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Abstract

Network processors implemented as systems-on-chip with

multiple processors and peripherals offer a reliable means

of scaling network with high link capacities. As more and

more co-processors and peripherals are integrated, the power

requirement also dramatically increases. Therefore it is es-

sential to efficiently parallelize the subsystems to maximize

the packet processing capacities while maintaining low power

consumption.

In this paper, we propose a power aware packet processing

architecture with chip-multiprocessor (CMP), which consists

of a number of processor clusters (or arrays). Each array in-

cludes a number of identical processor cores, and processor

cores between different arrays have different performance and

power consumption. Only one array of processors is active at

any time. We devise a simple policy to select a proper array of

processors to lower the power consumption while still meet-

ing the QoS requirements. Our simulation results show that

the proposed CMP model has an approximately 40% power

reduction compared to the CMP without power management,

and an 11% power improvement compared to the symmetric

CMP approach.

1 Introduction

The various emerging network applications, such as VoIP,

IPv4/IPv6 gateways, software routers, VPN, intrusion detec-

tion, stimulate designs of new packet processing systems,

which require both high packet processing capacities and pro-

grammable flexibility. Traditional ASICs lack programmable

flexibility, and general-purpose processors cannot deal with

Gigabit link capacities. Network processors emerge as the

solution by integrating multiprocessors on chip and exploit-

ing aggressive parallelism inherent in the network workload.

However, the trend to integrate more and more functionality

on the same silicon die, as well as the continuous exponential

growth of link capacities, makes the power consumption of

the network processors a challenging issue.

1This work was done in Spring 2004.

Figure 1. Power requirements for IXP se­
ries(from [8])

Figure 1 shows the trends of the power requirements as

the processor functionality increases in Intel IXP series [6].

With dense integration and high performance requirement, it

is certainly a design challenge to meet the tight system power

budget.

Network processors are usually designed to target the max-

imum traffic loads. However, internet traffic analysis reveals

that the packet traffic fluctuates significantly over time. The

common traffic load is often substantially lower than the ex-

pected peak load, and the traffic shows bursty behaviors on

all time scales [3, 13, 19]. In addition to internet traffic load,

there are various network traffic patterns. For example, a LAN

or a home network router may have low traffic most of time,

with only sparse spikes of bursty behaviors.

With the emergence of a rich set of network applications,

such as voice over IP and security applications, network pro-

cessor performance is also limited by the memory latencies.

Processors may spend a large portion of time waiting for data

from lower memory hierarchy.

The above opportunities have been explored in the circuit

level to achieve power efficient packet processing. There is

also a large space to explore in architectural and OS levels.

In this project, we propose a novel CMP model for power

aware packet processing. The CMP architecture consists of
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a number of processor clusters (arrays), each of which has

a number of identical processor cores. The processor cores

in different arrays are geared for different level of perfor-

mance and power requirement. At any time, only one array

of cores is active, and the processor array is activated / deac-

tivated based on the traffic load and other constraints (such as

throughput, latency, etc). We devise a simple switching pol-

icy to use the low performance/power array of cores when the

traffic is low and the high performance/power when the traffic

is heavy. The high performance array is capable of handling

the peak/bursty traffic load, and the low performance array for

the non-peak load to reduce the power consumption.

This paper is organized as follows: section 2 briefly de-

scribes the existing power reduction techniques. Section 3

elaborates the proposed CMP model for power aware packet

processing, followed by the simulation implementation de-

tails in section 4. Section 5 gives the simulation results of

power/performance, and section 6 concludes the paper.

2 Related Work

Existing power reduction techniques fall in three cat-

egories, ranging from the microarchitectural level power

management (fine-grained) to multi-core power management

(coarse-grained).

2.1 Microarchitectural level power management

There are lots of research on lower power interconnection

networks [16, 5] and low power processor design at the mi-

croarchitecture level. The idle functional units (such as in-

struction window) in the processor core are put into the sleep-

ing state [15], or the cache component is set to drowsy state [4]

to reduce static power leakage. Another approach is to im-

prove memory hierarchy to save power, such as TCAM, which

is content addressable memories performing exactly the fully-

parallel search for IP-lookup; IPStash [7] is proposed as a

memory architecture similar to set-associative caches but en-

hanced with mechanisms to facilitate IP-lookup and in partic-

ular longest prefix match.

2.2 Dynamic voltage scaling

Dynamic Voltage Scaling (DVS) [12] is widely applied

in embedded systems with strict power constraints and real

time constraints. The main idea of DVS is to scale down

the core voltage and frequency with adaptation to runtime re-

source consumption. The GRACE-OS project [17] proposes

cross layer energy aware DVS for mobile multimedia systems.

In [18], Zhai et al show the optimal operating voltage should

be scaled to approximately 30% of the maximum for typical

workloads for energy efficiency.

2.3 Dynamic multi­core power management

Dynamic shutting down processors based on their work-

load is a natural approach to achieve energy efficiency for

multiprocessor architectures. Kokku et al [8] propose an en-

ergy aware architecture for packet processing. In their ar-

chitecture, there are multiple identical processor cores. Ac-

cording to traffic load, they dynamically shutdown or activate

the processor engines. By reducing the number of working

processor engines when dealing with light traffic load, they

show significant power savings. Similarly, Nikitovic et al

[10] also provide adaptive shutdown scheduling strategies in

CMP for mobile devices. But their focus is on general mobile

applications, instead of packet processing. Kumar et al [9]

propose a single-ISA heterogeneous multi-core architecture,

which switches between processors of different performance

to save power consumption when executing a single-threaded

application. Their experiment shows power savings of a factor

of three with little performance loss.

Our CMP architecture extends Kumar’s approach. In-

stead of a sequence of processor cores with different

power/performance, we have variable power/performance

clusters, and each cluster includes identical cores. This ex-

tended architecture aims to provide high processing capacity

to handle peak network traffic loads, while allowing power

saving when the traffic is low.

3 Power Aware CMP Model

There are two existing CMP models for packet process-

ing. The first model has a control core with a number of

high performance microengines. A typical example is the In-

tel IXP2800 network processor [6]. The processor contains a

700 MHz XScale core and sixteen 1.4GHz high performance

microengines which support both DVS and DPM. However,

to the best of our knowledge, there is no existing implemen-

tation for DVS or DPM on IXP series yet. The second model

is a theoretical model provided in [8], which contains a num-

ber of identical processors. This symmetric CMP dynamically

changes the number of running processors according to the

packet load to reduce power consumption.

In this paper, we present a third type of power aware CMP

model to process network packets, as illustrated in Figure 2.

For simplicity, we assume it contains two arrays of proces-

sor cores. Each array includes two homogeneous processor

cores, but two arrays have different performance / power con-

sumption. For example, the high performance array can be

two Alpha 21464 (250Watt, die size 350mm2), and the low

performance array can be two Alpha 21064 (5 Watt, 1 die size

2.87mm2). Only one array of cores is active at any time. The

processors in the active array monitor their own processing la-

tency, response time, throughput, and the packet buffer queue

utilization. When the workload becomes light (or heavy),

the active array transfers the control to the low (high) perfor-

mance array, which in turn shuts down the active array. Be-
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Figure 3. The state machine for the proposed
pwoer aware CMP model

cause of the different power consumption on the CMP cores,

the dynamic peer-to-peer processor migration should reduce

the power consumption while still sustaining the QoS require-

ments.

The incoming packet stream is buffered in the packet queue

(FIFO). When the event of low packet queue utilization oc-

curs, it triggers the system to switch the low performance ar-

ray. Likewise, it switches to the high performance array with

the high queue utilization event. To ensure the packet queue

overflow (packets dropped), the proper utilization threshold to

trigger the switching event is essential.

We devise a state machine to control the transition between

different arrays. The processor cores in an array are in the

same state. Figure 3 shows the state machine for our proposed

CMP model. There are three states in the simulator.

• Running: the packet processing application reads the

packets from the queue and processes them. It does

transition to the draining state when the queue threshold

event occurs.

• Draining: stop fetching instructions and continue execu-

tion of instruction in the instruction queue. If the pro-

cessor pipeline is in the error recovery (such as branch

misprediction), the error recovery takes the priority. The

length of draining state largely depends on the execu-

tion latency from the existing instructions. Meanwhile,

the new array can be wakeup to reduce the startup la-

tency. When the pipeline is empty, it does transition to

the switching state.

• Switching: activate the new array, shut down the old ar-

ray, and start fetching and execution from where it left.

Initially, the system starts up with the high performance ar-

ray in the running state, and it is expected to stay in the low

performance array most of time. If the packet queue under-

flows (empty), the packet processing application receives an

empty packet. The application could pause to reduce execu-

tion power, or the low performance array could be clock-gated

to reduce power even further. We don’t simulate the clock

gating in this project; instead, we let the application drop the

empty packet and keep reading for new packets.

4 Simulation Implementation

We modify SimpleScalar 3.0 [2] to model our multi-array

CMP architecture. And the power consumption is modeled

using Wattch [1]. The different cores are modeled with differ-

ent cache sizes, fetching/execution bandwidths, and die sizes.

4.1 Packet queue manager

In order to simulate packet processing, we also simulate the

functions of the hardware queue manager. The queue manager

checks the packet time stamp to emulate the true packet ar-

rival rate. Upon packet arrival, the queue manager buffers the

packet if the queue is no full; otherwise, the packet is dropped.

In this project, we have the queue with the fixed length of

512 entries.

4.2 Primitives

We implement three primitives for the communication be-

tween our simulator and the IP lookup application: read

queue, notify queue ready, notify client done. The primitives

are implemented by overloading special NOP instructions.

• Read queue: fetch packets from the queue. It passes a

buffer pointer from the user address space to the simula-

tor using the designated register (R2), and the simulator

writes packets into the buffer.

• Notify queue ready: It tells the queue manager the ap-

plication is ready to fetch packets. This is only needed

for simulation purpose, serving as the mechanism to syn-

chronize the application and the queue manager because

the application needs to load a huge IP lookup table be-

fore it can starts processing packets.

• Notify client done: Only needed for simulation in case

we only want to process a finite number of packets.

4.3 IP lookup application program

We develop an IP lookup program running on the pro-

posed CMP model. Basically we apply the PATRICIA tree

data structure to implement longest prefix matching for packet

routing (IP lookup). PATRICIA tree is a compact representa-

tion of a trie where all nodes with one child are merged with

their parent, which is the basic structure for IP lookup appli-

cation.
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Figure 2. The power aware CMP model

4.4 Traffic traces

We extract the source IP, destination IP, timestamp in-

formation from a realistic internet routing trace (1.03M en-

tries) [11] from the San Diego Supercomputing Center. We

also retrieve the corresponding routing table (source IP,

next hop) (157K entries) from the RIPE routing information

database [14] and implement routing table using PATRICIA

tree.

Based on the realistic traffic trace, we devise two traffic

patterns: realistic traffic pattern (Figure 4) and synthetic traffic

pattern (Figure 5). The realistic one is strictly the same as the

packet trace we have obtained from the internet trace, while

the synthetic trace is based on the realistic trace, but have more

periods of low traffic load and more bursty behaviors.

The goal for the synthetic trace is to simulate traffic pat-

terns for other network applications in addition to Internet

traffic. For example, for a home network router, it does have

more low traffic periods during workdays, while the users are

out for work, but much higher traffic load during the evening

and weekends.

5 Power/Performance Evaluation

In this section, we evaluate the costs, effectiveness, and

performance of our dynamic prefetching technique. Perfor-

mance improvement is relative to the baseline architecture,

whose performance is shown in Figure .

5.1 Overhead of the Dynamic Prefetch Optimizer

In the section, we describe the detailed core configuration

and the simulation results for both the realistic and synthetic

traces. We define performance metrics for performance com-

parison and analyze the obtained power savings.

5.2 Core configuration and power/performance dif­
ference

The core configuration is shown in Table 1. The high per-

formance array has two identical fast cores, while the low per-

formance array has two identical slow cores. They have differ-

ent L1 cache size, bandwidth, frequency (frequency could also

Configuration Fast cores Slow cores

L1 Cache 16KB 4KB

Fetch bandwidth 8 4

Issue

Core frequency 733MHz 733MHz

Die size 18mm 1mm

Power consumption 217 Watt 54 Watt

Table 1. CMP core configurations

Program Instructions per second Instructions per second
(IPC) for fast cores (IPC) for slow cores

bzip2 0.8139 0.6981

crafty 0.9734 0.7815

eon 1.0987 0.8673

gap 1.1379 0.893

gzip 1.9602 1.4198

mcf 0.04 0.0399

parser 0.5976 0.5133

perlbmk 2.2856 1.4451

twolf 0.5821 0.5182

vortex 1.058 0.8364

vpr 0.594 0.5356

average 1.0129 0.7771

Table 2. Performance of SPEC2000 benchmarks

be different for more power savings), die size (the low perfor-

mance array will only add a very small portion of area and

cost), and different power scaling factors (from Wattch). We

then use Wattch to evaluate the power consumption of these

two types of cores. We find that the power consumption of the

fast cores is about 4 times of that of the slow cores.

We also run the SPEC2000 benchmark on SimpleScalar

3.0 for the two types of cores respectively, and find that in

terms of performance, the fast cores is approximately 30%

faster than the slow ones (Table 2).

5.3 Performance

We run the CMP simulator to process 100,000 packets

from both the realistic traffic trace and synthetic traffic trace in

three modes (slow cores only, fast cores only, and switching-

enabled only) respectively. We evaluate the performance
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Normalized total energy Total cycles
consumption

Fast cores 100.0 3.48× 10
8

Slow cores 49.2 6.97× 108

Switching 59.7 1.25× 10
8 (fast cores)

enabled (26.9%)

3.39× 10
8 (slow cores)

(73.1%)
352 switching

Table 5. Power consumption and processing
time for the realistic traffic

Normalized total energy Total cycles

consumption

Fast cores 100.0 3.58× 10
8

Slow cores 55.0 8.01× 108

Switching 59.7 0.79× 10
8 (fast cores)

enabled (13.8%)

4.96× 108 (slow cores)

(86.2%)

251 switching

Table 6. Power consumption and processing
time for the synthetic traffic

by the following performance metrics: queue utilization (the

queue size is 512 in our simulation); Latency (the time be-

tween a packet is enqueued and dequeued); Processing cycles

(the time to process a packet).

Table 3 and Table 4 show the performance results of the

three modes. For both traces, the fast-cores only mode has

much lower queue utilization and lower latency and process-

ing time; the slow-cores only mode will result in significant

queue overflows for both traces. The switching-enabled mode

although has a much higher queue utilization and latency, it

still finishes all the packet processing tasks without any packet

drops. For the synthetic traffic, it has lower queue utilization

than the realistic traffic, due to more bursty behaviors.

5.4 Power consumption

Table 5 and Table 6 show the power consumption and total

processing cycles (portions of cycles running on the fast cores

and slow cores in the switching-enabled version as well) for

the three modes respectively.

We find that we have 40.3% energy savings for the realistic

traffic and 43.9% energy savings for the synthetic traffic rela-

tive to the fast-cores only approach. The power consumption

is very close to the slow-cores only approach (especially for

the synthetic traffic) without suffering any packet drops. For

the realistic traffic, the system spends about 73% of execu-

tion time in the slow array, and 86% for the synthetic traffic.

We believe our CMP mode has strong potential to handle the

sparse spiky traffic loads efficiently.

We also did a preliminary evaluation to compare our CMP

model with the symmetric CMP approach, and we find an

11% power reduction relative to the symmetric CMP ap-

proach.

6 Conclusion

In this project, we propose a power aware packet process-

ing architecture with CMP. This CMP architecture with sin-

gle ISA multi-cores provides an alternative network proces-

sor model for power conservation. By simulation, we show

for both realistic and synthetic traffic traces, our proposed

CMP model can achieve approximately 40architectures with-

out power management. We believe we may have even more

potential savings for traffic patterns with more bursty behav-

iors.

In order to make our approach more energy efficient, we

need to add dynamic online prediction of traffic load and thus

design more efficient switching policy and precise adaptive

queue utilization threshold. Also we may combine the inter-

array core switching with intra-array core shutdown for more

energy savings.
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Appendices

A Data Structures:

struct CMP state {
enum CMP status status;

counter t timer;

int transition timer;

int processor;

struct cache t *cache dl1[MAX PROCS];

// I-cache configuration;

};

typedef struct CMP Queue {
char dest[20];

char stamp[20];

};

B The CMP APIs

void CMP queue read(struct regs t *regs,

mem access fn mem fn,

struct mem t *mem,

md inst t inst,

int traceable );

void CMP queue write();

void CMP queue init(struct CMP state *state);

void CMP queue finish(md inst t inst);

int CMP queue fulling();

int CMP queue draining();

void CMP switch processor(int processor);

void CMP power scale(int processor);
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C The Primitive Implementation

void volatile read primitive(CMP queue *buffer) {
int tmp;

asm volatile(”addq $31, %0, $1”::”r”(buffer) );

asm volatile(”bis $31, 1, $31 );

}

void volatile finish primitive() {
asm volatile(”bis $31, 2, $31 );

}
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