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Abstract
Collaboration requires agents to coordinate their behavior on
the fly, sometimes cooperating to solve a single task together
and other times dividing it up into sub-tasks to work on in par-
allel. Underlying the human ability to collaborate is theory-
of-mind, the ability to infer the hidden mental states that drive
others to act. Here, we develop Bayesian Delegation, a decen-
tralized multi-agent learning mechanism with these abilities.
Bayesian Delegation enables agents to rapidly infer the hid-
den intentions of others by inverse planning. These inferences
enable agents to flexibly decide in the absence of communi-
cation when to cooperate on the same sub-task and when to
work on different sub-tasks in parallel. We test this model in
a suite of multi-agent Markov decision processes inspired by
cooking problems. To succeed, agents must coordinate both
their high-level plans (e.g., what sub-task they should work on)
and their low-level actions (e.g., avoiding collisions). Bayesian
Delegation bridges these two levels and rapidly aligns agents’
beliefs about who should work on what. Finally, we tested
Bayesian Delegation in a behavioral experiment where partici-
pants made sub-task inferences from sparse observations of co-
operative behavior. Bayesian Delegation outperformed heuris-
tic models and was closely aligned with human judgments.
Keywords: coordination; social learning; inverse planning;
Bayesian inference

Introduction
Working together enables a group of agents to achieve
together what no individual could achieve on their own
(Tomasello, 2014; Henrich, 2015). However, collaboration
is challenging as it requires agents to coordinate their be-
haviors. In the absence of prior experience, social roles,
and norms, we still find ways to negotiate our joint behav-
ior in any given moment to work together with efficiency
(Tomasello, Carpenter, Call, Behne, and Moll, 2005; Misyak,
Melkonyan, Zeitoun, and Chater, 2014). Whether we’re writ-
ing a scientific manuscript with collaborators or preparing a
meal with friends, core questions we ask ourselves are: how
can I help out the group? What should I work on next, and
with whom should I do it with? Coordination unfolds over
many timescales and these commonsense abilities are at the
core of human social intelligence. In order to build social ma-
chines we must engineer AI systems that can coordinate with
us and with each other as rapidly and as flexibly as people do
(Lake, Ullman, Tenenbaum, and Gershman, 2017).

Central to this challenge is that agents’ reasoning about
what they should do in a multi-agent context requires knowl-
edge about the future actions and intentions of others. When
∗indicates equal contribution

agents, like people, make independent decisions, these inten-
tions are unobserved. Actions can reveal information about
intentions, but predicting them is difficult because of uncer-
tainty and ambiguity – multiple intentions can produce the
same action. In humans, the ability to understand intentions
from actions is called theory-of-mind (ToM). Humans rely on
this ability to cooperate in coordinated ways, even in novel
situations (Tomasello et al., 2005; Shum, Kleiman-Weiner,
Littman, and Tenenbaum, 2019). We aim to build agents that
have these kinds of abilities and show that they are powerful
building blocks for coordinated cooperation.

In this work, we study these abilities in the context of mul-
tiple agents cooking a meal together, inspired by the video
game Overcooked (Ghost Town Games, 2016). These prob-
lems have hierarchically organized sub-tasks and share many
features with other object-oriented tasks such as construction
and assembly. Cooking tasks are challenging because of the
sheer variation that is present: no kitchen or recipe is ex-
actly alike, so successful collaboration requires flexible and
abstract mechanisms for coordination. These tasks highlight
three coordination challenges that any decentralized multi-
agent system must grapple with: (A) Divide and conquer:
agents should work in parallel when sub-tasks can be car-
ried out individually, (B) Cooperation: agents should work
together on the same sub-task when most efficient or nec-
essary, (C) Spatio-temporal movement: agents should avoid
getting in each other’s way at any time.

To illustrate, imagine the process required to make a sim-
ple salad: first chopping both tomato and lettuce and then
assembling them together on a plate. Two people might col-
laborate by first dividing the sub-tasks up: one person chops
the tomato and the other chops the lettuce. This doubles
the efficiency of the pair by completing sub-tasks in paral-
lel (challenge A). On the other hand, some sub-tasks may re-
quire multiple to work together. If only one person can use
the knife and only the other can reach the tomatoes, then they
must cooperate to chop the tomato (challenge B). In all cases,
agents must coordinate their low-level actions in space and
time to avoid interfering with others and be mutually respon-
sive (challenge C).

Contributions
We develop Bayesian Delegation, a learning mechanism that
enables agents to rapidly infer the sub-tasks of other agents
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(a) (b) (c)

Figure 1: The Overcooked environments. The movable ob-
jects start in the same locations; only the counters differ.
Different recipes are possible in each environment, allow-
ing for variation in high-level goals while keeping the low-
level navigation challenges fixed. In (a) Open-Divider, agents
can move between both sides of the kitchen. In (b) Partial-
Divider, agents can only pass through a narrow bottleneck. In
(c) Full-Divider, agents are confined to one half of the space.

based on theory-of-mind. It uses Bayesian inference to
capture uncertainty over other agents’ intentions and com-
putes the likelihood of different intentions by inverse plan-
ning. We quantitatively study the behavior of this mecha-
nism in a suit of 2D grid worlds. When Bayesian Delega-
tion is used in conjunction with a model-based reinforcement
learner, it achieves ad-hoc decentralized coordination across
sub-tasks and overcomes the coordination challenges high-
lighted above. Finally, behavioral experiments show that the
inferences made by our model closely align with those made
by humans.

Related Work
Our work builds on a long history of using cooking tasks
for evaluating multi-agent and AI systems and coordinating
multi-agent plans across hierarchies of sub-tasks (Grosz and
Kraus, 1996; Cohen and Levesque, 1991; Tambe, 1997).
Most recently, Overcooked has inspired work multi-agent
deep learning where agents are trained using self-play and
human data (Carroll, Shah, Ho, Griffiths, Seshia, Abbeel,
and Dragan, 2019). This approach requires large amounts
of training experience for a specific environment, and studies
only one task structure. In contrast, the abstractions in our
agents generalize to multiple tasks and environments includ-
ing those that they have no prior experience with.

Bayesian Delegation is inspired by the cognitive science
of how people coordinate their cooperation in the absence of
communication (Kleiman-Weiner, Ho, Austerweil, Littman,
and Tenenbaum, 2016). Our approach most closely fol-
lows from recent work on Bayesian theory-of-mind (ToM)
(Ramırez and Geffner, 2011; Nakahashi, Baker, and Tenen-
baum, 2016; Baker, Jara-Ettinger, Saxe, and Tenenbaum,
2017) and learning statistical models of others (Barrett,
Stone, Kraus, and Rosenfeld, 2012; Melo and Sardinha,
2016). Our hierarchical planning architecture also builds on
previous work linking low-level navigation to high-level sub-
tasks (Amato, Konidaris, Kaelbling, and How, 2019).

Our approach is fully decentralized in both task delega-
tion and action coordination, thus contrasting with existing
schemes for allocating tasks such as a centralized auctioneers
(Brunet, Choi, and How, 2008; McIntire, Nunes, and Gini,
2016) or consensus approaches (see (Brunet et al., 2008)
for a review). It draws from other decentralized multi-agent
planning approaches in which agents aggregate the effects
of others and best respond (Claes, Robbel, Oliehoek, Tuyls,
Hennes, and Van der Hoek, 2015). These prior works fo-
cus on spatially distributed tasks, however, which addresses
challenges A and C but not B. We extend them by considering
effects over unobserved sub-tasks instead of being limited to
observable features (i.e. location) and generalizing to object-
oriented formalism which increases planning complexity.

Multi-Agent MDPs with Sub-Tasks
A multi-agent Markov decision process (MMDP) with sub-
tasks is described as a tuple 〈n,S ,A1...n,T,R,γ,T 〉 where n
is the number of agents (Boutilier, 1996). s ∈ S are object-
oriented states specified by the locations, status and type of
each object and agent in the environment (Diuk, Cohen, and
Littman, 2008). The environment state is fully observable to
all agents. A1...n is the joint action space with ai ∈ Ai be-
ing the set of actions available to agent i; each agent chooses
its own actions independently. T (s,a1...n,s′) is the transition
function which describes the probability of transitioning from
state s to s′ after all agents act a1...n. R(s,a1...n) is the reward
function shared by all agents and γ is the discount factor. Each
agent aims to find a policy πi(s) that maximizes expected dis-
counted reward. Although agents fully observe the state of
the environment, they do not observe the policies π−i(s) (−i
refers to all other agents except i) or any other internal repre-
sentations of others.

Unlike traditional MMDPs, the environments we study
have a partially ordered set of sub-tasks T = {T0 . . .T|T |}.
Each sub-task Ti has preconditions that specify when a sub-
task can be started, and postconditions that specify when it is
completed. They provide structure when R is very sparse and
are also targets of high-level coordination between agents. In
this work, all sub-tasks can be expressed as Merge(X,Y), that
is, to bring X and Y into the same location. Importantly, Merge
does not specify how the merge should happen or who should
do the sub-task. In the cooking environments we study here,
the partial order of sub-tasks refers to a “recipe” (see Figure 2
for recipes and their partial orders of sub-tasks).

Coordination Test Suite in Overcooked
We now describe the environment test suite for evaluating the
multi-agent models. Each environment is a 2D grid-world
kitchen containing various objects and posing different coor-
dination challenges, as shown in Figure 1. Agents can move
north, south, east, west or stay still. All agents move simul-
taneously. They cannot move through each other, into the
same space, or through counters. If they try to do so, they
remain in place instead. The environment terminates after ei-
ther the agents deliver the finished recipe to the star square
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(a)

Goal
Delivery[Plate[Tomato.chopped]]

Example Plan

Merge(Tomato.unchopped, Knife)
Merge(Tomato.chopped, Plate[])
Merge(Plate[Tomato.chopped], Delivery)

(b)

Goal
Delivery[Plate[Tomato.chopped],

Plate[Lettuce.chopped]]

Example Plan

Merge(Tomato.unchopped, Knife)
Merge(Tomato.chopped, Plate[])
Merge(Plate[Tomato.chopped], Delivery)
Merge(Lettuce.unchopped, Knife)
Merge(Lettuce.chopped, Plate[])
Merge(Plate[Lettuce.chopped], Delivery)

(c)

Goal
Delivery[Plate[Tomato.chopped,

Lettuce.chopped]]

Example Plan

Merge(Tomato.unchopped, Knife)
Merge(Lettuce.unchopped, Knife)
Merge(Tomato.chopped, Lettuce.chopped)
Merge([Tomato.chopped Lettuce.chopped],
Plate[])
Merge(Plate[Tomato.chopped,
Lettuce.chopped], Delivery)

Figure 2: Recipes and example partial orderings. All sub-tasks are expressed in the Merge operator. In (a) Tomato, the task is
to take an unchopped tomato and then chop, plate, and deliver it. In (b) Tomato+Lettuce, the task builds on Tomato and also
requires chopping, plating, and delivering a piece of lettuce. In (c) Salad, the two chopped foods are combined on a single plate
and delivered. The example plans show one possible ordering for completing the recipe, but other permutations are possible.

or 100 time steps elapse. The kitchens are built from coun-
ters that may contain both moveable food and dishware (e.g.,
tomatoes, lettuce, plates) and immoveable stations (e.g. knife
stations). Agents may interact with objects by picking them
up, putting them down, or transforming foods into a chopped
state at a knife station. Agents can only carry one object at a
time and cannot directly pass to each other.

This test suite allows us to evaluate models based on the co-
ordination challenges raised in the introduction. The recipes
assess rapid convergence–for instance, Salad can be assem-
bled in multiple ways and agents’ plans must align–and the
spatial layouts provide opportunities for multiple agents to
work together advantageously and/or avoid navigational ob-
stacles. Thus, these environments enable us to study multi-
agent coordination across levels of hierarchical planning.

Computational Model
We introduce a novel learning algorithm for multi-agent co-
ordination based on probabilistic inference over sub-tasks
called Bayesian Delegation. A high-level planner decides
which sub-task should be done next, Bayesian Delegation
models latent intentions in order to dynamically decide
whether to divide-and-conquer or to cooperate, and a low-
level planner finds approximately optimal policies for each
sub-task. Note that planning is decentralized at both levels,
i.e. agents plan and learn for themselves without sharing in-
formation with each other.

High-Level Planning (Sub-Task)
Inferring the sub-tasks others are working on enables each
agent to efficiently select a single sub-task when multiple
are possible. Bayesian Delegation works by having an agent
maintain and update a belief state over the possible sub-tasks
that all agents (including itself) are likely working on based
on a history of observations.

Formally, Bayesian Delegation maintains a probability dis-
tribution over task allocations ta. For example, if there are

two sub-tasks ([T1,T2]) and two agents ([i, j]), then ta = [(i :
T1, j : T2),(i : T2, j : T1),(i : T1, j : T1),(i : T2, j : T2)] where
i : T1 means that agent i is “delegated” to sub-task T1. Thus, ta
includes the possibility of divide and conquer (separate sub-
tasks) and cooperation (shared sub-tasks). If all agents pick
the same ta ∈ ta, then they will easily coordinate. However,
in our environments, agents cannot communicate before or
during execution, so they maintain uncertainty about which
ta the group is coordinating on, P(ta).

At every time step, each agent selects the most likely al-
location ta∗ = argmaxta P(ta|H0:T ), where P(ta|H0:T ) is the
posterior over ta after having observed a history of actions
H0:T = [(s0,a0), . . .(sT ,aT )] over the first T timesteps, and
at is all agents’ actions at time step t. The agent then plans
the next best action according to ta∗ using the low-level plan-
ner. This posterior is computed at time step T according to
Bayesian inference:

P(ta|H0:T ) ∝ P(ta)P(H0:T |ta) (1)

= P(ta)
T

∏
t=0

P(at|st , ta)

where P(ta) is the prior over ta and P(at|st , ta) is the like-
lihood of actions at time step t for all agents. The priors
are initialized to the inverse distance between the two objects
specified in the Merge operator. Note that these belief updates
do not explicitly consider what each agent knows about their
own sub-tasks at time T −1, but rather what is known by all,
i.e., to a third-party observer (Nagel, 1986). The likelihood of
a given ta is the likelihood that each agent is following their
assigned task in that ta. It is computed as:

P(at|st , ta) ∝ ∏
i:T ∈ta

exp(β∗Q∗Ti
(s,ai)) (2)

where Q∗Ti
(s,ai), is the expected future reward of a towards

the completion of sub-task Ti for agent i. This is computed
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by low-level planning (see below) with a soft-max to account
for non-optimal and variable behavior. β controls the degree
to which an agent believes other agents are optimizing. When
β −→ 0, the agent believes others are acting randomly. When
β −→ ∞, the agent believes others are perfectly maximizing.
Since the likelihood is computed by planning, this approach
to posterior inference is called inverse planning. Note that
even though agents see the same history of states and actions,
their Bayesian updates are not necessarily the same because
updates come from QTi , which is affected by randomness in
exploration and the computational limit set on exploration.

Low-Level Planning (Action)
Low-level planning grounds sub-tasks into context-sensitive
actions and provides the critical likelihood for Bayesian Del-
egation (see Equation 1). Low-level planning takes the ta se-
lected by Bayesian Delegation and the next best action while
modeling the movements of other agents. In this work, we use
bounded real-time dynamic programming (BRTDP) extended
to a multi-agent setting (McMahan, Likhachev, and Gordon,
2005). We use BRTDP to express V b

Ti
(s) = mina∈Ai Qb

Ti
(s,a)

and Qb
Ti
(s,a) = CTi(s,a)+∑s′∈S T (s′|s,a)V b

Ti
(s′) in terms of

cost, where C is cost and b = [l,u] is the lower and upper
bound respectively. Each timestep is penalized by 1 and
movement (as opposed to staying still) by an additional 0.1.
This cost structure incentivizes efficiency. For details on how
BRTDP updates on V and Q, see (McMahan et al., 2005).

Agents can use ta∗ from the high-level planner to address
two types of low-level coordination problems in relation to
others: (1) avoiding collisions while working on distinct sub-
tasks, and (2) cooperating as necessary to solve a shared sub-
task. Each ta provides each agent i a hypothesis about the
sub-tasks carried out by others, T−i. When Ti 6= T−i, agent
i addresses the first coordination problem: it creates simple
models of the others performing T−i and best responds. This
process finds level-0 policies of other agents, π0

T−i
(s), which

assume that all other agents except for −i are static. These
level-0 models are used to reduce the multi-agent transition
function to a single agent problem T ′ where the transitions
of the other agents are assumed to follow the level-0 poli-
cies, T ′(s′|s,a−i) = ∑ai T (s′|s,a−i,ai)∏A∈−i π0

TA
(s). Running

BRTDP on this transformed environment finds an approxi-
mately optimal level-1 policy π1

Ti
(s) for agent i that best re-

sponds to the level-0 models of the other agents.
When Ti = T−i, agent i address the second coordination

problem, i.e. it attempts to work together on the same sub-
task with another agent. The agent simulates a fictitious cen-
tralized planner that controls the actions of all agents working
together on the same sub-task (Kleiman-Weiner et al., 2016).
This transforms the action space: if both i and j are work-
ing on Ti, A ′ = ai×a j. Joint policies πJ

Ti
(s) can similarly be

found by single-agent planners such as BRTDP. An agent can
find its own role by playing the action assigned to it under
πJ

Ti
(s). Cooperative planning enables emergent decentralized

cooperative behavior—agents pass objects across the coun-

ters when efficient even though there was nothing about pass-
ing encoded into the environment and different agents may
find different policies.

Computational Experiments
We conduct a series of computational simulations to test our
agents’ abilities to generate coordinated behavior in our suite
of cooking environments. Our aim is to investigate how
Bayesian Delegation combined with joint planning is im-
portant for successful coordination. We evaluate our model
alongside agent “lesions” that use simplified representations
or alternative planning strategies. All tested models take ad-
vantage of the sub-task structure because end-to-end opti-
mization of the full recipe never succeeded under our com-
putational budget.

Experimental Setup
We first describe the lesioned agents. The first alternative
agent lesions Bayesian Delegation (NBD). NBD starts with the
same priors over sub-tasks as the full agent but these priors
are not updated during interaction. This allows us to investi-
gate the importance of dynamically updating beliefs through-
out the interaction. The second alternative model lesions joint
planning (NJP). NJP has Bayesian Delegation to update be-
liefs, but it does not have the capacity to plan cooperatively
with another agent on the same sub-task. A third alterna-
tive model lesions both Bayesian Delegation and joint plan-
ning (NBD+NJP). NBD+NJP selects the best available sub-task
greedily without considering the sub-tasks the other agents
are working on.

When any of the agents did not have a valid sub-task, they
were programmed to take an action selected uniformly at ran-
dom with probability 0.5 and to stay in place otherwise. This
greatly improves the performance of the lesioned agents since
without this noise, they often get stuck and block each other
from completing the recipe. It has no effect on the full agent.

To highlight the differences between our model and the al-
ternatives, let us consider the example from the High-Level
Planning section with two possible sub-tasks ([T1,T2]) and
two agents ([i, j]). Our model would propose ta = [(i : T1, j :
T2),(i : T2, j : T1),(i : T1, j : T1),(i : T2, j : T2)] where i : T1
means that agent i is assigned to sub-task T1. NBD proposes
the same ta, but never updates its beliefs. NJP does not allow
for shared sub-tasks, and thus reduces its set to ta= [(i : T1, j :
T2),(i : T2, j : T1)]. Lastly, NBD+NJP makes inferences and
plans for itself so each agent i proposes ta = [(i : T1),(i : T2)].
Note that j does not appear here because this lesion does not
make inferences over other agents.

All simulations are replicated with the same 10 random
seeds. Agents were evaluated in 9 combinations of kitchens
and recipes (3 kitchens x 3 recipes). We measure performance
by the time to complete the full recipe. BRTDP was run until
the bounds converged (α = 0.01,τ = 2 see (McMahan et al.,
2005) for usage) or for a maximum of 100 trajectories each
with up to 75 roll-outs for all models. The softmax during
inference used β = 0.9.
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Figure 3: Number of timesteps needed to complete each
kitchen-recipe composition (lower is better). The row shows
the kitchen and the column shows the recipe. The full model
is compared to three alternatives described in the text. The
dashed lines show the optimal performance given no uncer-
tainty in planning. Error bars are the standard error of the
mean.

Results

Figure 3 shows the empirical results for recipe completion
time, where our agent outperforms the alternatives on most
compositions except for Tomato+Lettuce in Open-Divider.
All four agents are comparable when given the recipe Tomato
in Open-Divider. However, when faced with more complex
situations, the lesioned agents failed to complete some of the
tasks. For example, without the ability to do joint planning,
NJP and NBD+NJP fail in Full-Divider because they cannot
coordinate low-level actions to complete the sub-tasks, all of
which require ad-hoc cooperation to pass objects across the
counters. Here, NBD is comparable to the full agent, because
inference does not contribute much when spatial constraints
necessitate joint planning for all sub-tasks.

Without the ability to reason about other agents, NBD and
NBD+NJP often fail to coordinate their high-level goals. This
is particularly clear for the Salad recipe which requires merg-
ing three distinct objects. The lesioned agents frequently get
stuck in cycles in which both agents are holding objects that
must be merged. They cannot converge on a sequence of ac-
tions in which one agent puts their object down in order for
the other to pick it up and use it. This highlights one key
purpose of Bayesian Delegation – it can break symmetries
by enabling actions that involve yielding to others so long as
they make net progress towards the completion of one of the
sub-tasks. An agent that only considers its own intentions is
highly unlikely to coordinate in this way. With Bayesian Del-

egation, agents can infer another agent’s intentions and yield
to them. This results in an agent giving up its own task to
complement its team when needed.

In the Partial-Divider environments, NBD outperforms NJP,
which both take longer than the full agent but are faster than
the greedy agent NBD+NJP. This suggests that in settings in
which cooperation on sub-tasks is not necessary but is help-
ful, both joint planning and theory-of-mind inference abilities
are important for successful coordination. Joint planning may
be more important in these specific contexts since it opens up
possibilities for sub-tasks to be completed in a more efficient
manner.

Interestingly, Open-Divider poses the most difficulty for
our agent. This environment is the most unconstrained, so
agents’ actions become more ambiguous and they cannot eas-
ily use the counters to coordinate their roles. For instance,
in Figure 1a, the blue agent might move down in order to
either grab a plate, move around the red agent towards the
food items, or simply move out of the red agent’s way. The
full agent performs poorly on Tomato-Lettuce, which has
the most sub-task combinations, possibly because the model
must maintain beliefs over all sub-task allocations in spite of
the ambiguity of actions. On the other hand, it outperforms
alternatives for Salad, which has fewer sub-tasks but has the
added complexity of merging three objects together. Com-
pared to NBD, our full model dynamically changes to new
tasks when other agents are close to completing their tasks.
This feature prevents multiple agents from working on the
same task in uncoordinated ways.

Human Experiments
We hypothesize that in addition to enabling better coordi-
nated performance, Bayesian Delegation is human-like in its
ability to rapidly infer the sub-tasks others are working on.
To test this hypothesis, we designed a novel behavioral ex-
periment where human participants observed the behavior of
other agents and then made inferences about the sub-tasks
each agent was carrying out. We compared the human in-
ferences to those made by Bayesian Delegation as well as
heuristics.

Experiment Setup
We designed six scenes of two agents working together in
the same scenarios as in the previous experiment (Figure 4).
These scenes include a variety of coordinated plans such as
instances of clear task allocation (both joint planning and
divide-and-conquer) and of ambiguous plans where the agent
intentions become more clear over time as the interaction
continues. Participants (n = 45) recruited through Amazon
Mechanical Turk watched the agents interact and at different
time points throughout the experiment made judgments about
which sub-tasks each agent was working on. Participants
made judgments on a continuous slider [0, 1] with endpoints
labeled “not likely at all” to “certainly”. Beliefs were normal-
ized into a probability distribution for each subject and then
averaged across all subjects. These averages were compared
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Figure 4: Scenarios and results for the human behavioral ex-
periment. Each agent’s past trajectory is illustrated by a dot-
ted path, with sharp curves into counters representing picking
up or putting down an object. To the right of each trajectory
are the inferences made by the model and the average partici-
pant inference. The legend notes the possible task allocations
of agents (1 or 2) working individually or together (Joint): C
= chop, P = plate, D = deliver, T = tomato, L = lettuce, and S
= salad. E.g., 1:C(T) refers to Agent 1 chopping the tomato.
Error bars are the standard error of the mean.

to the beliefs formed by our model (P(ta|H)) after observing
the same trajectory H. Each participant made 51 judgments.

Results

Figure 4 shows participant and model inferences for each
scenario at each time step. Overall, there is a close cor-
respondence between model and human judgments. Fig-
ure 5 quantifies this comparison. The inferences made by
Bayesian Delegation correlate closely with the human judg-
ments (R = 0.732). We also compared the full model to two
lesions. Neither lesion does Bayesian updating based on the
observed agent interaction. The first lesion uses a spatial
prior but does not use the likelihood to update beliefs over
the course of the trajectory. The second uses a uniform prior
and does not update. Figure 5 shows that these lesions are
less aligned with the human judgments illustrating the impor-
tance of updating beliefs over time for accurately modeling
human judgments of coordinated interactions.
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Figure 5: Correlation between human and model inferences.
(left) full model, NBD lesions with (middle) spatial or (right)
uniform priors.

Discussion

We developed a new set of multi-agent, object-oriented cook-
ing challenges that require coordinated strategies to success-
fully complete. We developed an abstract approach inspired
by and consistent with human theory-of-mind: Bayesian Del-
egation, which rises to these challenges and learns to coor-
dinate in a decentralized way. Bayesian Delegation enables
coordination through two key mechanisms: (1) Theory-of-
mind through inverse planning that enables agents to rapidly
infer the sub-tasks of others. With this, each agent dynami-
cally aligns its beliefs about who is doing what, determining
when it should help another agent on the same sub-task and
when it should work in parallel on other sub-tasks. (2) Joint
planning that enables agents to mesh their intentions and find
coordinated low-level policies to complete sub-tasks in ways
that neither agent could achieve on their own.

While Bayesian delegation solves some aspects of com-
monsense coordination, there are still limitations which we
hope to address in future work. One challenge is that when
agents jointly plan for a single sub-task, they currently have
no way of knowing when they have completed their individ-
ual “part” of the joint effort. For instance, in the case where
one agent needs to pass lettuce and tomato across the divider
for the other to chop it, after dropping off the lettuce, the first
agent is currently unable to reason that it has fulfilled its role
in that joint plan and can move on, i.e., that the rest of the
sub-task depends only on the actions of the other agent. If
agents were able to recognize when their sub-tasks were fin-
ished with respect to themselves, then they would be able to
coordinate even more efficiently and flexibly. This opens the
possibility of looking ahead to future sub-tasks that will need
to be done even before their preconditions are satisfied. For
example, once an agent passes off a tomato to another to chop,
the first agent can go and get a plate in anticipation of also
passing that over even before the chopping has begun

Future work will also look at models that allow for agents
to form longer term collaborations that persist beyond a sin-
gle short interaction such as roles and norms. Such represen-
tations are essential for building AI agents that can partner
with human teams and with each other.
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Noûs 25, 4 (1991), 487–512.

Carlos Diuk, Andre Cohen, and Michael L Littman. 2008. An
object-oriented representation for efficient reinforce-
ment learning. In Proceedings of the 25th international
conference on Machine learning. ACM, 240–247.

Ghost Town Games. 2016. Overcooked. (2016).
Barbara J Grosz and Sarit Kraus. 1996. Collaborative plans

for complex group action. Artificial Intelligence 86, 2
(1996), 269–357.

Joseph Henrich. 2015. The secret of our success: how culture

is driving human evolution, domesticating our species,
and making us smarter. Princeton University Press.

Max Kleiman-Weiner, Mark K Ho, Joseph L Austerweil,
Michael L Littman, and Joshua B Tenenbaum. 2016.
Coordinate to cooperate or compete: abstract goals and
joint intentions in social interaction. In Proceedings of
the 38th Annual Conference of the Cognitive Science
Society.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum,
and Samuel J Gershman. 2017. Building machines that
learn and think like people. Behavioral and Brain Sci-
ences 40 (2017).

Mitchell McIntire, Ernesto Nunes, and Maria Gini. 2016. It-
erated multi-robot auctions for precedence-constrained
task scheduling. In Proceedings of the 2016 Interna-
tional Conference on Autonomous Agents & Multiagent
Systems. 1078–1086.

H Brendan McMahan, Maxim Likhachev, and Geoffrey J
Gordon. 2005. Bounded real-time dynamic program-
ming: RTDP with monotone upper bounds and perfor-
mance guarantees. In Proceedings of the 22nd inter-
national conference on Machine learning. ACM, 569–
576.

Francisco S Melo and Alberto Sardinha. 2016. Ad hoc team-
work by learning teammates task. Autonomous Agents
and Multi-Agent Systems 30, 2 (2016), 175–219.

Jennifer B Misyak, Tigran Melkonyan, Hossam Zeitoun, and
Nick Chater. 2014. Unwritten rules: virtual bargain-
ing underpins social interaction, culture, and society.
Trends in cognitive sciences (2014).

Thomas Nagel. 1986. The view from nowhere. Oxford Uni-
versity Press.

Ryo Nakahashi, Chris L Baker, and Joshua B Tenenbaum.
2016. Modeling Human Understanding of Complex In-
tentional Action with a Bayesian Nonparametric Sub-
goal Model.. In AAAI. 3754–3760.

Miquel Ramırez and Hector Geffner. 2011. Goal recognition
over POMDPs: Inferring the intention of a POMDP
agent. In IJCAI. IJCAI/AAAI, 2009–2014.

Michael Shum, Max Kleiman-Weiner, Michael L Littman,
and Joshua B Tenenbaum. 2019. Theory of Minds: Un-
derstanding Behavior in Groups Through Inverse Plan-
ning. In Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence (AAAI-19).

Milind Tambe. 1997. Towards flexible teamwork. Journal of
artificial intelligence research 7 (1997), 83–124.

Michael Tomasello. 2014. A natural history of human think-
ing. Harvard University Press.

Michael Tomasello, Malinda Carpenter, Josep Call, Tanya
Behne, and Henrike Moll. 2005. Understanding and
sharing intentions: The origins of cultural cognition.
Behavioral and brain sciences 28, 05 (2005), 675–691.

895




