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Abstract

We explore a nonparametric approach to cognitive modeling.
Traditionally, models in cognitive science have been paramet-
ric. As such, the model relies on the assumption that the data
distribution can be defined by a finite set of parameters. How-
ever, there is no guarantee that such an assumption will hold,
and it may introduce undesirable biases. For these reasons, a
nonparametric approach to model building is appealing. We
propose a novel framework that combines Gaussian Processes
with active learning (GPAL), and evaluate it in the context of
delay discounting (DD), a well-studied task in decision mak-
ing. We evaluate GPAL in a simulation and a behavioral exper-
iment, and compare it against a traditional parametric model.
The results show that GPAL is a suitable modeling framework
that is robust, reliable, and efficient, exhibiting high sensitivity
to individual differences.
Keywords: Gaussian processes; optimal experimental design;
delay discounting; nonparametric modeling; Bayesian infer-
ence

Introduction
Models of human cognition are built by designing an ex-
planatory or descriptive model that fits data generated in a
behavioral experiment. Although a model’s parameterization
is motivated by assumptions about the cognitive process un-
der study, the empirical data strongly influence model design.
Because of this, the design of the behavioral experiment from
which the data were generated (e.g., which stimuli were pre-
sented to participants) can introduce bias into the model. This
can occur, for example, by not sampling the stimulus space
adequately, which can then lead to an incomplete or imprecise
model. Two ways to reduce such bias are to not commit in ad-
vance to which stimuli should be sampled and to make as few
assumptions about the cognitive model as possible, such as
parameterization and functional form. In other words, make
model-building and data collection as data-driven as possible,
at least in the initial stage of model development. Gaussian
processes (GP) provide a means of achieving these two goals,
functioning as a nonparametric framework for experimenta-
tion. We evaluated the viability of a GP-based approach for
cognitive modeling in humans.

Researchers in psychology have explored the use of GP
to model human behavior (e.g., Cox, Kachergis, & Shiffrin,
2012; Griffiths, Lucas, Williams, & Kalish, 2009; Schulz,
Speekenbrink, & Krause, 2018; Song, Sukesan, & Barbour,
2018) but it has yet to be a wide-spread approach. Here,
we propose a flexible framework for cognitive modeling by

combining GP with active learning (GPAL). GPAL extends
traditional GP regression by including appealing features for
cognitive science tasks. GPAL is capable of simultaneously
modeling the data with minimal assumptions and optimizing
the experimental design to find the underlying function effi-
ciently. By virtue of being nonparametric, GPAL shows high
sensitivity to individual differences and is able to capture a
wider array of patterns compared to parametric approaches.
This sensitivity should provide high-fidelity models. Opti-
mization is desirable to minimize the length of a testing ses-
sion, such as when experimentation is expensive (neuroimag-
ing research) or time-constrained (clinical or special popula-
tions). While models produced by the nonparametric frame-
work may not provide interpretable parameters, inferences
about cognitive functioning can still be made by examining
mathematical properties of the function, such as gradient, cur-
vature or area under the curve.

In our study here, we examined the efficiency, reliability,
robustness, and sensitivity of GPAL in the context of model-
ing delay discounting (DD). Data were collected from 30 par-
ticipants in a delayed discounting task (e.g., ”Do you prefer
$10 today or $40 dollars in two weeks?”), which measures an
individual’s ability to delay gratification. This is a common
task in decision-making research, and performance shows a
strong correlation with other psychological phenomena, in-
cluding impulsivity and addiction (Green & Myerson, 2004).
The one-parameter hyperbolic model is a popular model that
assumes future rewards decline in value hyperbolically with
the length of the delay. Recent work from Cavagnaro, Ara-
novich, McClure, Pitt, and Myung (2016) used adaptive de-
sign optimization (ADO) to estimate the parameters of the
function in an active learning fashion. One of the conclusions
from that study is that none of the six models tested were able
to capture the full range of behavioral patterns participants
displayed in the task. Thus, DD provides a good test-bed in
which to evaluate GPAL. The present investigation represents
the first step toward validating GPAL as a premier modeling
tool for cognitive science research.

Gaussian Process with Active Learning (GPAL)

This section provides background on each component of the
proposed GPAL framework. Figure 1 shows a schematic rep-
resentation of it.
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Figure 1: Schematic representation of the GPAL framework. The task is formulated as an active learning based classification task. Virtual
anchors are used to restrict the sampling of the design space. On each trial in the experiment loop, an optimal design is picked from the
restricted design space according to the maximum entropy criterion, an observation is made, and the GP model and virtual anchors are
updated. After the looping, a post processing step may be used to refine the final GP model.

Gaussian Processes

Gaussian processes (GP) are tools for nonparametric
Bayesian modeling that establish priors over functions and
are a popular approach in machine learning for regression
and classification tasks (Rasmussen & Williams, 2006). For-
mally, GP is a stochastic (random) process where any subset
of random variables forms a Gaussian distribution. For a set
of observed value pairs (X , f ) and a set of unobserved pairs
(X̃ , f̃ ), the joint posterior distribution under GP is given by

[
f
f̃

]
∼N

([
µ
µ̃

]
,

[
K f , f K f , f̃
K f̃ , f K f̃ , f̃

])
(1)

where K is a kernel function that defines the covariance be-
tween two function values. The kernel function used in this
study is the squared exponential kernel which is defined by
a length scale parameter l that controls the smoothness and
the variance parameter σ2, which is a measure of the aver-
age distance to the mean. This kernel function is a popular
choice that has several desirable properties and is known to
work well with very smooth functions. The posterior in Eq.
1 can then be used to model F̃ using the conditional of the
multivariate normal distribution.

Many tasks in cognitive science such as DD are not able to
observe f directly due to the nature of human experiments.
Instead, it is common to give participant choices resulting in
multinomial observations. In the case of DD, participants are
given two choices on each trial, thus resulting in binomial
observations which can then be modeled as a GP binary clas-
sification task. This is commonly done by applying a sigmoid
transformation function (e.g., probit in our case) to restrict the
predicted values to a unit interval. As a consequence of this
transformation, the likelihood is no longer Gaussian and re-
quires the use of approximate methods to be estimated, such
as expectation propagation as done here. We direct the read-
ers to Rasmussen and Williams (2006), and Vanhatalo et al.
(2012) for a comprehensive tutorial on GP and related tech-
niques.

Active Learning
Behavioral experiments can be expensive in terms of both
money and time, and the more time an experiment takes, the
greater the chance that data quality will suffer due to fatigue
or boredom. Systems that incorporate active learning are
appealing because they mitigate these problems by optimiz-
ing efficiency through identifying highly informative design
points based on previous observations (e.g., Cohn, Ghahra-
mani, & Jordan, 1996). It is possible to incorporate active
learning in GP based system by deriving a measure of infor-
mation from the GP and then finding the design point that
maximizes this objective function. For our experiment, we
used entropy as an information theoretic objective function.
We use the derivation of entropy in Houlsby, Huszr, Ghahra-
mani, and Lengyel (2011) which approximates the entropy
for GP classification.

Like many tasks in cognitive science, design points in DD
are sampled from a discrete space. This space needs to be
sparse enough to allow human subjects to make meaningful
and differentiable choices. Thus, the search space for opti-
mizing experiments is significantly smaller than in other ar-
eas that would use this kind of approach, thereby making grid
search a better choice to maximize the entropy function than
the proposed method in Houlsby et al. (2011).

Constrained Gaussian Process
Models of natural phenomena are often constrained by prior
knowledge or experimental design. For example, when study-
ing natural organisms, the range of the model can be con-
strained by the physical limitations of such organism. Simi-
larly, a model can be constrained by the experimental design.
For example, researchers often design experiments such that
some of the outcomes are trivial and well-anticipated. Tra-
ditionally, these factors are incorporated in the model design
and the range of the parameters and design space. This is
a bit more difficult to do in GPAL since it is built to be a
fully general modeling tool. It is, however, possible to impose
some ”reasonable” constraints on the bounds, derivatives, and
convexity of a GP. For a more detailed explanation of these
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Figure 2: Example of a GPAL simulation using a hyperbolic model as the ground truth. The left panel show GPAL estimated models at
four different trials in a top-down view where the z-axis represents the probability of choosing the delayed reward as a function of the two-
dimensional, logarithmically scaled design space of (tLL, ASS). The x-shaped and circle-shaped samples in the middle panel represent virtual
anchor points and design points selected by GPAL, respectively. The blue and red circles represent choosing the immediate and delayed
reward, respectively. The convergence plot in the right panel represents the mean squared error (MSE) between the model at each trial and
the ground truth.

methods, see Da Veiga and Marrel (2012). For our delay dis-
counting experiment, we focus on two properties that are of-
ten desired in psychological tasks: (a) monotonicity; and (b)
local constraints.

Tasks based on subjective preference such as DD often
assume that humans follow the axioms of rationality. This
leads to researchers building monotonic models that predict
a preference for a choice with a higher reward value (or a
shorter delay) over another choice with a lower reward value
(or a longer delay), if all other things are equal. One way to
force monotonicity in GP models is by systematically adding
virtual observations in areas where the constraint is violated
(Riihimki & Vehtari, 2010). Specifically, this is done by
building a joint model of the GP and its derivative. The
derivative domain is then used to inject virtual observations
into the model when the derivative of the GP violates the
monotonicity constraint.

Regarding local constraints, experiments are often de-
signed in a way such that the outcomes are trivial for some
design points. For instance, the probability of preferring a
choice of $790 now to another choice of $800 in 10 years
should be virtually equally to 1. Ideally, we would like GPAL
to avoid sampling such trivial design points. Again, inspired
by Riihimki and Vehtari (2010), GPAL implements local con-
straints as follows: We can extend their idea of virtual noise-
less observations to local constraints by placing them in triv-
ial regions. We refer to these virtual observations as ”virtual
anchors”. Virtual anchors act as a prior to the function being
estimated by reducing its variance so as to avoid sampling
in this region. They also have the benefit of removing the
need for initial random sampling to start the active learning
process. Further expanding on this idea, we can cover large
areas of the design space with virtual anchors and systemati-
cally remove them using a moving margin that recedes when
a design point is sampled nearby. In our simulations and ex-

periment with human participants described below, we used
a linear receding margin, though other schemes could also be
used, depending upon the problem at hand. We would like
to note that these are preliminary results and future work will
focus on increasing the robustness of the model.

Models of Delay Discounting
Delay discounting (DD) is a preferential choice task that is of-
ten employed to measure impulsivity by quantifying the pref-
erence of an sooner-smaller reward (SS) against a later-larger
reward (LL). This measure of impulsivity has been linked
to various mental illnesses such as addiction, gambling, and
ADHD (Koffarnus, Jarmolowicz, Mueller, & Bickel, 2013;
Sharp et al., 2012; Reynolds, 2007). Models of DD typically
start by defining the relation between the value of a reward A
at time t as:

V = ADt (2)

where V represents the discounted value of A, and Dt the dis-
counting factor. Under this framework, DD behavior is mod-
eled by fitting choice data to a discounting curve that models
Dt as a function of t. A popular model of choices is the 1-
parameter hyperbolic model (Mazur [1987]):

Dt =
1

1+ kt
(3)

where k(> 0) is the parameter related to impulsivity in that
high values of k are associated with high levels of impulsiv-
ity. Participant choices are fitted to this model by defining a
sigmoid choice function for the probability of choosing the
LL option over the SS option:

P(LL|k,ε) = 1
1+ eε(VSS−VLL)

(4)

where VSS and VLL are the discounted values of the SS and LL
choice options, respectively, and ε (> 0) is a free parameter
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reflecting consistency of choice behavior. To aid participants
in making more meaningful choices and ease visualization,
we fix ALL to $800 and tSS to 0 weeks (i.e., an immediate
reward). Thus, the design space becomes a two-dimensional
space of (tLL, ASS).

Cavagnaro et al. (2016) extended the hyperbolic model to
include active learning by using an adaptive design optimiza-
tion (ADO) framework. ADO is a parametric framework for
Bayesian optimal adaptive experimentation that can be used
to select the most informative design for parameter estimation
as well as model discrimination (Cavagnaro, Myung, Pitt, &
Kujala, 2010; Myung, Cavagnaro, & Pitt, 2013). For our ex-
periments, we use ADO as baseline to compare the perfor-
mance of GPAL against a parametric model.

Simulations of GPAL
We first tested the feasibility of GPAL in a simulation study
in which GPAL was to recover a hyperbolic function used in
Cavagnaro et al. (2010) with 10% noise in the observations.
Virtual anchor points were incorporated by adding noiseless
design points with a value of one or zero at the extreme val-
ues of the design space. Figure 2 (left panel) shows an ex-
ample of the performance with a top-down view of the GPAL
estimated DD models at four different trials. Each plot in
the left panel represents the probability of choosing the de-
layed reward as a function of the ”later-larger” time tLL and
the ”sooner-smaller” value ASS. Both dimensions are plotted
in the log domain to highlight the difference between func-
tions in our experiments. The decision boundary refers to the
regions of interest where the probabilities are closer to 0.5.

The results suggest that GPAL can achieve reasonable con-
vergence within the first 20 trials. Afterwards, as shown in
the right panel, we see a decrease in performance (rise in
MSE), likely due to Gaussian noise. The design points (red
and blue circles) sampled by GPAL at the end of 50 trials, as
shown in the middle panel of Figure 2, are reasonable choices
that lie close to the decision boundary. The virtual anchors
(red and blue x-shaped symbols) provide a reasonable starting
point and leave enough distance in case the decision bound-
ary needs to be pushed in one direction or the other. That is,
the example shown on the left panel shows that by trial 10
the curvature hasn’t been captured yet and the model is still
heavily influenced by the anchors. By trial 30, we see a gen-
erally close match in shape, with a slight difference in very
steep regions as expected due to Gaussian noise.

Modeling Delay Discounting Using GPAL
Experiment

We recruited 30 participants from a pool of undergraduate
students at Ohio State University. Participants were asked
to perform a DD task over two sessions, ADO and GPAL.
The ADO session used ADO to fit the participant choices
to the hyperbolic model. The GPAL session fit the data us-
ing the GPAL framework with virtual anchors. Both sessions

Figure 3: Aggregated results from the experiment. The top panel
shows the MSE between the model at each trial and the last. The
bottom panel shows the MSE between the first and second session
for both experimental conditions.

were further divided into two identical and independent sub-
sessions to test for reliability.

The sessions were presented in random order and partici-
pants were unaware of the identity of the session they were
in. Each trial consists of a preference choice presented in the
format ”$X now or $800 in Y time in the future”. The value
of X (i.e., ASS ) ranged from $10 to $790 in multiples of 10
whereas the value of Y (i.e., tLL) took on 48 values ranging
from 1 day to 10 years spaced on a logarithmic scale. Each
session started with 5 practice trials to familiarize participants
with the task. This was followed by 20 trials for ADO and 50
trials for each of the two GPAL sub-sessions, for a total of 120
experimental trials. The two GPAL sessions were presented
as a single testing block with no break between them. The
number of trials was chosen based on previous ADO exper-
iments and GPAL simulations. All the GPAL software was
developed and implemented in MATLAB with the aid of GP-
Stuff library for Gaussian processes (Vanhatalo et al., 2012).

Results and Analysis
We tested GPAL on its efficiency, reliability, robustness and
sensitivity. Efficiency was assessed by comparing the conver-
gence speed between the two frameworks, ADO and GPAL.
We expect efficient models to converge quickly to a final solu-
tion. We measured this by the speed at which they approach
their final solution. Figure 3 (top panel) shows the MSE at
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Figure 4: An example participant with consistent results between
sessions in the GPAL condition but with inconsistent results in the
ADO condition.

each trial between the current estimated model and the last
model of the experiment. Both models achieve reasonable
convergence quickly with ADO flattening out at around 20
trials and GPAL at 30. GPAL starts with the advantage of
having access to the virtual anchors, which act as priors. This
means that the initial estimate is much closer to the its final
solution compared to ADO which is reflected in the initial
values of the results. However, ADO shows faster conver-
gence, which can be seen in the rate and consistency at which
the MSE decreases. This is an expected result since ADO as-
sumes a hyperbolic model which allows it to make stronger
inferences. We also expect efficient models to pick design
points that lie close to the decision boundary of each partici-
pant, as these represent the most informative points.

One way to assess reliability is by comparing the GPAL
function across the two testing sessions. GPAL, if reliable,
should produce consistent results across the sessions, and this
is what we find. Figure 3 (bottom panel) shows the MSE
between sessions for all 30 participants in both conditions.
Overall GPAL performance was good, with an average differ-
ence of 0.047, which is deemed quite small. For comparison
the average MSE between ADO sessions was 0.026. Again,
this is expected due to the added flexibility of GPAL.

As seen in Figure 3, the ADO condition had several out-
liers that were very inconsistent across sessions. Interest-
ingly, these participants were much more consistent in the
GPAL condition. Figure 4 shows an example in which the
results for the GPAL condition are significantly more consis-
tent than their ADO counterpart. This was the case for all the
outliers in the ADO condition. We find that this phenomena
tends to happen when GPAL predicts a function shape that is
hard for the hyperbolic model to fit in ADO.

Further inspecting the GPAL results, we find that inconsis-
tent samples are largely produced by a shift in the decision

Figure 5: Two selected examples of non-monotonic patterns that
consistently emerged during our experiments. The left panel is an
example of a non-monotonic pattern with respect to the monetary
reward dimension (i.e., y-axis). The right is an example of a non-
monotonic pattern with respect to both dimensions.

boundary in the extremes of the design space. Points in this
region are also more influential for GPAL because they de-
termine the concavity of the function whereas for ADO, this
is determined by the form of the hyperbolic function. These
results also suggest that participants tend to be less consistent
for designs in this region. Methods to address this problem
will be discussed in the next section.

Regarding robustness, we assessed this property by ex-
amining a model’s ability to predict unseen data. Opera-
tionally, robustness was measured by turning an estimated
model, whether ADO or GPAL, into a classifier by setting
a decision threshold for the predicted probability to gener-
ate predicted outcomes. We then tested classification perfor-
mance by performing cross validation between the observa-
tions of each session. In other words, the GPAL-estimated
model was used to predict the designs picked by ADO and
the ADO-estimated model was used to predict the designs
picked by GPAL. Note that both datasets are comprised of
data points that are considered to be hard by their respective
framework, making them significantly harder to predict than
a random sample. We found that ADO performed literally at
the chance level of 49.99% accuracy whereas GPAL achieved
a 56.53% accuracy. While this result is not particularly im-
pressive, we take this result as evidence that GPAL is able
to produce a better classifier or learn better from noisier data
than ADO. This result can also be taken as evidence of higher
sensitivity to individual differences, since we expect a sensi-
tive model to produce a better and more robust classifier.

Discussion and Conclusion
How does one build a model of human cognition? We in-
troduced GPAL as a data-driven (bottom-up), nonparametric
approach with the aim of overcoming biases in parametric
modeling approaches for model development and inference.
The diversity of data patterns in our experiments illustrates
these features of GPAL. GPAL can uncover concave, convex
and approximately linear shapes, and do so quickly, provid-
ing the modeler with a higher fidelity description of perfor-
mance. We envision researchers using this information in one
of two ways. The straightforward way is to use GPAL as an
exploratory tool for providing an unbiased picture of the raw
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data to aid the formulation of a parametric model. This gives
traditional models a stronger justification in which to ground
their assumptions. A second way to utilize GPAL is to replace
parametric models altogether. While this second approach re-
quires a paradigm shift in the way models are interpreted, it
comes with the potential benefit of providing more accurate
measurements. Below we illustrate these ideas by discussing
the benefits of GPAL in the context of DD.

Previous models of DD have assumed a monotonic func-
tion in both dimensions of money and time. This is a rea-
sonable assumption to make since participants are expected
to prefer larger sums of money and shorter time spans. How-
ever, Figure 5 shows a few instances that violate this ”ratio-
nality” assumption. It might be enticing to think that non-
monotonic functions in GPAL are a product of noise or model
biases. If this is the case, GPAL can be adapted to produce
monotonic function using the approach in Riihimki and Ve-
htari (2010). However, we believe that these non-monotonic
patterns are not caused by artifacts. To show this, we focus
on the two patterns exemplified in Figure 5. These patterns
can be seen across several different participants which we do
not show in the interest of space. Since these patterns are re-
peatable and present across several participants, we find it is
unlikely that they are a product of random noise. To support
this hypothesis, participants that showed non-monotonic be-
havior were given five additional trials in which GPAL picked
designs using gradient information to identify key regions of
non-monotonocity. This process gave a chance for partici-
pants to correct their choices to reflect a more conventional
function. However, only about a fourth of the participants
corrected themselves with the rest confirming their previous
behavior. We hypothesize that this non-monotonic, irrational
behavior is caused by the interaction between non-linearities
in the perceived value of money and delay time. Using the
two non-monotonic patterns shown in Figure 5, we provide
two possible explanations that would produce this outcome.
The first pattern on the left could be caused by a ”soft” thresh-
old at which the value of money rapidly decreases, making
the time component less relevant. Similarly, the pattern on the
right could be caused by a threshold in time at which the de-
layed reward becomes significantly less appealing. In short,
we think that being able to observe these kinds of patterns
using GPAL can be a powerful tool to justify choices in para-
metric models.

A more radical idea is to use GPAL as the primary model-
ing tool. One of the main benefits of a parametric approach
is the ability to formulate theories based on a small set of
parameter values. In the case of DD, the k parameter of the
hyperbolic model is of particular interest because it is thought
to be related to an individual’s impulsivity. An analysis such
as this is not possible when using a nonparametric model like
GPAL since the number of parameters is not constant. How-
ever, one could still extract meaningfully information from
a GPAL-estimated model. One approach that has been ex-
plored in the literature is to interpret the hyperparameters of

the kernel function (e.g. Wu, Schulz, Speekenbrink, Nel-
son, & Meder, 2018). In our case however, the hyperparam-
eters of the square exponential kernel do not relate well to
the k parameter. A different alternative could be to use the
(parameter-free) estimate of the area under the curve (AUC)
of the GPAL function across the input space as an alternative
to the k parameter. When this was done for the data from
our experiment, the AUC shows a positive correlation to the
k parameter. This suggest that the AUC could be used as a
measure of impulsivity in a fully nonparametric model but
more work needs to be done in this regard. More generally, it
is possible to attribute meaning to mathematical properties of
GPAL models, which would allow GPAL to function as a pri-
mary modeling tool. One benefit of this approach is that the
increased sensitivity of the framework might produce more
accurate measurements compared to their more constrained
counterpart. Additionally, these measurements come from
mathematical properties which can be applied to other types
of models allowing for easier comparison between models.

Future work will also focus on evaluating the performance
of GPAL in a wider array of behavioral tasks. This will al-
low us to show additional techniques that were not applicable
to the DD task. We must also address issues that come from
combining GP with active learning. We found that GPAL can
be overly sensitive when observations were sparse. While our
data suggest that the model is likely to converge within 30 tri-
als, we need to develop the means of ensuring model fidelity
while not sacrificing efficiency. The source of this problem is
likely due to the greedy nature of active learning. One way to
address this problem is to extend active learning to include a
bias towards region that are hard for human subjects.

In conclusion, the work in this paper represents a first step
towards the development of a novel modeling framework in
cognitive science. We propose the use of a nonparametric,
model-free approach for cognitive modeling based on GP.
This framework serves as a middle ground between raw-data,
which are hard to visualize, and parametric models, which
rely on strong assumptions. The experiments in the DD task
showed that GPAL is a practical framework that yields consis-
tent results efficiently. GPAL showed a high degree of sensi-
tivity to individual differences that were able to uncover non-
trivial patterns. This is exemplified by the presence of non-
monotonic discounting functions that are present in several
participants. These characteristics make GPAL a promising
tool for constructing unbiased and sensitive models of cogni-
tion.

Acknowledgments
The work was supported by grant FA9550-16-1-0053 from
the Air Force Office of Scientific Research.

1484



References

Cavagnaro, D. R., Aranovich, G. J., McClure, S. M., Pitt,
M. A., & Myung, J. I. (2016, Jun 01). On the functional
form of temporal discounting: An optimized adaptive
test. Journal of Risk and Uncertainty, 52(3), 233–254.

Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala,
J. V. (2010). Adaptive design optimization: A mu-
tual information-based approach to model discrimina-
tion in cognitive science. Neural Computation, 22(4),
887-905.

Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active
learning with statistical models. Journal of Artificial
Intelligence Research, 4, 129-145.

Cox, G. E., Kachergis, G., & Shiffrin, R. M. (2012). Gaussian
process regression for trajectory analysis. Proceedings
of the 34th annual conference of the Cognitive Science
Society, 1440-1445.

Da Veiga, S., & Marrel, A. (2012). Gaussian process mod-
eling with inequality constraints. Annales de la Fac-
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