
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Inkpack

Permalink
https://escholarship.org/uc/item/7zc6h479

Authors
Bel, Oceane
Chang, Kenneth
Bittman, Daniel
et al.

Publication Date
2018-06-04

DOI
10.1145/3211890.3211899

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zc6h479
https://escholarship.org/uc/item/7zc6h479#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Inkpack: A Secure, Data-Exposure Resistant Storage
System∗

Oceane Bel
UC Santa Cruz

Santa Cruz, CA, United States
obel@ucsc.edu

Kenneth Chang
UC Santa Cruz

Santa Cruz, CA, United States
kchang44@ucsc.edu

Daniel Bittman
UC Santa Cruz

Santa Cruz, CA, United States
dbittman@ucsc.edu

Darrell D. E. Long
UC Santa Cruz

Santa Cruz, CA, United States
darrell@ucsc.edu

Hiroshi Isozaki
Toshiba Memory Corporation
hiroshi.isozaki@toshiba.co.jp

Ethan L. Miller
UC Santa Cruz and Pure Storage
Santa Cruz, CA, United States

elm@ucsc.edu

ABSTRACT
Removing hard drives from a data center may expose sensi-
tive data, such as encryption keys or passwords. To prevent
exposure, data centers have security policies in place to phys-
ically secure drives in the system, and securely delete data
from drives that are removed. Despite advances in security
technology and best practices, implementation of these se-
curity measures is often done incorrectly. We anticipate that
physical security will fail, and fixing the issue after the failure
is costly and ineffective.

We propose Inkpack, a protocol that prevents an attacker
from reading data from a drive removed from the data center
even if the attacker has the user key linked to the data. An
implementation of this protocol encrypts data, and secret
splits the key over a number of drives. Recovering the key
requires communicating with other drives, thereby denying
access to the data if a few drives have been removed. Inkpack
also requires the system to verify the validity of individual
drives before normal operation. A prototype created within
the Ceph storage system executed individual key split, key
rebuild, and drive validation operations in 100–150 µs. We
also show that our protocol is sensitive to small data write
∗This research was supported by the NSF under grant IIP-1266400 and by
the industrial members of the NSF IUCRC Center for Research in Storage
Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211899

overheads, demonstrating potential performance gains if im-
plemented on smart solid state storage devices, and propose
a solution to increase performance.

CCS CONCEPTS
• Security and privacy → Distributed systems security;
Management and querying of encrypted data; Access
control;

KEYWORDS
systems security, vulnerability management, access control

1 INTRODUCTION
Routine removal of drives from a data center provides oppor-
tunities for data exposure. In the ideal case, replaced drives
are securely wiped for resale, such as in an online market-
place, or disposal. However, a study found that 78 percent of
drives bought on eBay or Craigslist contained residual data
that could be recovered [16]. To guarantee no data leaks, a
drive can be zero-written several times (though this is inef-
fective for flash [36]), or the platter or flash chips physically
crushed or melted. Unfortunately, physical destruction pre-
vents a data center from reusing or reselling the drive and
the removed drive will contain data regardless of whether it
was sold, lost or stolen. Several high profile drive losses have
been reported where drives containing sensitive data such as
nuclear information [29], personal information [17, 25], and
medical records [21] have been improperly removed from a
data center. In such cases, the attacker can be a disgruntled
employee or an intruder stealing/switching drives.

In many storage solutions, implementing encryption is an
attractive and simple fix. In cases where the data is encrypted
and the user has the key, an attacker can use techniques such
as man-in-the-middle attacks [20], phishing attacks [13], and
coercion attacks [30] to get the key from the user, a single
point of failure [1]. Some storage systems choose to not

1

https://doi.org/10.1145/3211890.3211899

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel O. Bel, K. Chang, D. Bittman, D. D. E. Long, H. Isozaki, and E. L. Miller

use keys to secure data because of this, and instead secret
split data to gain security without keys [10]. However, secret
splitting has a heavy network overhead and requires large
chunks to be gathered in one place to rebuild the original
piece of data, thus many data centers still rely on keyed
encryption.

To address this problem, we developed Inkpack, a protocol
that secures data by distributing parts of an encryption key
over many drives. The Inkpack protocol is represented in
this paper as software that runs on individual drives within a
distributed storage system. The Inkpack software generates
an encryption key using information from a user, such as a
user secret, and a random key generated by the drive receiv-
ing the request. This key secures data on a per data basis to
reduce the impact of a lost key. The Inkpack software does
not save any key data in its entirety to persistent storage to
prevent exposure of data. Instead, the random key is split
and saved among many drives, of which a minimum amount
of pieces are required to access data.

Doing so, an attacker can have the user secret and control
the drive where the encrypted data is stored, but they will
not be able to gain any knowledge about the information
stored on the drive. The attacker needs to take a minimum
number of drives in order to rebuild the original encryption
key, making a successful attack detectable. Each individual
drive also possesses a unique drive secret, initialized by the
systems administrator, to prove their validity to other drives
in the group. Drives that do not possess a valid drive secret
will not receive accesses or be permitted to run software.

The main contributions of this paper are as follows:

• We describe a protocol that will prevent the attacker
from gaining any useful data from a small number of
drives even if the attacker gains the user key.
• We describe a system that verifies the validity of its
drives through a challenge phase, and prevents an
unauthorized drive inserted into the system from op-
erating.
• We implement a prototype of our protocol and demon-
strate that this added level of security has reasonable
overhead.

2 THREAT MODEL
In our threat model, an attacker has no authorization to
access data on the drive, but gains control of a few drives
from a data center. They can be an employee of the data
center who is disgruntled, coerced, or greedy. The attacker
is not a system administrator or sophisticated enough to
conduct a successful network or firmware attack in a short
period of time. We assume that the firmware in the drives
are verified and digitally signed.

An attacker could gain access to discarded drives by buy-
ing them online or from third party vendors. This attack is
possible when the drives are not properly securely erased.
In such an attack, it is hard to identify the attacker since the
attacker is not actively monitored.

A different attack scenario is an attacker who enters a data
center with the intent of stealing drives. The attacker has no
intention to return to the same data center, and therefore does
not care if they are identified. In case an alarm is triggered,
they have the ability to escape with whatever drives they
managed to obtain. Because the attackermay be caught while
they are taking drives, they have a limited amount of time
to conduct the attack.

An insider or an outsider could also try to intercept sensi-
tive data by inserting a number of malicious drives into the
data center. In this type of attack, the attacker plans to return
to the same data center to retrieve the drives, and may have
the ability to view the drive’s contents for a brief period of
time. Therefore, this attacker has little time to conduct the
attack and does not want to get caught or identified during
the initial attack. This attacker will have less time to success-
fully conduct the initial phase of their attack compared to
the previously described attack.
All of these attacks share common characteristics. The

attacker gains access to a limited set of drives containing
data and key information and has unlimited time to try to
recover user data. While the system can control the form
of the data (encrypted vs. unencrypted) and the type of key
information, it cannot control access to them by the attacker.
This may be a problem for self encrypting drives since an
attacker could gain the key that secures each drive. Thus our
system must defend against such attacks.
Denial of service attacks by compromising drives and

deleting shares are inherently inefficient. If an attacker al-
ready has physical access to a data center’s drives and intends
to destroy enough shares to ensure that data cannot be read,
then a simpler attack would be total deletion by physical de-
struction. Doomsday scenarios where the entire data center
is destroyed, the attacker physically destroys a majority of
the drives, or a rogue administrator deletes data are outside
of the scope of which Inkpack protects. We also assume that
an attacker cannot simply clone a significant amount of the
datacenter’s data onto another drive within a short amount
of time, and walk off with the other drive. Finally, in the
event a data center’s operating system drives are targeted
for theft, we assume that the drives protect their sensitive
information, such as network settings and private keys, with
a security method such as UEFI Secure Boot [5]. Inkpack is
not designed to protect against denial of service attacks.

We assume the network is trusted, and an attacker cannot
get useful data from observing the internal network. Modern
networks are point to point, therefore a message sent by a

2

Inkpack: A Secure, Data-Exposure Resistant Storage System∗ SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

sender will only be read by the sender’s intended receiver.
This network uses unicast messages that are not normally
viewable by everyone. Finally, we assume that network hard-
ware is trusted. Inkpack does not secure the network that
the drives are running on and assumes that messages are
not intercepted, diverted or modified during transit. We also
assume that drives that pass the challenge behave properly
and will not corrupt other drives.

3 DESIGN
In many storage systems, data in drive regions are fully en-
crypted with a large number of keys, and those keys are kept
safe and hidden. To facilitate sharing data between users,
many systems employ a lockbox style of encryption. Here,
the real key is encrypted with a “lockbox key”, and the lock-
box key is widely distributed in the system. Lockboxes allow
for easy re-keying of the lockbox, but in the case the actual
key is lost, it will be expensive to re-key the entire system.
According to Kallahalla et al. [15], a lockbox approach to
securing keys allows for a more efficient and secure way of
distributing sensitive data than simply encrypting data. How-
ever, improperly removed drives can contain the encrypted
encryption key, making the lockbox key a single point of
failure.

A straightforward approach to securing data without keys
is secret splitting any data within a data center. Each individ-
ual piece of data, created from the original user data, does
not reveal anything about the original data. Saving each
piece on different drives provides security, as an attacker
needs to obtain enough pieces of the original data in order
to rebuild it. However, this approach adds significant storage
and network overhead. AONT-RS [28] allows low-overhead
splitting, but large chunks must be read from multiple drives.
In POTSHARDS [34], each piece of data is split into N shares
of the same size. Therefore, if a user wishes to save a 1 GB
file, a secret split data store will actually store and transfer
N GB of data, which is usually not an acceptable amount of
overhead for security purposes, and thus many data centers
rely on keyed encryption.

3.1 Inkpack
The Inkpack protocol is implemented as software, also re-
ferred to as an Inkpack agent, that runs on each drive. Each
individual Inkpack agent is initialized with a unique drive
secret, added by the systems administrator before the drive
(with the agent) is inserted into the system. This software
runs at the drive level and accepts incoming read and write
requests from a client. It is also responsible for conducting
the challenges between each drive to verify that each drive
contains a properly initialized drive secret. Initializing the

Inkpack agents with their drive secret is described in Sec-
tion 3.6. We present a high level overview of the protocol in
Figure 1.

Figure 1: High level overview of the Inkpack protocol

During normal operation, an Inkpack agent receives a hash
of the user secret and file ID when the system is accessed by
a user. The user accesses the system using client software
that hashes the user’s information using a secure hash, such
as a SHA-256, to preserve the security of the user’s secret.
Using a randomly generated key, called the random key,
and the hashed user secret, the Inkpack agent creates a user
key, which is used to encrypt and decrypt the user’s data.

Inkpack reduces the vulnerability of the user key by secret
splitting the random key into shares, and deleting the user
key and random key from memory. Only the shares of the
random key and the encrypted data are written to other
drives in the system. The encrypted data is labeled by a hash
of the file ID and the drive number that processed the data.
When encrypted data and shares of the random key are

sent out to another drive, they will have a label appended
to the end of the name stating that they have already been
processed by an Inkpack agent. Once the encrypted data and
shares are received, they are flushed to persistent storage. We
take advantage of upcoming smart SSDs [32] to implement
the Inkpack protocol outside of the host system the drives
are mounted on, which lowers the network overhead of any
security task done by Inkpack. Because the heaviest overhead
in the design of the Inkpack agents is sending data to each
other, having smart SSDs would allow each Inkpack agent to
communicate with each other with less network overhead,
thus improving performance.

3.2 Information within Inkpack
During a write request, the user submits data that they want
to write to the system and this data is labeled with a hash
of the file ID and drive number. This label is referred to as
the Object ID, which links the data to a specific drive and
user. Reading data requires the user to contact the original

3

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel O. Bel, K. Chang, D. Bittman, D. D. E. Long, H. Isozaki, and E. L. Miller

drive that encrypted the data, and provide the file ID and
their secret. Therefore, an attacker must not only control
the drives that contain the encrypted data and the shares of
the random key, but also the original drive that encrypted
the data. Secret splitting the random key immediately after
use, and never saving the random and user key, removes
the vulnerability of losing any key within the system, as
described in Section 3.4.

3.3 User information
When accessing the system, the user needs to provide to the
system their secret, such as a password or a public key, and
the ID of the data that they want to access. By default, each
piece of data that the user submits is encrypted with a unique
key, and the user’s data is indexed using a hash of the file’s
ID. However, the user can also submit other information,
such as their user ID, to index shares of the random key
at a per user level, allowing the user to encrypt all their
data with one key. This gives the system a performance and
storage gain, since the system needs to create, manage and
save less security data, however a determined attacker who
steals enough drives to compromise a random key can gain
an entire user’s worth of data.
This information must be hashed client-side before it is

sent to the storage system to prevent the existence of any
plaintext user information in the storage system or Inkpack
agents. In write accesses, the user needs to also give the
system the data itself which will be encrypted by the Inkpack
agent.

3.4 Key management
Inkpack uses keyed encryption to secure user data. The user
keys are a combination of auser’s secret, such as a password,
and a randomkey, a randomly generated key. Requiring the
user’s secret and the random key to generate an encryption
key prevents an attacker from gaining any useful information
from a drive even if they possess the user’s secret. When a
random key is created, N shares are generated from the key,
with each share the same size as the random key.m of these
shares contain random data, and k of these shares are parity
data generated from the random key and them random data
shares. Each individual share of the random key is sent to
a unique drive. To rebuild the key,m + 1 drives, containing
shares created from the same randomkey, are needed. Having
fewer thanm+1 drives does not reveal any information about
the key, preventing the loss of a few drives from exposing
data. Therefore an attacker would not only have to gain
possession ofm + 1 drives containing shares from the same
random key, but also the corresponding user secret that was
used to create the user key initially.

The same share creation technique is also used in a trusted
computing block (TCB) [38] to generate the drive secrets from
the cluster secret, a chunk of data initially created by the sys-
tems administrator in the TCB. The TCB is a different, closely
monitored, computer system than the storage system the
Inkpack protocol protects. It does not participate in normal
storage operations, but is contacted when a challenge is con-
ducted. When drive secrets are created, the TCB generates
x random shares and y parity shares from the cluster secret.
Since y represents the number of tolerable drive failures,
y must be less thanm + 1, since we do not want an attacker
to go unnoticed in case enough drives are taken to rebuild
the key. This is advantageous over public key authentication
since shares of the key appear as encrypted data rather than
as plaintext.

Inkpack uses Shamir Secret Sharing [33] as the technique
for creating shares of the random key and cluster secret. This
method is used to generate chunks of data from an original
piece of data, of which all or some are needed in order to
rebuild the original. Shamir Secret Sharing does not require
every share to return to rebuild the original piece of data,
allowing Inkpack to tolerate distributed system failures such
as drive failure, network partition, and slow hardware. When
generating the k chunks of parity data, Inkpack ensures that
any share of the random key does not reveal anything about
the original key.

Inkpack only secret splits the random key, not the data, in
order to lower network congestion and storage overhead [3].
In a secret split data store, the system needs to store and trans-
fer many chunks of data across many drives. By avoiding
this, we lessen the storage overhead of security and reduce
network load. Our protocol also separates key management
from data storage in order to handle data and keys in parallel
as proposed by Mazieres et al. [18].
When the shares of the random key are created, each is

given a share ID to index the share. The share ID allows the
protocol to find the shares of the random key once they are
distributed. The share ID can be a hash of a file ID concate-
nated with the share number, allowing an implementation
of this protocol to encrypt data on a per data basis. However,
securing the key on a per data basis means that the system
will have to keep track of a larger number of keys compared
to securing the random key shares on a per user level, which
can be done by using the hashed user’s ID instead of the
hashed file ID. During distribution, the shares are dispersed
to many drives in the system. If there are more shares than
there are drives, the protocol ensures that no one drive re-
ceives a majority of the shares. If there are fewer shares than
drives, the shares are randomly dispersed in a way that not
one drive gets a majority of the shares.

If an attacker wishes to steal data from a system of j drives,
an attacker needs to steal at leastm+ 1 drives out of n drives

4

Inkpack: A Secure, Data-Exposure Resistant Storage System∗ SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

that contain a share needed to rebuild a random key. The
probability of successful attack follows,(

n
m+1

)(
j

m+1

)
with j representing the number of drives and m + 1 the
minimum number of drives needed to potentially get enough
shares to reconstruct the key. The chances of a successful
attack decreases dramatically the more drives are in the
system.

3.5 Cluster Secret and TCB
The cluster secret is a piece of data generated by the systems
administrator with a high entropy random number generator
in the TCB. The cluster secret itself should never be saved
or reconstructed by an Inkpack agent, and is only created
to be secret split into shares, which are used as the drive
secret. It must be large enough to allow our challenge phase
enough room to choose a reasonable subset of the bytes
created from the drive secret to verify it. This also allows
the challenge phase to vary where the requested subset is
taken from the drive secret, and how large the subset is.
Since the challenging drive will not ask for the same subset
every challenge, a malicious drive cannot replay previous
responses to fool the requesting drive.

3.6 Drive secret
A drive secret is a share generated from the cluster secret,
and used by a drive to prove its validity to other drives. Drive
secrets are the same size as the cluster secret, and are loaded
into unique drives before the drives are added to the system.
Each drive uses that disk secret in order to get validated
by other drives in the group. Drive validation prevents an
unauthorized drive from intercepting data. Once a drive has
been validated with a challenge phase, it is allowed to receive
user data and validate other drives in the group. The locations
of the drive secrets are kept in the TCB’s persistent memory,
preventing an attacker from taking a drive and locating the
drive secret. We assume that the TCB is protected and more
available than the system Inkpack protects. Because the drive
secret is created from secret splitting, a visual inspection
of the data would make a drive secret appear the same as
encrypted data. The TCB must be contacted by a drive to
find the drive secret during a challenge phase.

A challenge phase is only conducted when a drive is added
or a new random key is written to the system. A previously
validated drive, the challenging drive, queries the TCB to
give back a minimum subset of the system’s drive secrets.
The challenging drive uses Store Forget and Check [31] to
prove that any subsets of drive secrets that return are valid;
other provable data possession techniques such as the one

described by Ateniese et al. [4] could be used instead. Store
Forget and Check is used as a proof-of-possession check, to
prove that all drives in the data center contain the right drive
secret initialized by the systems administrator. To verify that
all drives possess valid drive secrets, our protocol verifies that
the signature of the parities and the parity of the signature
of the drive secret subsets that are returned match.
If both the signature of the parities and the parity of the

signature match, then the drives have been validated. In
the case a drive returns junk data or no data, it will not be
validated and marked as dead, preventing an attacker from
inserting malicious drives into the data center with hopes
to gather key shares or encrypted data. Since the attacker
cannot know beforehand where the drive secret is located
in the drive and the firmware cannot be corrupted in the
allotted time, the attacker is also prevented from taking a
valid drive andmoving the drive secret to a malicious drive to
be inserted. In case more drives are added, the cluster secret
needs to be re-computed and redistributed. Re-computing
the drive secrets is not costly, as discussed in Section 5.1, and
we believe that growing the system is an uncommon enough
event that the recalculation overhead is minimal.

The systems administrator is able to toggle the number of
incorrect or missing drive secrets the system can tolerate by
raising or lowering the minimum threshold of drive secrets.
This threshold allows the system to tolerate normal drive
failures, and raises alarms in case more drives fail then the
set threshold. The challenge phase has the added benefit of
helping the system identify which drives are down, giving
the system a better understanding of what drives may have
been compromised.

3.7 Writes
When a user attempts to write data to the system, they will
submit their user secret, file ID (and user ID in case the shares
of the random key are indexed on a per user level), and the
data that they wish to write. The Inkpack agent that receives
the write request will find the shares of the user’s random
key, and rebuild the random key. The random key is then
hashed with the hashed user secret to recreate the user key,
which is used to encrypt the user’s data. The users data is
then written to the storage system, and the user key and
random key are deleted from memory.

If shares of the random key for that user are not found, our
protocol will run the challenge phase to verify the validity of
the drives in the system. If the challenge phase determines
that the system is healthy, it will generate a random key.
Our challenge operation algorithm works as described in
Algorithm 1.

When the system finishes verifying its drives, a new ran-
dom key is generated and used to create the user key. After

5

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel O. Bel, K. Chang, D. Bittman, D. D. E. Long, H. Isozaki, and E. L. Miller

Algorithm 1: Challenge operation
ChallengingDrive.GetSecretList(TCB)
forall the Drives in System do

SecretList.append(TCB.GetSecret(Drive))
end
TCB.SendSecretList(ChallengingDrive)
PassList← ChallengingDrive.Verify(SecretList)
if PassList.contains(Fail) = False then

Continue
else

Throw ChallengeFailureError
return PassList

end

the user key is used, the random key is secret split and the
shares of the random key are stored into the storage system.
The write operation works as shown in Algorithm 2.

Algorithm 2:Write operation
HUS← User.Hash(UserSecret)
HFID← User.Hash(FileID)
User.SendWriteReq(System,HUS,HFID,Data)
System.AssignAgent(User.Request)
DataLabel← InkAgent.Hash(HFID,InkAgent.Drivenum)
if InkAgent.FindRandKeyShares(DataLabel) = False then

RandKey← InkAgent.GenRandKey()
UserKey← InkAgent.Hash(RandKey,HUS)
EncData← InkAgent.Encrypt(Data, UserKey)
EncData.Label(DataLabel)
RandKeyList← InkAgent.SecretSplit(RandKey)
Delete HUS,HFID,UserKey,RandKey,Data
forall the Shares in RandKeyList do

TargetAgent← InkAgent.ChooseRandAgent()
TargetAgent.SendShare(Share)
if Share.IsLastShare = True) then

TargetAgent.SendData(EncData)
end

end
else

RandKeyList← InkAgent.RetrieveShares(DataLabel)
RandKey← InkAgent.RebuildKey(RandKeyList)
UserKey← InkAgent.Hash(RandKey,HUS)
EncData← InkAgent.Encrypt(Data, UserKey)
EncData.Label(DataLabel)
Delete HUS,HFID,UserKey,RandKey,Data
TargetAgent← InkAgent.ChooseRandAgent()
TargetAgent.SendData(EncData)

end

The random key is hashed with the user’s hashed infor-
mation to create a user key, which is used to encrypt the

user’s data. After the encryption is completed, the random
key is secret split into N shares, of which m + 1 need to
return to rebuild the original random key. Each random key
share is labeled with the hash of the user’s information and
disk number. The storage system uses this label to index
the shares and save them to unique drives. Once all shares
have been written to persistent storage, the encrypted data
is written, and the random and user keys are deleted once
the encrypted data is saved. In the event that the user writes
the same data, such as when updating the file, the write op-
eration will not create a new key, but rebuild the old one and
encrypt with the existing key.

3.8 Reads
In a read access, the user provides the file ID of the data they
wish to access, their user ID in case the shares of the random
key are indexed on a per user level, and their user secret.
The user’s secret is hashed in their client software, and sent
to an Inkpack agent. The Inkpack agent will communicate
with the storage system to find the shares of the random key
and the encrypted user data. Our read operation is described
in Algorithm 3.

Algorithm 3: Read operation
HUS← User.Hash(UserSecret)
HFID← User.Hash(FileID)
User.SendReadReq(System,HUS,HFID,Data)
System.AssignAgent(User.Request)
DataLabel← InkAgent.Hash(HFID,InkAgent.Drivenum)
if InkAgent.FindRandKeyShares(DataLabel) = True then

RandKeyList← InkAgent.RetrieveShares(DataLabel)
EncData← InkAgent.RetrieveData(DataLabel)
RandKey← InkAgent.RebuildKey(RandKeyList)
UserKey← InkAgent.Hash(RandKey,HUS)
Data← InkAgent.Decrypt(EncData, UserKey)
Delete HUS,HFID,UserKey,RandKey,EncData
InkAgent.ReturnData(Data)

else
throw DataNotFound

end

Once the storage system returns the encrypted data and
the shares of the random key, the Inkpack agent rebuilds
the random key. Next, the Inkpack agent hashes the random
key with the hashed user secret to rebuild the user key. The
user key is used to decrypt the user data, and the decrypted
user data is returned to the user. Once the decrypted data is
returned, both the random key and the user key are deleted
from memory.
If the system does not find enough shares of the random

key, the system returns an error even if the encrypted data
6

Inkpack: A Secure, Data-Exposure Resistant Storage System∗ SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

is found. This is done to prevent an attacker from taking a
small number of drives, and rigging them to act as a new
storage system. If the user requests data not found in the
system, they will also receive an error.

3.9 Distributed system failure protection
Distributed systems are vulnerable to drive failure, network
partition, and byzantine faults. We account for drive failure
by setting a reasonable threshold of data chunks that need
to return before a key can be rebuilt. For example, if a group
key is split into eight shares, with six random chunks and
two parity symbols, seven out of eight data chunks must
return, as discussed in Section 3.4. Our protocol leaves it up
to the storage system to back up any encrypted data written
to drives. In situations where a network partition occurs,
the set threshold also allows for a number of drives to leave
the network. We do not account for byzantine faults caused
by an attacker in the software, on the network, or by faulty
hardware.

3.10 Smart SSDs and Ceph
Since smart SSDs are not yet commercially available and our
main focus was to implementing a version of this protocol,
we have chosen to implement our approach in the open
source Ceph [37] object storage system. Ceph stores data on
virtual drives called Object Storage Devices (OSDs), and we
use this functionality as an analogue to smart SSDs since
OSDs provide computation at a level close to the drive. In
the most recent release of Ceph (Luminous), the storage
system offers three different services for key management
and automated encryption. However, our design does not
intend to secure just the Ceph storage system.

We use Ceph as a generic storage system, and treat it as if
it did not have any security capabilities. Instead of relying
on the internal cryptographic functionality Ceph provides,
Inkpack uses SHA-256, AES-256 [7] and gferasure [24] as
tools to efficiently perform the calculations it requires. Any-
thing done in our Inkpack system prototype can be readily
ported to other systems as long as the same or similar tools
are used and the storage system our protocol is implemented
on can index and store data. In order to benefit from hard-
ware support of these tools, we implemented libraries that
gave Ceph easy access to the tools.
Current research suggests that future SSDs will have the

capability for users to program their own software onto the
drives themselves [32]. Smart SSDs provide a performance
gain if the Inkpack agents are implemented as software on
disk. Kinetic drives today offer a network interface to a stor-
age system, allowing a user to directly communicate with
the drive. Jin et al. proposed a specialization on this idea,
where an SSD was used (with hardware modifications) as

a key value store to give applications a level of indirection
between keys and data [14]. By separating the need to secure
user information from the central processing units, a smart
SSD based storage system can allocate computing resources
to other tasks with no loss in security. However, malicious
software can also be programmed into the smart SSD, which
can expose data or be used to conduct directed attacks on
users. Enabling smart SSDs to work together independent of
the host system allows the drives to verify that other drives
are not malicious.

4 IMPLEMENTATION
Our setup consists of six OSDs, two monitors, and two man-
agers. We have four physical nodes, each one equipped with
three hard drives. Two nodes are dedicated monitor nodes,
and the monitors write their data to the hard drive. The last
two nodes are equipped with three 500 GB 7200 RPM hard
drives. The nodes communicate with each other on a 10 GiB
switch, and are located in the same physical room to reduce
network latency. These nodes are designated as the OSD
nodes. Each OSD node runs three OSD daemons, and each
OSD writes its data to its own unique hard drive, for a total
of six OSDs. Journaling is also done in the same partition
as the OSD writes to due to hardware limitations. Though
it may be possible to run many OSDs on an OSD node, and
have multiple OSDs write to a single drive, doing so may
cause performance issues [27]. Ceph managers increase the
availability of a Ceph cluster [26], and in our experimental
setup also increased stability. Each OSD journals its data to
a 1 GB journal in the same partition as the OSD writes to
due to hardware limitations.

5 EVALUATION AND PERFORMANCE
To demonstrate the performance of our protocol, we created
an automated client that writes 500 KB to our Inkpack pro-
totype system and reads the same data. The amount of data
generated by the client does not affect the latency of saving
keys or Inkpack computation. Varying the size of the data
to write only affects the performance of Ceph’s native write
operation and the time it takes to do cryptography, which
are two benchmarks outside of the scope of our security
protocol. Thus, we chose to save 500 KB as an example. Each
time a drive in the system receives a new piece of data, it
generates a new random key. The random key is hashed with
the user secret to create the encryption key. The random key
is split after encryption, and each piece of data created from
the random key is saved to separate drives in the system.
Write actions, when repeated many times, cause the largest
latency overhead from our protocol implementation in Ceph.
We also restarted the system several times to gather perfor-
mance data on the challenge phase that runs during system

7

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel O. Bel, K. Chang, D. Bittman, D. D. E. Long, H. Isozaki, and E. L. Miller

boot up. We measured execution time for sections of the
Inkpack protocol as well as normal Ceph operations.

5.1 Secret split, rebuild and challenges
When the system initializes, the primary monitor creates
the cluster secret, generates the six shares from it, and dis-
tributes one share to each of the six OSDs. Only the primary
monitor does this step in order to avoid dueling monitors
overwriting each other’s cluster secret shares. The share
distribution is done in memory to simulate a systems admin-
istrator manually loading a share of the cluster secret onto
the drive before it is inserted in the system. Challenging the
system does not significantly increase the overhead since,
in our prototype, the drive secrets are stored in memory to
simulate how smart SSDs would cache their secret for fast
retrieval by other smart SSDs.

During a challenge phase, our system requires at least five
of the drives to return a correct proof-of-possession before
the system can proceed. If it does not return correctly, no data
is written or read from the cluster. The challenges prevent a
user from writing sensitive data to a compromised system
and will alert the system administrators about possible miss-
ing drives. Since generation of shares affects performance
minimally, having more shares than drives demonstrates no
performance loss if more shares are generated than drives.
These measurements have been taken during read and write
operations done by our prototype. Inkpack will always need
to split, rebuild, generate, encrypt or decrypt some data, re-
quiring our implementation to incorporate high performance
math libraries [35]. We simulated having the Inkpack agents
communicating with the TCB by having it communicate
to the Monitoring Agent. Then the Monitoring agent com-
municates with the other agents to gather the each drive
secret. Once gathered the list of drive secret is sent to the
challenging drive.
Once the challenge is done, we found that generating

eight shares from the key and rebuilding it takes minimal
overhead, as demonstrated in Table 1. Additional overhead
is caused by transforming the share data into a format that
Ceph can ingest. This overhead occurs when formatting the
shares as strings that can be sent to the Ceph file system
or converting the received share strings into galois field
array. Secret splitting the random key into eight shares or
rebuilding the random key takes 42.39–61.77 µs.

5.2 Reads and writes in our prototype
In our prototype, reading shares is completed faster than
writing shares as shown in Table 2. The write decomposition
is shown in Figure 2. Shares of the random key are submitted
to be written to disk even if the data has not completed its
write operation. To write the shares of the cluster secret

to drive, we reused the write operations provided by Ceph.
This ensures that any piece of data we wanted written would
always be flushed to persistent storage, and not cached in
memory.

Ceph attempts to coalesce writes into one large write over
the entire system. If there are not enough operations in the
operation buffer, the system waits until enough operations
are ready to be executed. This causes many chunks of data
to be written in a single write, thus giving us write times of
461 ms. However, each share takes 55.5 ms to individually
write, if the coalesced write is broken down into individual
parallel writes. Because each share of the random key is
32 bytes, we experience slowdowns from small writes to
hard disk, a task difficult for magnetic drives to complete
well. To remedy this, one may coalesce the shares into larger
chunks, and write the chunks to storage. A system that wants
to implement Inkpack should consider coalescing the share
writes into a readable buffer.

The system will see an increase in latency if the sys-
tem generates more shares. Each share takes approximately
55.5 ms to pass by the journal, write to hard drives and sig-
nal for the next share to start writing. When a new random
key is generated the overhead of writing the shares to hard
drives will take N × 55.5 ms, with N being the number of
shares generated by the system. Reading the shares in Ceph
takes approximately 837.5 µs per share, which means that
the overall time taken to read N shares from the system will
be N × 837.5 µs.

Writes
0

50

100

150

200

250

300

350

400

450

la
te

nc
ie

s
(m

s)

Hash, secret split
and encryption
Share write to disk
Data write to disk

Read
0

5

10

15

20

la
te

nc
ie

s
(m

s)
Setup, rebuild and
decryption
Share read from disk
Data read from disk

Figure 2: Breakdown of Inkpack overhead in Ceph
read and write operations.

8

Inkpack: A Secure, Data-Exposure Resistant Storage System∗ SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

Table 1: Average execution time for Inkpack protocol components and Ceph components.

Cluster secret action Execution time (µs)
Secret split 189.0 ±20.5
Distribute 2.0 ±0.2

OSD action Execution time (µs)
Challenge phase 80.52 ±2.51

Secret split with share conversion 120.55 ±6.07
Rebuild with share conversion 117.92 ±5.54

Table 2: Average time taken to transfer eight shares
from persistent storage in Ceph.

Share Manipulation Execution time (ms)
Total Write 433.2 ±47.6
Total Read 6.7 ±0.2

In the steady state, the protocol will not rewrite the shares
of the random key during write accesses because the data
accessed by the user already has an existing random key
for that data. The approximately 433 ms latency caused by
writing the shares and data in parallel to hard drives will be
reduced to around 6.7 ms, thus reducing the overall write
latency to around 110 ms. To illustrate this, one can expect
during the steady state that write performance can be ap-
proximately the same as the read performance. During reads,
the shares of the random key are read and processed before
decrypted data is sent back to the user, as shown in Figure 2.

6 RELATEDWORK
Many security protocols that aim to secure drives harness
encryption and secret splitting. In recent work, these ap-
proaches either use one method or the other, but few have
blended both of these tools into their protocol. Some ap-
proaches focus on physically securing the hard drives in the
system using burglar proof casings, and assume that other
software approaches are implemented to secure the data on
the drive. By combining many approaches, our approach
makes drive theft unproductive.

6.1 Software approaches
AONT-RS [28] is a technique to secret split data that does
not require an external key in order to decrypt or encrypt
data. It encrypts data on the file level of granularity with a
randomly generated (and never saved) encryption key. The
key is appended to the encrypted data after it is XORed with
a hash of the encrypted data. This creates an AONT package,
which can be secret split using an information dispersal
algorithm for storage. In this manner, the keys are stored
alongside the data, and can never be lost unless the data is
lost along with the keys. The authors cite the fact that their
current scheme may be memory intensive in comparison to
other secret split data stores such as POTSHARDS.

Openstack Barbican [19] is a secure key management sys-
tem for distributed file systems. For a distributed file system
to decrypt data, it must request the secret from Barbican,
which validates the request from a keystone. Barbican han-
dles distribution of the keys within the system, and only
decrypts the data if it deems the access to be valid. Con-
ditions to decrypt can be set by an administrator, which
includes hardware validation if the system provides the ser-
vice. In comparison to Inkpack, Barbican must run within
the host storage system, not on the drives, and access to the
Barbican server and keystone is reliant on the credentials
of the user. The keystone and Barbican server may also run
on hardware external to the storage cluster, similar to how
Inkpack relies on a TCB.
Oceanstore is a infrastructure to create a globally repli-

cated and available storage system. This system can be run on
untrusted hardware, and protects its data with a combination
of cryptography and redundancy techniques. Specifically, ac-
cess lists and encryption keys are used. This leaves the user
to secure their encryption key and to securely transfer key
data before accessing the Oceanstore infrastructure. Other
systems deal with encryption and decryption by having cen-
tralized modules [9] that deal with decrypting the encrypted
encryption key. This approach is not scalable and may cause
unnecessary overhead in large distributed systems.

Using blockchain to protect personal data [40] is another
approach. Zyskind modified blockchain into an automated
access control manager. This system focuses on guarantee-
ing that only the user and the service can access the data
stored in the system. The user of such a system controls the
permission that the service has when accessing their data,
even revoking the service’s access to their personal data.
Their system allows the user to create as many identities as
they want to reinforce their privacy. Our protocol uses group
based key generation, which is similar to their approach. A
user can generate multiple groups of data that are encrypted
by different keys generated by different drives if they wish
to.

6.2 Hardware approaches
Burglar proof drive casings [2, 6] have been created to keep
the drive safe in data centers, but these approaches fall short

9

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel O. Bel, K. Chang, D. Bittman, D. D. E. Long, H. Isozaki, and E. L. Miller

when faced with insiders that may have the key to the cas-
ing that the drives are stored in. Smart card based file sys-
tems [12] utilize hardware based authentication to encrypt
data inside the storage system and secure access to and from
the system. Smart cards are small processors mounted on
plastic cards, similar to those mounted on a credit card. Lever-
aging this, smart cards can be used to ensure point-to-point
encryption of data on a system. This grants a storage system
high amounts of security at the requirement of the use of
smart cards to access the system.
Hamlin et al. [11] describe in their patent a secure drive

that takes the client drive ID and the secure drive ID, and
creates a encryption key used to encrypt the user’s data. The
drive also can identify the validity of the encrypted mes-
sage by generating an enable signal from the authenticator.
That signal is then sent to the data processing unit, which
then writes the data to drive or receives the cipher text for
processing. This idea is similar to our protocol, except our
authenticator is in software and focuses on identifying other
drives rather then the client. Key generation is similar to our
protocol, since we use a secret that comes from the user and
a secret stored on the drive. In the case of drive theft our
protocol allows for the systems administrator to update the
secret that was originally distributed among the drives.

6.3 Possible performance improvements
Colgrove et al. [8] present an all flash enterprise grade storage
system that supports compression, deduplication, and high-
availability. In comparison with other storage clusters, their
system leverages the abilities of flash memory while keeping
parts of data in battery backed DRAM model. In doing so,
latency in persisting data to storage lowers, and there is
still the advantage of caching data in DRAM. In order to
mitigate the flash penalty for random writes, they use a log
structure index and optimal data layouts to ensure writes
are executed in large sequential blocks. To improve the write
times of the shares, our protocol would benefit from using a
log structured index in order to coalesce the high number of
writes that are needed for the shares of the key.

Parakh et al. [23] have attempted to reduce the network
and storage overhead of secret splitting the user’s data. They
do so by generating shares of size |S |/(k − 1), where |S | is
the size of the original secret and k is the amount of shares
created. Our protocol reduces the overhead penalty of secret
splitting the entire data by only splitting the key. All of the
shares of the keys would be 32 bytes, which takes up less
space then having to secret split the entire user data. We
decided to split only the key since we are looking to keep the
user keys secure, as opposed to the splitting the entire user
data. In cases where the attacker is motivated enough to steal

enough drives to gain access to user data, the system will
lose a large number of drives and report itself as unhealthy.

7 FUTUREWORK
For up and coming storage class memories, keys will need to
be kept safe on systems especially during system shutdown.
Unlike normal storage hierarchies, part of a key or all of it
might be saved and viewable by an intruder who controls
such a drive. The Inkpack Agent will need to erase all the
data that have been regrouped on it during system shutdown.

Currently, the system generates eight shares for each user
key that an Inkpack agent generates. Each share is 256-bits,
which is not ideal for saving or indexing on normal hard
drives or flash SSDs. One solution could be to implement a
better indexing system for small data, such as a log or LSM-
Trie [39]. This will help reduce the search overhead of the
system when it needs to reconstruct the group keys accessed
by the user, and improve read times for the challenge phase.
Also, it reduces write amplification and the number of drive
accesses needed to locate a specific piece of data. Reducing
amplification becomes a concern on all flash or NVM systems,
and tree like data structures such as a LSM tree [22] addresses
this problem.
Finally, our Ceph implementation highlights the need to

design a storage system with this protocol considered from
the beginning. Ceph was designed for magnetic drives, and
Inkpack benefits the best from SSDs. Ceph uses journals
to ensure write consistency and availability, but there are
techniques to achieve these goals for small pieces of data
without high write amplification and latency such as logging.
In future work, we aim to design and implement a new flash
file system using the Inkpack protocol as its security base.

8 CONCLUSION
The Inkpack protocol adds a layer of security within a stor-
age system capable of preventing data leaks from drive loss.
Forcing the system to pass a minimum threshold makes the
drives function as a group, where the group can tolerate the
loss of a few drives, but a small number of drives cannot
independently reveal data. By secret splitting keys, we in-
crease a system’s defenses against drive loss. Our protocol
can be applied to any storage system in general, but future
storage systems can take advantage of smart SSDs to lower
the impact of the protocol on the system. With smart SSDs,
any drive can be an Inkpack agent, and thus spread out the
required computations over many agents. Our prototype
works as a proof of concept, demonstrating that little com-
putational overhead is needed to secure the encryption key.
We seek to implement a full Inkpack file system in the near
future.

10

Inkpack: A Secure, Data-Exposure Resistant Storage System∗ SYSTOR ’18, June 4–7, 2018, HAIFA, Israel

REFERENCES
[1] Hal Abelson, Ross Anderson, Steven M. Bellovin, Josh Benalob, Matt

Blaze, Whitfield Diffie, John Gilmore, Peter G. Neumann, Ronald L.
Rivest, Jeffrey I. Schiller, and Bruce Schneier. 1997. The Risks of Key Re-
covery, Key Escrow, and Trusted Third-party Encryption. World Wide
Web J. 2, 3 (June 1997), 241–257. http://dl.acm.org/citation.cfm?id=
275079.275104

[2] Jae-Yeon Ahn. 2005. Theft prevention device for information-stored
disk. (Aug. 23 2005). US Patent 6,931,895.

[3] Beimel Amos. 2011. Secret-sharing Schemes: A Survey. In Proceedings
of the Third International Conference on Coding and Cryptology (IWCC
11). Springer-Verlag, Berlin, Heidelberg, 11–46. http://dl.acm.org/
citation.cfm?id=2017916.2017918

[4] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. 2007. Provable data pos-
session at untrusted stores. In Proceedings of the 14th ACM Conference
on Computer and Communications Security. ACM, 598–609.

[5] Jeffery Jay Bobzin. 2015. Secure boot administration in a Unified
Extensible Firmware Interface (UEFI)-compliant computing device.
(28 April 2015). US Patent 9,021,244.

[6] Kun-Fa Chang. 2003. Anti-theft compact disk casings. (Aug. 5 2003).
US Patent 6,601,414.

[7] Robert Chesebrough and Gael. 2012. Introduction to Intel AES-
NI and Intel secure key instructions. (26 July 2012). https://
software.intel.com/en-us/node/256280#section1

[8] John Colgrove, John Davis, John Hayes, Ethan L. Miller, Cary Sandvig,
Russell Sears, Ari Tamches, Neil Vachharajani, and Feng Wang. 2015.
Purity: Building Fast, Highly-Available Enterprise Flash Storage from
Commodity Components.

[9] Weishi Feng. 2010. Secure digital content distribution system and
secure hard drive. (Jan. 12 2010). US Patent 7,647,507.

[10] Joel Frank, Shayna Frank, Lincoln Thurlow, Thomas Kroeger, Ethan L.
Miller, and Darrell D. E. Long. 2015. Percival: A Searchable Secret Split
Datastore. In Proceedings of the 31st IEEE Conference on Mass Storage
Systems and Technologies. http://www.ssrc.ucsc.edu/Papers/frank-
msst15.pdf

[11] Christopher L Hamlin. 2007. Secure disk drive comprising a secure
drive key and a drive ID for implementing secure communication over
a public network. (May 8 2007). US Patent 7,215,771.

[12] James Hughes and D Corcoran. 1999. A universal access, smart-card-
based, secure file system. In Atlanta Linux Showcase, Vol. 10.

[13] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo
Menczer. 2007. Social Phishing. Commun. ACM 50, 10 (Oct. 2007),
94–100. https://doi.org/10.1145/1290958.1290968

[14] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. 2017. KAML: A Flexible, High-Performance Key-Value SSD.
In Proceedings of the 23rd Int’l Symposium on High Performance Com-
puter Architecture (HPCA-23). IEEE, 373–384.

[15] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and
Kevin Fu. 2003. Plutus: Scalable Secure File Sharing on Untrusted
Storage.. In Proceedings of the 2nd USENIX Conference on File and
Storage Technologies (FAST ’03), Vol. 3. 29–42.

[16] Michael Kan. 2016. Used hard drives on eBay, Craigslist are
often still ripe with leftover data. (28 June 2016). https:
//www.pcworld.com/article/3089343/security/resold-hard-drives-
on-ebay-craigslist-are-often-still-ripe-with-leftover-data.html

[17] Erik Lacitis. 2017. WSU gets costly lesson in theft of hard drive with
more than 1 million people’s personal data. (July 2017). https://goo.gl/
Ujr8wT

[18] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett
Witchel. 1999. Separating Key Management from File System Security.

SIGOPS Oper. Syst. Rev. 33, 5 (Dec. 1999), 124–139. https://doi.org/
10.1145/319344.319160

[19] Douglas MendizÃąbal, Ade Lee, Chad Lung, Dave McCowan, Fer-
nando Diaz, John Wood, Juan Antonio Osorio Robles, Kaitlin Farr,
Nathan Reller, and Steve Heyman. [n. d.]. Barbican. ([n. d.]). https:
//wiki.openstack.org/wiki/Barbican

[20] Ulrike Meyer and Susanne Wetzel. 2004. A Man-in-the-middle Attack
on UMTS. In Proceedings of the 3rd ACMWorkshop on Wireless Security
(WiSe ’04). ACM, New York, NY, USA, 90–97. https://doi.org/10.1145/
1023646.1023662

[21] LSU Health Network. 2017. Theft of external hard drive containing
user information. (May 2017). http://www.lsuhn.com/healthnews/
Theft-of-External-Hard-Drive-1

[22] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica
33 (1996), 351–385. http://www.ssrc.ucsc.edu/PaperArchive/oneil-
actainformatica96.pdf

[23] Abhishek Parakh and Subhash Kak. 2011. Space efficient secret sharing
for implicit data security. Information Sciences 181, 2 (2011), 335–341.

[24] James Plank, Kevin Greenan, and Ethan L. Miller. 2013. Screaming Fast
Galois Field Arithmetic Using Intel SIMD Extensions. In Proceedings
of the 11th USENIX Conference on File and Storage Technologies (FAST).

[25] Associated Press. 2017. 20,000+ tribal members warned of data breach.
(2017).

[26] Inc Red Hat. 2016. Ceph-mgr Administrator’s Guide. (2016). http:
//docs.ceph.com/docs/master/mgr/administrator/

[27] Inc Red Hat. 2016. Hardware Recommendations. (2016). http://
docs.ceph.com/docs/kraken/start/hardware-recommendations/

[28] Jason K. Resch and James S. Plank. 2011. AONT-RS: Blending Se-
curity and Performance in Dispersed Storage Systems. In Proceed-
ings of the 9th USENIX Conference on File and Storage Technologies
(FAST) (FAST’11). USENIX Association, Berkeley, CA, USA, 14–14.
http://dl.acm.org/citation.cfm?id=1960475.1960489

[29] James Risen. 2000. Missing Nuclear Data Found Behind a Los Alamos
Copier. (June 2000).

[30] Bruce Schneider. 1996. Applied cryptography: protocols, algorithms, and
source code in C. John Wiley & Sons.

[31] Thomas S. J. Schwarz and Ethan L. Miller. 2006. Store, Forget,
and Check: Using Algebraic Signatures to Check Remotely Adminis-
tered Storage. In Proceedings of the 26th International Conference on
Distributed Computing Systems (ICDCS ’06) (ICDCS ’06). IEEE Com-
puter Society, Washington, DC, USA, 12–. https://doi.org/10.1109/
ICDCS.2006.80

[32] Sudharsan Seshadri, Mark Gahagan, Meenakshi Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson.
2014. Willow: A user-programmable SSD. In Proceedings of the 11th
Symposium on Operating Systems Design and Implementation. 67–80.

[33] Adi Shamir. 1979. How To Share a Secret. Commun. ACM 22,
11 (Nov. 1979), 612–613. http://www.ssrc.ucsc.edu/PaperArchive/
shamir-cacm79.pdf

[34] Mark W. Storer, Kevin Greenan, Ethan L. Miller, and Kaladhar Voru-
ganti. 2006. POTSHARDS: Secure Long-Term Archival Storage With-
out Encryption. In Technical Report UCSC-SSRC-06-03, Storage Systems
Research Center, University of California, Santa Cruz.

[35] Lincoln Thurlow, Andrew Kwong, Thomas J. E. Schwarz, and Ethan L.
Miller. 2017. gferasure: a high performance Galois field library
for erasure coding and algebraic signature computation. https://
bitbucket.org/ssrc/gferasure. (2017).

[36] Michael Yung Chung Wei, Laura M Grupp, Frederick E Spada, and
Steven Swanson. 2011. Reliably Erasing Data from Flash-Based Solid
State Drives.. In Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST), Vol. 11. 8.

11

http://dl.acm.org/citation.cfm?id=275079.275104
http://dl.acm.org/citation.cfm?id=275079.275104
http://dl.acm.org/citation.cfm?id=2017916.2017918
http://dl.acm.org/citation.cfm?id=2017916.2017918
https://software.intel.com/en-us/node/256280#section1
https://software.intel.com/en-us/node/256280#section1
http://www.ssrc.ucsc.edu/Papers/frank-msst15.pdf
http://www.ssrc.ucsc.edu/Papers/frank-msst15.pdf
https://doi.org/10.1145/1290958.1290968
https://www.pcworld.com/article/3089343/security/resold-hard-drives-on-ebay-craigslist-are-often-still-ripe-with-leftover-data.html
https://www.pcworld.com/article/3089343/security/resold-hard-drives-on-ebay-craigslist-are-often-still-ripe-with-leftover-data.html
https://www.pcworld.com/article/3089343/security/resold-hard-drives-on-ebay-craigslist-are-often-still-ripe-with-leftover-data.html
https://goo.gl/Ujr8wT
https://goo.gl/Ujr8wT
https://doi.org/10.1145/319344.319160
https://doi.org/10.1145/319344.319160
https://wiki.openstack.org/wiki/Barbican
https://wiki.openstack.org/wiki/Barbican
https://doi.org/10.1145/1023646.1023662
https://doi.org/10.1145/1023646.1023662
http://www.lsuhn.com/healthnews/Theft-of-External-Hard-Drive-1
http://www.lsuhn.com/healthnews/Theft-of-External-Hard-Drive-1
http://www.ssrc.ucsc.edu/PaperArchive/oneil-actainformatica96.pdf
http://www.ssrc.ucsc.edu/PaperArchive/oneil-actainformatica96.pdf
http://docs.ceph.com/docs/master/mgr/administrator/
http://docs.ceph.com/docs/master/mgr/administrator/
http://docs.ceph.com/docs/kraken/start/hardware-recommendations/
http://docs.ceph.com/docs/kraken/start/hardware-recommendations/
http://dl.acm.org/citation.cfm?id=1960475.1960489
https://doi.org/10.1109/ICDCS.2006.80
https://doi.org/10.1109/ICDCS.2006.80
http://www.ssrc.ucsc.edu/PaperArchive/shamir-cacm79.pdf
http://www.ssrc.ucsc.edu/PaperArchive/shamir-cacm79.pdf
https://bitbucket.org/ssrc/gferasure
https://bitbucket.org/ssrc/gferasure

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel O. Bel, K. Chang, D. Bittman, D. D. E. Long, H. Isozaki, and E. L. Miller

[37] Sage Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. 2006.
CRUSH: Controlled, Scalable, Decentralized Placement of Replicated
Data. In Proceedings of the 2006 ACM/IEEE Conference on Supercomput-
ing (SC ’06).

[38] Johannes Winter. 2008. Trusted Computing Building Blocks for Em-
bedded Linux-based ARM Trustzone Platforms. In Proceedings of the
third ACM Workshop on Scalable Trusted Computing (STC ’08). ACM,
New York, NY, USA, 21–30. https://doi.org/10.1145/1456455.1456460

[39] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie:
An LSM-tree-based Ultra-Large Key-Value Store for Small Data. In
Proceedings of the 2015 USENIX Annual Technical Conference. http:
//www.ssrc.ucsc.edu/PaperArchive/wu-atc15.pdf

[40] Guy Zyskind, Oz Nathan, et al. 2015. Decentralizing privacy: Using
blockchain to protect personal data. In Security and Privacy Workshops
(SPW), 2015 IEEE. IEEE, 180–184.

12

https://doi.org/10.1145/1456455.1456460
http://www.ssrc.ucsc.edu/PaperArchive/wu-atc15.pdf
http://www.ssrc.ucsc.edu/PaperArchive/wu-atc15.pdf

	Abstract
	1 Introduction
	2 Threat Model
	3 Design
	3.1 Inkpack
	3.2 Information within Inkpack
	3.3 User information
	3.4 Key management
	3.5 Cluster Secret and TCB
	3.6 Drive secret
	3.7 Writes
	3.8 Reads
	3.9 Distributed system failure protection
	3.10 Smart SSDs and Ceph

	4 Implementation
	5 Evaluation and Performance
	5.1 Secret split, rebuild and challenges
	5.2 Reads and writes in our prototype

	6 Related work
	6.1 Software approaches
	6.2 Hardware approaches
	6.3 Possible performance improvements

	7 Future work
	8 Conclusion
	References

