053-1058.

11. Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoauto-
trophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng
13(6):656-665.

12. Kim TY, Sohn SB, Kim YB, Kim WJ, Lee SY (2012) Recent advances in reconstruction
and ications of g ale ic models. Curr Opin Biotechnol 23(4):

617-623.

. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol
10(4):291-305.

14. Monk J, Nogales J, Palsson BO (2014) Optimizing genome-scale network recon-
structions. Nat Biotechnol 32(5):447-452.

. Chowdhury R, Chowdhury A, Maranas CD (2015) Using gene essentiality and syn-
thetic lethality information to correct yeast and CHO cell genome-scale models.
Metabolites 5(4):536-570.

16. Rubin BE, et al. (2015) The essential gene set of a photosynthetic organism. Proc Nat/

Acad Sci USA 112(48):E6634-E6643.

17. Reed JL, et al. (2006) Systems approach to refining genome annotation. Proc Nat/
Acad Sci USA 103(46):17480-17484.

. Baroukh C, Mufioz-Tamayo R, Steyer JP, Bernard O (2015) A state of the art of
metabolic networks of unicellular microalgae and cyanobacteria for biofuel pro-
duction. Metab Eng 30:49-60.

. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism.
Biotechnol Prog 21(6):1617-1626.

L4

w

I

®

©

20. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat Protoc 5(1):93-121.
21. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of

Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54.

be explained by published data for S. elongatus. Many of these
inconsistencies represent new biology for S. elongatus, such as the
importance of a linear, noncyclic TCA pathway. Finally, as a
representation of our current best understanding of S. elongatus,
iJB785 is an ideal surface on which to overlay whole-genome
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both greatly improve in silico representation of S. elongatus me-
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Materials and Methods

Methods used to generate the genome-scale reconstruction, derive con-
straints, and generate in silico results are presented in S/ Materials and
Methods. Briefly, the metabolic reconstruction was assembled using an
established protocol (20), and biomass-normalized photon absorption rate
for a given wavelength range was calculated from the combination of ir-
radiance, optical absorption cross-section, and the chlorophyll a component
of the biomass equation. Growth rates and reaction fluxes were simulated
by maximizing the biomass objective function. All additional experimental
protocols can be found in S/ Materials and Methods.
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SI Materials and Methods

Genome-Scale Reconstruction for Synechococcus elongatus. The
genome annotation of Synechococcus elongatus PCC 7942 was
obtained from the Cyanobase database (genome.microbedb.jp/
cyanobase/SYNPCC7942; date accessed: 9/2015). Functional
annotation of the predicted ORFs was performed using the
BLAST command line tool (81). Initially, the amino acid se-
quences of the S. elongatus proteins were compared with all re-
viewed cyanobacterial proteins in the Uniprot/Swissprot database
(82) (BLASTYp; e-value cutoff 1e™2°). The S. elongatus genes
without a best hit in the cyanobacterial subset of the database
were then searched against all reviewed Uniprot/Swissprot
sequences that had evidence at the protein or transcript level
(BLASTYp; e-value cutoff 1e~2°). Additionally, the S. elongatus
protein sequences were queried for conserved domains using
the National Center for Biotechnology Information Batch CD-
Search Tool (83) with the default settings. A draft reconstruction
for S. elongatus based on a previous model for sp. PCC 6803
(50), provided by Henning Knoop and Ralf Steuer, Humboldt-
Universitdt zu Berlin Institute for Theoretical Biology, Berlin,
served as the starting point for the reconstruction. The genome
functional annotation was curated based on the BLASTp and
CD-Search outputs, and the network was reconstructed as described
previously (20) using the COBRApy Python package (84) in iPython
Notebook (85).

Structural logy Modeling of Annotated PGMs. All protein
structures were downloaded from the Protein Data Bank (PDB).
PDB ID codes 41J5 [Hydrogenobacter thermophilus TK-6 metal-
independent phosphoserine phosphatase 1 (iPSP1)] (24), 1E59
[Escherichia coli cofactor-dependent phosphoglycerate mutase
(dPGM)] (86), and 1H2F (Bacillus stearothermophilus PhoE) (87)
were selected for this analysis. Full-length homology modeling of
amino acid sequences was conducted using a locally downloaded
version of the I-TASSER v4.4 (iterative threading assembly re-
finement) package (88). The COACH package (89), which is
contained within I-TASSER, was used for binding site and sub-
strate binding predictions, which were cross-referenced with known
dPGM and iPSP binding residues annotated within UniProt (82)
and various literature sources. Additionally, the full-length ho-
mology model of the E. coli dPGM (UniProt ID code P62707) was
obtained from a database of E. coli homology models previously
generated with I-TASSER (zhanglab.ccmb.med.umich.edu/Ecoli/).
To compare the positions of binding and active residues, structure
files were simultaneously loaded into VMD (90), and sequences
were aligned using the MultiSeq tool (91). MultiSeq also contains
the structural alignment tool STAMP (92), which was used to align
the regions of interest. The positions of known histidine phos-
phatase residues and residues that are known to contribute to ei-
ther iPSP or dPGM activity were then compared between all
homology models and the selected experimental PDB files.

Strains and Culture Conditions. All WT assays were done in
S. elongatus PCC 7942, which is stored in our laboratory’s culture
collection as AMC06. Mutants were also constructed in this WT
background. All culturing occurred at 30 °C. Liquid cultures were
grown in 100 mL BG-11 medium in 250-mL flasks (PYREX) and
shaken at 150 rpm (Thermo Fischer MaxQ 2000 Orbital Shaker).

Chlorophyll Determination. Working under reduced irradiance
to prevent degradation of extracted pigments, 1-2 mL cultures
were harvested in triplicate in 2-mL tubes by centrifugation at

15,000 x g at laboratory temperature for 7 min. The supernatant
fraction was removed, and cells were resuspended in 1 mL cold
100% (volfvol) methanol. Samples were placed in a light-free
container incubated at 4.0 °C for 1 h to extract the pigments from
the cells. After incubation, cellular material was centrifuged at
15,000 x g for 10 min at 4.0 °C, and the supernatant was used for
spectrophotometry. A Beckman Coulter DU 640B Spectropho-
tometer was calibrated using methanol as a blank, and absorbance
at 665 and 720 nm was measured. Chlorophyll a concentrations
were determined using the following equation: chlorophyll a
(micrograms/milliliter) = 12.9447 (A665 — A720) (93).

Whole-Spectrum Light Absorption. Whole-cell absorption spectra
were measured every 2 nm using an Infinite 200 PRO Multiplate
Reader (Tecan) from 400 to 800 nm. Before measurements, culture
densities were adjusted to an OD-sq of 0.05. Measurements using
BG-11 medium as a blank were subtracted from the sample re-
sults, and then, results were normalized to OD;s for comparison.

Modeling of Photon Uptake. Absorption spectra were collected as
described above, corrected for light scattering by subtracting the
OD75 value from each absorbance value, and then, normalized
to a 1-cm path length. The chlorophyll a-normalized optical
absorption cross-section was calculated from the absorbance by
the following equation (modified from ref. 33):

N absorbance
=230 Giorophyll af
The photosynthetically active radiation (PAR) range (400700 nm)
was divided into 15 bins of 20 nm each, and the aj values across
each bin were averaged to give a spectrally averaged, chlorophyll
a-normalized absorbance cross-section for each bin. The SE for
each bin was determined from the SD of the in vivo absorption
spectrum. The spectral distribution of the Osram Sylvania Octron
(R) 741 Fluorescent Lamp was obtained from the manufacturer
(www.sylvania.com/en-us/Pages/default.aspx). The spectrum was
divided into 15 bins of 20 nm each, and the area of each bin
was calculated using the trapz function in the NumPy Python
package (www.numpy.org/).

After dilution to minimize light scattering, chlorophyll 2 mea-
surements were used to normalize the absorption spectrum. The
ratio of chlorophyll a to OD remained constant during the time
course, indicating a lack of significant photoacclimation (Fig. S1).
Because the model’s biomass equation explicitly defines the cel-
lular composition, the biomass-normalized photon absorption
rate, E,(;) [micromoles photons gram dry weight (DW)™ hour™),
was calculated from the combination of irradiance Eq(; (micro-
moles photons meter 2 second ™), optical absorption cross-section
a’& [centimeters? milligram chlorophyll a (Chl a)™!], and the
chlorophyll @ component of the biomass equation [modified from
P259 (94)]:

A
mg Chla N
Eaw="ypw | Eowtsdt
A

The resulting photon absorption flux was modeled as 15 metab-
olites, each representing a 20-nm segment of the 400- to 700-nm
photosynthetic range.
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Physiological Assays. S. elongatus was grown under 100 pmol
photons m™2 s~ from cool white fluorescent bulbs. Growth was
monitored by taking OD;so measurements and dry cell weight
measurements at six time points over the course of 10 d. Cells
were diluted appropriately to achieve OD7so measurements be-
tween 0.05 and 1.0. Dry cell weight was determined by vacuum
filtration of 50 mL culture material using preweighed 0.45-pm
hydrophilic polypropylene filters (47-mm GH Polypro; p/n
66548; Life Sciences). Filter disks containing cellular material
were then placed in a large glass petri plate, dried at 90 °C for
1 h, allowed to cool to room temperature, and weighed. The
initial weight of the filter disk was subtracted from the final to
get the weight of the dry cells. Filters were placed back in for an
additional 30 min and weighed again to ensure that drying was
complete.

Oxygen Evolution. Activities of photosynthetic oxygen evolution were
determined using a Clark-type oxygen electrode (ALGinstruments).
The cells grown under 100 pmol photons m~2s™" light at 30 °C were
placed in 15-mL sterile conical tubes and quickly transported to
another room for oxygen evolution analysis. Cells with chlorophyll
a concentrations of 1-2 pg/mL were placed in a water-heated ap-
paratus and kept at 30 °C. Light was provided at various intensities
following a regimen of initial dark for 5 min followed by 2 min
of constant illumination and 2 min of complete darkness. Light
intensities included 0, 50, 100, 500, 1,000, and 2,000 pmol
photons m~2 5. BG-11 medium was used as a blank, and rates
were calculated by dividing by chlorophyll a concentration.

Simulations of in Silico Growth Rates. Growth rates were simulated
for a 100-mL culture of S. elongatus in a 250-mL shaken flask.
Irradiance (micromoles photons meter 2 second ') was measured
outside the flask using a QSL-100 PAR Irradiance Sensor (Bio-
spherical Instruments Inc.). A correction factor for light loss
caused by the apparatus was calculated by taking light measure-
ments inside an empty flask at different irradiances and plotting
the outside irradiance vs. the inside irradiance. A correction factor
was derived from a linear regression of the data. The photon de-
livery rate was determined from the light source irradiance and the
surface area of the flask. The flask was modeled as a frustum of a
cone, with the lower radius equal to the bottom of a 250-mL flask
and the upper radius equal to the flask radius at the culture height
(culture volume = 100 mL). The lateral surface area was calculated
and used to derive the photon delivery rate (micromoles photons
second™) by multiplying the photon flux density (micromoles
photons meter second ™) by the calculated surface area (square
meters). Self-shading was determined by dividing the 100 mL
culture volume into 50 sections totaling 2% of the culture biomass
in each section. For each section, the photon absorption rate and
the photon delivery rate of each 20-nm bin were compared, and
the lesser of two values was set as the upper and lower bounds of
the photon exchange reaction. For each section (), the photon
delivery rate [v(;,,,) ] was equal to the initial photon delivery rate
[¢(4),] minus the photon absorption of all previous slices:

n-1

Y = Y0osn)o ~ Z VEX -photonisi);*
=

Growth curves were simulated by dividing the culture duration
into 240 1-h segments. To avoid numerical precision issues, the
flux units were converted to micromoles milligram DW™!
hour™'. At each time point, the biomass-normalized constraints
were converted to the total metabolite flow across the reaction
for the 1-h time period. For example, at a time ¢ where the bio-
mass equals 100 mg dry cell weight, the nongrowth-associated
maintenance constraint, which is 0.071 pmol mg DW~! h™%, be-
comes 7.1 pmol. After accounting for light attenuation caused by

self-shading, biomass was maximized for each of 50 culture sec-
tions as follows:

Maximize Vpiomass-

Subject to

S-v=0

Ib; <v; <ub;.

The following constraints were set before simulation:
vnaprrep = 0(transhydrogenase set to 0),

vrar4 > O(transaldolase set as irreversible),

vornt4 = 0(ornithine transaminase set to 0),

veyoounm =0(cytochrome oxidase set to 0),

vpr_p < 0(lactate dehydrogenase set as irreversible),

VEX 02 < 153 (1 — elT14I/159) o(93X107XI/153) | where [ = irradi-
ance [oxygen evolution set to the experimental values with
Platt fitting (ref. 95, pp. 687-701)],

vpsir <7 X Smgpw X 1 h (maximum flux through photosystem
1I), and

0.01 X vgkr 2 > vpkerr +vpkerx  (metabolite channeling con-
straint of phosphoketolase pathway),

where Spgpw is equal to 2% of the biomass of a given time point.
Nongrowth-associated maintenance was set to 0.071 pmol mg
DW~! h™* for all simulations. The biomass yield for each time
point was the summation of the biomass output of each of
the 50 sections. Inorganic phosphate use was tracked to determine
when the culture entered phosphate limitation-induced stationary
phase. Biomass yield was converted to OD using a standard curve
(Fig. S2). Simulations were performed using the COBRAtoolbox
(96) optimizeCbModel function in Matlab (Mathworks) with
Gurobi 6.5.1 (Gurobi Optimization).

Intracellular Flux Distribution During Linear Growth. Reaction fluxes
were taken from a time point in the linear portion of the growth
curve. Simulations were constrained as above, with the exception
that a secondary objective of minimizing the taxicab norm of the
flux vector was applied (97). The metabolite flow in micromoles
was normalized to the biomass of the given time point to convert
the units to millimoles gram DW ™" hour™.

In Silico Essential Gene Comparison. The previous S. elongatus
model, iSyf715, was downloaded in SBML format, and the gene
reaction rules were changed to a Boolean format and added to
the model based on the supplemental files in the publication
(48). The growth rate was fixed to 0.02 h™, and the minimum
photon uptake to achieve the set growth rate was determined
using the optimize_minimal_flux function in the COBRApy Py-
thon package (84) in iPython Notebook (85) using the Gurobi
6.5.1 solver (Gurobi Optimization). Photon flux to the photo-
system II reaction (_lightIl_r) was set to 7.382 mmol g DW ' h/,
and photon flux was set to 7.18 mmol g DW~' h™ for the pho-
tosystem I reaction (_lightI_r). All other constraints were left at
their default values; the CO, and bicarbonate default uptake rates
were both 1.99 mmol g DW™' h™.. The photon uptake rate for
iJB785 was set by varying the light irradiance until a growth rate of
0.02 h™! was achieved. All other constraints were set to the same
value as in iSYF715, with the exception of the nongrowth-asso-
ciated maintenance, which was set to the calculated value of 0.071
mmol g DW~ h. The in silico essential gene assessment for both
models was made using the single gene_deletion function in
COBRApy (84). Gene deletions where greater than 80% of the
target growth rate was still achieved were considered to reflect
nonessential genes, 80-10% were considered as beneficial genes,
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and below 10% were labeled essential genes. Comparison be-
tween RB-TnSeq in vivo essentiality calls and in silico assess-
ments were performed using in-house Python scripts in iPython
Notebook (76).

TCA in Silico Simulations. The impact of TCA gene KOs on growth
rate was simulated by setting the reaction flux to zero for the TCA
enzymes fumarase and malic enzyme. Growth curves were sim-
ulated as outlined above at a model irradiance of 68 pmol m=2s~!
(~90-100 pmol m~ s™* in experimental conditions). The TCA
cycle was completed in silico by adding the alpha-ketoglutate
dehydrogenase and succinyl-CoA synthase genes from the E. coli
model iJO1366 (98). Growth curves and reaction fluxes were
determined as outlined above. The TCA bypass reaction alpha-
ketoglutarate decarboxylase was manually added to the model,
and the succinyl-CoA dehydrogenase reaction from the E. coli
model iJO1366 was added to complete the bypass. Growth
curves and reaction fluxes were determined as outlined above.
The malate dehydrogenase (BiGG ID code MDH) reaction from
the E. coli model iJO1366 was added to the model. Growth
curves and reaction fluxes were determined as outlined above.
For simulations in the dark, the light uptake was set to zero, and
the glucose released by glycogen degradation was set to an ar-
bitrary rate of 6 mmol g DW~' h™'. The objective function was
set to maximize ATP production.

Generating and Assaying TCA Cycle Mutants. Mutants were gener-
ated from plasmids taken from the unigene set, an arrayed mutant
library for S. elongatus (99, 100). Standard transformation pro-
tocols were used for mutant generation (4), and genotyping was
done using colony PCR (Table S2) with Taq DNA Polymerase
(NEB). Liquid culture assays were conducted in BG-11 medium
containing kanamycin (5 pg/mL) under light levels of ~100 pmol
photons-m’z-s’l, with OD7s¢ taken every 24 h.

For spot plates, 4 pL culture was plated onto solid BG-11
kanamycin medium in a 1:5 dilution series. Constant light-
incubated sgot plates were put under light levels of ~100 pmol
photons:m™s ™ for 5 d. Light-dark-incubated plates were grown
in a 12:12 -h cycle with square transitions at the same light in-
tensity for 8-9 d. Colony area was measured using ImageJ analysis
software (80).

SI Results

Structural Homology Modeling. PGMs fall into two categories that
are structurally distinct: dPGM (Synpcc7942_2078, Synpcc7942_1516,
and Synpcc7942_0485, EC 5.4.2.11) and cofactor-independent
phosphoglycerate mutase (iPGM; Synpcc7942_0469, EC 5.4.2.12).
The iPGM family performs the mutase reaction exclusively,
whereas the dPGM family has been assigned various catalytic
functions (86). Because the enzymatic activity of a given PGM is
structure-dependent, we attempted to categorize the S. elongatus
PGM reaction specificity through structural analysis.

Because the iPGM family has only been shown to perform the
mutase reaction, structural homology modeling focused on the
dPGM family. We generated structural homology models for
the S. elongatus dPGMs using an automated in silico platform for
protein structural prediction (88). The resulting homologous
enzyme scaffolds included a dPGM from E. coli (86) and a PSP
from H. thermophiles. Interestingly, the S. elongatus network
reconstruction indicated a gap in the gene assignment for PSP
(EC3.1.3.3). The H. thermophilus PSP is a member of the IPGM

family, and the crystal structure, including features necessary for
catalytic function, has been elucidated (24). Structural features
of the resulting homology models were compared with the E. coli
dPGM and the H. thermophilus PSP controls to refine the
functional annotation of the enzymes (SI Materials and Methods).

S. elongatus synpcc7942_0469 is the only gene encoding an
iPGM, and it is essential in vivo. Thus, synpcc7942_0469 was
annotated as the primary glycolytic PGM in S. elongatus. The
protein encoded by synpcc7942_2078 shares structural features
with the E. coli dPGM control and lacks features that are im-
portant for PSP activity in H. thermophilus. Because it is non-
essential in vivo, synpcc7942_2078 was annotated as a dPGM:
possibly performing the “reverse regulatory” function with
Synpcc7942_0469 as proposed previously (23). These researchers
also suggested that Synpcc7942_0485 functions as a PSP, and the
recently characterized PSP in PCC 6803 has amino acid ho-
mology to Synpcc7942_0485 (25) (Table S1).

Synpcc7942_0485, its homolog in PCC 6803 (sirl124), and
the H. thermophilus PSP shared strong structural similarity;
synpcc7942_1516 was essential in vivo, and the protein carried
structural features that could not be classified into a dPGM or
PSP. Its genomic neighbor, synpcc7942_1517, encodes an es-
sential cyanobacterial-conserved histidine kinase, and tran-
scriptome mapping data indicated that synpcc7942_1516 and
synpcc7942_1517 are coexpressed on the same transcript (26).
Cyanobacteria have a variety of two-component systems com-
prising a histidine kinase and at times, a phosphatase to regulate
signal transduction activity (101). We hypothesized that
synpcc7942_1516 encodes a histidine phosphatase regulator of an
uncharacterized cyanobacterial two-component system. As a reg-
ulatory enzyme, Synpcc7942_1516 fell outside the scope of the
metabolic model and was not included in the model gene list.

Suggested Constraints for Modeling in Constant Light.

Upper and lower flux bounds through NADP:NADH trans-
hydrogenase reaction set to zero (uyaprrap =0). Justification
is given in the text.

The lower bound of the transaldolase reaction set to zero
(v14L4 2 0). Corrects a central carbon essentiality discrepancy
for sedoheptulose-1,7-bisphosphatase (BiGG ID code SBP),
resulting in a more accurate intracellular flux map.

Upper and lower flux bounds through ornithine transaminase
set to zero (vornz4 =0). Ornithine transaminase connects pro-
line and arginine biosynthesis. If active, neither of those path-
ways would be essential. However, both proline and arginine
biosynthesis pathways are essential in vivo.

Upper and lower flux bounds through cytochrome oxidase set
to zero (vcyooun = 0). Presence allows for a biologically infea-
sible pseudocyclic electron flow. Fluorescence microscopy ex-
periments in S. elongatus indicated that the concentration of
this complex is very low based on the inability to visualize GFP
constructs (35). Transcriptomics data also indicated very little
expression of this complex (26).

The upper bound of the transaldolase reaction set to zero,
making it irreversible away from pyruvate (vzpg_p <0). Avoids
biologically irrelevant bypass of lower glycolysis through cell
wall degradation into lactate and conversion back into pyruvate.
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Fig. S6. Photorespiration reactions. Beneficial arrows (purple) indicate a growth defect phenotype when a gene is mutated. Reaction and metabolite ab-
breviations are given in BiGG format (bigg.ucsd.edu) and found in Dataset S2.
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Fig. S7. Genotypic characterization and growth curve of the TCA cycle mutants. (A) Lane 1 (fum"'"), amplification of WT DNA with primers surrounding the
fum gene (synpcc7942_1007); lane 2 (fum), amplification with the same primers from fum transposon insertion KO mutant (8542-06), in which a 1.3-kb in-
sertion is present; lane 3 (me2VTy, amplification of WT DNA with primers surrounding the gene encoding malic enzyme (synpcc7942_1297); lane 4 (me2),
amplification with the same primers from the transposon insertion KO mutant for the gene encoding malic enzyme (8529-J6); lane 5 (sucd"™), amplification of
WT DNA with primers surrounding the sucd subunit B gene (synpcc7942_1533); lane 6 (sucd), amplification with the same primers from the sucd transposon
insertion KO mutant (851-JJ4); and lane 7 (marker), standard 1-kb ladder (New England BioLabs). Each band is representative of three colonies tested.
(B) Growth of WT, fumarase mutant, and malic enzyme mutant strains in liquid culture. Error bars show SDs of three independent replicates for each mutant.
(C) Single-gene deletions of each of the TCA cycle genes fum (synpcc7942_1007) and me2 (synpcc7942_1297) were performed in silico, and the resulting impact
to growth rate was analyzed.



ENASN |

91

Table S1. Structural h logy lysis of S. el PGMs

Gene Organism Annotation C-terminal chain  His85  GIn22 Conclusion Ref.
HTH_0103 H. thermophilus PSP (control) + + + Control 24
b0755 E. coli dPGM (control) - Tyr Thr Control 86
Synpcc7942_0485 S. elongatus PGM + + + PSP

Synpcc7942_2078 S. elongatus PGM - Phe Ser dPGM

Synpcc7942_1516 S. elongatus PGM + Leu Leu Histidine phosphatase

Synpcc7942_0469 S. elongatus iPGM

iPGM

Table S2. Primers for validation of the TCA p: y mutants

Purpose Primer name

Forward primer (5’ to 3’)

Reverse primer (5’ to 3’)

Segregation check of fumarate hydratase mutant
Segregation check of malic enzyme
Segregation check of succinate dehydrogenase subunit B

Synpcc 1007 FRR
Synpcc 1297 FIR
Synpcc 1533 FRR

AACATCAAATCCAGTCGGCG
CATTAAGACTCTTCGCAC
TTTTGGGTACGGCCTATT

TCATTTGCCCATTACTCGCG
GAAACAATATCTGCCCTAC
CTCTAGAACAACTGAATCC

Other Supporting Information Files

Dataset S1 (DOCX)
Dataset S2 (XLSX)
Dataset 53 (XLSX)
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3.4 RB-TnSeq Screens: Biofilm Formation

Introduction. Although our previous work has identified gene products
that are involved in repressing or enabling biofilm formation in S. elongatus, there
are still many unknowns. These poorly understood areas include the repression
of biofilm formation that occurs in the laboratory WT strain as well as the
mechanisms that allow biofilm formation when this repression is blocked. To gain
a more global and thorough list of genes involved in cyanobacterial regulation of
biofilm formation, we performed two next-generation sequencing-based
experiments: RNA-Seq and RB-TnSeq. These two data sets not only illuminated
novel genes of interest, but also demonstrate the respective benefits of these two
experimental techniques for revealing genotype-phenotype associations in the

context of complex behaviors.

RB-TnSeq Biofilm Screening Method. To take advantage of Rb-TnSeq
for understanding genotypic contributors to biofilm formation, we grew replicate
biological samples of the RB-TnSeq library under the biofilm-forming conditions
performed for the RNA-Seq experiments, but for a two-week time course rather
than four days (Fig. 3.4-1). Under these conditions the library samples generated
biofilms. These cultures were then split into three fractions for sequencing
analysis: (1) planktonic cells that were removed by decanting the media, (2)
settled cells that were removed from the emptied test tubes with gentle water
washes, and (3) biofilmed cells that required scraping to be removed from the

test tubes. Bar codes from cells in each fraction were then amplified and
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sequenced with the aim of identifying mutants that are over- and under-

represented in the biofilm-forming portion of the population.

RB-TnSeq Results. Two experiments were conducted using the method
described above in order to reveal biofilm-involved mutants. In the first
experiment, 34 hits were enriched in the biofilming fraction while no over- or
under-represented mutants were found in the settler fraction. Included in the 34
hits were all six previously published biofilm-forming mutants. In the second
experiment, 6 hits were significant in only the biofilming fraction with an additional
18 hits being significant in both the biofilming and settler fractions. Four of the six
known biofilm-forming mutants were significantly over-abundant in the biofilming
fraction and significantly absent from the planktonic fraction. This result
demonstrates the precision of this technique for uncovering genotypic-phenotypic
relationships while providing a manageable set of ranked candidate genes to

investigate through experimental validation.

Rb-TnSeq vs. RNA-Seq Validation. To compare the efficacy of these two
techniques in providing genetic-phenotypic correlations concerning biofilm
formation, a number of putative targets were validated based on either the RNA-
Seq or RB-TnSeq data. In total, 29 genes were selected based on RNA-Seq
data, while 39 genes were selected based on RB-TnSeq data. Of the 29 RNA-
Seg-derived candidates, only one showed film formation when mutated. Of the

39 genes investigated based on RB-TnSeq data, 13 mutants produced films in
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test tubes, 96-well plates, or flasks. It is likely that the effectiveness of Rb-TnhSeq
in identifying biofilm-involved genes can be attributed to its direct identification of
mutants present in biofilms, as opposed to RNA-Seq where gene involvement in

biofilm formation is inferred indirectly from patterns of gene expression.

Figures.
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Figure 3.4-1: RB-TnSeq for biofilm formation. (A) Experimental setup for RB-
TnSeq of biofilming cultures. The RB-TnSeq library was grown as a starter
culture and used to inoculate bubbling test tube cultures. After 2 weeks, each test
tube was fractionated to produce planktonic, settler, and biofilming fractions.
Triplicate experiments were pooled to acquire enough mass for sequencing each
fraction.
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3.5 RB-TnSeq Screens: Amoeba Grazing

Introduction. In their natural environment, cyanobacteria are exposed to
a wide variety of stressors, both biotic and abiotic. Grazing by protozoan
predators such as amoebae is a major source of cyanobacterial mortality, and is
a complex multistep activity (Jousset, 2011). A broad, unbiased search for genes
in cyanobacteria that influence fithess under selection by grazing will implicate
the cellular processes involved and will contextualize the stress of grazing within
the landscape of environmental stimuli. Here, a whole-genome search for the
genetic basis of susceptibility to cyanobacterial grazing was conducted using RB-

TnSeq.

Amoeba Grazing Screen Method. In fithess experiments using the
amoebae HGG1 and LPG1 on solid agar media, the RB-TnSeq library was
grown as lawns on plates at high light. Mature lawns were transferred to lower
light to slow cyanobacterial growth, and were inoculated with a liquid suspension
of amoebae spotted at the center of each plate. Amoebae initially graze the
bacteria at the site of inoculation and then spread outwards, resulting in an
expanding yellow plaque that indicates where cyanobacteria have been grazed.
After the amoebae completely cleared the cyanobacterial lawns, plates were
moved back to high light to encourage the rapid recovery and growth of surviving
cyanobacterial cells. As a negative control, lawns of the library were grown in the
same manner without the amoebal inoculation. We then harvested all lawns,

extracted genomic DNA, and conducted RB-TnSeq sequencing and analysis.
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Results RB-TnSeq on solid media enabled clear differentiation of genes
with amoeba-resistant phenotypes (Fig. 3.5-1). Many of these genes have
common functions in the biosynthesis of lipopolysaccharide, particularly in the
attachment of O-antigen, indicating that the disruption of this process at various
steps in the pathway allows resistance to grazing on solid media. These findings
expand on earlier experiments that showed impairment of O-antigen synthesis
provides protection against grazing (Simkovsky et al., 2012). It is clear from the
RB-TnSeq experiment that the protective effect of an incomplete LPS synthesis
pathway is valid against LPG1 as well as the distant HGG1 species, suggesting
that the phenotype is not highly specific to particular grazers, and may apply to
other grazers of S. elongatus. In addition, several genes had markedly different
fitness values between grazing by LPG1 and by HGG1, indicating resistance
mechanisms that are grazer-specific. This work both illuminates important
pathways of amoeba grazing and more broadly identifies RB-TnSeq as a useful

tool for illuminating predator pray interactions.
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Figure 3.5-1: HGG1 and LPG1 grazing. Comparison of mutant fitness values in
solid grazing conditions. (A) Mutant fitness in ungrazed control plates (x axis)
and plates grazed by amoeba HGG1 (y axis). (B) Mutant fitness in ungrazed
control plates (x axis) and plates grazed by amoeba LPG1 (y axis). Values
shown are averages of two replicates. Black dots indicate significance for both
replicates in the grazed condition for a gene; blue dots indicate that at least one
of the grazed conditions was insignificant. Gene numbers for high-fitness
mutants are labeled.
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3.6 RB-TnSeq Screens: Analysis Across Conditions

The library is a powerful tool for identifying genes that are beneficial or
detrimental under different growth conditions. To identify phenotypes for
previously hypothetical genes, we screened the constituents of the S. elongatus
library under 30 stress conditions (Price et al., 2016). These data were grouped
with data from similar screens on 24 proteobacteria. The conditional fitness
phenotypes for these 25 bacteria under hundreds of screening conditions were
analyzed to assign cellular roles to 8,456 genes which previously had no known
function. This annotation amounts to functional predictions for 14% of all

sequenced bacterial genes that previously had no known role.
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CHAPTER 4: Applying RB-TnSeq to Light-Dark

Physiology

4.1 Chapter Summary

Although cyanobacteria live in LDCs in nature, and are being developed
for bio-production outdoors, they are rarely studied under these conditions. This
chapter addresses this deficiency largely by the application of RB-TnSeq. In
section 4.2 RB-TnSeq Under Light-Dark Cycles, which consists of a
manuscript in preparation on which I'm second author, the RB-TnSeq library was
screened under LDCs. This screen allowed the identification of mutants that grow
poorly under LDCs, and hence genes that are important for surviving these
conditions. Many of the candidates that came out of this screen fit our current
paradigm for the circadian clock’s role in the survival of LDCs. However, the top
hit from this screen was one of three members of the S. elongatus core circadian
clock oscillator, kaiA, whose mutants had never been recognized to be sensitive
to LDCs. We have gone on to identify the mechanisms through which this mutant
locks the clock in an LDC-sensitive state. These findings have led to a better
understanding of the circadian clock and its role in surviving LDCs.

Section 4.3 The Role of c-di-AMP in Light-Dark Cycles, which includes
a manuscript in preparation on which I'm first author, presents the use of RB-
TnSeq to understand the role of a newly discovered signaling nucleotide in LDCs.
The molecule, cyclic-di-AMP (c-di-AMP), has been speculated to function in

cyanobacteria, but never previously studied in vivo. Our work identified its

100
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presence, and the responsible cyclase in S. elongatus. In addition, it showed
that c-di-AMP quantity fluctuates over LDCs and that the organism is impaired in
LDCs in the absence of the signaling molecule. Finally, we developed and
implemented an RB-TnSeq based approach for quantitative whole-genome
interaction screens (IRB-Seq). We applied IRB-Seq along with a traditional
protein pull-down method to discover the interaction network of the signaling
nucleotide. This section identifies c-di-AMP as an LDC-involved signaling
molecule in cyanobacteria and describes the development of an approach for

high-throughput quantitative interaction screens.
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4.2 RB-TnSeq Under Light-Dark Cycles

Abstract. Recently, the creation of a dense transposon mutant library in S.
elongatus quantified the fitness contribution of each individual gene in the
genome under continuous-light conditions and described the first essential gene
set for any photosynthetic organism. Here we describe results from screening
this library to assess the genetic fithess contributions of each gene under cycling
light-dark conditions. Intriguingly, loss of the core circadian clock protein KaiA is
specifically detrimental under light-dark conditions, whereas loss of the entire
kaiABC gene cluster is not. This work identifies the genes essential for growth
under light-dark conditions in S. elongatus and explains how a proper functioning
circadian program, particularly the presence of KaiA, confers a fithess advantage

in naturally cycling environmental conditions.

Introduction. Circadian rhythms can be found throughout Nature,
suggesting a clear fitness advantage for such timing mechanisms in a cyclic
environment (Dunlap et al. 2003). For photosynthetic cyanobacteria that rely on
conversion of light energy from the sun, many of the core metabolic processes
including those involved with CO2 fixation are clock controlled (Diamond et al.
2015; Ito et al. 2009). The circadian clock’s contribution towards environmental
fithess was first shown conclusively in experiments that mixed Synechococcus
elongatus sp. PCC 7942 strains that had different intrinsic circadian periods
under different natural or non-24-h day lengths; in each case, the strain whose
intrinsic circadian period most closely matched the external light cycle

outcompeted strains that have different periods (Ouyang et al. 1998; Woelfle et al.
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2004). This fitness advantage of appropriate circadian signaling is not exclusive
to cyanobacteria and is also observed in the plant model species Arabidopsis
(Yerushalmi et al. 2011; Dodd et al. 2005), and in humans, where circadian
disruption can result in a myriad of health issues including cardiovascular
disease (Morris et al. 2012), cancer (Kelleher et al. 2014), mental illness

(McCarthy and Welsh 2012), and sleep disorders (LeGates et al. 2014).

The central oscillators in all of the eukaryotic species studied share similar
underlying feedback mechanisms (Bell-Pedersen et al. 2005). S. elongatus is the
lone prokaryotic model organism used to study circadian biology, and its
mechanism is fundamentally different than that described for eukaryotes. While
the molecular mechanisms of the clock is well established in constant
environments for S. elongatus, the physiological programs that confer a fitness
advantage are not understood, and the switch from daytime (class 2) to night-
time (class 1) metabolic programs remain vague. To address the question of how
circadian rhythms translate to physiological fitness in cycling environments, we
employed the method of random bar code transposon-site sequencing (RB-
TnSeq) to quantitatively identify the abundance changes of a pooled mutant
population of S. elongatus. This approach provided a fithess contribution

measure for each individual gene in the genome.

In this study we describe the metabolic processes that are essential for
growth in light-dark cycling (LDC) conditions and report that disruptions to the

circadian clock protein KaiA results in significant growth attenuation specifically in
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LDCs. We further investigated why loss of KaiA results in more severe light-dark
sensitivity than deletion of the complete gene cassette kaiABC (lwasaki et al.
2000) or solely kaiC (Diamond et al. 2015), and gained new insights into protein
interactions of the Kai oscillator that confer signal information to induce night-time

essential processes.
Results and Discussion.

Genome-wide fitness contributions during photoautotrophic growth under

light-dark cycles. The same dense bar-coded transposon mutant library used
previously to identify essential genes in S. elongatus was grown under conditions
of continuous light as well as alternating 12-h light,12-h dark cycles (12:12 LDCs).
Of the 2,723 genes comprising the genome of S. elongatus, 718 are essential
(Rubin et al. 2015). Of the remaining 2,005 genes, data from insertions in 1,872
genes were analyzed and scored to determine fitness effects of gene knockouts
in LDCs relative to continuous light. Mutants were scored based on two criteria: a
fitness score representative of a > 1 generation difference and a false discovery
rate of < 1%. An initial 452 genes had significant fithess scores but 362 of these
did not meet the fithess score cutoff that would indicate a strong phenotypic
affect, i.e. little changes in abundance over the course of the experiment in LDC
vs. constant light. The remaining 90 genes were divided approximately evenly
between those significantly increasing in abundance in the population when

mutated in LDCs (49 gene disruptions were beneficial in LDCs) and those



105

decreasing in abundance under LDCs (41 gene disruptions that caused

sensitivity in LDC) (Figure 4.2-1A).

Genes essential for growth in LDCs included those involved in the
oxidative pentose phosphate pathway such as zwf, opcA, pgl, tal, and gnd
(Figure 4.2-1C). This pathway facilitates carbon flow from the breakdown of
storage carbohydrates and is the major source of reducing equivalents in the
absence of photosynthetic electron transfer. Both reactions for catabolism of
glycogen, glgP and glgX, are also required for LDC growth. In addition, genes
encoding enzymes needed for DNA repair (mdf), chaperone systems (clpB1),
and circadian regulation scored highly. LDC growth defects in mutants with
disruptions in some genes of the circadian regulatory network have been
described previously. Early studies showed that strains of S. elongatus with
mutations in kaiC are out-competed in direct competition with WT and
established that clock timing provides a fithess contribution for the cell (Ouyang
et al. 1998; Woelfle et al. 2004). Moreover, the clock output transcription factor
RpaA is essential for growth in light-dark conditions, with rapid death in the dark
mediated by redox unbalance (Diamond et al. 2017). These results are validated
in this study, as kaiC and sasA mutants have a fitness score indicating strong
sensitivity to LDCs (-1 and -1.5, respectively). Strains with disruptions in rpaA
also showed LDC sensitivity, although with a more modest score of -0.7,
presumably because the rpaA mutant is less fit under continuous light conditions

as well; thus, its comparative fithess magnitude is reduced even though the
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phenotype is severe. Notably, the highest scoring LDC-sensitive mutants were

insertions in the circadian clock protein gene kaiA, with a score of -3.0.

Disruptions in a number of other genes were found to be beneficial to
growth in LDCs. Among the mutant strains that thrived were those with that
disrupt pilus assembly and protein export (8 genes), glycine cleavage and purine
metabolism (6 genes), sigma factor RpoD2 involved in circadian regulation, and
the circadian-associated phosphatase, CikA. Additionally, disruptions to genes
involved with metal ion homeostasis such as smtA and lipA, cobalamin
biosynthesis, cobL, and NADH dehydrogenase, ndhD2, allow cells to thrive
under LDCs, possibly by lessening the level of stress acquired during the high-

light conditions during the day period.

Locking the clock in a repressive state is fatal in LDCs. The mechanism of
circadian regulation in cyanobacteria is fairly well understood (Cohen and Golden
2015). Three core clock proteins, KaiA, KaiB, and KaiC orchestrate circadian
oscillation in S. elongatus (Ishiura et al. 1998), whereby KaiC undergoes a daily
rhythm of phosphorylation and dephosphorylation at two amino acid residues
(Nishiwaki et al. 2004; Xu et al. 2004). During the day period, KaiA stimulates
KaiC autophosphorylation and during the night, KaiB opposes KaiA'’s stimulatory
activity by binding an inactive form of KaiA and sequestering it (Tseng et al.,
2017). Temporal information from the clock is relayed to the genome to generate
rhythmic gene expression via two histidine kinase proteins, SasA and CikA,

which regulate the rhythmic phosphorylation and dephosphorylation of the
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transcription factor RpaA. RpaA is necessary for circadian rhythms of gene
expression and directly binds to downstream genetic targets (Markson et al.
2013; Gutu and O'Shea 2013; Takai et al. 2006). As KaiC becomes
phosphorylated during the daytime, it stimulates the autophosphorylation of the
histidine kinase SasA (Gutu and O'Shea 2013) which then transfers a phosphate
group to RpaA. Thus, phosphorylated RpaA accumulates during the day, peaking
at the day-night transition, and activates the nighttime circadian program. During
the night, SasA kinase activity decreases (Chang et al. 2015) and phosphatase
activity of CikA increases. These influences together cause dephosphorylation of
RpaA, repressing the nighttime circadian-regulated program in preparation for

the day.

In a kaiA insertion mutant, KaiC and KaiB levels are low and KaiC is
unphosphorylated (Ditty et al., 2005). For this reason, a kaiA mutant was
previously expected to be similar to a kaiC null, which does not have a notable
defect in LDC when grown in pure culture without competition. We hypothesized
that without KaiA, the cell will generate less phosphorylated KaiC and cause an
imbalance of SasA kinase and CikA phosphatase, leading to the failure to initiate
processes needed for darkness (Figure 4.2-1B). Further, we predicted that the
defect would be more severe in a deletion mutant that lacks all of the kaiA open
reading frame, including a cis element that represses kaiBC expression, in which
more unphosphorylated KaiC and KaiB are present, potentially activating CikA
phosphatase. We assessed a number of kaiA mutant strains under LDC and

continuous-light conditions. While no significant difference in growth is observed
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between WT cells and those that lack kaiA (KaiA™*™" and KaiA%®*"") under
continuous light, growth of the kaiA mutants is severely attenuated under LDCs,
particularly in the case of the complete deletion strain (Figure 4.2-2A). Moreover,
in cells that lack KaiA, when the status of gene expression is visualized using a
class 1 reporter (PkaiBC::luc) that serves as a proxy for rpaA-stimulated genes,
bioluminescence is locked at or below the circadian trough in the kaiA-deficient
strains (Figure 4.2-2B). This reduced luminescence indicates a clock signal that

is locked in a repressive class 2 state (Paddock et al., 2013).

We further hypothesized that inactivation of cikA in a deletion background
would increase the magnitude of expression from the RpaA-dependent reporter
gene and suppress the phenotype of the kaiA mutant. These results are evident
in Figure 4.2-2A and B. The increase in kaiBC::luc reporter expression remains
robust when cikA is replaced by a full-length variant that cannot engage with the

oscillator to turn on RpaA phosphatase activity.

All about RpaA. Because RpaA-dependent reporter gene expression is
reduced in the kaiA deletion mutant and a high percentage of LDC-sensitive
mutants are RpaA-regulated genes, we measured the levels of RpaA
phosphorylation in cultures during LDCs. RpaA phosphorylation in WT cycles
throughout the 24-h period (Figure 4.2-3A); higher resolution sampling shows
that phosphorylation levels peak at the LD transition (Espinosa et al., 2015). In
the kaiA mutant phosphorylated RpaA levels are constitutively low. This constant

low level of phosphorylated RpaA is similar to an rpaA null mutant in that both
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negatively affect gene expression that is vital to surviving the dark (Boyd et al.
2013). The inability to accumulate phosphorylated RpaA when KaiA is absent is
relieved when cikA is also knocked out. These data support the hypothesis that

the respective activities of KaiA and CikA balance clock output.

However, KaiC phosphorylation, which is stimulated by KaiA, never
approaches levels comparable to the WT peak when KaiA is absent, regardless
of the CikA status (Figure 4.2-3 B). This result can be explained by two distinct
functions of KaiA in the clock: KaiA acts alone to stimulate KaiC phosphorylation
at the KaiC C-terminal domain, and competes with CikA for binding to KaiB,
which docks at the KaiC N-terminal domain. We proposed that the low RpaA-
phosphate level, and LCD sensitivity, in the kaiA mutant strains resulted from
lack of competition for CikA for binding to KaiB. Thus, we proposed that the LDC-
sensitive phenotype results from out of control dephosphorylation of RpaA by

CikA.

Severity of the kaiA and rpaA mutants in LDC. Other physiological
similarities between the kaiA and the rpaA mutants exist. The rpaA mutant
accumulates excessive reactive oxygen species during the day that it is unable to
alleviate during the night. Metabolomic measurements show that knocking out
RpaA causes a reductant deficit in the dark, and it is hypothesized that the lack
of primary nighttime NADPH-producing reactions that are targets of RpaA

prevent the cell from detoxifying this ROS. These physiological effects are also
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seen with the kaiA mutant (Figure 4.2-3C), which has increased levels of ROS

compared to that of the WT and the kaiA cikA double mutant.

Concluding Remarks. This is the first study to quantify the genome-wide
genetic fithess contributions of genes in cyanobacteria under particular growth
conditions. Good indication of the success of our screen was finding that genes
whose mutants were previously known to be sensitive to LDCs such as those of
the oxidative pentose phosphate pathway and glycogen breakdown show up in
our analysis. We also identified previously unknown genes important for LDCs

and identified an unexpected role for the highly studied kaiA.

Redox homeostasis is especially important during LDC conditions. ROS
can be managed by the cell during the day via reductant (NADPH) generated
from electron transport though the photosystems, but when cells enter the dark,
this photosynthetically derived reductant ceases to be made and the primary
source of NADPH is acquired via the oxidative pentose phosphate pathway (Guo
et al. 2014). In the case of the kaiA mutant strains described in this study, we
also observed increases in ROS and a failure to generate the signal to turn on

the nighttime genetic program of the cell.

Methods.

Bacterial strains and culture conditions. All cultures were constructed
using wild type S. elongatus PCC 7942 stored in our laboratory as AMCOG6.

Cultures were grown at 30 C and when in BG-11 liquid or solid medium with
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antibiotics as needed for selection at standard concentrations. Liquid cultures
were either cultivated in 100ml volumes in 250ml flasks shaken at ~150rpm on
an orbital shaker or in 400ml volume in top lit bioreactors (Photometrics) under
500 pE square wave LD cycles. The bioreactors were mixed via filtered air

bubble agitation from the bottom with a rate of 0.1ml per minute.

Bioluminescence Monitoring. Bioluminescence of PkaiBC-luc firefly
luciferase fusion reporter strains was monitored at 30 C under LL conditions as
described previously (Mackey et al. 2011). Data were analyzed with the
Biological Rhythms Analysis Software System (http://millar.bio.ed.ac.uk/pebrown/
brass/brasspage.htm) import and analysis program using Microsoft Excel.
Results shown are representative of at least four independent experiments each

averaging the reads from replicate wells.

Immunoblotting. SDS/PAGE was performed according to standard
methods with the following exceptions. Phosphorylation of RpaA and KaiC was
detected using 10% SDS-polyacrylamide gels supplemented with Phos-tag
ligand (Wako Chemicals USA) at a final concentration of 25 yM and manganese
chloride at a final concentration of 50 uM. Gels were incubated once for 10 min in
transfer buffer supplemented with 100 mM EDTA, followed by a 10-min
incubation in transfer buffer without EDTA before standard wet transfer. For
phospho-RpaA detection, protein extracts and electrophoretic apparatus were
kept chilled to minimize hydrolysis of heat-labile phospho-Asp. Protein extracts

for use in Phos-tag gels were prepared in Tris-buffered saline, and extracts for



112

standard SDS/PAGE were prepared in PBS. RpaA anti-serum (a gift of E.
O’Shea, Harvard University, Cambridge, MA) was used at a dilution of 1:1,000.
KaiC immunoblotting was performed as described previously (lvleva and Golden
2007) with modifications described elsewhere (Dong et al. 2016). Densitometric
analyses were performed using National Institutes of Health ImageJ software

(Schneider et al. 2012).

Gene fitness calculations. To estimate fitness the fitness effects of gene
knockouts in light-dark conditions relative to continuous light, we developed an
analysis pipeline that consisted of curating the data, normalizing it, and then
analyzing it using linear models. We first counted the number of reads for each
sample to use as a normalizing factor among samples. Barcodes are dispersed
across the genome, and we removed any barcode falling outside a protein
coding region (24868/154949) or within a gene but not within the middle 80%
(27763/154949). Based on the barcodes remaining, we removed any gene not
represented by at least three barcodes in different positions (114/2075). This

cutoff yielded 102136 barcodes distributed across 1961 genes.

For each barcode in each sample we added a pseudocount of one to the
number of reads, divided by the total number of reads for the sample as
calculated before, and took the log-2 transformation of this sample-normalized
number of reads. The experiment involved two different starting pools of strains
(called TO), each of which was divided into LL and LD samples. To account for

different starting percentages of each barcode within the TO pools, we averaged
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the log-2 transformed values for a barcode across the four replicate TO samples
for each pool then subtracted these average starting barcode values from the LL
and LD values in the respective pools. We also removed any gene without at

least 15 TO reads (across the four replicates and before adding the pseudocount

in each pool (89/1961), leaving 1872 genes and 101258 barcodes.

For each gene, we used maximum likelihood to fit a pair of nested linear
mixed effects models to the sample- and read-normalized log-2 transformed
counts:

.. 2y . .. 2
(1) Viu=u,+C +B e, B ~iid N0.,s,) ;¢ ~iid N(0,0,)

a

(2) v, =wm,+B+e 5 B ~iid N(Og}) ; ¢, ~iid N(0,0)
where y;;« is the normalized log-2 value for barcode i in gene g in condition j for
sample k, g is the average value for the gene, C; is the fixed effect of condition j,
B;is a random effect for barcode i, and ¢« is the residual. We identified genes
with significant fithess differences between conditions by comparing the
difference in the -2*log likelihoods of the models to a chi-square distribution with
one degree of freedom, estimating a p-value, accounting for multiple testing by
the method of Benjamini and Hochberg (Benjamini and Hochberg 1995) and

selecting those gene with adjusted p-values less than 0.01.We took the contrast

C.p — Cy. to be the estimated fitness effect of knocking out the gene.

Quantification of ROS. Total cellular ROS load in WT and the mutant was
quantified using a fluorescent compound H,DCFDA (Life Technologies catalog

no. D399)(Rastogi et al. 2010). Briefly, 2 mL of photobioreactor-grown culture
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was collected and split into 1-mL aliquots. H,DCFDA was added to one sample

at a final concentration of 5 yM. Tubes were protected from light and shaken at

30 C for 30 min. After incubation, 200 uL from each tube was added to a

separate well in a clear-bottom black 96-well plate. Fluorescence was quantified

at an excitation of 480 nm and an emission of 520 nm on a Tecan Infinite M200

plate reader with the gain manually set to 120. Fluorescence data were

normalized to OD750 of each sample, and untreated-sample background

fluorescence was then subtracted from treated sample fluorescence values.

Tables.

Table 4.2-1. Strains.

Strain Genetic background Reporter Antibiotic  Source
plasmid resistance or
reference
AMC541 Wild type PkaiBC : : Cm (Chen et
luc; al. 2009)
AMC1161  kaiA insertion; pAM2969 in  PkaiBC : : Cm Km
luc;
AMC702 kaiA deletion; in-frame PkaiBC : : Cm (Ditty et
markerless constructed in luc; al. 2003)
AMC1936 kaiABC knockout; pAM4252 PkaiBC : : Cm Km (Paddock
in AMC541 luc; et al.
2013)
AMC1679 kaiA cikA double knockout; PkaiBC : : Cm Gm (Dong et
pAM2152 in AMC702 luc; al. 2010)
KaiACikA+ AMC1679 with PkaiBC : : Cm Gm This
Ptrc:cikA(C644R mutation)  luc; study
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Figure 4.2-1: LDC sensitive genes (A) Overview of the number of genes and
their respective LDC sensitivity screening results. The top LDC-sensitive gene
scores, locus id, gene symbol, and functional category are shown in the bar
graph. (B) KaiA disruption leads to a cascade of regulatory dysfunction resulting
in adverse physiological consequences for carbon metabolism, transcriptional
regulation, and of circadian clock component expression. The genes in the
highlighted circles are known to be direct targets of clock output RpaA signaling.
Not shown is the RpaA phosphatase CikA, whose activity requires interaction
with KaiB-KaiC complex, where it binds in competition with KaiA. (C) Highlighted
in the metabolic map are the main reactions that are essential for surviving LDCs.
Red arrows represent reactions that are essential for growth under cycling light-
dark conditions, solid black arrows represent reactions with observed phenotypic
consequence when disrupted, and dashed arrows represent reactions that are
essential under continuous light conditions (Rubin et. al 2016).
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Figure 4.2-2: Growth and circadian rhythms of KaiA mutants. (A) Growth in
LDC and continuous light on spot plates. (B) After entrainment to a 12-h light:12-
h dark cycle, bioluminescence traces were captured over 5 d under continuous
light. Inactivation of kaiA by deletion of the entire coding region (green) results in
low arrhythmic expression from the PkaiBC::luc reporter, whereas inactivation by
insertion of an antibiotic-resistance cassette results in arrhythmic rhythms of
slightly higher levels. Inactivation of cikA in a deletion background increases the
magnitude of the values, closer to levels observed in the kaiABC mutant (orange).
This increase in kaiBC::luc reporter expression is evident even when cikA is
intact but replaced by a variant that cannot engage the circadian oscillator to turn
on RpaA-phosphatase activity (blue). Representative traces are shown. cps,
counts per second.
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Figure 4.2-3: Phosphorylation time-course. Densitometric analysis showing
average = SE values from multiple immunoblots showing the in vivo RpaA (A)
and KaiC (B) phosphorylation cycles, demonstrating overall reduced levels of
RpaA and KaiC phosphorylation in the KaiA and kaiAcikA mutants compared to
WT entrained to a 12:12 LDC and sampled every 12 h. The RpaA
phosphorylation level in the kaiA mutants is arrhythmic and lower than in WT,
with the kaiAcikA double mutant accumulating significantly higher phosphorylated
RpaA thought the sampling period. A plot of H2DCFDA fluorescence over a 12 h
dark period of an LDC indicating total cellular ROS in WT, kaiA, and kaiAcikA.
The shaded area in all graphs indicates the standard error.
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4.3 The Role of c-di-AMP in Light-Dark Cycles

Abstract. The broadly conserved signaling nucleotide c-di-AMP is
essential for viability in most bacteria where it has been studied. However,
characterization of c-di-AMP has largely been confined to a few genera of
pathogenic organisms, limiting our functional understanding of the molecule
among diverse phyla. Here we identify the cyclase responsible for c-di-AMP
synthesis and characterize the molecule’s role in survival of darkness in the
model photosynthetic cyanobacterium, Synechococcus elongatus PCC 7942. In
addition to using traditional genetic, biochemical, and proteomic approaches, we
developed a high-throughput genetic interaction screen (IRB-Seq) to illuminate
the pathways where the signaling nucleotide is active in S. elongatus. We found
that the c-di-AMP cyclase is encoded by a previously unannotated gene, named
here as dacA. In the loss-of-function mutant of dacA the cell experiences
increased oxidative stress and death in the night portion of day-night cycles, in
which potassium transport is implicated. These findings suggest that c-di-AMP is
biologically active in Cyanobacteria, where the molecule’s non-canonical role in
oxidative stress management and day-night survival is potentially managed by
traditional functions such as potassium homeostasis. The pipeline and analysis
tools for IRB-Seq developed for these studies constitute a quantitative high-

throughput approach for studying genetic interactions in microorganisms.

Introduction. The signaling nucleotide cyclic di-adenosine

monophosphate (c-di-AMP) has been implicated in a wide range of biological
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processes since its discovery less than a decade ago (Witte et al., 2008). The
molecule is active in multiple pathways including potassium transport, regulation
of central metabolism, cell wall homeostasis, gene expression, and DNA damage
responses (Corrigan and Grundling, 2013). In addition, c-di-AMP is the only
second messenger that is essential to many of the organisms in which it is
studied (Commichau et al., 2015). Despite the biological importance of c-di-AMP,
in-vivo studies of this signaling nucleotide have been focused on a narrow array
of pathogenic Firmicutes and to a lesser extent Actinobacteria. Expanding the
investigation of c-di-AMP to a broader diversity of microbial phyla is likely to
reveal new functions for this molecule.

Organisms in the photosynthetic phylum, Cyanobacteria, are key players
in global carbon, oxygen, and nitrogen cycling, and are promising platforms for
renewable production of industrial chemicals (Angermayr et al., 2015; Bryant,
2003; Flombaum and Gallegos, 2013). Signaling nucleotides aside from c-di-
AMP (cGMP, c-di-GMP, (p)ppGpp, and cAMP) serve important roles in their
environmental responses. Studying these messengers in photosynthetic
organisms elucidated new roles for the nucleotides, such as regulating phototaxis,
photosystem repair, and dark survival (Agostoni and Montgomery, 2014; Hood et
al., 2016). While c-di-AMP has not been reported in the phylum, the existence of
enzymes and riboswitches that interact with the molecule have been suggested
based on homology (Agostoni and Montgomery, 2014; Corrigan and Gruandling,

2013; Huynh et al., 2015; Nelson et al., 2013). Discovery of c-di-AMP and its role
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in Cyanobacteria would lead to better understanding of these important
organisms and the function of c-di-AMP.

Genetic interaction screens in other organisms have offered important
insights into c-di-AMP function. Screens focused on secondary mutations that
relieve the phenotypes of c-di-AMP-related mutants (alleviating interactions)
have successfully identified c-di-AMP interacting proteins (Corrigan et al., 2011;
Whiteley et al., 2015). However, these screens have been limited to assaying
positive interactions, are non-quantitative, and have been performed only under a
single condition.

Next-generation sequencing paired with transposon mutagenesis (Tn-
Seq) is a recently described method that can be used for quantitative genetic
interactions screens to identify alleviating as well as aggravating interactions
(Dejesus et al., 2017; Meeske et al., 2015; van Opijnen et al., 2009). This
approach relies upon the generation of a new mutant library in the background of
a knockout of interest for each screen (Brochado and Typas, 2013). While
informative, the need to generate and characterize a new transposon mutant
library for each interaction screen is both costly and labor intensive (Gray et al.,
2015). These features have limited the applicability of Tn-Seq for interaction
screens. A similar method, RB-TnSeq, provides a less costly and laborious
approach for screening transposon mutant libraries, in which mutants are tracked
by the sequencing of 20 base pair “barcodes” on each transposon (Wetmore et

al., 2015). This approach has not yet been applied to interaction screens, but
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offers great potential for mitigating their logistical weaknesses and enlarging their
scope.

Here, we used genetic, biochemical, and proteomic approaches to
elucidate the presence and roles of c-di-AMP in the cyanobacterium
Synechococcus elongatus PCC 7942. To further probe the molecule’s functions
we developed and implemented an approach we named interaction-based RB-
TnSeq, or IRB-Seq, to quantitatively measure genetic interactions with the c-di-

AMP cyclase under multiple conditions.

Results.

Presence of c-di-AMP and its Cyclase. The putative c-di-AMP producing
enzyme in S. elongatus was identified computationally. The software package
HMMER (Johnson et al., 2010) identified a single protein in the organism that
contains a DisA_N domain (PF02457), currently the only domain known to be
responsible for c-di-AMP production (Xayarath and Freitag, 2015). This
sequence, annotated at time of publication as “protein of unknown function
DUF147”, predicts three transmembrane segments and a cytoplasmic DisA_N
domain (Fig. 4.3-1A). The arrangement of domains identifies the protein as a
member of the most abundant family of DAC domain-containing proteins, DacA
(Corrigan et al., 2013). Thus we refer to this previously unannotated gene, which
encodes the putative cyclase of c-di-AMP, as dacA (Synpcc7942_0263).

To validate the bioinformatics predication, we quantified c-di-AMP levels in

wild type (WT) and a dacA mutant using LC-MS. The WT value of 18.8 uM is
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several fold higher than in other organisms, including Staphylococcus aureus
(Corrigan et al., 2015) and Bacillus subtilis (Oppenheimer-Shaanan et al., 2011),
where the nucleotide plays biologically important roles. In contrast to many other
c-di-AMP-producing organisms, in S. elongatus a fully segregated insertion
mutant for dacA is viable under standard lab conditions of continuous light. In this
mutant, the level of c-di-AMP was 3.3 uM (Fig. 4.3-1B) (P < 10”"; Mann-Whitney-
Wilcoxon Test). Difficulties in c-di-AMP extraction from S. elongatus samples
caused substantial background noise in mass spectrometry quantification, which
likely accounted for the detection of low-level c-di-AMP in the dacA mutant.
Regardless, these data suggest that S. elongatus produces c-di-AMP, and that
DacA catalyzes its synthesis.

Concentrations of some other signaling nucleotides studied in
Cyanobacteria change in response to light (Agostoni and Montgomery, 2014). To
address whether this may be the case with c-di-AMP in S. elongatus, we
sampled over one 12 h:12 h light-dark cycle (LDC). The c-di-AMP concentration
was variable in WT both within time points and between them, with an apparent,
although non-significant, trend upwards at nighttime. Given that signaling
nucleotide responses to light have been shown to occur within minutes in
Cyanobacteria (Terauchi and Ohmori, 2004), we did higher resolution sampling
around the light-to-dark and dark-to-light transitions. While light did not have a
large or immediate effect on c-di-AMP, the onset of darkness caused a spike in
the nucleotide’s levels observable after 15 minutes and reaching a three-fold

increase (Fig. 4.3-1C).
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LDC Sensitivity in dacA Mutant. Based on the observed increase in c-di-
AMP levels upon onset of darkness as well as previous research showing the
importance of ppGpp, a closely linked signaling nucleotide, to dark survival in S.
elongatus (Hood et al., 2016), we examined whether c-di-AMP is necessary to
survive LDCs. On solid media the dacA loss of function mutant showed
decreased growth in LDCs, but not in constant light (Fig. 4.3-2A), and this
sensitivity to LDCs was reproducible in liquid culture (Fig. 4.3-2B). To confirm
that the dacA mutation is responsible for this phenotype we added an ectopic
copy of the dacA gene to the mutant, which complemented the LDC sensitivity of
the mutant. Therefore, the dacA mutation and its decreased c-di-AMP levels are
likely responsible for the LDC-specific defect.

To explore the nature and cause of the LDC sensitivity we examined cells
over one LDC. While the dacA mutant grew similarly to WT over the light portion
of the LDC, viability of the mutant, as measured by colony forming units in
outgrowths, rapidly decreased upon the onset of darkness (Fig. 4.3-2C). This
difference was significant after two hours of exposure to darkness (P < .05; ¢ test),
and became more pronounced over the course of the night (Fig 4.3-2C). Recent
work showed that reactive oxygen species (ROS) correlate with death in
darkness for this species (Diamond et al., 2017). Indeed, reactive oxygen
species peaked in the mutant upon the onset of darkness at more than two fold
the level in WT and remained higher through the course of the night (P < 10™;

Mann-Whitney-Wilcoxon Test) (Fig. 4.3-2D). These data suggest an active death
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mechanism in the dacA mutant, which occurs specifically in the dark stage of the
LDC as a consequence of high oxidative stress.

Biochemical Interactions of c-di-AMP. Because no in vivo evidence exists
for members of the c-di-AMP signaling pathway in Cyanobacteria we used an
unbiased proteomic approach to identify binding partners. C-di-AMP-bound
beads were used for affinity purification of interacting S. elongatus proteins
(Sureka et al., 2014). These proteins were in turn identified by gel-free
quantitative shotgun proteomics (Fig. 4.3-3A). There were eleven proteins
enriched at least four fold over those from control beads, of which five had
domains previously shown to bind c-di-AMP (Table 4.3-1). In addition to known c-
di-AMP binding domains, the majority of the proteins have predicted functions
previously associated with the signaling nucleotide, such as ion and particularly
potassium transport (Synpcc7942_1729, Synpcc7942_1588, and
Synpcc7942_0545), and DNA replication, repair, and homologous recombination
(Synpcc7942_1416, Synpcc7942_1886, and Synpcc7942_0301), (Commichau et
al., 2015; Corrigan and Grundling, 2013). The identification of known c-di-AMP
binding domains and functional pathways among the pull-down candidates
validate the approach.

To follow up on these results we conducted both targeted mutagenesis
and individual binding assays for the top candidates. Of the eleven proteins
enriched two fold or more, two had previously been shown to be essential
(Synpcc7942_1416 and Synpcc7942_0301) (Rubin et al., 2015). We successfully

made insertion mutants for all of the remaining genes, with the exception of
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Synpcc7942_0420, and characterized their phenotypes. None of the mutants,
however, phenocopied the dacA mutant’s LDC sensitivity, or showed visible
phenotypes under control conditions. In parallel we expressed nine of the eleven
candidate proteins in Escherichia coli and tested them individually for binding to
c-di-AMP using DRaCALA, a method based upon differential diffusion of bound
and unbound radiolabelled c-di-AMP across a nitrocellulose membrane (Roelofs
et al., 2011). Three of the expressed proteins showed binding to the nucleotide
(Fig. 4.3-3B). Of those candidates whose binding was confirmed, KdpD encoded
by synpcc7942 1729, has been associated with c-di-AMP previously and
suggests a role for the molecule in potassium transport in S. elongatus. The PII-
like protein encoded by synpcc7942 1476 consists of a domain previously
associated with the poorly understood PstA protein, which has been studied for
its c-di-AMP binding in Bacillus subtilis, Staphylococcus aureus, and Listeria
monocytogenes (Campeotto et al., 2015; Choi et al., 2015; Gundlach et al., 2015;
Muller et al., 2015). Surprisingly, while it is highly conserved among those
organisms, the protein sequence is divergent in S. elongatus (E-Value=.2
compared to the L. monocytogenes gene). This finding suggests that although c-
di-AMP may interact with a functionally similar protein in S. elongatus, the
binding pocket is disparate. The protein TrmH (Synpcc 7942_1874), which
stabilizes tRNAs by addition of a methyl group to a conserved guanosine
(Nakanishi and Nureki, 2005), has neither a function nor domain previously

associated with c-di-AMP. Together, the pulldown results and confirmation by
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DRaCALA suggest conserved function and binding of c-di-AMP, as well as
domains and genes not previously connected with c-di-AMP, such as TrmH.

IRB-Seq design. Although the pull-down was able to inform us of binding
partners of c-di-AMP, it did not reveal which of these interactions represent
biologically meaningful roles. To address this issue we developed a genome-
wide method for identifying genetic interactions of c-di-AMP’s cyclase, DacA. The
approach relied on a previously developed dense transposon insertion mutant
library in S. elongatus (Rubin et al., 2015). Briefly, this library was built with the
RB-TnSeq method (Wetmore et al., 2015), in which every loss-of-function mutant
in the library contains a unique identifier sequence, or barcode (Fig. 4.3-4A). By
using next-generation sequencing of barcodes the survival of the approximately
150,000 barcoded mutants in the library can be tracked under control as well as
experimental conditions. In this way the S. elongatus RB-TnSeq library can be
used for pooled, quantitative, whole genome mutant screens.

In interaction RB-TnSeq (IRB-Seq) a second mutation is added to all the
library members in order to determine the fitness impact of the second mutation
in combination with every other mutation in the library. In this case the second
mutation inactivated dacA, and conferred a different antibiotic resistance than
that used to construct the mutant library (see Martials and Methods). To a
separate aliquot of the initial library, a non-deleterious mutation was added to
serve as a control for potential changes to the library caused by the addition of a
second mutation, or selection for the second antibiotic, that were not specific to

the dacA mutation. The two double-mutant libraries were then grown under dual



132

selection so that every member of the library also contained the secondary
mutation of interest (dacA or the control). At this point the barcodes were
sequenced and compared to starting composition of the library and the control
(Fig. 4.3-4B). These data were used to determine genetic interactions, or
instances in which the fitness values of the library mutation and the dacA
mutation were not simply additive. These interactions could in turn be used to
identify relationships between genes and their pathways. In addition, because of
our knowledge of the dacA mutant’s decreased viability in LDCs we were able to
sensitize our screen by exposing the library of double mutants to LDCs (Fig 4.3-
4C). Frequencies of the barcodes after this stress were compared to a time zero
sample and the control in order to determine genetic interactions apparent under
stress conditions. In this way IRB-Seq enabled a quantitative assay of genetic
interactions with dacA, under both control conditions as well as sensitizing
conditions.

Before attempting IRB-Seq we ensured that the double-mutant library
retained sufficient diversity for meaningful functional screens. Of the original
154,949 barcoded mutants in the library after addition of the second mutation we
were able to recover, on average, 100,180 (65%). This number still represents
approximately 30 insertion mutants for the average gene. To further test efficacy
of the double-mutant library for screens we used the version containing the
control mutation to reproduce the results of a previous screen for LDC-sensitive
genes (Welkie et al., n.d.). Even though the new screen was conducted under

different light conditions than the previous screen, and in flasks instead of
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bioreactors, the two screens strongly correlate (Fig. 4.3-5A). It is of note that the
slope of this correlation is approximately .4, suggesting that, although the relative
phenotypes were similar, the mutants did not diverge as much over the course of
the double-mutant experiment. Based on these results we carried out IRB-Seq
using a dacA mutation layered on to the RB-TnSeq library for S. elongatus.

IRB-Seq interaction screen. The first genetic interactions examined were
those that are detectable under standard laboratory conditions upon the addition
of the dacA mutation to the library (Fig. 4.3-4B). As expected, given that the dacA
mutation shows no fitness defects under control conditions (Fig. 4.3-2A), all of
the strong genetic interactions (FDR < .01, genetic interaction absolute value >
1) were negative (aggravating or synthetic interactions) (Fig 4.3-5A, Dataset S1).
These synthetic interactions can result from redundancy in function between the
two mutated genes. Two of the top annotated synthetic interactions with dacA
were with genes that encode flavoproteins FIv1 (synpcc7942_1810) and FIv3
(Synpcc7942_1809), which form a heterodimer that allows the release of high-
energy electrons from photosystem Il to oxygen without producing oxidative
stress. Although these proteins are dispensable under standard laboratory
conditions, under variable conditions such as fluctuating light, they become
important for decreasing oxidative stress and allowing growth (Allahverdiyeva et
al., 2013; Shaku et al., 2015). Also in the top ten annotated synthetic interactions
were genes that encode a 6-pyruvoyl-tetrahydropterin synthase-like protein
potentially involved in a pathway important for resisting UV-A stress

(Synpcc7942_1184) (Matsunaga et al., 1993; Moon et al., 2012; Wachi et al.,
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1995), a glutaredoxin-related protein (Synpcc7942_1145), and Psb28
(Synpcc7942_1679), a protein involved in repair of photosystem Il in related
cyanobacteria (Sakata et al., 2013).These interactions suggest that, in the
absence of the functional dacA, a cell under increased oxidative stress (Fig 4.3-
2D) becomes more dependent on proteins that offer electron sinks or protection
against reactive oxygen species.

Another synthetic interaction apparent from the screen under standard
laboratory conditions is with potassium transport. The fifth ranked candidate is
the K+ transport protein, TrkA, encoded by synpcc7942 _1080. Its genomic
neighbor synpcc7942_1081 and second ranked for interaction, is unannotated,
but based on its TrkH domain (PF02386) and sequence homology (Finn et al.,
2016), is likely TrkH, a complex partner of TrkA (Cao et al., 2013). Therefore, the
dacA mutant is also sensitized to defects in potassium import.

IRB-Seq sensitized interaction screen. \When the dacA double mutant library was
sampled under sensitizing LDCs (Fig. 4.3-4C), we observed a number of positive
(alleviating) interactions (Fig. 4.3-5C, Dataset S2). Alleviating interactions can
occur when the affected genes are in the same pathway and their effects mask
each other, or when the mutations counteract each other. Synthetic interactions
were also present in the sensitized screen, identifying genes whose loss
exacerbates the moderate survival impact of the dacA mutation in LDCs. For the
sensitized interaction screen, we decreased the interaction score for
consideration to greater than absolute value of .5. This change was based on our

observation that the LDC screening conditions used enabled the differentiation of
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genuine, but subtle, mutant phenotypes (Fig. 4.3-5A). Among the six top
alleviating candidates for dacA in LDCs (FDR < .01, genetic interaction > .5) four
are proteins involved in peptide and macromolecule degradation. The cell wall
recycling protein MurQ (Synpcc7942_2577) as the top hit among alleviating
interactions may be explained by decreased cell wall turnover being permissive
in the dacA mutant, which has been associated with disruption of cell wall
homeostasis in multiple species (Corrigan and Grundling, 2013). The reason for
the more general enrichment of genes that encode degrading enzymes among
alleviating mutations is unclear.

The fifth ranked hit among suppressors and the strongest hit among the
synthetic interactions were circadian clock component CikA (Synpcc7942_0644)
and circadian-involved sigma factor RpoD2 (Synpcc7942_1746), respectively.
Mutants of cikA, the phosphatase for the master clock transcription factor RpaA,
leave RpaA in a highly phosphorylated state (Gutu and O'Shea, 2013). This
RpaA state locks the clock into activating nighttime processes and the
detoxification of oxidative stress (Diamond et al., 2017; 2015; Markson et al.,
2013). The single cikA mutant has a slightly positive effect on light-dark survival
and has been shown capable of alleviating another LDC sensitive mutant, KaiA
(Welkie et al., n.d.). Therefore, it might be expected that the dacA mutant, which
is unable to fully clear oxidative stress and survive the night, would be
suppressed by cikA. The rpoD2 gene, which has by far the strongest synthetic
interaction with dacA in the sensitized screen, encodes a sigma factor that

causes changes in circadian rhythms when mutated (Tsinoremas et al., 1996).



136

However, the broader transcriptional and physiological effects of this mutation
are unknown. Based on these candidates, it is likely that adjustments of the
circadian clock can play a role in decreasing or improving the ability of the dacA
mutant to survive LDCs, potentially by modulating the oxidative stress to which

the mutant is exposed.

Discussion.

The Non-Essential Nature of c-di-AMP in S. elongatus. These
investigations establish the presence of c-di-AMP at physiologically relevant
levels in a cyanobacterium, and implicate the signaling nucleotide in response to
light-dark transitions (Fig. 4.3-2). C-di-AMP controls many aspects of bacterial
physiology and is essential in the bacterial phylum Firmicutes, where most
research on the molecule has taken place. The essentiality of c-di-AMP may be
related to its role in central metabolism. For instance, in L. monocytogenes the
central metabolic enzyme pyruvate carboxylase is regulated by c-di-AMP
(Sureka et al., 2014). More, recently it has been proposed that the essential
nature of c-di-AMP can be explained by high levels of another signaling
nucleotide, (p)ppGpp, that accumulates in the absence of ¢c-di-AMP, which in turn
leads to a starvation response (Whiteley et al., 2015). Importantly, this lethality in
the absence of c-di-AMP occurs in rich media, while minimal media are
permissive for the mutant. A possible explanation for S. elongatus viability with
the dacA mutation is that, as a photoautotroph, it grows independent of carbon

sources in the media. Regardless of its cause, the essential nature of c-di-AMP
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in many organisms has limited the toolset available for research on the
nucleotide (Xayarath and Freitag, 2015). Future genetic exploration of dacA in S.
elongatus will be facilitated by the viability of the dacA mutant.

The IRB-Seq Approach to Genetic Interaction Screens. The IRB-Seq
approach developed for this study enables high-throughput quantitative genetic
interaction screens with minimal sequencing prep. A second mutation is added
directly to an existing RB-TnSeq library, removing the need of previous
approaches to recreate a library in a new background and determine all of the
insertion loci for each screen (Fig. 4.3-4A)(Dejesus et al., 2017; Meeske et al.,
2015; van Opijnen et al., 2009). Traditional sequencing preparation used in
classical Tn-Seq studies is also avoided because survival of mutants is quantified
by PCR and sequencing of 20bp “barcodes” present in each transposon which
serve as identifiers for each clone in the mutant library (BarSeq) (Wetmore et al.,
2015). IRB-Seq requires only one PCR and ~1/100" of an lllumina HiSeq 4000
lane per sample to provide a genome-wide quantitative measure of genetic
interactions ranging from strong alleviation to full synthetic lethal. The advantage
of a quantitative alternative to previous suppressor screens used in c-di-AMP
research (Corrigan et al., 2011; Whiteley et al., 2015) is apparent in this study
because the lack of fitness phenotype of the dacA mutant under constant light,
and the moderate phenotype under the sensitizing LDCs, would have made
traditional suppressor screens difficult, if not impossible. In addition, the high-

throughput nature of this approach to genome wide genetic interaction screens
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makes it feasible to conduct IRB-Seq screens in replicate and under many
different sensitizing and permissive conditions.

llluminating the Role of c-di-AMP in Nighttime Survival. Elucidating the
survival of Cyanobacteria in LDCs is important for improved understanding of
both a phylum of tremendous ecological impact and an environmental challenge
relevant to all photosynthetic organisms. For ease of research, however, almost
all experiments on cyanobacteria have been conducted in simplifying constant-
light conditions. One of the findings of the LDC work that exists is that oxidative
stress management is likely a key component for surviving LDCs (Diamond et al.,
2017; Welkie et al., n.d.). Similar to the LDC-sensitive circadian clock mutants
rpaA and kaiA, lethality in the dacA mutant occurred specifically upon the onset
of night following high oxidative stress at dusk (Fig. 4.3-2). The death in the
mutant begins concurrent with a spike in c-di-AMP level in the WT. This
correlation suggests a role for the molecule in the day-night transition, a
seemingly crucial period for surviving LDCs in the mutants where it has been
studied (Fig. 4.3-1C). Notably, a number of the top synthetically interacting
genes determined by IRB-Seq are involved in oxidative stress mitigation.
Nevertheless, the pull-down of interactors of c-di-AMP did not identify circadian
clock proteins, and the survival phenotype of the dacA mutant in LDCs is less
severe than that of clock mutants rpaA and kaiA (Diamond et al., 2017; Welkie et
al., n.d.). Thus, although the dacA mutant is similar to LDC-sensitive clock
mutants in its oxidative stress and LDC sensitivity, these phenotypes may be

caused through a different pathway.
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A possible basis for the dacA mutant’s sensitivity to LDCs and oxidative
stress is through potassium transport. C-di-AMP has previously been associated
with multiple potassium transporters (Corrigan and Grundling, 2013). In this study
the Kdp potassium pump regulator, KdpD (Synpcc7942_1476), was one of three
proteins that binds c-di-AMP through both pull-down and DRaCALA. Two
proteins from the Trk family of potassium transporters (Synpcc7942_1080 and
Synpcc7942_1081) were found among the top synthetic interactions, suggestion
that the dacA mutant is sensitized to potassium import mutations. Altered
potassium transport previously has been shown in cyanobacteria to sensitize the
cells to the oxidative stress-producing conditions of high-light and heavy metal
exposure (Checchetto et al., 2012; 2016). Therefore, the canonical role of c-di-
AMP in potassium homeostasis may, in S. elongatus, be involved in the non-
canonical function of LDC survival through oxidative stress regulation.

Future Uses of IRB-Seq. IRB-Seq as an inexpensive and straightforward
approach to high throughput quantitative interaction screens and is suitable for
addressing an array of questions in different organisms. With 25 published RB-
TnSeq libraries (Price et al., 2016; Rubin et al., 2015) and many more under
development, there exists ample starting material for IRB-Seq screens assuming
the ability to deliver a second mutation into the host with high efficiency. The
experimental pipeline and analysis tools developed here should make this assay
feasible for genetic interactions of any gene of interest. A further use of IRB-Seq
arises from our finding that mutants of DNA uptake and homologous

recombination are underrepresented in the double mutant libraries. We are
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currently leveraging this finding to reveal the full set of non-transforming strains
to better understand the cellular machinery involved in competency and
homologous recombination. Furthermore, the addition of multiple mutations into
the library, or reporters paired with cell sorting, should enable screening for more
complex genetic interactions as well as well as identification of effects on gene

expression.
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Table 4.3-1. C-di-AMP binding candidates.

7942 ID Name Annotation Domains with known c-di-AMP binding*
Synpcc7942_2278 conserved hypothetical protein
Nitrogen regulatory PII-like, alpha/beta
Synpcc7942_1476 conserved hypothetical protein (IPR011322) {Choi:2015ey, Muller:2015kp,
Gundlach:2015iw, Campeotto:2015ch}
Synpcc7942_1729 potassium-transporting ATPase D chain Universal stress protein (PF00582) {Moscoso0:2015cz}
Universal stress protein (PF00582) {Moscoso0:2015cz}; Two CBS
Synpec7942_1588 CBS domains (PF00571) {Huynh:2016iw}
Synpcc7942_1416 topA DNA topoisomerase [
Synpcc7942_0420 conserved hypothetical protein
Synpcc7942_0546 nha4 Na+/H+ antiporter Universal stress protein (PF00582) {Moscos0:2015cz}
Synpcc7942_1322 psaE Photosystem I subunit IV
DHH (PF01368) and DHHA1 (PF02272)
Synpcc7942_1886 Exonuclease RecJ (Bai:2013gf} {Manikandan:2014iu}
Synpcc7942_1874 TrmH RNA methyltransferase TrmH, group 2

Synpcc7942_0301

Single-stranded DNA-binding protein

*Domains in the proteins pulled-down with c-di-AMP probes, for which literature exists showing interaction with the molecule in other organisms.
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Fig. 4.3-1. Presence, synthase, and light dependence of c-di-AMP in S.
elongatus. (A) DacA protein, with membrane association determined by phobius
(Kall et al., 2004) and the DAC domain identified by Pfam (PF02457)(Finn et al.,
2016). (B) Intracellular c-di-AMP measured by LC-MS for WT and dacA
transposon mutant (8S16-L9). The error bars represent standard error (SE) of
five time points taken throughout a 24 hour light-dark cycle in quadruplicate. ***P
< 107 (Mann-Whitney-Wilcoxon Test). (C) C-di-AMP quantities upon the onset of
darkness in WT, normalized to average value of replicate. Error bars represent
SE of four replicates.
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Fig. 4.3-2. Sensitivity of dacA mutant to LDCs. (A) Growth of WT and dacA
transposon mutant (8S16-L9) measured by spot plate under constant light and
LDCs. Colony area was measure with Imaged (Schindelin et al., 2015). ***P < 10
® (Mann-Whitney-Wilcoxon Test). (B) Growth curve of WT and dacA mutant in
liquid culture in bioreactors under LDCs. (C) High resolution measurement of
survival of WT and dacA mutant throughout one LDC. Survival is quantified by
CFU present at each time point normalized to CFU present at the first time point
for each replicate. (D) ROS measured by H2DCFDA fluorescence Normalized by
ODysp. Error bars in all figure parts indicate SE of four replicates.
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Fig. 4.3-3. Identifying c-di-AMP binding proteins. (A) Protein interaction with
c-di-AMP bound beads ordered by fold change (c-di-AMP sepharose
beads/control sepharose beads). Top binding candidates ( >4 fold change) all
have fdr < .05. (B) Direct binding of candidate proteins expressed in E. coli
determined by DRaCALA on cell lysate. Error bars indicate SE of two replicates.
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Fig. 4.3-4. IRB-Seq approach to genetic interaction screens. (A) Each mutant
in the starting library (Rubin et al., 2015) contains a loss of function mutation with
a unique identifier sequence, “barcode”, that has been previously linked to the
mutation’s locus. After the library is thawed the barcodes present in each mutant
are sequenced using next-generation sequencing to determine their baseline
level. (B) The library is then split into two aliquots with one receiving an
experimental mutation, and one receiving a control mutation. After outgrowth,
these two aliquots are sequenced for barcodes, which allow for identification of
genetic interactions between the experimental mutation and the constituent
mutants of the library. (C) The double mutant library is again outgrown under a
condition of stress for the introduced mutant, and again sequenced to determine
genetic interactions under this sensitized condition.
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Fig. 4.3-5. DacA genetic interactions using IRB-Seq. (A) Validation of double

mutation screening by comparison to previous LDC sensitivity screen. Each

circle represents a gene’s score for LDC sensitivity from a previously conducted

screen on LDCs in the single mutant library (x-axis) (Welkie et al., n.d.),

compared to a similar screen conducted in the double mutant library containing
the control mutation (y-axis). A linear regression analysis was used to determine

correlation. (B and C) Plots of (B) genetic interactions and (C) LDC sensitized
genetic interaction of library genes with dacA. Genes above horizontal line

dashed line have FDR<.01 (Linear mixed-effects model). Genes with interaction

scores greater than absolute value (B?

dashed lines. All points with FDR<10"

1 or (C) .5 are indicated by vertical
% are plotted as FDR=10"°,
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CHAPTER 5: Conclusion

5.1 Discussion

In this work we applied traditional genomics, biochemical assays,
metabolomics, proteomics, and in silico modeling, and developed RB-TnSeq in S.
elongatus to expand our understanding of two central unknowns in
cyanobacterial biology. The first is the physiology of light-dark cycle (LDC)
survival. In this area we identified the full set of genes that cause impair dark
survival under LDCs when mutated. In addition, we delved in to the mechanism
of LDC involvement for the circadian clock genes: kaiC, rpaA, and kaiA. Finally,
we discovered the presence and activity of c-di-AMP in cyanobacteria, the
cyclase responsible for its synthesis, and the signaling nucleotide’s role in LDC
physiology.

The second fundamental unknown in cyanobacterial biology that we have
explored is the large number of genes without functional annotations. To address
this gap we have used RB-TnSeq to conduct more than 200 quantitative whole-
genome mutant screens under approximately 50 experimental conditions. The
data produced has allowed approximately ~40% of genes to be connected to
phenotypes.

Common themes in the four studies presented here allow us to identify
overarching principles of LDC survival. Mutants sensitive to LDCs consistently
show increased reactive oxygen species (ROS). In the LDC-sensitive mutants

where we have quantified ROS, we find that values are
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significantly higher than WT during the day, but cause death only upon the onset
of darkness. These findings are supplemented by RB-TnSeq and metabolomics
data which together suggest that increased ROS is caused by metabolic
imbalance, which is likely not lethal during the day because of ample antioxidant
in the form of NADPH produced by photosynthesis. However, at night upon the
immediate cessation of NADPH-producing photosynthesis, but in the presence of
the leftover ROS caused by it, mutants that are unable to properly scavenge
ROS are no longer viable. One likely source of this metabolic imbalance that is
common to many LDC-sensitive mutants is an inability to activate the oxidative
pentose phosphate pathway, the sole source of NADPH at nighttime (Knoop et
al., 2013; Waldbauer et al., 2012). Therefore, the studies contained in this
dissertation implicate inability to clear ROS at nighttime as a key factor in LDC
sensitivity.

The RB-TnSeq approach to whole genome screens in S. elongatus was
developed here with the original aim of contributing to LDC research. It has
achieved this purpose, but also emerged as a powerful tool for broader functional
annotation. From it we have measured the contributions to fithess of 96% of
protein-coding genes, approximately half of noncoding RNAs (ncRNAs), and
intergenic regions genome-wide. We have been able to contextualize these data
by overlaying them on a genome-wide metabolic model. This comparison
revealed members of the essential gene study that were surprising in their
essential or non-essential nature. In the process we were able to improve the

accuracy of the metabolic model by taking into account the RB-TnSeq in vivo
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data. In addition, the hundreds of screens we have conducted on the library have
allowed us to connect more than 40% of genes with experimental conditions in
which they are important for survival, extending functional predictions. Thus, the
RB-TnSeq approach has proven a powerful lens for viewing gene function in the

light-driven lifestyle.

5.2 Future Directions

From this work we have proposed a model of LDC physiology where in the
management of oxidative stress at night largely through the oxidative pentose
phosphate pathway is key to survival. The findings that suggest this mechanism,
however, are largely indirect or correlation based. It will be important in future
studies to determine the mechanism and casual nature of oxidative stress on
LDC survival. This goal could be accomplished by artificially increasing
antioxidant availability, and specifically NADPH, at night in LDC-sensitive
mutants and assaying for suppression. This step along with more observational
work into the aberrations in metabolism in LDC-sensitive mutants will lead to a
more mechanistic understanding of the role of oxidative stress in LDC physiology.

There is great potential for future applications of RB-TnSeq and IRB-Seq
in S. elongatus. The most obvious is further whole-genome fitness screens. With
the pipeline now in place for RB-TnSeq in S. elongatus, each whole-genome
mutant screen now requires a PCR reaction and 1/50™ of an lllumina HiSeq 4000
lane. As a result, for any project in which the survival of loss-of-function mutants

under a spectrum of experimental conditions would likely be revealing, the hurdle
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for conducting a quantiative whole-genome mutant screen is extremely low. As
an example, testing which non-essential mutations cause hypersensitivity or
resistance to a panel of 50 grazers would be straightforward experimentally and
cost less than $1000 in sequencing. Regardless of the condition, each new
screen is valuable in itself because it provides new phenotype-to-genotype
connections, which in turn provide the raw material for useful meta-analysis of
genes across conditions (Price et al., 2016)

If the phenotype of interest is not fitness, the library can still have utility. As
shown in our screen for biofilm formers, when mutants that display the phenotype
of interest can be separated from those that are not, RB-TnSeq can be used to
discover contributing genes. While biofilms provide inherent methods for their
separation, other phenotypes such as cell size or protein expression may be
harder to assay using RB-TnSeq. However, separation techniques such as cell
sorting may allow screens to be conducted with more complex phenotypes. In
this case, characteristics distinguishable by fluorescence such as size and shape
can be screened. In addition, having now shown that secondary mutations can
be added to the library, it is feasible to cell sort based on expression using a
reporter. In this way, screens may be conducted for a broad range of phenotypes
beyond survival.

Another use of Rb-TnSeq developed here is whole genome high-
throughput quantitative interaction screens (IRB-Seq). This approach enables the
identification and quantification of alleviating or synthetic interactions with a

mutant of interest on a genome-wide scale. IRB-Seq is considerably quicker and
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less expensive than previous transposon sequencing-based methods of
interaction screening (Dejesus et al., 2017). In addition, the value of IRB-Seq’s
sensitivity and quantitative nature is clear for mutants, such as dacA, for which
the phenotype is not strong. Finally, the high-throughput nature of the approach
makes it feasible to test genetic interactions under many different conditions. The
ability to inexpensively and easily discover the global network of interactions with
a gene of interest, as well as the pathway information inherent to this data, has
obvious value to many projects. Based on early interest in the experimental and
computational pipeline developed here for IRB-Seq, we expect it to be valuable
in our S. elongatus library and applied in other RB-TnSeq libraries.

Data analysis is another area of RB-TnSeq where there is great potential
for improvement. While we have mined RB-TnSeq for essential loci, conditionally
important genes, and metabolic modeling, there are other valuable perspectives
through which to view the data. Perhaps the most exciting of these is considering
mutant fithess information beyond protein-coding genes. Conditional fitness for
mutants in the hundreds of screens conducted is available genome-wide, but has
only been analyzed for those genes that encode proteins. There is much more to
the genome than these protein-coding genes. Consider that there are
approximately 1,600 ncRNAs in the S. elongatus genome that are non-ribosomal
and are not tRNAs (Vijayan et al., 2011). Only three of these currently have
functional annotations in the National Center for Biotechnology Information
(NCBI). Connecting even a small portion of these ncRNAs to the conditions in

which they are important for survival represents a massive step forward in



158

assigning meaning to this genetic material. The same analysis could also be
done for un-annotated intergenic regions, which similarly represent complete
unknowns. In this way, the library could be applied to the genomic regions
between protein-coding genes to further illuminate functional knowledge gaps in
the S. elongatus genome.

Another valuable use of RB-TnSeq data is its overlay onto other whole-
genome datasets. This approach is taken here by using the essential-gene
dataset to create an improved metabolic model in S. elongatus. However, there
is now a repository of conditional data of hundreds of screens that could guide
further improvement to metabolic models, as well as insights into the physiology
of S. elongatus. As an example, a model built for the survival of S. elongatus in
LDCs could be compared to the set of RB-TnSeq screens done in these
conditions. This comparison would improve the accuracy of that model, which
would in turn provide a better understanding of the essential metabolic functions
for LDC survival.

Moving beyond S. elongatus, there is likely to be great value in the
development of RB-TnSeq libraries in other cyanobacteria and other
photosynthetic organisms. Just as the first genome became much more useful
because of the presence of a second, comparisons among species of the
genotype-to-phenotype landscapes created by RB-TnSeq have already proven
valuable (Price et al., 2016). One concrete outcome of having more
photosynthetic RB-TnSeq libraries would be a better understanding of the core

functionalities required for photosynthesis. Among other applications, these data
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would be invaluable to de novo synthesis of a photosynthetic organism, just as
similar datasets have provided the foundation for building a minimal heterotrophic
organism (Hutchison et al., 2016). More generally, RB-TnSeq data across a
diversity of photosynthetic organisms would allow processes that are currently
understood only through model heterotrophic paradigms to be better adapted to

the photosynthetic lifestyle.
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