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Introduction

Epidermolysis bullosa (EB) represents a diverse group of 
rare hereditary dermatological disorders typified by muco-
cutaneous fragility and blistering induced by minor trauma. 
A wide phenotypic spectrum exists with potentially serious 
extracutaneous impacts, morbidity, and mortality ( specially 
through squamous cell carcinoma) [1].

EB covers an array of inherited blistering ailments 
impacting skin and sometimes mucosa/organs. Currently 
categorized into four key subtypes based on cleavage level 
(EB simplex, junctional EB, dystrophic EB, and Kindler 
syndrome), over 30 clinical variants exist with pathogenic 
mutations in at least 21 unique genes [2]. The preferred 
diagnostic approaches involve a panel of next-generation 
sequencing screening all EB variants alongside certain 
specialized immunofluorescence and electron microscopy 
skin biopsies in unique situations [3]. EB’s root cause lies 
in genetic alterations impacting proteins maintaining skin 
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Abstract
Epidermolysis bullosa (EB) is a rare genetic dermatosis characterized by skin fragility and blister formation. With a wide 
phenotypic spectrum and potential extracutaneous manifestations, EB poses significant morbidity and mortality risks. Cur-
rently classified into four main subtypes based on the level of skin cleavage, EB is caused by genetic mutations affecting 
proteins crucial for maintaining skin integrity. The management of EB primarily focuses on preventing complications and 
treating symptoms through wound care, pain management, and other supportive measures. However, recent advancements 
in the fields of stem cell therapy, tissue engineering, and gene therapy have shown promise as potential treatments for 
EB. Stem cells capable of differentiating into skin cells, have demonstrated positive outcomes in preclinical and early 
clinical trials by promoting wound healing and reducing inflammation. Gene therapy, on the other hand, aims to correct 
the underlying genetic defects responsible for EB by introducing functional copies of mutated genes or modifying exist-
ing genes to restore protein function. Particularly for severe subtypes like Recessive Dystrophic Epidermolysis Bullosa 
(RDEB), gene therapy holds significant potential. This review aims to evaluate the role of new therapeutic approaches in 
the treatment of EB. The review includes findings from studies conducted on humans. While early studies and clinical 
trials have shown promising results, further research and trials are necessary to establish the safety and efficacy of these 
innovative approaches for EB treatment.
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structural integrity. These proteins include collagen, lam-
inin, integrins, and other components of the dermal-epider-
mal junction. Mutations disrupt anchoring fibrils linking 
epidermal/dermal layers, rendering skin fragile and prone to 
blistering. Management primarily prevents/treats skin fra-
gility complications. Strategies center on wound care, pain 
control, nutrition support, and physiotherapy to enhance 
quality of life, alleviate symptoms and prevent issues like 
infection [4–6].

Additionally, the emerging fields of stem cell-, par-
ticularly mesenchymal stem cell (MSCs)-, therapy, gene 
therapy, protein replacement, and tissue engineering offer 
potential avenues for future treatments [7]. MSCs, as mul-
tipotent cells, possess the ability to undergo differentiation 
into diverse cell lineages, encompassing skin cells among 
their potential differentiation outcomes [8]. They have 
shown promise in preclinical and early clinical trials for 
promoting wound healing and reducing inflammation in 
EB [9]. Gene therapy also aims to correct the underlying 
genetic defect responsible for EB by delivering functional 
copies of the mutated genes or modifying the existing genes 
to restore protein function. This approach holds great poten-
tial for treating EB, especially for severe subtypes such 
as Recessive Dystrophic Epidermolysis Bullosa (RDEB). 
Early studies have shown promising results in animal mod-
els and initial human trials, but further research and clinical 
trials are needed to establish the safety and efficacy of gene 
therapy for EB [10, 11].

Regarding above information, the primary objective 
of this review is to evaluate the role of new therapeutic 
approaches, particularly stem cell and gene therapy, in the 
treatment of EB taking into account the findings from stud-
ies conducted on both animals and humans.

Epidemiology, Symptoms, and Various Types 
of Disease

EB is considered a rare disease, with varying prevalence 
rates depending on the subtype and geographical regions 
[12, 13]. For example, approximately 1 of 1,000,000 new-
borns in the United States suffer from EB [14]. One of the 
largest studies of epidermolysis bullosa patients in England 
and Wales reported a prevalence of 34.8 per million and an 
incidence of 67.8 per million. This analysis of over 2,500 
patients represents one of the largest EB cohorts examined 
to date for the population of England and Wales [15]. EB 
affects both males and females, and there is no known pre-
dilection for any particular ethnic group [16].

The trademark sign of EB is delicate skin, making it 
prone to blistering and skin breakdown even from minor 

trauma. Symptom seriousness differs from mild to severe 
depending on the EB type [17]. Common issues include:

Blisters and raw areas on the skin caused by friction or 
little injury. Blisters may happen anywhere on the body like 
skin, mouth lining, and internal organs. Blisters are painful 
and skin breakdown remains after bursting, healing slowly 
and potentially causing scars. Over time, repeating blistering 
and healing results in scarring. Scarring can lead to tighten-
ing and deformities of the skin and below tissues, restricting 
joint movement and reducing functioning. Many experience 
nail issues like changes in shape, splitting or lack of nails 
while hair problems like sparse growth or fragility may also 
occur. EB impacts the mouth liner, causing blisters and skin 
breakdown in the mouth and throat. This causes difficulties 
eating, swallowing and speaking. Some types involve the 
stomach and gut, leading to symptoms like difficulty swal-
lowing, acid reflux and nutritional deficiencies [1, 18, 19]. 
EB may divided into the following four subtypes: Epider-
molysis Bullosa Simplex (EBS), Junctional Epidermolysis 
Bullosa (JEB), Dystrophic Epidermolysis Bullosa (DEB), 
and Kindler Syndrome.

Figure 1 illustrates a schematic diagram showcasing the 
cutaneous basement membrane zone and mutated proteins 
caused by gene defects in various subtypes of EB disease.

Therapeutic Strategies

Epidermolysis bullosa presents a challenging condition 
requiring a multidimensional treatment approach. While 
current methods may ameliorate some clinical manifesta-
tions of EB, they clearly do not cure this devastating dis-
ease. Advanced regenerative medicine strategies, like those 
involved in precision medicine, are needed to design treat-
ments for these presently intractable disorders. Pharmaco-
therapy including pain control, wound dressings and topical 
medications helps relieve symptoms and promote healing. 
Maintenance therapies such as proper skincare, nutritional 
support and physical/occupational therapy are essential for 
long-term management. Additionally, emerging approaches 
like stem cell and gene therapy show excellent promise for 
transforming EB’s treatment landscape. Ongoing explora-
tion and clinical trials are paving the path for innovative 
interventions that may ultimately deliver a cure for this dis-
abling condition [20, 21]. These strategies are summarized 
below:

Pharmacotherapy

Pain caused by EB-associated wounds and blisters can be 
alleviated through the use of nonsteroidal anti-inflammatory 
drugs (NSAIDs), opioids, or local anesthetics [22]. These 
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medications help to provide temporary relief and enhance 
the patient’s overall comfort. Topical corticosteroids and 
immunosuppressants, such as tacrolimus (a calcineurin 
inhibitor) and pimecrolimus, can also be prescribed to 
reduce inflammation and manage symptoms associated with 
EB [23, 24]. These medications help to alleviate itchiness 
and prevent the progression of the disease.

Maintenance Treatments

Regular and meticulous skin care is essential to prevent skin 
breakdown and minimize the risk of infection. Measures 
include gentle cleansing, moisturizing, and the applica-
tion of barrier creams or ointments. Bathing in lukewarm 
water and using mild, fragrance-free products are recom-
mended. Besides, maintaining adequate nutrition is cru-
cial for individuals with EB, as they often have increased 
nutritional needs due to chronic inflammation and impaired 
nutrient absorption [25]. A balanced diet, often requiring 

the involvement of a registered dietitian, can help optimize 
the patient’s overall health and wound healing. Physical and 
occupational therapy play a vital role in managing EB. These 
therapies focus on maintaining joint mobility, preventing 
contractures, improving muscle strength, and optimizing 
functional independence. They also provide education on 
safe positioning and activities of daily living [26, 27].

Emerging Therapies

Stem Cell Therapy

Stem cell-based interventions show tremendous therapeu-
tic promise for epidermolysis bullosa. This regenerative 
approach aims to replenish aberrant cell populations through 
transplantation of healthy progenitor populations. Indeed, 
bone marrow-derived mesenchymal stromal cells and 
human-induced pluripotent stem cell-derived keratinocytes 
represent leading candidate graft sources under exploration. 

Fig. 1 Schematic diagram of cutaneous basement membrane zone and 
mutated proteins in various subtypes of EB disease (the figure is cre-
ated using Adobe illustrator 2019). This diagram highlights the crucial 
attachment complexes responsible for establishing stable cell-to-cell 

contacts and connecting the epidermis with the underlying dermis. The 
proteins highlighted in red, originating from 21 unique genes, undergo 
mutations in various manifestations of EB
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Mechanism of Action of Stem Cells in EB Treatment

Hematopoietic and mesenchymal stem cells given dur-
ing bone marrow transplantation have the key ability to 
travel from the infusion area in the bloodstream to their 
intended tissues. Engraftment involves integration into the 
local microenvironment. Hematopoietic stem cells engraft 
in bone marrow, while mesenchymal stem cells have been 
found in skin, lung, and other organs post-bone marrow 
transplantation. After migrating and homing in the damaged 
skin, these cells can be effective in the treatment of the EB 
through the following mechanisms:

Differentiation of Stem Cells Once in the intended skin tis-
sue, stem cells must successfully engraft by lodging, surviv-
ing, and differentiating into fibroblasts and skin cells [46].

Stem cells exhibit multipotency, or the ability to dif-
ferentiate into various phenotypes of the cells [47]. In EB 
treatment, mesenchymal stem cells mainly mature into 
fibroblasts within dermal tissue. Differentiation is induced 
by cues from the microenvironment such as growth factors 
and the extracellular matrix [48]. During differentiation, 
stem cell genes shut off and genes for fibroblast markers 
like type VII collagen turn on. The newly formed fibro-
blasts now synthesize the functional protein lacking in EB 
patients. Stem cell plasticity to take on required cell pheno-
types allows corrected functional cells to be produced from 
transplanted stem cells [49]. This halts the pattern of vesicu-
lation and allows wound repair.

Paracrine Effects of Stem Cells Beyond serving as direct 
cellular grafts undergoing lineage commitment, stem cell 
therapies exert paracrine influences of significant therapeu-
tic impact [50]. Through secreted factors including cyto-
kines like prostaglandin E2, indoleamine 2, 3-dioxygenase, 
VEGF and TGF-β, chemokines and extracellular vesicular 
cargo, transplant-derived cells activate downstream signal-
ing cascades in the local microenvironment. By modulating 
target cell behavior, stem/progenitor (an intermediate state 
between stem cells and fully differentiated cells) recruit-
ment is optimized, angiogenic revascularization enhanced, 
and anti-inflammatory modulation promoted [51, 52]. The 
paracrine effects of adult stem cells have been found to be a 
substantial contributor to the positive outcomes observed in 
various clinical trials [53].

Immunomodulatory Effects of Stem Cells Some soluble fac-
tors released by stem cells exert a suppressive effect on the 
activation and proliferation of Th1 and Th17 cells, thereby 
resulting in a reduction of inflammatory cytokine produc-

Several early phase clinical investigations are currently in 
progress to evaluate the safety and preliminary efficacy of 
this novel cellular regenerative modality in various diseases 
like GVHD [28], Covid-19 [29–31], and neurodegenerative 
diseases like ALS [32, 33]. As outlined in Table 1, these 
pioneering works seek to elucidate optimal cell dosage 
and formulation parameters while monitoring for potential 
adverse events. Methods such as allogeneic transplantation 
via intradermal injection or autologous grafting employing 
Bio advanced skin substitutes are among strategies under 
assessment.

Transplants of bone marrow stem cells for patients 
afflicted by EB started in 2007. Results from the first batch of 
7 RDEB recipients who underwent this process appeared in 
a 2010 publication. Regrettably, two from this initial group 
passed away. However, the remaining five reportedly exhib-
ited reductions in vesicle formation and erosions. Enhanced 
type VII collagen expression at dermal foundational barri-
ers was documented in 4 of the 5, yet one amongst them 
with no such collagen presence post-transplant nevertheless 
showed clinical improvement. This pioneer study provided 
early signals that bone marrow transplants may benefit EB 
management by potentially fixing type VII collagen insuf-
ficiencies and mitigating side effects, while highlighting the 
necessity for additional work to augment outcomes [34].

As shown in Table 1, subsequent clinical trials confirmed 
the safety and effectiveness of this treatment method. 
Although most of these studies lacked a control group and 
had a small sample size, the initial clinical results were 
promising. Moreover, when it comes to genomic editing 
studies utilizing CRISPR-Cas9, human pluripotent stem 
cells (hPSCs) and induced pluripotent stem cells (iPSCs) 
offer a clear advantage over other cell types, including 
somatic cells and adult stem cells. This advantage stems 
from their unlimited capacity for proliferation, which is par-
ticularly beneficial in cases where clonal selection becomes 
a requirement [42]. Several reports have described methods 
for developing genome-changed cells from tissues not typi-
cally accessible to acquire [43, 44]. For instance regarding 
EB, one investigation grafted keratinocytes prompted from 
gene-treated induced pluripotent stem cells onto immunode-
ficient rodents. Two months subsequent to transplantation, 
standard manifestation of the COL7A1 gene was visible. 
This shows the potential of utilizing corrected induced 
cells to cure EB at the genomic level through restorative 
transplantation approaches [45]. More exploration utilizing 
comparable strategies could help advance remedies for this 
complicated disorder.
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tion of progenitor adhesion and restoration of structural and 
molecular niche properties. This influences hematopoietic 
and epidermal progenitor behavior in native skin to advance 
wound healing. Reconstructed niches support lineage com-
mitment of normal keratinocytes from resident progenitors, 
thereby facilitating engraftment and functionality of donor 
stem cell grafts [61].

Regenerative Effects of Extracellular Vesicles/Exosomes 
Released from Stem Cells Extracellular vesicles are small 
membrane-bound structures released by cells, including 
stem cells. Exosomes, a specific type of extracellular ves-
icle, are nanosized particles involved in intercellular com-
munication. They contain proteins, lipids, nucleic acids, and 
other bioactive molecules that can modulate cellular func-
tions [62]. In the context of epidermolysis bullosa, studies 
have demonstrated that extracellular vesicles/exosomes 
derived from stem cells can improve the integrity of the epi-
dermis, promote collagen synthesis, and enhance the migra-
tion and proliferation of keratinocytes [63, 64].

Figure 2 provides a schematic representation of the 
mechanism by which stem cells exert their therapeutic 
effects in EB.

Mesenchymal stem cells, utilized in the treatment of EB 
disease, can be obtained from various sources such as bone 

tion. Through another mechanism, MSCs induce remodel-
ing and modulate the composition of T-cell subsets towards 
T-regulatory cells, subsequently elevating the levels of anti-
inflammatory cytokines. Numerous studies have provided 
evidence that MSCs impede the acquisition of the M1 mac-
rophage phenotype while promoting M2 polarization [54, 
55]. These paracrine signatures likewise stimulate resident 
progenitor proliferation and differentiation integral to regen-
erative tissue remodeling [56, 57]. MSCs also dampen the 
functions of immune effector cells like natural killer cells, 
cytotoxic T lymphocytes, B cells and neutrophils that might 
identify donated stem cells as alien [58, 59]. The ensuing 
immuno-tolerant microenvironment allows donor cells 
to establish long-term engraftment and exert therapeutic 
effects without being rejected. Such properties are important 
for conferring enduring therapeutic grafts capable of long-
term disease modification.

Rebuilding the Skin Epithelial Stem Cell Niche Besides, stem 
cell therapies may contribute to rebuilding the skin epithe-
lial stem cell niche compromised by epidermolysis bullosa. 
These niches govern progenitor fate by modulating signals 
from extracellular matrix components, surrounding support-
ive cell types, and paracrine factors [60]. Transplanted stem 
cells can secrete matrix proteins like fibronectin, laminin 
and collagen, along with paracrine signals, to aid stabiliza-

Fig. 2 Mechanism of action of Mesenchymal stem cells in EB treat-
ment (the figure is created using Adobe illustrator 2019). Abbrevia-
tions: MSCs: Mesenchymal Stem Cells/ EB: Epidermolysis bullosa/ 
PGE2: prostaglandin E2, IDO: indoleamine 2, 3-dioxygenase/ TGFβ: 

Transforming growth factor β/ VEGE: Vascular endothelial growth 
factor/ MQ: Macrophage/ TH1: T Helper1/ TH17: T Helper17/ Treg: 
T regulatory cell
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resultant infections that compromise quality of life. Through 
employing CRISPR-Cas9 mediated homology-directed 
repair, investigators have restored COL7A1 expression in 
patient keratinocytes [69, 70], and fibroblasts, renewed at 
the genetic level [69]. Keratinocytes modified thusly dem-
onstrated restored capacity to organize robust skin grafts 
in murine xenotransplants. Separately, a dual-guide RNA 
approach also validated capacity to reframe COL7A1 read-
ing and reinstate protein production in recessive dystrophic 
epidermolysis bullosa keratinocytes, enabling long-term 
regeneration of properly adherent epithelium. Such findings 
offer proof-of-concept that precision editing may reverse 
disease pathogenesis at its roots. Continued methodologi-
cal refinement brings hope that genomic resolutions may 
someday eliminate suffering for these patients [71]. Addi-
tionally, variations in the LAMB3 gene have been linked 
to junctional types of epidermolysis bullosa. The LAMB3 
gene provides directions for generating a protein called lam-
inin-332, which plays a vital role in preserving the structure 
of the skin. Investigations have examined employing gene 
modifying tactics to remedy mutations in the LAMB3 gene 
and reinstate biosynthesis of functional laminin-332 [72].

When pursuing genomic interventions for epidermolysis 
bullosa, generating immortalized keratinocyte lines main-
tains research potential. However, not all cell models faith-
fully mimic native epithelial behavior or accommodate gene 
editing with equal ease. HaCaT cells frequently serve as sur-
rogates given their proliferation potential ex vivo [73]. . Yet 
abnormal stratification, erratic marker expression profiles, 
and absent cornified layers compromise translation. Aneu-
ploidy introduces further variability. Together, these factors 
render HaCaT cells suboptimal for elucidating genomic 
effects on differentiation. Immortalized populations retain 
value for fundamental mechanistic and target screening stud-
ies. Yet direct clinical use necessitates alternatives exhibit-
ing physiology unhindered by culture stresses. Induced 
pluripotent stem cell-derived keratinocytes may represent 
a more relevant regenerative approach through preserving 
normal structural and functional attributes amenable to pre-
cision modifications aimed at durable, restorative outcomes 
for patients [74]. As gene therapy is a novel and developing 
approach for EB, preclinical investigations remain the cur-
rent focus in this area with only sparse early-phase clinical 
studies conducted thus far. Some representative published 
clinical efforts in this nascent field are concisely summa-
rized in Table 2. Considerable additional research is still 
warranted to fully assess the therapeutic potential and safety 
profile of gene-based interventions for diabetes prior to 
broader clinical translation.

marrow or umbilical cord and subsequently transplanted. 
Upon transplantation, these cells possess the ability to 
migrate towards the site of damaged tissue in response to 
signals received from the injured area, facilitated by che-
moattractants present along the migratory path. Moreover, 
they have the capacity to differentiate into specific target 
cells within the desired tissue. In the context of EB disease, 
following transplantation, these cells migrate towards the 
affected skin region and undergo differentiation, contrib-
uting to the process of re-epithelialization crucial for skin 
regeneration. Furthermore, mesenchymal stem cells play 
a pivotal role in tissue improvement through the paracrine 
secretion of various cellular cytokines, including cytokines 
VEGF, TGFβ, PGE2, and IDO. These secreted factors elicit 
several changes within the tissue microenvironment, such 
as promoting revascularization, modulating immune pro-
cesses, and reducing inflammation at the site of the wound. 
These alterations consequently result in the transition of 
macrophages from an inflammatory phenotype (MQ1) to an 
anti-inflammatory phenotype (MQ2). Additionally, trans-
plantation leads to a reduction in the number of inflamma-
tory cells (TH1 and TH17) and an increase in the number of 
regulatory and anti-inflammatory cells (Treg). The collec-
tive impact of these changes ultimately enhances tissue con-
dition and facilitates wound healing in individuals afflicted 
with EB disease.

Gene Therapy

Gene therapy aims to remedy the genetic mutations respon-
sible for EB by introducing functional genes into the 
patient’s cells. This approach poses immense prospective for 
delivering a long-lasting cure for EB. Multiple gene therapy 
tactics, such as gene substitution and gene modifying uti-
lizing CRISPR-Cas9, are being investigated in preclinical 
and clinical experimentation. Though still in the exploratory 
stage, gene therapy provides hope for future breakthroughs 
in managing EB [65]. Several preclinical and limited clini-
cal investigations have demonstrated the potential of gene 
therapy for EB.

Genetic factors play a defining role in the pathogenesis 
of numerous cutaneous pathologies. Monogenic disorders 
exhibit clear genetic determinism, as seen with epidermoly-
sis bullosa resulting from homozygous COL7A1/LAMB3 
mutations. However, inter individual variation also sur-
faces in multifactorial diseases like ichthyosis vulgaris (IV), 
where FLG homozygosity increases risk [66, 67]. Most 
research utilizing CRISPR-Cas9 in primary Keratinocytes 
(KCs) is focused on EB using patient-derived EB KCs, as 
reviewed recently [68].

In EB, the dermal-epidermal junction proves inherently 
fragile, clinically manifested as constant vesiculation and 
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Tissue Engineering and Scaffold-Base Therapy

The treatment of wounds, including those associated with 
epidermolysis bullosa, represents a significant unmet clini-
cal need. Tissue engineering experts are actively engaged 
in the development of skin-like structures to facilitate the 
healing process and promote the reconstruction of skin in 
currently untreatable wound injuries. However, this pur-
suit is exceptionally challenging due to the intricate nature 
of the skin, encompassing its complex structure and mul-
tifaceted functions [79]. Developing safe and high-quality 
engineered skin necessitates careful consideration of vari-
ous factors, such as biocompatibility, biodegradability, non-
carcinogenic cross-linking, cost-effectiveness, prevention 
of infectious diseases, and mitigation of immune system 
activation [80]. A range of biodegradable protein-based 
natural polymers, such as collagen, fibrin, and hyaluronic 
acid, have found extensive application in the fabrication of 
scaffolds for tissue regeneration [81, 82]. These scaffolds 
have been utilized for the regeneration of various tissues, 
including bone, neural tissues, skin, skeletal muscle, and 
blood vessels [83, 84]. The primary approach in engineer-
ing skin substitutes involves cultivating primary skin cells, 
including stem cells, fibroblasts, and keratinocytes within 
scaffolds that emulate the three-dimensional (3D) struc-
ture of normal cells, either through natural or biosynthetic 
means. Despite notable advancements, many wound treat-
ments remain unmet clinical needs, demanding a multidis-
ciplinary approach to devising effective solutions [85, 86]. 
Recent clinical trials have shown that modern dressings and 
skin substitutes offer a convenient, easily accessible, and 
cost-effective approach for treating chronic wounds. Con-
sequently, the ultimate objective is to develop readily avail-
able off-the-shelf wound dressings that can be promptly 
employed by patients as needed [77, 87]. In order to achieve 
this objective, there is considerable potential in develop-
ing cost-effective manufacturing techniques that utilize 
non-mammalian sources of collagen or extracellular matrix 
(ECM) components. These alternative sources, in combi-
nation with synthetic scaffolds, offer a promising avenue 
for producing materials with favorable properties. Such 
materials would provide an optimal structure for cellular 
ingrowth and enable the modulation of the chronic wound 
microenvironment, thus facilitating the healing process. 
Moreover, these bioengineered materials can be customized 
to incorporate mechanisms for controlled release of bioac-
tive molecules or drugs. This customization can be based 
on factors such as the scaffold’s degradation rate or specific 
signals emanating from the wound, thereby enhancing their 
therapeutic capabilities [85]. . However, it is important to 
note that while these novel treatment methods exhibit prom-
ise, they are still in the preliminary and pre-clinical stages 
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of development, with limited application in human studies. 
Table 3 provides a comprehensive summary of the current 
state of this technology in human research, encapsulating 
the progress achieved thus far.

Limitations and Feature Directions

Despite significant advancements in the treatment of Epider-
molysis Bullosa, there are persistent limitations associated 
with pharmacotherapy, stem cell therapy, gene therapy, and 
tissue engineering approaches. However, ongoing research 
and progress in these fields offer promising avenues for 
overcoming these limitations.

In terms of pharmacotherapy, its capacity to address the 
underlying genetic abnormalities responsible for EB is lim-
ited. Future directions in this area involve the development 
of targeted therapies that aim to correct or modulate the 
genetic defects associated with EB. This entails the explora-
tion of novel drugs, including gene-editing agents or small 
molecules that specifically target the pathways involved in 
the pathogenesis of EB. Also, moving on to stem cell therapy, 
several challenges need to be surmounted. These challenges 
include the scarcity of suitable cell sources, such as autolo-
gous cells with a healthy gene profile, as well as the risk 
of immune rejection. Future directions in stem cell therapy 
aim to enhance the availability and successful engraftment 
of stem cells through innovative strategies. This can encom-
pass the utilization of iPSCs generated from patient-derived 
cells, the development of gene-edited stem cells with cor-
rected genetic defects, and the exploration of alternative 
stem cell sources like amniotic fluid-derived stem cells. 
In addition, Skin organoids derived from patient-specific 
induced pluripotent stem cells offer a promising platform 
for studying the pathogenesis of epidermolysis bullosa and 
evaluating potential therapeutic strategies. By incorporating 
extracellular vesicles/exosomes derived from stem cells into 
skin organoid models, it is possible to enhance their regen-
erative potential and better mimic the physiological micro-
environment of the skin.

Regarding to gene therapy, although it has demonstrated 
promising results in preclinical and early clinical trials, 
there are still challenges that need to be addressed. These 
challenges include the efficient delivery of therapeutic 
genes to target cells, long-term gene expression, and poten-
tial immune responses triggered by viral vectors employed 
for gene delivery. Future directions in gene therapy involve 
refining gene delivery techniques, such as viral vectors or 
non-viral methods, to enhance efficiency and safety. Fur-
thermore, advancements in genome editing technologies, 
such as CRISPR-Cas9, hold considerable potential for pre-
cise gene correction in EB. Besides, with regard to tissue 
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