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Unsupervised deep representation
learning enables phenotype discovery
for genetic association studies of
brain imaging

Check for updates

Khush Patel 1,6, Ziqian Xie1,6, Hao Yuan2, Sheikh Muhammad Saiful Islam1, Yaochen Xie 2, Wei He1,
Wanheng Zhang3, Assaf Gottlieb 1, Han Chen1,3, Luca Giancardo 1, Alexander Knaack 4,
Evan Fletcher4, Myriam Fornage 3,5, Shuiwang Ji 2 & Degui Zhi 1

Understanding the genetic architecture of brain structure is challenging, partly due to difficulties in
designing robust, non-biased descriptors of brain morphology. Until recently, brain measures for
genome-wide association studies (GWAS) consisted of traditionally expert-defined or software-
derived image-derived phenotypes (IDPs) that are often based on theoretical preconceptions or
computed from limited amounts of data. Here, we present an approach to derive brain imaging
phenotypes using unsupervised deep representation learning. We train a 3-D convolutional
autoencodermodelwith reconstruction loss on6130UKBiobank (UKBB) participants’T1or T2-FLAIR
(T2) brain MRIs to create a 128-dimensional representation known as Unsupervised Deep learning
derived Imaging Phenotypes (UDIPs). GWAS of these UDIPs in held-out UKBB subjects (n = 22,880
discovery and n = 12,359/11,265 replication cohorts for T1/T2) identified 9457 significant SNPs
organized into 97 independent genetic loci of which 60 loci were replicated. Twenty-six loci were not
reported in earlier T1 and T2 IDP-based UK Biobank GWAS. We developed a perturbation-based
decoder interpretation approach to show that these loci are associatedwithUDIPsmapped tomultiple
relevant brain regions. Our results established unsupervised deep learning can derive robust,
unbiased, heritable, and interpretable brain imaging phenotypes.

Structural magnetic resonance imaging (MRI)modalities such as T1 and
T2-FLAIR (T2) scans enable the study of brain anatomy and pathology
in high resolution. With the availability of large cohorts with both brain
MRI and genetic information1–5, genome-wide association studies
(GWAS) of the brain structures have shed light on the genetic factors
underlying the variations in brain morphology and can potentially aid
the understanding of etiopathology of neuropsychiatric disorders. Still,
one of the main methodological challenges for brain imaging GWAS is
to derive comprehensive, heritable, and interpretable representations of
the brain from complex 3D brainMRIs. Most existing GWAS studies6–10

use phenotype values capturing volumes of brain regions, cortical sur-
face area and cortex thickness estimated by classical software such as
FSL11, FreeSurfer12 and SPM13. One of the most extensive efforts of this
type was the genetic studies of the UK Biobank (UKBB) brain imaging
data14–17. In particular, an extensive set of 3144 brain imaging-derived
phenotypes (IDPs), directly measurable features derived from brain
images by algorithmic processing, including 1437 descriptors of brain
structure derived from T1 and T2 images, from the 33,224 UKBB par-
ticipants was studied and 692 clusters of association between genetic
variants and IDPs were identified15. Also, a GWAS of FreeSurfer-derived
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vertex-based measures using UKBB data identified 780 loci for cortical
thickness and surface area16.

However, traditional approaches for deriving phenotypes from brain
MRI have limitations. Brain-derived IDPs are always subject to ambiguity
and uncertainty due to many factors. For example, segmentation of brain
into regions of interest (ROIs) was often a prerequisite for downstream
processing. However, even widely used standard region segmentation
software still has biases and inconsistencies18,19. Also, the brain segmentation
algorithms based on image registration may be affected significantly by
artifacts and pathology20–22.

In addition to issues arising from traditional approaches to segmenting
brain IDPs, recent commentaries have pointed out inherent limitations
from modeling outcomes associated with single brain measures from pre-
selected lists23. The essence of this critique is that portions of multiple IDPs
may be associated with an outcome of interest (e.g., cognitive performance
or genetic association), crossing traditional ROI boundaries to recruit
subsets of multiple regions while not using the entirety of any region.
Modeling brain-outcome associations with single whole IDPs thus loses
both anatomical specificity (by forcibly incorporating more of a single IDP
than is really associated to outcome) and sensitivity (failing to incorporate
portions of other IDPs that are also associated)23. This is true a fortiori in
GWAS, due to the pleiotropy or distributed influence of a genetic locus
(SNP) on multiple brain regions and across different imaging modalities24.

In response, some multivariate statistical approaches have modeled
SNP associations with multiple brain measures, obtaining increased sensi-
tivity and enhanced loci discovery. However, these approaches still require
input of precomputed brain measures in some form. This necessitates a
priori selections ofmeasures that are expected to be relevant, with the risk of
overlooking others. For example, amultivariate association study of cortical
vertices16 captures some cortical features but omits subcortical features that
could also discover important brain-genome relations.

In the general MRI imaging domain, deep learning (DL) methods,
especially convolutional neural networks (CNNs), have demonstrated their
power to learn useful features for predicting brain-related phenotypes25.
However, there has beenminimal success in using deep learning to generate
brain imaging phenotypes for GWAS. One of the misconceptions is that
extensive labeling is needed to train a DL model for phenotyping MRIs.

Here, we propose unsupervised learning for deriving phenotypes from
brain MRIs.

Our deep learning approach has the potential to address sensitivity and
specificity issues without requiring a precomputed set of brain measures.
Specifically, we trained 3D convolutional autoencoders with reconstruction
loss andused thebottleneck layer as a vector representation for the inputMRI.
This unsupervised approach computes a set of latent brain measures that
implicitly combine features of thewholebrain image tobest encode individual
brains in large training sets. The only criterion in the training is the ability to
reproduce an image from its encoding. Since the encoding is a data reduction,
there will be loss, but this is determined by the architecture of the neural net
rather than an a priori judgment as to which brain features are relevant.
Therefore, ourapproachhas thepotential togobeyondapriorimeasurements
to generate measures with improved power for genetic discovery.

In this study, we trained our model on UKBB’s T1 and T2 MRIs. The
extracted features in the bottleneck layer were then used as Unsupervised
Deep learning derived Imaging Phenotypes (UDIPs) for GWAS. Using the
decoder as the generator, a perturbation-based decoder interpretation
(PerDI) approach was developed tomap the UDIPs to brain regions. These
visual associations were corroborated by results from prior research. Our
results suggest that this label-free approach can be used to derive inter-
pretable and heritable phenotypes, empowering the discovery of the genetic
architecture of the brain.

Results
Overview
Theoverall rationale of the study is to leverage the large sample size ofUKBB
brain imagingdata to train anunsuperviseddeep learningmodel to generate

brain imagingphenotypes and then conduct genetic association studiesover
UKBB data with both imaging and genetics data. Our overall analysis fra-
mework can be divided into four phases: data set selection, deep learning
model development, GWAS, and interpretable deep learning model for
mapping brain imaging phenotypes to brain regions (Fig. 1). Details of these
phases are provided in the Methods section.

A total of 46,099 T1 (44,181 subjects) and 45,294 T2 (43,381 subjects)
UKBBMRIs were downloaded. To avoid data leakage, we use disjoint data
sets formodel development and genetic association study. A dataset of 6130
images from subjects of mixed ethnicities was chosen as the model devel-
opment set. This diverse dataset enables the model to learn a greater cov-
erage of variabilities in brain morphology. GWAS was carried out on
predictions generated by the model on a separate dataset of white British
subjects consisting of 35,239 T1 weighted images and 34,145 T2 weighted
images not included in the model development phase. GWAS was per-
formed by dividing the subjects into discovery (22,880 T1 and 22,880 T2)
and replication groups (12,359 T1 and 11,265 T2). A detailed data set
selection process is shown in Supplementary Data 1.

To derive a compact representation of the input brain image, we use a
3D convolutional autoencoder. Autoencoders are a general architecture for
deriving compact representations of any type of input object26. For 2Dor 3D
images, autoencoders with convolutional neural networks (CNN) archi-
tectures are a natural choice.While our architecture has semblance with the
well-known U-net27, we do not introduce the skip connections between the
encoderblocks anddecoder blocks aswe aim to retainmaximal information
through the bottleneck layer instead of generating sharp images at high
resolution. Our architectural choices of the block with two 3 × 3 × 3 kernel
for convolutional layers and one 2 × 2 × 2 kernel for max pooling are based
on the fact that these choices are commonly used in many landmark con-
volutional neural network architectures inspired by the VGGNet and it has
been shown to capture local spatial information effectively27–31.

We trained models with varying sizes and chose the one with 128
dimensions at the bottleneck layer, as it reaches a decent balance of model
size and representation power. The training is effective as we see the dif-
ference between the original and the reconstructed images is much lower
than that of random pairs (Supplementary Fig. 1c). Also, it is reassuring to
see the reconstruction loss in the test set (GWAS set) is similar to that of the
validation set even though they are from different ethnicities (Supplemen-
tary Fig. 1a, b). Although obtaining a high-quality reconstruction is not our
primary goal, a visual inspection (see Supplementary Fig. 2 for examples of
reconstructed images and Supplementary Fig. 3, 4 for lightbox views of
original and reconstructed images) revealed that the reconstructed images
share the general shape and anatomy of the original ones. However, many
high-resolution features are not reconstructed due to the lack of skip con-
nections to guarantee optimum data retention in UDIPs.

We performed single nucleotide polymorphismGWAS for eachUDIP
as a phenotype using linear mixed models. We identified 38,113 significant
SNP-UDIP pairs with 9457 significant SNPs organized into 97 genetic loci
with 126 lead SNPs in the discovery cohort (p < 5 × 10−8/256) (SeeMethods:
GWAS-Loci clumping section). A total of 60 genetic loci were replicated in
the independent replication set (p < 0.05/126). We identified 26 loci not
found in traditional T1/T2 IDP GWAS of UKBiobank brain imaging
phenotypes indicating the power of our approach for phenotype
discovery14,15(SupplementaryData 2), althoughmany loci were identifiedby
later brain related GWAS studies. One of the loci on PRDM1 gene was not
previously indicated in any brain related GWAS.

Characterization of the UDIPs
Both the 128-dimensional vectors for T1 and T2 are multivariate repre-
sentations of the content of the input image. As we do not induce any
structures among the 128 dimensions, we expect individual dimensions to
be orderless and interchangeable. Indeed, we observed that all 256 dimen-
sions are unimodal and normally distributed (Supplementary Fig. 5).
Interestingly, there is a lack of general correlation (Supplementary Fig. 6) or
subcluster structures (Supplementary Fig. 7) among them. This lack of
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correlation is not by design, but it indicates that from the totality of possible
brain image information we have found 128 uncorrelated, independent
dimensions. Also interesting is that the average absolute correlation within
T1 UDIPs and T2 UDIPs (0.1031 and 0.1052, respectively) is smaller than
that across T1 and T2 UDIPs (0.1128). This indicates that T1 and T2
embeddings each capture within-modality uncorrelated structural features
while additionally capturing some overall features about the brain anatomy.

While it is challenging to interpret the 128-dimensional UDIPs
directly, we verify that they capture relevant information. Using multiple
linear regression analyses, UDIPs can accurately predict participants’ sex
with the area under the ROC curve (AUROC) value for T1 of 0.9840
(0.0021) and T2 of 0.9781 (0.0001). This performance is comparable with

existing literature for direct CNN-based sex prediction: 0.95 AUC using T1
and 0.92AUCusingT232, 0.92 accuracyusingT1MRI33, 0.80 accuracyusing
T134, and 0.99 accuracy using T135. Also, age can be predicted from UDIPs
withmean absolute error (MAE) of 3.3664 (0.0705) years for T1 and 3.1249
(0.0439) years for T2. Again, this performance is comparable to or better
than existing CNN-based methods using T1 and T2 to predict age: MAE:
4.006 using T1MRI36, MAE: 2.97 to 3.96 years using T237, MAE: 2.14 years
using T1 MRI35.

Compared with the traditional IDPs, the UDIPs are uniquely more
informative: The UDIPs capture the overall shape and brain anatomy
through reconstruction, which IDPs cannot. Still, we use multiple linear
regressions to understand the linear correlations among the UDIPs and the

Fig. 1 |Overall pipeline of the study. aT1 andT2FLAIR brainMRI preprocessed by
UKBBwere divided into separate datasets for deep learningmodel development and
conducting GWAS. b The autoencoder architecture was trained by background
maskedmean square error (MSE) loss. c Perturbation-based Decoder Interpretation

(PerDI) method was developed to map UDIPs to brain regions. dGWAS conducted
using a discovery set identified 9,457 SNPs organized into 97 independent genetic
loci out of which 60 loci were replicated in the replication set. PerDI was used tomap
SNP-UDIP pairs to brain regions.
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FSL-derived volume IDPs. For predicting volumes of brain regions from
UDIPs, the highest values of coefficient of determination (R2: T1/T2) were
seen with volume of the following regions: ventricular cerebrospinal fluid
(CSF) (0.9849/0.9625). This is due to the fact that in a typical T1/T2-FLAIR
MRI, the ventricular CSF is the largest dark region inside the brain mask
with a clear boundary,which isbest capturedby theMSE lossweused.Other
regions of high prediction R2 are peripheral cortical gray matter (0.6993/
0.6925), gray+ white matter (0.7384/0.7242), gray matter (0.6928/0.6805),
and thalamus (0.6664/0.6093) for both T1 and T2. On the other hand, for
predicting the UDIPs from the volume IDPs, the highest R2 are about 0.568
for bothT1 andT2 and the overallR2 values are not high. Complete list ofR2

values can be found in Supplementary Data 3.
To visualize the population distribution of multivariate UDIPs, we

used Uniform Manifold Approximation for unsupervised dimension
reduction (UMAP)38 to reduce the 128-dimensional UDIPs into 2D (Fig. 2
and Supplementary Figs. 8–10). For UMAP, most participants’ UDIPs are
distributed within a large continuous region, except some small groups of
participants (24 T1 UDIPs, 18 T2 UDIPs) have UDIPs in isolated islands,
probably due to having high volume of subcortical structures (Fig. 2, Sup-
plementary Data 4). Also, unlike many embedding works in the literature,
the goal of our representation learning is not to form clusters for down-
stream classification purposes but to uniformly encode the information
about the imaging data39. Under this setting, clusters of representations are
not desired and may even harm the GWAS performance due to reduced
capacity for other characteristics. Therefore, the lack of clusters is a feature
rather than a limitation of the approach. The UDIPs are clearly correlated
with volume of ventricular CSF, consistent with the multiple regression
analyses (Supplementary Data 3) and pairwise Pearson correlation (Sup-
plementary Data 5). The correlations of UDIPs with age and sex are also
visible (SupplementaryFig. 8).The components derived fromUMAPforT1
and T2 UDIPs are correlated (Component 1 T1/T2: r = 0.38, Component 2
T1/T2: r = 0.77) (Supplementary Data 6). In addition, principal component
analysis (PCA) (Supplementary Fig. 11) and t-distributed stochastic

neighbor embedding (tSNE) (Supplementary Fig. 12) analyses of UDIPs
show a similar separation of groups as UMAP. Of note, t-SNE seems to be
capturingmore local patterns. The reconstruction shows the shape, volume,
texture, and anatomic relationship captured by the UDIPs.

Of note, the ideal dimension size for our UDIPs is not obvious. Rather
than conducting a theoretical analysis, we took a data-driven approach.We
trained four versions of UDIPs, of 32, 64, 128, and 256 dimensions, with
otherwise identical encoder and decoder architectures, of T1 images and
compared their representation powers through their reconstruction loss
(Supplementary Data 7. a.). While increasing UDIP dimensions from 32 to
128 reduces the reconstruction loss, there is no obvious benefit in increasing
the dimensions from128 to 256.Also,we conducted a canonical-correlation
analysis (CCA) among these versions of UDIPs and compared the variance
of one version of UDIP that can be explained by another version of UDIP.
Our findings indicate that the majority (>97%) of the variance in 32-dim
and 64-dim UDIPs is explained by the 128-dim UDIPs, yet these
lower dimensions only partially (<94%) elucidate the variance in 128-dim
UDIPs (Supplementary Data 7a). Additionally, not much further increase
in explained variance was achieved with 256-dim UDIPs compared to
128-dim UDIPs. As such, our selected dimension size of 128 ensures sub-
stantial representation while keeping reconstruction loss minimal, as vali-
dated by both the CCA analysis and the reconstruction MSE metrics.

Interpretable model for mapping UDIPs to brain regions
To identify relevant brain regions for our UDIPs, we design and adopt a
perturbation-based Decoder Interpretation (PerDI). This is because we are
mainly concerned about how the changes to our UDIPs translate to the
variability of brain MRI images. Briefly, for a UDIP dimension of interest,
we generate perturbed reconstructions by adding one standard deviation to
the dimension of interest of the UDIP vector of an input image. We use
voxel-wise paired t-tests to compare the original and the perturbed and
original reconstructions for 500 randomly selected brain images. For each
UDIP, we generate a smoothed t-map to highlight its most relevant brain
regions. See Methods: Decoder interpretation for a detailed description of
our methods.

Although no brain segmentation and region annotation were used
during training, some UDIPs hit on punctuated subcortical structures as
quantified by the enrichment of high-ranking voxels in regions of interest
(Fig. 3). We use brain structures in the Harvard-Oxford cortical and sub-
cortical structural atlas to annotate prominent regions in t-map and use
Kolmogorov-Smirnov (K-S) statistics to quantify the match of the brain
structures (seeMethods: t-map annotation). In general, the t-map ofUDIPs
are often not coincident to ROIs, as they are derived in an unsupervised
fashion.We typically see single UDIP can spanmultiple atlas-defined brain
structures with different weights. For example, UDIP 64 of T2 (T2:64) is
found to representmultiple regions in the frontal lobe and lateral ventricles.
T1 and T2 t-maps for individual UDIPs are made available on figshare
repository40,41. K-S statistic values for all dimensions can be found in Sup-
plementary Data 8.

Comparing the regional enrichment between all UDIPs and all brain
regions (Supplementary Data 8), the UDIPs have decent coverage of most
regions: For T1 and T2, 43 out of 47 cortical regions have someUDIPs with
K-S statistic > 0.33 and 7 out of 11 subcortical regions have some UDIPs
with K-S statistics > 0.40 respectively. See Supplementary Figs. 13–16 for
maximum K-S statistics.

Genetic association study of UDIPs
We conducted SNP variant GWASs for each UDIP as phenotype using
linear mixed models over the array-genotyped markers. In the discovery
phase, to adjust formultiple testing of a total of 256UDIPs frombothT1and
T2, the p value threshold is set to (5 × 10−8)/256. We identified 38,113 sig-
nificant SNP-UDIP pairs with 9457 significant SNPs, from which 126 lead
SNPswere identified, forming 97 genomic loci (SupplementaryData 2).Out
of 126 lead SNPs, 71 passed the p value threshold of 0.05/126 in the repli-
cation cohort, replicating 60 independent loci (Supplementary Fig. 17,

0

50

100
Vol. of CSF (percentile)

Fig. 2 | UMAP visualization of T1 UDIPs demonstrated their correlation with
brain volume measures. UDIPs of 37,376 T1 images are reduced into two com-
ponents using UMAP and colored with volume of ventricular CSF ranked as per-
centile. Axial slices of the T1 brain show variation in CSF as colored by UMAP and
demonstrate the patterns captured by the UDIPs. x- and y-axes are arbitrary up to
translations and rotations.
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Supplementary Data 2). See Methods: GWAS for a detailed description of
methods. We share individual Manhattan plots and QQ plots for each
dimension at figshare repository42.

Overall, the genome inflation factor is well-controlled (Supplementary
Fig. 18a). Mean LDSC intercepts for T1 and T2 are close to 1 (Supple-
mentary Fig. 18b). All but one loci are reported with brain-related pheno-
types (p < 5 × 10−8) according to theGWAS catalog (SupplementaryData 2,
9) (see Methods: Querying GWAS catalog). UDIP T2:121 also identified a
unique locus on thePRDM1 genewhichwas previously not indicated in any
brain related GWAS. Notably, our method identifies 26 additional loci
(Supplementary Data 2) that were not previously reported by the BIG40-
study, which utilized all available conventional image-derived phenotypes
(1,437 phenotypes) from T1 and T2-FLAIR brain MRI modalities14,15. We
anticipate identifying loci that have not been identified by single IDP-based
approaches due to the fact that UDIPs are not restricted to single, specific
anatomical regions and can extend across multiple regions while encoding
image reconstruction information.

Interestingly, most UDIPs have higher heritability with 0.253 ± 0.039
(T1:0.259 ± 0.032, T2: 0.247 ± 0.044) according to LD score regression
(LDSC)43 (Supplementary Fig. 19), than that of the UKBB T1/T2-FLAIR
based IDPs15 0.176 ± 0.069 (See Methods: Genome-wide association study
(GWAS)). Our estimate is based on the same set of markers and reference
LD population and roughly the same sample sizes and thus should be a fair

comparison, even though LDSC is known to underestimate the SNP-based
heritability, compared to other population methods, like GCTA44.

We also utilized FUMA pipelines for gene annotation and functional
enrichment. For T1 and T2UDIPs, 196 and 362 geneswere identified in the
discovery cohort, using p-value threshold of 5e-8/128, respectively for each
modality. Gene set enrichment tests revealed autism spectrum disorder,
schizophrenia andother brain relatedGWAScatalog gene sets predefined at
FUMA were significantly enriched. See Supplementary Note 1 and Sup-
plementary Data 10–13 for detailed gene-based GWAS catalog analysis
using FUMA.

While 128-dim UDIP has better representation power and captures
more variances of other dimension UDIPs than lower-dimension UDIPs, it
is not obvious that the extrabrain structure information captured in128-dim
UDIP is heritable. To investigate this question, we conducted multiple
GWAS using the T1 discovery cohort across three latent space dimensions:
32, 64, and 128. We found that 128-dim UDIPs identified more loci and
more unique loci than lower-dimensional ones (Supplementary Data 7b).

Meta-analysis
We conducted a sample size weighted fixed-effect meta-analysis of the
discovery and the replication GWAS summary statistics using METAL45.
With the enhanced sample size, a total of 95,061 significant (P < 5 × 10−8/
256) SNP-UDIP pairs involving 19,617 SNPs clustered into 199 loci are

0 71.3

Thalamus Putamen

PallidumPallidum
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500 individuals

DecoderUDIPs

Add 1 SD noise to UDIP of interest

Original
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UDIP

Perturbed
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abs  t-stat value

Fig. 3 | Perturbation-based decoder interpretation (PerDI). a One standard
deviation is added to the dimension of interest in the UDIPs of one input image to
generate a perturbed reconstruction image. The differentials of the perturbed and
original reconstructions highlight the voxels relevant to the dimension of interest.
We repeat this for 500 randomly selected images and use paired t tests to generate a
voxel-wise t-map. b Absolute value of t-map generated for T2:67 by PerDI. c The

Harvard-Oxford atlas labels for relevant subcortical structures.
d Kolmogorov–Smirnov statistic is computed to identify subcortical regions of
importance in the t-map generated by PerDI. K-S enrichment can highlight small
regions that might not be prominently visualized in the t-map. Plot shows putamen
(K-S: 0.51), pallidum (K-S: 0.51), and thalamus (K-S: 0.38) as the most prominent
regions.
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identified (Supplementary Fig. 20). Using the criteria inMethods: Querying
Big40 results, we found 145 loci not close to any loci of previous traditional
T1 and T2 IDPGWAS14,15. Using the criteria inMethods: Querying GWAS
catalog, we identified 29 new unique loci previously unrelated to any brain-
related traits (see Supplementary Data 14). Deep learning derived UDIPs
capture novel patterns as phenotypes combining multiple regions unlike
traditional phenotypes allowing to identifymore unique loci. For example, a
unique locus on chromosome 5 with lead SNP rs6868292 (p = 9.02 × 10−11)
in the intron of the PLPP1 gene was found associated with UDIP, T2:93,
which was previously not associated with any brain-related trait by GWAS.
PerDI revealed that T2:93 captures information from combination of
regions comprising of planum polare and supramarginal gyrus (ant and
post division) as prominent cortical regions and pallidum, putamen, and
thalamus as the prominent subcortical region (Supplementary Fig. 21).

Genetic correlation
We conducted a genetic correlation analysis between the results obtained
from the meta-analysis (discovery and replication cohort) and summary
statistics for ten brain-related conditions (see Supplementary Figs. 22, 23)
chosen by Elliott et al’s UKBB study14.

There areno significantly correlatedUDIPsafterBonferroni correction
(0.05/2560). However, a few nominally significant associations are notice-
able: Attention deficit hyperactivity disorder (ADHD) showed the most
correlated UDIPs (44 UDIPs) (p < 0.05) with absolute maximum genetic
correlation value of 0.1811 (p = 0.0003). Other conditions with high abso-
lute maximum genetic correlations are amyotrophic lateral sclerosis
(0.3284, p = 0.0052), ischemic stroke (0.2967, p = 0.0014), major depressive
disorder (0.2681, p = 0.0029), autism spectrum disorder (0.2425,
p = 0.0003), bipolar disorder (0.2229, p = 0.0002) and Alzheimer’s disease
(0.2366, p = 0.0183). See Methods: Genetic correlation for more details.

Use UDIPs for interpreting brain GWAS results
Effectively, ourUDIPs can be a bridge between genetic variants and relevant
brain regions, whereby providing anatomical details of a genetic association
signal. For example, we found UDIP T2:67 is associated with rs13107325
(SLC39A8) (Fig. 4a). This SNP was previously found to be associated sig-
nificantly (p < 5 × 10−8) with thalamic volume46, nucleus accumbens
volume8, schizophrenia47–50, alcoholism51–56, intelligence57,58 and other brain
morphology related traits (brain volume measurement, neuroimaging
measurement, cortical thickness) in GWAS catalog. Association with Par-
kinson’s disease59was reportedwith p = 7 × 10−8.We also found rs12146713
(mapped to NAUK1 gene) associated with the same UDIP (Fig. 4a).
rs12146713 was previously found to be associated with thalamus volume
(medial thalamic nuclei volume)46, diffusion MRI derived white matter
microstructure and integrity15,60, lateral ventricle volume15, cortical thickness
and surface area, and subcortical structure volume24. These findings are
consistent with our PerDI interpretation for this UDIP, which identifies
putamen, pallidum, thalamus, amygdala, accumbens, and hippocampus as
the main subcortical structures (Fig. 4d). Supplementary Figs. 24, 25 show
K-S statistic plots for cortical and subcortical structures respectively
for T2:67.

Of note, this locus was previously implicated in FSL and Freesurfer
derived phenotypes (IDPs) to ventral caudate, putamen, ventral striatum,
anterior cingulate cortex and cerebellar regions (Elliott et al.’s14 Extended
Data Fig. 1). However, to visualize theMRI regions implicated by this SNP,
the gray matter regions of MRI images of carriers and non-carriers were
compared, which is not a cheap operation. Instead, the effect of this SNP to
relevant brain regions can be efficiently visualized through the UDIP
T2:67 (Fig. 4d).

One of the loci missed by previous UKBB IDP GWAS14,15 was iden-
tified by GWAS of UDIP T2:14 (Fig. 4a). The locus (chr 2) was previously
found associated significantly (p < 5 × 10−8) with cortical thickness, cortical
surface area, brain measurement, sulcal depth, and white matter micro-
structure in other brain imaging GWAS studies.We also identified another
locus (chr 16) previously identified in UKBB IDP GWAS and associated

with C16orf95 gene. It is associated with brain age, periventricular white
matter hyperintensities, CSF p-tau levels, lateral ventricular volume in
normal aging along with similar traits as on locus on chr2. We identified
Juxtapositional lobule cortex and parahippocampal gyrus as main cortical
regions and hippocampus and brain stem as themain subcortical structures
relevant to T2:14 (Fig. 4b). Supplementary Figs. 26, 27 show K-S statistic
plots for cortical and subcortical structures respectively for T2:14.

UDIP T2:64 identified three loci on chr 2 and 8 (Fig. 4a) which were
missed by UKBB IDP GWAS14,15. Locus on chr 2 is also identified by UDIP
T2:14 described above. Two loci on chr 8 are associated with cortical
thickness, sulcal depth, cortical surface area, white matter microstructure
and education attainment in other brain imaging GWAS studies. In our
study, UDIP T2:64 corresponds to portions of the frontal lobe (superior
frontal gyrus, middle frontal gyrus, cingulate gyrus, frontal pole, precentral
gyrus) and lateral ventricle as revealed using PerDI (Figs. 4c, e). This locus
was missed by IDP GWAS possibly because IDPs were only descriptors of
individual single regionswhile thisUDIP captures a combination of features
from the frontal lobe and the lateral ventricle. Supplementary Figs. 28, 29
show K-S statistic plots for cortical and subcortical structures respectively
for T2:64.

A locus on PRDM1 gene previously not indicated in any brain-related
GWAS was identified by UDIP T2:121. It is seen mainly associated with
frontal medial cortex and frontal pole in the cortical regions and hippo-
campus and lateral ventricle in the subcortical regions.

Comparison of brain volume IDPs and UDIPs
Compared to traditional IDPs, our unsupervised-deep learning derived
UDIPs are distinct inmanyways (Table 1).We compare our GWAS results
with BIG40 database of GWAS conducted by UK Biobank as they conduct
GWAS using 1,437 traditional T1 and T2 phenotypes which covers all
traditional approaches of defining phenotypes (https://open.win.ox.ac.uk/
ukbiobank/big40/). Primarily, UDIPs are more heritable than IDPs. Indi-
vidual UDIPs are more heritable than individual IDPs on average. Com-
pounded on the fact that UDIPs are lessmutually correlated than IDPs, this
indicates that in total UDIPs capture heritable information in the brain
more efficiently than IDPs. We postulate the possible reasons for UDIPs’
higher heritability might come from their better minimizing measurement
error and reporting error, and ability to capture population variation.
UDIPs, unlike IDPs, need minimal image preprocessing and are derived
from whole-brain high-quality images without human labels reducing the
chance ofmeasurement error and reporting error.Moreover,while IDPs are
derived after optimizing loss for each individual separately, UDIPs are
derived after training on the entire population using randommini-batches,
better capturingnecessary total variation in thepopulation to reduce loss.As
a result, UDIPs have more flexible definitions of regions, could be featured
capturing concerted changes combining traits from multiple regions, or
only capturing changes in part of a region that is not present in other parts of
the same region unlike IDPs that are limited to atlas-defined areas, allowing
them to capture unique traits missed by IDPs.

Moreover, whatmakesUDIPs distinctive from IDPs is that rather than
being passive descriptors, our UDIPs are active predictive encoding of the
input image. Via the decoder, UDIPs allow us to reconstruct, albeit
imperfectly, the original input. Although PCA or NMF are also optimizing
some sort of reconstruction loss, their quality of reconstruction is not on par
with UDIPs.

For training, rather than being generated via a feature-engineering
process, ourUDIPs are derived from feature-learning. In terms of efficiency,
while IDPs are derived with heavy processing that takes hours, UDIPs are
derived with minimal preprocessing and take seconds (on GPU though).
Since our model’s checkpoint with trained model weights are shared, our
results should be relatively easy to replicate.

Discussion
We presented an unsupervised deep learning-based approach to capture
complex patterns of the brain from theMRI to define phenotypes (UDIPs)
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for genetic association studies. Our 3D convolutional autoencoder neural
network model was trained by a reconstruction loss function on 6130 full-
sizedT1 andT2-FLAIR (T2)weighted brainMRIs fromUKBB.Usingwhite
British individuals not included in the deep learning training as the test set,
we show that the 128 neurons of the bottleneck layer of the autoencoder as
phenotypes can capture the shape and structure of the brain: analysis of
UDIP using encoder-based reconstruction, unsupervised dimension
reduction techniques such as UMAP, PCA, tSNE, and statistical methods
such as regression showed that a vast amount of information in the input
MRI image is captured, including brain’s volume, shape, texture, anatomy,
and pathology. More interestingly, these UDIPs are more heritable than
most traditional IDPs. GWAS of UDIPs identified 60 replicated loci, 59 of
which were previously associated with brain phenotypes, establishing the
validity of our approach. In a broad sense ourUDIPs are derived frombrain
MRIs and with decent heritability and thus can be considered as

endophenotypes. To make them endophenotypes in a strict sense, future
work is needed to establish the connection of our UDIPs to illnesses61.

The use of deep learning phenotyping inGWAS for brain imaging can
potentially uncover subtle, complex genotype-phenotype relationships that
are not readily apparent with traditional phenotypingmethods. In addition
to revealing the genetic basis for brain structures of normal individuals, our
approach can also potentially lead to better understanding of various neu-
rological andpsychiatric disorders. Furthermore, one of themost promising
applications of this work is in the field of neurodegenerative disorders like
Alzheimer’s disease. Alzheimer’s disease is a complex disease whose genetic
architecture is still not well-understood. Neuroimaging endophenotypes
like our UDIPs are expected to have a simple genetic architecture being
direct measures of brain structure, are often measured more reproducibly
and precisely in vast samples such as UK Biobank and the Alzheimer’s
disease sequencingproject, have better statistical power compared to disease
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Fig. 4 | Perturbation-based decoder interpretation (PerDI) to interpret UDIPs
associatedwith specificGWAS loci. aGWASdiscovers and replicates loci identified
by UDIPs T2:14, T2:64, T2:67. T2:14 identified loci on chr2 and 16, T2:64 identified
loci on chr 2, 8, and 13, T2:67 identified locus on chr 4 and 7.bT2:14 t-map shows the

hippocampus as the prominent region. c T2:64 t-map shows the frontal lobe as the
prominent region. d T2:67 t-map shows the thalamus, putamen, and pallidum as
prominent regions. eK-S statistic values for selected subcortical and cortical regions
showing the regions represented by each UDIP. Acronyms: G Gyrus, C Cortex.
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status in case-control studies as seen in the number of studies7,62,63. Genetic
variants associatedwith neurodegenerative diseases oftenhave subtle effects
on brain structure and function that can be captured better through the
comprehensive imaging phenotypes obtained through our approach.

As a phenotype discovery approach, our UDIPs are patterns derived
from a data-driven approach and capture concerted changes across the
entire brain that frequently occur in the population. There are no explicit
constraints to ensure a strict perpendicular dimension variation for auto-
encoders. However, the architecture and the training of autoencoders do
encourage a low redundancy of the representation. First, the convolutional
layers serve as an important component to reduce voxel-level redundancies.
Instead of capturing voxel-wise values which can be highly correlated,
applying convolutional kernels allows the autoencoder to capture higher-
level patterns. Second, the training of the neural network is performed by
reconstructing the given input. The training process enforces the model to
learn a compact and efficient representation of the data that retains themost
important information. This also encourages a low representation
redundancy.

While our CNN autoencoder architecture has some resemblance to
linear dimension reduction methods such as PCA, there are important
differences. While linear methods can be kernelized to add nonlinearity,
theyarenot as expressive asCNNs in general26,64. In fact, kernelmethods can
be seen as a special case of two-layer feed-forwardneural network,where the
hidden size is equal to the number of training samples65. This results in
limited expressive capabilities, increased computation and storage costs
when compared to deeper neural network architectures. Moreover, not all
kernelized linear methods can be easily represented as an explicit embed-
ding function that fulfills the purpose of deriving a phenotype. Secondly, the
convolutional layers in our CNN autoencoder take advantage of the spatial
locality characteristics inherent in imaging data, namely, two voxels that are
close to each other exhibit higher dependency than those farther apart.
Instead of treating each voxel separately and independently, the CNN
autoencoder can capture important image priors66,67, making it more sui-
table for analyzing imaging data.

We show some UDIPs have good correlation with some anatomical
structures and thus are more easily interpretable. These patterns go beyond
the predefined single region volumetric features such as IDPs and thus
interpretability is challenging for ourUDIPs.Whilewe attempted to address
the interpretability issue in our PerDI approach, there is room for
improvement. For example, theremight be approaches that can enhance the
interpretability of the UDIPs by introducing loss functions that encourage
localization or conformation to predefined compartments.

Of note, recognizing the limitations of traditional single IDP-based
approaches, post-hoc statistical approaches have been developed to extend
single IDP GWASs to multi-IDP GWAS. Specifically, the MOSTest24

explicitly modeled multivariate omnibus brain measures associated with
single SNPviamultivariate statistical tests, yielding enhanced loci discovery.
However, this method still requires the pre-selection and pre-computation
of input variables, necessitating decisions about what to include andwhat to
leave out, and incurring algorithmic limitations, like segmentation, inherent

in imagepreprocessing. For example, the recent applicationofMOSTest to a
set of 1284 cortical surface vertices16, was limited to polygonal representa-
tions inherent in Freesurfer, with all the ambiguities of computing a surface
mesh, while failing to account for subcortical brain-genome associations. In
other words, multivariate association of IDPs may attain more sensitivity
than univariate GWAS by modeling multivariate combinations of the
measures provided, but the power of such methods still depends on the
quality of the individualmeasures. In a sense, our UDIPs can be viewed as a
dictionaryofnonlinear brainpatterns, automatically and implicitly acquired
by deep learning. These could themselves serve as input to multivariate
association methods, with the vector of UDIPs as analogs of the array of
IDPs in MOSTest, although we have not pursued this approach here
because our main focus was phenotype discovery. However, the CNN-
learned encoding implicitly extracts related visible brain features, analogous
to IDPs, into each UDIP, without the need for selection or the inherent
uncertainty of traditional algorithmic processing. This suggests that uni-
variate GWAS with UDIPs is already a step ahead of IDP-based univariate
GWAS andmay also offer some advantages overmultivariatemethods that
input pre-selected arrays of IDPs.

There are some limitations to our approach. First, the loss metric used
for training our model, mean square error (MSE), smoothes the recon-
structed images and loses the high-frequency signal. Moreover, higher
contrast regions like ventricles tend to be better captured than inner regions
with low contrast, such aswhitematter. Second,MRIs are linearly registered
to preserve the overall shape of the brain.However, this has the consequence
that the voxels across images are not perfectly aligned, which will affect the
correspondence of UDIPs across individuals. We could study the effect of
registration in future studies. Third, as themajority of theUKBBpopulation
is white British, we only use white British individuals for the GWAS, and
thus the generalizability of our GWAS findings to other populations are not
tested. Future GWAS of UDIPs on other populations are warranted68.
Nonetheless, we used themulti-ethnicity samples formodel training, which
might help alleviate the population biases in terms ofmodeling. Fourth, our
analysis was focused on the standard analysis pipeline of autosomes. Future
investigation of the genetic factors on the X chromosomewill help elucidate
additional genetic architecture of the brain structure68. Finally, only internal
validation using UKBB data is conducted. Future external validation in a
different data set is warranted.

Our methodology offers a versatile framework that can be readily
extended to various imaging modalities. For example, applying our
approach to FA images from diffusion MRI could illuminate novel phe-
notypes representing white matter integrity of connections between brain
regions. Beyond its application to brainMRI, ourmethod can be adapted to
work with other imaging types such as retinal fundus and OCT images,
DEXA scans, and more.

While our UDIPs have higher heritability compared to traditional
IDPs, our results showed that the majority of the loci identified by UDIP
GWAS are already identified by IDP GWAS, including both the original
BIG40GWASand the following upof brain imagingGWASofUKBiobank
and other data sets. Like many phenotypes, the genetic discovery of brain

Table 1 | Comparison of image-derived phenotypes vs our unsupervised DL-derived imaging phenotypes

IDP (1,437 descriptors of T1/T2 brain regions) UDIPs (128 T1/128 T2 variables)

Derived Software derived Learned

Preprocessing Heavy Light (brain extraction, linear registration, bias field correction)

Heritability computed using LDSCb 0.176 ± 0.069 0.253 ± 0.039 (T1:0.259 ± 0.032, T2: 0.247 ± 0.044)

Power to reconstruction No Yes

Redundancy (average genetic-correlation) 0.169 (0.159) 0.144 (0.107)

Time required to derive traits Hours 0.093 (0.00136) sa

Interpretation Simple to interpret Relatively difficult to interpret
aTime performance estimated from 10 runs of the complete script on 1000 unique individuals; computation time for a single subject averaged to ~0.093 s (SD = 0.00136 s)
bOnly array-genotyped SNPs in autosomes are counted
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structure phenotypes is likely getting exhausted. Therefore, the primary
challenge of the field is likely to transition into better characterization of the
polygenic signals identified. Our work represents an attempt into this
direction and more future works are warranted.

In conclusion, thiswork represents proof-of-concept of the application
of an unsupervised deep learning approach as an imaging phenotyper for
GWAS. Thus, it presents an innovation in the field, with the ability to
automatically extract and interpret phenotypes from a diverse range of
imagingmodalitieswithminimalmanual intervention. Themethod sets the
stage for future research to uncover complex genotype-phenotype rela-
tionships, particularly in brain imaging.

Methods
Detailed dataset descriptions
UKBB is chosen because it is the largest public brain imaging study, and its
data were uniformly processed with a standard pipeline. UKBBMRIs were
downloaded on October 15, 2021. UKBB participants had birth year
between 1934 to 1971with female tomale ratio of 0.52.UKBB1 has provided
a bias-field-corrected version of the brain-extracted T1-weighted (T1) and
T2-weighted FLAIR (T2) images captured mainly using standard Siemens
Skyra 3T running VD13A SP4 (as of October 2015), with a standard Sie-
mens 32-channelRF receive head coil. ResolutionofT1 is 1 × 1 × 1mm, and
resolution of T2 is 1.05 × 1 × 1mm (https://biobank.ctsu.ox.ac.uk/crystal/
crystal/docs/brain_mri.pdf). To maximize the generalizability and mini-
mize feature engineering, we followed a simple processing pipeline devel-
opedby theUKBBMRI team.UKBBmainly uses FSL toprocess brainMRIs
(https://www.fmrib.ox.ac.uk/ukbiobank/). Themain preprocessing done by
UKBB involves defacingMRI, brain extraction (using FSL’s BET, and linear
andnon-linear registration to standard space using FSLFLIRTandFNIRT),
and biasfield correction (FSLFAST). Biasfield corrected brain-extractedT1
and T2 are selected. All MRIs were linearly registered (affine registration
with 12 DOF) to standard MNI152 space using the UKBB-provided pre-
computed transformation matrix with FSL FLIRT69. Linearly registered
MRIs were used to ensure the normalization of head sizes and the overall
alignment of MRIs between different subjects while also preserving the
structural deformation information in the MRI, unlike non-linear regis-
tration. Linearly registered, defaced, bias field corrected brain MRIs were
used for all our analysis. Further, each affine registered MRI’s intensity was
normalized using Z-score normalization by subtracting mean intensity and
dividing the result by the standard deviation of the intensity. Background
intensitywas excluded in computing themeanand standarddeviationof the
MRI toprevent skewing toward zero. Background comprises themajority of
the voxels and is later excluded in the loss calculation.

UKBB has also provided precomputed quality metrics for MRI like
UKBB Data field 25735 “inverted contrast-to-noise ratio” and UKBB Data
field 25,736 “Discrepancy between T2 FLAIR brain image and T1 brain
image,”which were used to ensure the quality of the deep learning training
set. Lower values in bothmetrics indicate higher quality. Imageswith values
below 95 percentile for both the quality metrics were selected for deep
learning training and validation set. Only one visit was kept ifmultiple visits
were found to ensure uniformity in thedataset.Adataset of 6130 imageswas
selected consisting of subjects of mixed ethnicities. The dataset was ran-
domly divided into a training set of size 4597 images (75%) and a validation
set of size 1533 images (25%). See Fig. 1 for the overall pipeline of the study.
The validation set was used for tuning hyperparameters for model training
and saving checkpoints. GWASwas carried out on predictions generated by
themodel on a separate dataset of white British subjects consisting of 37,376
T1 images and 36,231 T2 images not included in deep learning training.
Those were further divided into discovery (22,880 for both T1/T2) and
replication group (12,359 T1 and 11,265 T2) for performing GWAS. See
Supplementary Data 1 for sample size description.

Deep learning architecture
Deep 3D convolutional autoencoder was used to obtain the 128-
dimensional phenotype (See Supplementary Fig. 30). A separate model

was trained for T1 and T2. The architecture was implemented using
PyTorch and trained with the PyTorch Lightning framework. To obtain
representation of the whole brain, we take the full-resolution brain T1 and
T2MRI as input. Themodel consisted of an initial convolutional block, four
encoder blocks, a linear latent space of 128-dimension, four decoder blocks,
and a final convolutional block and has 138.12 million parameters. The
initial convolutional block consisted of two blocks of a 3D convolution layer
(Conv3d) of kernel size 3 and stride 1 followed by a 3D batch normalization
layer (BatchNorm3d) andLeaky rectified linear unit function (LeakyReLU).
Each encoder block comprises a 3Dmax pooling layer with kernel size of 2
followed by two blocks of Conv3d of kernel size 3, BatchNorm3d, and
LeakyReLU. The linear layer converts the last encoder’s output into 128-
dimension latent space without any spatial resolution. This bottleneck
vector is the representation that we are interested in as the UDIPs. After-
wards, we use the same number of decoder blocks with deconvolutional
layers that gradually increase the image resolution while reducing the
number of channels. Each decoder block comprises two blocks of Conv3d
with kernel size 3, BatchNorm3d, and LeakyReLU, followed by 3D trans-
posed convolution operator with stride of 2 and kernel size of 2. The final
convolutional block comprises two blocks of Conv3d with kernel size 3 and
stride 1, BatchNorm3d, and LeakyReLU, followed by a 3D convolutional
layer with kernel size 1. The output image is of the same size as the input
MRI (182 × 218 × 182).

Wemake the following remarksonourdesign choices. First,we chose a
standard convolutional encoder and decoder architecture as such designs
are known to deliver good performance. Second, while our architecture has
semblance of the well-known U-net27, we do not introduce the skip con-
nections between the encoder blocks and decoder blocks as we hope to
retain maximal information through the bottleneck layer. Since we are not
aiming to generate sharp images at high resolution, the skip connections are
not necessary. Third, we use the full image as input and each of the bot-
tleneck neurons has the receptive field of the entire image. This design will
ensure each UDIP can be a descriptor of any feature across the entire brain.
Fourth, we use 128 dimensional vectors as UDIPs as they are providing a
comprehensive description of the entire brain morphology while making
GWAS computationally feasible. But a larger number of dimensions are
possible.

Compared to most previous deep learning-based brain MRI studies,
the scale of our work is large both in terms of image size and sample size.
Although no previous studies used an unsupervised approach for obtaining
imaging phenotypes for GWAS for brain, some studies used autoencoder-
like architecture to derive features for disease predictions such as Alzhei-
mer’s disease70, schizophrenia30, suicidal ideation prediction71, and Autism
spectrum disorder72. However, due to computational constraints, common
approaches either downsize the imageby reducing resolution, leading to loss
of detail information, or feed the images in patches, losing the panoramic
view of the complete MRI that better encodes anatomical relationship, or
filter the image by extracting only graymatter and thus losing the rest of the
brain information. We used a linearly registered whole-brain MRI without
splitting the brain into patches to derive imaging phenotypes and thus offer
more complete encoding of the input 3D image. Leveraging on the large
sample size ofUKBBbrain imaging study,wehave sufficient sample sizes for
training a model, as well as have sufficient sample sizes for GWAS.

Deep learning training
The dataset was randomly divided into a training set of size 4597 images
(75%) and a validation set of size 1533 images (25%). The validation set was
used for tuninghyperparameters formodel training and saving checkpoints.
The checkpoint with the lowest loss in the validation set was used to
generate UDIPs.

No activation function is used at the output,making it a regression task
per voxel. As in the standard autoencoder, we use a reconstruction loss that
will minimize the difference between the input and output images. Mean
square error was used as the loss function. Amaskwas derived based on the
input image where the background was excluded. The mean square error
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calculation included only the voxels corresponding to the brain region.
Specifically, the losswas defined as∑ijk(R(i,j,k)−O(i,j,k))2 f(O(i,j,k)), where
R is the reconstructed imaging data, O is the original imaging data, f is the
step function outlining the brain mask and i; j; k are the spatial indices.
Adam optimizer was used with an effectively tuned learning rate (Supple-
mentaryNote 2). Checkpoints were saved at the top 5 lowest validation loss.
Both the models for T1 and T2 were trained for 75 epochs. Seven NVIDIA
A100-SXM-80GB GPU cards were used for training. Each training and
validation epoch took around 6min.

Characterization of UDIPs
Our deep learning-derived UDIPs are independent and can represent
multiple regions of the brain. To better understand UDIPs, we used UKBB
computedvolume-related IDPsusing standard imaging software suites such
as FreeSurfer and FSL. We use IDPs from the following T1 categories:
Regional gray matter volumes (FAST), Subcortical volumes (FIRST),
T1 structural brain. We also use T2 field ID 25781 Total volume of white
matter hyperintensities (from T1 and T2_FLAIR images). To better
understand T2 UDIPs, we used the volumetric estimates calculated by
UKBB from T1 as bothmodalities from the same visit have been registered
by UKBB. All IDPs are normalized by head size. The analysis performed
using UKBB IDPs include UMAP (Uniform Manifold Approximation for
dimension reduction)38, PCA, t-distributed stochastic neighbor embedding,
linear regression and logistic regression.Unsupervised dimension reduction
techniques such as UMAP, PCA, t-SNEwere used with default parameters.
We used scikit-learn (v 0.24.2) for PCA and t-SNE and the UMAP python
package (v 0.5.2) for UMAP. UKBB IDPs were used to color the 2D scatter
plot of two components of each of the above approaches. For a continuous
precomputed feature, we used rank based on percentile to make visualiza-
tion possible. Sex is the only categorical feature. To better understand the
deep learning derived imaging phenotypes, we used linear regression to
predict IDPs from UDIPs. We use tenfold cross-validation over the test set
which was set aside from the model training and validation sets. We keep
only one visit for each patient to avoid data leakage. We use the mean
coefficient of determination R2 from the tenfold as the metric. We also use
MAE for age prediction from UDIPs to make it comparable with existing
literature. We used logistic regression to predict sex from UDIPs and use
area under the curve as the metric to make it comparable with existing
literature.

We used CCA73 to understand the relation between information
encoded by 128 dimensional UDIPs (X) and other dimensional UDIPs (Y:
32, 64 and 256 dimensions) to determine the ideal size of the latent space.
Specifically, our implementation of CCA is based on singular value
decomposition.WedemeanX andY and thendoing SVDon the demeaned
data:X ¼ U1S1V

T
1 ;Y ¼ U2S2V

T
2 :The canonical correlation S is calculated

from the SVD of UT
1U2: U

T
1U2 ¼ USVT , variance of X explained by Y is

S1U�Sj j2F
S1j j2F and variance of Y explained by X is

S2V�Sj j2F
S2j j2F , where � denotes

elementwise multiplication and F denotes the Frobenius norm.

Decoder interpretation
256UDIPs learn representation all over the brain. To identify regions of the
brain represented by a specific UDIP, we develop Perturbation-based
Decoder Interpretation (PerDI). The regions of the brain of that specific
UDIP can then be associated with the SNPs identified by the same UDIP.
We add one standard deviation (σ) as noise to the specific UDIP we are
trying to interpret while keeping other UDIPs constant. The original
decoder is used to reconstruct images from the perturbedUDIPs (perturbed
reconstructed images). The process is repeated for 500 MRIs from 500
randomly selected individuals for improving the robustness of the result.
Paired t-test is carried out between the 500 original reconstructed images
and 500 perturbed reconstructed images. Absolute t-map is obtained.
Gaussian filter (σ = 3) is used to smoothen the final t-map. Using Gaussian
blur reduces the impact of not using non-linear registration.

t-map annotation
Harvard-Oxford cortical and subcortical atlas74 are selected to annotate the
t-map. For each specific atlas, each voxel in the t-map is ranked fromhighest
to lowest rank. For each region, normalizedKolmogorov–Smirnov test (K-S
test) statistic is obtained. Specifically, the curve in Fig. 3d is defined as k

V � n
N,

where k is the number of voxels belong to a specific region in the top n
ranked voxels, r is the ratio between the volume of the region and the whole
brain, V is the number of voxels in that specific region and N is the total
number of voxels. The higher the value of the K-S statistic, the higher the
representation of the region by the specific UDIP. The brain regions cor-
responding to the UDIP can then be associated with the SNPs identified by
the same UDIP through GWAS.

Statistics and reproducibility
Acquisition of genetic data. The genome-wide scans were performed
over UK Biobank’s imputed SNPs (Version 3) (UKBB Category
100319)75. This genome-wide genotype data was collected using Applied
Biosystems UK BiLEVE Axiom Array and imputed using reference
panels combining the Haplotype Reference Consortium and UK10K
haplotype resources. The UK Biobank team had conducted quality
control (QC) procedures, phasing, and imputation75.

SNP QC. After downloading the genetic data, we conducted the fol-
lowing additional SNP QC processing: After filtering by MAF > 0.0001
and missing rate <0.05, 8,931,083 SNPs remain. When conducting
GWAS, an additional MAF > 0.0001 and missing rate <0.1 filtering was
performed on each cohort, resulting in 8,925,988 SNPs in the discovery
cohort and 8,925,870/8,925,814 SNPs in the T1/T2 replication cohorts.
Hardy-Weinberg equilibrium test was not conducted: despite it is a
standard practice forQC genotype data fromdirectly genotypedmarkers,
it may not be statistically sound to convert the dosage back to the best
guess imputed genotypes and do HWE again.

Sample genotype QC. To control for potential confounding due to
ethnicity, we only include white British participants (UKBB field ID
21000: Ethnic background and field ID 22006 (Genetic ethnic group-
ing)) who were not included in deep learning training for GWAS. We
filtered out subjects with mismatched sex (field ID 31) and genetic sex
(field ID 22001) and also subjects listed in the withdrawal list (as of 08/
21/2023). White British participants (35,239 T1/ 34,145 T2) were split
into discovery (22,880 T1/T2) and rest for replication cohorts. Further,
to ensure independence between the discovery and replication sam-
ples, 457 subjects in replication with close relatives in the discovery
cohort, defined by kinship coefficients > 2^(−4.5) = 0.0442, were
removed. The final replication sample sizes are: 12,359 for T1 and
11,265 for T2.

Sample phenotype and covariate QC. To remove potential con-
founding effects, we included age (field ID 21003) a, a^2, sex (field ID 31)
s, s x a, s x a^2, 10 genetic PC (field ID 22009), head size (field ID 25000),
head position in scanner (field ID 25756-25758), scanner table position
(field ID 25759), location of the assessment center (field ID 54) and date
of attending assessment center (field ID 53) as covariates. The outliers in
head size, head position and scanner position defined by
median ± 5 standard deviations were removed. Additionally, inverted
contrast-to-noise ratio (field ID 25735) was included in T1 GWAS as a
quality indicator and similarly for discrepancy between T2 FLAIR image
and T1 image (field ID 25736) in T2 GWAS.

Running GWAS. We used fastGWA76,77 from GCTA (Genome-wide
Complex Trait Analysis) (Version 1.94.1) package for running GWAS
using 256 embedding obtained from T1(128 dimensions) and T2(128
dimensions) MRI linear mixed model association analysis with a sparse
kinshipmatrix provided by the UKBiobank. GWASwas run for both the
discovery and the replication cohorts. For calling any SNP-UDIP pair
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genome-wide significant, we use a Bonferroni corrected p-value thresh-
old of 5e-8/256 for the discovery cohort.

Post-GWAS QC. No genetic information was used while training the
deep learning models which resulted in well well-controlled genomic
inflation factor (Supplementary Fig. 18a).

The genomic inflation factor was calculated by dividing the median
chi-square statistics by the inverse cumulative distribution function of chi-
square distribution of 1 degree of freedom at 0.5. We used the LDSC v
1.0.1(https://github.com/bulik/ldsc)78 to calculate the intercept value as
additional QC.

Loci clumping. We follow FUMA’s SNP2GENE79 protocol for loci
clumping. Specifically, in order to clump the significant SNPs (P < 5e-8/
256) into genomic loci, we first aggregated the 256 single UDIP GWAS
summary statistics into a single summary statistics file by only taking the
most significant p value among all 256 UDIPs for each SNP, also known
as the “minP” approach. Afterwards, a two-step pruning process was
performed. Significant SNPs were first pruned at LD r^2 = 0.6 to obtain a
list of independent significant SNPs. The independent significant SNPs
were further pruned at LD r^2 = 0.1 to identify the independent lead
SNPs. A genomic locuswas defined as the smallest contiguous region that
contains all SNPs (including both the GWASmarkers and themarkers in
the 1000 Genomes reference panel passing MAF threshold) with an r^2
value greater than 0.1 with the lead SNPs. If the physical distance between
adjacent loci was less than 250 kb, they were merged together. Therefore,
it is possible to havemore than one lead SNPs per locus. All loci clumping
analyses were conducted by FUMA79.

Replication. For replication, we run tests on a per-lead SNP basis. We
then claimed a locus as replicated if any of the peak phenotype/variant
pairs had P < 0.05/(number of lead SNPs) in the replication cohort.

SNP heritability estimate. We used the LDSC v 1.0.1(https://github.
com/bulik/ldsc)78 to calculate the SNP heritability of bothUDIPs andUK
Biobank’s traditional IDPs using the same settings. The LD scores were
calculated from 1000 Genomes. All these values were computed from the
discovery cohorts, both having sample sizes of about 22k. The summary
statistics of IDPs were downloaded from UKBB BIG40 server (https://
open.win.ox.ac.uk/ukbiobank/big40/release2/stats/*.txt.gz).

Querying GWAS catalog
WeusedFUMAtoquery candidate SNPs in each locus inGWAS to identify
previously reported associations. FUMA directly calls GWAS catalog API
and thus our results reflect the GWAS catalog as of September 2023. Can-
didate SNPs are defined by having r^2 > = 0.6 with independent significant
SNPs (See Methods: Genome-wide association study (GWAS)) not only in
the GWAS variants but also in the 1000Genomes reference panel.We filter
GWAS catalog results to include those with p value < 5e-8. We identified
brain related traits from the GWAS catalog results using careful manual
inspection.

Comparison of brain volume IDPs and UDIPs
For Table 1, we compare our GWAS results with BIG40 database of GWAS
conducted by UKBB as they conduct GWAS using 1437 traditional T1 and
T2 phenotypes which covers all traditional approaches of defining pheno-
types (https://open.win.ox.ac.uk/ukbiobank/big40/). The 1437 traditional
descriptors of T1 and T2-FLAIR obtained through FSL and FreeSurfer can
be divided into categories such as ‘Regional gray matter volumes (FAST)’,
“Subcortical volumes (FIRST)”, “FreesurferASEG”, “Freesurfer BAexvivo”,
“Freesurfer a2009s”, “FreesurferDKT”, “Freesurferdesikan gw”, “Freesurfer
desikanpial”, “Freesurfer desikanwhite”, “Freesurfer subsegmentation” and
“volume of white matter hyperintensities”. For identifying unique loci not
discovered in the BIG40 study, we processed the discovery summary

statistics using the p value threshold of 5e-8/1437 to get a list of genomic loci
(seeMethods: GWAS), added 125 kb to both side of each locus and built an
interval tree for each chromosome. We then processed our summary sta-
tistic the same way and queried the interval trees for overlapping. If an
interval does not overlapping with the loci from the BIG40 study, the locus
represented by this interval is unique and is at least 250 kb from any locus
discovered in the BIG40 study.

Meta-analysis
WeusedMETAL(generic-metal-2011-03-25)45 to performmeta-analysis of
GWAS summary statistics from the discovery and replication cohorts. We
used sample size as the weighting factor in METAL.

Genetic correlation
We used LDSC v 1.0.1(https://github.com/bulik/ldsc)78 to calculate genetic
correlation and LD score from the meta-analysis results. We computed
genetic correlations for ADHD, Alzheimer’s disease (AD), amyotrophic
lateral sclerosis (ALS), autism spectrum disorder (ASD), bipolar disorder
(BIP), ischemic stroke (IS), major depressive disorder (MDD), neuroticism,
schizophrenia (SCZ), and sleep disorder (SD).

Ethics oversight
Our analysis was approved by UTHealth committee for the protection of
human subjects under No. HSC-SBMI-20-1323. UKBB has secured
informed consent from the participants in the use of their data for approved
research projects. UKBB data was accessed via approved project 24247.

Data availability
All results are available at http://deependo.org, figshare repositories40,42,80

and supplementary data. The GWAS summary statistics generated in this
study are available at GWAS Catalog https://www.ebi.ac.uk/gwas/ with
study accession ID GCST90319854. Data and code to generate Fig. 3d is
provided in Supplementary Data 15.

Code availability
Weshare our code andmodel checkpoints at https://github.com/ZhiGroup/
DeepENDO and figshare repository80.
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