
UCLA
UCLA Electronic Theses and Dissertations

Title
Methods for the Analysis and Interpretation of Single Cell RNA Sequencing Data

Permalink
https://escholarship.org/uc/item/7z94b862

Author
Ma, Feiyang

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7z94b862
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

Methods for the Analysis and Interpretation of Single Cell RNA Sequencing Data 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Molecular Biology 

 

by 

 

Feiyang Ma 

 

2020 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ã Copyright by 

Feiyang Ma 

2020 

 



 ii 

ABSTRACT OF THE DISSERTATION 

 

Methods for the Analysis and Interpretation of Single Cell RNA Sequencing Data 

 

by 

 

Feiyang Ma 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2020 

Professor Matteo Pellegrini, Chair 

 

3’ RNA sequencing provides an alternative to whole transcript analysis. However, we do 

not know a priori the relative advantage of each method. Thus, a comprehensive comparison 

between the whole transcript and the 3’ method is needed to determine their relative merits. 

Single cell RNA sequencing (scRNA-seq) enables the profiling of the transcriptomes of 

individual cells. Cell type identification is one of the major goals in scRNA-seq. Current 

methods for assigning cell types have several limitations, such as unwanted sources of variation 

that influence clustering and a lack of canonical markers for certain cell types. Thus, new 

methods need to be developed. We first used two commercially available library preparation kits, 

the KAPA Stranded mRNA-seq kit (traditional method) and the Lexogen QuantSeq 3’ mRNA-

seq kit (3’ method), to determine the advantages and disadvantages of these two approaches. We 

found that the 3’ RNA-seq method detected more short transcripts than the whole transcript 

method. With regard to differential expression analysis, we found that the whole transcript 
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method detected more differentially expressed genes, regardless of the level of sequencing depth. 

We then developed ACTINN (Automated Cell Type Identification using Neural Networks), 

which employs a neural network to predicts cell types for scRNA-seq datasets. We trained and 

tested ACTINN on multiple datasets, the results showed that ACTINN is fast and accurate, and 

should therefore be a useful tool to complement existing scRNA-seq pipelines. Lastly, we 

performed scRNA-seq to study gene networks associated with host defense comparing lesions 

from reversal reaction vs. lepromatous lesions from leprosy patients. We constructed an 

antimicrobial ecosystem by integrating the IFNG and IL1B antimicrobial targets with the cell-

cell co-abundance in lesions, which revealed that the interaction of dendritic cells, macrophages, 

T cells, keratinocytes and fibroblasts contributes to the capacity of granulomas to eliminate the 

pathogen in leprosy. 
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Chapter 1 - Introduction 

RNA sequencing 

High-throughput RNA sequencing (RNA-seq) is a powerful tool to characterize and 

quantify transcriptomes and is now widely used in biomedical research. RNA-seq is primarily 

used to quantify the abundance and relative changes in gene expression across sample groups 

[1]. It enables a relatively unbiased analysis of the transcriptome, and has single base pair 

resolution, a wide dynamic range of detection, and low background noise [2]. Moreover, the cost 

of RNA-seq is continuously dropping as the cost of sequencing decreases, enabling varied 

investigations of molecular biology in a more precise and comprehensive manner than is possible 

with competing technologies [1]. 

Since the initial application of RNA-seq, many library preparation methods and 

sequencing platforms have been established, resulting in a number of choices for users. In the 

classic whole transcript method, extracted mRNAs are first randomly sheared into fragments, 

which are then reverse transcribed into cDNAs (Figure 1-1). As cDNA fragments are sequenced, 

the number of reads corresponding to each transcript is proportional to the number of cDNA 

fragments rather than the number of transcripts. Since longer transcripts are generally sheared 

into more fragments, more reads will be assigned to them than shorter transcripts. Consequently, 

when carrying out differential expression analysis, the differentially expressed genes are more 

likely to be enriched for longer than shorter transcripts, as the statistical power is higher for 

longer transcripts due to the larger counts. Recently, new 3’ RNA-seq methods, such as Tag-seq 

[3] and QuantSeq [4], have been developed to minimize this bias. I n the 3’ RNA-seq method, 

mRNAs are not fragmented before reverse transcription. Instead, the cDNAs are only reverse 

transcribed from the 3′ end of the mRNAs, and only one copy of cDNA is generated for each 
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transcript. Thus, when the cDNAs are sequenced, the number of reads directly reflects the 

number of transcripts of a certain gene, and the longer and shorter transcripts should have the 

same coverage of reads. In chapter 2, we present a comparison between whole transcript and 3’ 

RNA sequencing methods using Kapa and Lexogen library preparation methods. 

 

 

 
Single cell RNA sequencing 

Single cell RNA sequencing (scRNA-seq) enables the profiling of the transcriptomes of 

individual cells, thus characterizing the heterogeneity of samples in manner that was not possible 

using traditional bulk RNA-seq [5]. However, scRNA-seq experiments typically yield high 

volumes of data, especially when the number of cells is large (often many thousands). Thus, fast 

and efficient computational methods are essential for scRNA-seq analyses. 

Traditional method (KAPA)
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Figure 1-1. Key library preparation steps for the Trad-KAPA (left) and 3’-
LEXO (right) methods. 
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One common goal of scRNA-seq analyses is to identify the cell type of each individual cell that 

has been profiled. To accomplish this, typically cells are first grouped into different clusters in an 

unsupervised way, and the number of clusters allows us to approximately determine how many 

distinct cell types are present in the sample. Each cluster should contain cells with similar 

expression profiles, and so the aggregated profile of a cluster increases the signal to noise of the 

expression estimates. To attempt to interpret the identity of each cluster, marker genes are found 

as those that are uniquely highly expressed in a cluster, compared to all the other clusters. These 

canonical markers are then used to assign the cell types for the clusters, by cross referencing the 

markers with lists of previously characterized cell type specific markers. While this process is 

able to identify cell types, there are some limitations: 1. Since the clustering method is 

unsupervised, all sources of variation influence the formation clusters, including effects that are 

not directly related to cell types such as differential expression induced by cell cycles. 2. It is 

often difficult to find an optimal match between the marker genes associated with each cluster 

and the canonical markers for specific cell types. Moreover, depending on the clustering 

parameters used, one cluster might contain multiple cell types, or one cell type could be split into 

multiple clusters. 3. Using canonical markers to assign cell types requires background knowledge 

of cell type specific markers, and sometimes these are not well characterized or difficult to find 

in the literature. Moreover, some canonical markers may be expressed by more than one cell 

type, and some cell types may have no known markers. 4. The same types of cells processed by 

two distinct scRNA-seq techniques tend to cluster separately due to technical batch effects, 

which complicates cell type identification in composite datasets. 5. Cell subtypes are often very 

similar to each other, which limits efforts to separate them accurately into different clusters. To 

overcome many of the limitations of existing approaches, new methods need to be developed. 
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Neural network 

Artificial neural networks provide a popular framework for machine learning algorithms 

which can be used to interpret complex datasets. An artificial neural network is connected by 

multiple layers of neurons, like biological neural networks, each neuron contains a signal that 

will be transmitted to the neurons in the next layer (Figure 1-2). In artificial neural networks, the 

signal is a real number. In signal transmission, a linear function is applied to the signal from last 

layer, and the output is transmitted to the next layer. Recently, artificial neural networks have 

been widely used in many fields, including for the analysis of scRNA-seq data [6-9]. Since the 

output data from scRNA-seq is feature-enriched and well-structured, it is well suited as an input 

for neural networks. In chapter 3, we present ACTINN (Automated Cell Type Identification 

using Neural Networks) for scRNA-seq cell type identification. 

 

 

Antimicrobial response in leprosy 

The hallmark of the chronic inflammatory response to a foreign substance that has 

resisted destruction by an acute inflammatory response is the granuloma. In the most cited article 

on granulomas, Gordon defined granulomas as structures “which are formed by the immune-

Figure 1-2. Neural network configuration. 
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mediated recruitment of white blood cells, and particularly rich in macrophages” [10]. In the 

context of infectious diseases, the function of the granuloma is to sequester and degrade 

microbial pathogens that have evaded the early immune response.  

Leprosy offers an attractive model to investigate the mechanisms by which the human 

immune system combats intracellular bacteria as the disease presents as a clinical/immunologic 

spectrum [11]. Because it manifests as a spectrum of disease in skin, the dynamics are accessible 

to study, in contrast to tuberculosis granulomas. At one end of the disease spectrum, tuberculoid 

leprosy typifies the host’s antimicrobial response, which controls the pathogen: there are few 

lesions; Mycobacterium leprae bacilli are rare; and patients eliminate the infection. At the 

opposite end of the spectrum, lepromatous leprosy (L-lep) represents susceptibility to 

disseminated infection, with numerous skin lesions and abundant bacilli (Figure 1-3). The 

disease spectrum is dynamic, as patients may undergo a reversal reaction (RR), in which patients 

generally upgrade, either spontaneously or during chemotherapy, from the lepromatous to the 

tuberculoid pole. The structure of granulomas is distinct across the spectrum of leprosy. The 

Figure 1-3. Number of M. leprae transcripts detected in individual cells for 
each patient. 

 

0

1

2

3

L−
lep

1
L−

lep
2

L−
lep

3
L−

lep
4

L−
lep

5
RR1

RR2
RR3

RR4
RR5

lo
g1

0 
( M

le
p 

nU
M

Is
 )

MLEP nUMIs



 6 

granulomas in tuberculoid leprosy contain a core of mature macrophages with occasional 

multinucleated giant cells. These granulomas are organized with lymphocytes forming a mantle 

zone at the periphery of the granuloma. Granulomas in RR lesions are histologically similar to 

those in tuberculoid leprosy with the presence of intercellular edema. In lepromatous leprosy, the 

granulomas are disorganized, immature lipid-laden macrophages are prominent with 

lymphocytes scattered throughout. 

The study of leprosy lesions has provided insight regarding the host immune response to 

intracellular bacteria and the architecture of granulomas. Through various approaches, it has 

been possible to define functional subpopulations of human T cells [12-15] and macrophages 

[16], their microanatomic distribution as well as the patterns of cytokine secretion that influence 

the outcome of infections caused by pathogenic mycobacteria [17-20].  

Given that the resolution of the granulomatous response requires destruction of the 

foreign invader, the antimicrobial mechanisms that result in the death of the pathogen are central 

to understanding how granulomas contribute to host defense. A few pathways have been 

identified by the study of human cells that can lead to an antimicrobial activity against 

intracellular mycobacteria. Through activation via TLRs and secretion of IFN-g, the innate and 

adaptive immune systems trigger the vitamin D-dependent induction of the antimicrobial 

proteins encoded by CAMP and DEFB4A [16, 21, 22]. T cells release antimicrobial proteins 

encoded by GNLY and IL26, which can enter infected macrophages and exert a direct 

antimicrobial activity [13, 14, 23, 24]. These human pathways are not present in mice, which 

utilize other mechanisms such as the release of nitric oxide to kill mycobacteria. The advent of 

scRNA-seq provides an opportunity to elucidate the cell-cell networks that define antimicrobial 

responses at the site of infection. We used this approach to study and compare the immune 
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responses in RR vs. L-lep patient skin lesions to gain insight into mechanisms of host defense 

used by granulomas to eliminate an intracellular bacterium. 
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Chapter 2 - A Comparison Between Whole Transcript and 3’ RNA Sequencing Methods 

using Kapa and Lexogen Library Preparation Methods 

 

Abstract 

3’ RNA sequencing provides an alternative to whole transcript analysis. However, we do 

not know a priori the relative advantage of each method. Thus, a comprehensive comparison 

between the whole transcript and the 3’ method is needed to determine their relative merits. To 

this end, we used two commercially available library preparation kits, the KAPA Stranded 

mRNA-seq kit (traditional method) and the Lexogen QuantSeq 3’ mRNA-seq kit (3’ method), to 

prepare libraries from mouse liver RNA. We then sequenced and analyzed the libraries to 

determine the advantages and disadvantages of these two approaches. We found that the 

traditional whole transcript method and the 3’ RNA-seq method had similar levels of 

reproducibility. As expected, the whole transcript method assigned more reads to longer 

transcripts, while the 3’ method assigned roughly equal numbers of reads to transcripts 

regardless of their lengths. We found that the 3’ RNA-seq method detected more short transcripts 

than the whole transcript method. With regard to differential expression analysis, we found that 

the whole transcript method detected more differentially expressed genes, regardless of the level 

of sequencing depth. 

 

Introduction 

High-throughput RNA-sequencing (RNA-seq) is a powerful tool to characterize and 

quantify transcriptomes and is now widely used in biomedical research. RNA-seq is primarily 

used to quantify the abundance and relative changes in gene expression across sample groups 
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[1]. It enables a relatively unbiased analysis of the transcriptome, and has single base pair 

resolution, a wide dynamic range of detection, and low background noise [2]. Moreover, the cost 

of RNA-seq is continuously dropping as the cost of sequencing decreases, enabling varied 

investigations of molecular biology in a more precise and comprehensive manner than is possible 

with competing technologies [1]. 

Since the initial application of RNA-seq, many library preparation methods and 

sequencing platforms have been established, resulting in a number of choices for users. In the 

classic whole transcript method, extracted mRNAs are first randomly sheared into fragments, 

which are then reverse transcribed into cDNAs (Figure 1-1). Although RNA-seq is generally 

considered unbiased, it is important to note that fragmentation and library construction can 

introduce some biases into RNA-seq results [2]. As cDNA fragments are sequenced, the number 

of reads corresponding to each transcript is proportional to the number of cDNA fragments rather 

than the number of transcripts. Since longer transcripts are generally sheared into more 

fragments, more reads will be assigned to them than shorter transcripts. Consequently, when 

carrying out differential expression analysis, the differentially expressed genes are more likely to 

be enriched for longer than shorter transcripts, as the statistical power is higher for longer 

transcripts due to the larger counts [25]. Recently, new 3’ RNA-seq methods, such as Tag-seq [3] 

and QuantSeq [4], have been developed to minimize this bias. In the 3’ RNA-seq method, 

mRNAs are not fragmented before reverse transcription. Instead, the cDNAs are only reverse 

transcribed from the 3′ end of the mRNAs, and only one copy of cDNA is generated for each 

transcript (Figure 1-1). Thus, when the cDNAs are sequenced, the number of reads directly 

reflects the number of transcripts of a certain gene, and the longer and shorter transcripts should 

have the same coverage of reads. 
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Since the establishment of 3’ RNA-seq, it has been used in many studies. For example, 

Meyer et al. used Tag-Seq to profile gene expression responses of coral larvae [3], Barbash et al. 

used QuantSeq to quantify gene expression in the human brain [26], and Oberlin et al. used 

QuantSeq in a genome-wide transcriptome and translatome analysis of Arabidopsis transposons 

[27]. In all the above-mentioned studies, the genome of the organism that was studied (coral, 

human and Arabidopsis) was already characterized. However, when little genomic information is 

available for the species, Tandonnet et al. found that classic RNA-seq methods worked better 

than 3’ RNA-seq methods in quantifying the transcriptome [28]. 

To determine whether to use the classic whole transcript RNA-seq method or the 3’ 

method for a large mouse study where the primary goal is to identify expression quantitative trait 

loci, we used both methods to prepare RNA-seq libraries from the livers of mice on two diets, an 

iron-loaded diet and a control diet. We used the KAPA Stranded mRNA-seq Kit (Trad-KAPA) 

to prepare libraries using the whole transcript method, and the Lexogen Quant-Seq 3’ mRNA-seq 

Library Prep Kit-FWD (3’-LEXO) to prepare 3′ libraries. We then sequenced the libraries on the 

Illumina platform. The sequencing results for the Trad-KAPA and 3’-LEXO libraries were 

compared to determine their relative advantages and disadvantages. We first mapped the reads to 

the mouse genome, and confirmed that the Trad-KAPA reads covered the whole transcript, while 

3’-LEXO reads only covered the 3′ end. Next, we determined the number of reads assigned to 

transcripts with different lengths and then used sub-sampling to determine how sequencing depth 

affects the read distributions. We also compared the reproducibility of the two methods, and 

carried out differential expression analysis for both methods. 
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Materials and Methods 

Animal Husbandry 

Eight female SJL/J mice (cat #686, purchased from The Jackson Laboratory, Bar Harbor, 

ME) housed at 4 mice per cage were placed on an AIN-93G “control” diet containing 50ppm 

iron (cat #515005, Dyets, Bethlehem, PA) upon arrival at 3 weeks of age. At 6-weeks of age, one 

cage of these mice was changed to an AIN-93G “high iron” diet containing 2% carbonyl iron 

(cat #515007, Dyets). At 11 weeks of age, the mice were fasted starting at 6:30am, and tissues 

were collected between 11:30am and 1pm. Blood was taken from the retroorbital plexus under 

isoflurane anesthesia using a heparin-coated capillary tube, and then mice were perfused via the 

heart with ice-cold phosphate buffered saline to flush remaining blood from the tissues. Tissues 

were collected and frozen in liquid nitrogen and stored at -80°C until analysis.  

 

Liver RNA purification 

Total RNA was extracted from a 20mg piece of the large lobe of six livers (3 per diet 

group) using the Qiagen miRNeasy Mini kit (cat# 217004, Qiagen) per the manufacturer’s 

instructions. In brief, samples were homogenized in QIAzol lysis reagent using a rotor stator 

homogenizer. Chloroform was added and the extract was vigorously shaken and then centrifuged 

at 12,000 g to phase separate the organic and aqueous phases. Total RNA was purified from the 

aqueous phase using the kit spin column. DNA was digested on-column per the manufacturer’s 

instructions using the RNase-Free DNase Set (cat# 79254, Qiagen). RNA concentration was 

measured using the Qubit RNA BR Assay (cat# Q10211, Molecular Probes) and RNA integrity 

was measured with an Agilent 2200 Tapestation instrument using the Agilent RNA ScreenTape 
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and Sample Buffer (cat#5067-5576 and cat#5067-5577, Agilent, Santa Clara, CA). All samples 

had RINe values greater than 8. 

 

Library generation 

Libraries were prepared from the extracted RNA using two different kits, the QuantSeq 

3’mRNA-seq Library Prep Kit-FWD (cat #15, Lexogen, Vienna, Austria), denoted here as “3’-

LEXO”, and the KAPA Stranded mRNA-seq Kit (cat #KK8421, KAPA Biosystems, 

Wilmington, MA), denoted here as “Trad-KAPA”, per the manufacturers’ instructions using 1 μg 

of RNA per library.  

For the Trad-KAPA libraries, RNA was heated in a thermocycler for 6 minutes at 94°C 

for the fragmentation step, and KAPA Pure Beads (cat #KK8002, KAPA Biosystems) were used 

for cDNA capture. For the Trad-KAPA adapter ligation reactions, aliquots of 700 nM stock 

adapters (prepared from 30 μM original stock, cat #KK8700, KAPA Biosystems) were added to 

give final adapter concentrations of 50 nM. Ten cycles of library amplification were performed, 

and the libraries were eluted in 23.5 uL 10 mM Tris-HCl (pH 8). The double stranded DNA 

concentration was quantified using two methods: the Qubit dsDNA BR Assay Kit (cat #Q32853, 

Molecular Probes), which gave concentrations ranging from 42.1 to 46.7 ng/ μL, and by the 

KAPA Library Quantification Kit (cat #KK4824, KAPA Biosystems), which gave values 

approximately 2.5 higher. The molar concentration of cDNA molecules in the individual Trad-

KAPA libraries was calculated from the double stranded DNA concentration (as determined by 

the KAPA Library Quantification Kit) and the region average size (determined by analyzing 

each sample on an Agilent 2200 Tapestation instrument using the Agilent D1000 ScreenTape 

and Sample Buffer (cat#5067-5582 and cat#5067-5583, Agilent, Santa Clara, CA). Aliquots 
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from each library were diluted to 10 nM cDNA molecules in 10 mM Tris-HCl (pH 8) + 0.01% 

Tween-20 (cat #P1379-25ML, Sigma, St. Louis, MO), and equal volumes were pooled to make 

the final pooled library for sequencing.   

For the 3’-LEXO libraries, indices from the first two columns of the i7 Index Plate for 

QuantSeq/SENSE for Illumina adapters 7001-7096 (cat #044, Lexogen) were used, and 11 

cycles of library amplification were performed. Libraries were eluted in 22 μL of the kit’s 

Elution Buffer. The double stranded DNA concentration was quantified using the Qubit dsDNA 

HS Assay Kit (cat #Q32854, Molecular Probes), and by the KAPA Library Quantification Kit, 

both which gave similar concentrations for each sample that ranged from 1.7 to 4.3 ng/ μL. The 

molar concentration of cDNA molecules in the individual 3’-LEXO libraries was calculated from 

the double stranded DNA concentration and the region average size (determined by analyzing 

each sample on an Agilent 2200 Tapestation instrument using the Agilent High Sensitivity 

D1000 ScreenTape and Sample Buffer (cat#5067-5584 and cat#5067-5585, Agilent, Santa Clara, 

CA). Aliquots containing an equal number of nmoles of cDNA molecules from each library were 

pooled to give a pooled library with a concentration of 10 nM cDNA molecules. Per the 

manufacturer’s advice, the final pool was purified once more (to remove any free primers to 

prevent index-hopping) by adding 0.9x volumes of PB and proceeding from Step 30 onwards in 

the QuantSeq User Guide protocol. The library was eluted in 22 μL of the kit’s Elution Buffer.  

 

Sequencing 

The pooled libraries were sequenced in an Illumina HiSeq4000 instrument (Illumina, San 

Diego, CA).  
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Transcript Coverage 

The reads were mapped with STAR 2.5.3a to the mouse genome (mm10 / GRCm38). 

After mapping, all 12 BAM files were used as input for RSeQC v2.6.4 to calculate transcript 

coverage. For visualization of the Unc50 gene coverage, control sample 1 BAM files from Trad-

KAPA and 3’-LEXO were visualized in Integrative Genomics Viewer.  

 

Reads subsampling 

We randomly sampled 1, 2.5, 5, and 10 million reads that are uniquely mapped to a 

gene’s exonic regions from each sample. We considered genes to be detected if they had at least 

1 read. The transcript length was calculated by adding the lengths of all the exons from the gene.  

 

Correlation between Trad-KAPA and 3’-LEXO samples 

For comparison between samples sequenced by the same method, raw read counts were 

modified by the addition of 0.01 before log10 transformation, then Pearson correlation 

coefficients were calculated between each comparison. For comparisons between Trad-KAPA 

and 3’-LEXO samples, Trad-KAPA raw read counts were divided by transcript length and 

multiplied by 1000, then the samples were treated as comparison within one method. 

 

Differential expression analysis 

We used DESeq2 to find differentially expressed transcripts in control diet and iron-

loaded diet samples for each sequencing depth. The FDR was adjusted to 0.05, and the other 

parameters were set to default. The number of overlapping differentially expressed transcripts in 

Trad-KAPA and 3’-LEXO was calculated. For 1, 2.5 and 5 million reads, the overlap between 
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differentially expressed transcripts in subsampled pools and the initial 10 million read sample 

was computed. The log fold changes from DESeq2 were used to calculate the correlations 

between the two methods.  

 

Real-time quantitative PCR 

All primers are listed in Table 2-2. cDNA for real-time quantitative polymerase chain 

reaction (RT-qPCR) reactions was prepared with High Capacity cDNA Reverse Transcription 

Kit (cat# 4368814, Life Technologies) using the same liver RNA stock used for the Trad-KAPA 

and 3’-LEXO library synthesis. KAPA SYBR FAST qPCR reaction mix (cat# KK4611, Roche) 

was added with primers and run in triplicate on a LightCycler 480 Instrument (Roche). PCR 

products gave a strong single peak by melt curve analysis. For each mouse and transcript, 

housekeeping-normalized expression values were calculated as 2-(Cp GOI – Cp housekeeper), 

where GOI is the gene of interest and Cp is the cycle number where fluorescence reached a set 

threshold. Three housekeeping genes (TBP, Beta-actin, and HPRT) were selected to control for 

variation in cDNA amounts. Students’ t-test was performed for each gene and housekeeper to 

compare expression levels between the three control and three iron loaded mice, and the average 

t-test p-value across all three housekeepers was calculated. For each gene, housekeeper, and 

animal, housekeeping-normalized expression values for each gene were then normalized to the 

average level in animals on the control diet by dividing each housekeeping-normalized 

expression value by the average control group housekeeping-normalized expression value. These 

fold change values versus control were then averaged for all three housekeepers used, to give a 

final average fold change value versus control for each gene. 
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Results 

Library preparation and RNA-sequencing 

We extracted RNA from the large lobe of the liver from 3 mice on an iron-loaded diet 

and 3 mice on an iron sufficient control diet and then prepared RNA-seq libraries using both the 

Trad-KAPA and 3’-LEXO methods for all six samples. An overview of the key library 

preparation steps for the two methods are described in Figure 1-1. After library preparation, we 

pooled and sequenced the libraries using single-end sequencing with 50 bp reads on an Illumina 

HiSeq4000 instrument (Illumina, San Diego, CA). We obtained an average of 22.9 million and 

18.4 million reads for Trad-KAPA and 3’-LEXO libraries, respectively. The reads were mapped 

with STAR 2.5.3a [29] to the mouse genome (mm10 / GRCm38). 80% of the Trad-KAPA reads 

and 82% of the 3’-LEXO reads were uniquely mapped. As the percentages of mapped reads from 

the two methods were similar, we randomly sampled 10 million uniquely mapped reads in each 

sample for further analysis, to make sure that each library had the same sequencing depth. 

 

3’-LEXO reads mapped to the 3’ region 

After sequencing and read mapping, we used RSeQC [30] to determine the distribution of 

the reads along transcripts. As expected, Trad-KAPA reads covered transcripts uniformly, with 

only a slight decrease in coverage at the 5’ end (Figure 2-1A). By contrast, 3’-LEXO reads 

preferentially mapped to the 3’ end. This suggests that most of the 3’-LEXO reads originated 

from the 3’ region of the gene. The individual Trad-KAPA libraries (red lines) had very similar 

transcript coverage profiles, while the individual 3’-LEXO samples (blue lines) exhibited some 

variation near the middle of the transcript. 
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We show an example of the coverage differences between Trad-KAPA and 3’-LEXO in 

Figure 2-1B. The mouse Unc50 gene has 6 exons and encodes an inner nuclear membrane RNA 

binding protein. We used the integrative genomics viewer [31] to visualize Trad-KAPA and 3’-

LEXO read coverage. Trad-KAPA re ads covered all the exons uniformly, with only a slight 

decrease in the 5’ exon. There were also some Trad-KAPA reads that mapped to the introns of 

Unc50, suggesting that some of the introns are not fully spliced. By contrast, most of the 3’-

LEXO reads mapped only to the last exon of the gene. 

 

Trad-KAPA assigned more reads to longer transcripts 

Since Trad-KAPA reads originated from the entire transcript while 3’-LEXO reads 

originated primarily from the 3’ end, we expected that the Trad-KAPA libraries would generate 

more reads for longer transcripts while the 3’-LEXO libraries would produce equal numbers of 

reads for transcripts independently of their lengths. To determine whether this is the case, we 

selected transcripts that have a length range from 500 bp to 8500 bp and have at least 100 read 

counts, and measured the distribution of coverage levels. For Trad-KAPA libraries, median read 

counts increased with transcript length (Figure 2-2A), indicating that as expected these libraries 

generate more reads for longer transcripts. By contrast, the median read counts from 3’-LEXO 

libraries did not change significantly with length (Figure 2-2B). This is expected, since the strong 

3’ bias found in 3’-LEXO libraries is not significantly affected by transcript length. Thus, for 

datasets of the same sequencing depth, Trad-KAPA samples contain more reads from longer 

transcripts, while 3’-LEXO samples appear to be insensitive to transcript length. 
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3’-LEXO recovers more short transcripts as sequencing depth drops 

To determine whether 3’-LEXO detects more short transcripts than Trad-KAPA as 

sequencing depth drops, we subsampled 1, 2.5 and 5 million uniquely mapped reads for all the 

samples, and determined how many transcripts with lengths ranging from 0 bp to 10000 bp were 

detected (Figure 2-3A). As sequencing depth dropped, shorter transcripts were detected less 

frequently than longer ones in both the Trad-KAPA and 3’-LEXO libraries. When the 

sequencing depth dropped to 5 million, we found that we detected about 300 more transcripts 

that are shorter than 1000 bp from the 3’-LEXO libraries than from the Trad-KAPA libraries. 

With only 2.5 million reads, the difference became even more significant, approaching about 400 

transcripts. However, when the sequencing depth dropped to 1 million, the difference became 

smaller. For transcripts longer than 1000 bp and shorter than 2000 bp, as sequencing depth drops, 

the detection difference between Trad-KAPA and 3’-LEXO inverted, with 3’-LEXO libraries 

leading to the detection of slightly more transcripts. For transcripts longer than 2500 bp, while 

Trad-KAPA always detected slightly more transcripts than 3’-LEXO at all the sequencing 

depths, the differences were very small. 

We also compared the 1, 2.5 and 5 million read depths to 10 million read depth to see 

how many transcripts were detected by each method as sequencing depth drops. As shown in 

Figure 2-3B, 3’-LEXO detected 10% more transcripts than Trad-KAPA for transcripts shorter 

than 1000 bp. For transcripts longer than 1000 bp and shorter than 3000 bp, 3’-LEXO only 

recovered slightly more than Trad-KAPA. For transcripts longer than 3000 bp, the two methods 

detected about the same percentage of transcripts. 

 

 



 19 

Trad-KAPA and 3’-LEXO have similar levels of reproducibility 

To compare the reproducibility of the two library preparation methods, we calculated the 

correlation within and between Trad-KAPA and 3’-LEXO samples. Biological replicates of 

samples made with each of the two protocols were correlated at comparable levels (Figure 2-

4AC), with correlation coefficients around 0.95. The control and diet samples were also highly 

correlated in both cases (Figure 2-4BD), although slightly lower than that found for the 

biological replicates. Finally, we also compared libraries generated from the same RNA stock 

but with the two different library preparation methods (Figure 2-4EF), and found that the 

correlation coefficient was around 0.85. We found that Trad-KAPA detects some genes that are 

missed by 3’-LEXO (shown in the red rectangle area in Figure 2-4EF), but generally the 

agreement between the two libraries was quite high.  

 

Trad-KAPA detects more differentially expressed genes 

One major application of RNA sequencing is the identification of differentially expressed 

genes (DEGs). We used DESeq2 [32] to carry out differential expression analysis on the control 

and iron loaded diet samples with subsampling. We adjusted the FDR to 0.05 and detected 1982 

and 1157 differentially expressed transcripts for Trad-KAPA and 3’-LEXO, respectively (Table 

2-1). Among those transcripts, 882 were detected by both methods. As sequencing depth drops, 

the number of differentially expressed transcripts detected by Trad-KAPA and 3’-LEXO 

decreased, and this trend can also be seen in the MA plots in Supplementary Figure 2-1. 

However, samples sequenced by Trad-KAPA always resulted in more differentially expressed 

transcripts when comparing the two libraries at the same sequencing depth. Not surprisingly, 

more than 95% of the differentially expressed transcripts detected in the subsampled datasets 
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were also detected in the analysis of the initial 10 million read dataset. These results indicate that 

Trad-KAPA libraries lead to a higher detection of differentially expressed transcripts compared 

to 3’-LEXO libraries, at all sequencing depths. 

We also looked at the lengths of the differentially expressed transcripts detected by the 

two methods. As shown in Supplementary Figure 2-2, some short transcripts were only detected 

as differentially expressed in 3’-LEXO samples (blue bins). As the transcript length increases, 

the number of differentially expressed transcripts detected only by 3’-LEXO drops. By contrast, 

most of the longer transcripts were only detected as differentially expressed by Trad-KAPA. This 

may be due to the fact that Trad-KAPA assigned more reads to the longer transcripts, which 

gained enough statistical power to be detected as differentially expressed.  

 

Validation of the differential expression analysis 

To understand why some genes were only detected as significantly differentially 

expressed in one method, we selected DEGs (1100 from Trad-KAPA and 275 from 3’-LEXO) 

and compared their expression and log fold changes across both methods (Supplementary Figure 

2-3). We found that most genes had higher expression and larger log fold changes in the method 

that detected them as significantly differentially expressed compared to the other method. 

However, we also found that the correlation coefficients for the log fold changes and expression 

levels are 0.87 and 0.83, indicating that the Trad-KAPA and 3’-LEXO methods overall yield 

consistent results. We compared the expression level of the DEGs detected in only one method to 

the expression level of the DEGs that were identified in common by both methods and found that 

these had on average 36% higher expression than the DEGs detected in only one method. Thus, 

we think the reason for genes being detected as DEGs in only one method was due to lower 
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expression in the other method. This can be explained by the differences that the two methods 

use in assigning reads to the genes. 

We also used RT-qPCR to examine the expression of a subset of the genes that were 

found to be detected only by either the Trad-KAPA or 3’-LEXO method (mean expression 

across all six samples [control and iron loaded] >10 by one method and <1 by the other). We 

tested 11 genes that were only detected by the 3’-LEXO method, and 7 genes that were only 

detected by the Trad-KAPA method (Table 2-2). Of note, for some of these genes with several 

reported splice variants, we used multiple primer sets but obtained similar results. For most of 

these genes, differential expression analysis gave different results for the two RNA-seq methods. 

The crossing point-PCR-cycle (Cp) values for 3 of the 3’-LEXO only genes were greater than 

30. Of the 8 tested 3’-LEXO only genes that had Cp values less than 30, 5 genes’ RT-qPCR fold 

change results comparing iron loaded to control diet agreed better with the 3’-LEXO results, 2 

agreed better with the Trad-KAPA results, and 1 gave an intermediate result. All of the RT-

qPCR results from the 7 tested Trad-KAPA only genes agreed better with the Trad-KAPA 

results. Thus, as expected, genes that were more highly detected by one method tended to give 

differential expression results that better agreed with RT-qPCR results.  

 

Differential expression in iron metabolism  

To validate if the differentially expressed genes detected by each method overlap in terms 

of biological function, we carried out functional enrichment analyses using the DEGs from both 

the Trad-KAPA and 3’-LEXO methods using KEGG pathways. We found that the enriched 

pathways determined from the data from the Trad-KAPA and 3’-LEXO largely overlapped, 

although there were some pathways specific to each method (Supplementary Figure 2-4AB). The 



 22 

overlapping pathways were related to amino acid and lipid metabolism. Lipid metabolism in 

particular has been previously reported to be affected by iron status [33]. We also performed 

differential expression analysis on previously published microarray data from iron loaded and 

control C57BL/6J mice livers [34] and obtained 792 DEGs. We then performed functional 

enrichment analysis on these DEGs in the same way as for the RNA-seq results (Supplementary 

Figure 2-4C). Again, pathways related to amino acid and lipid metabolism were shared between 

all 3 analyses.    

To further determine if the results from both methods were consistent, we examined 13 

genes known to be involved in iron metabolism by RT-qPCR, and compared the results with 

those from both the Trad-KAPA and 3’-LEXO.  All 13 genes tested were well represented in 

both RNA-seq data sets and had Cp values less than 30 by qPCR. 8 genes were found to have 

significantly increased expression in the iron loaded livers compared to controls by at least one 

of the methods (Table 2-2). Bmp6 and Hamp1 increased 5-6 fold. Atoh8, Smad7, and Id1 

increased 3-4 fold. Lcn2 and Cp increased 2-3 fold in all studies. The results for Ftl1 differed 

between the methods, with Trad-KAPA giving no difference, 3’-LEXO giving a 3 fold increase, 

and RT-qPCR results about 2 fold increase. The expression of these genes has been reported 

previously to increase with iron loading [34, 35]. Two tested genes exhibited significantly 

decreased expression by at least one method. Bdh2 decreased 2-4 fold, and Hamp2 decreased 3-4 

fold. The decreased expression of Bdh2 is in agreement with a previous study, but the Hamp2 

results (found by all methods) were different than those previously reported for other mouse 

strains [36]. Finally, 3 genes (Hfe2, Slc11a2, and Tfrc) known to be involved in iron metabolism 

had little to no difference in expression reported at the mRNA level in the liver with iron loading 

and also had slight to no differences in expression by the three methods tested here [37, 38]. 
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Thus, the results for both RNA-seq methods agreed well with both the RT-qPCR results and with 

previously reported studies. 

 

Discussion 

With the development and advancement of RNA-sequencing technology, many library 

preparation methods and sequencig platforms have become available. Here, we used a classic 

whole transcript RNA-seq method (Trad-KAPA) and a 3’ RNA-seq method (3’-LEXO) to 

prepare sequencing libraries from livers of iron-loaded diet and control diet mice, and sequenced 

the libraries on the Illumina platform. We then compared the sequencing results to determine the 

advantages and disadvantages of the two approaches. 

We identified the gene body coverage of the Trad-KAPA and 3’-LEXO libraries by 

mapping the reads back to the genome. As expected, Trad-KAPA reads covered transcripts 

uniformly, with a slight decrease at the 5’ end. One reason for the decrease might be that the 

secondary structure of the mRNA can cause early termination of reverse transcription [39], 

making it difficult to reach the cap site (5’ end). It is also possible that many of the transcripts are 

partially degraded, so that the polyadenylation capture biases the coverage towards the 3’ end.  

By contrast, 3’-LEXO reads mapped mostly to the 3’ end. 3’-LEXO reads that mapped to the 

middle of the transcript showed significant coverage variation from library to library. The 

variation might be caused by the randomness in the reverse transcription start site on the cDNA. 

In the classic whole transcript method, mRNAs are first sheared into fragments, then the 

fragments are reverse transcribed to generate cDNAs. Hence, it is expected that the longer a 

transcript is, the more fragments it should have. The 3’ RNA-seq method however generates only 

one read for each transcript, so the number of reads directly reflects the level of gene expression. 
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We counted the reads mapped to transcripts that have lengths ranging from 500 bp to 8500 bp 

and found that Trad-KAPA libraries had more reads assigned to longer transcripts. By contrast, 

3’-LEXO read counts remained uniform as transcript length increased.  

As Trad-KAPA assigned more reads to longer transcripts and 3’-LEXO assigned a 

similar number of reads to transcripts with different lengths, we expected to see fewer short 

transcripts and more long transcripts detected by Trad-KAPA as sequencing depth drops. For 

transcripts shorter than 1000 bp, 3’-LEXO detected about 10% more than Trad-KAPA when 

sequencing depth dropped. However, for transcripts longer than 1000 bp, there was only a small 

difference between the number detected by Trad-KAPA and 3’-LEXO. Since a 3’ RNA-seq 

method only captures reads from the 3’ end of the mRNA, it is difficult for this method to detect 

differences in isoforms close to the 5’ end of longer genes. In our study, 15% of uniquely 

mapped Trad-KAPA reads contain splices, while only 6% of uniquely mapped 3’-LEXO reads 

contain splices. As a result, the 3’ RNA-seq method is not recommended for novel transcript or 

splice variant discovery. We also compared Trad-KAPA and 3’-LEXO reproducibility, and 

found that both methods showed very high reproducibility between biological replicates. When 

comparing the sequencing results generated with the same mouse using the Trad-KAPA versus 

3’-LEXO methods, we found the two methods generally agreed with each other. Although there 

were a few transcripts detected only by Trad-KAPA, they turned out to be non-coding RNAs. 

One major application of RNA-sequencing is to detect differentially expressed 

transcripts. We subsampled the reads generated by both the methods and carried out differential 

expression analysis using DESeq2. We found that Trad-KAPA detected more differentially 

expressed transcripts at all four sequencing depths tested. Interestingly, Xiong et al also detected 

more DEGs using the traditional method compared the 3’ method [40], while Tandonnet et al 
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detected more DEGs using the 3’ method. We think the differences were caused by removing 

duplicated reads. Xiong et al did not remove duplicates in their traditional method but rather 

used unique molecular identifier to remove the PCR duplicates in their 3’ method. Tandonnet et 

al removed all the duplicates in both methods. In our study, we did not remove duplicates, as we 

believe that instead of PCR over-amplification, the major cause of duplicated reads is very high 

expression of a small number of genes [41].  

Among all the DEGs we found, some of the very short transcripts (shorter than 500 bp) 

were only detected to be differentially expressed by 3’-LEXO, while many of the long 

transcripts, especially those longer than 7500 bp, were only detected as differentially expressed 

by Trad-KAPA. As Trad-KAPA assigns more reads to longer transcripts, the statistical power to 

detect differences increases. Thus, the probability that those transcripts are detected differentially 

expressed is higher. It is also clear that as sequencing depth drops, both methods will detect 

fewer differentially expressed transcripts. Thus, if users want to use RNA-seq to detect 

differentially expressed transcripts, Trad-KAPA will likely generate larger lists than 3’-LEXO, 

biased towards longer transcripts. 
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Figures 

 

 

 

Figure 2-1. Gene body coverage. 

(A) Gene body coverage from the Trad-KAPA and 3’-LEXO libraries. 

(B) Unc50 gene body coverage from the Trad-KAPA and 3’-LEXO libraries. 
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Figure 2-2. Read counts for transcripts of different length. 

(A) Trad-KAPA read counts for transcripts with different length.  

(B) 3’-LEXO read counts for transcripts with different length. 

200

400

600

800

1000

1000 2000 3000 4000 5000 6000 7000 8000
KAPA Gene Length

R
ea

d 
C

ou
nt

s

200

400

600

800

1000

1000 2000 3000 4000 5000 6000 7000 8000
LEXO Gene Length

Re
ad

 C
ou

nt
s

A B



 28 

 

 

Figure 2-3. Transcripts of different length detected after subsampling. 

 (A) The number of transcripts of different length detected after subsampling.  

(B) Percent of transcripts of different length detected after subsampling, compared to sampling at 

10 million reads. 
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Figure 2-4. Correlation between Trad-KAPA and 3’-LEXO samples. 

(A) Correlation between the Trad-KAPA control samples 1 and 2.  

(B) Correlation between the Trad-KAPA control sample 1 and the iron loaded diet sample 1.  

(C) Correlation between the 3’-LEXO control samples 1 and 2.  

(D) Correlation between the 3’-LEXO control sample 1 and the iron loaded diet sample 1.  

(E) Correlation between the Trad-KAPA and 3’-LEXO control sample 1.  

(F) Correlation between the Trad-KAPA and 3’-LEXO iron loaded diet sample 1.   
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Table 2-1. The number of differentially expressed transcripts detected by the Trad-KAPA 

and 3’-LEXO, before and after subsampling from 10 million reads. 

The first column denotes the sequencing depth (i.e. the total number of mapped reads from the 

library examined). The second column denotes the number of differentially expressed transcripts 

detected by Trad-KAPA. The third column denotes the number of differentially expressed 

transcripts detected after subsampling that overlap with those from the 10 million sequencing 

depth. The fourth and fifth columns denote the results for the 3’-LEXO method. The sixth 

column denotes the number of differentially expressed transcripts detected by both the Trad-

KAPA and the 3’-LEXO methods at listed sequencing depth. 

  

Sequencing 
Depth 

Trad-
KAPA 

Intersection 
(with 10m) 

3’-LEXO Intersection 
(with 10m) 

Intersection 
(Trad-KAPA 

and 3’-LEXO) 
1 million 343 339 (98.8%) 257 249 (96.9%) 177 

2.5 million 758 742 (97.9%) 474 460 (97.0%) 329 

5 million 1234 1194 (96.8%) 777 740 (95.2%) 562 

10 million 1982 1982 1157 1157 882 
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Gene 
name 

Primer set used RT-
qPCR 
fold 
change 

Trad-
KAPA 
fold 
change 

3'-
LEXO 
fold 
change 

RT-qPCR 
result 
match 
which 
RNA-Seq 
method  

Group 

Adnp mAdnp-ex2-3 0.83 1.15 5.02 Trad-KAPA Trad-KAPA only 
Cd7a mCd7a-ex3-4 0.69 0.79 5.11 Trad-KAPA Trad-KAPA only 
Fv1 mFv1-F169 0.55 0.54 10.48 Trad-KAPA Trad-KAPA only 
Mid1 mMid1ex4-5 0.77 0.53 5.12 Trad-KAPA Trad-KAPA only 
Mid1 mMid1ex8-9 0.83 0.53 5.12 Trad-KAPA Trad-KAPA only 
Mmp28 mMmp28ex2-3 3.24 4.52 8.55 Trad-KAPA Trad-KAPA only 
Unkl mUnkl-ex5-6 0.75 1.11 5.12 Trad-KAPA Trad-KAPA only 
Unkl mUnkl-ex2-3 0.90 1.11 5.12 Trad-KAPA Trad-KAPA only 
Zfp647 mZfp647-

204ex4-5 
0.55 0.42 8.46 Trad-KAPA Trad-KAPA only 

Zfp647 mZfp647-
201ex3-4 

0.59 0.42 8.46 Trad-KAPA Trad-KAPA only 

Bcl2a1b mBcl2a1bEx1-2 2.91 1.44 5.76 In between 3'-LEXO only 
Hist4h4 mHist4h4 1.83 0.26 0.27 Neither 3'-LEXO only 
Mir5136 mMir5136 1.47 5.07 0.88 3'-LEXO 3'-LEXO only 
Mt-Tq mMt-Tq 1.09 0.95 0.30 Trad-KAPA 3'-LEXO only 
Rps27rt mRps27rt 1.27 0.27 1.40 3'-LEXO 3'-LEXO only 
S100a4 mS100a4ex1-2 1.93 1.42 2.31 3'-LEXO 3'-LEXO only 
S100a4 mS100a4ex2-3 2.06 1.42 2.31 3'-LEXO 3'-LEXO only 
Schip1 mSchip1ex7-8 0.85 0.51 0.90 3'-LEXO 3'-LEXO only 
Snord118 mSnord118 0.46 0.26 0.60 3'-LEXO 3'-LEXO only 
Snord13 mSnord13 0.92 0.98 0.48 Trad-KAPA 3'-LEXO only 
Spink1 mSpink1ex3-4 9.49 2.66 8.28 3'-LEXO 3'-LEXO only 
Tceal5 mTceal5ex3-4 5.82 10.48 30.09 Trad-KAPA 3'-LEXO only 
Tceal5 mTceal5ex1-2 6.07 10.48 30.09 Trad-KAPA 3'-LEXO only 
Atoh8 mAtoh8 3.97 3.10 3.19 Both Iron metabolism 
Bdh2 mBdh2 0.28 0.35 0.39 Both Iron metabolism 
Bmp6 mBmp6 4.83 6.01 6.20 Both Iron metabolism 
Cp mCp 1.77 1.88 1.94 Both Iron metabolism 
Ftl1 mFtl1 1.75 0.98 3.26 In between Iron metabolism 
Hamp1 mHamp1 5.75 5.19 5.73 Both Iron metabolism 
Hamp2 mHamp2 0.26 0.28 0.33 Both Iron metabolism 
Hfe2 mHfe2 0.61 0.66 0.67 Both Iron metabolism 
Id1 mId1F205&200 4.05 3.43 3.19 Both Iron metabolism 
Lcn2 mLcn2 2.91 2.92 2.25 Both Iron metabolism 
Slc11a2  mSlc11a2  0.66 0.80 0.73 Both Iron metabolism 
Smad7 mSmad7 3.33 3.85 2.91 In between Iron metabolism 
Tfrc mTfrc 1.16 1.26 1.32 Both Iron metabolism 
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Table 2-2. RT-qPCR results. 

Column 3-5 give the log2 fold difference in expression between the iron loaded and control 

samples by RT-qPCR, Trad-KAPA, and 3’-LEXO. Column 6 indicates if the RT-qPCR results 

matched better to one RNA-seq method. Column 7 denotes the group of the genes: detected only 

in Trad-KAPA (Trad-KAPA only), detected only in 3’-LEXO (3’-LEXO only) or iron 

metabolism related (Iron metabolism). 
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Supplemental information 

 

 

 

Supplementary Figure 2-1. MA plots showing the differentially expressed transcripts 

detected by Trad-KAPA and 3’-LEXO with subsampling.  
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Supplementary Figure 2-2. The number of differentially expressed transcripts, grouped by 

transcript length, detected only by Trad-KAPA (red), only by 3’-LEXO (blue) and by both 

methods (purple). 
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Supplementary Figure 2-3. Comparing DEGs detected in only one method.  

Genes here are DEGs detected in only KAPA (red) or in only LEXO (blue), log2 fold changes 

(A) and log2 mean expression (B) are compared between the two methods.  
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Supplementary Figure 2-4. KEGG Pathways enriched by Trad-KAPA (A), 3’-LEXO (B) 

and Microarray (C) DEGs. 

 

A

B

C



 37 

Chapter 3 - ACTINN: Automated Identification of Cell Types in Single Cell RNA 

Sequencing 

 

Abstract 

Cell type identification is one of the major goals in single cell RNA sequencing (scRNA-

seq). Current methods for assigning cell types typically involve the use of unsupervised 

clustering, the identification of signature genes in each cluster, followed by a manual lookup of 

these genes in the literature and databases to assign cell types. However, there are several 

limitations associated with these approaches, such as unwanted sources of variation that 

influence clustering and a lack of canonical markers for certain cell types. Here, we present 

ACTINN (Automated Cell Type Identification using Neural Networks), which employs a neural 

network with 3 hidden layers, trains on datasets with predefined cell types, and predicts cell 

types for other datasets based on the trained parameters. We trained the neural network on a 

mouse cell type atlas (Tabula Muris Atlas) and a hu-man immune cell dataset, and used it to 

predict cell types for mouse leukocytes, human PBMCs and human T cell sub types. The results 

showed that our neural network is fast and accurate, and should therefore be a useful tool to 

complement existing scRNA-seq pipelines. 

 

Introduction 

Single cell RNA sequencing (scRNA-seq) enables the profiling of the transcriptomes of 

individual cells, thus characterizing the heterogeneity of samples in manner that was not possible 

using traditional bulk RNA-seq [5]. However, scRNA-seq experiments typically yield high 
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volumes of data, especially when the number of cells is large (often many thousands). Thus, fast 

and efficient computational methods are essential for scRNA-seq analyses. 

One common goal of scRNA-seq analyses is to identify the cell type of each individual 

cell that has been profiled. To accomplish this, typically cells are first grouped into different 

clusters in an unsupervised way, and the number of clusters allows us to approximately 

determine how many distinct cell types are present in the sample. Each cluster should contain 

cells with similar expression profiles, and so the aggregated profile of a cluster increases the 

signal to noise of the expression estimates. To attempt to interpret the identity of each cluster, 

marker genes are found as those that are uniquely highly expressed in a cluster, compared to all 

the other clusters. These canonical markers are then used to assign the cell types for the clusters, 

by cross referencing the markers with lists of previously characterized cell type specific markers. 

While this process is able to identify cell types, there are some limitations: 1. Since the clustering 

method is unsupervised, all sources of variation influence the formation clusters, including 

effects that are not directly related to cell types such as differential expression induced by cell 

cycles. 2. It is often difficult to find an optimal match between the marker genes associated with 

each cluster and the canonical markers for specific cell types. Moreover, depending on the 

clustering parameters used, one cluster might contain multiple cell types, or one cell type could 

be split into multiple clusters. 3. Using canonical markers to assign cell types requires 

background knowledge of cell type specific markers, and sometimes these are not well 

characterized or difficult to find in the literature. Moreover, some canonical markers may be 

expressed by more than one cell type, and some cell types may have no known markers. 4. The 

same types of cells processed by two distinct scRNA-seq techniques tend to cluster separately 

due to technical batch effects, which complicates cell type identification in composite datasets. 5. 



 39 

Cell subtypes are often very similar to each other, which limits efforts to separate them 

accurately into different clusters. To overcome many of the limitations of existing approaches, 

new methods need to be developed. 

Neural networks provide a popular framework for machine learning algorithms which 

can be used to interpret complex datasets.  As a result, neural networks have been widely used in 

many fields, including for the analysis of scRNA-seq data [6-9]. Since the output data from 

scRNA-seq is feature-enriched and well-structured, it is well suited as an input for neural 

networks. Here, we present ACTINN (Automated Cell Type Identification using Neural 

Networks) for scRNA-seq cell type identification. To overcome many of the limitations of 

traditional cell type identification approaches described above, we used a neural network with 3 

hidden layers, trained it on scRNA-seq datasets with predefined cell types, and predicted cell 

types in other datasets based on the trained parameters. We tested our neural network with 

several published datasets and show that it is fast, efficient and accurate. 

 

Materials and Methods 

Data normalization 

We used several publicly available datasets in our analyses. The mouse cell atlas datasets 

were collected from https://tabula-muris.ds.czbiohub.org. The CD45 sorted leukocyte datasets 

were published by Winkels et al [42]. The T cell subtypes and PBMC datasets were collected 

from https://support.10xgenomics.com/single-cell-gene-expression/datasets. To filter and 

normalize the data, we first identified genes that were detected in both training set and test set. 

The training set and the test set were then merged into one matrix based on the common genes. 

Next, each cell’s expression value was normalized to its total expression value and multiplied by 
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a scale factor of 10,000. The counts were increased by 1, and the log2 value was calculated. To 

filter out outlier genes, the genes with the highest 1% and lowest 1% expression were removed. 

The gene with the highest 1% and the lowest 1% standard deviation were also removed. Finally, 

the matrix was split into the training set and the test set. 

 

Neural network configuration 

We used a neural network that contains an input layer, 3 hidden layers, and an output 

layer. The input layer had a number of nodes equal to the number of genes in the training set. 

The 3 hidden layers had 100, 50 and 25 nodes, respectively. The output layer had a number of 

nodes equal to the number of cell types in the training set. Forward propagation was 

implemented as: 

𝑥[#] = 𝑔'𝑊[#]𝑥[#)*] + 𝑏[#)*]- 

Where x[i] represents the output of the ith layer (x[0] represents the input layer), b[i] represents the 

intercept of the ith layer, W[i] represents the weight matrix of the ith layer, and g represents the 

activation function used in the neural network. Specifically, for the activation function, the 

rectified linear unit (ReLU) function was used for the input and hidden layers, which is defined 

as: 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

For the output layer, the softmax function was used, which is defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥[<]) = 	
exp	(𝑥[<])

∑ exp	'𝑥[<]-B
<C*

 

Where x[j] represents the jth element of the input vector for the output layer, which has k 

elements, representing a total of k cell types in the training set. For the loss function, we used the 

cross-entropy function, which is defined as: 
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𝐻(𝑦F, 𝑦) =GH𝑦[<]𝑙𝑜𝑔'𝑦′[<]- + '1 − 𝑦[<]-𝑙𝑜𝑔'1 − 𝑦′[<]-M
B

<C*

 

Where vector y represents the true label for the cell, y[j] is defined to be 1 if the cell is the jth cell 

type, and the other elements in y are defined to be 0. y' represents the output of the output layer, 

and y'[j] represents the posterior probability that the cell is the jth cell type. L2 regularization was 

added to the loss function. 

 

Parameters used in the neural network 

The neural network model was implemented using TensorFlow 

(https://www.tensorflow.org), and the code was written in python. The parameters were 

initialized with Xavier initializer [43]. The starting learning rate was set to 0.0001 with staircase 

exponential decay, the decay rate was set to 0.95, and the decay step was set to 1000. This means 

that after every 1000 global steps, the learning rate would be the original learning rate multiplied 

by 0.95. 50 epochs were used to train the neural network with a mini batch size of 128, which is 

the number of samples used in training at every global step. The L2 regularization rate was set to 

0.005. 

 

Unsupervised single cell analysis 

To identify different cell types and find signature genes for each cell type, Seurat [44] 

was used to analyze the digital expression matrix generated by scRNA-seq. Specifically, in 

Seurat, cells with less than 1000 unique molecular identifiers (UMIs) and genes detected in less 

than 10 cells were first filtered out. Second, highly variable genes were detected and used for 

further analysis. Third, the data was scaled for sequencing depth of each cell. Fourth, principle 
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component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE) were used to 

reduce the dimension and plot the data on a two-dimensional graph. Lastly, a graph-based 

clustering approach was used to cluster the cells, then signature genes were found and used to 

define cell type for each cluster. 

 

Results 

Overview of the neural network 

We used a neural network with 3 hidden layers, each containing 100, 50 and 25 nodes, 

respectively (Figure 1-3). For the activation functions, we used the softmax function for the 

ouput layer and the rectified linear unit (ReLU) function for the other layers. We used the cross-

entropy function as the loss function. The neural network model was implemented using 

TensorFlow, and the code was written in python. We trained the neural network on 6 Intel(R) 

Xeon(R) CPU E5-2660 v3 nodes, and the training process took 0.5 minute to complete with 

1000 cells, 11 minutes with 32,000 cells and 21 minutes with 56,000 cells. The maximum 

memory used in training with 56,000 cells was 18 GB. The code and datasets used in this study 

are available at https://github.com/mafeiyang/ACTINN. 

 

ACTINN model for murine cell types 

We used 2 datasets from the Tabula Muris Consortium (The Tabula Muris Consortium. 

2018) to train and test our neural network. The datasets contain 100,605 cells from 20 mouse 

organs, and were sequenced by two distinct techniques, 10X Genomics (10X) and Smart-seq2 

(SS2). To ensure we are using cells with high quality, we filtered out cells with less than 300 

detected genes, clustered the cells, and identified marker genes for each cluster using Seurat. The 
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details of the Seurat analysis can be found in the methods section. We manually assigned cell 

types for each cluster based on canonical markers (Figure 3-1A). To make the analysis easier to 

interpret, we merged similar cell types into one single cell type. For example, we merged B cells, 

naïve B cells, immature B cells, pro-B cells and late pro-B cells from the TMA datasets into B 

cells. We focused on 12 cell types and selected cells that have the same labels between our 

analyses and the Tabula Muris Consortium’s. This process resulted in 56,112 cells (Figure 3-1B). 

Cells processed by 10X have a median of 4,787 unique molecular identifiers (UMIs) and 1,558 

genes detected, and cells processed by SS2 have a median of 623,799 UMIs and 2,448 genes 

detected. 

To test the robustness of our neural network’s performance, we first trained and tested it 

on cells processed by each scRNA-seq platform separately. To this end, we randomly sampled 

3000 cells for testing, and used the remainder of cells for training. We repeated this process 10 

times, and the average training accuracies for the 10X dataset and the SS2 dataset were 99.997% 

and 99.963%, respectively, and the average testing accuracies were 99.883% and 99.660%, 

respectively (Figure 3-1D). These results show that our neural network can achieve very high 

accuracy when training and testing on datasets generated by the same technique. 

 

ACTINN overcomes batch effects introduced by different techniques 

Different scRNA-seq techniques can introduce significant batch effects [45] with the 

same cell types clustering separately due to technical artifacts (Figure 3-1C). To test our neural 

network’s performance accounting for the batch effects introduced by different techniques, we 

trained it on cells processed by one platform and tested it on cells processed by the other. We 

first trained the neural network on all the 10X cells and tested in on all the SS2 cells. The 
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training accuracy was 99.997% and the testing accuracy was 98.625%. Among the 288 

incorrectly predicted cells, 118 monocytes were predicted as B cells, 64 monocytes were 

predicted as epithelial cells, 47 NK cells were predicted T cells (Supplementary Table 3-1). We 

then trained the neural network on the SS2 dataset and tested it on the 10X dataset. The training 

accuracy was 100% and the testing accuracy was 99.195%. Among the 283 incorrectly predicted 

cells, 150 endothelial cells were predicted as epidermis, 46 T cells were predicted as NK cells, 

and there were several other mispredictions (Supplementary Table 3-2). 

 

Early stopping prevents overfitting of the training set 

To prevent overfitting the parameters on the training set, we randomly sampled 5,000 

cells from the 10X dataset and 5,000 cells from the SS2 dataset. We trained the neural network 

on the 10X cells and tested it on the SS2 cells. During the training process, we recorded the 

accuracy and the cost after each epoch. The accuracy was defined as the percentage of cells 

whose cell type was correctly predicted, and the cost was the output of the cost function after 

each epoch. We found that the training accuracy saturated early (5 epochs), and the testing 

accuracy saturated at around 50 epochs (Figure 3-1E), and the cost decreased very slowly after 

50 epochs (Figure 3-1F). These results indicate that early stopping can be used to reduce training 

time and prevent overfitting. 

 

Cell type prediction using the mouse cell atlas 

Since the cell types from the two mouse cell atlas datasets can be accurately predicted, 

we combined the two datasets and used the combined dataset as the reference to predict cell 

types for other datasets. We first tried to predict cell types for a dataset that contains flow 
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cytometry sorted leukocytes from mouse aorta [42]. All cells were predicted as leukocytes except 

for 1 erythrocyte, which we think is a doublet of an erythrocyte and B cell as high expression of 

hemoglobin genes was detected (Figure 3-2A). We also carried out unsupervised analysis on the 

dataset and clustered the cells using Seurat. Then we used the canonical markers to assign the 

cell types for each cluster (Figure 3-2B). Most cells had the same cell type assignment by the two 

methods. However, our neural network detected some natural killer (NK) cells, which were in 

the same cluster with the T cells, and were assigned as T cells in the unsupervised clustering. We 

checked the expression of CD3D, CD8A and GZMA (Figure 3-2C), and found no expression of 

CD3D and CD8A, but high expression of GZMA in the NK cells, which suggests that these are 

likely NK cells. To test if ACTINN produces consistent results from run to run, we trained the 

neural network on the combined TMA dataset, tested it on the mouse leukocytes dataset, and 

repeated this process 10 times. We found that most of the cells were assigned the same label 

across all 10 runs (Supplementary Figure 3-1A), and the frequency for each cell type was also 

consistent between different runs (Supplementary Figure 3-1B). 

It is generally thought that human and mouse share similar cell types, and the same cell 

type from human and mouse share similar expression profiles. To test this, we trained our neural 

network on the mouse cell atlas datasets and used the parameters to predict the cell types for a 

human peripheral blood mononuclear cell (PBMC) dataset. We found 4 main populations in the 

PBMC dataset, namely, B cells, monocytes, NK cells and T cells (Figure 3-2D). We plotted the 

canonical markers for these 4 populations (Figure 3-2E) and found that the predicted cell types 

matched the expected marker expression. These results suggest that the mouse cell atlas datasets 

can be used as a reference to identify cell types for both human and mouse cells. 
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ACTINN accurately identifies cell types not in the reference 

An scRNA-seq experiment may be performed on tissues where not all the cell types in 

the data of interest are included in the reference dataset. If a cell cannot be classified as a known 

cell type in the training data, we would label it “uncertain”. To test if ACTINN can identify cell 

types that are not in the reference, we trained the neural network on the TMA datasets and tested 

it on the mouse leukocytes plus 109 mouse nerve cells (the nerve cells are not in the training 

data). We output the probabilities for each cell being one of the cell types in the training data, 

and labelled the cell “uncertain” if its highest probability is smaller than 0.95. We found that 

most of the B cells, T cells, NK cells, monocytes and granulocytes were assigned correctly 

(Supplementary Figure 3-2A). By contrast, 105 out of 107 nerve cells were assigned “uncertain” 

(Supplementary Figure 3-2B). These results show that ACTINN is able to identify cell types that 

are not in the training dataset. 

 

ACTINN accurately predicts cell subtypes 

Although it is relatively easy to distinguish different cell types in scRNA-seq using the 

unsupervised clustering methods, it is more difficult to further divide one cell type into cell 

subtypes. Here, we collected 5 publicly available datasets [46], each containing one flow 

cytometry sorted T cell subtype. We merged these datasets and selected the cells that have the 

same labels between our analyses and the flow cytometry sorting, and then used these cells as a 

reference for the neural network. We then clustered the selected cells and identified markers 

(Figure 3-3A and 3-3B) for each sub cell type using Seurat. For the test set, we used the T cells 

from the human PBMC datasets mentioned above. 
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To test our neural network’s ability to predict cell subtypes, we trained it on the T cell 

subtype reference, and predicted the subtypes for the T cells from the PBMC dataset (Figure 3-

3D). We then identified marker genes for each predicted subtype. As expected, the marker genes 

matched the ones from the reference (Figure 3-3E). These results show that our neural network 

can be used to accurately identify cell subtypes. We found that the subtypes predicted by the 

neural network did not perfectly match the cell types associated with the Seurat clusters (Figure 

3-3C). Some clusters contained different subtypes and some subtypes were composed of several 

clusters. We think the difference was influenced by two factors: 1. Unsupervised clustering 

considers all variance in the data, while the neural network is trained to find the difference 

between the subtypes; 2. It is difficult to set the parameters optimally for the unsupervised 

analysis, which can result in multiple cell types in one cluster or multiple clusters for one cell 

type. 

 

Comparison to other cell type identification tools 

As the field of scRNA-seq is evolving rapidly, new ideas and methods are being 

published frequently. Several supervised scRNA-seq cell type identification methods were 

proposed recently. SuperCT [47] uses a neural network, CaSTLe [48] uses XGboost, and 

SingleCellNet [49] uses a random forest to annotate cell types in scRNA-seq experiment. We 

found that these 3 methods convert the expression values to binary signals (SuperCT and 

XGboost) or 4 categories (CaSTLe) before training the data. This conversion may significantly 

decrease the complexity of the expression data, which makes it difficult to distinguish between 

small changes in expression. We compared the performance of the 3 methods to ACTINN in sub 

cell type identification.  We trained CaSTLe and SingleCellNet using the T cell subtype 



 48 

reference, and trained SuperCT on its human cell reference as it does not allow user defined 

reference. Then we predicted the subtypes for the T cells from the PBMC dataset. CaSTLe and 

SingleCellNet failed to define most of the naïve T cells and regulatory T cells, and SuperCT 

failed to distinguish T cell subtypes (Supplementary Figure 3-3ABCD). Based on the predictions 

and marker gene expression, we manually set the labels for the T cell subtypes (Supplementary 

Figure 3-3E). Then we calculated the prediction accuracy for ACTINN (73%), CaSTLe (59%) 

and SingleCellNet (57%) (Supplementary Figure 3-3F).  These results show that ACTINN 

outperforms the 3 tools in finding small changes between subtypes. 

 

Discussion 

scRNA-seq provides high resolution profiling of the transcriptomes of single cells. 

Typically, the first step in scRNA-seq analysis is to assign each cell a cell type based on our 

prior knowledge of marker genes. Current methods for cell type assignment first cluster the cells 

in an unsupervised manner and rely on the canonical markers to identify the cell types for each 

cluster. However, this approach has several limitations, including the fact that the clusters may 

not optimally segregate single cell types, and certain cell types may not have previously 

characterized markers. Moreover, these methods are computationally intensive, especially when 

the number of cells becomes large. To render cell type identification in scRNA-seq more 

efficient, we employed a neural network, trained it on cells with predefined cell types, and used 

it to predict cell types for new datasets.  

We first obtained and cleaned two datasets from the Tabula Muris Consortium, then 

trained and tested our neural network on these datasets with or without batch effect introduced 

by different scRNA-seq platforms. The training accuracy always approached 100%, and the 
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testing accuracy was around 99.8% within a platform and 99.0% when testing and training are 

performed across different platforms. As the cell types in the two Tabula muris atlas datasets can 

be mutually predicted using our neural network, we merged them and used the combined 

datasets as the reference to predict cell types for other datasets. The predicted cell types were 

well matched with the cell types assigned using the canonical markers for both the mouse and 

human datasets. We also trained and tested the neural network on 5 T cell subtypes and found 

that the predicted subtypes showed the same markers as the reference subtypes, which suggests 

that our neural network can be used to predict sub cell types as well. 

Compared to the traditional unsupervised methods used for cell type identification, our 

neural network has the following advantages: 1. It uses all the genes to capture the features for 

each cell type instead of relying on a limited number of canonical markers. 2. It focuses the 

analysis on the signal associated with the variance between cell types, while unsupervised 

clustering tends to be affected by other sources of cell type independent variation (i.e. platform 

or cell cycle). 3. It requires no background knowledge of cell type markers, while the 

unsupervised method requires users to have prior knowledge of canonical markers for each cell 

type in their data. 4. It is much more computationally efficient than the traditional approach. 

Moreover, users can subsample the reference cells to make the computation of the neural 

network less compute intensive and more memory efficient. We also compared ACTINN to 3 

other cell type prediction tools, and the results showed that ACTINN performs better in finding 

small changes between subtypes. 

There are some aspects of our approach that could be improved in the future. As the 

neural network is supervised, the quantity and quality of the reference data are critical. We 

anticipate that with time more cell types from larger atlases should be used to train a more 
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comprehensive neural network. Also, better pairing of reference and test sets will undoubtedly 

improve performance. For example, the soon to be developed human cell atlas should be used to 

predict human cell types instead of the mouse cell atlas. Nonetheless, we showed that even with 

the current reference data our neural network is computationally efficient and accurate, and 

should improve cell type identification pipelines. 
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Figure 3-1. Training and testing of the neural network on the Tabula Muris Atlas.  

(A) Cell types obtained from the TMA.  

(B) Number of cells obtained for each cell type from each technique.  

(C) The same cell type tends to cluster separately by techniques.  

(D) Training and testing accuracy of the neural network when trained and tested using cells 

processed by the same technique.  

(E) Training and testing accuracy after each epoch when trained with 5,000 10X cells and tested 

with 5,000 SS2 cells.  

(F) Cost after each epoch when trained with 5,000 10X cells and tested with 5,000 SS2 cells. 
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Figure 3-2. Neural network predicts cell types for human and mouse datasets.  

(A) Cell types predicted by the neural network for the mouse leukocyte dataset.  

(B) Cell types identified by unsupervised clustering and canonical markers for the mouse 

leukocyte dataset.  

(C) Violin plots showing 3 genes’ expression level in the NK and T cells from the mouse 

leukocytes.  

(D) Cell types predicted by the neural network for the human PBMC dataset.  

(E) TSNE plots showing 4 marker genes’ expression for the human PBMC dataset. 
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Figure 3-3. Neural network predicts sub cell types. 

(A) TSNE plots showing 6 maker genes’ expression for the reference T cell subtypes.  

(B) T cell subtypes obtained to train the neural network.  

(C) T cells from the human PBMC were grouped into 7 clusters by the unsupervised method.  

(D) Subtypes predicted for the T cells from the human PBMC.  

(E) Dot plot showing the expression of 6 genes for the predicted subtypes, dot size represents the 

percentage of cells expressing the gene, color scale represents the expression level of the gene. 
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Supplemental information 

 

 

 

Supplementary Figure 3-1. ACTINN produce consistent results from run to run.  

(A) Number of cell types predicted for each cell across 10 runs. 

(B) Frequency for each cell type in each run. 
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Supplementary Figure 3-2. ACTINN accurately identifies cell types not in the reference.  

(A) Cell types identified by unsupervised analysis. 

(B) Cell types identified by ACTINN. A cell was labelled “uncertain” if its highest probability is 

smaller than 0.95. 
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Supplementary Figure 3-3. T cell subtypes predicted by 4 tools.  

(A) ACTINN. (B) CaSTLe. (C) SingleCellNet. (D) SuperCT.  

(E) True label inferred by all the predictions and gene expression.  

(F) Accuracy for the predictions. 

  



 60 

 

Supplementary Table 3-1. Predicted cell type compared to original cell type when training 

on the 10X dataset and predicting on the SS2 dataset  

Cell Type Predicted Type Number 
B cell B cell 3437 
Cardiac Muscle Cardiac Muscle 123 
Endothelial cell Endothelial cell 3858 
Epidermis Epidermis 2065 
Epithelial cell Epithelial cell 3421 
Erythrocyte Erythrocyte 45 
Granulocyte Granulocyte 744 
Hepatocyte Hepatocyte 388 
Monocyte Monocyte 1416 
NK cell NK cell 215 
Stromal cell Stromal cell 2803 
T cell T cell 2143 
Cardiac Muscle Epidermis 2 
Cardiac Muscle Erythrocyte 2 
Cardiac Muscle Stromal cell 1 
Endothelial cell Erythrocyte 1 
Epidermis Epithelial cell 1 
Epithelial cell B cell 1 
Erythrocyte B cell 2 
Erythrocyte Endothelial cell 10 
Erythrocyte Epidermis 2 
Erythrocyte Epithelial cell 8 
Erythrocyte Monocyte 3 
Erythrocyte NK cell 1 
Erythrocyte Stromal cell 3 
Erythrocyte T cell 1 
Granulocyte B cell 1 
Granulocyte Monocyte 5 
Monocyte B cell 118 
Monocyte Epithelial cell 64 
Monocyte Granulocyte 1 
Monocyte NK cell 3 
NK cell T cell 47 
Stromal cell Endothelial cell 1 
Stromal cell Epithelial cell 2 
Stromal cell Erythrocyte 1 
T cell B cell 4 
T cell NK cell 3 
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Supplementary Table 3-2. Predicted cell type compared to original cell type when training 

on the SS2 dataset and predicting on the 10X dataset. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell Type Predicted Type Number 
B cell B cell 8516 
Cardiac Muscle Cardiac Muscle 60 
Endothelial cell Endothelial cell 3641 
Epidermis Epidermis 7492 
Epithelial cell Epithelial cell 1159 
Erythrocyte Erythrocyte 130 
Granulocyte Granulocyte 1096 
Hepatocyte Hepatocyte 1764 
Monocyte Monocyte 1244 
NK cell NK cell 1016 
Stromal cell Stromal cell 3164 
T cell T cell 5601 
B cell Monocyte 3 
Endothelial cell B cell 1 
Endothelial cell Epithelial cell 1 
Endothelial cell Stromal cell 2 
Epithelial cell B cell 3 
Epithelial cell Epidermis 150 
Epithelial cell Erythrocyte 1 
Epithelial cell Monocyte 3 
Erythrocyte B cell 5 
Erythrocyte Granulocyte 15 
Erythrocyte Monocyte 2 
Erythrocyte T cell 3 
Granulocyte T cell 1 
Monocyte Granulocyte 12 
NK cell B cell 13 
NK cell Stromal cell 20 
Stromal cell Endothelial cell 1 
T cell Monocyte 1 
T cell NK cell 46 
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Chapter 4 – Single Cell Transcriptomics Identifies a Cellular Ecosystem in Leprosy Lesions 

Encoding an Antimicrobial Response Network 

 

Abstract 

Granulomas are thought to be complex cellular responses comprised predominantly of 

macrophages and lymphocytes for containing and killing invading pathogens. Here, we 

investigated the antimicrobial response of single cells in human leprosy granulomas by studying 

reversal reactions (RR), a dynamic process in which some patients with the disseminated and 

immunologically unresponsive form of the disease, lepromatous leprosy, transition to a 

reactional state that is characteristic of tuberculoid leprosy, the self-limiting form able to 

generate an effective antimicrobial response. Using single cell RNA-seq to compare the 

granulomatous response in RR vs. lepromatous leprosy lesions, we were able to cluster cells into 

subtypes of T cells, myeloid cells, keratinocytes (KC), endothelial cells (EC) and fibroblasts 

(FB). We identified 1,124 genes encoding proteins known to be involved in the antimicrobial 

response (AMGs) enriched in RR cells across cell types, most strongly regulated by IFN-g. In 

addition, we identified pseudotime trajectories for macrophages and KC that mapped the 

progression of cells from lepromatous to RR, revealing IL-1b as a key upstream regulator of 

both. We constructed an granuloma ecosystem by integrating the IFN-g and IL-1b antimicrobial 

targets with the cell-cell co-abundance in lesions, which revealed that antimicrobial pathways in 

granulomas extend beyond the interaction simply of T cells and macrophages to include 

activated keratinocytes and inflammatory fibroblasts.  

 

 



 63 

Introduction 

The hallmark of the chronic inflammatory response to a foreign substance that has 

resisted destruction by an acute inflammatory response is the granuloma. In the most cited article 

on granulomas, Gordon defined granulomas as structures “which are formed by the immune-

mediated recruitment of white blood cells, and particularly rich in macrophages” [10]. In the 

context of infectious diseases, the function of the granuloma is to sequester and degrade 

microbial pathogens that have evaded the early immune response.  

Leprosy offers an attractive model to investigate the mechanisms by which the human 

immune system combats intracellular bacteria as the disease presents as a clinical/immunologic 

spectrum [11]. Because it manifests as a spectrum of disease in skin, the dynamics are accessible 

to study, in contrast to tuberculosis granulomas. At one end of the disease spectrum, tuberculoid 

leprosy typifies the host’s antimicrobial response, which controls the pathogen: there are few 

lesions; Mycobacterium leprae bacilli are rare; and patients eliminate the infection. At the 

opposite end of the spectrum, lepromatous leprosy (L-lep) represents susceptibility to 

disseminated infection, with numerous skin lesions and abundant bacilli. The disease spectrum is 

dynamic, as patients may undergo a reversal reaction (RR), in which patients generally upgrade, 

either spontaneously or during chemotherapy, from the lepromatous to the tuberculoid pole. The 

structure of granulomas is distinct across the spectrum of leprosy. The granulomas in tuberculoid 

leprosy contain a core of mature macrophages with occasional multinucleated giant cells. These 

granulomas are organized with lymphocytes forming a mantle zone at the periphery of the 

granuloma. Granulomas in RR lesions are histologically similar to those in tuberculoid leprosy 

with the presence of intercellular edema. In lepromatous leprosy, the granulomas are 
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disorganized, immature lipid-laden macrophages are prominent with lymphocytes scattered 

throughout. 

The study of leprosy lesions has provided insight regarding the host immune response to 

intracellular bacteria and the architecture of granulomas. Through various approaches, it has 

been possible to define functional subpopulations of human T cells [12-15] and macrophages 

[16], their microanatomic distribution as well as the patterns of cytokine secretion that influence 

the outcome of infections caused by pathogenic mycobacteria [17-20].  

Given that the resolution of the granulomatous response requires destruction of the 

foreign invader, the antimicrobial mechanisms that result in the death of the pathogen are central 

to understanding how granulomas contribute to host defense. A few pathways have been 

identified by the study of human cells that can lead to an antimicrobial activity against 

intracellular mycobacteria. Through activation via TLRs and secretion of IFN-g, the innate and 

adaptive immune systems trigger the vitamin D-dependent induction of the antimicrobial 

proteins encoded by CAMP and DEFB4A [16, 21, 22]. T cells release antimicrobial proteins 

encoded by GNLY and IL26, which can enter infected macrophages and exert a direct 

antimicrobial activity [13, 14, 23, 24]. These human pathways are not present in mice, which 

utilize other mechanisms such as the release of nitric oxide to kill mycobacteria. The advent of 

scRNA-seq provides an opportunity to elucidate the cell-cell networks that define antimicrobial 

responses at the site of infection. We used this approach to study and compare the immune 

responses in RR vs. L-lep patient skin lesions to gain insight into mechanisms of host defense 

used by granulomas to eliminate an intracellular bacterium.  
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Materials and Methods 

Processing of Human Skin 

Skin biopsy specimens were obtained from patients with leprosy at University of 

Southern California and Brazil. Patients were classified according to standard clinical and 

histologic criteria. Five patients with reversal reaction are designated here as RR1, RR2, RR3, 

RR4 and RR5. The other five are designated here as L-lep1, L-lep2, L-lep3, L-lep4 and L-lep5, 

of which four were classified as LL and one as BL.  

For each sample, a 4-mm punch biopsy was obtained following local anesthesia and was 

placed immediately into 10 mL of RPMI on ice. Initially, skin biopsies were incubated in 5mL of 

a 0.4% Dispase II solution (Roche Inc.) at 37°C for 1 hour with vigorous shaking. The dermis 

and epidermis were then carefully separated using forceps and transferred to separate tubes for 

additional processing. Epidermal samples were placed in 3mL of 0.25% Trypsin and 10U/mL 

DNAse for 30 minutes at 37°C. Trypsin was neutralized with 3mL of fetal calf serum (FCS), and 

the tissue was passed through a 70-micron nylon cell strainer which was washed with 5mL of 

RPMI. Epidermal cells were then pelleted at 300xg for 10 minutes and counted. Dermal samples 

were minced with a scalpel and incubated in a solution of 0.4% collagenase 2 and 10 U/mL 

DNAse for 2 hours at 37°C with agitation. The cell suspension was passed through a 70-micron 

cell strainer and washed with 5mL of RPMI. Cells were pelleted at 300xg for 10 minutes, 

resuspended in 1mL of RPMI and counted. MACS enrichment for CD1a+ cells was performed 

for epidermis from three RR patients. 
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Sequencing and alignment 

Libraries were sequenced on an Illumina Nova-Seq (Illumina, San Diego, CA) as 50bp 

paired end reads and were converted from bcl files to fastq files using bcl2fastq. We use Nextera 

N700 indices to identify individual samples. The alignment was performed using Drop-seq 

pipelines (version 1.12) previously described [50]. Briefly, the raw reads were aligned to the 

concatenated human (hg38) and M. leprae genome using STAR [29]. Each read was tagged with 

a 12bp barcode and 8bp unique molecular identifier (UMI). After alignment, the reads were 

grouped by the barcodes and deduplicated using the UMIs. The number of UMIs was then 

counted for each gene in each cell to generate the digital expression matrix (DEM). 

 

Removal of ambient RNA contamination 

Ambient RNA contamination was removed using SoupX [51]. Specifically, we examined 

the distribution of UMIs for each gene and selected the genes for which the distribution most 

closely approximated a uniform distribution. For each sample, we calculated an array-specific 

“soup” profile among barcodes below the UMI threshold. To calculate estimated per-cell 

contamination fractions, we manually selected genes observed to be bimodally expressed across 

cells, which suggest that these genes are predominantly expressed in a single cell type but are 

observed at low levels in other cell types for which endogenous expression would not be 

expected. For each array, we removed individual transcripts most likely to be contamination 

from each single cell based on the estimated contamination fraction. Specifically, individual 

transcripts were sequentially removed from each single cell transcriptome until the probability of 

subsequent transcripts being soup-derived was less than 0.5 to generate a background-corrected 

UMI matrix for each Seq-Well array. 
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Cell clustering and cell type annotation 

Digital expression matrices for human genes from all 10 samples were merged, and the R 

package Seurat [44] was used to cluster the cells in the merged matrix. Cells with less than 300 

genes detected or more than 50% mitochondrial gene expression were first filtered out as low-

quality cells. Genes detected in less than five cells were removed as low-abundance genes. The 

gene counts for each cell were divided by the total gene counts for the cell and multiplied by the 

scale factor 10,000, then natural-log transformation was applied to the counts. The 

FindVariableFeatures function was used to select 2,000 variable genes with default parameters. 

The ScaleData function was used to scale and center the counts in the dataset. Principal 

component analysis (PCA) was performed on the variable genes, and 13 PCs (based on the 

elbow point of variance explained by each PC) were used for cell clustering (resolution = 0.5) 

and Uniform Manifold Approximation and Projection (UMAP) dimensional reduction. The 

cluster markers were found using the FindAllMarkers function, and cell types were manually 

annotated based on the cluster markers. To generate the heatmap showing the cell type markers, 

the top 100 cells with the highest number of UMI detected were plotted for each cell type. The 

total number of M. leprae UMIs were calculated for each cell and plotted for each sample. 

 

Cell type sub-clustering  

We performed sub-clustering on endothelial cells, fibroblasts, keratinocytes, myeloid 

cells and T cells. The same functions described above were used to obtain the sub-clusters. To 

choose the number of PCs, the rank of PCs based on the percentage of variance explained was 

plotted, and the elbow point was chosen as the number of PCs to use in cell clustering (resolution 

= 0.6) and UMAP dimension reduction. Clusters that were defined exclusively by mitochondrial 
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gene expression, indicating low quality, were removed from further analysis. To generate the 

heatmap with marker genes for each sub-cluster, the top 100 sub-cluster marker genes with the 

highest average log fold change were plotted, and five representative genes were labelled. 

 

Interferon signature enrichment analysis 

Supervised analyses were performed to identify Type I and Type II IFN regulated genes 

as described previously [20, 52-54]. Differentially expressed genes in TC1 (RR CTL) and TC2 

(L-lep CTL) were identified using a Wilcoxon rank sum test with adjusted p value cutoff at 0.05. 

A list of genes specifically induced by only IFN-a/b or IFN-g was derived from the gene 

expression profile data of IFN-treated human PBMC [55]. 148 IFN-a/b specific genes and 33 

IFN-g specific genes were identified, which were overlapped with TC1 and TC2 specific genes 

to determine the differential expression of IFN-regulated genes. Hypergeometric test was used to 

determine the enrichment level, a p value small than 0.05 was considered to be significantly 

enriched. 

 

Pseudo-time analysis 

Pseudo-time trajectories for macrophage and keratinocyte sub-clusters were constructed 

using the R package Monocle [56]. The raw counts for cells in the intended sub-clusters were 

extracted and normalized by the estimateSizeFactors and estimateDispersions functions with the 

default parameters. Genes with average expression larger than 0.5 and detected in more than 10 

cells were retained for further analysis. Variable genes were determined by the 

differentialGeneTest function with a model against the sub-cluster identities. The top 500 

variable genes with the lowest adjusted p value were used to order the cells. The orders were 
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determined by the orderCells function, and the trajectory was constructed by the 

reduceDimension function with default parameters. Differentially expression analysis was 

carried out using the differentialGeneTest function with a model against the pseudotime, and 

genes with an adjusted p value smaller than 0.05 were clustered into 6 patterns and plotted in the 

heatmap. 

 

Antimicrobial gene analysis 

A list of 1,404 genes were curated by searching for genes with “antimicrobial” as a 

keyword in GeneCards (https://www.genecards.org/). To study the difference of antimicrobial 

response in L-lep and RR, the cell types were split into L-lep and RR groups. To measure the 

relative abundance of anti-microbial genes (AMGs), the total expression of each AMG was 

calculated for each L-lep and RR cell type. The AMG expression for the L-lep cell types was 

normalized by the total number of L-lep cells, and the AMG expression for the RR cell types was 

normalized by the total number of RR cells. The z scores were calculated across all L-lep and RR 

cell types for each AMG. A cutoff of z score > 3 was applied to obtain the specific AMGs for 

each cell type. A list of 1,124 AMGs was obtained as specific to at least one RR cell type. 

Ingenuity Pathway Analysis was applied to the 1,124 AMGs, and the upstream regulators were 

ranked by p value. To generate the circos plots, a list of direct antimicrobial genes was obtained 

from The Antimicrobial Peptide Database [57], and those regulated by IL1B or IFNG were 

included. 
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Cell type composition analysis 

To calculate the sample composition based on cell type, the number of cells for each cell 

type from each sample were counted. The counts were then divided by the total number of cells 

for each sample and scaled to 100 percent. The same procedures were applied to calculate the 

sample composition for each subtype in endothelial cells, fibroblasts, keratinocytes, myeloid 

cells and T cells. The cell type (including the subtype) with more than 70% L-lep (or RR) 

composition was named L-lep (or RR) specific. The cell type compositions were combined, and 

the correlation matrix was generated by calculating the correlation for each pair of cell types. 

Hierarchical correlation was performed on the correlation matrix and plotted in the heatmap, 

with L-lep specific cell types were labelled in red and RR specific in blue. To construct the 

antimicrobial networks, the correlation coefficient was filtered to be at least 0.5 between the 

linked cell types, and the number of AMG links was filtered to be at least 10. The connections 

were directed from the cell types that express the upstream regulator to the cell types that express 

the AMGs. 

 

Results 

Major cell types in leprosy lesions 

To study the transcriptional changes between RR and L-lep, we performed single cell 

RNA sequencing by Seq-Well on skin biopsy specimens from five RR and five L-lep patients. 

After quality filtering, we retained 21,318 cells, with an average 741 genes and 3,556 transcripts 

per cell. To study the heterogeneity of these cells, we selected variable genes, performed UMAP 

dimension reduction and cell clustering using the R package Seurat. We then ran differential 

expression analysis to find the cluster markers and overlapped the cluster markers to canonical 
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cell type defining signature genes. Ultimately, we recovered 12 primary cell types across all 10 

samples (Figure 4-1A). These annotated cell types include: T cells (TC; CD3D and TRBC2), B 

cells (BC; MS4A1 and CD79A), plasma cells (PLC; IGHG1 and IGHG3), myeloid cells (ML; 

C1QA and LYZ), Langerhans cells (LC; CD207 and CD1A), mast cells (Mast; CPA3 and CTSG), 

keratinocytes (KC; KRT1 and KRT10), fibroblasts (FB; COL1A1 and DCN), smooth muscle cells 

(SMC; ACTA2 and TAGLN), endothelial cells (EC; PECAM1 and VWF), eccrine gland cells 

(ECG; DCD and MUCL1) and melanocytes (MLNC; DCT and PMEL) (Figure 4-1C). 

The major cell types, including T cells, myeloid cells, keratinocytes, endothelial cells and 

fibroblasts were found in both the RR and the L-lep lesions (Figure 4-1B, 1D). Although B cells 

were found in both RR and L-lep lesions, plasma cells were derived predominantly from L-lep 

lesions. Given that LC are more frequent in RR than L-lep lesions [12], we immunoselected 

CD1a+ cells from the epidermis from three RR patients, adding these back to the dermal cells, 

accounting for the high frequency of LC from these RR lesions. M. leprae reads were most 

prevalent in the multibacillary L-lep lesions, but also detected at a lower level in one RR lesion 

(Figure 4-1E, Supplementary Figure 4-1).  

 

Major cell sub-clusters in leprosy lesions 

We detected seven T cell sub-clusters, two predominantly derived from RR lesions and 

one from L-lep lesions (Figure 4-2A). T cell sub-cluster 0 (TC0) express the classic Th17 cell 

markers RORC, RORA, RBPJ and IL23R (Figure 4-2B, 2C), although the expression levels of the 

major Th17 cytokine genes were low. TC1 and TC2 are designated as cytolytic T lymphocytes 

(CTL) as they both contain CD8A, GZMB and PRF1; TC1 was derived mainly from RR lesions 

(RR CTL) and TC2 was mainly derived from L-lep lesions (L-lep CTL) (Figure 4-2D). We noted 
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several type I IFN downstream genes in L-lep CTL including IFI44L, MX1, IRF1 and OAS3. We 

ran differential expression analysis between L-lep CTL and RR CTL, and performed enrichment 

analysis on the differentially expressed genes using IFN signatures derived from activated human 

PBMC [20]. Genes up-regulated in L-lep CTL were significantly enriched in type I IFN 

downstream signatures (Supplementary Figure 4-2). The remaining sub-clusters contained a 

mixture of cells from RR and L-lep including TC3 (TCM, T-central memory, IL7R and CCR7). 

TC4 (naïve, LEF1, JUNB), TC5 (Treg, FOXP3, CTLA4) and TC6 (antimicrobial CTL (amCTL), 

GZMB, PRF1 and GNLY) containing a mixture of tricytotoxic T cells (T-CTL) and gd T cells 

(Figure 4-2C).  

We previous described a functional subset of CTL, amCTL, expressing GZMB, PRF1 

and GNLY, that exert antimicrobial activity against intracellular M. leprae and correlate with 

protective immunity to tuberculosis and leprosy [58, 59]. In TC6, the expression of GZMB, 

PRF1 and GNLY, were greater in cells from RR vs. L-lep lesions, with the aggregation score for 

these three genes, the T-CTL score that characterizes amCTL, significantly greater in RR lesions 

(Figure 4-2E). IFNG was most strongly expressed by Th17 cells (TC0) and RR CTL (TC1) but 

was also present in L-lep CTL (TC2) and amCTL (TC6) (Figure 4-2C). Within cells from RR 

lesions, the number of IFNG-expressing cells was similar to the number of either GZMB+ or 

PRF1+ cells in RR CTL and amCTL, as well as the total CTL from both sub-types (Figure 4-2F). 

Strikingly, the number of IFNG-expressing cells was far greater than the GNLY+ amCTL for 

both the total CTL and RR CTL, but the number of IFNG+ and GNLY+ cells were equal in the 

amCTL (TC6). These data indicate that IFNG is a marker for all CTL, but is not a useful marker 

for estimating for amCTL, a smaller subset of CTL that express GNLY in addition to GZMB and 

PRF1 shown to kill infected cells and the intracellular bacteria within them.  
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We identified five myeloid sub-clusters, three predominantly derived from RR lesions 

(ML0, ML3, ML4) and two from L-lep lesions (ML1, ML2) (Figure 4-3A, 3B). ML0 is 

comprised of a mixture of dendritic cells (DC), with distinct subpopulations expressing CD1C 

and LAMP3 (Supplemental Figure 4-3). ML1 from L-lep lesions express type I IFN downstream 

genes including IFI44L, MX2 and IFIT3. ML2 from L-lep lesions are TREM2 MF based on 

expression of TREM2 and APOE. ML4 from RR lesions are M1-like MF, with LYZ, MMP9 and 

IL23A. ML3 was derived from three RR lesions and two L-lep lesion and appears to be a 

transitional population between ML2 and ML4 (Figure 4-3D), expressing genes from both sub-

clusters (Supplemental Figure 4-3). TREM2 and APOE expression, as well as a TREM2 score 

comprised of nine conserved genes from seven datasets [60-66], were highest in ML2, declining 

in ML3 and ML4 (Figure 4-3E, Supplemental Figure 4-3).  

Of seven keratinocyte sub-clusters, two were enriched in RR patients, KC3 (FLG+ 

granular layer KC) and KC4 (KRT14/15+ basal layer KC), and two enriched in L-lep patients, 

KC1 and KC5, both derived from spinous layer KC (Figure 4-4). KC0 (spinous-1 KC), KC2 

(supraspinous KC) and KC6 (hair follicle KC) were derived from both RR and L-lep samples.  

For fibroblasts, SFRP2+ FB (FB0) and CXCL2+ FB (FB2) were enriched in RR lesions, 

with two additional sub-clusters mainly derived from L-lep lesions (Supplementary Figure 4-4). 

The SFRP2+ FB sub-cluster, which expresses COL3A1, COL18A1 and COMP; have been shown 

to be involved in the deposition of extracellular matrix [67]. In addition, the CXCL2+ FB sub-

cluster expresses a number of inflammatory genes as specific marker genes including IL6, CCL2, 

CXCL3, CXCL8 and IL32, which displays a similar expression profile to the inflammatory 

fibroblasts detected in atopic dermatitis skin lesions [68]. Two FB sub-clusters were 
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predominantly derived from L-lep lesions. MGP+ FB (FB1) are a population of FB found in the 

reticular dermis. COL11A1+ FB (FB3) have also been reported in skin [67].  

Of six endothelial cell sub-clusters, LYVE1+ lymphatic EC (EC4) and HEY2+ EC (EC5) 

were mainly derived from RR lesions. MEOX2+ EC (EC3) were primarily found in L-lep lesions 

(Supplementary Figure 4-5); MEOX2 is an inhibitor of NF-�B activation in EC [69].  

 

Antimicrobial genes in RR lesions 

Given that leprosy RRs are associated with a reduction in viable M. leprae bacilli in 

lesions, we sought to determine the array of antimicrobial genes that were present in defined cell 

populations. We integrated a curated list of 1,404 genes known to encode proteins that contribute 

to antimicrobial responses (AMGs, antimicrobial genes) with the scRNA-seq data. To do so, we 

divided each cell type (including subtype) by RR vs. L-lep cells, and calculated the z score for 

expression of each gene across all cells of each type (Methods). This metric captures the total 

amount of each transcript by cell type in our lesions, which we believe is relevant for measuring 

the extent of the antimicrobial effect of a gene. We compared the sum of z scores for L-lep and 

RR cell types and found that RR cell types have a higher expression pattern for the AMGs 

(Figure 4-5A). We identified 1124 AMGs with a z score ≥3 in at least one RR cell type. A high z 

score indicates that these cells, in aggregate, produce relatively more of the specific transcript 

than other cell types. We identified the upstream regulators of the 1,124 AMGs using Ingenuity 

Pathways Analysis, with IFNG, TNF and IL1B having the highest enrichment scores (Figure 4-

5B). We then calculated the sum of the scores for the top 20 URs in L-lep and RR cell types and 

found that URs are significantly more highly expressed in RR (Figure 4-5C). 

 



 75 

Pseudotime analysis 

The curved linear shape of sub-clusters in both the myeloid and KC subpopulations 

suggested the linear transition of cells indicative of differentiation. By using Monocle to perform 

pseudotime analysis, we ordered the cells in TREM2 MF (ML2), transitional MF (ML3) and 

M1-like MF (ML4) into a linear progression, starting from L-lep enriched cells and ending with 

RR, which mirrors the clinical progression seen in patients that start at the lepromatous pole and 

subsequently develop RR (Figure 4-5D). Using a similar analysis on spinous-2 KC (KC1), 

supraspinous KC (KC2) and granular KC (KC3), we identified a pseudotime continuum from L-

lep to RR derived cells (Figure 4-5E).  

We hypothesized that the upstream regulators which trigger the antimicrobial response 

also induce cellular differentiation in lesions. To test this, we split the variable genes into six 

expression patterns for both macrophage and keratinocyte pseudotimes (Supplementary Figure 4-

6) and identified the upstream regulators for each expression pattern. We calculated a module 

score for each upstream regulator using the targets found in all six patterns, and calculated the 

correlation coefficient between the module score and the pseudotime. Of the top URs for the 

AMGs, only the target scores for IL1B were highly correlated with both the macrophage and 

keratinocyte pseudotime (R=0.63 and 0.83, respectively) (Figure 4-6F, 6G). The target scores for 

IFNG correlated with keratinocyte (R=0.84) but not macrophage pseudotime (R= 0.04). To this 

end, we selected for further study the IFNG and IL1B target genes, as IFNG had the highest 

enrichment score for the AMGs, and IL1B was not only a top upstream regulator of the AMGs 

but the expression of the IL1B target genes was highly correlated with both macrophage and 

keratinocyte pseudotimes.  
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Antimicrobial gene network and ecosystem 

To construct a gene network depicting the antimicrobial response in RR, we first 

determined the source of the two key upstream regulators. IFNG was detected (z score ≥3) in RR 

cells from Th17 cells (TC0) and RR CTL (TC1) and IL1B in RR cells from LC and DC (ML0) 

(Figure 4-6A). As such, our analysis reveals that source of IL1B and IFNG, which represent key 

upstream regulators of the antimicrobial response genes that mediate the innate and the adaptive 

immune responses respectively in restricting the infection. 

Next, we constructed circos plots to depict the interactions of the IL1B and IFNG 

expressing cells with the target AMG expressing cells (Figure 4-6B). For clarity, we limited the 

number of interactions to AMGs that encode proteins with direct antimicrobial activity and 

having a z score ≥3 in at least one RR cell type (Supplemental Figure 4-7 and 8). In view of the 

variable expression of the genes encoding the receptors for IL-1b and IFN-g in the scRNA-seq 

dataset, we inferred connections between the upstream regulators and these AMGs as identified 

using Ingenuity Pathway Analysis. IL1B was linked to 30 unique direct AMG targets with 42 

connections to RR cells, and IFNG was linked to 28 unique direct AMG targets with 44 

connections to RR cells. IL1B and IFNG shared 22 AMG targets, with 14 AMGs exclusive to 

only one of the upstream regulators. For both IL1B and IFNG, the majority of connections were 

to cell types that were predominantly associated with cells from RR lesions, and strikingly there 

were no connections to a cell type that was predominantly derived from L-lep lesions.  

We further explored the nature of cellular communication in leprosy lesions by 

determining the cell-cell interactions according to cell type co-abundance correlation. We 

reasoned that cells that interact are more likely to be present together with correlated abundance 

across lesions. Two major clusters were identified, with the RR and L-lep cell types forming 
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distinct patterns (Figure 4-6C). A major group in the RR branch contained LC, DC, Th17, RR 

CTL and M1-like MF. The L-lep branch included both B cell and Treg, although these cell types 

were composed of cells from both RR and L-lep lesions.  

Next, a cellular ecosystem for RR lesions was derived by combining the results from the 

upstream regulators to AMG connections with the cell-cell correlation map, including only cell-

cell co-abundance correlations ≥0.5 to limit the number of interactions (Figure 4-6D). DC 

expressing IL1B was abundantly linked by connections to AMG targets in LC, basal KRT14/15+ 

KC, CXCL2+ FB and Th17 cells, and most highly correlated with Th17 cells. LC was abundantly 

linked to AMG targets in CXCL2+ FB and Th17 cells, but also highly correlated with RR CTL, 

granular FLG+ KC and DC. The connections from the major IFNG-expressing cells, Th17 and 

RR CTL, were greatest to AMG targets in LC. Th17 cells were also robustly connected to AMGs 

in basal KRT14/15+ KC, with weaker connections to the other cell types. RR CTL was highly 

connected with AMG targets in CXCL2+ FB, but correlated by cell-cell abundance to LC, 

granular FLG+ KC and M1-like MF.  

Finally, we depict the connections associated with antibacterial responses between IL1B 

and IFNG with target AMGs in cells of co-abundance correlation ≥0.5 (Figure 4-7). We found 

that IL1B drives the differentiation of both MF and KC in RR. The clinical RR syndrome that 

develops in lepromatous patients is characterized by a change from immature to mature 

macrophages with a reduction in the number of intracellular bacilli. IL1B together with IFNG 

trigger an antimicrobial response including the induction of genes in MFs encoding enzymes 

and antimicrobial peptides that can kill bacteria. In addition, the innate system, including LC, 

DC, SFRP2+ FB, CXCL2+ FB and various KC subtypes, express genes encoding antimicrobial 

proteins as well as chemokines known to have a direct antimicrobial response. The adaptive T 
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cell response contributes to the antimicrobial response against intracellular bacteria in 

macrophage via amCTL that express GZMB, PRF1 and GNLY, as well as Th17 cells expressing 

IL26. Thus, the cellular ecosystem is a multifaceted highly interconnected system that acts to 

contain infection by an intracellular bacterium in leprosy through the engagement of innate and 

adaptive cells, both within and outside the granuloma, to form an integrated antimicrobial 

network.  

 

Discussion 

The organized granulomatous response allows the immune system to wall off and 

eliminate intracellular bacteria that have initially evaded destruction. Investigation of the 

immune interactions in such granulomas has previously, and almost exclusively, focused on the 

role of specific myeloid and lymphocytic populations. The dynamics of the leprosy spectrum 

provide a unique opportunity to study pathways of host defense against intracellular bacteria. 

Patients classified towards the lepromatous pole have disseminated infection with many bacilli in 

macrophages in diffuse aggregates of macrophages and lymphocytes. They can develop RR, 

characterized by organized granulomas, inflamed lesions with reduced numbers of bacilli. Our 

premise has been that the study of the changes in the cellular response of immunologically 

unresponsive patients with L-lep to the immunologically reactive RR granulomas will enable 

understanding of mechanisms likely to contribute to the antimicrobial response. 

Here, we performed single cell transcriptomics on cell types comprising the 

granulomatous response in leprosy skin lesions. Of 43,363 genes in 21,282 cells studied, we 

detected 1,124 AMGs that were differentially expressed in RR lesion-derived cells across all cell 

types. Analysis by scRNA-seq revealed that the immune response diverges across the spectrum 
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of leprosy not only for distinct populations of immune cells, including subpopulations of myeloid 

cells and T cells, but also for subpopulations of fibroblasts, endothelial cells and keratinocytes. 

The expression of these antimicrobial genes as well as the upstream regulators IL1B and IFNG 

for which these AMGs serve as targets was significantly higher in RR compared to L-lep lesions. 

From this data, we formulate a cellular ecosystem by integrating cell-cell co-abundance in 

lesions with the links between cells expressing the upstream regulators IL1B and IFNG to RR 

cell types expressing the downstream AMG targets. Key antimicrobial subpopulations associated 

with immunity in RR included cells of the myeloid and lymphocyte lineages including LC, DC, 

M1-like MFs, Th17 cells, CD8+ CTL and amCTL. Strikingly, the antimicrobial responses 

included two distinct subpopulations of fibroblasts, SFRP2+ FB and CXCL2+ FB as well as 

various KC subpopulations.  

As expected, the activation of macrophages, DC and T cells contributed to the 

antimicrobial response network in granulomas. We found that DC and LC express IL1B, and 

Th17 cells and RR CTL express IFNG, two major upstream regulators of the AMGs. In 

macrophages, the AMGs include genes that encode proteins with direct antimicrobial activity 

such as CCL18 [70], and as reported, the vitamin D-downstream, IL-1b dependent and IFN-g 

responsive genes CAMP and DEB4A [16, 21, 22, 71]. Macrophages also expressed CYBB, the 

gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, that if deleted results 

in enhanced susceptibility to mycobacterial infection [72]. In addition, macrophages expressed 

CCL3 and MMP9, reported to be involved in an antibacterial response [73]. Th17 cells expressed 

IL26, encoding an antimicrobial protein that is taken up by M. leprae infected macrophages, 

colocalizes with the intracellular bacteria and also, by binding DNA activates STING, resulting 

in phagolysosomal fusion and an antimicrobial activity [24, 74]. IL-26 can be induced in Th17 
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cells either by activation via the T cell receptor, or by an innate pathway via IL-1b, the latter 

results in IL-26 release without production of other Th17 cytokines [75]. Although TC6, amCTL, 

was present in both RR and LL, there was higher expression of GZMB, PRF1 and GNLY in the 

RR cells; these genes encode proteins that act synergistically when released from amCTL to kill 

intracellular mycobacteria [13-15, 58, 59]. Among the two CTL sub-clusters, RR-CTL and 

amCTL, the RR cells in both contained IFNG expressing cells, but only amCTL expressed 

GNLY. RR CTL were more abundant than amCTL, such that detection of IFN-g is an equivalent 

measure of all CTL, but not amCTL, which require expression of GZMB, PRF1 and GNLY for 

their antimicrobial activity. 

Surprisingly, the cell-cell analysis indicated that AMGs were expressed in keratinocytes 

and fibroblasts, cells not typically considered to contribute to the antimicrobial response, indeed 

expressed AMGs in RR granulomas. There were two distinct fibroblast subpopulations in RR, 

CXCL2+ FB and SFRP2+ FB. CXCL2+ FB express a number of inflammatory genes that are 

directly antimicrobial: ADM, CCL11, CXCL12, CXCL2, CXCL3, CXCL9, CCL26, CXCL10 and 

CCL2 [57, 70, 76]. CXCL2+ FB also express MMP2 [77] and MMP8 [78], known to contribute 

to antimicrobial responses, as well as IL32, which was shown to be involved in the vitamin D-

dependent antimicrobial pathway and a marker of protective immunity in tuberculosis [79]. 

CXCL2+ FB were also observed in atopic dermatitis and considered to be inflammatory [68], 

where these cells may contribute to host defense in granulomas as antimicrobial fibroblasts. 

SFRP2+ FB have been shown to be involved in the deposition of extracellular matrix proteins 

[67]. In RR, SFRP2+ FB express genes encoding vimentin (VIM), fibrillin (FBN1) and multiple 

collagens. Fibroblasts expressing vimentin microanatomically located at the periphery of the 

granuloma in tuberculosis [80], are thought to be responsible for laying down “fibrin” to build a 
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wall to prevent bacteria from exiting the granuloma and disseminating. Our data suggest that 

“fibrin”, an old pathologic term for the appearance of this material on hematoxylin and eosin 

stained microscopic sections, may be composed of multiple extracellular matrix proteins. 

SFRP2+ FB also express genes encoding chemokines with direct antimicrobial activity, some 

more strongly than expressed in CXCL2+ FB such as CXCL12, CXCL6, CXCL9 and CXCL17 

[57, 70, 81, 82]. These cells express CXCL8 as well, albeit at lower levels than LC, DC and M1-

like MFs. Of note, fibroblast secretion of CXCL8 has been demonstrated to limit the survival of 

M. tuberculosis in infected macrophages [83]. Thus, SFRP2+ FB may represent a second 

subpopulation of antimicrobial fibroblasts. The epidermis is activated in RR, with hyperplasia of 

keratinocytes expressing MHC class II and IFN-g inducible protein 10 (IP-10) [84, 85] indicating 

activation by IFN-g. Keratinocytes in RR expressed genes encoding antimicrobial peptides, all 

except PI3 [57] have antimycobacterial activity: DEFB1 [86], RNASE7 [87], S100A8/S100A9 

[88-90] and TAC1 [91]. Lee et al. demonstrated that production of antimicrobial peptides from 

KCs would result in increased antimicrobial activity in the dermis, presumably by diffusion of 

the peptide across the dermal epidermal junction [92]. Endothelial cells expressed a number of 

AMGs including APP, CCL24, CXCL11, LEAP2, SNCA, TSLP, VIP, EC1, EC3, EC4, CCL21 

and NTS [57]. However, we could not link the endothelial sub-clusters expressing these genes to 

cells expressing the upstream regulators IL1B and IFNG in the cell-cell ecosystem. Thus, the fate 

of granulomas is not only dictated by the response of macrophages and lymphocytes, the classic 

cells per the longstanding definition of a granuloma, but by a multiplicity of cell types including 

fibroblasts and keratinocytes.  

We focused on two major upstream regulators, IL1B and IFNG, that have a substantial 

effect on the immune response in RR lesions, recognizing that additional upstream regulators 
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contribute to the antimicrobial response. IFNG was most highly correlated with the AMGs 

associated with RR, consistent with previous findings demonstrating an upregulation of IFN-g in 

RR concomitant with a change from a Th2 to a Th1 response in paired samples in the same 

individuals from before and during RR [17, 19, 20, 93]. Of the top upstream regulators of the 

AMGs, only IL1B regulated the pseudotime trajectory of both macrophages and keratinocytes as 

patients transitioned from L-lep to RR. The macrophage psuedotime trajectory maps from the 

TREM2 macrophages in L-lep lesions, to the transitional macrophages in two L-lep patients and 

three RR patients, to the M1-like macrophages in RR lesions. Previously, we found that the 

TLR2 ligand, lipopeptide, in combination with IFN-g, triggered macrophage plasticity in a 

similar trajectory, with macrophages reversing from M2-like to M1-like in vitro as observed in 

RR lesions [16, 94]. Since TLR2 and IL-1b both signal via MyD88, and IFN-g is upregulated 

during RR, the key signals are present to facilitate the plasticity of macrophage differentiation to 

the M1 state known to have high antimicrobial activity. Similarly, the pseudotime mapped 

keratinocyte maturation, ending with a gene pattern indicates activation by both IL-1b and IFN-

g, with expression of IL18, which encodes for a protein that further upregulates IFN-g in 

mycobacterial infection [95].  

Several features of the cell sub-types that were overrepresented in L-lep lesions may 

contribute to pathogenesis in leprosy. Among myeloid cells, L-lep lesions contained few DC but 

two distinct macrophage populations. TREM2 macrophages have been identified in several 

diseases characterized by altered lipid metabolism including atherosclerosis, Alzheimer’s 

disease, non-alcoholic steatohepatitis and obesity [60-66]. The gene program in TREM2 

macrophages suggests that these cells are programmed to transport and process lipids, most 

likely they are the foam cells or foamy macrophages that characterize both atherosclerosis and L-
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lep. One myeloid cell subtype, Type I IFN MF, and one T cell subtype, L-lep CTL, both 

characterized by a type I IFN gene program. Previously, we found that as opposed to IFN-g and 

its downstream target genes that were preferentially expressed in RR lesions, IFN-b and its 

downstream targets were preferentially expressed in L-lep lesions [20]. We have previously 

reported that IFN-b can inhibit the antimicrobial effects of IFN-g on macrophages in vitro [20]. 

Of note, the RR CTL sub-cluster was remarkably similar to the L-lep CTL sub-cluster, except for 

the expression of type I IFN genes. Although type I IFNs initially participate to activate CD8+ 

CTL, it is unclear how low term exposure to type I IFNs affect CD8+ CTL function. Noteworthy 

was the presence of plasma cells almost exclusively in the L-lep lesions, consistent with previous 

studies [96, 97]. The high levels of antibody in L-lep patients suggests that they do not protect 

against infection in leprosy, although it is possible that distinct antibodies produced in RR have 

an antimycobacterial role [98]. Although there were few LC from the L-lep lesions, we did not 

immuno-select LC from these biopsy specimens, nevertheless, LC are less frequent in L-lep than 

in RR [12, 99]. Although Tregs were present in both RR and L-lep, we were not able to identify 

CD8+ T suppressor cells in L-lep lesions, perhaps because of the low detection of IL4. 

One of the practical findings of this work was that in the RR lesions there is an 

abundance of CTL capable of producing IFN-�, expressing GZMB and PRF1, which we 

presume can killing infected macrophages. But that activity alone would likely have the effect of 

releasing viable bacilli and disseminating the infection. It is only the amCTL subset, expressing 

GNLY that were previously shown to be capable of killing mycobacteria within infected 

macrophages that would limit the infection. In human vaccine trials, there is a critical need for 

correlates and biomarkers of protection. The data here suggests that measurement of IFN-� 
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production by CD8 T cells will simply not serve as a useful measure of amCTL, which can be 

estimated by specific surface markers. 

It has long been thought that the nature of the immune responses in infection, cancer and 

autoimmune diseases is dictated by the principal cells of the immune system, lymphocytes and 

myeloid cells. Certainly, in our study the expression of IL1B by DC and LC, and IFNG by T cell 

subpopulations suggest these immune cells are the first responders and the key drivers of the 

immune response. However, a compelling aspect of our data on leprosy is that these immune 

cells activate lymphocytes and myeloid cells, but also other cell types such as fibroblasts and 

keratinocytes, cells that are beyond the traditional immune cells in the granulomatous immune 

response, with capability of producing antimicrobial molecules. There is mounting evidence that 

the connective tissue and epithelium are key components of the overall immune response. As 

such, the granuloma is not limited to an organized core of macrophages with lymphocytes, but 

extends beyond its microanatomic limits to recruit an array of cell types to combat the foreign 

invader. One could summarize our key findings simply by saying that it takes a village to create 

effective antimicrobial granulomas. 
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Figure 4-1. Cell types observed in leprosy lesions. 

A. UMAP plot for 21,318 cells colored by cell types. 

B. UMAP plot colored by clinical forms. 

C. Heatmap showing three representative marker genes for each cell type. 

D. Abundance composition across 10 patients for each cell type.  

E. Violin plot showing the number of M. leprae transcripts detected in individual cells from each 

patient. 
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Figure 4-2. Identification of T cell subtypes. 

A. UMAP plot colored by T cell subtypes. 

B. Heatmap showing 100 marker genes for each subtype. The representative genes are labelled. 

C. UMAP plots showing six marker genes. The color scale represents normalized expression 

level of the gene. 

D. Abundance composition across 10 patients for each T cell subtype.  

E. (Left) Violin plots showing the expression for GZMB, PRF1 and GNLY in T cell sub-cluster 6 

grouped by L-lep and RR. (Right) Boxplot showing the T-CTL score in T cell sub-cluster 6 

grouped by L-lep and RR, the p value was calculated from a Wilcoxon rank sum test. 

F. Number of RR cells expressing IFNG, GMZB, PRF1 and GNLY in RR CTL and amCTL. 
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Figure 4-3. Identification of myeloid cell subtypes. 

A. UMAP plot colored by myeloid cell subtypes. 

B. UMAP plot colored by clinical forms. 

C. Heatmap showing 100 marker genes for each subtype. The representative genes are labelled. 

D. Abundance composition across 10 patients for each myeloid cell subtype.  

E. (Left) Violin plots showing the expression for TREM2 and APOE in myeloid subtypes. 

(Right) Violin plot showing the TREM2 Module score in myeloid subtypes. 
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Figure 4-4. Identification of keratinocyte subtypes. 

A. UMAP plot colored by keratinocyte subtypes. 

B. UMAP plot colored by clinical forms. 

C. Heatmap showing 100 marker genes for each subtype. The representative genes are labelled. 

D. Abundance composition across 10 patients for each keratinocyte subtype. 
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Figure 4-5. Antimicrobial gene analysis and pseudotime construction. 

A. Boxplot showing the sum of 1,124 AMG z scores in L-lep and RR cell types. 

B. Bar graph showing the top 20 upstream regulators ranked by p value from the enrichment 

analysis using the 1,124 AMGs. 

C. Boxplot showing the sum of the top 20 z scores in L-lep and RR cell types. 

D. Pseudotime trajectory colored by clinical form in myeloid sub-cluster 2, 3 and 4. 

E. Pseudotime trajectory colored by clinical form in keratinocyte sub-cluster 1, 2 and 3. 

F. Dot plot showing the correlation between the top 10 URs’ module scores and 

macrophage/keratinocyte pseudotimes. The size of the dots represents the -log10(p value) from 

the enrichment analysis. 

G. Scatter plot showing the correlation between macrophage (top) or keratinocyte (bottom) 

pseudotimes and module scores calculated using IL1B target genes or IFNG target genes from 

the six expression patterns. Color of the dots represents the sub-cluster identity of the cells. 
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Figure 4-6. Antimicrobial network and cell-cell co-abundance. 

A. Bar plot showing the z scores of IL1B (left) or IFNG (right) expression levels in each cell type 

from RR lesions. The dots represent IL1B or IFNG expression in individual cells. 

B. Circos plot showing the connection between IL1B (left) or IFNG (right) and the direct 

antimicrobial gene targets in the cell types with z score > 3. 

C. Heatmap showing the cell type correlations calculated based on the co-abundance 

composition across 10 patients. Cell types in red have > 70% of the cells from L-lep lesions, cell 

types in blue have > 70% from RR lesions, the other cell type names are colored in grey.  

D. Network depicting the antimicrobial connections induced by IL1B (Top) and IFNG (Bottom). 

Color scale of the links represent the co-abundance correlation between the cell types. Width of 

the links represent number of antimicrobial links. 
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Figure 4-7. Antimicrobial ecosystem in leprosy granuloma. 

Antimicrobial diagram in granuloma from leprosy lesions. Gene names in red represent targets of 

IL1B. Gene names in blue represent targets of IFNG. Gene names in purple represents targets of 

both IL1B and IFNG. 
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Supplemental information 

 

 

Supplemental Figure 4-1. M. leprae reads were mainly detected in the rRNA region. 
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Supplemental Figure 4-2: IFN-a/β and IFN-g signature on CTL subtypes. 

Enrichment analysis on differentially expressed genes (adjusted p value < 0.05) between TC1 

(RR CTL) and TC2 (L-lep CTL) using IFN-a/β and IFN-g specific genes identified in human 

PBMC. Dotted lines indicate (left) no enrichment or (right) the hypergeometric test p value of 

0.05 (log p value = 1.3).  
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Supplemental Figure 4-3. Macrophage transition. 

A. Heatmap showing top differentially expressed genes between ML2 and ML4. ML3 expressed 

both ML2 and ML4 specific genes. 

B. UMAP plots showing TREM2 expression, APOE expression and TREM2 module score. The 

color scale represents the expression level of the genes. 

C. UMAP plots showing CD1C and LAMP3 expression in ML0. Only few co-expression events 

were observed.  
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Supplemental Figure 4-4. Identification of fibroblast subtypes. 

A. UMAP plot colored by fibroblast subtypes. 

B. Abundance composition across 10 patients for each fibroblast subtype. 

C. Heatmap showing 100 marker genes for each subtype. The representative genes are labelled. 
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Supplemental Figure 4-5. Identification of endothelial cell subtypes. 

A. UMAP plot colored by endothelial cell subtypes. 

B. Abundance composition across 10 patients for each endothelial cell subtype. 

C. Dot plot showing 10 marker genes for each subtype. The color scale represents the scaled 

expression of the gene. The size of the dot represents percentage of cells expressing the gene. 
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Supplemental Figure 4-6. Pseudotime construction in macrophages and keratinocytes. 

A. Pseudo-temporal trajectory colored by pseudotime (top) and by sub-cluster identity (bottom) 

for macrophage sub-cluster 2, 3 and 4. 

B. Heatmap showing six expression patterns along the macrophage pseudotime. Representative 

genes regulated by IL1B and IFNG are labelled.  

C. Pseudo-temporal trajectory colored by pseudotime (top) and by sub-cluster identity (bottom) 

for keratinocyte sub-cluster 1, 2 and 3. 

D. Heatmap showing six expression patterns along the keratinocyte pseudotime. Representative 

genes regulated by IL1B and IFNG are labelled.  
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Supplemental Figure 4-7. Representative antimicrobial genes expressed by myeloid cells, 

fibroblasts and keratinocytes.  



 105 

 

Supplemental Figure 4-8. Representative antimicrobial genes expressed by Th17 cells, RR 

CTL and amCTL. 
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Chapter 5 – Conclusions 

With the development and advancement of RNA-sequencing technology, many library 

preparation methods and sequencing platforms have become available. In chapter 2, we used a 

classic whole transcript RNA-Seq method (Trad-KAPA) and a 3’ RNA-Seq method (3’-LEXO) 

to prepare sequencing libraries from livers of iron-loaded diet and control diet mice, and 

sequenced the libraries on the Illumina platform [100]. We then compared the sequencing results 

to determine the advantages and disadvantages of the two approaches. 

We identified the gene body coverage of the Trad-KAPA and 3’-LEXO libraries by 

mapping the reads back to the genome. As expected, Trad-KAPA reads covered transcripts 

uniformly, with a slight decrease at the 5’ end. One reason for the decrease might be that the 

secondary structure of the mRNA can cause early termination of reverse transcription [39], 

making it difficult to reach the cap site (5’ end). It is also possible that many of the transcripts are 

partially degraded, so that the polyadenylation capture biases the coverage towards the 3’ end.  

By contrast, 3’-LEXO reads mapped mostly to the 3’ end. 3’-LEXO reads that mapped to the 

middle of the transcript showed significant coverage variation from library to library. The 

variation might be caused by the randomness in the reverse transcription start site on the cDNA. 

In the classic whole transcript method, mRNAs are first sheared into fragments, then the 

fragments are reverse transcribed to generate cDNAs. Hence, it is expected that the longer a 

transcript is, the more fragments it should have. The 3’ RNA-Seq method however generates 

only one read for each transcript, so the number of reads directly reflects the level of gene 

expression. We counted the reads mapped to transcripts that have lengths ranging from 500 bp to 

8500 bp and found that Trad-KAPA libraries had more reads assigned to longer transcripts. By 

contrast, 3’-LEXO read counts remained uniform as transcript length increased.  
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As Trad-KAPA assigned more reads to longer transcripts and 3’-LEXO assigned a 

similar number of reads to transcripts with different lengths, we expected to see fewer short 

transcripts and more long transcripts detected by Trad-KAPA as sequencing depth drops. For 

transcripts shorter than 1000 bp, 3’-LEXO detected about 10% more than Trad-KAPA when 

sequencing depth dropped. However, for transcripts longer than 1000 bp, there was only a small 

difference between the number detected by Trad-KAPA and 3’-LEXO. Since a 3’ RNA-Seq 

method only captures reads from the 3’ end of the mRNA, it is difficult for this method to detect 

differences in isoforms close to the 5’ end of longer genes. In our study, 15% of uniquely 

mapped Trad-KAPA reads contain splices, while only 6% of uniquely mapped 3’-LEXO reads 

contain splices. As a result, the 3’ RNA-Seq method is not recommended for novel transcript or 

splice variant discovery. We also compared Trad-KAPA and 3’-LEXO reproducibility, and 

found that both methods showed very high reproducibility between biological replicates. When 

comparing the sequencing results generated with the same mouse using the Trad-KAPA versus 

3’-LEXO methods, we found the two methods generally agreed with each other. Although there 

were a few transcripts detected only by Trad-KAPA, they turned out to be non-coding RNAs.  

Among all the DEGs we found, some of the very short transcripts (shorter than 500 bp) 

were only detected to be differentially expressed by 3’-LEXO, while many of the long 

transcripts, especially those longer than 7500 bp, were only detected as differentially expressed 

by Trad-KAPA. As Trad-KAPA assigns more reads to longer transcripts, the statistical power to 

detect differences increases. Thus, the probability that those transcripts are detected differentially 

expressed is higher. It is also clear that as sequencing depth drops, both methods will detect 

fewer differentially expressed transcripts. Thus, if users want to use RNA-Seq to detect 
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differentially expressed transcripts, Trad-KAPA will likely generate larger lists than 3’-LEXO, 

biased towards longer transcripts. 

scRNA-seq provides high resolution profiling of the transcriptomes of single cells. 

Typically, the first step in scRNA-seq analysis is to assign each cell a cell type based on our 

prior knowledge of marker genes. Current methods for cell type assignment first cluster the cells 

in an unsupervised manner and rely on the canonical markers to identify the cell types for each 

cluster. However, this approach has several limitations, including the fact that the clusters may 

not optimally segregate single cell types, and certain cell types may not have previously 

characterized markers. Moreover, these methods are computationally intensive, especially when 

the number of cells becomes large. To render cell type identification in scRNA-seq more 

efficient, we employed a neural network, trained it on cells with predefined cell types, and used 

it to predict cell types for new datasets.  

In chapter 3, we first obtained and cleaned two datasets from the Tabula Muris 

Consortium, then trained and tested our neural network on these datasets with or without batch 

effect introduced by different scRNA-seq platforms [101]. The training accuracy always 

approached 100%, and the testing accuracy was around 99.8% within a platform and 99.0% 

when testing and training are performed across different platforms. As the cell types in the two 

Tabula muris atlas datasets can be mutually predicted using our neural network, we merged them 

and used the combined datasets as the reference to predict cell types for other datasets. The 

predicted cell types were well matched with the cell types assigned using the canonical markers 

for both the mouse and human datasets. We also trained and tested the neural network on five T 

cell subtypes and found that the predicted subtypes showed the same markers as the reference 

subtypes, which suggests that our neural network can be used to predict sub cell types as well. 
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Compared to the traditional unsupervised methods used for cell type identification, our 

neural network has the following advantages: 1. It uses all the genes to capture the features for 

each cell type instead of relying on a limited number of canonical markers. 2. It focuses the 

analysis on the signal associated with the variance between cell types, while unsupervised 

clustering tends to be affected by other sources of cell type independent variation (i.e. platform 

or cell cycle). 3. It requires no background knowledge of cell type markers, while the 

unsupervised method requires users to have prior knowledge of canonical markers for each cell 

type in their data. 4. It is much more computationally efficient than the traditional approach. 

Moreover, users can subsample the reference cells to make the computation of the neural 

network less compute intensive and more memory efficient. We also compared ACTINN to three 

other cell type prediction tools, and the results showed that ACTINN performs better in finding 

small changes between subtypes. 

There are some aspects of our approach that could be improved in the future. As the 

neural network is supervised, the quantity and quality of the reference data are critical. We 

anticipate that with time more cell types from larger atlases should be used to train a more 

comprehensive neural network. Also, better pairing of reference and test sets will undoubtedly 

improve performance. For example, the soon to be developed human cell atlas should be used to 

predict human cell types instead of the mouse cell atlas. Nonetheless, we showed that even with 

the current reference data our neural network is computationally efficient and accurate, and 

should improve cell type identification pipelines. 

In chapter 4, we performed single cell transcriptomics on cell types comprising the 

granulomatous response in leprosy skin lesions. Of 43,363 genes in 21,282 cells studied, we 

detected 1,124 AMGs that were differentially expressed in RR lesion-derived cells across all cell 
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types. Analysis by scRNA-seq revealed that the immune response diverges across the spectrum 

of leprosy not only for distinct populations of immune cells, including subpopulations of myeloid 

cells and T cells, but also for subpopulations of fibroblasts, endothelial cells and keratinocytes. 

The expression of these AMGs as well as the upstream regulators IL1B and IFNG for which 

these AMGs serve as targets was significantly higher in RR compared to L-lep lesions. From this 

data, we formulate a cellular ecosystem by integrating cell-cell co-abundance in lesions with the 

links between cells expressing the upstream regulators IL1B and IFNG to RR cell types 

expressing the downstream AMG targets. Key antimicrobial subpopulations associated with 

immunity in RR included cells of the myeloid and lymphocyte lineages including LC, DC, M1-

like MFs, Th17 cells, CD8+ CTL and amCTL. Strikingly, the antimicrobial responses included 

two distinct subpopulations of fibroblasts, SFRP2+ FB and CXCL2+ FB as well as various KC 

subpopulations.  

We focused on two major upstream regulators, IL1B and IFNG, that have a substantial 

effect on the immune response in RR lesions, recognizing that additional upstream regulators 

contribute to the antimicrobial response. IFNG was most highly correlated with the AMGs 

associated with RR, consistent with previous findings demonstrating an upregulation of IFN-g in 

RR concomitant with a change from a Th2 to a Th1 response in paired samples in the same 

individuals from before and during RR [17, 19, 20, 93]. Of the top upstream regulators of the 

AMGs, only IL1B regulated the pseudotime trajectory of both macrophages and keratinocytes as 

patients transitioned from L-lep to RR. The macrophage psuedotime trajectory maps from the 

TREM2 macrophages in L-lep lesions, to the transitional macrophages in two L-lep patients and 

three RR patients, to the M1-like macrophages in RR lesions. Previously, we found that the 

TLR2 ligand, lipopeptide, in combination with IFN-g, triggered macrophage plasticity in a 
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similar trajectory, with macrophages reversing from M2-like to M1-like in vitro as observed in 

RR lesions [16, 94]. Since TLR2 and IL-1b both signal via MyD88, and IFN-g is upregulated 

during RR, the key signals are present to facilitate the plasticity of macrophage differentiation to 

the M1 state known to have high antimicrobial activity. Similarly, the pseudotime mapped 

keratinocyte maturation, ending with a gene pattern indicates activation by both IL-1b and IFN-

g, with expression of IL18, which encodes for a protein that further upregulates IFN-g in 

mycobacterial infection [95].  

It has long been thought that the nature of the immune responses in infection, cancer and 

autoimmune diseases is dictated by the principal cells of the immune system, lymphocytes and 

myeloid cells. Certainly, in our study the expression of IL1B by DC and LC, and IFNG by T cell 

subpopulations suggest these immune cells are the first responders and the key drivers of the 

immune response. However, a compelling aspect of our data on leprosy is that these immune 

cells activate lymphocytes and myeloid cells, but also other cell types such as fibroblasts and 

keratinocytes, cells that are beyond the traditional immune cells in the granulomatous immune 

response, with capability of producing antimicrobial molecules. There is mounting evidence that 

the connective tissue and epithelium are key components of the overall immune response. As 

such, the granuloma is not limited to an organized core of macrophages with lymphocytes, but 

extends beyond its microanatomic limits to recruit an array of cell types to combat the foreign 

invader. One could summarize our key findings simply by saying that it takes a village to create 

effective antimicrobial granulomas. 
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