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Age and dose dependent changes
to the bone and bone marrow
microenvironment after cytotoxic
conditioning with busulfan

Nastaran Abbasizadeh1,2, Christian S. Burns1,2, Ruth Verrinder1,2,
Farhad Ghazali1, Negar Seyedhassantehrani1,2 and
Joel A. Spencer1,2,3*
1Department of Bioengineering, University of California, Merced, Merced, CA, United States, 2Center for
Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States, 3Health
Sciences Research Institute, University of California, Merced, Merced, CA, United States

Preparative regimens before Hematopoietic Cell Transplantation (HCT) damage
the bone marrow (BM) microenvironment, potentially leading to secondary
morbidity and even mortality. The precise effects of cytotoxic preconditioning
on bone and BM remodeling, regeneration, and subsequent hematopoietic
recovery over time remain unclear. Moreover, the influence of recipient age
and cytotoxic dose have not been fully described. In this study, we longitudinally
investigated bone and BM remodeling after busulfan treatment with low intensity
(LI) and high intensity (HI) regimens as a function of animal age. As expected,
higher donor chimerism was observed in young mice in both LI and HI regimens
compared to adult mice. Noticeably in adult mice, significant engraftment was
only observed in the HI group. The integrity of the blood-bone marrow barrier in
calvarial BM blood vessels was lost after busulfan treatment in the youngmice and
remained altered even 6 weeks after HCT. In adult mice, the severity of vascular
leakage appeared to be dose-dependent, being more pronounced in HI
compared to LI recipients. Interestingly, no noticeable change in blood flow
velocity was observed following busulfan treatment. Ex vivo imaging of the long
bones revealed a reduction in the frequency and an increase in the diameter and
density of the blood vessels shortly after treatment, a phenomenon that largely
recovered in young mice but persisted in older mice after 6 weeks. Furthermore,
analysis of bone remodeling indicated a significant alteration in bone turnover at
6 weeks compared to earlier timepoints in both young and adult mice. Overall,
our results reveal new aspects of bone and BM remodeling, as well as
hematopoietic recovery, which is dependent on the cytotoxic dose and
recipient age.
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Introduction

Hematopoietic Cell Transplantation (HCT) is a common
therapeutic approach for hematologic malignancies such as
leukemia, multiple myeloma, lymphoma and non-malignant
diseases (Kanate et al., 2020; D Souza et al., 2017; Gyurkocza and
Sandmaier, 2014; Chhabra et al., 2018; Du and Cao, 2018).
Successful donor cell engraftment after HCT necessitates
cytotoxic preconditioning (Gyurkocza and Sandmaier, 2014;
Nagler et al., 2019). Historically, Myeloablative Conditioning
(MAC) has been considered a standard preconditioning regimen
for patients in need of HCT(7). The inherent toxicity and non-
relapse mortality associated with MAC, however, limits its use to a
select group of patients (Chiesa and Veys, 2012; Yanada et al., 2022).
To address these limitations, a more tolerable preparative regimen,
known as Reduced Intensity Conditioning (RIC), was developed for
less fit patients (Chiesa and Veys, 2012; Sengsayadeth et al., 2015;
Çiftçiler et al., 2019). Clinical data indicate that RIC has a lower
cumulative incidence of chronic graft-versus-host disease but
similar overall survival compared to MAC, positioning it as a
potential alternative treatment (Chhabra et al., 2018). Insufficient
conditioning, however, can lead to early disease relapse after
transplantation due to the lack of graft vs malignancy effect from
mixed chimerism (Cavazzana-Calvo et al., 2007; Barrett and
Battiwalla, 2010). Therefore, it is important to fine tune the
intensity of RIC to provide the most effective clinical
outcomes after HCT.

Cytotoxic preconditioning is known to disrupt the
hematopoietic and non-hematopoietic compartments of the bone
and bone marrow (BM) microenvironments regardless of the
preparative regimen used (Slayton et al., 2007; Zou et al., 2016;
Chen et al., 2019; Kouam et al., 2019). After treatment, BM
vasculature can undergo significant changes such as the dilation
and fusion of sinusoidal vessels and a temporary decrease in vessel
frequency (Li et al., 2008; Zhou et al., 2017; Fletcher et al., 2023).
Disruption in both osteoblast and osteoclast activities result in
increased rates of bone resorption (Kondo et al., 2009; Zou et al.,
2016). Furthermore, mesenchymal stem cells after exposure to low
irradiation have been found to exhibit a shift in their differentiation
capacity towards less adipocytes and more osteogenic cells (Preciado
et al., 2018).

In addition to conditioning regimens, the aging process is also
known to disrupt the functionality of the BM niche. Age-related
changes such as a notable decrease in osteoprogenitors, a decline in
the number of the metaphyseal blood vessels, and alterations in the
differentiation and proliferation of mesenchymal stromal cells,
negatively impact hematopoiesis (Ogawa et al., 2000; Kusumbe
et al., 2014; Porto et al., 2015; Kusumbe et al., 2016; Lee et al.,
2019). Furthermore, elevated levels of intracellular reactive oxygen
species (ROS), accumulation of the DNA damage, upregulation of
pro-inflammatory cytokines such as IL-6, NF-κB, C-reactive protein
or dysregulated DNAmethylation patterns at the genes contributing
to the lymphoid and myeloid balancing are the other alterations that
Hematopoietic Stem Cells (HSCs) experience during aging (Cohen
et al., 1997; Hasegawa et al., 2000; Rübe et al., 2011; Beerman et al.,
2014; Kovtonyuk et al., 2016; Connor et al., 2018). Consequently, the
host response to the preparative regimen is contingent on both the
intensity of cytotoxic treatment and age of the recipient.

In this study, we used two doses of 1,4-Butanediol
dimethanesulfonate (busulfan) called Low Intensity (LI) and
High Intensity (HI) to condition the BM niche in both young
and adult mice before HCT. Busulfan, a DNA alkylating drug, is
commonly used in combination with cyclophosphamide to treat
leukemia (Socié et al., 2001; Ciurea and Andersson, 2009; Kebriaei
et al., 2018). Various doses of busulfan have been previously used in
myeloablative or non-myeloablative preconditioning (Ashizuka
et al., 2006; Montecino-Rodriguez and Dorshkind, 2020; Garcia-
Perez et al., 2021). Our research reveals significant alterations to the
BM microenvironment after busulfan treatment that are dependent
on both age and dose. This data provides unique insight into BM
recovery, offering valuable information that could contribute to the
development of more tailored preparative treatments for HCT
patients within specific age groups.

Materials and methods

Animals

Male C57BL/6J, C57BL/6 CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ)
and C57BL/6-Tg(UBC-GFP)30Scha/J transgenic mice were
purchased from Jackson laboratory. Mice were bred and housed
in the Department of Animal Research Services (DARS) at UC
Merced. The animal study received approval from the Institutional
Animal Care and Use Committee (IACUC) at UC Merced.

Busulfan treatment and whole BM cell
transplantation

We used 4–6 weeks (young) and 16–20 weeks (adult) old male
C57BL/6 CD45.1 and C57BL/6J mice as recipients. To investigate
the effect of variable RIC dosage, mice received either 40 mg/kg (LI)
or 80 mg/kg (HI) dose of Busulfan (Cayman Chemicals Company;
14,843) via intraperitoneal injection (IP). Busulfan solution was
prepared immediately before injection as previously described
(Montecino-Rodriguez and Dorshkind, 2020). Briefly, busulfan
crystals were dissolved in DMSO (Sigma Aldrich; 472,301) and
Ca+/Mg + free PBS (gibco; 2,003,901) was added to the solution to
make a final drug concentration of 1 mg/mL in 10% DMSO. The
working solution was filtered through a 0.22 µm syringe filter
(Fisherbrand; R7PA99681) and was administered to mice in
separate doses of 20 mg/kg per day on two (LI) and four (HI)
consecutive days.

One day following busulfan conditioning, 8–12 weeks UBC-GFP
transgenic donor mice were euthanized by CO2 inhalation and
cervical dislocation. Long bones were collected, cleaned, and
crushed in Flow Cytometry Staining (FACS) buffer. The cell
mixture was filtered through a 40 μm filter into a 50 mL falcon
tube and spun at 1,500 rpm for 5 min at 4°C. The supernatant was
aspirated, and the pellet was resuspended in Ammonium-Chloride-
Potassium (ACK) lysis buffer to remove erythrocytes. The reaction
was stopped after 1 min incubation by adding FACS buffer and cells
were washed by centrifuging at 2000 rpm for 3 min at 4°C. Cells were
resuspended in PBS and a cell count was performed using a
hemocytometer and Trypan Blue (gibco, 15250-061) staining.
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Finally, a suspension of 1 × 106 cells/mL was administered by
retroorbital injection.

Flow cytometry chimerism: peripheral blood
and bone marrow

To collect peripheral blood, mice were kept under a heat lamp
for a few minutes to increase blood circulation. The mice were
transferred to a restrainer and a small incision was made over the
ventral tail vein using a scalpel blade. Blood was collected (no more
than 10 drops) and stored in blood collection tubes spray coated
with K2EDTA (BD Microtainer; 365,974). Heparinized blood was
added to 9 mL diH2O for RBC lysis and immediately after
resuspension, 1 mL ×10 PBS was added to the solution to
prevent white blood cells lysis. Cells were spun at 2000 rpm for
5 min at 4°C. The supernatant was removed, and the pellet was
resuspended in 9 mL diH2O and 1 mL ×10 PBS to remove the
remaining RBC. Cells were spun at 2000 rpm for 3 min at 4°C and
100 µL of the sample was aliquoted into 96V-bottom wells for FACS
staining. Cells were washed with 100 µL of FACS buffer and
centrifuged at 2000 rpm for 3 min at 4°C. The supernatant was
removed, and cells were stained with 50 µL of staining cocktail
containing APC/Cy7 CD45.2 (1:100, Biolegend; 109,824) and
PerCP/Cy5 CD45.1 (1:100, Biolegend; 110,728) in the dark on
ice. After 15 min incubation, cells were washed with FACS
buffer, spun, and resuspended in 200 µL FACS buffer for flow
cytometry chimerism.

To collect the whole BM cells, mice were euthanized on day
42 post-HCT and the same procedure as the whole BM
transplantation described previously was performed to collect
cells. Cells were then resuspended in PBS and a suspension of
1 × 106 cells/mL was collected for staining. After 15 min
incubation with APC/Cy7 CD45.2 (1:100) and PerCP/
Cy5 CD45.1 (1:100) cells were washed with FACS buffer, spun
and resuspended in 200 µL FACS for flow cytometry chimerism
(Chicana et al., 2022). During flow cytometry, to evaluate
chimerism, CD45.2 donor cells were gated against
CD45.1 recipient cells, followed by gating GFP versus CD45.2 to
validate GFP expression in UBC-GFP mice.

Two-photon in vivo and ex vivo imaging

In vivo calvaria and ex vivo long bone imaging was performed
with a custom-built two-photon intravital microscope (BLIQ
Photonics). A ×25 fluid immersion objective (Olympus;
XLPLN25XWMP2, NA = 1.05) was used for all images, with an
approximate field of view (FOV) of 317 µm by 159 µm. During live
imaging, two tunable femtosecond lasers, MaiTai (Spectra Physics;
MaiTai eHP DS) and Insight (Spectra Physics; Insight X3), were
tuned to 800 nm and 950 nm to observe 70 kDa Rhodamine-B
Dextran (ThermoFisher, D1841) and GFP + cells signals,
respectively. For ex vivo imaging, the MaiTai and Insight lasers
were initially tuned to 950/1,220 nm to excite GFP, Alexafluor
647 conjugated vascular antibodies, and Second Harmonic
Generation (SHG), respectively. The long bones were imaged a
second time at 800 nm to excite Calcein and Alizarin. Videos were

recorded at 30 frames per second and images were generated by
averaging 30 frames.

For in vivo visualization of the calvaria BM, anesthesia was
induced via initial inhalation of 3%–4% isoflurane with 100% O2 at
1 L/min that was reduced to 1.5% as maintenance. The skull was
secured in a custom head mount that was equipped with a heating
pad to maintain the animal body temperature during the procedure.
After shaving top of the head, a small incision was made along the
sagittal and lambda suture of the skull to expose the calvarium as
described before (Sipkins et al., 2005).

For ex vivo imaging of the long bone, mice were injected retro-
orbitally with Alexafluor 647 conjugated vascular antibodies (CD31;
102,516, Biolegend, Sca-1; 108,118, Biolegend, VE-Cadherin;
138,006, Biolegend) 30 min before intracardiac perfusion. To
study bone remodeling, Calcein (30 mg/kg, Sigma; SLCF7304)
and Alizarin (20 mg/kg, Sigma; SHBL6801) were administered
48 h and 30 min before imaging to track bone turnover based on
the ratio of dye1 (Calcein; marks the old bone front) to dye2
(Alizarin; marks the new bone front). Note that in some animals,
leptin receptor antibody was also administered via injection 1 hour
prior to perfusion. However, due to insufficient signal strength, it
was excluded from the protocol. Mice were perfused with 1x PBS to
wash out the blood followed by 4% paraformaldehyde (PFA, Fischer
Chemical; 1,638,384) to internally fix the tissue. Subsequently,
femurs were harvested and fixed in 4% PFA for 30 min, at 4°C.
The bones were then washed with 1X PBS, immersed in 30% sucrose
(Sigma; SLCC8492) for 1 h, frozen in optimal cutting temperature
(OCT, Fisher Scientific; 4,585) compound and kept at −80°C.
Samples were shaved using a cryostat (LEICA CM 1860)
equipped with a high-profile blade (Leica; 3,802,121) to expose
the BM region.

Image quantification

We used Fiji (ImageJ 1.53t) for image processing including
quantification of vessel permeability, leakage, morphological
changes to the blood vessel, evaluating bone turnover rate, and
quantifying GFP + donor cells engraftment in the recipient BM.
Custom scripts in MATLAB (2020a) were used to calculate BM
blood flow velocity (Wu et al., 2021). In order to study changes to
the vascular system in the calvaria BM, 70 kDa Rhodamine-B
Dextran was injected retro-orbitally during in vivo imaging. The
blood vessel permeability was measured during the first 30 s post
dye injection and was quantified based on the change in
fluorescence intensity outside of blood vessels as a function of
time as described before (Itkin et al., 2016; Ishii, 2018; Chicana
et al., 2022). Vascular leakage was measured through z stack
images (2 µm z step) taken 10 min after dye administration as
described before and was calculated based on the ratio between the
fluorescent intensity in the perivascular space to the fluorescent
intensity in the adjacent vascular lumen (Chicana et al., 2022).
Note that vessel permeability reflects the rate at which small
molecules exit blood vessels and fill the surrounding
perivascular space, whereas leakage is the ratio of fluorescent
dye in the perivascular space and vascular lumen after reaching
equilibrium. Blood flow velocity was calculated by recording 30 s
videos of blood flow in the BM calvaria and then utilizing Line
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Scanning Particle Image Velocimetry (LSPIV) implemented in a
custom MATLAB script to calculate blood flow velocity as
previously described (Kim et al., 2012; Wu et al., 2021).

To measure vascular density, blood vessel images were color
thresholded in Fiji (ImageJ 1.53t). The resulting binary image was
despeckled, the binary fill hole function was applied, and a Python
(3.7.6) script was used to calculate the ratio of the total blood vessel
volume to total BM volume. We defined vessel density as the total
space of the BM occupied by blood vessels. To study bone
remodeling, the double-staining approach was performed by
using Calcein (dye1) and Alizarin (dye2). The ratio of dye1/
dye2 was calculated by measuring the total Calcein pixel area to
the total Alizarin pixel area in each FOV. Based on the dye ratio,
fractions of the cavity type (D-type; >0.75, M-type; 0.25–0.75,
R-type; <0.25) were quantified as described previously
(Christodoulou et al., 2020). To evaluate the early homing of
donor cells, max intensity projections (MIP) of the long bone
were taken and the number of GFP + cells in the BM on day
2 post-HCT was manually counted. Representative samples of BM
leakage and long bone images were generated by taking MIP of BM
regions and contrast/enhancement adjustment was applied for
display purposes.

Statistical analysis

In our study, a G*Power statistical power analysis (α = 0.05,
power = 0.95) determined that aminimum of three mice per group is
required for our analysis. Mice that experienced unsuccessful
injections or showed signs of distress after retroorbital injection
of Rhodamine-B Dextran during in vivo measurements were
excluded from the experiments to ensure that only data from
stable and properly injected mice were included in our analysis.
Graphs and statistical analyses were generated using GraphPad
Prism 9.0. Ordinary one-way ANOVA to test differences between
study groups. A normality test was performed to assess the normal
distribution of the data. A p-value less than 0.05 was considered to be
statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001;
****p < 0.0001).

Results

Dose and age dependent hematopoietic
recovery following busulfan conditioning
and HCT

To longitudinally investigate changes to the BM
microenvironment as a function of chemotherapy dose and
animal age, we created a HCT model incorporating busulfan
preconditioning with low and high intensity in young (4–6 weeks
old) and adult (16–20 weeks old) mice (Supplementary Figure S1A).
After preconditioning, we transplanted whole BM cells from GFP +
donor mice (Ubiquitin-GFP mice) and evaluated the bone and BM
microenvironment as well as hematopoietic recovery on days 2, 5,
and 42 post-HCT (Supplementary Figure S1A; Supplementary
Videos S1, S2). Consistent with previous literature, BM images
and flow cytometry of BM isolates on day 42 post-HCT revealed

a higher accumulation of GFP + donor cells in busulfan conditioned
young mice, particularly in the HI group (p < 0.001), compared to
controls (Figures 1A,B; Supplementary Figure S1B) (Garcia-Perez
et al., 2021). In the adult mice, only mice that received HI
conditioning revealed effective hematopoietic engraftment
42 days after transplantation (p < 0.05; Figures 1A,B;
Supplementary Figure S1C). Comparison of donor chimerism on
day 42 in peripheral blood of young and adult mice was consistent
with the BM imaging and chimerism analysis (Supplementary
Figure S1D). In addition to dosage, hematopoietic recovery was
dependent on the recipient’s age particularly in HI group (BM, p <
0.001; peripheral blood, p < 0.05; Figure 1B; Supplementary Figure
S1D). Early homing of hematopoietic donor cells was evaluated by
manual counting of GFP + cells in both the long bones and calvaria
on day 2 post-HCT. No statistically significant difference was
observed between young and adult mice suggesting that
hematopoietic engraftment is more age dependent than early
homing (Figure 1C; Supplementary Figure S1E).

Dose and age dependent alteration in the
vascular morphology and functionality
following busulfan conditioning and HCT

To evaluate the morphology of the BM vascular system after
busulfan conditioning and HCT, we quantified the blood vessel
diameter, frequency, and density. In young mice at early
timepoints (days 2 and 5) post-HCT, blood vessel diameter
was markedly increased while the vessel frequency was
decreased compared to the controls (p < 0.0001), but they
largely rescued by day 42 after transplantation (Figures
2A–C). Furthermore, at early days post-HCT, the vessel
density was substantially increased in LI (p < 0.0001 on days
2 and 5) and HI (p < 0.0001 on day 2 and p < 0.01 on day 5) but
was comparable to controls by day 42 (Figures 2A,D). Unlike
young mice, vascular diameter (LI; p < 0.0001 and HI; p < 0.001;
Figures 2E,F) and frequency (p < 0.001; Figures 2E,G) remained
abnormal after 42 days in busulfan treated adult mice, suggesting
an age-dependent delay in BM regeneration. Additionally, vessel
density remained consistent across all study groups at all
timepoints in adult mice (Figures 2E,H).

Next, we evaluated the functionality of the BM vascular system
in vivo using two-photon intravital microscopy by measuring the
blood vessel leakage, permeability, and blood flow velocity in
calvarial BM after intravenous injection of Rhodamine-B
Dextran (70 kDa) as previously described (Wu et al., 2021). In
young mice, vascular leakage increased and remained elevated at
least until day 42 post-HCT in LI and HI conditioned groups (p <
0.0001) compared to the controls (Figures 3A,B; Supplementary
Videos S3–S5). In adult mice, increased leakage was long-lasting
only in the HI group compared to the LI and control groups
suggesting a dose-dependent effect on recovery of the blood-bone
marrow barrier (p < 0.0001; Figures 3C,D; Supplementary Videos
S6–S8). The dose-dependent effect of busulfan on individual vessel
permeability in young mice emerged at the earliest timepoint (day
2 post-HCT) where higher permeability was observed in HI groups
compared to LI (p < 0.01) and control groups (p < 0.0001;
Figure 3E). On day 5, however, both LI and HI groups
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exhibited equally elevated permeability compared to the controls
(p < 0.0001; Figure 3E). In the adult mice, busulfan conditioning
caused elevated permeability only in the HI group on day 2 post-
HCT (p < 0.001; Figure 3F). Regardless of the animal age,
permeability returned to baseline levels by day 42 (Figures
3E,F). Interestingly, blood flow velocity in busulfan conditioned
groups remained consistent with controls irrespective of the
busulfan dose or age of the recipient (Figures 3G,H).

Dose and age dependent bone remodeling
following busulfan conditioning and HCT

Recognizing that bone is a dynamic tissue that actively interacts
with the hematopoietic system, we speculated that busulfan
administration may induce bone remodeling. As described
previously, we administered Calcein (dye1) and Alizarin (dye2),
two calcium-binding dyes, 48 h and 30 min before imaging,

FIGURE 1
LI and HI Regimens Induce Dose and Age Dependent Hematopoietic Recovery in Young and Adult Mice. (A) Representative images of the
transplanted BM in controls and LI/HI conditioned young (top) and adult (bottom) mice over time; Red: blood vessel (Alexafluor 647 conjugated CD31,
Sca-1, VE-Cadherin), Blue: Bone (Second Harmonic Generation (SHG)), Green: GFP + cells; scale bar: 500 μm; (B)Quantification of donor GFP + cells in
controls, and LI/HI conditioned BM42 days post-HCT in young and adult mice; (C) Evaluation of donor cell homing in the long bone BM2 days post-
HCT in young and adult mice. Green: Control, Red: Low Intensity (LI), Blue: High intensity (HI). n = 3, *p < 0.05, ***p < 0.001.
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FIGURE 2
LI and HI Regimens Induce Morphological Alterations in BM Blood Vessels in Young and Adult Mice. (A) Representative images of the long bone BM
blood vessel in controls and LI/HI conditioned youngmice over time; Red: blood vessel (Alexafluor 647 conjugated CD31, Sca-1, VE-Cadherin); scale bar:
50 μm; (B–D) Quantification of the vascular diameter (B), frequency (C), and density (D) in controls and LI/HI conditioned young mice over time; (E)
Representative images of the long bone BM blood vessel in controls and LI/HI conditioned adult mice over time; scale bar: 50 μm; (F–H)
Quantification of the vascular diameter (F), frequency (G), and density (H) in controls and LI/HI conditioned adult mice over time. Green: Control, Red:
Low Intensity (LI), Blue: High intensity (HI). n = 3, **p < 0.01, ***p < 0.001; ****p < 0.0001.
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respectively, to investigate the bone resorption-deposition profile
based on the ratio of the two dyes (Figure 4A) (Christodoulou et al.,
2020). In young mice, we observed a reduction in the dye1/
dye2 ratio along the endosteum of the long bone cavity on day
5-post HCT in LI (p < 0.05) and HI (p < 0.01) groups which was
more pronounced by day 42 in both groups (p < 0.0001) compared
to the controls (Figures 4B,C). In adult mice, however, reduction in
the dye1/dye2 ratio was not observed until day 42-post HCT and it

only occurred in the HI group (p < 0.0001; Figures 4D,E). To further
investigate the bone remodeling, we defined individual long bone
cavities as Deposition type (D-type; dye1/dye2 > 75%), Mixed type
(M-type; dye1/dye2 25%–75%), and Resorption type (R-type; dye1/
dye2 < 25%) based on the ratio of the two dyes as described
previously (Figure 4A; Christodoulou et al., 2020). Based on this
classification, an increase in the R-type cavities was the determining
factor for the decrease in the dye1/dye2 ratio after busulfan

FIGURE 3
LI and HI Regimens Induce Disruption in BM Blood Vessel Barrier in Young and Adult Mice. (A, B) Representative images (A) and quantification of
calvarial BM blood vessel leakage (B) in controls and LI/HI conditioned youngmice; White: blood vessel (Rhodamine BDextran, 70 kDa); scale bar: 50 μm;
(C, D) Representative images (C) and quantification of calvarial BM blood vessel leakage (D) in controls and LI/HI conditioned adultmice; scale bar: 50 μm;
(E, F) Quantification of calvarial BM blood vessel permeability in young (E) and adult (F) mice; (G, H) Quantification of calvarial BM blood flow in
young (G) and adult (H) mice. Green: Control, Red: Low Intensity (LI), Blue: High intensity (HI). n = 3, **p < 0.01, ***p < 0.001; ****p < 0.0001.
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conditioning (Figures 4F,G). Additionally, a small but significant
decrease in D-type cavities was observed with LI groups in young
mice (Figure 4F).

Discussion

In this project, we investigated the longitudinal impact of
busulfan conditioning on the BM niche in the context of HCT,

with a focus on how the intensity of conditioning regimens and
animal age influence this dynamic process. It is known that the
intensity of conditioning and the recipient age can affect the donor
cell engraftment after HCT [(Garcia-Perez et al., 2021; Down et al.,
1991; Van Os et al., 1993; Yanir et al., 2022)], but less is known about
the direct impact these factors have on the BM microenvironment.
In our experiments, a more intense chemotherapy dose improved
long-term engraftment in both young and adult mice. This effect is
more prominent in adult mice where high engraftment was observed

FIGURE 4
LI and HI Regimens Induce Bone Remodeling in Young and Adult Mice. (A) Schematic representation of the double calcium staining illustrating D-,
M-, and R-type cavities; scale bar: 50 μm; (B, C) Representative images (B) and quantification (C) of dye1/dye2 ratio in controls and LI/HI conditioned
young mice; (D, E) Representative images (D) and quantification of (E) dye1/dye2 ratio in controls and LI/HI conditioned adult mice; Images: Green:
Calcein, Purple: Alizarin, Red: blood vessel (Alexafluor 647 conjugated CD31, Sca-1, VE-Cadherin); Graphs: Green: Control, Red: Low Intensity (LI),
Blue: High intensity (HI). scale bar: 50 μm; (F, G)Quantification of fractions D-, M- and R-type cavities in young (F) and adult (G) long bone cavity. n = 3,
*p < 0.05, **p < 0.01, ****p < 0.0001.
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in HI mice but very few cells survived in the BM of LI and controls
on day 42. High intensity regimens are known to more effectively
eradicate recipient hematopoietic cells compared to low intensity
regimens, providing an open BM microenvironment for donor cell
engraftment (Kenyon and Babic, 2018; Griffin et al., 2022). In
addition, chemotherapy treatment leads to an efficient
hematopoietic recovery through stimulating the secretion of GM-
CSF, a crucial factor for the proliferation of donor cells (Sudo et al.,
2021). We also observed an overall better engraftment in young
groups compared to the corresponding adult groups as expected.
Interestingly, long bone image analysis revealed similar early
homing kinetics between groups regardless of chemotherapy dose
or age, even though long-term engraftment was higher in young
mice compared to adults. This discrepancy is associated with the
age-dependent alterations in the BM that cause the BM to be less
ideal for transplanted HSCs to engraft and repopulate, such as the
downregulation of stromal cell-derived chemokines (e.g., SDF-1),
reduction of arterioles and their HSC regulatory cells (e.g., arteriolar
NG2+, and PDGFβ+ cells) in endosteal regions, and increased
generation of ROS [(Kusumbe et al., 2014; Porto et al., 2015; Lee
et al., 2019; Ellis et al., 2011; Maryanovich et al., 2018; Ho et al., 2019;
Saçma et al., 2019; Singh et al., 2020)].

Given the critical role that the BM niche plays in supporting
hematopoiesis, we subsequently examined busulfan-induced changes
to different microenvironmental compartments of the BM. Consistent
with other findings, we observed increased blood vessel leakage and
permeability as well as changes in the blood vessel morphology, size,
and number at early days after cytotoxic treatment (Kopp et al., 2005;
Li et al., 2008; Hooper et al., 2009; Zhou et al., 2017; Kouam et al.,
2019). In addition, our experiments unexpectedly show that despite
significant hematopoietic reconstitution, the blood vessels remain
leaky on day 42 post-HCT suggesting that full recovery of the
blood-bone marrow barrier requires more than 6 weeks or may
never fully recover. A persistent reduction in the number of
endothelial cells observed 4 weeks after cisplatin chemotherapy
supports our findings on the prolonged impact of chemotherapy
on the blood vessel barrier (Lucas et al., 2013). It is worth noting that
chemotherapy-driven endothelial damage can contribute to various
clinical complications, such as sepsis, which is associated with high
morbidity and mortality rates in patients (Karvunidis et al., 2012;
Gudiol et al., 2021).

Furthermore, morphological changes to the blood vessel
network rebounded in young mice by day 42 yet remained
altered in adult mice, likely due to decreased or delayed
regenerative potential of adult BM. A decline in the number and
function of mesenchymal stem cells (MSCs), adipocyte
accumulation, reduced angiogenesis, and increased secretion of
inflammatory molecules are known age-associated factors that
disrupt the BM microenvironment and contribute to delayed
regeneration after cytotoxic damage (Ferrucci et al., 2005;
Ferrucci et al., 2005; Naveiras et al., 2009; Siclari et al., 2013;
Kusumbe et al., 2014; Mendelson and Frenette, 2014).

Unlike the early response of the vascular system to
chemotherapy that begins as early as day 2, a shift in the balance
of bone remodeling towards resorption appears delayed, particularly
in adult mice, and becomes increasingly pronounced over time. In
young mice, a general decrease in D-type bone (significantly in the
LI group) and an increase in R-type bone were observed in the bone

classification analysis, suggesting that the effects of chemotherapy
may begin to manifest early after treatment. Alizarin Red and ALP
staining of bone MSCs in young mice 3 days post-
cyclophosphamide chemotherapy showed a decrease in
osteoblastogenesis, supporting our observations (Zhao et al., 2017).

Similarly, localized irradiation has been found to reduce the ratio
of osteoblasts area to bone surface area (OB/BS) while increasing the
ratio of osteoclast area to bone surface area (OC/BS) after 2 weeks
post-exposure and persists for a minimum of 12 weeks (Zou et al.,
2016). Furthermore, the application of double bone labeling (Calcein/
Alizarin) in femurs of mice subjected to Doxorubicin chemotherapy
has revealed a decrease in the bone formation rate per bone surface
(BFR/BS) and a reduction in the mineral apposition rate (MAR) (Yao
et al., 2020). This dynamic change in bone turnover is attributed to
increased osteoclast activity and decreased osteoblast activity
following conditioning (Green et al., 2012; Yao et al., 2020).

Our results highlight that restoration of hematopoiesis through
donor cell expansion does not necessarily require full recovery of the
BM microenvironment and normal rates of bone turnover. While
bone turnover is a complex and tightly regulated process that involves
the coordinated activity of osteoclasts and osteoblasts, the restoration
of hematopoiesis involves a variety of cells, signals, and resources that
is independent of bone turnover in terms of timing and dynamics. In
this regard, clinical data suggests that bone loss does not compromise
hematopoietic recovery and patients undergoing HCT show
successful BM repopulation despite significant bone density loss
within 6 months post-treatment (Kang et al., 2000). While it is
known that HSPCs require various components in the BM
microenvironment to reconstitute hematopoiesis, additional
research is needed to reveal the full extent of influence that each
of these components exerts on hematopoietic recovery after
transplantation (Lo et al., 2009; Lai et al., 2014).

Altogether, our findings highlight the distinct influence that
chemotherapy dosage and recipient age have on the remodeling of
the bone and BM niche and donor cell recovery after HCT. These
insights contribute fundamental knowledge to clinical oncology,
particularly in understanding dose-response relationships for
cytotoxic therapy in cancer patients of various ages.
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SUPPLEMENTARY FIGURE S1
Dose and Age Dependent Donor Hematopoietic Recovery Following
Busulfan Conditioning. (A) Schematic of the experiment. Low and high
doses of busulfan were administered to young (4–6 weeks) and adult
(16–20 weeks) mice on two (LI) and four (HI) consecutive days. Whole BM
cells from UBC-GFP transgenic mice were injected into recipients 1 day
after busulfan conditioning. Imaging was performed on days 2, 5, and
42 post-HCT; (figure was created with BioRender.com) (B, C) Representative
longitudinal images of the calvaria BM in young (B) and adult (C) mice after
transplantation; Blue: blood vessel (Rhodamine-B Dextran), Green: GFP +
cells; scale bar: 100 μm; (D)Quantification of donor GFP + cells in young and
adult peripheral blood on day 42 post-HCT; (E) Evaluation of donor cell
homing to the calvaria BM 2 days post-HCT in young and adult mice.
Green: Control, Red: Low Intensity (LI), Blue: High intensity (HI). n ≥ 3, *p < 0.
05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY VIDEO S1
Representative ex vivo Z-stack video of the femur after the cortical bone was
shaved via cryostat. Red: blood vessel, Purple: bone surface (Alizarin), White:
bone surface (Calcein), Blue: bone, Green: GFP + donor cells; scale
bar: 500 µm.

SUPPLEMENTARY VIDEO S2
Representative in vivo Z-stack video of the calvarium after Rhodamine
Dextran injection. Blue: blood vessel, Green: GFP + donor cells; scale
bar: 100 µm.

SUPPLEMENTARY VIDEOS S3–S5
Representative leakage in control (day 2; Video 3) and busulfan conditioned
(HI) young mice on days 2 (Video 4) and day 42 (Video 5); White: blood
vessel; scale bar: 50 µm.

SUPPLEMENTARY VIDEOS S6–S8
Representative leakage in control (day 2; Video 6) and busulfan conditioned
(HI) adult mice on days 2 (Video 7) and day 42 (Video 8); White: blood vessel;
scale bar: 50 µm.
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