
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A Comparison of Grid-Based Techniques for Navier-Stokes Fluid Simulation in Computer
Graphics

Permalink
https://escholarship.org/uc/item/7zd8195h

Author
Chrisman, Cameron Lyle

Publication Date
2008-04-08

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zd8195h
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Comparison of Grid-Based Techniques for Navier-Stokes Fluid Simulation in

Computer Graphics

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in

Computer Science

by

Cameron Chrisman

Committee in charge:

Professor Henrik Wann Jensen, Chair
Professor Matthias Zwicker
Professor Samuel R. Buss

2008

Copyright

Cameron Chrisman, 2008

All rights reserved.

The Thesis of Cameron Chrisman is approved, and it is

acceptable in quality and form for publication on micro-

film:

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

List of Symbols . ix

Acknowledgments . x

Abstract . xi

I Introduction . 1
1. Fluid Simulation in Computer Graphics 1
2. Previous Work . 2

A. Computational Methods . 2
B. Applications in Computer Graphics 6

II The Navier Stokes Equation . 8
1. Stress and Strain . 9
2. Continuous Derivation . 16
3. Overview . 18

III Grid Based Methods . 21
1. Grid Cells & Variables . 22
2. Marking the Fluid . 24
3. Discretizing Navier-Stokes . 25

A. The Pressure-Poisson Equation . 27
B. The Diffusion Equation . 28
C. Advection . 29
D. External Forces . 35

4. Leapfrog Integration . 37
5. Flux Limiting . 38
6. Comparison of Solvers . 41

IV Applications & Results . 43
1. Software Architecture . 43

A. Grid Storage Issues . 43
B. The Simulation Loop . 45

2. Stabilizing Unstable Solvers . 46
3. Simulating Liquids & Gases . 49

iv

V Discussion of Results . 57
1. Conclusion . 57
2. Deficiencies of Grid Based Methods & Future Work 59

References . 61

Supplemental Material Video Tape on file at the Mandeville Library

v

LIST OF FIGURES

II.1 Orientation of each stress tensor component in 3D, note that the
normal stresses are denoted with single subscripts: σx which only
need one dimension, and shear stresses, labeled with two sub-
scripts, e.g. τxy indicating both directions of the shear. 10

II.2 Strain tensor components, illustrated in two dimensions for clarity:
each strain component represents deformation in a given direction,
and their sum δ represents the total displacement of upper right
corner of the square. 11

III.1 Velocity and pressure on a staggered grid in two and three di-
mensions respectively. In three dimensions, the velocities on the
opposing faces, while still present, are omitted for clarity. 23

III.2 A visualized example of a marker-and-cell fluid simulator in which
full fluid cells are colored blue, fluid cells adjacent to empty cells
are colored green, and empty cells are gray. Particles marking the
fluid are also shown. 26

III.3 Change in velocities due to instantaneous changes in pressure, the
figure illustrates the velocity field just before the collision (left) and
just after (right), due to the nature of the grid based marker cells,
this transition can change in a single arbitrarily small timestep. 35

III.4 Comparison of first-order central differences explicit forward euler
integration (left) and leapfrog integration (right). 39

III.5 Comparison of the first-order central differences using leapfrog in-
tegration without (left) and with (right) the flux limiter. 40

III.6 Comparison of the QUICK advection using leapfrog integration
without (left) and with (right) the flux limiter. 40

III.7 Comparison of the PIC (left) and FLIP (right) particle methods. 41
III.8 Comparison of advection methods, from left to right and top to

bottom: first-order differences, QUICK method, first order upwind
differencing, semi-lagrangian, and the FLIP method 42

IV.1 Comparison of Central Differencing advection method without us-
ing forward euler integration (left) and leapfrog integration (right). 49

IV.2 Comparison of QUICK advection method without using forward
euler integration (left) and leapfrog integration (right). 50

IV.3 Comparison of Central Differencing advection method without us-
ing flux limiting (left) and with flux limiting (right) 50

IV.4 Comparison of QUICK advection method without using flux lim-
iting (left) and with flux limiting (right) 51

IV.5 Comparison of PIC advection method (left) and the FLIP method
(right) . 51

vi

IV.6 Comparison of the four advection methods: Central Differences,
QUICK, Semi Lagrangian, and FLIP 52

IV.7 Comparison of Central Differencing advection method without us-
ing forward euler integration (left) and leapfrog integration (right). 53

IV.8 Comparison of QUICK advection method without using forward
euler integration (left) and leapfrog integration (right). 53

IV.9 Comparison of Central Differencing advection method without us-
ing flux limiting (left) and with flux limiting (right) 54

IV.10 Comparison of QUICK advection method without using flux lim-
iting (left) and with flux limiting (right) 54

IV.11 Comparison of PIC advection method (left) and the FLIP method
(right) . 55

IV.12 Comparison of the four advection methods: Central Differences,
QUICK, Semi Lagrangian, and FLIP 56

vii

LIST OF TABLES

V.1 A comparison of the accuracy and stability of fluid simulation algo-
rithms Stability is analyzed based on its behavior when velocities
are below and above the CFL condition: unconditionally unstable
algorithms are unstable under any velocity v conditionally stable
algorithms are stable when v <= CFL and unstable otherwise.
Unconditionally stable algorithms are stable for all v. Accuracy is
defined on a spectrum between Noisy, Accurate, and Damped. . 57

viii

LIST OF SYMBOLS

ρ fluid density

µ dynamic viscosity

ν kinematic viscosity = µ
ρ

u the vector field representing fluid velocity

u the x component of u

v the y component of u

w the z component of u

p the pressure inside the fluid volume

f the body force field acting on the fluid

a the vector field representing fluid acceleration

∆x,∆y,∆z grid spacing in the x, y and z dimensions

dt or ∆t timestep

σ the stress vector as defined in continuum mechanics theory

τ the strain vector as defined in continuum mechanics theory

ε the displacement vector of fluid volume, also denoted ξi + ηj + ζk

n the Poisson ratio of the fluid

∇ the gradient operator

∇2 the laplacian operator

∇· the divergence operator

D
Dt

the substantial derivative

Φ the flux limiting function defined as Φ(r)

φ generic variable for a scalar field

ix

ACKNOWLEDGMENTS

I would like to thank my thesis committee, especially my committee chair, Henrik

Wann Jensen, for his patience and kind attention working through several drafts. I

would also like to thank my other two committee members, Matthias Zwicker and

Samuel Buss, for their feedback and useful input while developing my thesis and

proofreading my final drafts. Finally, I would like to thank the UCSD Computer

Science Department, for supporting and challenging me in both my graduate and

undergraduate career.

x

ABSTRACT OF THE THESIS

A Comparison of Grid-Based Techniques for Navier-Stokes Fluid Simulation in

Computer Graphics

by

Cameron Chrisman

Master of Science in Computer Science

University of California, San Diego, 2008

Professor Henrik Wann Jensen, Chair

Fluid simulation is becoming increasingly common in the film industry and

in computer games, however, understanding and implementing a numerical solution

to the Navier-Stokes equation can be a daunting task. In this thesis we present

an introduction to fluid simulation in computer graphics with a full derivation of

the compressible and incompressible Navier-Stokes equation from Newton’s Second

Law, explaining concepts such as pressure and viscosity as they are derived. We

also present a survey and comparison of four different methods for solving the

advection equation: a simple 1st order differencing method, a 4th order QUICK

scheme, the popular semi-lagrangian method, and the PIC & FLIP particle based

methods. We present these advection scheme comparisons in a series simplified 1D

channel plots, and a set of 2D fluid animations. Based on these results, we classify

algorithms as stable or unstable, and discuss methods to prevent divergence in

unstable solvers.

xi

I

Introduction

I.1 Fluid Simulation in Computer Graphics

Physical simulation in computer graphics is becoming an increasingly

common, and indispensable, part of the toolset of special effects studios and digi-

tal artists, and use of advanced simulation techniques is increasing rapidly both in

film production and interactive entertainment. There are several motivations for

why one would want to simulate an effect instead of delegating the responsibility

to an artist; the two most important are that hand animated visual effects are

often unconvincing, or are on a scale large enough that hand animation is pro-

hibitively time consuming. Consider, for example, that an artist may be able to

plausibly animate a single rock tumbling down grassy hillside, but animating an

entire landslide that must correctly interact with the terrain and scenery would be

both tedious and error prone.

Hand animation of fluids generally suffers from both of these problems;

the physical behavior of a fluid is complex, and other than in specific situations

that we’re familiar with, such as waves or ripples, it is very difficult to intuitively

predict its behavior. In addition to this, water is a ubiquitous material in nature,

and in natural scenes that are the target of the visual effects industry, may be

present in very large quantities and high detail, such as a flood or raging river, a

1

2

heavy rain falling and accumulating in a complex scene, or ocean waves crashing

against rocky cliffs.

This thesis focuses primarily on grid based fluid simulation techniques.

The earliest and most well studied computational methods for simulating fluids

involve discretizing the computational domain into discrete cells, forming a grid,

and solving for fluid variables for each grid cell. Grid based fluid simulation tech-

niques are popular in many fields, including computer graphics, primarily because

they produce consistently accurate and high quality results under a wide variety of

simulation settings, and make use of the large body of general discretized methods

of solution such as finite differencing and finite elements.

I.2 Previous Work

Computational fluid dynamics is a highly interdisciplinary field, and is

very application oriented. As such, previous work in fluid simulation naturally seg-

ments itself into advances in fundamental computational methods, and applications

and extensions that are specific to a given field. As with many interdisciplinary

fields, methods developed with one intention often find applications elsewhere,

and are added to the body of ’CFD wisdom’ for that field. Here we will present a

brief overview of the core computational methods and techniques that have proven

useful in computer graphics, and applications or extensions of those techniques

developed solely for use in the field of computer graphics.

I.2.A Computational Methods

Before discussing specific works on fluid simulation, it is worthwhile to

point out a single paper that has had a dramatic and profound technique on fluid

simulation research both in not only computer graphics, but in engineering and

physics disciplines as well.

One of the most commonly cited grid-based technique in computer graph-

3

ics is the Marker and Cell method [24], was originally presented in an early non-

graphics work by Frank Harlow, an engineer in the T-3 fluid dynamics division

at Los Alamos National Labs in 1965. Harlow’s work has been some of the most

influential in computational fluid dynamics literature, and has pioneered several

other techniques.

Briefly, the Marker and Cell, or MAC, method consists of two compo-

nents: markers, that define the where the fluid is present, and grid cells that store

physical variables of the fluid, such as the velocity, pressure, temperature, etc. The

advantage of this method is that the markers, a particle system for example, are

often capable of representing the fluid at a higher level of detail than the spatial

grid, which can be relatively coarse.

Harlow’s later work also had a profound impact on the CFD community,

and other significant works in computational fluid dynamics that have found their

way into common usage in computer graphics. In even earlier works Harlow in-

troduced the particle-in-cell or PIC method [15], [25] . These works were later

extended to produce the more accurate FLIP technique by Brackbull et al. in

1986 [27].

Let us now examine some of the early computer graphics research on grid

based fluid simulation. Kass et al. [28] is one of the first major papers in graphics

in which the Navier-Stokes equations are solved for the purposes of simulating

fluid. Their simulation is simplified greatly, assuming only shallow water surfaces,

which restricts water to a heightfield, even in 2D . Later, Chen et al. [7] solved

the full Navier stokes equations, but due to the performance constraints of the

time, this was done only in two dimensions, although an ad-hoc three dimensional

representation was generated using a heightfield based on the pressure value in the

cells of a 2D grid.

Two major advancements in the usage of CFD in computer graphics came

with the work of Nick Foster and Jos Stam. In 1996, Foster [19], presented one of

the first papers in graphics to present results for a full three dimensional solution

4

to the Navier-Stokes equation, referencing Harlow original paper. Foster helped

promote the concept of arbitrary methods, not just particles, for the markers of

the free surface. The originally proposed alternative to particles was heightfields,

which have the disadvantage that they are restricted to a single valued function,

and not able to represent ’overturning’ flows or splashes.

Another major advancement in the fluid simulation in computer graphics

was by Jos Stam [44] in which the concept of semi-lagrangian advection was in-

troduced to the computer graphics community. In addition to being a simple and

robust approach to solving the advection component of the Navier-Stokes equation,

Stam’s paper contained polished results and introduced and popularized a variety

of easy to implement, efficient methods for solving the other aspects of the Navier-

Stokes equation. As a result, interest in, as well as overall technical proficiency in

fluid simulation techniques of the graphics community increased significantly.

A major advance in surface representation came with Foster & Fedkiw

[18] and in which the concept of using level sets in place of heightfields or particles

to mark the free surface. Level sets present an attractive alternative to particles

and heightfields, in that the surface can be represented in very high detail, as

well as desirable secondary characteristics such as surface curvature. Generally

even with particle based simulation methods, the final step before a high quality

rendering is to extract a smooth surface from the particles. Enright et al. [14]

extended this technique by increasing the accuracy of the level set evolution by

seeding particles near the level set surface, developing a method that hybridizes

the original particle based marker method and the newer level set formulation.

Many methods for simulating the Navier-Stokes equations do not rely

on a grid based discretization at all. One such popular technique is known as

smoothed particle hydrodynamics, or SPH. SPH uses particles, instead of grid cells,

to represent infinitesimal volumes of fluid. Each particle has an associated veloc-

ity, pressure, temperature, or any quantity that one desires to be present in the

fluid, and each quantity has an associated kernel function; summing the kernels

5

of nearby particles is used to interpolate at locations between points. In this way,

the particles provide a sampling of the fluid as a function of these variables. The

main advantage of SPH is that particles, since they have no connectivity, provide

a powerful and easy to use framework for adaptively sampling fluid areas of in-

terest, by simply increasing the particle density in the desired area. Particle-only

simulations also generally require less memory than grid-based solutions (most of

which make use of particles and grids).

Originally presented in Lucy, et al. [30], due to its flexibility, SPH has

become the method of choice in the astrophysics community. SPH has also become

popular in the real-time graphics community, as the lack of a computational grid

significantly decreases memory and computational overhead of fluid simulation

algorithms, resulting in several publications targeting realtime simulation [10], [36].

Another class of fluid simulation techniques that has recently become

popular is the use of the Lattice Boltzman method, in which particles travel along

the edges of a 3D lattice, whose motion is based on the statistical mechanics of the

fluid in question. Lattice-Boltzmann methods are popular because they provide

potential for high resolution flows, and easily extend to two-phase coupled flows.

Thuerey et al. [37] incorporates Lattice-Boltzmann methods with the popular

level-set framework to produce free surface flows.

Additionally there exist a wide variety of methods that do not solve the

Navier-Stokes equations at all, and are derived empirically or mathematically. For

example Fournier in 1986 [21], one of the earliest fluid simulation papers in com-

puter graphics, provided a procedural formulation for ocean waves based on an

early mathematical model of waves by developed Frantisek Gersnter in the early

19th century.

A more advanced technique was employed by Tessendorf [48], in which

the discrete inverse Fourier transform of the Kolmogorov spectrum is used to model

waves in the open ocean, which provides extremely convincing animation of ocean

swells and choppy waves, but requires the assumption of a large and open fluid

6

domain, making it ill suited for general purpose use.

I.2.B Applications in Computer Graphics

Core advances in the fundamental techniques of fluid simulation are im-

portant, and often lead to stunning images, but an equally, if not more important

area of research is the application and extension of existing techniques and their

unique applications to computer graphics. The two most common applications

of fluid simulation in computer graphics are the visual simulation of liquids and

gases, although other applications are not uncommon.

Hot gases, usually visualized as smoke or steam, have a long history as a

motivating application. An early paper by Stam [46] presented the evolution of gas

density using the inverse Kolmgorov spectrum, producing turbulent flows, but with

similar limitations associated with this method for modeling ocean waves, making

it unsuitable for small scale phenomena. Foster [20] presented a technique build-

ing upon his earlier work [19] to model gas density evolution on a grid using finite

differencing with the Navier-Stokes equation. Later Fedkiw et al. [16] presented

both a technique to simulate smoke that preserves lively vortexes, a problem en-

countered using semi-lagrangian advection solvers, as well as presenting an offline

rendering scheme utilizing photon mapping. More recent work by Selle et al. [43]

extends the concept of high vorticity simulation methods using vortex particles,

based on previous two-dimensional work [32].

While fluid simulation is an extremely useful tool for visualizing things

like water or smoke, or viscous goo, the physical effects of fluids play a key role

in how they interact with rigid objects. For example Dorsey et al. [12] uses

an iterative application of CFD at the surfaces of objects as part of a method to

simulate aging and weathering effects. Bridson et al. [53] presented an extension of

a general fluid simulation to animating sand using the physics of granular material,

and also introduced the PIC and FLIP methods to computer graphics community.

Coupling fluid simulation with rigid bodies has a significant body of work

7

both in computer graphics and other fields [6], [4]. Often times solid-fluid interac-

tion in grid based methods have degenerate cases when the width of the interacting

object is on the scale of the individual grid cells. Grid-based methods have also

been extended to handle fluid-solid coupling for thin shells (a common problem

when discretizing solid objects into a coarse simulation grid) and deformable bodies

[23].

A major challenge in fluid simulation is computational efficiency. As naive

grid based methods increase in both space and time complexity as O(N3), attaining

a desirable resolution often comes at prohibitive computational cost. Lossaso et

al. [34] extends grid based Navier-Stokes solvers and level set representations be

computed on an unrestricted octree data structure, therefore allowing areas of

high detail, such as the interface between the fluid and an object with complex

geometry, to be simulated at a higher resolution than other, less interesting areas

of the computational domain.

Another important application in computer graphics is interactive ap-

plications. Although fluid simulation is reasonably well suited to parallel com-

putational, there has not been any significant work in computer graphics on the

parallelization of high quality offline fluid simulation techniques. However, the

extension of fluid simulations techniques to the GPU is increasing in popularity as

commodity graphics cards provide increased feature-sets and programming tools.

An introduction to extending Stam’s semilagranian method to the GPU is pre-

sented in GPU Gems 2 [26].

There is also a reasonable body of implementation-focused and instruc-

tional reference material for fluid simulation methods in computer graphics that is

already available and well worth the time of the interested reader [45],[4],[40],[26].

In addition to a qualitative comparison and analysis of fluid simulation methods,

this thesis attempts increase this body of work, presenting a solid grounding in the

theory of the Navier-Stokes equation and a thorough analysis and comparison of

several popular advection algorithms.

II

The Navier Stokes Equation

The Navier-Stokes equation describes the motion of fluid over time. Here

we will derive the Navier-Stokes equation as it is seen most commonly in fluid

simulation papers in computer graphics. Modern fluid simulation literature in

computer graphics is often daunting at first, as the techniques presented are often

building on decades of research. Similarly, general fluid mechanics texts are often

highly mathematical, and texts aimed at fluid simulation are often geared towards

mechanical engineers, focusing on specific forms of the Navier-Stokes equation that

often arise in engineering applications, such as modeling airflow over a wing. The

goal of this section is to provide the reader with a solid mathematical reference on

how the fully general Navier-Stokes equation is derived, with annotations along the

way to correct common misconceptions, and provide the mathematical intuition

behind physical quantities like pressure and viscosity.

For simplicity, the derivation is restricted to generalized three dimen-

sional vectors, where applicable, only the x dimension is derived and parts of the

derivation that follow trivially for the other dimensions are omitted and left as an

exercise. The only prior knowledge for this chapter is an solid understanding of

basic calculus, a high-school level physics course, and knowledge of basic vector

calculus operations such as gradient, divergence, etc..

The Navier-Stokes equation may be derived directly from Newton’s sec-

8

9

ond law of motion: ∑
F = ma (II.1)

However, first we will need to develop a language in which we can talk

about the internal forces of fluids. The mechanics of fluids falls into the realm of

a more general field known as continuum mechanics : the study of materials that

are composed of continuous regions of matter. Deriving the properties of a fluid,

and indeed many other types of materials, can be accomplished by examining the

forces present in an infinitesimally small volumetric region of the material. As we

are studying fluids, we will call this region the fluid volume; it has dimensions

∆x,∆y,∆z. To understand the behavior of fluids, we must first reason about

the forces acting on our fluid volume, and what they mean. In the language of

continuum mechanics, these forces are named stress and strain.

II.1 Stress and Strain

Stresses and strains on a volumetric element are basic tools used in con-

tinuum mechanics, and can be used to derive properties both of solids and fluids.

This section gives some of the basic derivations of stress and strain in a fluid vol-

ume, and an intuition as how these quantities relate to the physical behavior of a

fluid.

A stress represents the force acting on the surface of the fluid volume,

the stress on this infinitesimal volume can be broken down into stresses acting on

each face of our volumetric cube. For the face normal to the x-axis, which we will

henceforth call the x-face, there are three stresses:

σx = lim
∆Ax→0

∆Fx
∆Ax

, τxy = lim
∆Ax→0

∆Fy
∆Ax

, τxz = lim
∆Ax→0

∆Fz
∆Ax

,

Stress represents the force in each direction distributed over the area of

the given volume face. The normal stress : σx (also sometimes denoted τxx), is

the force in the normal direction of the face. The other two are shear stresses :

10

Figure II.1 Orientation of each stress tensor component in 3D, note that the nor-

mal stresses are denoted with single subscripts: σx which only need one dimension,

and shear stresses, labeled with two subscripts, e.g. τxy indicating both directions

of the shear.

τxy and τxz, which act in the two directions orthogonal to the normal stress, with

the convention that the first subscript denotes the normal direction of the face on

which the stress is applied, and the second subscript denotes the direction of the

force which induces that stress.

The definition for the shear stresses for the other two normal directions is

similar, and illustrated in Figure II.1. This yields 9 scalar quantities to completely

describe the stress of any given volume element. One will notice, however, that

the x, y and z faces in Figure II.1 give stress values for the top, right, and front

faces faces only. The stresses for the bottom, left, and back are defined in terms

of the value at the previous faces, and their rate of change. For example, for the

left face,

σ′x = σx +
∂σx
∂x

∆x τ ′xy = τxy +
∂τxy
∂x

∆x τ ′xz = τxz +
∂τxz
∂x

∆x

Stresses on the right face are a linear extrapolation of the stresses at the

left face, along a distance ∆x, and calculations are similar for the y and z faces.

This construction for the opposing faces will be used again several times, so it is

worth noting.

In addition to stresses on the fluid element, there are also strains. Strains

11

Figure II.2 Strain tensor components, illustrated in two dimensions for clarity:

each strain component represents deformation in a given direction, and their sum

δ represents the total displacement of upper right corner of the square.

are used to describe an infinitesimal deformation of a fluid or solid volume from

its initial shape and position. Strains are particularly important to fluids as the

deformation of a fluid volume allows one to reason about the change in volume of

the fluid element. This potential change in volume in turns allows us to reason

about the incompressibility of a fluid, and in turn, the concept of pressure.

Strains are defined in a very similar convention as stresses. Consider a

fluid volume which has undergone a slight deformation: Figure II.2. That is, a

vector, δ = ξi + ηj + ζk is defined such that if the lower left corner of our fluid is a

point O, then the deformed point is O+δ. We can use the same linear extrapolation

trick as is used in the construction of our stresses, to define the deformation of the

upper right corner δ′ = (ξ + ∂ξ
∂x

∆x)i + (η + ∂η
∂y

∆y)j + (ζ + ∂ζ
∂z

∆z)k.

We can derive the elongation of the fluid volume in the x dimension by

12

taking the limit of the difference of each point as ∆x goes to zero:

εx = lim
∆x,→0

(
ξ + ∂ξ

∂x
∆x
)
− (ξ)

∆x

εx =
∂ξ

∂x

ε =
∂ξ

∂x
i +

∂η

∂y
j +

∂ζ

∂z
k

This gives us ε, the normal strain, analogous to the normal stress σ, a

deformation in the same direction as the normal of the face produces an elongation

or contraction. In addition there are shear strains analogous to the shear stresses,

defined similarly as the deformations orthogonal to the normal direction of the face.

Shear strains produce changes in the fluid volume in the same way as the shear

component of an affine transformation matrix; only the orthogonal components of

a face are deformed, and parallel lines are preserved.

γxy =
∂η

∂x
+
∂ξ

∂y
, γyz =

∂ζ

∂y
+
∂η

∂z
γzx =

∂ξ

∂z
+
∂ζ

∂x

Another important characteristic of strains is stress-strain relation, which

describes what forces, and subsequently stresses, arise from a deformation of that

object. This is the main connection between the shear and stress forces, and is

an intrinsic property of a material. A piece of wood, for example, will respond

differently when deformed, than say a piece of silly putty. For simple elastic solids,

the relationship between stress and strain is linear: like a spring, the restorative

force is proportional to the distance displaced; this proportionality constant is

called the modulus of elasticity. Analogous to an elastic solid, a Newtonian fluid

is a fluid that also has a linear stress-strain relationship, but for a Newtonian

fluid, the stress is proportional to the rate of change of the strain; the constant

of proportionality, which is analogous to the modulus of elasticity for solids, µ,

is known as the viscosity of the fluid. Thus the higher the viscosity, the larger

the number of internal stress forces are generated within fluid. The fact that the

stress-strain relationship depends on the rate of change of the strain instead of the

strain itself, is intuitive. For example, imagine the difference between raising your

13

hand and slapping a pool of water, and gently easing your hand into the water

slowly, and imagine the same actions against a block of wood. This means that

highly viscous fluids resist changes in internal velocity while deforming, but not

necessarily deformation itself. In the case elastic solids, like the block of wood, the

only thing that matters is how much of a deformation has occurred, not how quickly

it occurred. This is one of the fundamental distinctions between the behavior of

solids and fluids.

If we take the displacement δ and examine its rate of change with respect

to time we really just have the instantaneous velocity of our fluid volume:

∂δ

∂t
=

(
∂ξ

∂t
i +

∂η

∂t
j +

∂ζ

∂t
k

)
= (ui + vj + wk) = u

We can now relate the equations for shear stress to the velocity of the

fluid via the stress-strain relation; assuming viscosity, µ, is constant over time:

τxy =
∂

∂t

(
µ

(
∂η

∂x
+
∂η

∂y

))
= µ

(
∂v

∂x
+
∂u

∂y

)
(II.2)

We can do the same for the normal stress, with a bit more work (but we

will see, it will be worth it). Let us use the convention thatεXx is the strain from the

normal stress in the x direction. In addition to this, two strains: εYx = −nεYy and

εZx = −nεZz arise from the normal strains in the y and z direction. To what degree

this occurs is another intrinsic property of the material, and the ratio n is known

as the Poisson ratio. The Poisson ratio measures how much the cross section of

a block of material will reduce in area as that material is stretched along its axis.

The Poisson ratio is usually positive, meaning that there is a negative correlation

between the strain in one direction and the strain in its orthogonal directions, i.e.

if you stretch an object it becomes longer and skinnier, and if you compress it, it

becomes shorter and fatter. The time rate of strain varies linearly with stress, and

the Poisson ratio is included in this linear relation as follows [9]:

σx = 2µ(1 + n)
∂εXx
∂t

σy = 2µ(1 + n)
∂εYy
∂t

σz = 2µ(1 + n)
∂εZz
∂t

14

Next, we will want to find the total strain rate of change in the x direction:

∂εx
∂t

, so we add the strains in that direction due to all the normal stresses:

∂εx
∂t

=
∂

∂t

[
εXx + εYx + εZx

]
= µ

(
σx −

σy
n
− σz

n

)
By taking the above summation, we can now write expressions for the

total strain rate of change in the x direction terms of the x y and z normal stresses:

∂εx
∂t

=
1

2µ(1 + n)
[σx − n(σy + σz)]

The strain rate of change is also the rate of change of position: velocity:

∂εx
∂t

=
∂

∂t

(
∂ξ

∂x

)
=

∂

∂x

(
∂ξ

∂t

)
=
∂u

∂x

We now have expressions for velocity components in terms of stresses:

∂u

∂x
=

1

2µ(1 + n)
[σx − n(σy + σz)]

∂v

∂y
=

1

2µ(1 + n)
[σy − n(σx + σz)]

∂w

∂z
=

1

2µ(1 + n)
[σz − n(σx + σy)]

We also compute the sum of the rate of change of elongation: ∂
∂t

(εx+ εy +

εz), as it will be useful later:(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
=

1

2µ(1 + n)
(σx + σy + σz − 2n (σx + σy + σz))

=
1− 2n

2µ(1 + n)
(σx + σy + σz) (II.3)

Rearranging the x velocity in terms of total stresses yields:

σx = 2µ(1 + n)
∂u

∂x
+ n (σy + σz)

Let us define σ̄ as the average of all normal stresses as the mean stress:

σ̄ = 1
3
(σx+σy+σz). We will now do a few algebraic tricks to simplify the expression.

15

Let us add two terms to both sides of the equation: −σ̄ and nσx, and then multiply

both sides by 3 (don’t worry if this seems very unintuitive at first).:

σx + nσx − σ̄ = 2µ(1 + n)
∂u

∂x
+ n (σy + σz) + nσx −

1

3
(σx + σy + σz)

σx(1 + n)− σ̄ = 2µ(1 + n)
∂u

∂x
+ n (σx + σy + σz)−

1

3
(σx + σy + σz)

3σx(1 + n)− 3σ̄ = 3 · 2µ(1 + n)
∂u

∂x
+ 3n (σxσy + σz)− (σx + σy + σz)

3σx(1 + n)− 3σ̄ = 3 · 2µ(1 + n)
∂u

∂x
+ (1− 2n) (σx + σy + σz)

σx − σ̄ = 2µ
∂u

∂x
+

(1− 2n)

3(n+ 1)
(σx + σy + σz) (II.4)

Recall that the change in the sum of elongations we computed in Eqn

II.3 also defines the change in volume of the fluid, noticing that the left hand side

of Eqn II.3 is the divergence of the velocity field.

∇ · u =

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
=

1− 2n

2µ(1 + n)
(σx + σy + σz) (II.5)

Substituting Eq. (II.5) into Eq. (II.4), we get:

σx − σ̄ = 2µ
∂u

∂x
− 2

3
µ (∇ · u)

If the change in volume over time is zero, we can say that this fluid is incompress-

ible:

∇ · u = 0 (II.6)

Recall that we have defined the mean stress as σ̄ = 1
3
(σx + σy + σz), and

that positive values for stress indicate forces that point away from the fluid volume.

Negating the mean stress gives us a quantity that gets larger the higher the sum

of forces pushing inwards toward the center of the fluid volume are, in other words

pressure: p = −σ̄. We can now write an expression for each of the normal stresses

only in terms of pressures and velocities:

σx = −p+ 2µ
∂u

∂x
− 2

3
µ (∇ · u)

σy = −p+ 2µ
∂v

∂y
− 2

3
µ (∇ · u) (II.7)

σz = −p+ 2µ
∂w

∂z
− 2

3
µ (∇ · u)

16

II.2 Continuous Derivation

We now want to take our equations for each dimension, and come up

with a differential equation in vector form. Recalling again Newton’s Second law,∑
Fi = mai, let us write the this equation for the fluid element with density ρ the

x direction only.

Fx = (ρ∆x∆y∆z)ax

We must now consider the forces acting on the fluid element. As we have

seen before, stress is defined as force over a differential area element, and we may

reconstruct the force due to stress by summing all the forces in the x direction

(note that each face will have exactly one stress component in the x direction).

In addition to stress forces, we also want to add an arbitrary body force, which

is external to the fluid, most commonly gravity, in general we will call this force

f = fxi + fyj + fzk.

Fx = (ρ∆x∆y∆z)fx − σx∆y∆z + (σx +
∂σx
∂x

)∆y∆z

− τyx∆x∆z + (τyx +
∂τyx
∂y

)∆x∆z

− τzx∆x∆y + (τzx +
∂τzx
∂z

)∆x∆y

When distributed, each term contains ∆x∆y∆z, and we can substitute

this force back into LHS of Newton’s Equation:

(∆x∆y∆z)(ρfx +
∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

) = (∆x∆y∆z)ρax

Our volume element term drops, and we may now substitute values of

stress in terms of velocity obtained in Eqs. (II.7) and (II.2) to yield:

ρfx +
∂

∂x

[
−p+ 2µ

∂u

∂x
− 2

3
µ(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
)

]

+
∂

∂y

[
µ(
∂v

∂x
+
∂u

∂y
)

]
+

∂

∂z

[
µ(
∂u

∂z
+
∂w

∂x
)

]
= ρax

Expanding this out yields:

17

ρfx −
∂p

∂x
+

∂

∂x
µ

[
∂2u

∂x
+
∂2v

∂y
+
∂2w

∂z

]
+
µ

3

∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= ρax

Similarly for the other dimensions:

ρfx −
∂p

∂x
+

∂

∂x
µ

[
∂2u

∂x
+
∂2v

∂y
+
∂2w

∂z

]
+
µ

3

∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= ρax

ρfx −
∂p

∂x
+

∂

∂x
µ

[
∂2u

∂x
+
∂2v

∂y
+
∂2w

∂z

]
+
µ

3

∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= ρax

An important and often confused part of the next step in the derivation

is specifying acceleration as the derivative of velocity, specifically the acceleration

for a particle of solid mass is a = Du
Dt

, where the operator D
Dt

is the substantial

derivative, also known as the total derivative. The substantial derivative is defined

as D
Dt

= ∂
∂t

+u ∂
∂x

+v ∂
∂y

+w ∂
∂w

, the second term, also called the convective derivative,

can be abbreviated as (u · ∇). Confusion often arises, when it is assumed that

(u · ∇) and (∇ · u) are equivalent. In fact, they are not even of the same type,

the divergence ∇ · u = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

is a scalar, while the convective derivative:

(u · ∇) = u ∂
∂x

+ v ∂
∂y

+ w ∂
∂w

is a vector operator, where each partial derivative is

scaled by the velocity in the direction of that derivative.

The convective derivative is an expression of the fact that the forces acting

on a fluid element are dependent on its current velocity, making the differential

equation describing fluid flow non-linear. This single term, as we will see, is a large

part of why the Navier-Stokes equation is interesting, and what makes the motion

of fluids unique compared to other materials. Recalling the form of our equation:

ρfx −
∂p

∂x
+

∂

∂x
µ

[
∂2u

∂x
+
∂2v

∂y
+
∂2w

∂z

]
+
µ

3

∂

∂x

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= ρax

If we sum each dimension and convert to vector notation, and replace

the sum of accelerations with the substantial derivative, we are left with the Com-

pressible Navier-Stokes Equation:

ρf −∇p+ µ∇2u +
µ

3
∇(∇ · u) = ρ

∂u

∂t
+ ρ(u · ∇)u (II.8)

18

As we have seen in Eq. (II.6), applying incompressibility: (∇ · u) = 0

allows us to drop a few terms, and yields the Incompressible Navier-Stokes Equa-

tion:

ρf −∇p+ µ∇2u+ = ρ
∂u

∂t
+ ρ(u · ∇)u (II.9)

Dividing by ρ and rearranging the terms, we can alter the equation to

appear as it is commonly cited in CFD literature in computer graphics:

∂u

∂t
= f − 1

ρ
∇p+ ν∇2u− (u · ∇)u (II.10)

Note that we have made the substitution ν = µ
ρ
. This is commonly done

in CFD literature, where µ is termed the dynamic viscosity and ν, termed the

kinematic viscosity is simply the dynamic viscosity normalized with respect to

density.

II.3 Overview

Now that we have derived the full incompressible Navier-Stokes equation,

let us break it down term by term. We will see that due to the separability of differ-

ential equations, we can solve each term independently and apply these operations

in serial, therefore it is useful to obtain and intuitive mathematical and physical

understanding of each term and any additional constraints, such as incompress-

ibility: Recall Eqs. (II.10, II.6) which comprise the incompressible Navier-Stokes

equation:
∂u

∂t
= f − 1

ρ
∇p+ ν∇2u− (u · ∇)u

∇ · u = 0

Advection: −(u·∇)u. This is likely the most complicated term, as we will

see when we discuss methods of solution, and in fact it is what makes the Navier-

Stokes equation a non-linear differential equation since it contains two factors of

u. Advection is the transport of any quantity through a vector field. For example,

particles moving through a vector field are being advected, scalar quantities such

19

as temperature may also be advected through a vector field. Advection may also

be conducted on vector as well as scalar fields. Even further, a vector field can

advect itself. This is called self-advection, and is exactly what the advection term

in the Navier-Stokes equation describes. It is difficult to provide further intuition,

other than to say that this forms the basis of how to establish a rule to advance

from one timestep to the next, as we are modeling future velocity as some function

of the current velocity.

Diffusion/Viscosity: ∇2u, is responsible for simulating the viscosity of a

fluid. Intuitively this type diffusion can be thought of as iteratively applying a

smoothing filter. Velocities close together will tend towards the same value. The

higher the viscosity, the faster the velocities will diffuse. This explains why viscous

fluids come to rest much sooner once disturbed, and have less ’lively’ behavior.

Pressure: −1
ρ
∇p accounts for the velocity due to differences in pressure

of the fluid. Consider two adjacent fluid volumes: if the pressure is very high in

one fluid volume, and low in all the adjacent fluid volume, fluid will want to move

out to these low pressure areas (this is why it is the negation of the divergence

field, which points in the direction of highest pressure increase).

Body Force: f , last term is the free body force which represents any

external force applied to the fluid. This is often gravity, but it need not be constant;

it can be an arbitrary function over space, time, a parameter of the simulation (such

as temperature or density), or a forcing function used for artistic control.

Continuity/Incompressibility: (∇ ·u) = 0. While not part of Eq. (II.10),

in order to simulate an incompressible fluid, this condition must be enforced. It

states that the divergence of the velocity field is zero everywhere. This means that

for any fluid volume, the amount of fluid coming in and the amount of fluid going

out is conserved. This equation is exactly what enforces the incompressibility

constraint. Empirically this is what causes a vector field to be ”swirly”, when

forces are applied inside the fluid; the reason for this is that when a force is locally

applied to a uniform field, it inherently causes divergence. Since the field must be

20

divergence free everywhere, it is often that vortex patterns emerge as they are the

only way large velocities can exist and still maintain a locally divergence free field;

each fluid volume in a vortex has an equal amount of fluid coming in as it does

going out.

III

Grid Based Methods

As noted in the first chapter, we will only concern ourselves with grid

based fluid simulation methods, but first we must define what constitutes a ’grid

based’ method. The concept of a regular computational grid arises intuitively

from the discretization of the variables in the differential form of the Navier-Stokes

equation, as well as the infinitesimal volume element analogy that we have used

to derive many of our continuous expressions. As we are dealing with properties

of a fluid that vary over space and time, we must break each of these dimensions

into discrete ’chunks’.

Discretizing time, is straightforward as it is one dimensional. Discretiz-

ing multi-dimensional space, however, is somewhat more complex, as there are a

variety of ways to partition two and three-dimensional space. In fact, complex

tetrahedral and polygonal mesh discretizations are commonly used in the engi-

neering and aerospace communities, as they are able to handle fluid/non-fluid

interfaces with complex geometries more accurately [1]. Generally in computer

graphics applications, the accuracy at the fluid interface gained from these mesh

based discretizations is not worth the added complexity, and simple regular dis-

cretizations are favored.

A ’grid-based’ discretization is one in which all of the discrete elements are

’boxes’ (i.e. cuboids). This grid is most commonly formed by taking an existing

21

22

volume, usually the entire domain in which we are interested in simulating our

fluid, and dividing each dimension into a discrete number of chunks. The number

of these divisions define the resolution of the grid, and subsequently the size and

shape of each grid cell. For the purposes of this discussion, we will also only

consider uniform grids, where the width and the height of a grid cell are fixed

over the entire domain. This is in contrast to what are commonly referred to as

adaptive grids, whose cell sizes are spatially varying. In addition to this constraint,

to simplify the discussion, we will assume that the size of grid cells are constant

equal in all dimensions, i.e. ∆x = ∆y = ∆z.

III.1 Grid Cells & Variables

As we have variables that vary spatially, and we have now split up our

space into discrete chunks, we must define a way to assign these variables to each

subdivided chunk, essentially we are sampling continuous quantities like velocity,

pressure, density, viscosity, etc. at each grid cell. An intuitive approach is to

simply take the center of each grid cell, and define all of our quantities there. This

approach has several advantages, it’s easy to understand and it works well with

certain algorithms [44], but this need not be the only choice.

A common choice historically in CFD literature for how to define variables

on a grid is what’s know as a staggered grid, this is in contrast to the cell-centered

approach above, known as a collocated grid. To motivate the intuition behind a

staggered grid, think about how one would place variables on a one dimensional

line that had divided up into many segments. Would it be at the center, or at

boundary between each division? The intuition is not as straightforward here, and

requires an evaluation of what exactly the quantity is trying to represent to decide

which location is appropriate. In a staggered grid, some quantities are defined at

the center of the grid, most notably pressure, while others, such as the velocities,

are defined at the divisions between cells; in two dimensions, these are the lines

23

adjoining cells, in three dimensions these are the cell faces.

It is also useful to assign names or indices to these cells. Usually this

done by setting an arbitrary location in the computational domain (usually one

of the corners) as index (0, 0) with aligned axes defining cell increments in each

respective dimension. For this discussion we will use the convention that the (0, 0)

cell starts in the ’bottom-left’, the positive x, and y directions are oriented to the

right and up, with respect to the page.

We can uses these indices to establish some conventions about how we

name the positions on our grid. For any continuous field variable q we can denote

qi,j as the value of q at the center of cell (i, j). This gives us a way to precisely

name any location in our grid, including the boundaries between adjacent cells.

For example, for the x-direction velocity stored at the face adjoining the origin

cell: (0, 0) and the cell to its right (1, 0) we denote as ui+ 1
2
,j, similarly for all the

other faces.

The trickiest part of a staggered grid configuration is that some quantities,

such as velocity are stored natively at the cell faces, and must be interpolated if

we want to obtain the velocity at the centers of the cell, whereas values such as

pressure are defined at the cell centers and must be interpolated to find the value

at the cell faces.

Figure III.1 Velocity and pressure on a staggered grid in two and three dimensions

respectively. In three dimensions, the velocities on the opposing faces, while still

present, are omitted for clarity.

24

III.2 Marking the Fluid

One very important part of simulating fluids, particularly liquids, is mark-

ing where in space the fluid is present. This is one problem that faces any grid

based method: generally for a computational grid to be efficient in calculating

velocities, it must be fairly coarse. As a result, the method used for representing

the actual geometry of the fluid is usually a totally different, and often higher res-

olution, representation of the geometry than the grid cells that carry and compute

the velocity and pressure. This combination has yielded the term Marker and Cell

method, often abbreviated the MAC method.

In early developments in computer graphics, the preferred method of

marking the surface was a heightfield [28]. Heightfields are simple and compact

representations, but are single valued in height. In later fluid simulation research,

heightfields were abandoned in favor of a collection of particles, or an implicit sur-

face, usually a level set or a signed distance function. The idea behind the MAC

method is that at the beginning of every time step, the fluid markers, whatever

they be, are used to provide information that the solver needs to compute the

velocity on the grid cells. The most important piece of information that the fluid

markers provide to the solver is which grid cells are full, and which are empty, and

as a corollary, which cells have faces open to air and which are fully surrounded

by fluid (this is important when determining pressure forces acting on the fluid).

Additionally, some marking methods can provide extra information about curva-

ture of the surface for computing surface tension, or act as additional locations to

sample fluid velocity.

At the end of the time step, the fluid markers are advected by the velocity

field to get their updated position and shape for the next timestep. The method

by which the markers are advected through the velocity field is entirely dependent

on the marker representation. Any geometric representation can be used as a basic

fluid marker as long as the grid cells can query it to determine whether they contain

fluid, and the marker can be advected by the velocity field. In this manner, the

25

marker and grid cell calculations are coupled. This is significant, because it is often

assumed or implied that the fluid markers are ’totally passive’ with respect to the

solver calculation. For liquids, this is far from the truth. A very important part of

simulating liquids is marking the free surface, or the interface between fluid and

non-fluid.

For fluids, this interface is the only aspect of the fluid simulation that

viewers will actually see, and if there is an error or inaccuracy in marking the free

surface, a correct velocity solver will still produce incorrect or inaccurate results.

When simulating gasses and smoke, markers are still used to determine concen-

trations of scalar quantities in present, (such as temperature, or smoke density),

but the entire computational domain can be considered fluid, so the coupling of

markers and grid cells is only one-way.

All of the fluid simulations implementations discussed here use collections

of particles exclusively as a marking method for free surface of liquids, and scalar

density fields for concentrations in gasses. The primary reason for this is simplicity.

Level set representations are very powerful and can represent fluid-air interfaces

at high resolutions, but carry additional burdens of computational efficiency and

infrastructure, and the best method to advect level sets is the subject of consid-

erable ongoing research. [13],[14] [33], Additionally, some solvers tested, such as

PIC/FLIP require particles for their method of solution; It is worthwhile to note

that particles can be converted to smooth level sets as a post-process when high

quality 3D rendering is required [53].

III.3 Discretizing Navier-Stokes

Now that we have defined the location and types of variables on our

staggered grid, we can now take the Navier-Stokes equation and discretize each

term. This discretization will form the basis for how we solve for each of these

terms. For simplicity we will only consider a two dimensional discretization, and

26

Figure III.2 A visualized example of a marker-and-cell fluid simulator in which

full fluid cells are colored blue, fluid cells adjacent to empty cells are colored green,

and empty cells are gray. Particles marking the fluid are also shown.

note cases in which an extension to three-dimensions does not follow trivially:

Recall Eq. (II.10):
∂u

∂t
= f − 1

ρ
∇p+ ν∇2u + (u · ∇)u

Let us write this as the change in velocity for each direction:

∂u

∂t
= fx −

1

ρ

∂p

∂x
+ ν

[
∂2u

∂x
+
∂2u

∂y
+

]
+ u

∂u

∂x
+ v

∂u

∂y

∂v

∂t
= fy −

1

ρ

∂p

∂y
+ ν

[
∂2v

∂x
+
∂2v

∂y
+

]
+ u

∂v

∂x
+ v

∂v

∂y

One important thing to note at this point is that the Navier-Stokes is a

separable partial differential equation. Separability means that each term of the

equation is independent from the others, and can be solved for independently. This

allows us a great advantage, as the numerical method that is best suited to each

term can be used. Here we will present and discretize each separable term as a

separate equation.

27

III.3.A The Pressure-Poisson Equation

The pressure term can be simply discretized as a first order difference:

∂u

∂t
=
∂p

∂x
=
pi,j − pi+1,j

∆x

Ordinarily, this might create problems because this appears to be a forward differ-

ence, and in order to get a symmetric centered difference, we would have to widen

difference stencil to pi−1,j + 2pi,j + pi+1,j. The result of the difference between two

pressures is a velocity (in the same way that the gradient of a scalar field is a vector

field), so the result we want from differencing the pressure at two adjacent cells

is the velocity at the face of the cell. This is where the elegance of the staggered

grid configuration shines: first order differences on a cell-centered quantity be-

come centered differences for the face-centered quantity, and vice versa. Similarly,

if we want to compute the pressure due to a difference in velocity, a difference of:

ui− 1
2
,j − ui+ 1

2
,j will be centered around the cell-center, where the pressure resides.

This is fortuitous, as the general method of solution of pressure takes the

form of first computing the induced pressures from the velocity grid, generating a

new set of pressures that will enforce the incompressibility of the fluid, and then

applying these pressures to get a set of velocities. This process is often referred to

as ’pressure projection’. This subject has been covered well in a variety of sources

[4], [24], [44], [45], [8], so we will present only a brief overview.

Now that we know how to get pressures induced by velocity and velocity

induced by pressures, we must now figure out a way to actually compute the

pressure values that lead to an incompressible fluid. To motivate this, let us

consider our incompressibility equation: ∇ · u = 0, which says the divergence of

the velocity field is zero everywhere. When discretized, this means that on a single

grid cell, the face-velocities sum to zero: ui+ 1
2
,j − ui− 1

2
,j + vi,j+ 1

2
, − vi,j− 1

2
= 0.

Intuitively if mass is being advected through our fluid volume, the same amount

of mass coming in is the same amount that leaves, i.e. there is no compression or

expansion occurring. All we need to do is solve for this pressure field, and then

28

apply the velocities induced by those pressures to obtain our incompressible and

divergence free field. Using previously derived results [44], [8], we can show that

the pressure field p can be be calculated using the equation:

∇ · u = ∇2p

This form of differential equation is known as Poisson’s equation. On the right

hand side we are solving for the pressure, p represented as a scalar field with

values in the cell centers. The left hand side, we have the divergence of the field

before pressure projection, which we can compute and treat as a constant. This

relationship can be formulated as a matrix and solved using a linear system.

An excellent treatment of how to construct and solve this linear system

is presented by Mark Carlson’s Phd. thesis [4]. Carlson uses a conjugate-gradient

linear solver to solve this matrix, but it is important to point out that this is not

the only method available. Harlow [24] and Stam [45] both use relaxation methods

to solve the pressure equation. It is important to note that while these methods

may look very different in implementation, they are still constructing and solving

the same linear system.

III.3.B The Diffusion Equation

For the diffusion term:

∂u

∂t
= ν

[
∂2u

∂x
+
∂2u

∂y

]
Let us examine the x partial derivative:

∂u

∂t
= ν

∂2u

∂x
= ν

∂

∂x

(
ui+ 1

2
,j − ui− 1

2
,j

∆x

)
= ν

(
ui+1,j − ui,j

∆x
− ui,j − ui−1,j

∆x

)
/∆x

= ν
ui+1,j − 2ui,j + ui−1,j

∆x2

The diffusion equation can be solved exactly using the finite difference scheme

above, and this works well in practice for low viscosity flows, however when the

29

viscosity becomes moderately high, this differencing scheme becomes unstable.

Like the Pressure-Poisson equation above, the general diffusion equation: ∂u
∂t

=

ν∇2u is a commonly recurring problem in physical science, and a large number of

implicit methods exist for its solution. One will notice a resemblance to Poission’s

equation above, as a result, this equation can be solved with similar methods [4]

[5].

III.3.C Advection

One of the most interesting discretization is the advection term:

∂u

∂t
= −

(
u
∂u

∂x
+ v

∂u

∂y

)
This equation can be solved in a wide variety of ways, and the method of solution

here will have the largest impact on the behavior of our fluid solver, and is the

primary difference in technique discussed in papers. As such, we describe four

advection methods in detail.

First, it is useful to point out that the above equation is the special

case of advection: self-advection: (u · ∇)u. In general, the advection operator,

or convective derivative, u · ∇ can be applied to any scalar or vector field, not

necessarily a velocity field, so we can write the general advection equation on a

scalar field φ as:
∂φ

∂t
= −

(
u
∂φ

∂x
+ v

∂φ

∂y

)
One can substitute u for φ in the discussion, but we will use φ, as it

serves to illustrate that the fact that u or v are both the advecting and advected

fields is purely coincidental for the purposes of solving the equation. They could

be temperature, or the density of a chemical solution suspended in the fluid, and

the solution would be the same.

30

First Order Differencing

The most basic method of solving the advection equation is to use explicit

finite differencing on the advection equation.

We can define the partial derivative using a first order centered difference,

e.g.
∂φ

∂x
=
φi+1,j − φi−1,j

∆x

∂φ

∂t
= −

(
u
∂φ

∂x
+ v

∂φ

∂y

)
= −

(
u

(
φi+1,j − φi−1,j

∆x

)
+ v

(
φi,j+1 − φi,j−1

∆y

))
In order to get an actual equation for ∂u

∂t
and ∂v

∂t
, we can replace φ above

with u and v respectively.

∂u

∂t
= −

(
ui,j

(
ui+1,j − ui−1,j

∆x

)
+ vi,j

(
ui,j+1 − ui,j−1

∆y

))
∂v

∂t
= −

(
ui,j

(
vi+1,j − vi−1,j

∆x

)
+ vi,j

(
vi,j+1 − vi,j−1

∆y

))
We do have to be mindful, however, if we are using a staggered grid. For

a staggered grid we must make the following approximations:

ui,j =
ui+ 1

2
,j + ui− 1

2
,j

2

vi,j =
vi,j+ 1

2
+ ui,j− 1

2

2

However, several terms cancel, and this substitution results only in a

factor of 2 division; if we define a simplified notation for our staggered grid as

31

usi,j = ui− 1
2
,j:

ui+1,j − ui−1,j = (
ui+ 3

2
,j + ui− 1

2
,j

2
)− (

ui− 1
2
,j + ui− 3

2
,j

2
)

=
ui+ 3

2
,j − ui− 3

2
,j

2

=
usi+1,j − usi−1,j

2

QUICK

The QUICK method was first introduced into the CFD literature by

Leonard [31] for use in ocean models, and has subsequently been modified and

improved by several ocean modeling researchers [47] [51]. One reason for the

detail in our first-order differencing derivation above, is that the QUICK advection

scheme is easy to understand in the context of the original derivation.

In the first-order differencing method above, we defined the partial deriva-

tive using a first order centered difference, e.g.

∂φ

∂x
=
φi+1,j − φi−1,j

∆x

The crux of the QUICK method is that we instead use a second order

approximation:

∂φ

∂x
=
φi+1,j − φi−1,j

∆x
− φi+1,j − 2φi,j + φi−1,j

8∆x

This can be shown to produce a second order accurate solution, with error

of O(δx2) instead of O(δx) as in the standard first-order differencing algorithm.

Another method, dubbed Modified Split-Quick, is fourth-order accurate, and is

obtained using the approximation:

∂φ

∂x
=
φi+1,j − φi−1,j

∆x
− φi+2,j − 2φi+1,j + 2φi−1,j − φi−2,j

12∆x

We use the Modified Split-Quick method, which provides a more accurate

solution at very little additional computational cost. Details and an error analysis

of both of these methods can be found in Webb et al. [51].

32

Semi-Lagrangian

The semi-lagrangian advection scheme is likely the most commonly used

in all of computer graphics, largely due to the paper ”Stable Fluids”, presented by

Jos Stam at SIGGRAPH ’99 [44], in which this method is discussed in detail. It

is the intention of this section to give a brief overview of and intuition behind the

semi-lagrangian method that is left out of the original paper, and a reader desiring

a more thorough treatment should consult the above reference.

Although this method was already well known in CFD literature at the

time [8], Stam provided a detailed and concise explanation, as well as applications

and extensions for simulating smoke and gas, and substantial reference material for

implementation [45]. The main advantage of the semi-lagrangian method is that

it is unconditionally stable, that is, the simulation is guaranteed not to diverge,

unlike many finite differencing schemes (which includes all of the ones discussed

in this paper). This guarantee of stability and Stam’s thorough treatment of this

method caused it to become the de-facto standard advection algorithm in computer

graphics.

In contrast to finite differences, which can be considered a fully ’eulerian’,

or fixed reference frame method in which the velocity at a fixed point in space is

computed based on its surrounding velocities, lagrangian methods are those which

utilize a moving frame of reference, such as along the path of a particle that is

being advected. Because of this, lagrangian methods are excellent for computing

advection. In particular, if we have a particle sampling the field φ with velocity

(u, v), the advection equation:

∂φ

∂t
= −

(
u
∂φ

∂x
+ v

∂φ

∂y

)
can be trivially solved by simply advancing the particle forward by its instanta-

neous velocity sampled at the particle location itself.

After our particle has been advected, we’ve essentially ”pushed” this sam-

ple forward in the direction of velocity, which is the essence of the advection equa-

33

tion. The problem is that taking this result and propagating it back to the grid

can be tricky. Depending on the velocity, the particle might end up anywhere in

our fluid domain; and the grid only stores values at cell faces.

The solution that the semi -lagrangian method takes is instead to advect

the particle backward in time, determining the value φoldi,j at an arbitrary location

on the grid, and interpolating between neighboring grid cells to get the result. We

then replace φi,j with φoldi,j , the reasoning being that at the next timestep, a particle

positioned at φoldi,j , will be advected and arrive at position of φi,j. This makes the

semi-lagrangian method an implicit solution to the advection equation.

This backwards extrapolation also gives the semi-lagrangian method un-

conditional stability; the solution can never diverge as the magnitude of the ad-

vected velocity can be no greater than the velocity at some other location that

already exists in the fluid. This method also has the unfortunate side effect of

smoothing the velocity field, as the both the steps of advecting the particle back in

time and and determining its velocity at its advected position require interpolat-

ing the grid velocity at arbitrary points in space. This drawback can be mitigated

by using higher order interpolation [16], but this is costly, and is by no means

completely removed.

PIC and FLIP

The PIC or Particle in Cell method was developed by Harlow in 1964 [25],

and later extended to the FLIP, or Fluid Implicit Particle method by Brackbull et

al. in 1986 [27]. It was introduced to the graphics community by Zhu et al. for

use in simulating sand as a fluid, but with broader applications as well [53] [52].

All of the above references are excellent sources for these methods described in

additional detail.

Like the semi-lagrangian method described above, the PIC and FLIP

methods are hybrid eulerian-lagrangian methods. These methods differ in how

they attempt to resolve the difficulty of transferring the result of lagrangian particle

34

advection to an eulerian grid. Where the semi-lagrangian method recasts the

problem into an implicit framework, the PIC and FLIP methods retain explicit

forward integration of particles, but then, using a large number of particles to

densely sample the velocity, transfer the particle velocities back to the grid after

they are advected.

In both of these methods, all of the other Navier-Stokes calculations such

as calculating viscosity, pressure, body forces, etc. are done using standard grid-

based methods. At the advection step, however, the velocity at the grid cells is

transferred, using interpolation, to the particles. The particles are then advected

with their instantaneous velocity, and then their velocity is transferred back to the

grid cells.

This process is exactly how the PIC method operates, but one will notice

that this involves a lot of interpolation, which results in damped out and smoothed

velocity fields, just as in the semi-lagrangian case. The FLIP method, instead,

takes a much greater advantage of the particles as additional places to sample the

velocity. In the FLIP method, at the beginning of the timestep, the velocities are

transferred from the particles to the grid, and this velocity is saved: u′. All of the

standard grid-based operations such as the diffusion and pressure equations are

computed on the grid and a new velocity is saved as u. Now instead of overwriting

the velocity of the particles with the interpolated velocities at u, the difference

of the two velocity fields: u − u′ is interpolated and added to each particle. The

result is that only the change in velocity produced by the grid based methods is

transferred to the particles.

One unfortunate side-effect of the FLIP method that has not been ad-

dressed in literature is that changes in grid topology can often have a significant

influence on the velocity that is added to the particles. This is illustrated in Fig-

ure III.3; due to the discrete nature of the grid and the hard requirement of zero

divergence and incompressibility, velocities can change in large magnitudes that

are independent of timestep. As a result, if timesteps are small, this can produce

35

a near-divergent velocity addition to the particles and cause them to move in wild

directions. While the method still remains unconditionally stable, these artifacts

are noticeable and can be quite prominent when small timesteps are used.

It is worth noting that this behavior was independently observed both in

our implementation and a reference implementation provided by Zhu & Bridson.

In practice, as suggested by Bridson, this behavior can be reduced by blending

the result of the FLIP calculation with a small percentage the PIC calculation.

For example 99% of the particle velocity is determined by the existing particles

velocity and the difference field u − u′, and 1% of the velocity is determined

by interpolating u directly, however this adds unwanted viscosity to the entire

solution. An alternative to this method is to utilize the stabilization technique for

explicit methods discussed in Chapter IV.

Figure III.3 Change in velocities due to instantaneous changes in pressure, the

figure illustrates the velocity field just before the collision (left) and just after

(right), due to the nature of the grid based marker cells, this transition can change

in a single arbitrarily small timestep.

III.3.D External Forces

The last term in the equation is f , the body force. This term requires

no solution per se, but it plays a significant role in the value of the velocity grid

when marker cells are completely, or nearly completely surrounded by non-fluid

36

grid cells.

In Harlow’s original treatment of marker-and-cell techniques, he stated

that when a cell is surrounded on the top and bottom or left and right by empty

cells, the velocities should be computed using the body force only [24]. This

condition works reasonably well in simple circumstances, but he did not specify

how velocities should be assigned when cells are adjacent to solid boundaries.

The reason this creates problems is that if we enforce the divergence

free condition on cells adjacent to solid boundaries, we can run into situations

where a cell becomes ’stuck’ against a solid boundary cell, whose velocities are

constrained to be zero. This can also cause problems with explicit finite difference

solvers, which can quickly diverge when these stuck cells are within the range of

the difference stencil.

This issue is often neglected in literature, but has been observed and dealt

with in a few sources [3] [40]. To prevent stuck cells, we take a different approach

that leverages the constraint of only using particles to mark our surface. While

advecting our marker particles, we check the cell the particle is in for a special

free-fall condition. The free-fall condition is true when the following conditions

are met:

• the cell is a surface cell (it adjacent to at least one empty cell)

and one of the following is true:

• the cell is not adjacent to a interior cell (a fluid cell that is not a surface

cell)

• the cell is adjacent to both an empty cell and two or fewer boundary cells

If this free fall condition is met, then we ignore the forces defined on

the computational grid, and instead move the particle forward by the body force

f only. In practice, this prevents the stuck cell problem and maintains realistic

behavior.

37

III.4 Leapfrog Integration

One aspect of developing a fluid solver, and indeed any physical simu-

lation is the question of what method of integration is to be used. Numerical

integration is an entire body of academics itself, so we will not attempt be exhaus-

tive. Integration is what allows us to actually advance from one timestep to the

next, for example we have an equation of the form:

∂u

∂t
= f(u)

In our case f(u) is the Navier-Stokes equation. If we want to discretize

this equation and solve it, a simple solution would be analogous to what we did

for our Finite Difference method:

∂u

∂t
= f(u)

ut+∆t − ut
∆t

= f(ut)

ut+∆t = ut + ∆t · f(ut)

This is the simplest and most basic type of integration knows an forward-

euler integration. Essentially we are taking the instantaneous derivative of u at

time t and linearly extrapolating the function’s value a distance of ∆t value based

on that derivative. This is obviously not accurate when ∆t is large, but as lim∆t→0,

we approach the accurate solution. Similarly we can define backward-euler as:

∂u

∂t
= f(u)

ut − ut−∆t

∆t
= f(ut)

ut = ut−∆t + ∆t · f(ut)

Unfortunately we must live in the world of realistic timesteps, so we

must improve the properties of our integration methods without increasing the

timestep. There are many others: backwards integration, similar to what we use

38

for the semi-lagrangian, Runge-Kutta integration, etc.. One method that works

particularly well for fluid simulation is Leapfrog integration [51] [2].

The basic idea behind Leapfrog integration is very similar to staggering

the spatial grid, except we are staggering temporal samples instead of spatial ones.

We can derive Leapfrog integration by combining both forward and backward euler:

ut+∆t = (ut) + ∆t · f(ut)

ut+∆t = (ut−∆t + ∆t · f(ut)) + ∆t · f(ut)

ut+∆t = ut−∆t + 2∆t · f(ut)

Leapfrog integration is particularly well suited to discretized equations

whose solutions a undergo periodic oscillation. In these cases, the leapfrog method

prevents these oscillations from causing the solution to diverge [2].

One Dimensional Channel Advection

In order to get a qualitative measure of the effect of different techniques,

such as integration methods, have on the solution of the Navier-Stokes equation,

we present a one-dimensional calculation of the advection term on a simple scalar

profile. This technique is commonly used in CFD literature to as a tool to compare

the accuracy of a method used to solve the advection problem (cite several papers

that use this technique).

For example, Figure III.4 illustrates the difference between using explicit

forward euler advection and leapfrog advection using first order central differences.

Observing the two contrasting plots, it is evident that the advection solution is

unconditionally unstable under forward euler, while it is conditionally stable (albeit

noisy) under the leapfrog integration method.

III.5 Flux Limiting

Flux limiting is a technique that mixes two methods to solve the Navier-

Stokes equation: one method is non-dissipative but need not be stable, and one

39

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
1st Order Central Difference at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog Central Difference at 0.2s

Figure III.4 Comparison of first-order central differences explicit forward euler

integration (left) and leapfrog integration (right).

method must be stable but may also be dissipative (as these two properties tend

to be correlated).

The idea is that when one encounters a ”shock”, or a rapid change in

space in the velocity field; often caused by fluid encountering a boundary the

stable method is used. When the velocity is changing slowly, the unstable but

non-dissipative method is used. The decision of how much each of each method to

use, and when, is defined by the flux limiting function, many of which have been

developed at different times and for different applications.

The first step in flux limiting is to compute the ratio of adjacent velocities,

so for each grid cell velocity, we compute:

ru =
ui,j − ui−1,j

ui+1,j − ui,j

rv =
vi,j − vi,j−1

vi,j+1 − vi,j
This value, in the range [− inf,+ inf], gives a metric of how quickly the

velocity is changing, and thus the magnitude of the ’shock’. ru and rv are the

input to a flux limiting function: Φ(r).

The output of Φ(r) determines how much of the stable or the unstable

solution to use. Generally the flux limiting operation is as follows.

40

We use a variation on the Van Albada flux limiting function [29]:

Φ(r) =
2r

r2 + 1

This flux limiting function yields 0 when the measure of shock is large,

and 1 when the measure of shock is low. Therefore we can implement our flux

limiting as follows:

ui,j = lerp(Φ(ru), u
stable
i,j , uunstablei,j)

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog Central Difference at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog Central Differences (flux limited) at 0.2s

Figure III.5 Comparison of the first-order central differences using leapfrog inte-

gration without (left) and with (right) the flux limiter.

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog QUICK at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog QUICK (flux limited) at 0.2s

Figure III.6 Comparison of the QUICK advection using leapfrog integration

without (left) and with (right) the flux limiter.

41

III.6 Comparison of Solvers

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
PIC at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
FLIP at 0.2s

Figure III.7: Comparison of the PIC (left) and FLIP (right) particle methods.

We compare the PIC vs. FLIP methods in Figure III.7. For this com-

parison, particles were initialized in our one-dimensional grid, with four particles

randomly positioned per grid cell (similar to multi-jittered pixel sampling). It is

evident from the plot the degree to which PIC method introduces artificial viscos-

ity. The FLIP method, on the other hand, creates a near perfect reconstruction of

the advection profile, with no noticeable dissipation, since the particles are simply

being moved, and no data is lost or interpolated at any stage. This is a slightly

contrived example, as the pressure and boundary condition forces significantly al-

ter the behavior of the FLIP method, but it correctly characterizes this advection

method as having little to no intrinsic dissipative effects or artifacts.

In figure III.8 we compare the results of each of the four primary methods

we have discussed. These methods are compared using two-dimensional solutions

in the next chapter.

42

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog Central Differences (flux limited) at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Leapfrog QUICK (flux limited) at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
Semi-Lagrangian at 0.2s

-0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

initial
FLIP at 0.2s

Figure III.8 Comparison of advection methods, from left to right and top to

bottom: first-order differences, QUICK method, first order upwind differencing,

semi-lagrangian, and the FLIP method

IV

Applications & Results

Here we present the results of our comparison simulations and a brief

discussion of implementation and extensions to existing algorithms.

IV.1 Software Architecture

It is worth spending some amount of time discussing the software archi-

tecture of a fluid simulator to give an overview of the basic structure order of

operations for a fluid solver. Additionally a significant increase in versatility and

understandability of fluid simulation code can be achieved by employing a few

domain-specific conventions and idioms.

IV.1.A Grid Storage Issues

An extremely common operation in grid-based fluid simulation methods

is querying and interpolating values on a grid, primarily for velocities, but also

scalar densities and marking fluid cells as full or empty. In keeping with the

stateless design of our algorithms we have found it useful to define a variety of

query functions and predicates to extract velocity information from a grid:

43

44

u← center(grid, i, j)

u← leftFace(grid, i, j)

u← rightFace(grid, i, j)

u← topFace(grid, i, j)

u← bottomFace(grid, i, j)

u← interpolate(grid, i, j, s, t)

There is an advantage to structuring our predicates to represent logical

information about a grid, because this insulates us from implementation changes.

For example, a staggered velocity grid may implement the leftFace function

simply by returning its native value, but require interpolation for the center

function; whereas a collocated pressure grid, the native values would be reversed.

Using the above predicates also makes the code far more readable than using raw

array indexes.

It is also useful to precompute the fluid marker status of cells and supply

the above predicates, which are used extensively in determining boundary condi-

tions and pressure matrix values:

(true, false)← empty(grid, i, j)

(true, false)← full(grid, i, j)

(true, false)← surface(grid, i, j)

(true, false)← solid(grid, i, j)

Additionally two data structures that can be used to implement the above

predicates were also to accelerate grid-based solvers were used extensively in our

implementation, we describe them as functions, both of which can be computed in

the same pass:

[1...n]← particleIndices(particles, grid, i, j)

[(i1, j1), (i2, j2)...(in, jn)]← fullCells(particles, grid)

particleIndicies returns a list of index values into our total array of the

particle system. This acts as a grid-acceleration structure for our particle system,

45

returning a list of indices into an ordered array of stored particles. This allows us

not only to determine which cells contain fluid, but allows us to process particles

by grid cell instead of iterating over a global particle list. fullCells returns a

list of indices of grid cells which contain fluid. In many circumstances, a large

amount of the fluid domain is empty, and only areas the areas that contain fluid is

of interest; processing cells by iterating over these indices often allows us to avoid

extraneous querying of empty cells.

IV.1.B The Simulation Loop

Physical simulation generally occurs by starting with an initial set of

conditions, and then advancing the simulation frame by frame. Each advancement

of the simulation defines one iteration in a loop. We split this simulation loop up

into the following distinct phases for the marker-and-cell method:

advanceFluid (markers, grid, oldGrid,∆t)

1 advectMarkers(markers,∆t)

2 updateGridFromMarkers(grid,markers)

3 swap(grid, oldGrid)

4 advectVelocity(grid, oldGrid,∆t)

5 addExternalForces(grid,∆t)

6 diffuse(grid, oldGrid,∆t)

7 pressureProjection(grid)

8 extendVelocitiesOutsideFluid(grid)

9 enforceBoundaryConditions(grid)

Note the swapping of grids, some grid operations require the values from

the previous timestep. This can be accomplished by storing an ’old’ data and a

’new’ data grid, and swapping them (only a pointer swap is necessary) so that the

old data can be read without being overwritten.

46

Another advantage here is the order of operations; pressure projection

and enforcing boundary conditions is only performed once, and are the last steps.

This ensures that the two operations that require it: advecting the markers and

advecting the velocities, are both performed on a divergence free field with correct

boundary velocities.

Another aspect to note is that when possible, algorithms are made state-

less. This allows for greater flexibility in being able to ’plug in’ different algorithms

for advection, diffusion and pressure projection. This forms the foundation of the

implementation of our grid based method comparison. As most fluid simulation

research has occurred over a fairly large stretch of time, implementers have used

a wide variety of marking schemes, or pressure projection methods, and generally

any of the above steps may vary from implementation to implementation.

This framework allows us to compare one subset of algorithms presented

in a variety of papers in isolation with respect to other aspects of the fluid solver. In

this discussion we have chosen to focus on the advection portion of the fluid solver,

because it often has the most prominent visual impact on the solver and such a

large body of research has been devoted to its solution. By simply virtualizing

the advectVelocity method, we can plug in a variety of different advection

methods and compare their effects, leaving the viscosity and pressure projection

methods constant.

IV.2 Stabilizing Unstable Solvers

One significant problem with finite-difference based grid methods is that

they are not unconditionally stable. That is, in some circumstances the simula-

tion may diverge. It is important to note that both stable and unstable solvers

contain error, but unstable solvers manifest their errors as increases in magnitude

from previous timesteps, whereas stable solvers manifest their errors as damping

or smoothing. Standard finite-differencing methods are often subject to what is

47

known as the Courant-Friedrichs-Lewy, or CFL condition. Stated simply: a finite

differencing method is unstable if the particle being simulated moves fast enough

to cross an entire grid cell in one timestep. Or, for a method to be stable it must

satisfy:
u · dt
∆x

< 1

If an unstable solver violates the CFL condition, the solution quickly diverges.

This can be true even with the flux limiting technique discussed in the

preceding section. Flux limiting adjusts to a dissipative or stable scheme when

there is sharp spatial change in velocities spatially, but not temporally. This can

cause flux limited solvers to diverge when timesteps are large enough to produce

a large number of CFL violations in different grid cells.

To motivate our solution to this problem, let us consider the example

of simulating a simple mass/spring model. Using Hooke’s law, the spring force

is linear with respect to the displacement of its mass f = −k∆x. To simulate

this mass-spring system, we compute the acceleration on the object due to this

force, and integrate it successively to obtain velocity and subsequently position.

Like many physical simulations, the resultant position feeds back into the compu-

tation of the force at the next timestep. In the case of spring system, consider a

circumstance in which the spring displaces just a bit farther than expected, this

will result in an an increased force, which will cause the spring to rebound farther

in the other direction, magnifying the original error. Eventually the system will

’explode’ when the result becomes totally dominated by these magnified errors.

One possible solution to the problem of diverging behavior is to simply

add a damping term, in fact very few real life systems are as ideal as our mass-

spring example above; consider a slightly more sophisticated spring simulation:

f = −k∆x−Ku, where K is a damping constant and u is the velocity, thus the

force is damped as the velocity increases. Our fluid simulation has an analogous

concept: viscosity, and indeed when the viscosity is very large, divergent behavior

is uncommon, but not completely eliminated, and we do not want to restrict our

48

solvers to a range of viscosities.

We now present a simple method to stabilize an unstable advection solver

by rectifying unstable errors with stable errors by running a primary unstable solver

and a secondary stable solver in parallel. Our approach is to prevent divergent be-

havior by reverting to an unconditionally stable solver when the change in velocity

as computed by the unstable solver from the previous timestep approaches some

fraction of the CFL condition, analogous to when a spring begins to oscillate wildly.

This calculation is performed locally on each grid cell. This can be per-

formed as a post-process on the advection step as follows:

if

(
|unstableAdvect(i,j) − un

i− 1
2 ,j
|·dt

∆x
<= α

)
then un+1

i− 1
2
,j

= unstableAdvect(i, j)

else un+1
i− 1

2
,j

= stableAdvect(i, j)

stableAdvect(i, j) and unstableAdvect(i, j) above denote the ve-

locity after the advection step: ui− 1
2
,j as computed by the sing the stable and

unstable advection solvers respectively. By construction, when the timestep is

sufficiently small relative to the CFL condition, the stabilized method produces

identical results to the primary unstable solver. In practice, we have found that an

α = 0.25 prevents divergent behavior in almost all circumstances, including vigor-

ous interactive manipulation of body forces. Additionally, reverting to the stable

method is required on average in less than 1% of the cells to be computed, even

for large timesteps. The stable solver also need not be run in parallel in its en-

tirety, only the advection substep when our stricter stability condition is violated,

so the computational overhead is negligible. In all of the following comparison

simulations, all of the unstable schemes were stabilized using the semi-lagrangian

advection scheme described in Chapter III.

49

IV.3 Simulating Liquids & Gases

The following figures are still frames of 2D animations depicting the fluid

simulation methods discussed in the previous sections. The full fluid animations

from which these frames were generated are accompanied in the distribution of this

document, and provide a much more detailed picture of simulation characteristics

over time. These figures should serve to give only a rough idea of the differences

in the behavior of each simulation.

Figures IV.1 - IV.6 show two-dimensional solver results for liquids. The

liquid is visualized by particles marking the fluid location. In these simulations,

the following settings were used: grid size: 64 × 64, fluid domain: 1m2, gravity:

−9.8m/s, timestep dt: 0.001s kinematic viscosity ν: 1.0× 10−3Pa · s.

Figures IV.7 - IV.12 show two-dimensional solver results for simulating

gas. The light colored density serves as a temperature field and to mark density

of visible particles, in other words, smoke. The simulation settings are identical to

those above, however the viscosity has been altered to: 1.0× 10−6Pa · s.

Figure IV.1 Comparison of Central Differencing advection method without using

forward euler integration (left) and leapfrog integration (right).

50

Figure IV.2 Comparison of QUICK advection method without using forward

euler integration (left) and leapfrog integration (right).

Figure IV.3 Comparison of Central Differencing advection method without using

flux limiting (left) and with flux limiting (right) .

51

Figure IV.4 Comparison of QUICK advection method without using flux limiting

(left) and with flux limiting (right) .

Figure IV.5 Comparison of PIC advection method (left) and the FLIP method

(right) .

52

Figure IV.6 Comparison of the four advection methods: Central Differences,

QUICK, Semi Lagrangian, and FLIP

53

Figure IV.7 Comparison of Central Differencing advection method without using

forward euler integration (left) and leapfrog integration (right).

Figure IV.8 Comparison of QUICK advection method without using forward

euler integration (left) and leapfrog integration (right).

54

Figure IV.9 Comparison of Central Differencing advection method without using

flux limiting (left) and with flux limiting (right) .

Figure IV.10 Comparison of QUICK advection method without using flux limiting

(left) and with flux limiting (right) .

55

Figure IV.11 Comparison of PIC advection method (left) and the FLIP method

(right) .

56

Figure IV.12 Comparison of the four advection methods: Central Differences,

QUICK, Semi Lagrangian, and FLIP

V

Discussion of Results

V.1 Conclusion

Table V.1 shows a comparison of the stability and quality characteristics

of all of the fluid solvers presented in the previous section. We conclude this section

with a summary of our results and contributions.

Table V.1 A comparison of the accuracy and stability of fluid simulation algo-

rithms Stability is analyzed based on its behavior when velocities are below and

above the CFL condition: unconditionally unstable algorithms are unstable under

any velocity v conditionally stable algorithms are stable when v <= CFL and un-

stable otherwise. Unconditionally stable algorithms are stable for all v. Accuracy

is defined on a spectrum between Noisy, Accurate, and Damped. .

Advection Method Stability Accuracy

Central Difference Euler Uncond. Unstable Noisy
Central Difference Leapfrog Cond. Stable Noisy
Central Difference Flux-Limited Cond. Stable Accurate
Quick Euler Uncond. Unstable Noisy
Quick Leapfrog Cond. Stable Noisy/Accurate
Quick Flux-Limited Cond. Stable Accurate
PIC Uncond. Stable Damped
FLIP Uncond. Stable Accurate
Semi-Lagrangian Uncond. Stable Damped/Accurate

57

58

One of the first important observations that should be noted is that in

both the 1D plots and the 2D animations, when using forward Euler integration,

finite difference algorithms diverge. In order to remedy this divergence, either a

substantial amount of viscosity must be introduced (analogous to a spring damping

coefficient), or a more stable integration method is required. In Figure IV.1, we can

see a more meaningful representation of the of the wildly varying one-dimensional

advection plot in Figure III.4. The simulation becomes almost completely random

and divergent after one second of simulation. The leapfrog advection method,

while still noisy, still retains the overall shape of the fluid. All of the simulations

which use leapfrog advection are stable over time, and while they are still noisy,

they don’t diverge.

The second important observation from our simulation results is the value

of using flux-limiting for finite difference solvers. In both the plots and simulated

results, we can clearly see that adding the flux-limiting scheme corrects this noise

and produces smooth, but not overly damped results. This makes flux-limited

finite difference schemes a viable alternative to the semi-lagrangian scheme with

considerably less dissipation and without a significant increase in computational

cost in addition to the underlying finite differencing.

The third important result that we have obtained is that, as show in Fig-

ure IV.11, accurate and visually pleasing results can be obtained using the PIC and

FLIP methods for fluid simulations without a free-surface by instantiating particles

in an open fluid domain, with comparable preservation of small-scale detail as is

obtained in liquid simulations. Additionally, the FLIP solver in Figures IV.6, IV.12

produce more accurate results on a coarse grid than the other grid-based solvers,

due to the fact that our particles are sampling the fluid density much more highly

for the purposes of solving the advection equation. The disadvantage of this is

that this high particle density does incur a substantial performance penalty. An

analysis of performance, memory usage, and accuracy for grid-based vs. particle

based methods remains an interesting area for future work.

59

With these comparisons there also still does not seem to be one solver

that fits best in all circumstances. The semi-lagrangian solver provides a very

good tradeoff of simplicity of implementation and understanding and accurate and

reliable results. The first-order finite difference scheme is very simple to implement

as well and, while noisy, it may be acceptable in situations where noise is acceptable

or desired (such as moderate viscosity flows, or in place of artificially added noise).

Additionally, the 4th-order QUICK scheme has a wide difference stencil, examining

several cells beyond those immediately adjacent. This makes it attractive for steady

state flows with large grid resolutions, but on coarse grids, this can cause artifacts

at fluid interfaces in which areas outside of the fluid are in the stencil.

V.2 Deficiencies of Grid Based Methods & Fu-

ture Work

While grid based solvers have volume conservation properties that are

more desirable with comparison to particle based fluid solvers, one disadvantage

to grid-based solvers is that volume conservation purely indirect. Volume con-

servation is enforced only by constructed velocities and the behavior of the fluid

marker under those velocities. If the fluid marker undersamples the grid, cells can

become empty and volume can quickly be lost.

A related issue to volume conservation is that grid-based solvers have no

concept of increase in pressure due to compression or addition of fluid volume into

an enclosed space. While it may not be required to simulate full compressible

flow, these kind of pressure increases are common cases in the real world that a

general purpose fluid simulator should handle. Explicit conservation of volume

and mass as an augmentation or extension to existing grid-based solvers remains

an unexplored future work.

Compared to some non-grid-based methods, such as particle based fluid

simulations, grid-based methods can impose a significant increase in algorithmic

60

complexity in both time and space. This can be mitigated by making use of

adaptive grids and techniques to compress cells that are uniformly solid, fluid, or

empty, but this cost can still make grid-based approaches unsuitable for certain

applications. A common item discussed in engineering-oriented CFD literature

is running fluid simulations concurrently on multiple processors and threads of

execution. This discussion is generally sidestepped by fluid simulation literature

in computer graphics, but as the availability of multi- and many-core processors

increases, efficient and easy-to-implement parallel algorithms for fluid simulation

will be required.

One of the most active current areas of research in simulating fluids,

particularly liquids, is the level set. Level sets as a means of marking the fluid have

become increasingly popular in both academic and industry production circles,

both for their ability to be directly renderable (or easily polygonizable), and their

ability to accurately resolve surface and curvature. A large amount of research

has already been conducted on level sets, primarily by Fedkiw et. al. and Enright

et. al. as discussed in Chapter I; this has laid the groundwork for a large body of

research extending level set approaches, and integrating level sets effectively with

existing surface representations such polygons and points.

References

[1] John Anderson. Computational Fluid Dynamics. McGraw-Hill, New York,
1995.

[2] Akio Arakawa. Computational design for long-term numerical integration
of the equations of fluid motion - two-dimensional incompressible flow. J.
Comput. Phys., 1(1):103–114, 1966.

[3] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational
framework for accurate solid-fluid coupling. ACM Trans. Graph., 26(3):100,
2007.

[4] Mark Carlson. Phd. thesis: Rigid, melting, and flowing fluid, 2004.

[5] Mark Carlson, Peter J. Mucha, III R. Brooks Van Horn, and Greg Turk.
Melting and flowing. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 167–174,
New York, NY, USA, 2002. ACM Press.

[6] Mark Carlson, Petere Mucha, and Greg Turk. Rigid fluid: Animating the
interplay between rigid bodies and fluid. In SIGGRAPH 2004: Computer
Graphics Proceedings, pages 377–384, New York, NY, USA, 2004. ACM Press.

[7] Jim X. Chen and Niels da Vitoria Lobo. Toward interactive-rate simulation
of fluids with moving obstacles using navier-stokes equations. Graph. Models
Image Process., 57(2):107–116, 1995.

[8] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Me-
chanics. Springer-Verlag. Texts in Applied Mathematics 4. Second Edition.,
New York, 1990., 1993.

[9] James W. Daily and Donald R.F. Harleman. Fluid Dynamics. Addison Wesley
Publishing, Reading, MA, USA, 1966.

[10] Mathieu Desbrun and Marie-Paule Cani. Smoothed particles: A new
paradigm for animating highly deformable bodies. In R. Boulic and G. Hegron,
editors, Eurographics Workshop on Computer Animation and Simulation

61

62

(EGCAS), pages 61–76. Springer-Verlag, Aug 1996. Published under the name
Marie-Paule Gascuel.

[11] Dimitri Dirkakis and William Rider. High-Resolution Methods for Incom-
pressible and Low-Speed Flows. Springer-Verlag, Berlin, Heidelberg, Germany,
2005.

[12] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and
Hans Kuehling Pedersen. Modeling and rendering of weathered stone. In SIG-
GRAPH ’99: Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, pages 225–234, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[13] D. Enright, D. Nguyen, F. Gibou, and R. Fedkiw. Using the particle level
set method and a second order accurate pressure boundary condition for free
surface flows.

[14] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and
rendering of complex water surfaces. In SIGGRAPH 2002: Computer Graph-
ics Proceedings, pages 736–744, New York, NY, USA, 2002. ACM Press.

[15] M. W. Evans and F. H. Harlow. The particle-in-cell method for hydrodynamic
calculations. In Los Alamos Scientific Laboratory report, pages LA–2139.,
1957.

[16] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In SIGGRAPH 2001, Computer Graphics Proceedings, pages 15–22.
ACM Press, 2001.

[17] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Animating
gases with hybrid meshes. ACM Trans. Graph., 24(3):904–909, 2005.

[18] Nick Foster and Ronald Fedkiw. Practical animations of liquids. In SIG-
GRAPH 2001, Computer Graphics Proceedings, pages 23–30. ACM Press,
2001.

[19] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical
models and image processing: GMIP, 58(5):471–483, 1996.

[20] Nick Foster and Dimitris Metaxas. Modeling the motion of a hot, turbu-
lent gas. In SIGGRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 181–188, New York, NY,
USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[21] Alain Fournier and William T. Reeves. A simple model of ocean waves. In
SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, pages 75–84, New York, NY, USA, 1986.
ACM Press.

63

[22] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer. Numerical
simulation in fluid dynamics: a practical introduction. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1998.

[23] Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. Cou-
pling water and smoke to thin deformable and rigid shells. ACM Trans.
Graph., 24(3):973–981, 2005.

[24] F. Harlow and J. Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. In Phys. Fluids 8, pages 2182–
2189., 1965.

[25] F. H. Harlow. The particle-in-cell method for fluid dynamics. In Methods in
Computational Physics, volume 3, New York, NY, USA, 1964. B. Alder, S.
Fernbach, and M. Rotenberg, Eds .Academic Press.

[26] Mark J. Harris. GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics. Pearson Higher Education, 2004.

[27] Brackbill J.U. and H.M. Ruppel. Flip: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions. In J. Comp.
Phys., volume 65, page 314, 1986.

[28] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer
graphics. In SIGGRAPH 1990, Computer Graphics Proceedings, pages 49–57,
New York, NY, USA, 1990. ACM Press.

[29] A.G. Kermani M.J. Gerber and Stockie J.M. Thermodynamically based mois-
ture prediction using roes scheme. In The 4th Conference of the Iranian
Aerospace Society. Amir Kabir University of Technology, 2003.

[30] Lucy L.B. A numerical approach to the testing of the fission hypothesis.
Astronomy Journal, 82:1013–1024, dec 1977.

[31] B. P. Leonard. A stable and accurate convective modelling procedure based
on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng.,
pages 59–98, 1990.

[32] M. N. Gamito E F. Lopes and M. R. Gomes. Two-dimensional simulation
of gaseous phenomena using vortex particles. In In Proceedings of the 6th
Eurographics Workshop on Computer Animation and Simulation, pages 3–15.
Springer-Verlag, 1995.

[33] F. Losasso, R. Fedkiw, , and S. Osher. Spatially adaptive techniques for level
set methods and incompressible flow. Computational Fluids, 2005.

[34] Frank Losasso, Frederic Gibou, and Ron Fedkiw. Simulating water and smoke
with an octree data structure. ACM Trans. Graph., 23(3):457–462, 2004.

64

[35] Antoine McNamara, Adrien Treuille, Zoran Popovic;, and Jos Stam. Fluid
control using the adjoint method. ACM Trans. Graph., 23(3):449–456, 2004.

[36] Matthias Mueller, David Charypar, and Markus Gross. Particle-based fluid
simulation for interactive applications. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
154–159, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Associ-
ation.

[37] Ulrich Ruede Nils Thuerey. Free surface lattice-boltzmann fluid simulations
with and without level sets. In Vision, Modeling and Visualization Proceed-
ings, 2004.

[38] Elcott S. Tong Y. Kanso E. Schroeder P. and Desbrun M. Discrete, circulation-
preserving, and stable simplicial fluids. Preprint, Caltech, 2005.

[39] Frederic Pighin, Jonathan M. Cohen, and Maurya Shah. Modeling and editing
flows using advected radial basis functions. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 223–232, New York, NY, USA, 2004. ACM Press.

[40] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,
S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In SCA ’04: Pro-
ceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 193–202, New York, NY, USA, 2004. ACM Press.

[41] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fedkiw.
Smoke simulation for large scale phenomena. ACM Trans. Graph., 22(3):703–
707, 2003.

[42] Andrew Selle, Alex Mohr, and Stephen Chenney. Cartoon rendering of smoke
animations. In NPAR ’04: Proceedings of the 3rd international symposium
on Non-photorealistic animation and rendering, pages 57–60, New York, NY,
USA, 2004. ACM Press.

[43] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle method
for smoke, water and explosions. ACM Trans. Graph., 24(3):910–914, 2005.

[44] Jos Stam. Stable fluids. In Alyn Rockwood, editor, Siggraph 1999, Com-
puter Graphics Proceedings, pages 121–128, Los Angeles, 1999. Addison Wes-
ley Longman.

[45] Jos Stam. Real-time fluid dynamics for games, 2003.

[46] Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous phenomena.
In SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 369–376, New York, NY, USA,
1993. ACM Press.

65

[47] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, 2nd Ed.
Springer-Verlag, Berlin, Germany; New York, U.S.A., 1991.

[48] Jerry Tessendorf. Simulating ocean water. In SIGGRAPH ’02: Proceedings
of the conference on SIGGRAPH 2002 course notes, page 19, New York, NY,
USA, 2002. ACM Press.

[49] Adrien Treuille, Antoine McNamara, Zoran Popovic;, and Jos Stam. Keyframe
control of smoke simulations. ACM Trans. Graph., 22(3):716–723, 2003.

[50] Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on surfaces.
ACM Trans. Graph., 24(3):921–929, 2005.

[51] David J. Webb, Beverly A. de Cuevas, and Catherine S. Richmond. Improved
advection schemes for ocean models. Journal of Atmospheric and Oceanic
Technology, pages 1171–1187, 1998.

[52] Yongning Zhu. Masters thesis: Animated sand as a fluid, 2005.

[53] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Trans.
Graph., 24(3):965–972, 2005.

