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Autonomous vehicles (AVs) will demand a resilient, accurate, and tamper-proof navigation

system. Current AV navigation systems will not meet these demands as they are dependent

on global navigation satellite system (GNSS) signals, which are jammable, spoofable, and

may not be usable in certain environments (e.g., indoors and deep urban canyons). Dead-

reckoning sensors (e.g., inertial measurements units, lidars, or cameras) are typically used

to aid GNSS signals in challenged environment. However, such sensors accumulate errors

with time and can only provide a navigation solution in a local frame, i.e., relative to the

AV’s initial position. Alternatively, signals of opportunity (SOPs) (e.g., AM/FM radio, low

Earth orbit satellite signals, Wi-Fi, and cellular) may be used as a global navigation source

in GNSS-challenged environment.

Cellular signals, particularly code-division multiple access (CDMA), long-term evolution

(LTE), and fifth generation (5G) new radio (NR) signals, are among the most promising

SOP candidates for navigation. These signals are (i) abundant, (ii) received at a much higher

power and bandwidth than GNSS signals, (iii) offer a favorable horizontal geometry, (iv) are

diverse in the radio frequency spectrum, (v) and are free to use. These inherent attributes

make them attractive navigation sources for AVs in GNSS-challenged environments.
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However, since SOPs are not intended for navigation, there are several challenges associ-

ated with using cellular signals and SOPs in general for navigation: (1) the unavailability

of appropriate low-level signal and error models for optimal extraction of states and param-

eters of interest for positioning and timing purposes, (2) the absence of published receiver

architectures capable of producing navigation observables, (3) the unknown fundamental

performance bounds, (4) and the lack of frameworks for high accuracy navigation with such

signals. This dissertation addresses the aforementioned challenges for cellular SOPs, focus-

ing on CDMA systems, with extensions to LTE and 5G. The foundational contributions of

this dissertation are demonstrated on ground vehicles and unmanned aerial vehicles (UAVs),

showing meter-level accurate navigation for the former and sub-meter-level accurate naviga-

tion for the latter.
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Chapter 1

Introduction

1.1 Background

Global navigation satellite systems (GNSSs) have been the prevalent positioning, navigation,

and timing technology over the past few decades. However, GNSS signals suffer from four

main limitations:

1. They are extremely weak and unusable in certain environments (e.g., indoors and deep

urban canyons) [3].

2. They are susceptible to unintentional interference and intentional jamming [4, 5].

3. Civilian signals are unencrypted, unauthenticated, and specified in publicly available

documents, making them spoofable (i.e., hackable) [5].

4. Their position estimate suffers from a large vertical estimation uncertainty due to the

lack of GNSS space vehicle angle diversity, which is particularly problematic for aerial

vehicles [6].
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As such, standalone GNSSs will not deliver the stringent demands of future systems such

as autonomous vehicles (Avs), intelligent transportation systems, and location-based ser-

vices. Traditional approaches to aid GNSS in challenging environments mainly rely on

dead-reckoning sensors (e.g., inertial measurements units, lidars, or cameras). However,

such sensors accumulate errors with time and can only provide a navigation solution in a

local frame, i.e., relative to the AV’s initial position. Alternatively, signals of opportunity

(SOPs) may be used as a global navigation source in GNSS-challenged environment. Signals

of opportunity are ambient signals not intended for positioning, navigation, and timing, such

as cellular, AM/FM radio, satellite communication, digital television, and Wi-Fi. Cellular

signals, particularly code-division multiple access (CDMA), long-term evolution (LTE), and

fifth generation (5G) new radio (NR) signals, are among the most promising SOP candidates

for navigation due to their following qualities

• Abundance: cellular base transceiver stations (BTSs) are plentiful due to the ubiquity

of cellular and smartphones.

• Geometric diversity: the cell configuration by construction yields favorable BTS geom-

etry—unlike certain terrestrial transmitters, which tend to be colocated, e.g., digital

television.

• High carrier frequency: cellular carrier frequency ranges 800–2,500MHz and in millimeter-

wave (mmW) bands, which yields precise carrier phase navigation observables.

• Large bandwidth: cellular signals have a bandwidth up to 100 MHz for LTE Advanced

and will go to as high as to 1 GHz for mmW 5G signals, which yields accurate time-

of-arrival (TOA) estimates.

• High received power: cellular signals are often available and usable in GNSS-challenged

environments—the received carrier-to-noise ratio C/N0 from nearby cellular BTSs is

more than 20 dB higher than GPS satellites.
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Besides the aforementioned advantages, there is no deployment cost associated with us-

ing cellular signals for positioning and navigation—the signals are practically free to use.

Specifically, the receiver, also referred to as the user equipment (UE), could eavesdrop on

the transmitted cellular signals without communicating with the BTS, extract necessary

positioning and timing information from received signals, and calculate the navigation solu-

tion locally. While other navigation approaches requiring two-way communication between

the UE and BTS (i.e., network based) exist, this dissertation focuses on explaining how

precise UE-based navigation can be achieved with cellular signals, focusing on CDMA sys-

tems, with extensions to LTE and 5G. The foundational contributions of this dissertation are

demonstrated on ground vehicles and unmanned aerial vehicles (UAVs), showing meter-level

accurate navigation for the former and sub-meter-level accurate navigation for the latter.

1.2 Related Work

Traditional approaches to enable navigation in GNSS-challenged environments [7, 8, 9] have

focused on coupling GNSS receivers with inertial navigation systems and advanced signal

processing algorithms [3, 10, 11, 12]. Recently, ambient radio frequency (RF) SOPs have been

considered as a stand-alone alternative to GNSS or to complement GNSS-based navigation

[13, 14, 15, 16].

Different studies have been conducted for specific types of SOPs including AM/FM radio

[17, 18], iridium satellites [19, 20], digital television (DTV) [21, 22], cellular [23, 24, 25, 26],

and Wi-Fi [27, 28, 29]. It has been demonstrated that AM signals could potentially provide

20 meter positioning accuracy [17]. A better localization performance could be achieved

using DTV signals, where the average positioning error becomes less than 4 meters in certain

favorable environments [21]. Experimental results for navigation using cellular CDMA fused

with DTV signals showed a navigation solution within 2 meters from that of a GPS solution
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and a maximum difference of 12 meters [25]. SOPs have also been used for indoor positioning,

where it has been shown that an average positioning error of 4 meters could be achieved by

coupling Wi-Fi and inertial measurement units (IMUs) in a SLAM framework [27]. Coupling

observables from other signals such as GSM, digital audio broadcasting, and cellular 3G with

IMU measurements also showed promising results [14]. Moreover, iridium satellite signals

were considered to improve navigation performance in deep urban and indoor environments

[30]. SOPs were also employed in timing applications, such as enabling longer integration

time for GPS-assisted femtocells in indoor environments [31]. Besides these experimental

studies, the literature on SOPs partially answers theoretical questions on the observability

and estimability of the SOP signal landscape [32, 33], motion planning in the SOP landscape

for optimal information gathering [34, 35, 36], and collaborative SOP landscape map building

[1, 37].

Sources of error and the so-called error budget for GNSS-based navigation have been thor-

oughly studied [6, 38]. In contrast, navigation sources of error for SOPs are not yet fully

characterized. It is important to note that while some of these errors are not harmful

for communication purposes, they severely degrade the navigation performance if they are

not modeled and accounted for appropriately. Moreover, the states of a cellular BTSs are

unknown to a navigating receiver and need to be estimated. Although the some cellular

standards (e.g., the cdma200 standard) state that a BTS should transmit its position, local

wireless providers do not usually transmit such information [39, 40]. Hence, the positions

of the BTSs need to be manually surveyed or estimated on-the-fly individually or collab-

oratively [1, 41]. The literature on navigation using cellular signals considers TOA, time

difference of arrival (TDOA), and frequency of arrival (FOA) measurements [42, 43]; how-

ever, certain assumptions such as perfect synchronization or negligible variations between

the transmitter and receiver clocks are made to eliminate the clock biases of the BTS and the

receiver from the measurement model [23, 44, 45, 46, 47]. However, cellular CDMA and LTE

networks are not perfectly synchronized, and their protocols recommend synchronization of
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CDMA BTSs and LTE eNodeBs to within 3 microseconds from GPS time [48, 49]. This

translates to ranging errors of about 900 meters. Several approaches in the literature have

been proposed to account for the BTSs’ or eNodeBs’ clock biases and drifts, including using

the round-trip time (RTT) instead of the TOA [50]. Although RTT-based methods could

yield good results in asynchronous systems, two-way communication between the receiver

and the BTSs or eNodeBs is needed. This limits the availability of RTT measurements to

only paying subscribers to a particular cellular provider and compromises the privacy of the

user. Some of the proposed navigation frameworks assume the BTSs’ or eNodeBs’ clock

bias and drift to be constant [25, 51]. However, the clock bias and drift are dynamic and

stochastic [52]; hence, must be continuously estimated either (i) via a reference receiver,

which shares such estimates with the navigating receiver or (ii) by the navigating receiver

itself by adopting a simultaneous localization and mapping approach [16, 36, 53]. In either

case, the navigating receiver must have appropriate models for (i) the measurement it is

drawing from the BTS, (ii) relevant BTS states’ dynamics, and (iii) all relevant sources of

errors.

Besides TOA measurements, one can exploit carrier phase measurements from cellular SOPs,

which may yield a precise navigation solution. This technique is well known in GNSS

and sub-meter-level (centimeter to decimeter) is common in carrier phase differential GNSS

(CDGNSS), also known as real-time kinematic (RTK) [6, 54]. To use this technique with cel-

lular systems, referred to as carrier phase differential cellular (CD-cellular), the deployment

of base receivers is needed, which could pose a practical limitation. However, considering the

need for a resilient and accurate position, navigation, and timing (PNT) alternative to GNSS

in future AVs, especially unmanned aerial vehicle (UAV) applications (e.g., package deliv-

ery, environmental monitoring, search and rescue, etc.), installing a dedicated CD-cellular

network is lucrative. Recent advances in software-defined radios (SDRs) and embedded com-

puting pave the road to making such networks for precise UAV navigation a reality. SDRs

are attractive because of their inherent advantages: (i) flexibility: designs are hardware in-
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dependent, (ii) modularity: different functions can be implemented independently, and (iii)

upgradability: minimal changes are needed to improve designs. Although most SDRs used to

be limited to post-processing applications, processor-specific optimization techniques allow

for real-time operation [55].

Since SOP-based navigation is a relatively new paradigm, the literature on performance char-

acterization under system errors is scarce for navigation using SOPs. While the performance

of cellular systems such as CDMA has been well studied from a communication systems

perspective [56, 57, 58], the identification of sources of errors that affect the navigation per-

formance of such systems remains a topic of research. In addition to having appropriate

models for such errors, the optimal BTS–receiver geometrical configuration must be iden-

tified in order to characterize bounds on the estimation performance. Such configurations

have been extensively studied; however; the literature does not provide a lower bound on

the estimation error covariance for localization with TOA measurements with non-identical

noise variances [59, 60].

The BTS–receiver geometrical configuration is strongly linked to the dilution of precision

(DOP) and position error bound (PEB). These metrics are of extreme importance in sensor

placement with applications in source localization, tracking, and navigation [61, 62, 63]. In

source localization and target tracking applications, one is interested in optimally placing the

receiver, which makes observations to an unknown source (e.g., emitter) or target, minimizing

the estimation error uncertainty about the state of the receiver or target [64, 65, 66]. In

navigation applications, one is interested in optimally placing the receiver, which makes

observations to known sources (e.g., global navigation satellite system (GNSS) satellites or

SOPs), minimizing the estimator error uncertainty about the receiver’s state [35, 36, 67].

To this end, one aims at (i) minimizing the geometric DOP (GDOP) or more generally the

weighted GDOP (WGDOP), which is equivalent to minimizing the trace of the estimation

error covariance matrix [59, 68, 69, 70, 71, 72] and (ii) maximizing the determinant of the
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GDOP or WGDOP matrix, which is equivalent to maximizing the determinant of the Fisher

information matrix [62, 73]. However, all the aforementioned optimization problems are

nonconvex, necessitating the use of numerical general-purpose optimization solvers, which

tend to be computationally intensive and could converge to a local optimum.

Instead of directly optimizing a functional of the WGDOP matrix, alternative approximating

metrics were proposed, such as maximizing the area of the polygon whose vertices are the

endpoints of the unit line-of-sight (LOS) vectors from the source to the receiver [74]. In

[75], it was shown that this criterion was piecewise concave for the problem of placing an

additional sensor to a set of pre-deployed sensors localizing a single source using pseudorange

measurements, and a closed-form expression for the optimal two-dimensional (2-D) position

of the additional sensor was derived. The problem was generalized to the case of localizing

multiple sources and it was shown that optimizing the product of areas yielded a set of

parallelizable convex programs [1]. Direct minimization of the WGDOP or maximization of

the WGDOP matrix in three-dimensional (3-D) space remains unsolved.

The aforementioned literature focuses on deterministic realization of the BTS–receiver or

eNodeB–receiver geometry. Let the generic term base station (BS) denote noth 3G BTSs,

4G eNodeBs, and 5G next generation NodeBs (gNBs). Instead of deterministic network

modeling techniques, stochastic geometry has been adapted extensively to model the location

of BSs over the last decade for several reasons [76, 77]: (i) modeling BS locations with point

processes captures the randomness of BS deployment and (ii) stochastic geometry approach

brings analytically tractable results. These perks of stochastic geometry sparked studies to

characterize the localization performance in wireless networks [78, 79]. In [80], a cellular

network model with a homogeneous Poisson point process (PPP) was used to derive bounds

for TOA-based positioning, while the effect of signal-to-noise ratio (SNR) heterogeneity in

TOA-based localization was studied in [81] by using a binomial point process (BPP) model.

Such analyses shed some light on the expected localization performance in 5G networks;
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however, they make the impractical assumption that the UE and BTSs are synchronized.

1.3 Challenges

There are four main challenges associated with using cellular signals and SOPs in general

for navigation:

• The unavailability of appropriate low-level signal and error models for optimal extrac-

tion of states and parameters of interest for positioning and timing purposes.

• The absence of published receiver architectures capable of producing navigation ob-

servables.

• The unknown fundamental performance bounds.

• The lack of frameworks for precise navigation with such signals.

To the author’s knowledge, while previous work demonstrated experimental results for nav-

igation via cellular signals, none of these four challenges has been fully addressed.

It is important to stress again that there are some error sources that are not harmful in

communication systems but severely degrade the navigation performance. Such errors must

be identified and modeled for precise navigation with cellular signals. Moreover, navigation

frameworks must be designed around the identified error sources in order to minimize their

effect.

While differential frameworks are known to yield precise navigation, the literature on such

frameworks focuses on GNSSs, which are fundamentally different than cellular systems in the

fact that, in contrast to GNSS satellites, the states of the cellular BTSs (position and clock
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errors) may not be known. Subsequently, appropriate differential frameworks for navigation

with cellular SOPs must be designed and their performance must be analyzed.

Besides differential frameworks, the literature on precise non-differential frameworks with

cellular SOPs is missing. The main challenge in such problems is the dynamic and stochastic

nature of the unknown BTS clock errors. To resolve this challenging problem, novel models

for navigation observables that leverage certain levels of synchronization between BTSs must

be established. In the case of fully asynchronous networks, robust non-differential frameworks

must be designed to guarantee reliable long-term navigation with cellular SOPs.

Additionally, the performance of these novel differential and non-differential frameworks

must be analyzed for two main purposes: (i) to establish fundamental performance bounds

and (ii) establish relationships between these bounds and system parameters for optimal

navigation framework design.

Independently of the navigation framework, the BTS–receiver geometry, measured by the

GDOP or some related metric, greatly affects the navigation performance. One remaining

challenge in navigation, target tracking, or source localization is the optimal placement of

navigation sources or sensors as to minimize the GDOP. Specifically, the exact solution of

where to place an additional receiver given a set of pre-deployed receivers remains unan-

swered.

Finally, with the rise of 4G and 5G networks, the literature on radionavigation began to an-

alyze the expected localization performance in such networks using methods from stochastic

geometry. However, the analyzes pertain to network-based localization, where impractical

assumptions on network synchronization are made. Subsequently, the performance charac-

terization of navigation with realistic 4G and 5G signals remains missing.
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1.4 Contributions and Dissertation Outline

The dissertation is organized by contributions, which are as follows:

Chapter 2: Cellular CDMA Signal Modeling and Software Receiver Design for

Navigation

This chapter presents an SDR for navigation with cellular CDMA signals. The CDMA

signal structure is described and precise, low-level signal models for optimal extraction of

relevant navigation and timing information from received cellular CDMA signals compatible

with the latest cdma2000 standard are developed. The pseudorange from the proposed

receiver is modeled and the pseudorange error is studied in an additive white Gaussian

channel. Experimental results validating the proposed SDR by comparing the variation in

the resulting pseudoranges and the true ranges to two BTSs are presented. Moreover, this

chapter identifies an elaborate model for timing errors between BTS sectors which affect the

navigation performance. The derived model is validated experimentally in different locations,

at different times, and for different cellular providers.

Chapter 3: Differential Framework Design for Precise Navigation with Pseudo-

range Measurements from Cellular SOPs

This chapter proposes a differential framework for navigation using pseudorange measure-

ments from cellular SOPs, which employs reference and navigating receivers. The navigation

performance under this framework in the presence of sources of errors identified in the previ-

ous contribution is analyzed. Lower bounds on the navigation performance of the differential

framework for static and batch estimators are derived. Moreover, a practical upper bound

on the position error due to the sector clock bias discrepancy is derived. In addition, a more

generic lower bound on the logarithm of the determinant of the estimation error covariance is

derived for the case of uncorrelated measurement noise with non-identical variances and an

optimal BTS–receiver geometrical configuration that achieves the lower bound is identified.
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The results of this contributions are validated experimentally on a ground vehicle and on

UAVs with meter-level accuracy.

Chapter 4: Differential Framework Design for Precise Navigation with Carrier

Phase Measurements from Cellular SOPs

This chapter proposes a differential framework for navigation using CD-cellular measure-

ments and a method for resolving carrier phase ambiguities is discussed. A batch weighted

nonlinear least-squares estimator is developed to solve for the integer ambiguities and an

EKF is formulated to initialize the batch estimator. The proposed framework is evaluated

through Monte Carlo (MC) simulations. Important design considerations of a practical

CD-cellular navigation network and their effect on the navigation performance are studied,

namely: 1) the number of bases needed to cover a given cellular SOP environment and the

base placement that maximizes availability, 2) communication requirements and synchro-

nization of CD-cellular measurements shared between the bases and navigating UAVs, and

3) hardware and software consideration for real-time implementation. Experimental results

are presented demonstrating a UAV navigating exclusively with CD-cellular measurements

with sub-meter-level accuracy.

Chapter 5: Non-Differential Framework Design for Precise Navigation with Car-

rier Phase Measurements from Quasi-Synchronous Cellular SOPs

This chapter proposes a non-differential framework for navigation using carrier phase mea-

surements from cellular SOPs transmitted by quasi-synchronous BTSs. This relative stability

of quasi-synchronous BTSs is manifested as a common term driving the BTS clocks. When

this common term is present, the BTSs are said to be quasi-synchronous. Cellular carrier

phase measurements are modeled at a fine granularity level and parameterized by deviations

from the common clock error. The deviation term is demonstrated to evolve as a stable

stochastic process, which is characterized via system identification. Moreover, experimental

results over long periods of time validating the identified models are presented. The paper

11



also discusses how to estimate the statistics of this process on-the-fly when the receiver has

access to GNSS signals. A theoretical lower bound for the logarithm of the determinant

of the position estimation error covariance is derived and an upper bound on the position

error is provided. The results of this contribution are validated by two sets of experiments

showing UAVs navigating with sub-meter-level accuracy.

Chapter 6: Non-Differential Framework Design for Precise Navigation with Car-

rier Phase Measurements from Asynchronous Cellular SOPs

This chapter presents an extended Kalman filter (EKF)-based non-differential framework for

navigation with carrier phase measurements from cellular SOPs transmitted by asynchronous

BTSs. The EKF initialization is discussed and a complete EKF estimation error and estima-

tion error covariance analysis is conducted, performed by studying the observability of the

system under consideration as well as the EKF’s stochastic stability. The theoretical results

produced herein can be generalized to a broader class of problems: EKF-based navigation

using SOP carrier phase and pseudorange measurements. MC simulations are conducted

to demonstrate the theoretical predictions about the system and study the effect of differ-

ent system parameters on the estimation performance. The results of this contribution are

validated by two sets of experiments showing UAVs navigating with meter-level accuracy.

Chapter 7: Optimal Receiver Placement for Dilution of Precision Minimization

This chapter presents an approach to find the global optimal solution of the DOP mini-

mization problem. It is shown that the DOP problem can be formulated as a quadratically

constrained fractional quadratic program. An algorithm for solving this program is presented

and MC simulation results are given demonstrating convergence of the proposed approach to

the global optimal solution. Also, the superiority of the proposed approach is demonstrated

against nonlinear numerical optimization solvers and other approaches that approximate the

DOP minimization problem.

Chapter 8: Performance Evaluation of TOA Positioning in Asynchronous 4G
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and 5G Networks: A Stochastic Geometry Approach

This chapter analyzes the positioning of a UE in asynchronous 4g and 5G networks. Unlike

existing approaches, this dissertation accounts for both UE and BS clock biases. Three

different cases of prior knowledge of the UE clock bias statistics are considered. The squared-

position error bound (SPEB) for each case is derived and analytical relationships between

the SPEB of the three studied cases are established. The cumulative density function (cdf)

of the SPEB for each case is analyzed numerically using stochastic geometry models.

Chapter 9: Conclusions

This chapter summarizes the contributions of this dissertation.
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Chapter 2

Cellular CDMA SOP Model and

Receiver Design

This chapter is organized as follows. Section 2.1 provides an overview of the cellular CDMA

forward link pilot signal structure. Section 2.2 presents a complete implementation of the

acquisition and tracking stages of a navigation cellular CDMA SDR. Section 2.3 analyzes the

statistics of the pseudorange error of the CDMA SDR in an additive white Gaussian channel.

Section 2.4 models the discrepancy between the clock biases of different sectors of the same

BTS. Section 2.5 validates the proposed navigation SDR and analyzes the consistency of the

obtained clock bias discrepancy model experimentally. The notation used in this chapter is

confined to this chapter and the following chapter, Chapter 3.

The results of this chapter have been published in [82, 83, 84, 85].
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2.1 Cellular CDMA SOP Model

In a cellular CDMA communication system, several logical channels are multiplexed on the

forward link channel, including: a pilot channel, a sync channel, and 7 paging channels [2].

The following subsection presents an overview of the modulation process of the forward link

pilot channel and provides models of the transmitted and received signals from which timing

and positioning information can be extracted.

2.1.1 Modulation of Forward Link CDMA Pilot Signals

The data transmitted on the forward link channel in cellular CDMA systems (i.e., BTS to mo-

bile receiver) is modulated through quadrature phase shift keying (QPSK) and then spread

using direct-sequence CDMA (DS-CDMA). The in-phase and quadrature components, I and

Q, respectively, of the pilot channel carry the same message m(t). The spreading sequences

cI and cQ, called the short code, are 215-chip long pseudorandom noise (PN) codes that are

generated using linear feedback shift registers (LFSRs). In order to distinguish the received

data from different BTSs, each station uses a shifted version of the PN codes. This shift,

known as the PN offset, is unique for each BTS and is an integer multiple of 64 chips, hence a

total of 512 PN offsets can be realized. It can be shown that the cross-correlation of the same

PN sequence with different pilot offsets is negligible [86, 87]. The transmitted pilot signal is

nothing but the short code; however, other channels, such as the sync and paging channels,

carry data and are furthermore spread by Walsh codes. The CDMA signal is subsequently

filtered using a digital pulse shaping filter that limits the bandwidth of the transmitted

CDMA signal according to the cdma2000 standard. The signal is finally modulated by the

carrier frequency ωc to produce s(t).
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2.1.2 Transmitted Signal Model

The transmitted pilot signal s(t) by a particular BTS can be expressed as

s(t)=
√
C
{
c′I [t−∆(t)] cos(ωct)− c′Q [t−∆(t)] sin(ωct)

}

=

√
C

2

{
c′I [t−∆(t)] + jc′Q[t−∆(t)]

}
· ejωct

+

√
C

2

{
c′I [t−∆(t)]− jc′Q[t−∆(t)]

}
· e−jωct,

where C is the total power of the transmitted signal; c′I(t) = cI(t) ∗ h(t) and c′Q(t) =

cQ(t) ∗ h(t); h is the continuous-time impulse response of the pulse shaping filter; cI and cQ

are the in-phase and quadrature PN sequences, respectively; ωc = 2πfc with fc being the

carrier frequency; and ∆ is the absolute clock bias of the BTS from GPS time. The total

clock bias ∆ is defined as

∆(t) = 64 · (PNoffset Tc) + δts(t),

where PNoffset is the PN offset of the BTS, Tc =
1×10−6

1.2288
s is the chip interval, and δts is

the BTS clock bias. Since the chip interval is known and the PN offset can be decoded

by the receiver, only δts needs to be estimated. While the clock bias of the BTS can be

neglected for communication purposes, it cannot be ignored for navigation purposes and

must be estimated in some fashion. Chapter 3 presents a framework for estimating this

clock bias that is based on reference and navigating receivers.
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2.1.3 Received Signal Model After Front-End Processing

Assuming the transmitted signal to have propagated through an additive white Gaussian

noise channel with a power spectral density of N0

2
, a model of the received discrete-time

(DT) signal r[m] after RF front-end processing: downmixing, a quadrature approach to

bandpass sampling [88], and quantization can be expressed as

r[m]=

√
C

2

{
c′I [tm−ts(tm)]−jc′Q[tm−ts(tm)]

}
·ejθ(tm)+ n[m], (2.1)

where ts(tm) , δtTOF + ∆(tk − δtTOF ) is the PN code phase of the BTS, tm = mTs is the

sample time expressed in receiver time, Ts is the sampling period, δtTOF is the time-of-flight

(TOF) from the BTS to the receiver, θ is the beat carrier phase of the received signal, and

n[m] = nI [m] + jnQ[m] with nI and nQ being independent, identically-distributed (i.i.d.)

Gaussian random sequences with zero-mean and variance N0

2Ts
. The receiver developed in

Section 2.2 will operate on the samples of r[m] in (2.1).

2.2 Cellular CDMA Navigation Receiver Architecture

The cellular CDMA navigation receiver consists of three main stages: signal acquisition,

tracking, and decoding. The proposed receiver will utilize the pilot signal to detect the

presence of a CDMA signal and then track it, as will be discussed in this section. The next

subsection gives a brief description of the correlation process in the cellular CDMA navigation

receiver. The following subsections present a software implementation in LabVIEW of the

acquisition and tracking stages. Details on decoding the sync and paging channel messages

are provided in [82, 89, 90].
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2.2.1 Cellular CDMA Receiver Correlator

Given samples of the baseband signal exiting the RF front-end defined in (2.1), the cellular

CDMA receiver first wipes off the residual carrier phase and match-filters the resulting signal.

The output of the matched-filter can be expressed as

x[m] =
[

r[m] · e−jθ̂(tm)
]

∗ h[−m], (2.2)

where θ̂ is the beat carrier phase estimate and h is a pulse shaping filter, which is a DT

version of the one used to shape the spectrum of the transmitted signal, with a finite-impulse

response (FIR) given in Table 2.1. The samples m′ of the FIR in Table 2.1 are spaced by

Tc
4
.

Table 2.1: FIR of the Pulse-Shaping Filter used in cdma2000 [2]

m′ h[m′] m′ h[m′] m′ h[m′]

0, 47 -0.02528832 8, 39 0.03707116 16, 31 -0.01283966

1, 46 -0.03416793 9, 38 -0.02199807 17, 30 -0.14347703

2, 45 -0.03575232 10, 37 -0.06071628 18, 29 -0.21182909

3, 44 -0.01673370 11, 36 -0.05117866 19, 28 -0.14051313

4, 43 0.02160251 12, 35 0.00787453 20, 27 0.09460192

5, 42 0.06493849 13, 34 0.08436873 21, 26 0.44138714

6, 41 0.09100214 14, 33 0.12686931 22, 25 0.78587564

7, 40 0.08189497 15, 32 0.09452834 23, 24 1.0

Next, x[m] is correlated with a local replica of the spreading PN sequence. In a digital

receiver, the correlation operation is expressed as

Zk=
1

Ns

k+Ns−1∑

m=k

x[k]
{
cI [tm − t̂s(tm)] + jcQ[tm − t̂s(tm)]

}
, (2.3)

where Zk is the kth subaccumulation, Ns is the number of samples per subaccumulation, and

t̂s(tm) is the code start time estimate over the kth subaccumulation. The code phase can be
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assumed to be approximately constant over a short subaccumulation interval Tsub = NsTs;

hence, t̂s(tm) ≈ t̂sk . It is worth mentioning that theoretically, Tsub can be made arbitrarily

large since no data is transmitted on the pilot channel. Practically, Tsub is mainly limited

by the stability of the BTS and receiver oscillators. In this chapter, Tsub is set to one PN

code period. The carrier phase estimate is modeled as θ̂(tm) = 2πf̂Dk
tm + θ0, where f̂Dk

is

the apparent Doppler frequency estimate over the ith subaccumulation, and θ0 is the initial

beat carrier phase of the received signal. As in a GPS receiver, the value of θ0 is set to zero

in the acquisition stage and is subsequently maintained in the tracking stage. The apparent

Doppler frequency is assumed to be constant over a short Tsub. Substituting for r[m] and

x[m], defined in (2.1) and (2.2), into (2.3), it can be shown that

Zk =
√
C Rc(∆tk)

[

1

Ns

k+Ns−1∑

m=k

ej∆θ(tm)

]

+ nk, (2.4)

where Rc is the autocorrelation function of the PN sequences c′I and c′Q, ∆tk , t̂sk − tsk is

the code phase error, ∆θ(tm) , θ(tm)− θ̂(tm) is the carrier phase error, and nk , nIk + jnQk

with nIk and nQk
being i.i.d. Gaussian random sequences with zero-mean and variance

N0

2TsNs
= N0

2Tsub
.

2.2.2 Acquisition

The objective of this stage is to determine which BTSs are in the receiver’s proximity and

to obtain a coarse estimate of their corresponding code start times and Doppler frequencies.

A search over the code start time and Doppler frequency is performed to detect the presence

of a signal. Based on experimental data, the Doppler frequency search window is chosen

to be between -500 and 500 Hz at a carrier frequency in the 800/850 MHz cellular band,

with a frequency spacing ∆fD between 8 and 12 Hz if Tsub is only one PN code period.
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The code start time search window is naturally chosen to be one PN code interval with a

delay spacing of one sample. The proposed receiver performs a parallel code phase search by

exploiting the optimized efficiency of the fast Fourier transform (FFT) [91]. A hypothesis

test on |Zk|2 could be performed to decide whether the peak corresponds to a transmitted

signal or to noise. Since there is only one PN sequence, the search needs to be performed

once. Fig. 2.3(a) illustrates the front panel of the acquisition stage of the LabVIEW cellular

CDMA SDR showing |Zk|2 along with t̂sk , f̂Dk
, PN offset, and carrier-to-noise ratio C/N0

for a particular BTS.

2.2.3 Tracking

After obtaining an initial coarse estimate of the code start time and Doppler frequency, the

receiver refines and maintains these estimates via tracking loops. In the proposed design, a

phase-locked loop (PLL) is employed to track the carrier phase and a carrier-aided delay-

locked loop (DLL) is used to track the code phase. The PLL and DLL are discussed next.

PLL

The PLL consists of a phase discriminator, a loop filter, and a numerically-controlled oscilla-

tor (NCO). Since the receiver is tracking the data-less pilot channel, an atan2 discriminator,

which remains linear over the full input error range of ±π, could be used without the risk of

introducing phase ambiguities. It was found that the receiver could easily track the carrier

phase with a second-order PLL with a loop filter transfer function given by

FPLL(s) =
2ζωns+ ω2

n

s
, (2.5)
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where ζ ≡ 1√
2
is the damping ratio and ωn is the undamped natural frequency, which can

be related to the PLL’s noise-equivalent bandwidth Bn,PLL by Bn,PLL = ωn

8ζ
(4ζ2+1) [6]. The

output of the loop filter vPLL is the rate of change of the carrier phase error, expressed in

rad/s. The Doppler frequency is deduced by dividing vPLL by 2π. The loop filter transfer

function in (2.5) is discretized at a sampling period Tsub and realized in state-space. The

noise-equivalent bandwidth is chosen to range between 4 and 8 Hz.

DLL

The carrier-aided DLL employs the non-coherent dot product discriminator. In order to

compute the code phase error, the dot product discriminator uses the prompt, early, and

late correlations, denoted by Zpk , Zek , and Zlk , respectively. The prompt correlation was de-

scribed in Subsection 2.2.1. The early and late correlations are calculated by correlating the

received signal with an early and a delayed version of the prompt PN sequence, respectively.

The time shift between Zek and Zlk is defined by an early-minus-late time teml, expressed

in chips. Since the autocorrelation function of the transmitted cellular CDMA pulses is not

triangular as in the case of GPS, a wider teml is preferable in order to have a significant dif-

ference between Zpk , Zek , and Zlk . Fig. 2.1 shows the autocorrelation function of the cellular

CDMA PN code as specified by the cdma2000 standard and that of the C/A code in GPS.

It can be seen from Fig. 2.1 that for teml ≤ 0.5 chips, Rc(τ) in the cdma2000 standard has

approximately a constant value, which is not desirable for precise tracking. In this chapter,

a teml of 1 to 1.2 chips is chosen.

The DLL loop filter is a simple gain K, with a noise-equivalent bandwidth Bn,DLL = K
4
≡ 0.5

Hz. The output of the DLL loop filter vDLL is the rate of change of the code phase, expressed

in s/s. Assuming low-side mixing, the code start time is updated according to

t̂sk+1
= t̂sk − (vDLL,k + f̂Dk

/fc) ·NsTs.
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Figure 2.1: Autocorrelation function of GPS C/A code and cellular CDMA PN sequence
according to the cdma2000 standard.

The pseudorange estimate ρ can therefore be deduced by multiplying the code start time by

the speed-of-light c, i.e.,

ρ(k) = c · t̂sk . (2.6)

Fig. 2.2 depicts a diagram of the tracking loops.

r[m] Carrier
wipe-off

Correlator

Loop

Filter

Loop

Filter
Carrier Phase
Discriminator

Zpk

Zlk

Zek

NCO & PN
Generator

Late

Early

Prompt

f̂Dk

t̂sk

cI [tm − t̂sk ] + jcQ[tm − t̂sk ]

e−
j
θ̂
(t
m
)

Correlator

Correlator

Code Phase
Discriminator

vDLL

vPLL

Figure 2.2: Tracking loops in the navigation cellular CDMA receiver. Thick lines represent
complex quantities.

Fig. 2.3(b)–(e) shows the intermediate signals produced within the tracking loops of the

LabVIEW cellular CDMA navigation receiver: phase error, code error, Doppler frequency,

and pseudorange.

In the next section, the tracking performance of the DLL is studied and the closed-loop

statistics of the code start time estimate are derived.
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Figure 2.3: (a) Cellular CDMA signal acquisition front panel showing |Zk|2 along with t̂sk ,

f̂Dk
, PN offset, and C/N0 for a particular BTS. (b)–(e) Cellular CDMA signal tracking: (b)

Carrier phase error (degrees), (c) code phase error (chips), (d) Doppler frequency estimate
(Hz), and (e) measured pseudorange (m).

2.3 Pseudorange Error Analysis in an Additive White

Gaussian Noise Channel

Section 2.2 presented a recipe for designing a receiver that can extract a pseudorange esti-

mate from cellular CDMA signals. This section analyzes the statistics of the error of the

pseudorange estimate for a coherent DLL. It is worth noting that when the receiver is closely

tracking the carrier phase, the dot-product discriminator and a coherent DLL discriminator

will perform similarly. Hence, the analysis is carried for a coherent discriminator. More-

over, this subsection studies the statistics of the pseudorange error in a coherent baseband

discriminator. To this end, it is assumed that ts is constant. Therefore, the carrier aiding
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term will be negligible and the code start time error ∆tk will be affected only by the channel

noise. As mentioned in Subsection 2.2.3, it is enough to use a first-order loop for the DLL

yielding the following closed-loop time-update error equation [92]

∆tk+1 = (1− 4Bn,DLLTsub)∆tk +KDk, (2.7)

where Dk is the output of the code discriminator. The discriminator statistics are discussed

next.

2.3.1 Discriminator Statistics

In order to study the discriminator statistics, the received signal noise statistics must first

be determined. In what follows, the received signal noise is characterized for an additive

white Gaussian channel.

Received Signal Noise Statistics

In order to make the analysis more tractable, the continuous-time (CT) received signal and

correlation are considered. The transmitted signal is assumed to propagate in an additive

white Gaussian noise channel with a power spectral density N0

2
. The CT received signal after

downmixing and bandpass sampling is given by

r(t) =

√
C

2

[
c′I(t− ts)− jc′Q(t− ts)

]
ejθ(t) + n(t),

and the CT matched-filtered baseband signal x(t) is given by

x(t) =
[

r(t) · e−jθ̂(t)
]

∗ h(−t).
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The resulting early and late correlations in the DLL are given by

Zek =

∫ Tsub

0

x(t) [cI(t− τek) + jcQ(t− τek)] dt,

Zlk =

∫ Tsub

0

x(t) [cI(t− τlk) + jcQ(t− τlk)] dt,

where τek , t̂sk − teml

2
Tc and τlk , t̂sk +

teml

2
Tc. Assuming the receiver is closely tracking the

carrier phase [6], the early and late correlations may be approximated with

Zek ≈ Tsub
√
CRc(∆tk −

teml

2
Tc) + nek , Sek + nek ,

Zlk ≈ Tsub
√
CRc(∆tk +

teml

2
Tc) + nlk , Slk + nlk ,

where nek and nlk are zero-mean Gaussian random variables with the following variances

and covariances

var{n2
ek
} = var{n2

lk
} = TsubN0

2
∀k,

E{neknlk} =
TsubN0Rc(temlTc)

2
, ∀k,

E{neknej} = E{nlknlj} = E{neknlj} = 0, ∀k 6= j.

Coherent Discriminator Statistics

The coherent baseband discriminator function is defined as

Dk ,
Zek − Zlk√

C
=

(Sek − Slk)√
C

+
(nek − nlk)√

C
.
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The normalized signal component of the discriminator function
(Sek

−Slk)
Tsub

√
C

is shown in Fig.

2.4 for teml = {0.25, 0.5, 1, 1.5, 2}.
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-1.5
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-0.5

0

0.5
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Figure 2.4: Output of the coherent baseband discriminator function for the CDMA shortcode
with different correlator spacings.

It can be seen from Fig. 2.4 that for small values of ∆tk
Tc

, the discriminator function can be

approximated by a linear function given by

Dk ≈ α∆tk +
(nek − nlk)√

C
,

where α is the slope of the the discriminator function at ∆tk = 0 [92], which is obtained by

α =
∂Dk

∂∆tk

∣
∣
∣
∣
∆tk=0

= Tsub

[
d

dτ
Rc(τ)−

d

dτ
Rc(τ)

]∣
∣
∣
∣
τ=

teml
2
Tc

.

Since Rc(τ) is symmetric,

d

dτ
Rc(τ)

∣
∣
∣
∣
τ=− teml

2
Tc

=
d

dτ
Rc(τ)

∣
∣
∣
∣
τ=

teml
2
Tc

, R′
c

(
teml

2
Tc

)

,

and the linearized discriminator output becomes

Dk ≈ 2TsubR
′
c

(
teml

2
Tc

)

∆tk +
(nek − nlk)√

C
. (2.8)

It is worth noting that Rc(τ) and R
′
c(τ) are obtained by numerically computing the autocor-
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relation function of the pulse-shaped short code. Since the FIR of the pulse-shaping filter

h[k] is defined over only 48 values of k, the autocorrelation function Rc(τ) will be defined

over 95 values of τ . However, interpolation may be used to evaluate Rc(τ) and R
′
c(τ) at any

τ . The mean and variance of Dk can be obtained from (2.8), and are given by

E{Dk} = 2TsubR
′
c

(
teml

2
Tc

)

∆tk, (2.9)

var{Dk} =
1

C
var{nek − nlk}

=
1

C
[var{nek}+ var{nlk} − 2E{neknlk}]

=
TsubN0

C
[1−Rc(temlTc)] . (2.10)

Now that the discriminator statistics are known, the closed-loop pseudorange error is char-

acterized.

2.3.2 Closed-Loop Analysis

In order to achieve the desired loop noise-equivalent bandwidth, K in (2.7) must be normal-

ized according to

K =
4Bn,DLLTsub∆tk

E{Dk}

∣
∣
∣
∣
∆tk=0

=
2Bn,DLL

R′
c

(
teml

2
Tc
) . (2.11)

In cellular CDMA systems, for a teml of 1.2, the loop filter gain becomes K ≈ 4Bn,DLL, hence

the choice of K in Subsection 2.2.3. Assuming a zero-mean tracking error, i.e., E{∆tk} = 0,
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then the variance of the code start time error is given by

var{∆tk+1} = (1− 4Bn,DLLTsub)
2var{∆tk}

+K2var{Dk}. (2.12)

At steady-state, var{∆τk+1} becomes

var{∆τk+1} = var{∆τk} = var{∆τ}, (2.13)

where ∆t is the steady-state code start time error. Combining (2.11)–(2.13) yields

var{∆t} = Bn,DLL q(teml)

2(1− 2Bn,DLLTsub)C/N0
, (2.14)

where

q(teml) ,
1− Rc(temlTc)
[
R′
c(
teml

2
Tc)
]2 .

The pseudorange can hence be expressed as

ρ(k) = c · tsk + c ·∆tk , c · tsk + v(k),

where v(k) is a zero-mean random variable with variance σ2 = c2 · var {∆t}. Fig. 2.5 shows

a plot of σ as a function of the carrier-to-noise ratio C
N0

for teml = 1.25 chips.
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Figure 2.5: Plot of σ as a function of the carrier-to-noise ratio C
N0

for teml = 1.25 chips and
Bn,DLL = {0.5 Hz, 0.05 Hz}.

2.4 Clock Bias Discrepancy Model between Different

Sectors of a BTS Cell

A typical CDMA BTS transmits into three different sectors within a particular cell. Ideally,

all sectors’ clocks should be driven by the same oscillator, which implies that the same clock

bias (after correcting for the PN offset) should be observed in all sectors of the same cell.

However, factors such as unknown distance between the phase-center of the sector antennas,

delays due to RF connectors and other components (e.g., cabling, filters, amplifiers, etc.)

cause the clock biases corresponding to different BTS sectors to be slightly different. This

behavior was consistently observed experimentally in different locations, at different times,

and for different cellular providers [82, 83]. In this section, the model for the pseudorange

produced by the cellular CDMA navigation receiver developed in Section 2.2 is given. Sub-

sequently, a stochastic dynamic model for the observed clock bias mismatch for different

sectors of the same BTS cell is identified and experimentally validated.

2.4.1 Pseudorange Measurement Model

The pseudorange can be obtained from the proposed cellular CDMA navigation SDR by

multiplying the code phase estimate by the speed-of-light. A model for this produced pseu-
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dorange can be parameterized as a function of the receiver and BTS position and clock bias

states. For simplicity, a planar environment will be assumed, with the receiver and BTS

three-dimensional (3-D) position states appropriately projected onto such planar environ-

ment. The subsequent discussion can be straightforwardly generalized to 3-D. The state of

the receiver is defined as xr ,
[
rTr , cδtr

]T
, where rr = [xr, yr]

T is the position vector of the

navigating receiver, δtr is the navigating receiver’s clock bias, and c is the speed-of-light.

Similarly, the state of the ith BTS is defined as xsi ,
[
rTsi, cδtsi

]
T

, where rsi = [xsi, ysi]
T

is the position vector of the ith BTS and δtsi is the clock bias. After mild approximations

discussed in [33], the pseudorange measurement to the ith BTS at time k, ρi(k), can be

expressed as

ρi(k) = ‖rr(k)− rsi‖+ c · [δtr(k)− δtsi(k)] + vi(k), (2.15)

where vi is the observation noise, which is modeled as a zero-mean white Gaussian random

sequence with variance σ2
i .

2.4.2 Sector Clock Bias Discrepancy Detection

In order to detect the discrepancy between sectors’ clock biases, the proposed cellular CDMA

receiver was placed at the border of two sectors of a BTS cell and was drawing pseudorange

measurements from both sector antennas. The receiver had full knowledge of its state and

of the BTS’s position. Subsequently, the receiver solved for the BTS clock biases δt
(pi)
si and

δt
(qi)
si observed in sectors pi and qi, respectively. A realization of δt

(pi)
si and δt

(qi)
si is depicted

in Fig. 2.6.

Fig. 2.6 suggests that the clock biases δt
(pi)
si and δt

(qi)
si can be related through

δt(qi)si
(k) = δt(pi)si

(k) + [1− 1qi(pi)] ǫi(k),
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Figure 2.6: (a) A cellular CDMA receiver placed at the border of two sectors of a BTS cell,
making pseudorange observations on both sector antennas simultaneously. The receiver has
knowledge of its own states and has knowledge of the BTS position states. (b) Observed
BTS clock bias corresponding to two different sectors from a real BTS (Verizon Wireless).

where ǫi is a random sequence that models the discrepancy between the sectors’ clock biases

and

1qi(pi) =







1, if pi = qi,

0, otherwise,

is the indicator function.

Remark The cdma2000 protocol requires all PN offsets to be synchronized to within 10

µs from GPS time; however, synchronization to within 3 µs is recommended [48]. Since

each sector of a BTS uses a different PN offset, then the clock biases δt
(pi)
si and δt

(qi)
si will be

bounded according to −10 µs ≤ δt
(pi)
si (k) ≤ 10 µs and −10 µs ≤ δt

(qi)
si (k) ≤ 10µs. Therefore,

ǫi will be within 20 µs from GPS time, namely

−20 µs ≤ ǫi ≤ 20 µs.

The discrepancy {ǫi}2i=1 between the clock biases observed in two different sectors of some

BTS cell over a 24-hour period is shown in Figs. 2.7(a) and 2.7(b) for two different BTSs.

Both cellular towers pertain to the U.S. cellular provider Verizon Wireless and are located
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near the University of California, Riverside campus. The cellular signals were recorded

between September 23 and 24, 2016. It can be seen from Fig. 2.7 that |ǫi| is bounded by

approximately 2.02 µs and 0.65 µs, respectively, which is well below 20 µs.
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Figure 2.7: The discrepancies ǫ1 and ǫ2 between the clock biases observed in two different
sectors of some BTS cell over a 24-hour period. (a) and (b) correspond to ǫ1 and ǫ2 for BTSs
1 and BTS 2, respectively. Both BTSs pertain to the U.S. cellular provider Verizon Wireless
and are located near the University of California, Riverside campus. The cellular signals
were recorded between September 23 and 24, 2016. It can be seen that |ǫi| is well below 20
µs.

In what follows, a stochastic dynamic model for ǫi is identified.

2.4.3 Model Identification

It is hypothesized that the discrepancy ǫi(k) = δt
(qi)
si (k)− δt(pi)si (k) for pi 6= qi adheres to an

autoregressive (AR) model of order n [93], which can be expressed as

ǫi(k) +

n∑

j=1

ai,jǫi(k − j) = ζi(k),
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where ζi is a white sequence. The objective is to find the order n and the coefficients {ai,j}nj=1

that will minimize the sum of the squared residuals
∑k

l=0 ζ
2
i (l). To find the order n, several

AR models were identified and for a fixed order, a least-squares estimator was used to solve

for {ai,j}nj=1. It was noted that the sum of the squared residuals corresponding to each

n ∈ {1, . . . , 10} were comparable, suggesting that the minimal realization of the AR model

is of first-order. For n = 1, it was found that ai,1 = −(1 − βi), where 0 < βi ≪ 1 (on the

order of 8 × 10−5 to 3 × 10−4). This implies that ǫi is an exponentially correlated random

variable (ECRV) with the continuous-time (CT) dynamics given by

ǫ̇i(t) = −αiǫi(t) + ζ̃i(t), (2.16)

where αi ,
1
τi
, τi is the time constant of the discrepancy dynamical model, and ζ̃i is a CT

white process with variance σ2
ζ̃i
. Discretizing (2.16) at a sampling period T yields the DT

model

ǫi(k + 1) = φi ǫi(k) + ζi(k), (2.17)

where φi = e−αiT . The variance of ζi is given by σ2
ζi
=

σ2
ζ̃i

2αi

(
1− e−2αiT

)
. Fig. 2.8 shows an

experimental realization of ǫi and the corresponding residual ζi.
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Figure 2.8: (a) A realization of the discrepancy ǫi between the observed clock biases of two
BTS sectors and (b) the corresponding residual ζi.
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2.4.4 Model Validation

The identified model in (2.17) was validated through residual analysis [93]. To this end, the

autocorrelation function (acf) and power spectral density (psd) of the residual error ei defined

as the difference between the measured data ǫ′i and predicted value from the identified model

ǫi in (2.17), i.e., ei , ǫ′i − ǫi, were computed. Fig. 2.9 shows the acf and psd of ei computed

from a different realization of ǫi. The psd was computed using Welch’s method [94]. It can

be seen from Fig. 2.9 that the residual error ei is nearly white; hence, the identified model

is capable of describing the true system.
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Figure 2.9: The (a) acf and (b) psd of ei with a sampling frequency of 5 Hz.

2.4.5 Residual Statistics Characterization

Next, the probability density function (pdf) of ζi will be characterized, assuming that ζi

is an ergodic process. It was found that the Laplace distribution best matches the actual

distribution of ζi obtained from experimental data, i.e., the pdf of ζi is given by

p(ζi) =
1

2λi
exp

(

−|ζi − µi|
λi

)

, (2.18)

where µi is the mean of ζi and λi is the parameter of the Laplace distribution, which can be

related to the variance by σ2
ζi
= 2λ2i . A maximum likelihood estimator (MLE) was adopted

to calculate the parameters µi and λi of p(ζi) [95]. Fig. 2.10 shows the actual distribution of
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the data along with the estimated pdf. For comparison purposes, a Gaussian and Logistic

pdf fits obtained via an MLE are plotted as well.

True data

Laplace

ζi [ns]

p
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of
ζ i

Gaussian

Logistic

Figure 2.10: Distribution of ζi from experimental data and the estimated Laplace pdf via
MLE. For comparison purposes, a Gaussian (dashed) and Logistic (dotted) pdf fits are
plotted as well.

It was noted that µi ≈ 0 from several batches of collected experimental data; therefore, ζi

is appropriately modeled as a zero-mean white Laplace-distributed random sequence with

variance 2λ2i .

2.4.6 Statistics of the Discrepancy Between Sector Clock Biases

The solution to the dynamic model (2.17) can be expressed as

ǫi(k) = φki ǫi(0) +

k−1∑

l=0

φk−1−l
i ζi(l),

where ǫi(0) is the known initial discrepancy. Without loss of generality, ǫi(0) is assumed to

be zero. Therefore, ǫi(k) has mean E [ǫi(k)] = 0 and variance var [ǫi(k)] =
σ2
ζ̃i

2αi

(
1− e−2αikT

)
.

Note that the discrepancy ǫi is the weighted sum of uncorrelated Laplace-distributed random

variables. The central limit theorem asserts that the pdf of ǫi converges to a Gaussian pdf.

It was noted that the convergence happens for k ≥ 9 for φi ≥ 0.95, as depicted in Fig. 2.11.
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Figure 2.11: Simulation of the distribution of cǫi (expressed in meters) for φi = 0.95, µi = 0,
and λi = 13ns. The true distribution is fitted to a Gaussian distribution (yellow) and a
Laplace distribution (red).

2.4.7 Approximation with a Random Walk

When αi → 0, the dynamics of ǫi(k) converge to that of a random walk. Since the values

of αi obtained experimentally are very small, studying the RW model as an approximation

becomes relevant. The mean of the RW process is also zero and the variance is given by

σ2
ζ̃i
kT . It can be readily shown that σ2

ζ̃i
kT >

σ2
ζ̃i

2αi

(
1− e−2αikT

)
, ∀αi > 0, k > 0, and T > 0.

Denote the relative error between the variances of the ECRV and RW models by γ, then the

following can be established

1

2αikT

(
1− e−2αikT

)
≥ 1− γ. (2.19)

Note that (2.19) may also be expressed as

f(x, γ) ≥ 0,
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where

x , 2αikT and f(x, γ) , 1− (1− γ)x− e−x.

Fig. 2.12(a) shows f(x, γ) as a function of x for different values of γ. Let x⋆ = g(γ) denote

the solution to f(x, γ) = 0 for a given γ. According to Fig. 2.12(a), for a given γ, f(x, γ) ≥ 0

is satisfied ∀ x ∈ (0, g(γ)]. Fig. 2.12(b) depicts the solution x⋆ = g(γ) as a function of γ.

Note that g(γ) does not have a closed form but can be calculated using iterative methods,

e.g., Newton’s method.

x

f
(x
,γ

)

γ

g
(γ
)

(a) (b)

γ = 0.03
γ = 0.05
γ = 0.1

Figure 2.12: (a) Plot of f(x, γ) for γ = {0.03, 0.05, 0.1}. (b) Plot of g(γ).

Subsequently, for a desired γ and a known αi, one can solve for k that guarantees the

relative error between the RW and ECRV variances to be less than γ using 2αikT ≤ g(γ).

For example, given that γ = 0.01 and αi = 3 × 10−4 Hz, then for kT ≤ g(0.01)
2×3×10−4 = 33.55 s,

the relative error between the RW and ECRV variances will remain less than 1 %.

2.5 Experimental Results

In this section, experimental results on an aerial and ground vehicle, validating the proposed

cellular CDMA navigation SDR are presented. Next, the consistency of the clock bias

discrepancy model derived in Section 2.4 is analyzed experimentally.
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2.5.1 Cellular CDMA Navigation SDR Experimental Results

In order to test the proposed cellular CDMA SDR, the variation in the pseudorange obtained

by the receiver was compared to the variation in true range between the moving receiver and

cellular CDMA BTSs. For this purpose, two experiments are conducted where the proposed

receiver was mounted on (1) an unmanned aerial vehicle (UAV) and (2) a ground vehicle.

UAV Results

In the first experiment, a DJI Matrice 600 UAV was equipped with the proposed SDR, a

consumer-grade 800/1900 MHz cellular antenna, and a small consumer-grade GPS antenna

to discipline the on-board oscillator. The cellular signals were down-mixed and sampled

via a single-channel universal software radio peripheral (USRP) driven by a GPS-disciplined

oscillator (GPSDO). The cellular receiver was tuned to a carrier frequency of 883.98 MHz,

which is a channel allocated for the U.S. cellular provider Verizon Wireless. Samples of

the received signals were stored for off-line post-processing. The cellular CDMA signals

were processed by the proposed LabVIEW-based SDR. The ground-truth reference for the

UAV trajectory was taken from its on-board navigation system, which uses GPS, an inertial

navigation system, and other sensors. Fig. 2.13 shows the SOP BTS environment in which

the UAV was present as well as the experimental hardware setup.

Over the course of the experiment, the receiver was listening to two BTSs, whose position

states were mapped prior to the experiment according to the framework discussed in [1].

The distance D between the UAV and the BTS was calculated using the navigation solution

produced by the UAV’s navigation system and the known BTS position, and the pseudorange

ρ was obtained from the proposed cellular CDMA SDR mounted on the UAV over the

trajectory shown in Fig. 2.14.
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Figure 2.13: SOP BTS environment and experimental hardware setup for the UAV experi-
ment. Map data: Google Earth.

True trajectory

Total trajectory: 570m

North

East

Figure 2.14: Trajectory taken by the UAV over the course of the experiment. Map data:
Google Earth.

In order to validate the resulting pseudoranges, the variation of the pseudorange ∆ρ ,

ρ − ρ(0), where ρ(0) is the initial value of the pseudorange, and the variation in distance

∆D , D − D(0), where D(0) is the initial distance between the UAV and the BTS are

plotted in Fig. 2.15 for the two BTSs.

It can be seen from Fig. 2.15 that the variations in the pseudoranges follow closely the

variations in distances. The difference between ∆D and ∆ρ for a particular BTS is due to

the variation in the clock bias difference c (δtr − δtsi) and the noise terms vi.
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Figure 2.15: Variation in pseudoranges and the variation in distances between the receiver
and two cellular CDMA BTSs for the UAV experiment.

Ground Vehicle Results

In the second experiment, a car was equipped with the proposed SDR, a consumer-grade

800/1900 MHz cellular antenna, and a surveyor-grade GPS antenna to collect GPS L1 signal

and to discipline the on-board oscillator. The cellular and GPS signals were down-mixed

and synchronously sampled via a dual-channel USRP driven by a GPSDO. The cellular

receiver was tuned to a carrier frequency of 882.75 MHz, which is also a channel allocated

for the U.S. cellular provider Verizon Wireless. Samples of the received signals were stored

for off-line post-processing. The cellular CDMA signals were processed by the proposed

LabVIEW-based SDR. The GPS signal was processed by the Generalized Radionavigation

Interfusion Device (GRID) SDR [96] and the resulting GPS solution was assumed to be the

ground-truth reference for the car trajectory. Fig. 2.16 shows the SOP BTS environment,

car trajectory, and the experimental hardware setup.

Over the course of the experiment, the receiver was listening to two BTSs, whose position

states were mapped prior to the experiment according to the framework discussed in [1]. The

change in the true range and the change in pseudorange are plotted in Fig. 2.17, similarly

to the UAV experiment.
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Figure 2.16: SOP BTS environment, true trajectory, and experimental hardware setup for
the ground vehicle experiment. Map data: Google Earth.
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Figure 2.17: Variation in pseudoranges and the variation in distances between the receiver
and two cellular CDMA BTSs for the ground vehicle experiment.

It can be seen from Fig. 2.17 that the variations in the pseudoranges follow closely the

variations in distances. The difference between ∆D and ∆ρ for a particular BTS is due to

the variation in the clock bias difference c (δtr − δtsi) and the noise terms vi. Chapter 3

studies the navigation performance and estimation of the clock bias in further detail.

2.5.2 Clock Bias Discrepancy Model Consistency Analysis

The consistency of the clock bias discrepancy model was analyzed experimentally in different

locations, at different times, and for different cellular providers. The results are presented

in this section.
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Cellular CDMA SOP Test Scenarios and Hardware Setup

The tests were performed twice at three different locations. There is a six-day period be-

tween each test at each of the three locations. A total of three carrier frequencies were

considered, two of them pertaining to Verizon Wireless and one to Sprint. The test scenarios

are summarized in Table 2.2 and Fig. 2.18. The date field in Table 2.2 shows the date in

which the test was conducted in MM/DD/YYYY format.

Table 2.2: Test Dates, Locations, and Carrier Frequencies

Test Date Location Frequency Provider

(a) 01/14/2016 1 882.75 MHz Verizon

(b) 01/20/2016 1 882.75 MHz Verizon

(c) 08/28/2016 2 883.98 MHz Verizon

(d) 09/02/2016 2 883.98 MHz Verizon

(e) 08/28/2016 3 1940.0 MHz Sprint

(f) 09/02/2016 3 1940.0 MHz Sprint

Location 1

Location 2

Location 3

Colton

Riverside

UCR

BTS 1

BTS 2

BTS 3 2Km

Figure 2.18: Locations of the cellular CDMA BTSs: Colton, CA; Riverside, CA; and the
University of California, Riverside (UCR). Map data: Google Earth.
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For the purpose of collecting data, a receiver that was placed close to the border of two

sectors for each BTS was equipped with two antennas to acquire and track: (1) GPS signals

and (2) signals from the cellular CDMA BTS sector antennas. The CDMA antenna used for

the experiments in location 1 was a consumer-grade 800/1900 MHz cellular antenna and a

high-gain tri-band cellular antenna for locations 2 and 3. Both GPS antennas were surveyor-

grade Leica antennas. The GPS and cellular signals were simultaneously down-mixed and

synchronously sampled at 2.5 MS/s via a dual channel USRP driven by a GPSDO. Samples

of the received signals were stored for off-line post-processing. The GPS signal was processed

by GRID and the cellular CDMA signals were processed by the proposed LabVIEW-based

SDR. The receiver’s clock bias obtained from the GPS solution was used to solve for the

BTS sector clock bias. Fig. 2.19 shows the experimental hardware setup.

GPS Antenna

CDMA
Antenna

USRP

Storage

Laptop
+

CDMA
Antenna

GPS Antenna

Location 1Locations 2 & 3

Figure 2.19: Experimental hardware setup for each location. Left: hardware setup for
locations 2 and 3. Center: data collection equipment. Right: hardware setup for location 1.

Analysis of Sector Clock Bias Discrepancy Realizations

Fig. 2.20 shows six realizations, five minutes each, of the discrepancy corresponding to Tests

(a)–(f) in Table 2.2. It can be seen from Fig. 2.20 that the behavior of the discrepancy is

consistent across the tests. The initial discrepancy is subtracted out so that all realizations

start at the origin. The inverse of the time constant for each realization was found to be

{αi}6i=1 = {2.08, 1.66, 1.77, 1.70, 1.39, 2.53}× 10−4 Hz.
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Next, the process noise driving the discrepancy is characterized. The process noise was

calculated according to

ζi(k) = ǫi(k + 1)− φiǫi(k),

where φi = e−αiT and T = 0.2 s. The acf of each of the six realizations of ζi corresponding

to the six realizations of ǫi from Fig. 2.20 are shown in Fig. 2.21. Similarly to Fig. 2.9(a),

the shape of the acfs in Fig. 2.21 exhibits very quick de-correlation, validating that ζi is

approximately a white sequence.

Fig. 2.22 shows a histogram of each realization of ζi along with the estimated pdf p(ζi). The

pdfs were obtained by estimating the µi and λi parameters associated with the Laplace pdf

(2.18). It can be seen that the Laplace pdf consistently matched the experimental data.

Time [s] Time [s]

c
ǫ
i
(k
)
[m

]
c
ǫ
i
(k
)
[m

]
c
ǫ
i
(k
)
[m

]

c
ǫ
i
(k
)
[m

]
c
ǫ
i
(k
)
[m

]

(a)

(c)

(e) (f)

(d)

(b)

c
ǫ
i
(k
)
[m

]

0 50 100 150 300250200

40

30

20

10

0
0 50 100 150 300250200

-20

-15

-10

-5

0

5
-20

-10

10

0

20

30

-40

-30

10

0

-20

-10

40

20

-20

0

-40

-10

-5

0

5

Figure 2.20: Six realizations, five minutes each, of the sector clock bias discrepancy for the
tests in Table 2.2.
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Figure 2.21: The acf of the six realizations of the process noise ζi corresponding to the
discrepancies in Fig. 2.20.
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Chapter 3

Differential Framework for Navigation

With Pseudorange Measurements

from Cellular SOPs

This chapter is organized as follows. Section 3.1 studies a base/rover receiver framework

for navigation with cellular CDMA signals. Section 3.2 derives a lower bound on the deter-

minant of the estimation error covariance for pseudorange measurements with uncorrelated

measurement noise and analyzes the navigation performance using cellular CDMA signals

in the presence of clock bias discrepancies between BTS sectors. Section 3.3 shows exper-

imental results of navigation using cellular CDMA signals for (1) a mobile ground vehicle

and stationary base, (2) a UAV with a stationary base, and (3) a UAV with a mobile base.

Note that the same notation of Chapter 2 is adopted in this chapter.

The results of this chapter have been published in [82, 97].
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3.1 Base/Rover Navigation Framework

By making pseudorange observations to 3 or more BTSs, one may estimate the two-dimensional

(2-D) position and clock bias of a cellular CDMA receiver, provided that the BTS locations

and their clock biases are known. The observability of environments comprising multiple

receivers making pseudorange observations on terrestrial SOPs was studied in [33] and the

estimation of unknown cellular CDMA SOP states was addressed in [41]. This section de-

scribes a framework for navigating with cellular CDMA signals. The framework consists

of two receivers: a reference receiver and a navigating receiver, referred to as the base and

rover, respectively [85]. Each receiver is capable of producing pseudorange measurements to

nearby SOP BTSs. The base could be deployed on top of a building; therefore, it has access

to GNSS signals. However, the rover is located between the buildings where GNSS signals

are severely attenuated and cannot be used to produce a navigation solution. Note that

cellular CDMA signals are orders of magnitude more powerful that GNSS signals (carrier-

to-noise ratio around 60 dB-Hz, see Fig. 2.3 in Chapter 2 [85], while the carrier-to-noise

ratio of GNSS signals outdoors is around 41-46 dB-Hz [6]). Alternatively, the rover may lose

access to GNSS signals in a situation where it is located in the vicinity of a personal privacy

device (i.e., GNSS jammer [4]), which makes GNSS signals unusable. Subsequently, the base

is assumed to have knowledge of its own state vector and is estimating the states of the

unknown SOP BTSs. These estimates are shared with the rover, which has no knowledge of

its own states. This section considers the estimation of receiver and SOP states in a static

framework. As such, the time argument will be dropped for simplicity of notation.

3.1.1 BTS State Estimation

Consider a base with knowledge of its own state vector (by having access to GPS signals,

for example) to be present in the rover’s environment as depicted in Fig. 3.1 [82].
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Figure 3.1: Base and rover in a cellular SOP environment.

The base’s objective is to estimate the BTSs’ position and clock bias states and share these

estimates with the rover through a central database. The position states of the BTSs are

assumed to be known and stored in a database. The position states could be readily obtained

via multiple bases in the environment, estimating the position states of the BTSs for a

sufficiently long period of time. These estimates are physically verifiable via surveying or

satellite images. Unlike the position state estimates, the clock bias state estimates are time-

varying and difficult to verify. Therefore, in the sequel, it is assumed that the base is only

producing for the ith BTS an estimate δt̂si and an associated estimation error variance σ2
δtsi

.

Consider M bases and N SOP BTSs. Denote the state vector of the jth base by xrj , the

pseudorange measurement by the jth base on the ith BTS by ρ
(j)
i , and the corresponding

measurement noise by v
(j)
i . Assume v

(j)
i to be independent for all i and j with a corresponding

variance σ
(j)
i

2
. The measurement ρ

(j)
i is hence given by

ρ
(j)
i =

∥
∥rrj − rsi

∥
∥
2
+ c
(
δtrj − δtsi

)
+ v

(j)
i .

The base knows rrj , rsi, and cδtrj . Subsequently, define the set of measurements made by
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all bases on the ith BTS as

zi ,









‖rr1 − rsi‖+ cδtr1 − ρ(1)i
...

‖rrM − rsi‖+ cδtrM − ρ(M)
i









=









cδtsi − v(1)i

...

cδtsi − v(M)
i









= cδtsi1M + vi,

where 1M , [1, . . . , 1]T and vi , −
[

v
(1)
i , . . . , v

(M)
i

]T

. The clock bias δtsi is estimated by

solving a weighted least-squares (WLS) problem, resulting in the estimate

δ̂tsi =
1

c

(
1T

MW1M
)−1

1T

MWz

and associated estimation error variance σ2
δtsi

= 1
c

(
1T

MW1M
)−1

, whereW = diag

[

1

σ
(1)
i

2 , . . . ,
1

σ
(M)
i

2

]

is the weighting matrix. The true clock bias of the ith BTS can now be expressed as

δtsi = δ̂tsi + wi, where wi is a zero-mean Gaussian random variable with variance σ2
δtsi

.

3.1.2 Pseudorange Model in the Presence of Sector Mismatch

Since the rover is using the BTS clock bias estimate produced by the base(s), the pseudorange

measured by the rover in sector qi of the ith BTS, using the discrepancy model identified in

Chapter 2, can be expressed as

ρ
(qi)
i = ĥ

(pi)
i + ηi − [1− 1qi(pi)] · [cǫi] ,

where ĥ
(pi)
i , hi

(

xr, x̂
(pi)
si

)

, hi(xr,xsi) , ‖rr − rsi‖2 + c · [δtr − δtsi ], x̂(pi)
si =

[

rTsi, cδ̂t
(pi)

si

]T

,

δ̂t
(pi)

si
is the ith BTS clock bias estimate produced by the base in sector pi, and ηi , vi −

wi models the overall uncertainty in the pseudorange measurement, which is a zero-mean

Gaussian random variable with variance σ2
ηi
= σ2

i + c2σ2
δtsi

. The quantities ǫi, ηi, and δ̂t
(pi)

si
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are time-varying quantities with δ̂t
(pi)

si
known at all times. Therefore, the pseudorange at

time-step k is given by

ρ
(qi)
i (k) = ĥ

(pi)
i (k) + ηi(k)− [1− 1qi(pi)] · [cǫi(k)] , (3.1)

where ĥ
(pi)
i (k) = hi

[

xr(k), x̂
(pi)
si (k)

]

indicates that the observation estimate is calculated

using the base estimates and the receiver state at time k. After nine time steps, ǫi can be

modeled as a zero-mean Gaussian random variable with variance
λ2i
αi

(
1− e−2αikT

)
[85], as

shown in Chapter 2. In the sequel, λi ≡ λ and αi ≡ α, ∀ i.

3.1.3 Fusion of BTS Clock State Estimates into the Navigation

Solution

The rover is assumed to be drawing pseudorange measurements from N BTSs, Ns of which

have a mismatch between the base and rover sectors. Without loss of generality, the set of

pseudorange measurements are assumed to be sorted such that the first Ns measurements

correspond to ones coming from the BTSs with sector mismatch between the base and rover.

If the rover is either stationary or mobile but has perfect knowledge of the change in its

position, it can solve through a batch LS estimator for its: (1) initial position state rr(k0)

and (2) clock bias at time-steps k0 to k0+K−1 by utilizing all the measurements from k0 to

k0+K−1. Alternatively, the rover may solve for its current position and clock bias through

a LS estimator (point solution with K = 1). In either case, the estimator is estimating the

state vector x′
r given by

x′
r = [xr(k0), yr(k0), cδtr(k0), . . . , cδtr(k0 +K − 1)]T .
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The measurement model is therefore given by

ρ = ĥ+ cǫ+ η, (3.2)

where

ρ,
[
KρT

1 , . . . ,
KρT

N

]T
, Kρi,

[

ρ
(qi)
i (k0), . . . , ρ

(qi)
i (k0+K−1)

]
T

,

ĥ,
[
KĥT

1 , . . . ,
KĥT

N

]
T

, Kĥi,
[

ĥ
(pi)
i (k0), . . . , ĥ

(pi)
i (k0+K−1)

]
T

,

ǫ,
[
KǫT1 , . . . ,

KǫTN , 0
T

K̄×1

]T
, Kǫi, [ǫi(k0), . . . , ǫi(k0+K−1)]T,

η ,
[
KηT

1 , . . . ,
KηT

N

]T
, Kηi , [ ηi(k0), . . . , ηi(k0+K−1) ]T,

and K̄ , K · (N − Ns). The Jacobian matrix H of the set of observations with re-

spect to x′
r is given by H =

[
G ĪN

]
, where G ,

[

rr−rs1

‖rr−rs1‖1
T

K . . .
rr−rsN

‖rr−rsN‖1
T

K

]
T

and

ĪN , [IK×K . . . IK×K]
T where IK×K indicates the K ×K identity matrix. The “overall”

measurement noise, (cǫ+ η), captures the errors due to measurement noise, base estimation

errors, and discrepancies between the sectors’ clock biases. It is modeled as a zero-mean

random variable with a covariance matrix R. The structure of R will be discussed in Sub-

sections 3.2.2–3.2.3. The rover’s state can now be estimated by solving a WNLS problem,

to obtain an estimate of its state x̂′
r and an associated estimation error covariance P. The

iterated WNLS equations are given by

x̂′
r
(l+1) = x̂′

r
(l) +

(
HTR−1H

)−1
HTR−1 (ρ− ρ̂)

P(l) =
(
HTR−1H

)−1
,

where l is the iteration number and ρ̂ is ĥ evaluated at the current estimate x̂′
r
(l).
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3.2 Performance Characterization of the Base/Rover

Framework with PseudorangeMeasurements in the

Presence of Sector Clock Bias Discrepancies

In this section, the estimation performance in the presence of the discrepancy discussed in

Subsection 2.4 of Chapter 2 is analyzed as a function of time and the number of mismatches

between the BTS cell sectors which the bases are listening to and those cell sectors which the

rover is listening to. The estimation performance was characterized for a special case of this

problem and for a static estimator only, where the discrepancy model was assumed to adhere

to a random walk [98]. This section derives lower bounds on the determinant of the estimation

error covariance for point and batch estimators with uncorrelated measurements between sets

of sensors (SOPs), where each set has an arbitrary measurement noise covariance, and for

a discrepancy that is modeled as an exponentially correlated random sequence. First, a

general lower bound on the determinant of the estimation error covariance in the case of

uncorrelated measurement noise is derived. Next, analytical expressions of the lower bounds

on the determinant of the estimation error covariance in the presence of sector mismatch

for two estimation frameworks are presented, namely a point solution and a batch solution.

Finally, a practical upper bound on the position error is derived.

3.2.1 Estimation Error Covariance Lower Bound

This subsection derives the lower bound on the determinant of the estimation error covari-

ance (D-optimality criterion) in the case of uncorrelated measurement noise and specifies an

optimal BTS configuration that achieves this bound. The D-optimality criterion is chosen,

since it is equivalent to minimizing the volume of the uncertainty ellipsoid [99] and is also a

commonly used metric when studying the geometric dilution of precision [73]. The results
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are captured in the following two theorems. It is important to note that the results presented

in these two theorems are applicable beyond cellular CDMA systems. In fact, they apply to

the general problem of a set of sensors (receiver) making pseudorange measurements on a

source (transmitter). This problem is encountered in navigation and source localization.

Theorem 3.1. Given N ≥ 3 sets of K pseudorange measurements modeled according to

(3.2) with a measurement noise covariance R = diag[R1, . . . ,RN ] where {Ri}Ni=1 is a set of

K × K positive definite matrices, the determinant of the estimation error covariance P is

lower bounded by

det [P] ≥ 4
(

N∑

i=1

1T

KR
−1
i 1K

)2

det

[
N∑

i=1

R−1
i

] . (3.3)

Proof. First, the Jacobian matrix H is re-parameterized by the bearing angles {θi}Ni=1 be-

tween the receiver and the N BTSs, as shown in Fig. 3.2(a). Subsequently, the ma-

trix G can be re-expressed as G = [x y], where x ,
[
cos θ11

T

K , . . . , cos θN1
T

K

]T
and

y ,
[
sin θ11

T

K , . . . , sin θN1
T

K

]T
. The information matrix M is given by

M = P−1 = HTR−1H =






GTR−1G GTR−1ĪN

ĪTNR
−1G ĪTNR

−1ĪN




 .

Assuming that G is full column-rank, which is guaranteed whenever at least three of the

BTSs are non-collinear, and from the Schur complement properties, the determinant of M

can be expressed as

det [M] = det [M1] det [M2 −M3] ,

whereM1 , GTR−1G,M2 , ĪTNR
−1ĪN =

N∑

i=1

R−1
i , andM3 , ĪTNR

−1G
(
GTR−1G

)−1
GTR−1ĪN .
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By definition, M is a positive definite matrix, hence

M1 ≻ 0 and M2 −M3 ≻ 0.

Also by definition, M2 is a positive definite matrix. Since G is full column-rank and R−1 is

positive-definite, then
(
GTR−1G

)−1
will be positive-definite as well. The matrix M3 may

also be expressed as M3 = BT
(
GTR−1G

)−1
B, where B , GTR−1ĪN ; which readily shows

that M3 is positive semi-definite. Therefore, it can be deduced that

M2 �M2 −M3,

and hence

det [M2] ≥ det [M2 −M3] .

Subsequently, the following upper bound may be established on det [M]

det [M] ≤ det
[
GTR−1G

]
det

[
N∑

i=1

R−1
i

]

. (3.4)

The matrix M1 = GTR−1G may be expressed as

GTR−1G =






xTR−1x xTR−1y

yTR−1x yTR−1y




 ,

which has the determinant

det
[
GTR−1G

]
=
(
xTR−1x

)(
yTR−1y

)
−
(
xTR−1y

)
2

≤
(
xTR−1x

) (
yTR−1y

)
. (3.5)
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Equations (3.4) and (3.5) yield

det [M] ≤
(
xTR−1x

) (
yTR−1y

)
det

[
N∑

i=1

R−1
i

]

. (3.6)

Using the definition of x and y and noting that R−1 = diag
[
R−1

1 , . . . ,R−1
N

]
, the following

can be deduced

xTR−1x+ yTR−1y =

N∑

i=1

1T

KR
−1
i 1K cos2 θi

+

N∑

i=1

1T

KR
−1
i 1K sin2 θi

=
N∑

i=1

1T

KR
−1
i 1K . (3.7)

Defining u , xTR−1x and a ,
N∑

i=1

1T

KR
−1
i 1K and incorporating the geometric constraint

(3.7) into (3.6) yields

det [M] ≤ u (a− u) det
[

N∑

i=1

R−1
i

]

. (3.8)

The right-hand side of (3.8) is maximized when u⋆ = a
2
= 1

2

N∑

i=1

1T

KR
−1
i 1K . This finally yields

det[P] =
1

det[M]
≥ 4
(

N∑

i=1

1T

KR
−1
i 1K

)2

det

[
N∑

i=1

R−1
i

] .

Corollary 3.1.1. If K = 1, i.e., Ri = σ2
i , the lower bound simplifies to

det [P] ≥ 4

[trace (R−1)]3
.
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Proof. This can be seen by noting that
N∑

i=1

1T

KR
−1
i 1K =

N∑

i=1

R−1
i =

N∑

i=1

1
σ2i

= trace (R−1).

Theorem 3.2. Given a total of N BTSs grouped into L sets with Nl ≥ 3 BTSs in each

set, where l = 1, . . . , L, and given that the receiver is drawing K pseudorange measurements

from each set of BTSs with noise covariance {Σl = diag[Rl, . . . ,Rl]}Ll=1 where {Rl}Ll=1 is a

set of K ×K positive definite matrices, the optimal estimation performance that minimizes

the determinant of the estimation error covariance is achieved when each set of BTSs forms

a regular polygon around the receiver, i.e.,

θ
(l)
il

=
2π

Nl
il + θ

(l)
0 , il = 1, . . . , Nl,

where θ
(l)
il

is the bearing angle between the receiver and the ilth BTS in lth set and θ
(l)
0 is an

arbitrary offset angle.

The optimal BTS configuration is illustrated in Fig. 3.2(b).

BTS1

θ1

θ2

θ3
x

y

1

BTS2

x

y

(a) (b)

BTS3

Figure 3.2: (a) Re-parametrization of the unit line-of-sight (LOS) vectors by the bearing
angles. (b) Optimal distribution of the BTSs around the receiver where each color represents
a different set of BTSs.

Proof. In general, for
{

θil =
2πil
Nl

+ θi0

}Nl

il=1
and any integer Nl ≥ 3 and constant offset angle
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θi0 , the following holds [69]

Nl∑

il=1

cos2 θil =

Nl∑

il=1

sin2 θil =
Nl

2
, (3.9)

Nl∑

il=1

cos θil sin θil =

Nl∑

il=1

cos θil =

Nl∑

il=1

sin θil = 0. (3.10)

Note that (3.9) and (3.10) hold for any offset angle θi0 . The information matrix can be

expressed as

M =









xTR−1x xTR−1y xTR−1ĪN

yTR−1x yTR−1y yTR−1ĪN

ĪTNR
−1x ĪTNR

−1y ĪTNR
−1ĪN









.

Define the partitioned vectors

x ,









x1

...

xL









, y ,









y1

...

yL









, 1N ,









1N1

...

1NL









,

where xl =
[

cos θ
(l)
1 1T

K , . . . , cos θ
(l)
Nl
1T

K

]
T

and yl =
[

sin θ
(l)
1 1T

K , . . . , sin θ
(l)
Nl
1T

K

]
T

, where l =

1, . . . , L. The overall measurement noise covariance is defined as

R , diag [Σ1, . . . ,ΣL] ,

where Σl = diag[Rl, . . . ,Rl] (repeated Nl times). Subsequently, xTR−1x can be expressed
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as

xTR−1x =
L∑

l=1

xT

l Σ
−1
l xl

=

L∑

l=1

Nl∑

il=1

1T

KR
−1
l 1K cos2 θ

(l)
il

=

L∑

l=1

1T

KR
−1
l 1K

Nl∑

il=1

cos2 θ
(l)
il
. (3.11)

Similarly, it can be shown that

xTR−1x =
L∑

l=1

1T

KR
−1
l 1K

Nl∑

il=1

sin2 θ
(l)
il
, (3.12)

xTR−1y =

L∑

l=1

1T

KR
−1
l 1K

Nl∑

il=1

cos θ
(l)
il

sin θ
(l)
il
, (3.13)

xTR−1ĪN =

L∑

l=1

1T

KR
−1
l

Nl∑

il=1

cos θ
(l)
il
, (3.14)

yTR−1ĪN =

L∑

l=1

1T

KR
−1
l

Nl∑

il=1

sin θ
(l)
il
, (3.15)

ĪTNR
−1ĪN =

L∑

l=1

NlR
−1
l . (3.16)

From (3.9)–(3.16) and the optimal BTS configuration, i.e., each set of BTSs forms a regular

polygon around the receiver, the information matrix can be expressed as,

M=











L∑

l=1

Nl

2
1T

KR
−1
l 1K 0 0T

K×1

0
L∑

l=1

Nl

2
1T

KR
−1
l 1K 0T

K×1

0K×1 0K×1

L∑

l=1

NlR
−1
l











,
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hence

P =













2
L∑

l=1
Nl1

T

KR
−1
l 1K

0 0T

K×1

0 2
L∑

l=1

Nl1
T

KR
−1
l

1K

0T

K×1

0K×1 0K×1

[
L∑

l=1

NlR
−1
l

]−1













. (3.17)

By noting that
N∑

i=1

1T

KR
−1
i 1K =

L∑

l=1

Nl1
T

KR
−1
l 1K and that

N∑

i=1

R−1
i =

L∑

l=1

NlR
−1
l , the determi-

nant of the estimation error covariance may be expressed as

det [P] =
4

(
N∑

i=1

1T

KR
−1
i 1K

)2

det

[
N∑

i=1

R−1
i

] . (3.18)

Therefore, the configuration described in Theorem 3.2 (with determinant computed in (3.18))

indeed achieves the lower bound established in Theorem 3.1 (cf. (3.3)).

It is worth noting that the results in Theorem 3.2 are applicable beyond cellular CDMA

systems and the base/rover framework. The problem can be regarded as an optimal sensor

placement problem, where it is desired to place sensors (bases) in a way that minimizes the

uncertainty in the SOP’s state. Moreover, these results can provide an insight on the mini-

mum requirements of the system. If the required performance happens to violate the bound,

the system designer will know that this performance is not achievable and either more SOPs

or sensors must be employed or more measurements must be taken. Hence, Theorem 3.2

could be used to deduce necessary system settings to make a desired performance achiev-

able. The optimal performance based on minimizing the determinant of the estimation error

covariance in the presence of sector mismatch is analyzed next.
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3.2.2 Lower Bound on the Determinant of the Estimation Error

Covariance in the Presence of Sector Mismatch: Point So-

lution

In this scenario, the rover is solving for its state at time k using the measurements made at

time k, i.e., k0 = k and K = 1. The overall measurement noise covariance in this case is

given by

R=diag
[(
σ2
η + σ2

ǫ(k)
)
INs×Ns , σ

2
ηI(N−Ns)×(N−Ns)

]
, (3.19)

where σ2
ǫ(k) ,

c2λ2

α

(
1− e−2αkT

)
. By applying Theorem 3.2 and Corollary 3.1.1, the optimal

estimation error covariance under sector clock bias discrepancies can be found from (3.17)

to yield

P⋆ =






P⋆
x,y 02×1

01×2

(
σ⋆cδtr

)2




 =






2σ2
eqI2×2 02×1

01×2 σ2
eq




 , (3.20)

where

σ2
eq ,

1

trace (R−1)
=

1
Ns

σ2η+σ
2
ǫ (k)

+ N−Ns

σ2η

=

[

σ2
η +

c2λ2

α

(
1− e−2αkT

)]

σ2
η

Nσ2
η + (N −Ns)

c2λ2

α
(1− e−2αkT )

. (3.21)

In order to demonstrate the result in (3.20), Monte Carlo simulations were conducted for

several Ns and k values. The logarithm of the determinant of each resulting position es-

timation error covariance Px,y, namely log det [Px,y], for 500 runs were plotted along with

log det
[
P⋆
x,y

]
obtained in (3.20). A surface plot of log det

[
P⋆
x,y

]
and the Monte Carlo simu-

lation results for log det [Px,y] are shown in Fig. 3.3.
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k

k k

Theoretical lower bound Monte Carlo simulations

Ns = 5

Ns = 9

(a) (b)

(d)(c)

Ns = 7

logdet[Px,y]:

Figure 3.3: (a) Surface plot of log det
[
P⋆
x,y

]
as a function of Ns and k. (b)–(d) Plots

of log det [Px,y] for 500 Monte Carlo simulations along with the theoretical lower bound
log det

[
P⋆
x,y

]
. Simulation parameters: N = 12, T = 0.2s, α = 10−3Hz, σ2

η = 4 m2, and
λ = 66 ns/s.

The following remarks can be concluded from these simulations.

Remark 1. For a fixed Ns < N , log det
[
P⋆
x,y

]
becomes almost constant after five to ten

time steps and converges to a constant value that can be approximated to be

lim
k→∞

log det
[
P⋆
x,y

]
≈ log

[

4

(
σ2
η

N −Ns

)2
]

. (3.22)

The derivation of (3.22) is given in Appendix A. The same expression is obtained when the

rover uses only the measurements from the N−Ns BTSs with no sector mismatch to estimate

its state. This is attributed to the fact that the variance of the error in the measurements

coming from the BTSs with sector mismatch increases with time until it reaches a steady

value (cf. (3.19)). This steady state value is much larger than σ2
η and therefore these

measurements will be “almost neglected” by the estimator.
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Remark 2. For large k, one can approximate log det
[
P⋆
x,y

]

log det
[
P⋆
x,y

]
≈ −2 log

(

1− Ns

N

)

+ ξ, (3.23)

where ξ is a finite constant. The derivation of (3.23) is given in Appendix B. It can be

readily seen that (3.23) approaches ∞ as Ns approaches N . It is therefore imperative to

have at least one BTS with no sector mismatch in order for the estimation error covariance

to be bounded.

3.2.3 Lower Bound on the Determinant of the Estimation Error

Covariance in the Presence of Sector Mismatch: Batch Es-

timator

In this scenario, the rover is assumed to be either stationary or mobile but has perfect

knowledge of the change in its position with k0 = 1 and K > 1. Starting at k0 = 1 ensures

that the pseudorange measurements are affected by the error due to clock bias discrepancy in

the case of sector mismatch. In order to make the analysis more tractable, the exponentially

correlated model in the batch estimator is approximated by a random walk, i.e., α → 0.

For small values of α and k, the relative error between the variances of these processes

is guaranteed to be less than an arbitrary small threshold [85]. Subsequently, σ2
ǫ (k) is

approximated by

σ2
ǫ (k) ≈ σ̄2

ǫ (k) , lim
α→0

σ2
ǫ (k) = 2kTc2λ2, (3.24)

where k = 1, . . . , K. The overall measurement noise covariance in this case is given by

R = diag[R1, . . . ,RN ] ,
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where {Ri}Ni=1 is a set of K ×K positive definite matrices with

Ri =







σ2
ηIK×K +Rǫ, if i ≤ Ns,

σ2
ηIK×K , otherwise,

where

[Rǫ]m,n = σ2
ǫ [min {m,n}] , m, n = 1, . . .K,

and [Ψ]m,n denotes the element in the mth row and nth column of matrix Ψ. Using this ap-

proximation of σ2
ηs(k) and by applying Theorem 3.2, the optimal estimation error covariance

under sector clock bias discrepancies for a batch estimator can be approximated by

P′⋆ ≈






P′⋆
x,y 0T

K×1

0K×1 P′⋆
cδtr




 ,

where

P′⋆
x,y =

4c2λ2Tσ2
ηI2×2

f(β)σ2
ηNs + 2c2(N −Ns)Kλ2T

, (3.25)

P′⋆
cδtr =

[

NsRǫ
−1 +

N −Ns

σ2
η

IK×K

]−1

, β ,
σ2
ηs

σ2
ǫ (1)

,

and f(β) is a function of β. The expression of f(β) and the derivation of (3.25) are outlined

in Appendix C.

Monte Carlo simulations for several Ns and k values were conducted to demonstrate the

result in (3.25). The logarithm of the determinant of each resulting position estimation error

covariance P′
x,y, namely log det

[
P′
x,y

]
, for 500 runs were plotted along with log det

[
P′⋆

x,y

]

obtained in (3.25). A surface plot of log det
[
P′⋆

x,y

]
and the Monte Carlo simulation results

for log det
[
P′
x,y

]
are shown in Fig. 3.4.
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Figure 3.4: (a) Surface plot of log det
[
P′⋆

x,y

]
as a function of Ns and k. (b)–(d) Plots

of log det
[
P′
x,y

]
for 500 Monte Carlo simulations along with the theoretical lower bound

log det
[
P′⋆

x,y

]
. Simulation parameters: N = 12, T = 0.2 s, α = 10−3 Hz, σ2

η = 4 m2, and
λ = 66 ns/s.

The following remarks can be concluded from these simulations.

Remark 1. For a fixed Ns < N , log det
[
P′⋆

x,y

]
is a strictly decreasing function of K, and it

can be concluded that (3.25) approaches zero as K →∞. This implies that a good strategy

for the rover in the presence of sector mismatch is to stand still if it does not have exact

knowledge on the change in its position.

Remark 2. For large K, the approximation f(β)Nsσ
2
η + 2c2(N − Ns)Kλ

2T ≈ 2c2(N −

Ns)Kλ
2T can be made, since f(β)Nsσ

2
η is constant for a given σ2

η and σ̄2
ǫ (1), and therefore

2c2(N −Ns)Kλ
2T >> f(β)Nsσ

2
η for large K. Subsequently, (3.25) can be approximated by

P′⋆
x,y ≈

2σ2
ηI2×2

(N −Ns)K
. (3.26)
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The same expression is obtained when the rover uses only the measurements from the N−Ns

BTSs with no sector mismatch to estimate its state. This results from the fact that the

measurements coming from the Ns BTSs with sector mismatch are highly correlated in time

and the uncertainty associated with these measurements is a strictly increasing function of

K. Thus, subsequent measurements from BTSs with sector mismatch will bring little to no

contribution in estimating the state of the rover and will therefore be “neglected” by the

estimator.

Remark 3. It is also worth noting that when Ns = N , the optimal position estimation

error covariance becomes

P′⋆
x,y =

4c2Kλ2T I2×2

f(β)σ2
ηN

,

which is a finite constant. In contrast to the point solution case, the need to have at least

one measurement coming from a BTS with no mismatch between the base and rover sectors

is eliminated in the batch estimator.

3.2.4 Practical Upper Bound on the Position Error

This subsection characterizes an upper bound on the position error due to the discrepancy

between sectors’ clock biases. To this end, it is assumed that Ns = N , i.e., the base receivers

are listening to different sectors than the navigating receiver, and the latter is not aware of

the presence of these discrepancies. It is also assumed that the WNLS is in steady state, and

the discrepancies ǫ = [ǫ1, . . . , ǫN ]
T are suddenly introduced into the measurements, which will

induce an incremental change in the receiver state estimate δxr = c
(
HTRη

−1H
)−1

HTRη
−1ǫ.

In general, the discrepancy vector ǫ can be expressed as

ǫ = b1N +ψ, (3.27)
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where b , 1
N

∑N
i=1 ǫi = 1

N
1T

Nǫ, and ψ , [ǫ1 − b, . . . , ǫN − b]T. The term b is referred to

as the common error and the vector ψ as the unbiased error. It follows from this def-

inition that
∑N

i=1 ψi = 0. By replacing the expression of ǫ in a WNLS step, the in-

cremental change in the receiver state estimate can be expressed as δxr = δx
(b)
r + δx

(ψ)
r ,

where δx
(b)
r = cb

(
HTRη

−1H
)−1

HTRη
−11N is the effect of the common error and δx

(ψ)
r =

c
(
HTRη

−1H
)−1

HTRη
−1ψ is the effect of the unbiased error.

Effect of Common Error on Navigation Solution

The common error term will only affect the receiver clock bias estimate. This can be shown

by realizing that

He3 = [G 1N ] e3 = 1N , (3.28)

where e3 = [0, 0, 1]T. Then, using (3.28), the incremental change due to the common term

becomes

δx(b)
r = cb

(
HTRη

−1H
)−1

HTRη
−11N

= cb
(
HTRη

−1H
)−1

HTRη
−1He3 = cbe3, (3.29)

which has a non-zero component only in the clock bias state. Thus, if the individual dis-

crepancies ǫi happen to be all equal, the receiver’s position estimate will be unaffected.

Effect of Unbiased Error on Navigation Solution

Unlike the common error, the unbiased error will affect all receiver states. The following

theorem establishes a bound on the error introduced by the unbiased error in the receiver’s

position estimate.
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Theorem 3.3. In a cellular environment comprising N BTSs in which the base and the rover

are experiencing bounded sector mismatches ǫi, such that |ǫi| ≤ α, ∀ i, the error induced by

the mismatches in the receiver’s position estimate is bounded by

‖δrr‖ ≤







√
Nακ, if N is even,

√
N2−1
N

α κ, if N is odd,

where κ , c
∥
∥
∥

(
HTRη

−1H
)−1

HTRη
−1
∥
∥
∥.

Proof. The incremental change in the receiver position state estimate can be expressed as

δrr = Tδxr = Tδx
(b)
r + Tδx

(ψ)
r , where T = [I2×2 02×1]. By replacing δx

(b)
r with its

expression from (3.29), the change in position becomes

δrr = cbTe3 +Tδx(ψ)
r = Tδx(ψ)

r . (3.30)

Taking the 2-norm on both sides of (3.30) yields

‖δrr‖ =
∥
∥Tδx(ψ)

r

∥
∥

≤ ‖T‖ ·
∥
∥δx(ψ)

r

∥
∥ =

∥
∥δx(ψ)

r

∥
∥ , (3.31)

since ‖T‖ = 1. Replacing δx
(ψ)
r by its expression in the WNLS update, (3.31) becomes

‖δrr‖ ≤
∥
∥
∥c
(
HTRη

−1H
)−1

HTRη
−1 (ǫ− b1N )

∥
∥
∥

≤ κ ‖ǫ− b1N‖ . (3.32)

Therefore, to determine the upper bound of (3.32), the term ‖ǫ− b1N‖, or equivalently its

square, must be maximized, leading to

maximize
ǫ

‖ǫ− b1N‖2 = ‖Aǫ‖2 , (3.33)
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Motivated by experimental data collected in different BTS cell sectors and for various cells,

it is reasonable to assume that

|ǫi| ≤ α, ∀ i, (3.34)

where α is some positive constant. As such, the maximization problem in (3.33) becomes

constrained by (3.34). The function in (3.33) is convex, since it is the composition of the

norm with a linear base, and the box constraints in (3.34) form a convex set. Therefore,

the maximizer of (3.33) subject to the constraints (3.34) lies on the extreme points of the

feasibility region, namely |ǫ⋆i | = α, ∀ i.

If N is even, the maximum is achieved whenever
∑N

i=1 ǫi = 0; hence, the maximizer is

ǫ⋆i = (−1)i α, ∀ i. If N is odd, the maximum is achieved whenever
∑N

i=1 ǫi = α; hence, the

maximizer is ǫ⋆i = (−1)i α for i = 1, . . . , N−1, and ǫ⋆N = ±α. Therefore, the maximum error

introduced in the receiver’s position is bounded by

‖δrr‖ ≤







√
Nακ, if N is even,

√
N2−1
N

α κ, if N is odd.

70



3.3 Experimental Results

Navigation using the proposed base/rover framework discussed in Section 3.1 was tested in

three experiments with (1) a mobile ground vehicle and a stationary base, (2) a UAV and a

stationary base, and (3) a UAV and a mobile base. In both experiments, the cellular CDMA

module of the LabVIEW-based Multichannel Adaptive TRansceiver Information eXtractor

(MATRIX) SDR developed in [82] was used to process the cellular CDMA signals, and the

Generalized Radionavigation Interfusion Device (GRID) SDR [96] was used to process the

GPS signals. The measurement noise variance for the base and rover was calculated from

[85]

σ2
i =

c2Bn,DLL q (teml)

2 (C/N0)i (1− 2Bn,DLL TCO)
, (3.35)

where teml is the early-minus-late time in the CDMA receiver’s delay-locked loop (DLL)

correlators (expressed in chips), Bn,DLL is the DLL loop noise bandwidth (expressed in

Hertz), (C/N0)i is the measured carrier-to-noise ratio for the ith BTS (expressed in Hertz),

TCO = 1
37.5

s is the predetection coherent integration time, and q (teml) is a function of the

autocorrelation of the cellular CDMA short code, whose expression is given in [85]. More-

over, the three-dimensional (3–D) position states of the BTSs involved in the experiments

were mapped prior to the experiments according to the framework discussed in [1]. The

following subsections present results for each experiment.

3.3.1 Ground Vehicle Results

In this experiment, two cars (a base and a rover) were equipped with two antennas each to

acquire and track: (1) GPS signals and (2) signals from nearby cellular CDMA BTSs. The

receivers’ CDMA antennas used for the experiment were consumer-grade 800/1900 MHz
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cellular antennas, and the GPS antennas were surveyor-grade Leica antennas. The GPS

and cellular signals were simultaneously down-mixed and synchronously sampled via two

universal software radio peripherals (USRPs) driven by the same GPS-disciplined oscillator

(GSPDO). The receivers were tuned to the cellular carrier frequency 882.75 MHz, which is a

channel allocated for U.S. cellular provider Verizon Wireless. Samples of the received signals

were stored for off-line post-processing. Over the course of the experiment, both receivers

were listening to the same 3 BTSs. The base receiver and the rover receiver were listening

to the same sectors; hence, there were no additional errors due to the discrepancies between

sector clocks. The base receiver was stationary during the experiments and was estimating

the clock biases of the 3 BTSs with known position states via a WLS estimator as discussed

in Subsection 3.1.1. The BTSs’ position states were expressed in a local 3–D frame whose

horizontal plane passes through the three BTSs and is centered at the mean of the BTSs’

positions. The height of the rover was known and constant in the local 3–D frame over the

trajectory driven and was passed as a constant parameter to the estimator. Hence, only the

rover’s two-dimensional (2–D) position and its clock bias were estimated through the WNLS

described in Subsection 3.1.3. The weights of the WNLS were calculated using (3.35). For

the first pseudorange measurement, the WNLS iterations were initialized by setting the

rover’s initial horizontal position states at the origin of the 3–D local frame and the initial

clock bias to zero. For each subsequent pseudorange measurement, the WNLS iterations

were initialized at the solution from the previous WNLS. The experimental hardware setup,

the environment layout, and the true and estimated rover trajectories are shown in Fig. 3.5.

It can be seen from Fig. 3.5 that the navigation solution obtained from the cellular CDMA

signals follows closely the navigation solution obtained using GPS signals. The mean distance

difference along the traversed trajectory between the GPS and CDMA navigation solutions

was calculated to be 5.51 m with a standard deviation of 4.01 m and a maximum error

of 11.11 m. The mean receiver clock estimate difference between the GPS and CDMA
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Figure 3.5: Experimental hardware setup, rover trajectory, and base and BTS locations for
ground experiments. Map data: Google Earth.

navigation solutions was calculated to be -45 ns with a standard deviation of 23.03 ns.

3.3.2 UAV Results

Two UAV experiments were conducted: (1) one with a stationary base and (2) one with a

mobile base.
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UAV Results with a Stationary Base

In this experiment, the base consisted of a GPSDO-driven dual-channel USRP connected to

a high-gain tri-band cellular antenna and a surveyor-grade Leica GPS antenna deployed on

the roof of Winston Chung Hall at the University of California, Riverside. A DJI Matrice

600 UAV was used as the rover, which was equipped with a consumer-grade 800/1900 MHz

cellular antenna and a small consumer-grade GPS antenna to discipline the on-board oscilla-

tor. The cellular signals on the rover side were down-mixed and sampled by a single-channel

Ettus 312 USRP driven by a GPS-disciplined temperature compensated crystal oscillator

(TCXO). The cellular receivers were tuned to the cellular carrier frequency 883.98 MHz,

which is also a channel allocated for Verizon Wireless. Samples of the received signals were

stored for off-line post-processing. The ground-truth reference for the rover trajectory was

taken from the UAV’s on-board navigation system, which uses GPS, inertial navigation sys-

tem, and other sensors. Fig. 3.6 shows the SOP BTS environment in which the base and

rover were present as well as the experimental hardware setup, which is similar to the one

employed in [85, 98].

Over the course of the experiment, the base and the rover were listening to the same 2

BTSs. Since only 2 BTSs were available for processing, an extended Kalman filter (EKF)

framework was adopted (for observability considerations) to estimate the rover’s state xr,

which is composed of its 2-D position rr, velocity ṙr, clock bias δtr, and clock drift δ̇tr,

namely xr ,

[

rTr , ṙ
T

r , cδtr, cδ̇tr

]T

. Similarly to the ground experiment, all position states

were expressed in a local 3–D frame whose horizontal plane is defined by the two BTSs and

the base and is centered at the mean of two BTSs’ and the base’s positions. The UAV

was programmed to fly at a constant height and at a constant speed. Hence, similarly

to the ground experiment, the height of the rover was passed as a constant parameter to

the filter. The rover’s position and velocity states were assumed to evolve according to

velocity random walk dynamics, and the clock bias and clock drift dynamics were modeled
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Figure 3.6: SOP BTS environment and experimental hardware setup with stationary base.
Map data: Google Earth.

according to the standard clock error model: double integrator driven by noise, as discussed

in [33]. The power spectral densities of the process noise driving ẍr and ÿr were obtained

by post-processing the data sampled from the UAV’s on-board navigation system. The time

averages of the x and y accelerations were approximately zero with time variances σ2
ẍ ≈ 0.36

(m/s2)2 and σ2
ÿ ≈ 0.24 (m/s2)2. These variances were used to form the covariance matrix

of the process noise driving the position and velocity states [33]. Alternatively, the power

spectra of the acceleration process noise may be estimated adaptively [41], or an inertial

measurement unit (IMU) may be used to propagate the position and orientation states of

the rover. The process noise covariance of the clock error states can be parameterized by the

white frequency coefficient h0 and the frequency random walk coefficient h−2 [100, 101]. Since

the USRP on-board the rover is equipped with a TCXO, the aforementioned coefficients were

chosen to be h0 = 9.4× 10−20 and h−2 = 3.8× 10−21 [41]. The EKF states corresponding to

the UAV’s position and velocity were initialized with the values obtained from the on-board
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navigation system with a zero initial uncertainty. The EKF state corresponding to the clock

bias was initialized according to

cδ̂tr(0| − 1) = ρ1(0)− ‖rr(0)− rs1‖2 + cδ̂ts1(0),

where rr(0) is the UAV’s initial position obtained from the on-board navigation system

and δ̂ts1(0) is the first BTS’s clock bias estimate given by the base at k = 0. The initial

uncertainty associated with cδ̂tr(0| − 1) was set equal to the estimation error variance σ2
δts1

given by the base. The EKF state corresponding to the clock drift was initialized to zero with

an initial uncertainty of 10 (m/s)2. The measurement noise covariance matrix was obtained

using (3.19) and (3.35). Three scenarios were tested. In the first scenario, the base and the

rover were listening to the same sectors; hence, there were no additional errors due to the

discrepancies between sector clocks. In the second scenario, the base was forced to listen to

a different sector of BTS 1 than the rover; however, the measurement noise covariance was

not modified to compensate for the discrepancy introduced. The third scenario is similar to

the second, except that the measurement noise covariance was modified to account for the

sector clock bias discrepancy, as defined in (3.19). The initial discrepancy was calculated

and was known to the EKF for scenarios 2 and 3. Moreover, the parameters λ and α were

calculated offline by the base and were found to be λ = 13 ns/s and α = 8 × 10−4 Hz. The

rover’s true trajectory and estimated trajectory for each scenario are shown in Fig. 3.7 and

the resulting RMSEs are tabulated in Table 3.1.

Table 3.1: Experimental Results for UAV with Stationary Base

Scenario 1 Scenario 2 Scenario 3

RMSE (m) 9.39 23.99 13.42

Standard deviation (m) 3.42 11.24 5.18

Maximum error (m) 18.96 38.93 31.98

Fig. 3.7 and Table 3.1 show a significant improvement in the estimation performance when
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Figure 3.7: UAV’s true and estimated trajectories. Map data: Google Earth.

the sector clock bias error model identified in this chapter is used, which is reflected in a

reduction of around 11 m in the RMSE, 6 m in the standard deviation, and 7 m in the

maximum error. Note that the UAV position estimate deviates from the true trajectory

initially even though the UAV had not performed sharp maneuvers. This is due to the error

in the pseudorange measurements caused by multipath. These multipath errors are not

negligible, since the UAV is flying slightly lower than the BTSs, which are located around 1

and 2.3 km away from the UAVs.

UAV Results with a Mobile Base

In this experiment, the base and the rover were identical Autel Robotics X-Star Premium

UAVs equipped with a single-channel Ettus 312 USRP driven by a GPS-disciplined TCXO

connected to a consumer-grade 800/1900 MHz cellular antenna and a small consumer-grade

GPS antenna to discipline the on-board oscillator. The cellular receivers were tuned to the

cellular carrier frequency 882.75 MHz, which is also a channel allocated for Verizon Wireless.

Samples of the received signals were stored for off-line post-processing. The ground-truth
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references for the base and rover trajectories were taken from the UAVs’ on-board navigation

systems, which use GPS, inertial navigation system, and other sensors. Note that in this

scenario, the clock biases were taken with respect to the base’s clock bias. Fig. 3.8 shows the

SOP BTS environment in which the base and rover were present as well as the experimental

hardware setup.

Over the course of the experiment, the base and the rover were listening to the same 4 BTSs.

The same three scenarios performed in the stationary base experiment were considered. In

this case, SOP BTS 4 was the BTS cell in which the base and the rover were listening to

different sectors. The framework discussed in Subsection 3.1.3 was adopted. The initial

discrepancy was calculated and was known to the WNLS for scenarios 2 and 3. Moreover,

the parameters λ and α were calculated offline by the base and were found to be λ = 15.28

ns/s and α = 2.2 × 10−4 Hz. The rover’s true trajectory and estimated trajectory for each

scenario are shown in Fig. 3.9 and the resulting RMSEs are tabulated in Table 3.2.
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Rover

Base
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BTS 2

BTS 4

North

East

Figure 3.8: SOP BTS environment and experimental hardware setup with a mobile base.
Map data: Google Earth.

Fig. 3.9 and Table 3.2 show a significant improvement in the estimation performance when

the sector clock bias error model identified in this chapter is used, which is reflected in a
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Figure 3.9: UAV’s true and estimated trajectories. Map data: Google Earth.

Table 3.2: Experimental Results for UAV with a Mobile Base

Scenario 1 Scenario 2 Scenario 3

RMSE (m) 5.05 13.70 6.66

Standard deviation (m) 3.12 7.00 3.27

Maximum error (m) 16.67 23.77 16.86

reduction of around 7 m in the RMSE, a reduction of 3.7 m in the standard deviation, and

a reduction of 7 m in the maximum error. It is worth mentioning that the position RMSE

obtained by not using SOP BTS 4 was around 11 m. This indicates that not using the BTS

in case of sector mismatch is not the best strategy. A better performance may be obtained

by exploiting all available BTSs’ and incorporating the rigorous error models derived in this

chapter.

Fig. 3.10 shows log det [Px,y] and log det
[
P′
x,y

]
for a point solution and a batch estimator,

respectively, corresponding to the experimental results of scenarios 2 and 3 along with the

theoretical lower bounds derived in Subsections 3.2.2 and 3.2.3. It can be seen that sce-

nario 3 outperforms scenario 2 in terms of estimation error uncertainty for both estimators.

Moreover, the lower bounds are never violated. The difference between the experimental

logarithm of the determinant of the position estimation error covariance and the theoretical
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lower bound is attributed to the geometrical configuration of the BTSs, which does not meet

the optimal requirements in Theorem 3.2.
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Figure 3.10: Logarithm of the determinant of the position estimation error covariance for
(a) the point solution and (b) the batch estimator for scenarios 2 and 3. The theoretical
lower bounds are also plotted.

Remark Comparing the proposed navigation approach with the state-of-the-art in the liter-

ature is not straightforward, since cellular CDMA navigation receivers were not documented

in a way that facilitates reproduction (they are mainly proprietary, e.g., [25]). Chapter

2 extensively discusses a receiver architecture for navigation with cellular CDMA signals.

Moreover, the navigation frameworks proposed in the literature are significantly different

than the base/rover framework proposed in this work. In addition, to the authors’ knowl-

edge, this work is the first to demonstrate UAVs navigating with cellular CDMA signals.

While a 1.68 m error has been reported by combining cellular CDMA and digital television

signals in the literature [25], this paper reports 5 m accuracy using cellular CDMA signals

exclusively.
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Chapter 4

Differential Framework for Navigation

with Carrier Phase Measurements

from Cellular SOPs

This chapter is organized as follows. Section 4.1 describes the carrier phase measurement

model and the pseudorange model parameterized by the receiver and BTS states. Section

4.2 describes the CD-cellular navigation framework. Section 4.3 provides Monte Carlo sim-

ulation results to assess the performance of the proposed framework. Section 4.4 provides a

preliminary CD-cellular network design analysis and software and hardware considerations

for real-time implementation of a CD-cellular network. Section4.5 shows experimental re-

sults demonstrating centimeter-level-accurate UAV navigation via the proposed CD-cellular

framework. Note that the notation in this chapter is independent from the one in previous

chapter and is confined to this chapter and the following chapter, Chapter 5.

The results of this chapter have been published in [102, 103].

81



4.1 Model Description

4.1.1 UAV-Mounted Receiver Dynamics Model

The navigating UAV-mounted receiver state consists of its unknown two-dimensional (2–

D) position rrU , [xrU , yrU]
T and velocity ṙrU. An altimeter may be used to estimate

the UAV’s altitude. The subsequent analysis may be readily extended to 3–D; however,

the vertical position estimate will suffer from large uncertainties due to the poor vertical

diversity of cellular SOPs. Hence, the state vector of the UAV-mounted receiver is given

by xrU =
[
rTrU, ṙ

T

rU

]T
. The navigating UAV’s position rrU and velocity ṙrU will be assumed

to evolve according to a continuous-time velocity random walk model [104]. Therefore, the

navigating UAV dynamics is modeled according to the discretized model

xrU (k + 1) = FrU xrU(k) +wrU(k), k = 0, 1, 2, . . . , (4.1)

where wrU is a discrete-time zero-mean white noise sequence with covariance QrU , with

FrU =






I2×2 T I2×2

02×2 I2×2




 , QrU =












q̃x
T 3

3
0 q̃x

T 2

2
0

0 q̃y
T 3

3
0 q̃y

T 2

2

q̃x
T 2

2
0 q̃xT 0

0 q̃y
T 2

2
0 q̃yT












,

where T is the sampling time and q̃x and q̃y are the power spectral densities of the continuous-

time x– and y– acceleration noise, respectively.

82



4.1.2 Cellular Carrier Phase Observation Model

In Chapter 2, a receiver that can produce pseudorange and carrier phase measurements from

cellular CDMA BTSs was discussed. Several known signals may be transmitted for synchro-

nization or channel estimation purposes in other cellular systems, from which navigation

observables may be drawn. In long-term evolution (LTE) systems, two synchronization sig-

nals (primary synchronization signal (PSS) and secondary synchronization signal (SSS)) are

broadcast by each evolved node B (eNodeB) [105]. In addition to the PSS and SSS, a refer-

ence signal known as the cell-specific reference signal (CRS) is transmitted by each eNodeB

for channel estimation purposes [105]. The PSS, SSS, and CRS may be exploited to draw

carrier phase and pseudorange measurements on neighboring eNodeBs [26, 106]. In the rest

of this chapter, it is assumed that Doppler frequency measurements are available to cellular

CDMA or LTE signals (e.g., from specialized navigation receivers [25, 82, 85, 107, 108]).

The continuous-time carrier phase observable can be obtained by integrating the Doppler

measurement over time [6]. The carrier phase (expressed in cycles) made by the i-th receiver

on the n-th SOP is given by

φ(i)
n (t) = φ(i)

n (t0) +

∫ t

t0

f
(i)
Dn

(τ)dτ, n = 1, . . . , N, (4.2)

where f
(i)
Dn

is the Doppler measurement made by the i-th receiver on the n-th cellular SOP,

φ
(i)
n (t0) is the initial carrier phase, and N is the total number of SOPs. In (4.2), the index

identifier i denotes either the base (B) or the UAV (U), which are discussed in Subsec-

tion 4.2.1. Assuming a constant Doppler during a subaccumulation period T , (4.2) can be

discretized to yield

φ(i)
n (tk) = φ(i)

n (t0) +

k−1∑

l=0

f
(i)
Dn

(tl)T, (4.3)
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where tk , t0 + kT . In what follows, the time argument tk will be replaced by k for

simplicity of notation. Note that the receiver will make noisy carrier phase measurements.

Adding measurement noise to (4.3) and expressing the carrier phase observable in meters

yields

z(i)n (k) = λφ(i)
n + λT

k−1∑

l=0

f
(i)
Dn

(l) + v(i)n (k), (4.4)

where λ is the carrier signal wavelength and v
(i)
n is the measurement noise, which is modeled

as a discrete-time zero-mean white Gaussian sequence with variance
[

σ
(i)
n (k)

]2

, which can

be shown for a coherent second-order phase-locked loop (PLL) to be given by [6]

[
σ(i)
n (k)

]2
= λ2

Bi,PLL

C/N0n(k)
,

where Bi,PLL is the receiver’s PLL noise equivalent bandwidth and C/N0n is the cellular SOP’s

measured carrier-to-noise ratio. Note that a coherent PLL may be employed in CDMA and

LTE navigation receivers since the cellular synchronization and reference signals do not carry

any data. The carrier phase in (4.4) can be parameterized in terms of the receiver and cellular

SOP states as

z(i)n (k) = ‖rri(k)− rsn‖2 + c · [δtri(k)− δtsn(k)] + λN (i)
n + v(i)n (k), (4.5)

where rri , [xri, yri]
T is the receiver’s position vector; rsn , [xsn , ysn]

T is the cellular BTS’s

position vector; c is the speed of light; δtri and δtsn are the receiver’s and cellular BTS’s

clock biases, respectively; and N
(i)
n is the carrier phase ambiguity.

84



4.2 Navigation with SOP Carrier Phase Differential

Cellular Measurements

In this section, a framework for CD-cellular navigation is developed.

4.2.1 CD-Cellular Framework

The framework consists of a navigating UAV and a reference receiver in an environment

comprising N cellular BTSs. The UAV and reference receiver are assumed to be listening

to the same BTSs with the BTS locations being known. The reference receiver, referred to

as the base (B), is assumed to have knowledge of its own position state, e.g., a stationary

receiver deployed at a surveyed location. Note that instead of a stationary receiver, the base

may be another UAV with access to GNSS and a high-end sensor suite enabling to know

its location precisely (e.g., high-flyer). The navigating UAV (U) does not have knowledge

of its position nor its velocity. The base communicates its own position and carrier phase

observables with the UAV. Fig. 4.1 illustrates the base/UAV framework.

Central

BTS n

Database

BTS 2

BTS 1

Base

xsn
; ysn

Data: xrB
; yrB ;

{

z
(B)
n ;

(

σ
(B)
n

)2
}N

n=1Data

UAV

Base
(stationary receiver)

(mobile receiver)

Data

Figure 4.1: Base/UAV framework. The base could be either a stationary receiver or another
UAV.

In what follows, the objective is to estimate the UAV’s position, which will be achieved by

double-differencing the measurements (4.5). Without loss of generality, let the measurements
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to the first SOP be taken as references to form the single difference

z
(i)
n,1(k) , z(i)n (k)− z(i)1 (k).

Subsequently, define the double difference between U and B as

z
(U,B)
n,1 (k) , z

(U)
n,1 (k)− z(B)

n,1 (k) + ‖rrB(k)− rsn‖ − ‖rrB(k)− rs1‖

, h
(U)
n,1 (k) + λN

(U,B)
n,1 + v

(U,B)
n,1 (k), (4.6)

where n = 1, . . . , N , hn,1
(U)(k) , ‖rrU(k)− rsn‖ − ‖rrU(k)− rs1‖, N (U,B)

n,1 , N
(U)
n − N (B)

n −

N
(U)
1 + N

(B)
1 , and v

(U,B)
n,1 (k) , v

(U)
n (k) − v

(B)
n (k) − v

(U)
1 (k) + v

(B)
1 (k). Define the vector of

measurements as

z(k) , h [rrU(k)] + λN + v(k),

where

z(k) ,
[

z
(U,B)
2,1 (k), . . . , z

(U,B)
N,1 (k)

]
T

, h [rrU(k)] ,
[

h
(U)
2,1 (k), . . . , h

(U)
N,1(k)

]
T

,

N ,

[

N
(U,B)
2,1 , . . . , N

(U,B)
N,1

]T

, v(k) ,
[

v
(U,B)
2,1 (k), . . . , v

(U,B)
N,1 (k)

]T

where v(k) has a covariance RU,B(k) which can be readily shown to be

RU,B(k) = R(1)(k) +

{[

σ
(B)
1 (k)

]2

+
[

σ
(U)
1 (k)

]2
}

Ξ,

where

R(1)(k),diag

{[

σ
(B)
2 (k)

]2

+
[

σ
(U)
2 (k)

]2

, . . . ,
[

σ
(B)
N (k)

]2

+
[

σ
(U)
N (k)

]2
}

and Ξ is a matrix of ones.
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4.2.2 Batch Solution

The vector N is now a vector of integers and has to be solved for along with the UAV’s

position. Using only one set of carrier phase measurement with no a priori knowledge on the

UAV position results in an underdetermined system: (N + 1) unknowns with only (N − 1)

measurements. In GNSS, when no a priori information on the position of the UAV (rover) is

known, the UAV could remain stationary for a period of time such that enough variation in

satellite geometry is observed. Subsequently, the UAV (rover) uses measurements collected

at different times in a batch estimator, resulting in an overdetermined system [6]. Other

approaches to deal with integer ambiguity resolution for GNSS include [109]. However,

cellular SOP transmitters are stationary. Hence, no variation in geometry will be observed

unless the navigating UAV is moving. In this case, cellular carrier phase measurements

collected at several time-steps could be used in a batch estimator to solve for the positions

of the UAV over the different time-steps as well as for the integer ambiguities. Denote K

the number of time-steps in which carrier phase measurements are collected to be processed

in a batch. Then, the total number of measurements will be K × (N − 1), while the total

number of unknowns will be 2K + N − 1. Note that for N ≥ 3, the resulting system is

overdetermined for K ≥ 3.

Define the collection of measurements from time-step 0 to K − 1 as

zK ,
[
zT(0), . . . , zT(K − 1)

]T
,

which can be expressed as

zK = h
[
rKrU
]
+ λĪKN + vK , (4.7)
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rKrU ,









rrU(0)

...

rrU(K − 1)









, h
[
rKrU
]
,









h [rrU(0)]

...

h [rrU(K − 1)]









, ĪK,









I(N−1)×(N−1)

...

I(N−1)×(N−1)









, vK ,









v(0)

...

v(K − 1)









,

where vK is the overall measurement noise with covariance

RK , blkdiag [RU,B(0), . . . ,RU,B(K − 1)] ,

where blkdiag is a block-diagonal matrix. A weighted nonlinear least-squares (WNLS) es-

timator is used to estimate rKrU along with the float solution of N . Then, an integer least-

squares (ILS) estimator is employed to fix the integer ambiguities N and the estimate of rKrU

is subsequently corrected using the fixed ambiguities. However, the WNLS has to be initial-

ized properly such that 1) the measurement Jacobian with respect to the receiver positions

is full column-rank and 2) the WNLS converges to the right basin of attraction. In order to

provide a proper initialization, an extended Kalman filter (EKF) will be used to estimate

rKrU andN for some K ≥ 3. Next, the EKF estimates are used to initialize the batch WNLS.

For k > K, the fixed ambiguities are used to estimate the UAV’s position rrU(k). The EKF

model is discussed next.

4.2.3 EKF Model

Define the vector x ,
[
xT

rU
,NT

]T
as the state vector to be estimated. Note that at this point,

only the float solution of N is estimated. The EKF will produce an estimate x̂(k|j), i.e.,

an estimate of x(k) using all measurements up to time-step j ≤ k, along with an estimation

error covariance P(k|j) , E
[
x̃(k|j)x̃T(k|j)

]
where x̃(k|j) , x(k)− x̂(k|j) is the estimation

error. The EKF estimate and covariance time update equations are readily obtained from
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(4.1) and are given by

x̂(k + 1|k) = Fx̂(k|k), P(k + 1|k) = FP(k|k)FT +Q,

F , diag
[
FrU , I(N−1)×(N−1)

]
, Q , diag

[
QrU , ǫI(N−1)×(N−1)

]
,

where ǫ is some small positive number that ensures that Q is positive definite [101, 110].

The EKF state and covariance measurement update is performed according to

x̂(k + 1|k + 1) = x̂(k + 1|k) +Kν(k + 1), P(k + 1|k + 1) = [I−KH]P(k + 1|k),

ν(k + 1) , z(k + 1)−
[

h [r̂rU(k + 1|k)] + λN̂(k + 1|k)
]

,

K , P(k + 1|k)HTS−1,

S , HP(k + 1|k)HT +RU,B(k + 1),

where H is the measurement Jacobian given by

H,
[
TG 0(N−1)×2 I(N−1)×(N−1)

]
, G,










r̂
T
rU

(k+1|k)−r
T
s1

‖r̂rU (k+1|k)−rs1‖
...

r̂
T
rU

(k+1|k)−r
T
sN

‖r̂rU(k+1|k)−rsN‖










, T,
[
−1N−1 I(N−1)×(N−1)

]
,

and 1N−1 is an (N − 1)× 1 vector of ones.

4.2.4 EKF Initialization

In order to initialize the EKF, i.e., obtain x̂(0|0) and P(0|0), a centroid positioning method

is used based on the hearable cell IDs[111]. To this end, the UAV position is initialized at the

centroid of the SOP positions, denoted rc. The UAV initial position’s 3σ bound is set to be
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the maximum distance at which the SOP signals can be acquired and tracked reliably by the

receiver, which from experimental results was determined to be 7 km. The initial velocity is

set to zero and its corresponding 3σ bound is set to be that of the maximum velocity with

which the UAV can fly (e.g., specified by the manufacturer’s specification sheet). The initial

estimate and uncertainty of the float solution of N can be deduced from the initial position

estimates and z(0).

4.3 Simulation Results

In this section, the following aspects of the framework described in Section 4.2 are studied

through Monte Carlo simulations: 1) the effect of K on the navigation performance and 2)

and the effect of N on the navigation performance. A total of 500 Monte Carlo runs were

performed and the total position root mean-squared error (RMSE) was calculated for each

value of N and K. The BTS layout, the base’s position, and a sample UAV trajectory are

plotted in Fig. 4.2. The UAV was set to start at the same initial position indicated in Fig.

4.2 for all the Monte Carlo runs. The cellular carrier phase measurements were simulated at

1 Hz for both receivers. The total position RMSEs are shown in Fig. 4.3 for varying values of

N and K. Note that the Least-Squares AMBiguity Decorrelation Adjustment (LAMBDA)

method [112] implemented at the Delft University of Technology was used to solve for the

integer ambiguities [113].

UAV's Initial PositionBTS 1

BTS 5

BTS 4

BTS 6

BTS 7

BTS 3

BTS 2

BTS 8

Sample UAV Trajectory

1 km

BTS 9

Base's Position

Figure 4.2: The BTS layout, the base’s position, and a sample UAV trajectory used for 500
Monte Carlo runs.
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Figure 4.3: Total position RMSEs for 500 Monte Carlo runs of the CD-cellular framework
described in Section 4.2 for varying values of K and N .

The following can be deduced from Fig. 4.3. First, it can be readily seen, as expected, that

the total RMSE decreases asK andN increase. However, the decrease in RMSE becomes less

significant for large values of K and N . For a given K, the change in the RMSE becomes

very small when N ≥ 8. For a given N , the change in RMSE becomes very small when

K ≥ 60. Subsequently, when 8 or more BTSs are available, little improvement is expected

over K ≥ 60. Second, to achieve centimeter-level performance for a reasonable value of K,

e.g., for K ≤ 60, 6 or more BTSs are needed.

4.4 CD-Cellular Network Design

In this section, preliminary CD-cellular network design considerations and a feasible base

architecture are discussed.

4.4.1 Number of Bases and Placement

In order to determine the number of bases needed in an area A, the minimum distance d0

above which received cellular signals become unreliable for navigation must be determined.

In this chapter, reliable signals are defined as signals received at a C/N0 above 35 dB-

Hz on average [114]. Experimental data collected in a semi-urban environment in Colton,
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California, shows that d0 in such environments is 6 km. A C/N0 plot for 9 cellular BTSs

within 6 km of the receiver are shown for a period of 3 minutes in Fig. 4.4. It can be

seen that the C/N0 is above 35 dB-Hz most of the time for d0 = 6 km. For a true urban

environment, it is assumed that the maximum distance is halved. Moreover, a cellular

(hexagonal)-type coverage for each base is considered since it was proven efficient in cellular

systems. Subsequently, 0.0107 bases/km2 will be needed in a semi-urban environment and

0.0428 bases/km2 will be needed in a true urban environment. To put things into perspective,

52 bases will be needed to cover the 1,214 km2 land area of the city of Los Angeles, California.

0 20 40 60 80 100 120 140 160 180
20

30

40

50

60

70

Figure 4.4: Carrier-to-noise ratios {C/N0n}9n=1 of all the cellular BTSs measured by the
UAV. The C/N0 measured by the base were of similar values.

4.4.2 Communication Requirements and Synchronization

The base can produce carrier phase observables from cellular signals at a rate of 100 Hz. In

typical navigation systems, pseudorange or carrier phase updates are usually performed at

up to 10 Hz. However, even at 100 Hz, these rates can be trivially achieved using today’s

wireless technology. Moreover, cellular base stations are required to be synchronized to

within 10 µs from GPS time. Subsequently, the base and UAV can align the observables in

time based on the cellular system time without introducing significant latencies. Accounting

for the distances between the base and UAV and each base station, a maximum latency of

60 µs could be observed. This latency is way below the time interval in which navigation
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observables are being produced and will introduce errors below 8mm in the CD-cellular

measurements.

4.4.3 Software-Defined Radio Architecture

The cellular navigation receiver on-board the base is broken up into three main components.

The first component is the front-end (FE) abstraction layer (FEAL). The FEAL is primarily

responsible for interfacing with the FEs which can be universal software radio peripherals

(USRPs). Each type of FE is exposed to the rest of the system as an FE object (FEO),

which consists of certain configuration methods. In the exact implementation, the FEO is

responsible for configuring the various devices using the data provided in the configuration

methods. The FEO creates Sample Frames by reading the sample data from the device. A

Sample Frame consists of a vector of complex numbers (the raw in-phase and quadrature

(IQ) components) and a sequence number. The next component is the channel bank (CB).

A CB performs cellular signal acquisition and tracking, which are spread across two different

objects. The CB itself is responsible for conducting acquisition. Once a cellular SOP is

acquired, a channel object (CO) is created. A CO contains all the necessary functions

and algorithms necessary to track the signal and produce pseudorange and carrier phase

observables, which are eventually transmitted to the UAV.

The core architecture of the base consists of an array of Pipeline Objects (POs). A PO

consists of a single FEO and a single CB. Data communication between the two objects uses

a lockless queue. The data passed between the two objects is a shared pointer to a sample

frame object (SFO), which is a set or raw IQ samples. Then, each of the outputs of the

pipelines are passed to the communication device that will transmit the observables to the

UAV. This architecture is illustrated in Fig. 4.5.

Each object and component described above are implemented as abstract classes in C++,
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Figure 4.5: Base SDR core architecture.

which can be extended into more concrete classes depending on the cellular signal structure.

For example, a CB can be extended to a cellular CDMA CB, in which the tracking and

acquisition functions are modified according to [82]. This can be applied to various other

objects throughout the base’s SDR. This abstracts the specific cellular SOP signal structure

from the rest of the receiver architecture. Furthermore, each channel within the CBs, the

IQ sample gathering function in the FEO, and the acquisition operation in a CB are set to

run in independent threads with different priorities. The IQ sample gathering threads in

the FEO are given the highest priority because of the hardware dependence. This means

that a “slow” channel implementation will not impact the rest of the receiver. Also, each of

the components are decoupled from one another using queues. This allows for simultaneous

development of the base’s receiver and its components independently of the architecture.

This is a result of using queues to communicate data, which represent standard interfaces

for each component to interact with.

Due to the relatively large number of hearable SOPs in the base’s environment, the base’s

receiver needs to maintain a high throughput rate. This is achieved using several key tech-

nologies. The first is the Single Instruction Multiple Data (SIMD) technology, which effec-

tively allows the same instruction to be performed on multiple pieces of data in a single clock

cycle. This is implemented as Advanced Vector eXtensions (AVX) on Intel processors. This
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allows for multiple samples to be processed simultaneously in a single clock cycle, increasing

the throughput tremendously. The SDR could also leverage multicore processors. Due to

the highly parallelizable nature of the receiver’s architecture, the more cores available to the

program, the faster it runs. This is due to the fact that there are generally more threads

than there are cores, creating a backlog of threads that require processor time. The number

of threads that can be executed in parallel increases as the number of cores increases. The

receiver uses highly optimized computing libraries to assist in several calculations. Libraries

such as Eigen and FFTW can easily take advantage of SIMD instructions. In addition,

Eigen is compiled to leverage the use of Intel’s Math Kernel Library which contains several

high performance matrix and signal processing operations.

4.5 Experimental Results

In this section, experimental results are presented demonstrating centimeter-level-accurate

UAV navigation results using the CD-cellular framework developed in this chapter. As

mentioned in Section 4.1, only the 2–D position of the UAV is estimated as its altitude

may be obtained using other sensors (e.g., an altimeter). In the following experiments, the

altitude of the UAV was obtained from its on-board navigation system. Moreover, the noise

equivalent bandwidths of the receivers’ PLLs were set to BN,PLL = BM,PLL = BPLL = 3

Hz. In order to demonstrate the CD-cellular framework discussed in Section 4.2, two Autel

Robotics X-Star Premium UAVs were equipped each with an Ettus E312 USRP, a consumer-

grade 800/1900 MHz cellular antenna, and a small consumer-grade GPS antenna to discipline

the on-board oscillator. Note that one UAV acted as a base and the other as a navigating

UAV. The receivers were tuned to a 882.75 MHz carrier frequency (i.e., λ = 33.96 cm),

which is a cellular CDMA channel allocated for the U.S. cellular provider Verizon Wireless.

Samples of the received signals were stored for off-line post-processing. The cellular carrier
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phase measurements were given at a rate of 37.5 Hz, i.e., T = 0.0267 ms. The ground-truth

reference for each UAV trajectory was taken from its on-board integrated navigation system,

which uses GPS, an inertial measurement unit (IMU), and other sensors. The navigating

UAV’s total traversed trajectory was 1.72 km, which was completed in 3 minutes. Over

the course of the experiment, the receivers on-board the UAVs were listening to 9 BTSs,

whose positions were mapped prior to the experiment according to the framework discussed

in [1]. A plot of C/N0 of all the BTSs measured by the UAV is given in Fig. 4.4. The base

measured similar C/N0 values.

The CD-cellular measurements were used to estimate the navigating UAV’s trajectory via

the base/UAV framework developed in Section 4.2. The experimental setup, the SOP BTS

layout, and the true (from the UAV’s on-board integrated navigation system) and estimated

(from the proposed CD-cellular) navigating UAV trajectories are shown in Fig. 4.6. The

position RMSE was found to be 62.11 cm over a trajectory of 1.72 km flown over a period

of 3 minutes. The LAMBDA method was used to solve for the integer ambiguities [113].

Trajectories

UAV's Navigation System

CD-CellularBTS 1

BTS 5

BTS 4

BTS 6

BTS 7

BTS 3

BTS 2

BTS 8 Position RMSE: 62.11 cm

Total Traversed Trajecory: 1.72 km1 km

Ettus E312

USRP

Cellular Antenna

GPS Antenna

Navigating

Base UAV

BTS 9

UAV

Figure 4.6: Experimental setup, the SOP BTS layout, and the true (from the UAV’s on-board
integrated navigation system) and estimated (from the proposed CD-cellular) navigating
UAV trajectories via CD-cellular measurements in the base/UAV framework. The true and
estimated trajectories are shown in solid and dashed lines, respectively. Map data: Google
Earth.

It is important to note that the RMSE was calculated with respect to the trajectory returned

by the UAV’s on-board navigation system. Although these systems use multiple navigation
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sensors, they are not equipped with high-precision GPS receivers, e.g., RTK. Therefore,

some errors are expected in what is considered to be “true” trajectories taken from the

UAV’s on-board navigation system. Moreover, the base was mobile during the experiment

and the position returned by its on-board navigation system was used as ground-truth.

Consequently, any errors in the base’s GPS solution would have degraded the navigating

UAV’s estimate.
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Chapter 5

Non-Differential Framework for

Navigation with Carrier Phase

Measurements from

Quasi-Synchronous Cellular SOPs

This chapter is organized as follows. Section 5.1 describes the single receiver navigation

framework that leverages the relative stability of cellular SOPs. Section 5.2 derives stochas-

tic models for the clock deviations of quasi-synchronous SOPs and validates these models

experimentally. Section 5.3 establishes performance bounds for the single receiver navi-

gation framework. Section 5.4 provides experimental results demonstrating the proposed

framework, showing sub-meter level receiver navigation accuracy. Note that the notation in

this chapter follows the one in Chapter 4, and all new notation used herein will be defined

when necessary.

The results of this chapter have been published in [102].
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5.1 Navigation with SOP Carrier Phase Measurements:

Single receiver

This section discusses a cellular carrier phase navigation framework that alleviates the need

of a base, i.e., employable on a single receiver. The same carrier phase measurement model

as in Subsection 4.1.2 in Chapter 4 is used. Note that since what follows only pertains to

single receiver navigation, the receiver index i will be dropped for simplicity of notation.

The terms c
[
δtr(k)− δtsn(k) + λ

c
Nn

]
are combined into one term defined as

cδtn(k) , c

[

δtr(k)− δtsn(k) +
λ

c
Nn

]

.

It was noted in [84] that cellular BTSs possess tighter carrier frequency synchronization then

time (code phase) synchronization (the code phase synchronization requirement as per the

cellular protocol is to be within 3 µs). Therefore, the resulting clock biases in the carrier

phase estimates will be very similar, up to an initial bias, as shown in Fig. 5.1. Consequently,

one may leverage this relative frequency stability to eliminate parameters that need to be

estimated. BTSs with such relative frequency stability are said to be quasi-synchronous. This

allows one to use a static estimator (e.g., a WNLS) to estimate the position of the receiver.

To achieve this, in what follows, the carrier phase measurement is first re-parameterized and

a WNLS estimation framework is subsequently developed.

5.1.1 Carrier Phase Measurement Re-Parametrization

Motivated by the experimental results in [84], the following re-parametrization is proposed

cδ̄tn(k) , cδtn(k)− cδtn(0) ≡ cδt(k) + ǫn(k), (5.1)
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Figure 5.1: Experimental data showing cδtn(k) − cδtn(0) obtained from carrier phase mea-
surements over 24 hours for three neighboring BTSs. It can be seen that the clock biases
cδtn(k) in the carrier phase measurement are very similar up to an initial bias cδtn(0) which
has been removed.

where cδt is a time-varying common bias term and ǫn is the deviation of cδ̄tn from this com-

mon bias and is treated as measurement noise. Using (5.1), the carrier phase measurement

(4.5) from Chapter 4 can be re-parameterized as

zn(k) = ‖rr(k)− rsn‖+ cδt(k) + cδt0n + ηn(k), (5.2)

where cδt0n , cδtn(0) and ηn(k) , ǫn(k) + vn(k) is the overall measurement noise. The

statistics of ǫn will be discussed in Section 5.2. Note that cδt0n can be obtained knowing

the initial position and given the initial measurement zn(0) according to cδt0n ≈ zn(0) −

‖rr(0)− rsn‖. This approximation ignores the contribution of the initial measurement noise.

If the receiver is initially stationary for a period k0T seconds, which is short enough such

that δt(k) ≈ 0 for k = 1, . . . , k0, then the first k0 samples may be averaged to obtain a more

accurate estimate of cδt0n .

It is proposed that instead of lumping all N clock biases into one bias cδt to be estimated,

several clusters of clocks get formed, each of size Nl (i.e.,
L∑

l=1

Nl = N , where L is the

total number of clusters), and the clocks in each cluster are lumped into one bias cδtl to

be estimated. This gives finer granularity for the parametrization (5.1), since naturally,

certain groups of cellular SOPs will be more synchronized with each other than with other
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groups (e.g., corresponding to the same network provider, transmission protocol, etc.). An

illustrative experimental plot is shown in Fig. 5.2. Note that since the 2–D position vector

of the receiver is being estimated along with L clock biases, the number of clusters L cannot

exceed N − 2, otherwise there would be more unknowns than measurements.

100 105 110 115 120 125 130
6

8

10

12

14

Figure 5.2: Experimental data for cδ̄tn(k) over 30 seconds for 8 BTSs. The clock biases have
been visually clustered into three clusters as an illustrative example.

Without loss of generality, it assumed that the carrier phase measurements have been or-

dered such that the first N1 measurements were grouped into the first cluster, the second

N2 measurements were grouped into the second cluster, and so on. Next, obtaining the

navigation solution with a WNLS is discussed.

5.1.2 Navigation Solution

Given N ≥ 3 pseudoranges modeled according to (5.2) and L ≤ N − 2 SOP clusters,

the receiver may solve for its current position rr and the current set of common biases

cδt , [cδt1, . . . , cδtL]
T using a WNLS estimator. The state to be estimated is defined by

x ,
[
rTr , cδt

T
]
T

. An estimate x̂ may be obtained using the iterated WNLS equations given
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by

x̂(j+1)(k) = x̂(j)(k) +
(
HTR−1

η H
)−1

HTR−1
η δz(k), (5.3)

where δz(k) , [δz1(k), . . . , δzN(k)]
T and δzn(k) , zn(k)−

[∥
∥
∥r̂

(j)
r (k)− rsn

∥
∥
∥+ cδ̂t

(j)
ln
(k) + cδt0n

]

,

Rη = diag
[
σ2
1 + σ2

ǫ1
, . . . , σ2

N + σ2
ǫN

]
is the measurement noise covariance where σ2

ǫn will be

discussed in Section 5.2, j is the WNLS iteration index, and H is the measurement Jacobian

given by

H , [G Γ] , Γ ,









1N1 . . . 0

...
. . .

...

0 . . . 1NL









, (5.4)

G ,

[

r̂
(j)
r − rs1

‖r̂(j) − rs1‖
. . .

r̂
(j)
r − rsN

‖r̂(j) − rsN‖

]T

, (5.5)

and 1Nl
, [1, . . . , 1]T. Note that

ln =







1, for n = 1, . . . , N1,

2, for n = N1 + 1, . . . ,
∑2

l=1Nl,

...
...

L, for n =
∑L−1

l=1 Nl + 1, . . . , N.

After convergence (i.e., x̂(j+1)(k) ≈ x̂(j)(k)) the final estimate is obtained by setting x̂(k) ≡

x̂(j+1)(k). In the rest of the chapter, it is assumed that H is always full column rank.

102



5.1.3 Common Clock Bias Parametrization

Note that the clock bias clusters {cδtl}Ll=1 are “virtual clock biases”, which are introduced

to group SOPs whose carrier frequency is more synchronized than others. This would in

turn yield more precise measurement models, reducing the estimation error. This subsection

parameterizes cδtl as a function of cδtn. This parametrization is based on the following

theorem.

Theorem 5.1. Consider N ≥ 3 carrier phase measurements. Assume that the contribution

of the relative clock deviation ǫn is much larger than the carrier phase measurement noise

vn and that ǫn are uncorrelated with identical variances σ2. Then, the position error at any

time instant δrr(k) due to relative clock deviations is independent of cδtl.

Proof. Denote the measurement noise covariance of η , [η1 . . . , ηn]
T as Rη. It is assumed

that the WNLS had converged very closely to the true state in the absence of clock deviations.

The clock deviations are then suddenly introduced into the measurements, which will induce

an incremental change in the receiver state estimate given by

δx(k) = −
(
HTR−1

η H
)−1

HTR−1
η ǫ(k)

= −
(
H̄TH̄

)−1
H̄Tǭ(k),

where

H̄ , R
− 1

2
η H, ǭ(k) , R

− 1
2

η ǫ(k),

and ǫ , [ǫ1, . . . , ǫN ]
T. The matrix product H̄Tǭ(k) can be further expressed as

H̄Tǭ(k) =






ḠT

Γ̄T




 ǭ(k) =






ḠTǭ(k)

Γ̄Tǭ(k)




 ,
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where

Ḡ , R
− 1

2
η G, Γ̄ , R

− 1
2

η Γ.

Next,
(
H̄TH̄

)−1
is expressed as

(
H̄TH̄

)−1
=






ḠTḠ ḠTΓ̄

Γ̄TḠ Γ̄TΓ̄






−1

,






A B

BT D




 ,

where A is a 2 × 2 symmetric matrix, B is a 2 × L matrix, and D is an L × L symmetric

matrix. The estimation error becomes

δx(k) =






δrr(k)

δ (cδt(k))




 = −






(
AḠT +BΓ̄T

)
ǭ(k)

(
BTḠT +DΓ̄T

)
ǭ(k)




 .

Using the matrix block inversion lemma, the following may be obtained

A =
(
ḠTΨ̄Ḡ

)−1

B = −
(
ḠTΨ̄Ḡ

)−1
ḠTΓ̄

(
Γ̄TΓ̄

)−1

D =
(
Γ̄TΓ̄

)−1
[

I+ Γ̄TḠ
(
ḠTΨ̄Ḡ

)−1
ḠTΓ̄

(
Γ̄TΓ̄

)−1
]

,

where Ψ̄ , I− Γ̄
(
Γ̄TΓ̄

)−1
Γ̄T. This yields the position error given by

δrr(k) = −
(
ḠTΨ̄Ḡ

)−1
ḠTΨ̄ǭ(k).

When Rη = σ2I, the above simplifies to

δrr(k) = −
(
GTΨG

)−1
GTΨǫ(k), (5.6)
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ǫ(k) , [ǫ1(k), . . . , ǫN (k)]
T , Ψ , I− Γ

(
ΓTΓ

)−1
ΓT. (5.7)

Note that Ψ is the annihilator matrix of Γ and satisfies ΨΨ = Ψ. It can be readily shown

that

Ψ = diag

[

IN1 −
1

N1
1N11

T

N1
, . . . , INL

− 1

NL
1NL

1T

NL

]

.

Consequently, (5.6) implies that the effect on the position error δrr comes from the vector

ǫ̃(k) , Ψǫ(k) = −









ǫ1(k)− µ1(k)1N1

...

ǫL(k)− µL(k)1NL









,

where ǫ(k) =
[
ǫT1 (k), . . . , ǫ

T

L(k)
]T
, ǫl(k) =

[

ǫl1 , . . . , ǫlNl

]T

, and µl(k) ,
1
Nl

∑Nl

i=1 ǫli(k). Noting

that ǫn(k) = cδtln(k)− cδ̄tn(k), the following holds

ǫ̃n(k) =
1

Nl

Nl∑

i=1

[
cδtl(k)− cδ̄tli(k)

]
−
[
cδtl(k)− cδ̄tn(k)

]

= cδ̄tn(k)−
1

Nl

Nl∑

i=1

cδ̄tli(k), (5.8)

which is independent of cδtl(k).

The assumption that the contribution of the relative clock deviation ǫn is much larger than

the carrier phase measurement noise vn comes from experimental data, where ‖ǫ‖ was ob-

served to be within 0.2 and 4 m, whereas σn was on the order of a few cm. Form Theorem

5.1, it can be implied that while the position error is independent of cδtl, it depends on the
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clustering. Following the result in (5.8), the following parametrization is adopted

cδtl(k) ≡
1

Nl

Nl∑

i=1

cδ̄tli(k), ǫn(k) ≡ cδ̄tn(k)− cδtl(k). (5.9)

The following section models the dynamics of ǫn.

5.2 Frequency Stability and Modeling the Dynamics of

Clock Deviations

In this section, the frequency stability and the deviations ǫn in cellular CDMA systems are

characterized.

5.2.1 Observed Frequency Stability in Cellular CDMA Systems

In order to study the stability of cellular CDMA BTS clocks, real CDMA signals were col-

lected over a period of 24 hours via a stationary universal software radio peripheral (USRP)

driven by a GPS-disciplined oscillator (GPSDO). Since the USRP clock is driven by a

GPSDO, the apparent Doppler frequency will be mainly caused by the drift in the BTS

clock. The Allan deviations were calculated for each BTS using: (1) the absolute Doppler

frequencies and (2) the beat Doppler frequencies. The absolute Doppler frequencies are the

frequencies directly observed by the receiver on each BTS. The beat Doppler frequency is

defined as

fbDn , fDn −
1

N

N∑

n=1

fDn ,
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following the parametrization in (5.9). The Allan deviations of the absolute and beat fre-

quencies for three cellular CDMA BTSs nearby the campus of the University of California,

Riverside (UCR) are shown in Fig. 5.3. Note that the absolute and beat Doppler frequencies

were normalized by the nominal carrier frequency fc; hence, the Allan deviations are unitless.

10-2 100 102 104
10-12

10-11

10-10

10-9

*
°

Figure 5.3: Allan deviations of absolute and beat frequencies for three CDMA BTSs near
UCR. The Allan deviations were calculated from data collected over 24 hours. The carrier
frequency was fc = 883.98 MHz.

Two main conclusions may be drawn from Fig. 5.3. First, the beat frequencies are an order

of magnitude more stable than the absolute frequencies. Second, the stability of the beat

frequencies approaches that of atomic standards for periods of hundreds to a few thousands

seconds. This implies that cellular CDMA signals may be exploited for precise navigation

for several minutes using carrier phase measurements.

A similar experiment was conducted at a different time in Colton, California. However, only

ten minutes of data were collected. The Allan deviations for two cellular CDMA BTSs in

Colton, California, are shown in Fig. 5.4. Similar conclusions are drawn from Fig. 5.4.
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Figure 5.4: Allan deviations of absolute and beat frequencies for two CDMA BTSs in Colton,
California. The Allan deviations were calculated from data collected over ten minutes. The
carrier frequency was fc = 882.75 MHz.

5.2.2 Modeling the Dynamics of Clock Deviations

Fig. 5.5 shows the clock bias deviations {ǫn}3n=1 for the three cellular BTSs nearby UCR

over 24 hours.

0 2 4 6 8 10 12 14 16 18 20 22 24
-10
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0

5

10

Figure 5.5: Plot of the deviations ǫn(k) from the common clock bias for three BTSs near
UCR over 24 hours.

The receiver can perform an exhaustive search over the different clustering possibilities to

minimize its position error while it has access to GPS. The number of possible clusters is

given by Nclus =
N−2∑

L=1






N

L




 =

N−2∑

L=1

N !
L!(N−L)! . It can be seen that this number becomes

impractically large as N increases. A rule-of-thumb that significantly reduces Nnum is dis-

cussed in Subsection 5.3.3. Subsequently, it is assumed that a clustering is given. Next, ǫn
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are calculated according to (5.9). It can be seen from Fig. 5.5 that ǫn is bounded. It can

be readily verified (e.g., through spectral analysis) that ǫn is not a white sequence. An auto

regressive moving average (ARMA) model is proposed to describe the dynamics of ǫn, which

is generically expressed as

ǫn(k + 1) =

p
∑

i=1

φiǫn(k − i+ 1) +

q
∑

i=1

ψiwǫn(k − i+ 1) + wǫn(k), (5.10)

where p and {φi}pi=1 are the order and the coefficients of the autoregressive (AR) part,

respectively; q and {ψi}qi=1 are the order and the coefficients of the moving average (MA)

part, respectively; and wǫ is a white sequence. Identifying p and q and their corresponding

coefficients can be readily obtained with standard system identification techniques [93]. Here,

the MATLAB System Identification Toolbox was used to identify (5.10), where it was found

that p = q = 6 was usually enough to whiten wǫn.

5.2.3 Statistics of the Residuals

In this subsection, the resulting residuals wǫ are studied. To this end, the autocorrelation

function (acf) and the probability density function (pdf) of the residuals are computed for

the three realizations of ǫn shown in Fig. 5.5. Note that half of the data was used for

system identification and the other half was used to validate the model. The acf and pdf of

the residuals obtained with the second half of the data are plotted in Figs. 5.6(a)–(c). A

Gaussian pdf fit (red) was also plotted. It can be seen that {wǫn}3n=1 are zero-mean white

Gaussian sequences, with variances
{
σ2
wǫn

}3

n=1
.
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Figure 5.6: (a), (b), and (c) show the acfs and pdfs of wǫ1, wǫ2, and wǫ3, respectively. The
acfs show that the sequences {wǫn}3n=1 are approximately white and the pdfs show that the
sequences are Gaussian.

5.2.4 Statistics of the Clock Deviations

Since wǫn(k) was found to be a Gaussian sequence, then ǫn, which is a linear combination

of wǫn(k) will also be Gaussian. Without loss of generality, it is assumed that ǫn(i− p) = 0

for i = 1, . . . , p. Subsequently, E [ǫn(k)] = 0. The variance of ǫn(k) is discussed next. The

ARMA process identified earlier may be represented in state-space according to

ξn(k + 1) = Fξnξn(k) + Γξnwǫn(k)

ǫn(k) = h
T

ǫnξn(k)

where ξn is the underlying dynamic AR process, Fξn is its state transition matrix, Γξn is the

input matrix, and hT

ǫn is the output matrix. The eigenvalues of Fξn were computed to be
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inside the unit circle, implying stability of ξn. The covariance of ξn, denoted Pξn , evolves

according to

Pξn(k + 1) = FξnPξn(k)F
T

ξn +Qξn ,

where Qξn , σ2
wǫn

ΓξnΓ
T

ξn
and the variance of the clock deviation ǫn at any given time-step

is given by

σ2
ǫn(k) = h

T

ǫnPξn(k)hǫn.

Since ξn is stable, Pξn(k) will converge to a finite steady-state covariance denoted Pξn,ss

given by the solution to the discrete-time matrix Lyapunov equation

Pξn,ss = FξnPξn,ssF
T

ξn +Qξn .

Subsequently, the steady-state variance of the clock deviation is given by

σ2
ǫn = hT

ǫnPξn,sshǫn.

5.3 Performance Characterization

This section derives performance bounds for the single receiver navigation framework using

SOP carrier phase measurements presented in Section 5.1. Also, clustering of the clock bias

biases is investigated and an upper bound on the position error is derived.
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5.3.1 A Note on the Optimal BTS Geometric Configuration

As seen in Chapter 3, the measurement Jacobian G with respect to the position states (cf.

(5.5)) could be re-parameterized in terms of the bearing angles θn between each SOP and

the receiver, given by

G =






cos θ1 . . . cos θN

sin θ1 . . . sin θN






T

,

as illustrated in Fig. 5.7(a). The optimal geometric configuration of sensors (or navigation

sources) around an emitter (or receiver) has been well studied in the literature. This problem

is also similar to the geometric dilution of precision (GDOP) minimization problem in GPS.

It was found that the GDOP is minimized when the end points of the unit line of sight

vectors pointing from the receiver to each navigation source form a regular polygon around

the receiver, as shown in Fig. 5.7(b). In the sequel, the aforementioned configuration will be

referred to as the optimal configuration, where the bearing angles are given by θn = 2π(n−1)
N

,

n = 1, . . . , N . Note that these results hold for N ≥ 3 in the 2-D case.

BTS 1

θ1

θ2

x

y

1

BTS 2

x

y

(a) (b)

BTS 3

θ3

Figure 5.7: (a) Re-parametrization of the measurement Jacobian as a function of the bearing
angles θn. (b) Optimal geometric configuration of the BTSs around the receiver.
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5.3.2 Lower Bound on the logarithm of the Determinant of the

Position Estimation Error Covariance

It can be readily seen that optimal performance is achieved when all clocks are perfectly

synchronized, i.e., ǫn(k) = 0, ∀ k, and therefore Rη = R. In this case, only one clock bias

is estimated, and this problem becomes similar to the one discussed in [97], in which it is

shown that the logarithm of the determinant of the position estimation error covariance Px,y

is bounded by

log det [Px,y] ≥ −2 log
[
trace

(
R−1

)]
.

5.3.3 Clustering of the Clock Biases

It was mentioned in Subsection 5.2.2 that an exhaustive search may be performed to cluster

the clock biases cδtn in order to minimize the position estimation error. This amounts to

finding the matrix Γ that minimizes

Jp(Γ) ,

k0∑

k=1

‖δrr(k)‖2 =

k0∑

k=1

∥
∥
∥
∥

[

GT

(

I−Γ
(
ΓTΓ

)−1
ΓT

)

G
]−1

GT

(

I−Γ
(
ΓTΓ

)−1
ΓT

)

ǫ(k)

∥
∥
∥
∥

2

=

k0∑

k=1

∥
∥
∥

(
GTΨG

)−1
GTΨǫ(k)

∥
∥
∥

2

,

where Γ andΨ are defined in (5.4) and (5.7), respectively. This optimization problem is non-

convex and intractable. Instead of optimizing Jp(Γ), a tractable rule-of-thumb is provided
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next. First, consider the modified cost function

J(Γ) ,
∥
∥
∥

(
GTΨG

)−1
GTΨǫ(k0)

∥
∥
∥

2

=
∥
∥
∥

(
GTΨΨG

)−1
GTΨΨǫ(k0)

∥
∥
∥

2

≤
∥
∥
∥

(
GT

ΓGΓ

)−1
GT

Γ

∥
∥
∥

2

‖Ψǫ(k0)‖2 ,

where GΓ , ΨG. Let the singular value decomposition (svd) of GΓ be

GΓ = UΣΓV
T,

where U is an N ×N unitary matrix, V is a 2×2 unitary matrix, and ΣΓ = [Σ 0]T, where

Σ is a nonsingular 2 × 2 diagonal matrix containing the nonzero singular values of GΓ. It

can be readily shown that

(
GT

ΓGΓ

)−1
GT

Γ = VΣ′UT, (5.11)

where Σ′ , [Σ−1 0]
T
. This implies that (5.11) is the svd of

(
GT

ΓGΓ

)−1
GT

Γ and its singular

values are the inverses of the singular values of GΓ, yielding

∥
∥
∥

(
GT

ΓGΓ

)−1
GT

Γ

∥
∥
∥

2

= [σmax (GΓ)]
2 =

[
1

σmin (GΓ)

]2

,

where σmax (·) and σmin (·) denote the maximum and minimum singular values of a matrix,

respectively. Note that the singular values of GΓ are the square root of the eigenvalues of

GT

ΓGΓ = GTΨG, and hence

∥
∥
∥

(
GT

ΓGΓ

)−1
GT

Γ

∥
∥
∥

2

=
1

λmin (GTΨG)
= λmax (Px,y) ,
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where λmax (·) and λmin (·) denote the maximum and minimum eigenvalues of a matrix,

respectively. Consequently, the cost J(Γ) may be bounded by

J(Γ) ≤ λmax (Px,y) ‖Ψǫ(k0)‖2 . (5.12)

Next, two theorems are presented that will help derive the rule-of-thumb for clustering the

clock biases.

Theorem 5.2. Assume a clock bias clustering with L < N − 2 clusters and denote JL ,

‖Ψǫ(k)‖2. Then, there exists a clustering with L+ 1 clusters such that JL ≥ JL+1.

Proof. First, note that JL may be expressed as

JL = ‖Ψǫ(k)‖2 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥









ǫ1(k)− µ1(k)1N1

...

ǫL(k)− µL(k)1NL









∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

=
L∑

l=1

‖ǫl − µl(k)1Nl
‖2 =

L∑

l=1

Nl∑

j=1

[
ǫlj (k)− µl(k)

]2

=
L−1∑

l=1

Nl∑

j=1

[
ǫlj (k)− µl(k)

]2
+

NL∑

j=1

[
ǫLj

(k)− µl(k)
]2

= a +

NL∑

j=1

(ǫLj
(k)− µL(k))2,

where a ,
∑L−1

l=1

∑Nl

j=1

[
ǫlj (k)− µl(k)

]2
. In what follows, the time argument k will be

dropped for simplicity of notation. Now add an additional cluster by partitioning ǫL accord-

ing to ǫL =
[

ǫ′TL, ǫL+1

]
T

and define

JL+1 = a +

NL−1∑

j=1

(
ǫLj
− µ′

L

)2
+ (ǫL+1 − µL+1)

2 ,
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where µ′
L , 1

NL−1

NL−1∑

j=1

ǫLj
and µL+1 = ǫL+1. Subsequently, JL+1 may be expressed as

JL+1 = a +

NL−1∑

j=1

(ǫLj
− µL)2.

The second term in JL may be expressed as

NL∑

j=1

(ǫLj
− µL)2 =

NL∑

j=1

ǫ2Lj
−NLµ

2
L

=

NL−1∑

j=1

ǫ2Lj
−NLµ

2
L + ǫ2LNL

.

The term NLµ
2
L may be expressed as

NLµ
2
L = NL

(

1

NL

NL∑

j=1

ǫLj

)2

=
1

NL

(
NL−1∑

j=1

ǫLj
+ ǫLNL

)2

=
1

NL

[

(NL − 1)µ′
L + ǫLNL

]2

=
(NL − 1)2 µ′2

L

NL
+

2(NL − 1)µ′
LǫLNL

NL
+
ǫ2LNL

NL

= (NL − 1)µ′2
L −

(NL − 1)µ′2
L

NL

+
2(NL − 1)µ′

LǫL,NL

NL
+
ǫ2LNL

NL
+ ǫ2LNL

− ǫ2LNL

= (NL − 1)µ′2
L −

(NL − 1)

NL
(ǫLNL

− µ′
L)

2 + ǫ2LNL
.
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Substituting back in the second term of JL yields

NL∑

j=1

(ǫLj
− µL)2 =

NL−1∑

j=1

(ǫLj
− µ′

L)
2 +

(NL − 1)

NL

(ǫLNL
− µ′

L)
2.

Substituting back in JL yields

JL = a +

NL−1∑

j=1

(ǫLj
− µ′

L)
2 +

(NL − 1)

NL
(ǫLNL

− µ′
L)

2

= JL+1 +
(NL − 1)

NL

(ǫLNL
− µ′

L)
2.

Since (NL−1)
NL

(ǫLNL
− µ′

L)
2 ≥ 0, then JL ≥ JL+1.

From Theorem 5.2, it can be implied that ‖Ψǫ(k)‖2 is minimized when L = N − 2, i.e., the

maximum number of clusters is used. This also implies that using more SOP clusters will

decrease ‖Ψǫ(k0)‖2 in the upper bound expression of J(Γ) given in (5.12).

Theorem 5.3. Consider N ≥ 3 carrier phase measurements for estimating the receiver’s

position rr and a clustering of L clock states cδt. Adding a carrier phase measurement from

an additional cellular SOP while augmenting the clock state vector cδt by its corresponding

additional clock state will neither change the position error nor the position error uncertainty.

Proof. The augmented Jacobian matrix is given by

H′ =






G Γ 0

gT 0T 1




 ,
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where g ,
r̂r−rsN+1

‖r̂r−rsN+1‖ . The new information matrix is subsequently given by

H′TH′ =









GTG+ ggT GTΓ g

ΓTG ΓTΓ 0

gT 0T 1









=






M11 m12

mT

12 1




 ,

where

M11 ,






GTG+ ggT GTΓ

ΓTG ΓTΓ




 ,m12 ,






g

0




 .

The new covariance is given by

P′ =
(

H′TH′
)−1

=






A′ b′

b′T d′




 ,

where

A′ =
(
M11 −m12m

T

12

)−1

b′ = −
(
M11 −m12m

T

12

)−1
m12

d′ = 1 +mT

12

(
M11 −m12m

T

12

)−1
m12

The matrix A′ may be expressed as

A′ =











GTG+ ggT GTΓ

ΓTG ΓTΓ




−






ggT 0

0T 0











−1

=






GTG GTΓ

ΓTG ΓTΓ






−1

= P,
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which indicates that the new uncertainty in the position state is unchanged. The new

covariance can be expressed as

P′ =






P −Pm12

−mT

12P 1 +mT

12Pm12




 =









P′
11 P′

12 P′
13

P′T
12 P′

22 P′
23

P′T
13 P′T

23 P′
33









,

where

P′
11 =

(
GTΨG

)−1

P′
12 = −

(
GTΨG

)−1
GTΓ

(
ΓTΓ

)−1

P′
13 = −

(
GTΨG

)−1
g

P′
22 =

(
ΓTΓ

)−1
ΓT

[

I+G
(
GTΨG

)−1
GT

]

Γ
(
ΓTΓ

)−1

P′
23 =

(
ΓTΓ

)−1
ΓTG

(
GTΨG

)−1
g

P′
33 = 1 + gT

(
GTΨG

)−1
g

The new estimation error is given by

δr′r(k) = −P′H′Tǫ′(k),

where ǫ′(k) ,
[
ǫT(k), ǫN+1(k)

]
T

and ǫN+1(k) is the error from the (N + 1)st measurement.

Using the expressions of P′, H′, and ǫ′, it can be readily shown that

δr′r(k) = −
(
GTΨG

)−1
GTΨǫ(k) = δrr(k).

Therefore, the addition of a measurement while augmenting the clock state vector by one

state will not improve the position estimate nor the position error uncertainty.
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From Theorem 5.3, it can be implied that it is required that Nl ≥ 2 in order for cluster l to

contribute in estimating the position state. Therefore, λmax (Px,y) can be made smaller by

decreasing the number of clusters L. Combining the conclusions of Theorems 5.2 and 5.3 and

referring to (5.12), one can see that there is a tradeoff between estimating more clock biases

and uncertainty reduction: less bias for more uncertainty and vice versa. Subsequently, a

good rule of thumb is to have at least on cluster with Nl ≥ 3 (to ensure observability) and

Nl ≥ 2 for the remaining clusters. This implies that L ≤ N−3
2

+1, which significantly reduces

the number of possible clusters in the exhaustive search algorithm.

5.3.4 Upper Bound on the Position Error

Note that for a given number of SOPs, one will choose a clustering that will yield a per-

formance that is at least as good as estimating one clock bias. Therefore, a bound on the

position error may be established according to

‖δrr(k)‖ ≤
∥
∥
∥

(
GTΨ1G

)−1
GTΨ1ǫ(k)

∥
∥
∥ ,

where Ψ1 , I− 1
N
1N1

T

N .

5.4 Experimental Results

In this section, experimental results are presented demonstrating precise, sub-meter level

receiver navigation results via the single receiver framework developed in this chapter with

precise carrier phase measurements. Only the 2–D positions of the receivers are estimated

as their height may be obtained using other sensors (e.g., altimeter). In the following ex-

periments, the height of the receivers was obtained from their on-board navigation systems.

Moreover, the noise equivalent bandwidth of the receivers’ PLL was set to BN,PLL = BM,PLL =
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BPLL = 3 Hz in all experiments.

Two experiments were conducted with two different drones. In the first experiment, the same

setup described in Section 4.5 of Chapter 4 was used, except that the receiver was navigating

without the base and was employing the framework developed in Section 5.1. In the second

experiment, a DJI Matrice 600 was equipped with the same hardware described in Section

4.5 of Chapter 4 and the on-board USRP was tuned to the same carrier frequency. The

cellular carrier phase measurements were also given at a rate of 37.5 Hz, i.e., T = 0.0267 ms.

The ground-truth reference for the receiver trajectory was taken from its on-board navigation

system, which also uses GPS, an IMU, and other sensors. The experimental setup and SOP

BTS layout for the second experiment are shown in Fig. 5.8.

In both experiments, the receivers had access to GPS for 10 seconds, then GPS was cut off.

During the time where GPS was available, the cellular signals were used to cluster the cellular

SOPs and characterize the clock deviations, as described in Subsection 5.2.2. In the first

experiment, the receiver traversed a trajectory of 1.72 Km, which was completed in 3 minutes.

The receiver was listening to the same 9 CDMA BTSs as in Fig. 4.6 of Chapter 4, with the

same carrier-to-noise ratios as in Fig. 4.4 of Chapter 4. The navigation results are shown in

Fig. 5.9. The optimal clustering was found to be C1 = {BTS 1 , BTS 5, BTS 7, BTS 8}, C2 =

{BTS 2, BTS 3, BTS 6 }, and C3 = {BTS 4, BTS 9}. The position RMSE was calculated

to be 36.61 cm.

In the second experiment, the receiver traversed a trajectory of 3.07 Km completed in 325

seconds. The receiver was listening to the 7 CDMA BTSs shown in Fig. 5.8. The carrier-to-

noise ratios of all the BTSs measured by the navigating receiver in the second experiment are

given in Fig. 5.10 and the navigation results are shown in Fig. 5.11. The optimal clustering

was found to be C1 = {BTS 1, BTS 2, BTS 3, BTS 4, BTS 6} and C2 = {BTS 5, BTS 7}.

The position RMSE was calculated to be 88.58 cm.
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Figure 5.8: Experimental setup and the SOP BTS layout for the second experiment demon-
strating a single receiver navigating with precise cellular carrier phase measurements. Map
data: Google Earth.
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UAV's Navigation System

CDMA (without Mapper)

Position RMSE: 36.61 cm

Total Traversed Trajecory: 1.72 Km

Figure 5.9: First experiment demonstrating a single receiver navigating with precise cellular
carrier phase measurements. The true and estimated trajectories are shown in solid and
dashed lines, respectively. Map data: Google Earth.
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Figure 5.10: Carrier-to-noise ratios of all {C/N0n}7n=1 the cellular BTSs measured by the
navigating receiver for the second experiment.
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UAV's Navigation System

CDMA (without Mapper)

Position RMSE: 88.58 cm

Total Traversed Trajectory: 3.07 Km

Trajectories

Figure 5.11: Second experiment demonstrating a single receiver navigating with precise
cellular carrier phase measurements. The true and estimated trajectories are shown in solid
and dashed lines, respectively. Map data: Google Earth.

5.4.1 Discussion

First, it is important to note that all RMSEs were calculated with respect to the trajectory

returned by the receivers’ on-board navigation system. Although these systems use multiple

sensors for navigation, they are not equipped with high precision GPS receivers, e.g., Real

Time Kinematic (RTK) systems. Therefore, some errors are expected in what is considered

to be “true” trajectories taken from the on-board sensors. The hovering horizontal precision

of the receivers are reported to be 2 meters for the X-Star Premium by Autel Robotics and

1.5 meters for the Matrice 600 by DJI.

Second, it can be noted that the CD-cellular with base/rover framework from Chapter 4

under-performed compared to the single receiver framework. This can be due to: (1) poor

synchronization between the base’s and rover measurements and (2) errors in the base posi-

tion. It is important to note that the base was mobile during the experiment and the position

returned by its on-board navigation system was used as ground-truth. Consequently, any

errors in the GPS solution would have degraded the rover’s estimate.

Third, the RMSEs reported in this section are for optimal clustering. In the 10 seconds

during which GPS was available, a search was performed to optimally cluster the clock

biases using the rule-of-thumb discussed in Subsection 5.3.3. The search took less than 3
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seconds. The RMSEs without clustering (only one bias is estimated) are 48 cm and 97 cm

for the first and second experiments, respectively.
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Chapter 6

Non-Differential Framework for

Navigation with Carrier Phase

Measurements from Asynchronous

Cellular SOPs

This chapter is organized as follows. Section 6.1 describes the cellular SOP and receiver

dynamics models. Section 6.2 describes the EKF-based navigation framework. Section

6.3 analyzes the observability and the EKF error boundedness of the proposed framework.

Section 6.4 characterizes the performance of the proposed framework via MC simulations.

Section 6.5 provides experimental results showing meter-level UAV navigation accuracy. The

notation in this chapter is independent from the one used in previous chapters.

The results of this chapter have been published in [115].
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6.1 Model Description

This section presents the dynamics model of the UAV-mounted receiver and cellular SOP

as well as the cellular carrier phase measurement model. Note that an altimeter could be

used to estimate the UAV’s altitude. Therefore, only the UAV’s two-dimensional (2–D)

position is estimated in this chapter. The subsequent analysis is readily extendable to 3–D;

however, the vertical position estimate will suffer from large uncertainty due to the poor

vertical diversity of cellular towers.

6.1.1 Cellular SOP Dynamics Model

The cellular SOPs emanate from spatially-stationary terrestrial BTSs or eNodeBs, and their

states will consist of their known 2–D positions and unknown clock error states, namely the

clock bias and clock drift. For simplicity of notation, let the term BTS denote any type of

cellular SOP transmitter (CDMA BTS, LTE eNodeB, etc.), unless explicitly stated otherwise.

The position vector of the n-th BTS is given by rsn = [xsn , ysn]
T. The state of the n-th

BTS will only consist of its clock error state and is given by xclk,sn(k) ,
[

cδtsn(k), cδ̇tsn(k)
]
T

,

where δtsn(k) and δ̇tsn(k) are the clock bias and clock drift at time-step k, respectively, and

c is the speed-of-light. The n-th BTS’s dynamics can be described by the discretized state

space model

xclk,sn(k + 1) = Fclk xclk,sn(k) +wclk,sn(k), k = 0, 1, . . . ,
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where n = 1, . . . , N , with N being the total number of BTSs, and wclk,sn(k) is a zero-mean

white noise sequence with covariance Qclk,sn, with

Fclk=






1 T

0 1




, Qclk,sn=c

2






Sw̃δts,n
T+Sw̃

δ̇ts,n

T 3

3
Sw̃

δ̇ts,n

T 2

2

Sw̃
δ̇ts,n

T 2

2
Sw̃

δ̇ts,n
T




,

where T is the sampling time and Sw̃δts,n
and Sw̃

δ̇ts,n
are the power spectra of the continuous-

time process noise driving the clock bias and clock drift, respectively. These spectra can

be related to the power-law coefficients {hα}2α=−2, which have been shown through labo-

ratory experiments to be adequate to characterize the power spectral density of the frac-

tional frequency deviation y(t) of an oscillator from nominal frequency, which takes the form

Sy(f) =
∑2

α=−2 hαf
α [100]. It is common to approximate the clock error dynamics by con-

sidering only the frequency random walk coefficient h−2 and the white frequency coefficient

h0, which leads to Sw̃δts,n ≈
h0,sn
2

and Sw̃
δ̇ts,n

≈ 2π2h−2,sn [116].

6.1.2 UAV-Mounted Receiver Dynamics Model

The UAV-mounted receiver state consists of its unknown position rr(k) , [xr(k), yr(k)]
T,

velocity ṙr(k), and clock error states xclk,r(k) ,
[

cδtr(k), cδ̇tr(k)
]T

. Hence, the state vector

of the receiver is given by xr(k) =
[
rTr(k), ṙ

T

r(k), x
T

clk,r(k)
]T
. The receiver’s position rr(k)

and velocity ṙr(k) will be assumed to evolve according to a velocity random walk model

[104]. Therefore, the UAV-mounted receiver dynamics is modeled according to the discretized

model

xr (k + 1) = Fr xr(k) +wr(k), k = 0, 1, . . . ,
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where wr(k) =
[
wT

pv(k),w
T

clk,r

]T
(k) is a discrete-time zero-mean white noise sequence with

covariance Qr = diag [Qpv, Qclk,r], with

Fr =









I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk









, Fclk=






1 T

0 1






Qclk,r=c
2






Sw̃δtr
T+Sw̃

δ̇tr

T 3

3
Sw̃

δ̇tr

T 2

2

Sw̃
δ̇tr

T 2

2
Sw̃

δ̇tr
T






Qpv =












q̃x
T 3

3
0 q̃x

T 2

2
0

0 q̃y
T 3

3
0 q̃y

T 2

2

q̃x
T 2

2
0 q̃xT 0

0 q̃y
T 2

2
0 q̃yT












,

where q̃x and q̃y are the power spectral densities of the continuous-time x and y acceleration

noise, respectively. The spectra Sw̃δtr and Sw̃
δ̇tr

are modeled similarly to the BTS spectra,

but with receiver-specific h0,r and h−2,r.

6.2 Navigation with Cellular SOP Carrier Phase Mea-

surements

This section formulates an EKF-based framework for standalone navigation with carrier

phase measurements from asynchronous BTSs.
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6.2.1 Motivation

In GNSS, the satellites’ positions and clock biases are known to the receiver. Subsequently,

with N ≥ 4 satellites, one can use a static estimator (e.g., least squares) to solve for the

receiver’s 3–D position and its clock bias without the need of a dynamic estimator. A similar

approach can be taken in a generic radionavigation systems where the receiver is making

pseudorange-type measurements and the navigation source locations (i.e., transmitters) and

their clock biases are known to the estimator. This chapter considers the case of opportunistic

navigation with cellular signals, where BTSs may be asynchronous and have unknown clock

biases. As a result, one has to account for the receiver and BTS clock biases, leading

to an under-determined system. To address this, a dynamic estimator must be employed

to obtain a navigation solution. In this chapter, an EKF is used as a navigation filter.

The EKF relies on the dynamics model of the receiver motion and the clock errors. With

minimal knowledge of the state dynamics, one can use kinematic models to propagate the

state estimate between measurement updates [101]. The choice of the kinematic model order

depends on the application. In the case of a maneuvering target, i.e., when there is some

control input on a derivative of the position coordinates, this control input can be made

available to the EKF since it is generated by the vehicle’s on-board controller. As a result,

the EKF implementation will not change except for incorporating the control input in the

state time-update equations. The next subsections describe a detailed implementation of an

EKF that estimates the state of the system defined in (6.1)–(6.2).
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6.2.2 Modified Clock Error States

Estimating the terms cδtr(k), cδtsn(k), and λNn in (4.5) in Chapter 4 individually is unnec-

essary; hence, they will be lumped into one bias term defined as

cδtn(k) , c

[

δtr(k)− δtsn(k) +
λ

c
Nn

]

,

with an associated drift state cδ̇tn(k) given by

cδ̇tn(k) , c
[

δ̇tr(k)− δ̇tsn(k)
]

.

One may subsequently conclude that the dynamics of xclk,n(k) ,
[

cδtn(k), cδ̇tn(k)
]T

is given

by

xclk,n (k + 1) = Fclk xclk,n(k) +wclk,n(k), n = 1, . . . , N,

where wclk,n(k) is a discrete-time zero-mean white noise sequence with covariance Qclk,n =

Qclk,r +Qclk,sn. Note that now wclk,n(k) and wclk,m(k) are correlated, with

E
[
wclk,n(k)w

T

clk,m(k)
]
=







Qclk,n, if n = m,

Qclk,r, otherwise.
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6.2.3 EKF Model

The EKF estimates the UAV-mounted receiver’s position and velocity and the modified clock

error states for all BTSs, namely

x(k) ,
[
rTr (k), cδt1(k), . . . , cδtN(k),

ṙTr (k), cδ̇t1(k), . . . , cδ̇tN(k)
]T

.

Note that x(k) may be expressed as x(k) = Πx′(k), where

x′(k) ,
[
rTr (k), ṙ

T

r (k),x
T

clk,1(k), . . . ,x
T

clk,N(k)
]T

and Π is some permutation matrix that could be readily calculated. The EKF considers the

system with the following dynamics and measurement model

x(k + 1) = Fx(k) +w(k) (6.1)

z(k) = h [x(k)] + v(k), (6.2)

with h [x(k)] , [h1 [x(k)] , . . . , hN [x(k)]]T, hn [x(k)] , ‖rr(k)− rsn‖ + cδtn(k), z(k) ,

[z1(k), . . . , zN(k)]
T, w(k) is a discrete-time zero-mean white sequence with covariance Q ,

ΠQ′ΠT, where Q′ , diag [Qpv,Qclk],

Qclk,












Qclk,1 Qclk,r . . . Qclk,r

Qclk,r Qclk,2 . . . Qclk,r

...
...

. . .
...

Qclk,r Qclk,r . . . Qclk,N












, F,






Ip×p T Ip×p

0p×p Ip×p




,

with p = N +2, and v(k) , [v1(k), . . . , vN(k)]
T is a discrete-time zero-mean white Gaussian

sequence with covariance R(k) , diag [σ2
1(k), . . . , σ

2
N(k)]. Section 6.5 discusses how the
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process and measurement noise covariance matrices Q and R(k), respectively, are selected

in a practical environment.

The EKF is producing an estimate x̂(k|j) = E [x(k)|z(1), . . . , z(j)], j ≤ k, with an associ-

ated estimation error covariance P(k|j) = E
[
x̃(k|j)x̃T(k|j)

]
, where x̃(k|j) , x(k)− x̂(k|j)

is the estimation error. The current state estimate x̂(k|k) and its associated estimation

error covariance P(k|k) are obtained using the standard EKF equations. The measurement

Jacobian H(k) used in the EKF estimation error covariance update is given by

H(k) =

[

G(k) IN×N 0(N+2)×(N+2)

]

, (6.3)

G(k) ,

[

rr(k)−rs1

‖rr(k)−rs1‖ . . .
rr(k)−rsN

‖rr(k)−rsN‖

]T

, (6.4)

where G(k) is evaluated at x̂(k|j).

6.2.4 EKF Initialization

It is assumed that the UAV has access to GNSS signals at k = 0 and k = 1, from which it

could estimate its position. These position estimates, denoted by zrr(0) and zrr(1), can be

modeled as

zrr(j) = rr(j) + vrr(j), j = 0, 1, (6.5)

where rr(j) is the UAV’s true position and vrr(j) is a random vector that captures the

estimation uncertainty, which is modeled as a zero-mean white Gaussian random sequence

with covariance Σrr(j). Moreover, during the same time GNSS signals are available, the

receiver makes two consecutive carrier phase measurements to the N available BTSs prior to

initializing the EKF, denoted by z(0) and z(1). The maximum likelihood (ML) estimate of
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x(1) from zini ,
[
zT
rr
(1), zT

rr
(0), zT(1), zT(0)

]T
is obtained according to Appendix D, yielding

x̂MLini
and its associated estimation error covariance PMLini

. Finally, the EKF is initialized

with

x̂(1|1) ≡ x̂MLini
, P(1|1) ≡ PMLini

,

and is run for k ≥ 1.

Remark 1 . Let vr1 and v̂r1 denote the true initial speed and its estimate, respectively,

and let ur1 and ûr1 denote the true initial velocity direction unit vector and its estimate,

respectively. Let σ2
vr1

and Pur1
denote the initial variance and covariance of the initial

estimation errors ṽr1 , vr1 − v̂r1 and ũr1 , ur1 − ûr1, respectively. It is shown in Appendix

E that

σ2
vr1
≤ λmax,ṙ

T 2
, σ2

ur1
,
∥
∥Pur1

∥
∥ ≤ λmax,ṙ

‖rr(1)−rr(0)‖2
, (6.6)

where λmax,ṙ is a positive real number that only depends on Σ̄rr , Σrr(0) +Σrr(1). It can

be seen from (6.6) that increasing T reduces the uncertainty in the initial speed estimate.

Increasing ‖rr(1)−rr(0)‖ improves the estimate of the initial velocity direction unit vector.

Given Σrr(0) and Σrr(1), (6.6) may be used to choose an initial sampling time T and/or

distance ‖rr(1)−rr(0)‖ that guarantee that σ2
vr1

and σ2
ur1

will be below a specified thresh-

old. Regardless of the choice of T and ‖rr(1)−rr(0)‖, the proposed initialization scheme

will always yield an initial state estimate that is consistent with its initial estimation error

covariance, which is important when initializing the EKF.
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6.3 Observability and EKF Estimation Error Bounds

Analyses

This section shows that the system defined in (6.1)–(6.2) is observable for N ≥ 2. Moreover,

it shows that the EKF estimation error is exponentially bounded in the mean square sense

and bounded with probability one. In the sequel, the following assumptions are made:

A1. The BTSs are not colocated nor are all collinear.

A2. The UAV is not stationary nor is moving along a trajectory that is collinear with the

vector connecting its receiver with any of the BTSs.

A3. The UAV is at a minimum distance d from each BTS at all time, i.e., ‖r(k)− rsn‖ ≥ d,

∀ k > 0 and ∀n = 1, . . . , N .

This chapter aims at qualitatively studying the behavior of the EKF estimation error and

estimation error covariance. To this end, generic theorems and lemmas on EKF stochastic

stability are applied to the opportunistic navigation system at hand, which is implemented

in a real-world environment. The relevant theorems and lemmas are stated in Appendix

F, which gives theoretical background on observability and boundedness of the EKF error

state.

6.3.1 Observability Analysis

The observability of an environment comprising multiple receivers making pseudorange mea-

surements on multiple BTSs, assuming different a priori knowledge scenarios was analyzed

in [33]. The observability analysis utilized the l-step observability matrix of the linearized
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system and considered the observability of the individual clock biases and drifts cδtr(k),

cδ̇tr(k), {cδtsn(k)}Nn=1, and
{

cδ̇tsn(k)
}N

n=1
.

In contrast, the system in (6.1)–(6.2) considers a single receiver making carrier phase mea-

surements on multiple BTSs, where the individual clock biases and carrier phase ambiguities

are lumped into a single bias term {cδtn(k)}Nn=1 and the drifts are also lumped into a single

drift term
{

cδ̇tn(k)
}N

n=1
.

The observability results for the system defined in (6.1)–(6.2) is captured in the following

theorem.

Theorem 6.1. Under assumptions A1 and A2, the system defined in (6.1)–(6.2) is com-

pletely l-step observable for l ≥ 4 and N ≥ 2.

Proof. The linearization of the deterministic part of the system (6.1)–(6.2) into the form

(F.22)–(F.23) yields

F(k) ≡






I(N+2)×(N+2) T I(N+2)×(N+2)

0(N+2)×(N+2) I(N+2)×(N+2)




 , Γ(k) ≡ 0,

H(k) ≡
[
Hξ(k) 0N×(N+2)

]
, Hξ(k) , [G(k) IN×N ] .

In the following, it will be proven by construction that the l-step observability matrix

O(k, k + l) of the linearized system is full rank, i.e.,

2L∑

i=1

γiO (k, k + l) e2L,i = 0 (6.7)

is satisfied if and only if γi = 0, ∀ i = 1, . . . , 2L, where L = N + 2 and eL,i ∈ R
L is the

standard basis vector consisting of a one at the i-th element and zeros elsewhere. Note that

since O(k, k + l) ∈ R
l·N×2(N+2), then l ≥ 4 always satisfies l ·N ≥ 2(N + 2) for N ≥ 2. Let
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l = 4. Subsequently, O(k, k + 4) may be expressed as

O(k, k + 4) =






O11 O12

O21 O22




 ,

O11 ,






Hξ(k)

Hξ(k + 1)




 , O21 ,






Hξ(k + 2)

Hξ(k + 3)




 ,

O12 ,






0

THξ(k + 1)




 , O22 ,






2THξ(k + 2)

3THξ(k + 3)




 .

The matrix O11 may also be expressed as

O11 =






G(k) IN×N

G(k + 1) IN×N




 . (6.8)

Note that O11 ∈ R
2N×(N+2). Moreover, the inequality 2N ≥ N + 2 holds, for N ≥ 2.

Therefore,

rank [O11] ≤ N + 2. (6.9)

From (6.8), it can be seen that rank [O11] ≥ N . Moreover, for N ≥ 2, and if A1 and A2

hold, then the (N + 1)st and (N + 2)nd rows of O11 will be linearly independent from the

first N rows and from each other, yielding

rank [O11] ≥ N + 2. (6.10)

Combining (6.9) and (6.10), it can be deduced that rank [O11] = N +2. Similarly, it can be
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shown that rank [O21] = N + 2. Subsequently,

L∑

i=1

αiO11eL,i = 0,

L∑

i=1

βiO21eL,i = 0,

are satisfied if and only if αi = βi = 0, ∀ i = 1, . . . , L. Therefore, the equality

L∑

i=1

πiHξ (k + j) eL,i = 0, ∀ j = 0, . . . , 3 (6.11)

is satisfied if and only if πi = 0, ∀ i = 1, . . . , L.

The left-hand side of (6.7) can be expressed as

2L∑

i=1

γiO (k, k + 4)e2L,i =
[
ρT

0 , . . . ,ρ
T

3

]T
, (6.12)

ρj ,

L∑

i=1

(γi + jTγL+i)Hξ(k + j)eL,i, (6.13)

where j = 0, . . . , 3. It can be seen from (6.11) that ρj = 0 for all j = 0, . . . , 3 if and only if

γi + jTγL+i = 0, ∀ i = 1, . . . , L; ∀ j = 0, . . . , 3. (6.14)

Since (6.14) holds for all j = 0, . . . , 3, then evaluating (6.14) at j = 0 yields

γi = 0, ∀ i = 1, . . . , L. (6.15)

Combining (6.14) and (6.15) for j > 0 yields

γL+i = 0, ∀ i = 1, . . . , L. (6.16)

Equations (6.14)–(6.16) imply (6.7); therefore, O(k, k + 4) is full rank. Using Theorem F.1

in Appendix F, the system is observable.
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Remark 2 . Note that the l-step observability matrixO(k, k + l) is an l·N×2(N+2) matrix;

hence, rank [O(k, k + l)] ≤ min {l ·N, 2(N + 2)}. Subsequently, one necessary condition for

the observability matrix to be full rank is that l ·N ≥ 2(N +2), i.e., the UAV makes carrier

phase measurements at l epochs to the N cellular BTSs. For N ≥ 2, this condition is satisfied

for l ≥ 4. For N ≥ 4, this condition is satisfied for l ≥ 3.

Remark 3 . The result of Theorem 6.1 is only valid locally and in a deterministic sense,

i.e., with no process or measurement noise. However, this result can be extended to the

stochastic system (F.27)–(F.28). Let the measurement Jacobian G(k) with respect to the

position states (cf. (6.4)) be re-parameterized in terms of the bearing angles {θn(k)}Nn=1

between each BTS and the UAV according to

G(k) =






cos [θ1(k)] . . . cos [θN (k)]

sin [θ1(k)] . . . sin [θN(k)]






T

.

The presence of process noise will yield new bearing angle trajectories θ′n(k) = θn(k)+δθn(k),

where δθn(k) is the bearing angle error due to process noise. With assumptions A.1 and A.2,

the new bearing angles will not change the structure nor the rank of H(k) (cf.(6.3)), which

will remain a combination of cosine and sine functions and other constants. This in turn

will satisfy the observability condition of the system with process noise. More details can be

found in [117] (Lemma 4.1) and [118] (Corollary 5.2).

Remark 4 . The velocity random walk model considered in this chapter is simple yet infor-

mative enough to capture the UAV dynamics between the EKF measurement updates. In

particular, the EKF will use this model to perform the time-update step, and for sufficiently

small T , the UAV’s dynamics model would not deviate drastically from this model. Never-

theless, this model may not necessarily cover the variety of flight modes that are achievable

using typical rotary wing UAVs. To address this, one may employ a multiple model ap-

proach to estimate the UAV’s state, with each model matched to a different flight mode
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[101, 119, 120, 121]. The observability analysis presented in this chapter can be performed

for each of the dynamics model assumed by the multiple model filter, such as acceleration

random walk, constant turn-rate, or even a stationary UAV. Theorem 6.1 can be extended

to study the observability of higher order UAV dynamics models (e.g., acceleration random

walk, jerk random walk, etc. [104]) and higher order clock error dynamics models (e.g., three-

state clock error dynamics comprising time, frequency, and frequency aging [122, 123]). It

can be readily shown that the system becomes unobservable when the UAV stops.

6.3.2 Lower Bound on the EKF Estimation Error Covariance

The optimal geometric configuration of sensors (or navigation sources) around an emitter (or

receiver) has been well studied in the literature [1, 66]. It was found that in the presence of

independent and identically distributed measurement noise, the trace of the estimation error

covariance in a nonlinear least-squares estimator is minimized when the end points of the

unit line of sight vectors pointing from the receiver to each navigation source form a regular

polygon around the receiver, i.e., θn = 2π(n−1)
N

, n = 1, . . . , N ≥ 3 [69]. The aforementioned

configuration will be referred to as the optimal configuration.

Although the system discussed in Subsection 6.2.3 is nonlinear, one may devise a scenario

for N ≥ 3 that will define a lower bound on the estimation error covariance in the EKF. To

this end, it is assumed that the optimal BTS configuration around the receiver is maintained

at all time, implying that assumption A1 is satisfied. Assumption A2 implies that the

measurement Jacobian can not be the same at all time. In order to satisfy A1 and A2

simultaneously, it is assumed that optimal configuration is maintained and that the BTSs

rotate around the receiver on the unit circle by 2π/N at each time-step. Therefore, the
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optimal bearing angles at any given time-step k will be given by

θ⋆n(k) =
2π ·mod(n−1+k,N)

N
, n = 1, . . . , N, k = 1, . . . ,

where mod(·, ·) is the modulo operator. Note that this parametrization is independent of the

state. Therefore, the Riccati equation may be iterated off-line with the optimal configuration

and measurement noise covariance R⋆(k) ≡ λmin [R(k)] I to produce a lower bound on the

estimation error covariance for the EKF, denoted Pmin(k + 1|k), from which a real number

p > 0 such that pI � Pmin(k+1|k) can be deduced. Note that λmin[A] indicates the smallest

eigenvalue of matrix A. It is also important to note that while this scenario could never be

physically realized, it is only used to define a lower bound on the estimation error covariance.

Remark 5 . The intuition behind obtaining this lower bound is explained next. Assume two

configurations for N BTSs: (i) the optimal one and (ii) any other arbitrary configuration.

Given the same prior for both configurations, i.e., Pi(k|k) = Pii(k|k), then Pi(k + 1|k) =

Pii(k + 1|k), since the dynamics are linear time-invariant. The covariance measurement

updates can be expressed in the information form as

P−1
i (k+1|k+1) = P−1

i (k+1|k) + 1

σ2
HT

i (k+1)Hi(k+1), (6.17)

P−1
ii (k+1|k+1) = P−1

ii (k+1|k) + 1

σ2
HT

ii (k+1)Hii(k+1), (6.18)

Since (i) is the optimal configuration,

HT

i (k+1)Hi(k+1) � HT

ii (k+1)Hii(k+1). (6.19)

From (6.17)–(6.19), it can be seen that Pi(k + 1|k + 1) � Pii(k + 1|k + 1). Repeating this

recursion yields Pi(k + j|k + j) � Pii(k + j|k + j) for all j ≥ 1.
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6.3.3 EKF Estimation Error Bounds Analysis

Consider the following two notions of estimation error boundedness defined in [117].

Definition 6.3.1. The stochastic sequence x̃(k|k) is said to be exponentially bounded in

mean square, if there are real numbers η, ν > 0 and 0 < ϑ < 1 such that

E
[
‖x̃(k|k)‖2

]
≤ η ‖x̃(1|1)‖2 ϑk + ν (6.20)

holds for every k > 0.

Definition 6.3.2. The stochastic sequence x̃(k|k) is said to be bounded with probability one,

if

sup
k>0
‖x̃(k|k)‖ <∞ (6.21)

holds with probability one.

Next, it is shown that the EKF estimation error for the system at hand is bounded according

to Definitions 6.3.1 and 6.3.2. From the system defined in (6.1)–(6.2), it can be seen that

F(k) = F is nonsingular and

‖F‖ = 1, (6.22)

for all k ≥ 0. Moreover, from the definition of Q and R(k) in Subsection 6.2.3, it can be

seen that Q(k) = Q ≻ 0 and R(k) ≻ 0; hence, there exist real numbers q, r > 0 such that

Q � qI, R(k) � rI, (6.23)

for all k > 0. It was established in Theorem 6.1 that the system is observable; hence, using
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Lemma F.1 in Appendix F, there exist real numbers p, p̄ > 0 such that

pI � P(k + 1|k) � p̄I, ∀ k > 0. (6.24)

An approach for obtaining p is given in Subsection 6.3.2. Since the dynamics of the system

in (6.1) are linear, then

‖ϕ(k)‖ = 0, ∀ k > 0. (6.25)

The following two lemmas establish the rest of the conditions for Theorem F.2 in Appendix

F to hold.

Lemma 6.3.1. The 2-norm of the measurement Jacobian defined in (6.3) is bounded by

‖H(k)‖ ≤
√
N + 1, ∀ k > 0. (6.26)

Proof. Equation (6.26) follows from showing that

HT(k)H(k) � (N + 1)I. (6.27)

The matrix ∆ , (N + 1)I−HT(k)H(k) is expressed as

∆ =






M 0

0 (N+1)I




 ,

M ,






(N+1)I−GT(k)G(k) −GT(k)

−G(k) NI




 ,

which implies that (6.27) is satisfied when M � 0. Since NI ≻ 0, then M is positive
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semi-definite if the Schur complement of its bottom-right block given by

MSchur , (N + 1)I−GT(k)G(k)− 1

N
GT(k)G(k),

is positive semi-definite. For any matrix A, the following holds

ATA � trace
[
ATA

]
I.

It can be readily shown that trace
[
GT(k)G(k)

]
= N for all k ≥ 0. Subsequently,

MSchur � (N + 1)I−NI− I = 0 ⇒ M � 0,

from which (6.27) and consequently (6.26) follow.

Lemma 6.3.2. Consider the system defined in (6.1)–(6.2). If A3 holds, then

max
1≤n≤N

sup
x(k)

‖Hess hn [x(k)]‖ ≤
1

d
, (6.28)

where Hess denotes the Hessian operator.

Proof. It can be readily shown that

Hess hn [x(k)] =
1

‖rr(k)− rsn‖
diag

[
U, 0(2N+2)×(2N+2)

]
,

where U , I2×2−vvT and v ,
rr(k)−rsn

‖rr(k)−rsn‖
. It can be seen that the matrix U is an annihilator

matrix and therefore its eigenvalues consist of ones and zeros. Subsequently,

‖Hess hn [x(k)]‖ =
1

‖rr(k)− rsn‖
.

Since A3 holds, i.e., ‖rr(k)− rsn‖ ≥ d, then ‖Hess hn [x(k)]‖ ≤ 1
d
, which in turn implies
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(6.28).

Using Taylor’s theorem and Lemma 6.3.2, it can be deduced that

‖χ(k)‖ ≤ κχ ‖x̃(k|k)‖2 , (6.29)

where κχ = 1
d
[117]. Now the main result for the EKF error bounds is stated.

Theorem 6.2. Consider the system defined in (6.1)–(6.2) whose state is being estimated

using an EKF as described in Subsection 6.2.3. If A1–A3 hold, then the EKF error x̃(k|k) is

exponentially bounded in the mean square and bounded with probability one as per Definitions

6.3.1 and 6.3.2, respectively, assuming

‖x̃(1|1)‖ ≤ ǫ, R(k) � δI, Q � δI,

for some ǫ, δ > 0.

Proof. Combining (6.22)–(6.26), (6.29), and the fact that F is nonsingular, one can see that

all the conditions of Theorem F.2 in Appendix F are satisfied, from which one concludes

that x̃(k|k) is exponentially bounded and bounded with probability one.

The significance of the results presented in Theorems 6.1 and 6.2 are in the fact that it is

possible for a UAV to reliably navigate for long periods of time exclusively with cellular

signals transmitted by asynchronous BTSs.

Remark 6 . While the observability and EKF stability analysis establishes bounds on the

estimation error covariance, it does not specify how to obtain such bounds. However, it

is worth noting that the observability analysis can be extended for higher order models or

for models with known control input. It can also be shown that the system will be l-step

observable for such models. Subsequently, the EKF output covariance for these dynamics
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models will be bounded as well. As a result, Theorem 6.2 can be readily extended to show

that an EKF using kinematic models with or without known control inputs will have bounded

errors as per Definitions 6.3.1 and 6.3.2.

6.4 Simulation Results

This section presents simulations to analyze the performance of the proposed EKF framework

by varying: (i) the number of available BTSs, (ii) the initial speed of the UAV, and (iii) the

quality of the oscillator on-board the UAV. The simulation setup and settings are discussed

first, then, the results are provided.

6.4.1 Simulation Setup

The simulated environment consisted of 12 BTSs from 2 cellular providers and is illustrated

in Fig. 6.1. It can be seen that due to the cellular structure, the geometry between the UAV

and BTSs is favorable. The cell size was picked to be 2 km, which is a typical value in semi-

urban environments. Monte Carlo (MC) simulations were ran for different values of: (i) the

number of available BTSs N , (ii) the initial speed of the UAV vr1 , and (iii) the UAV-mounted

receiver’s clock states’ process noise covariance Qclk,r. The number of available BTSs was

varied in N ∈ {6, 8, 10, 12}. The initial speed of the UAV vr1 was varied in vr1 ∈ {4, 9, 13}

m/s. The process noise covariance of the UAV-mounted receiver’s oscillator was varied to

correspond to that of a temperature-compensated crystal oscillator (TCXO) and to that of

an oven-controlled crystal oscillator (OCXO). Subsequently, 24 cases were simulated. The

UAV’s position and velocity and the UAV-mounted receiver’s and BTSs’ clock states were

simulated using the dynamics discussed in Subsections 6.1.2 and 6.1.1 with a sampling time

T = 0.1 s. The carrier phase measurement to each BTS was simulated according to (4.5) in
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Chapter 4 with λ = 33.96 cm, which corresponds to a wavelength dedicated for a cellular

CDMA channel. The 3GPP2 protocol requires cellular BTSs to be synchronized within

3µs to GPS with a frequency stability of 50 ppb [48, 49]. It was assumed that the BTSs

are equipped with OCXOs to meet these requirements [41, 124]. The EKF was initialized

according to the framework in Subsection 6.2.4. The simulation settings are summarized in

Table 6.1.

BTS 2

BTS 3

BTS 4 BTS 5

BTS 1 BTS 6

BTS 8

BTS 9

BTS 7

BTS 10

BTS 11

BTS 12

1 km

x

y

Figure 6.1: Simulation environment layout. The blue and red colors represent cells and BTSs
from 2 different cellular providers. The UAV’s trajectory is shown in black.

6.4.2 Single Realization Simulation Results

A single realization of the EKF errors and associated ±3σ bounds for the UAV’s position

and velocity and the clock error states corresponding to cδt1 and cδ̇t1 are plotted in Fig. 6.2

with N = 10, vr1 = 9 m/s, and an OCXO-equipped receiver. The decreasing ±3σ bounds

and converging errors shown in Fig. 6.2 do not contradict the main results in Subsection
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Table 6.1: Simulation Settings

Parameter Value Unit

N {6, 8, 10, 12} -

λ 0.3396 m

T 0.1 s

R (0.03) · IN×N m2

Σrr(j)




14.36 −6.97
−6.97 11.90



 m2

j {0, 1} -

rr(0) [−500,−1500]T m

ṙr(0) vr1 · [0.316, 0.949]T m/s

vr1 {4, 9, 13} m/s

h−2,r {h−2,TCXO, h−2,OCXO} s−1

h0,r {h0,TCXO, h0,OCXO} s

h−2,sn h−2,OCXO s−1

h0,sn h0,OCXO s

h−2,TCXO 2× 10−20 s−1

h−2,OCXO 4× 10−23 s−1

h0,TCXO 2× 10−19 s

h0,OCXO 8× 10−20 s

q̃x, q̃y 0.03 m2/s3

cδtr, cδtsn U(−900, 900)∗ m

cδ̇tr, cδ̇tsn U(−5, 5) m/s

Nn U {−500, 500}∗∗ cycles

∗ U(a, b) denotes the probability density function of a

continuous uniformly-distributed random variable in (a, b).

∗∗ U{c, d} denotes the probability mass function of a

discrete uniformly-distributed random variable in [c, d].

6.3.3 that the estimation error can be exponentially bounded and bounded with probability

one, as per Definitions 6.3.1 and 6.3.2. The remaining clock error states, namely cδtn and

cδ̇tn for n = 2, 3, . . . , 9, behave similarly to the ones plotted in Fig. 6.2.
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Figure 6.2: Simulation results: Single realization of EKF errors and associated ±3σ bounds
for the UAV position and velocity and the clock error states corresponding to cδt1 and cδ̇t1
with N = 10, vr1 = 9 m/s, and an OCXO-equipped receiver.

6.4.3 Monte Carlo Simulation Results

Next, MC simulations were conducted by randomizing the process and measurement noise

as well as the initial UAV position estimates r̂r(0) and r̂r(1). A total of 200 MC simulations

were performed for each case described in Subsection 6.4.1. The total position RMSE and

the final position error RMSE are tabulated in Table 6.2.

The following can be deduced from Table 6.2. First, as expected, the estimation performance

improves as the number of available BTSs increases. Second, the receiver’s clock quality

significantly affects the estimation performance for N ≤ 10. For N > 10, the effect of the

receiver’s oscillator quality becomes less significant. Third, as the initial speed increases, the

estimation performance improves. Faster UAV speeds result in a faster change in the bearing

angles between the UAV and the BTSs, yielding an increase in the amount of information
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Table 6.2: MC Simulation Results

Position RMSE (m) Final position error (m)
❍
❍
❍
❍
❍
❍

N
vr1 4 9 13 4 9 13

T
C
X
O

6 33.47 22.85 13.15 14.28 10.23 7.29

8 30.34 18.02 9.57 12.03 4.85 0.95

10 27.96 17.25 9.84 9.69 4.94 1.09

12 17.31 9.83 6.78 8.72 3.76 0.92

O
C
X
O

6 25.97 14.84 11.18 10.15 9.65 6.52

8 25.73 15.73 8.97 9.53 4.55 1.03

10 24.77 13.77 5.50 8.80 2.58 0.48

12 16.61 9.57 3.64 8.37 4.98 0.33

coming from cellular carrier phase measurements.

Next, the lower bound proposed in Subsection 6.3.2 is studied. To this end, 200 MC simu-

lations were performed with N = 10, vr1 = 9 m/s, and an OCXO-equipped receiver. The

time history of the logarithm of the determinant of the estimation error covariance for each

realization, denoted by logdet [P(k|k)], is plotted in Fig. 6.3 along with the logarithm of

the determinant of the theoretical lower bound (LB) obtained according to Subsection 6.3.2.

Note that logdet [P(k|k)] is related to the volume of the uncertainty ellipsoid [36]. More-

over, the 1σ bound calculated by the EKF is plotted for each MC realization in Fig. 6.4 for

the UAV’s position and velocity as well as the clock error states corresponding to cδt1 and

cδ̇t1. The theoretical LB calculated using the method proposed in Subsection 6.3.2 is also

plotted. Note that the σ bounds of the remaining clock error states, namely cδtn and cδ̇tn

for n = 2, 3, . . . , 9, behave similarly to the ones plotted in Fig. 6.4.

The following can be concluded from these plots. First, the logdet [P(k|k)] plot in Fig. 6.3

shows that (i) the estimation error uncertainty is decreasing for all MC realizations and (ii)

the theoretical LB is not violated. Second, each component of the theoretical LB in Fig.

149



Figure 6.3: MC simulation results: 200 realizations of logdet [P(k|k)] along with the loga-
rithm of the determinant of the theoretical LB obtained according to Subsection 6.3.2 with
N = 10, vr1 = 9 m/s, and an OCXO-equipped receiver.

Figure 6.4: MC simulation results: 200 realizations of 1σ bound for the UAV’s position and
velocity as well as the clock error states corresponding to cδt1 and δ̇t1, and the corresponding
theoretical LB obtained according to Subsection 6.3.2 with N = 10, vr1 = 9 m/s, and an
OCXO-equipped receiver.

6.4 bounds the respective component in the estimation error covariance. This result is not

guaranteed to hold by the algorithm to compute the theoretical LB; however, it seems to

hold. Third, the theoretical LB is tight for the velocity and clock drift states, but not tight
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for the position and clock bias states.

6.5 Experimental Results

In this section, two experiments are conducted demonstrating UAV navigation via the frame-

work developed in this chapter. In the following experiments, the altitude of the UAVs was

known from their on-board navigation system.

6.5.1 Measurement Noise Statistics

The CDMA and LTE receivers employed in the experiments use second-order coherent phase-

locked loops (PLLs), for which it can be shown that the measurement noise variance σ2
n is

given by σ2
n(k) = λ2 BPLL

C/N0n (k)
, where BPLL is the receiver’s PLL noise equivalent bandwidth

and C/N0n(k) is the n-th BTS’s carrier-to-noise ratio measured by the receiver [6]. In the

following experiments, BPLL was set to 3 Hz.

6.5.2 Hardware and Filter Description

An Autel Robotics X-Star Premium UAV was used for the first experiment and a DJI Matrice

600 was used for the second experiment. In each experiment, the UAVs were equipped

with an Ettus E312 universal software radio peripheral (USRP), a consumer-grade 800/1900

MHz cellular antenna, and a small consumer-grade GPS antenna to discipline the on-board

oscillator. In both experiments, the UAV-mounted receivers were tuned to listen to cellular

signals in the two bands allocated for cellular communication in the U.S.: the 800 MHz

and 1900 MHz bands. An E312 USRP was tuned to a 882.75 MHz carrier frequency (i.e.,

λ = 33.96 cm), which is a cellular CDMA channel allocated for the U.S. cellular provider
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Verizon Wireless. In the second experiment, the UAV was also equipped with a second

antenna and another E312 USRP, which was tuned to a 1955 MHz carrier frequency (i.e.,

λ = 15.33 cm), which is an LTE channel allocated for the U.S. cellular provider AT&T.

Samples of the received signals were stored for off-line post-processing. The cellular carrier

phase measurements were given at a rate of 37.5 Hz, i.e., T = 26.67 ms. The ground-truth

reference for each UAV trajectory was taken from its on-board navigation system, which

uses GPS, an inertial measurement unit (IMU), and other sensors. The hovering horizontal

precision of the UAVs are reported to be 2 meters for the X-Star Premium by Autel Robotics

and 1.5 meters for the Matrice 600 by DJI. The E312 USRPs are equipped with TCXOs

with h0,r = 2 × 10−19 and h−2,r = 2 × 10−20 and the BTSs are assumed to be equipped

with OCXOs with h0,sn = 8 × 10−20 and h−2,sn = 4 × 10−23. The x and y continuous-time

acceleration noise spectra were set to q̃x = q̃y = 0.03 m2/s3 for both experiments. The EKF

was initialized according to the framework in Subsection 6.2.4 with initial position estimates

obtained from the UAVs’ on-board navigation systems. The experimental setup and BTS

and eNodeB layout is shown in Fig. 6.5.

Ettus E312

USRP

CDMA Antenna

GPS Antenna

BTS 1

BTS 5

BTS 4

BTS 6

BTS 7

BTS 3

BTS 2

BTS 8

BTS 9

1 Km

eNodeB 1 eNodeB 2

UAV 2

UAV 1

Figure 6.5: Experimental setup and BTS and eNodeB layout. The environment consists of
9 cellular CDMA BTSs (cyan towers) and 2 LTE eNodeBs (magenta towers).
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6.5.3 Experiment 1: UAV Navigation Results

In the first experiment, the UAV’s total traversed trajectory was 2.6 km, which was completed

in 4 minutes and 40 seconds. Over the course of the experiment, the UAV-mounted receiver

was listening to 8 cellular CDMA BTSs as shown in Fig. 6.5 (denoted BTSs 1–8). The

positions of the BTSs were obtained in two steps: 1) the framework described in [1] was

used to obtain an initial map of the cellular BTS locations then 2) Google Earth was used

to determine the final position of the BTSs. Fig. 6.6 shows the true and estimated UAV

trajectories. The total position RMSE was found to be 2.94 m with a final estimation error

at the end of the UAV’s flight of 2.23 m. The EKF position error and the associated ±3σ

bounds as well as the position 1σ lower bound (LB) obtained according to Subsection 6.3.2

are shown in Fig. 6.7. In order to study the effect of the number of BTSs and their relative

Trajectories

UAV's Navigation System

(8 BTSs)

Position RMSE: 2.94 m

Cellular

Total Traversed Trajectory: 2.6 km
100 m

Figure 6.6: Experiment 1 (N = 8): True UAV trajectory and estimated UAV trajectory
via cellular carrier phase measurements with the proposed EKF framework. The true and
estimated trajectories are shown in solid and dashed lines, respectively. Map data: Google
Earth.

geometry, the EKF was run again using BTSs 1 through 4 (N = 4) and then BTSs 1 through

6 (N = 6). The resulting EKF position errors and the associated ±3σ bounds as well as

the position 1σ theoretical LB obtained according to Subsection 6.3.2 are shown in Fig. 6.8.

The total position RMSEs and final errors are summarized in Table 6.3.
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Figure 6.7: Experiment 1 (N = 8): Top: UAV’s position estimation error trajectories and
associated ±3σ bounds. Bottom: Position estimation error standard deviations and the
theoretical LB obtained according to Subsection 6.3.2.

Error (N = 4) ±3σ (N = 4) Error (N = 6) ±3σ (N = 6)

~xr ~yr

~xr ~yr

EKF (N = 4) LB (N = 4) EKF (N = 6) LB (N = 6)

Figure 6.8: Experiment 1 (N = 4 and N = 6): Top: UAV’s position estimation error trajec-
tories and associated ±3σ bounds. Bottom: Position estimation error standard deviations
and the theoretical LB obtained according to Subsection 6.3.2.

6.5.4 Experiment 2: UAV Navigation Results

In the second experiment, the UAV’s total traversed trajectory was 2.9 km, which was

completed in 5 minutes. In this experiment, the receiver on-board the UAV was listening
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to 7 cellular CDMA BTSs and 2 LTE eNodeBs shown in Fig. 6.5. The BTS and eNodeB

positions were determined the same way as in the first experiment. The true and estimated

UAV trajectories are shown in Fig. 6.9. The total position RMSE was found to be 5.99 m

with a final estimation error at the end of the UAV’s flight of 3.46 m. The EKF position

error and the associated ±3σ bounds as well as the position 1σ lower bound (LB) obtained

according to Subsection 6.3.2 are shown in Fig. 6.10. In order to study the effect of the

UAV's Navigation System

Cellular

Total Traversed Trajectory: 2.9 km

Trajectories

Position RMSE: 5.99 m

(7 BTSs and 2 eNodeBs)

100 m

Figure 6.9: Experiment 2 (N = 9): True UAV trajectory and estimated UAV trajectory
via cellular carrier phase measurements with the proposed EKF framework. The true and
estimated trajectories are shown in solid and dashed lines, respectively. Map data: Google
Earth.

Figure 6.10: Experiment 2 (N = 9): Top: UAV’s position estimation error trajectories and
associated ±3σ bounds. Bottom: Position estimation error standard deviations and the
theoretical LB obtained according to Subsection 6.3.2.

number of BTSs and their relative geometry as in the first experiment, the EKF was run
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again using BTSs 1 through 4 (N = 4) and then BTSs 1 through 5 and eNodeB 1 (N = 6).

The resulting EKF position errors and the associated ±3σ bounds as well as the position

1σ theoretical LB obtained according to Subsection 6.3.2 are shown in Fig. 6.11. The total

position RMSEs and final errors are summarized in Table 6.3.

Error (N = 4) ±3σ (N = 4) Error (N = 6) ±3σ (N = 6)

~xr ~yr

~xr ~yr

EKF (N = 4) LB (N = 4) EKF (N = 6) LB (N = 6)

Figure 6.11: Experiment 2 (N = 4 and N = 6): Top: UAV’s position estimation error tra-
jectories and associated ±3σ bounds. Bottom: Position estimation error standard deviations
and the theoretical LB obtained according to Subsection 6.3.2.

Table 6.3: Experimental Results

Experiment 1 Experiment 2

N
Position
RMSE
(m)

Final
position
error
(m)

Position
RMSE
(m)

Final
position
error
(m)

4 37.39 21.29 30.77 39.81

6 4.68 2.41 14.96 12.84

8 2.94 2.23 - -

9 - - 5.99 3.46
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6.5.5 Discussion

First, it is important to note that the favorable geometry of the BTSs and eNodeBs comes

by virtue of (i) the cellular network structure where cells are typically organized in adjacent

hexagons with servicing BTSs at the center of each hexagon and (ii) diversity of cellular

providers. Moreover, since the wireless channel is particularly good for UAVs (line of sight

is almost always maintained), it is very likely the UAV will be able to reliably listen to

geometrically diverse BTSs, as shown in Fig. 6.5.

Second, it was shown in Subsection 6.3.3 that the estimation error can be exponentially

bounded and bounded with probability one, as per Definitions 6.3.1 and 6.3.2 respectively;

and the estimation error covariance is bounded according to (6.24). None of the experiments

contradicts this result since they both show a decreasing ±3σ bounds and converging errors

as shown in Fig. 6.7, Fig. 6.10, Fig. 6.8, and Fig. 6.11 without violating the proposed lower

bound.

Third, the UAVs in both experiments were flying at almost constant speeds of 9.3 m/s and

9.7 m/s for experiments 1 and 2, respectively. Based on the simulation results presented in

Section 6.4, the RMSE and final error are expected to decrease as the UAV speed increases.

Fourth, note that the proposed framework considers imperfect knowledge of the initial state

(i.e., it is initialized with an initial estimate and corresponding uncertainty). It is important

that the initial estimate be consistent with the initial estimation error covariance (uncer-

tainty). The initialization scheme proposed in Subsection 6.2.4 ensures that the initial error

and the initial uncertainty are consistent.

Fifth, the framework studied in this chapter assumed the BTSs’ positions to be known a

priori with no uncertainty. Having uncertainty in the BTS’s position does not guarantee

the applicability of Theorem 6.2. Future work could extend this work to the case with
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unknown/uncertain BTS positions. The reader is encouraged to look at the work in [53] and

[125] for more details on how uncertainty in the BTS positions affects the performance of an

opportunistic navigation framework.

Sixth, the UAV’s on-board oscillator was disciplined using GPS signals during the experi-

ment. The effect of not disciplining the on-board oscillator can be captured by increasing the

clock process noise covariance matrix. Based on the results in Section 6.4, the RMSE and

final error are expected to increase slightly when the on-board oscillator is not disciplined by

GPS signals. It is important to note that now one has to find a new (ǫ, δ) pair for Theorem

V.2 to hold. Since Q increases in a GPS-denied environment, then δ is likely to increase.

Intuitively, one expects ǫ to decrease in this case for Theorem V.2 to hold. More details can

be found in [117].

Remark 7 . The EKF employs statistical models to propagate the position and velocity

of the UAV and the clock bias and drift differences. Such models will inherently mismatch

the true dynamics of the UAV and clock states, possibly yielding large estimation errors.

Using an IMU to propagate the position and velocity states of the UAV should yield better

results [53]. Moreover, an adaptive filter may be employed to simultaneously estimate the

clock states’ process noise covariance to reduce the clock model mismatch [41].
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Chapter 7

Optimal Receiver Placement for

Dilution of Precision Minimization

This chapter is organized as follows. Section 7.1 presents two motivating problems considered

by this chapter. Section 7.2 formulates the receiver placement problem and describes the

models employed in the chapter. Section 7.3 proposes a method for solving the DOP mini-

mization problem. Section 7.4 presents simulation results validating the proposed approach.

The notation in this chapter is independent from the one used in previous chapters.

The results of this chapter have been published in [126].

7.1 Motivating Problems

This chapter addresses two equivalent problems. The first problem, illustrated in Fig. 7.1(a),

considers a number of receivers, referred to as sensors, that are pre-deployed in some random

configuration, which are collaboratively localizing a stationary source (e.g., SOP emitter)

by making pseudorange observations to this source. A central estimator is used to fuse
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pseudoranges from all sensors to estimate the source’s 3-D position and its clock bias. Where

should an additional sensor be placed so to minimize the WGDOP? If this additional sensor

is a moving agent, where should it move to next?

The second problem, illustrated in Fig. 7.1(b), considers a UAV that is navigating via

GNSS signals, but whose navigation solution suffers from a large vertical dilution of precision

(VDOP) or WVDOP. This problem is inherent to GNSS-based navigation, due to the geo-

metric configuration of GNSS satellites being above the UAV. It has been demonstrated that

utilizing terrestrial SOP transmitters significantly reduce the VDOP or WVDOP, since now

the elevation angle from which the signals are received spans −90◦ to +90◦ [127, 128, 129].

In such environment, where should the UAV position itself in order to minimize its VDOP

or WVDOP?

(a) (b)

Figure 7.1: Two motivating examples: (a) Placing an additional sensor for optimal source
localization. (b) Solving for relative SOP position to minimize VDOP or WVDOP.

At the core, these problems are identical: they both boil down to minimizing the WGDOP

or elements within the WGDOP matrix over a unit vector that corresponds to the relative

position vector between the additional sensor (navigation source) and the source (UAV). In

order to solve these problems, this chapter first formulates the core WGDOP minimization

problem as a quadratically constrained fractional quadratic program, to which numerical

solutions yielding the global optimum have been developed in the nonconvex optimization
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literature [130]. Next, the algorithm for solving this minimization problem is detailed. Then,

Monte Carlo simulation for the two DOP minimization problems illustrated in Fig. 7.1 along

with numerical convergence and complexity analyses associated with the proposed approach

versus existing approaches. An additional application of the proposed approach for source

localization with a mobile agent is also presented.

7.2 Model Description and Problem Formulation

In this section, the models adopted in the chapter are described and the DOP minimization

problem is subsequently formulated.

7.2.1 Model Description

The state to be estimated is η ,
[
rTs , cδts

]
T

, which is composed of the 3-D position vector

rs , [xs, ys, zs]
T of the source (UAV) and its clock bias cδts expressed in meters, where c is

the speed of light and δts is the source’s (UAV’s) clock bias expressed in seconds. A prior for

η may be given, denoted by η̂, with the associated initial covariance P0 ≻ 0. The position

vector of the jth sensor (navigation source) is given by rrj ,
[
xrj , yrj , zrj

]T
and its clock

bias by cδtrj , j = 1, . . . , N , where N ≥ 5 is the total number of sensors (navigation sources).

It is assumed that the positions and clock biases of all the sensors (navigation sources) are

known at any time-step. Moreover, each sensor is making a pseudorange measurement to

the source. Alternatively, the UAV is making pseudorange measurements to each navigation

source. The pseudorange measurements may be expressed as

zj =
∥
∥rrj − rs

∥
∥
2
+ c ·

[
δtrj − δts

]
+ vj ,
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where v , [v1, . . . , vN ]
T is the measurement noise vector, which is modeled as a zero-mean

Gaussian random vector with covariance RN [131]. Note that the measurement noise may

be correlated; hence, RN is an arbitrary symmetric positive-definite matrix. In the case of

the navigation sources being GNSS satellites, it is assumed that zj has been corrected for

ionospheric and tropospheric delays. The Jacobian matrix HN of the measurement vector

z , [z1, . . . , zN ]
T is given by

HN = [h1 . . . hN ]
T , hj ,

[

rTs − rTrj
∥
∥rs − rrj

∥
∥
2

,−1
]T

.

Subsequently, the estimation error covariance matrix of a weighted nonlinear least-squares

(WNLS) estimator with N sensors (navigation sources), denoted PN , is given by

PN ,
(
P−1

0 +HT

NR
−1
N HN

)−1
.

7.2.2 Problem Formulation

The problem addressed in this chapter is the optimal placement of an additional sensor

(navigation source) to a set of N − 1 ≥ 4 pre-deployed sensors (navigation sources) in order

to optimize a functional of the localization (navigation solution) estimation error covariance.

To this end, two cost functions are defined

g(PN) , tr
[
TPNT

T
]
, g′(PN) , det

[

T′PNT
′T
]

,

where tr [·] is the matrix trace, det [·] is the matrix determinant, T is an arbitrary L × 4

matrix and L is a positive integer, and T′ is an arbitrary L′ × 4 matrix with rank L′ and

L′ is a positive integer with 0 < L′ ≤ 4. These conditions on T′ ensure that g′(PN) is

nonzero. Note that HN =
[
HT

N−1 hN
]
T

and
{
rrj
}N−1

j=1
and rs are fixed. Therefore, HN−1
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is constant. The problem is to find rrN that minimizes g(PN) or g′(PN). The vector hN

may be expressed as hN =
[
xT − 1

]T
where x ,

rs−rrN

‖rs−rrN‖2
is the unit LOS vector from

the source (UAV) to the Nth sensor (navigation source). One can parameterize x in terms

of the elevation angle θ and the azimuth angle φ according to

x = [cos θ cos φ cos θ sin φ sin θ]T ,

where −π
2
≤ θ ≤ π

2
is the elevation angle and 0 ≤ φ < 2π is the azimuth angle. It can be

seen that any sensor (navigation source) position on the ray whose direction is given by x

yields the same estimation error covariance. Subsequently, the problem boils down to finding

the vector x on the unit sphere that minimizes g(PN) or g
′(PN), given by the following the

optimization problems

minimize
x
T
x=1

g(PN) = tr
[
TPNT

T
]
, (7.1)

minimize
x
T
x=1

g′(PN) = det
[
TPNT

T
]
. (7.2)

In the rest of the chapter, these two problems are generally referred to as the DOP min-

imization problem. In order to visualize g(PN) and g′(PN), the following two motivating

examples are considered.

In the first example, 4 sensors are randomly placed on the unit sphere, which was gridded

by uniformly sampling the domain of θ ∈
[
−π

2
, π
2

]
and φ ∈ [0, 2π]. Next, g(PN) and g

′(PN)

were evaluated for T = T′ = I at each (θ, φ) pair and were plotted in two ways as shown

in Figs. 7.2 and 7.3: (a) as a 3-D pattern plot where g(PN) and g
′(PN) are proportional to

the radial distance to the 3-D surface and the corresponding sensor location is its projection

onto the unit sphere and (b) as a surface plot as a function of the azimuth and elevation

angles. It can be seen from Figs. 7.2 and 7.3 that g(PN) and g′(PN) are nonconvex and

have several maxima and minima.
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In the second example, a UAV is assumed to have access to 4 GNSS satellites. The satellite

elevation mask was set to 10◦, i.e., satellites below such elevation mask are not used to

produce the navigation solution (this is common in GNSS-based navigation to avoid severely

attenuated GNSS signals and multipath). The UAV is trying for solve to its relative position

to a terrestrial SOP in order to minimize its VDOP, given by g(PN) = tr
[
eT3PNe3

]
=

eT3PNe3, where e3 , [0, 0, 1, 0]T. Note that the distance to the GNSS satellites is significantly

large such that the unit LOS vectors form the UAV to the satellites do not change while the

UAV is positioning itself with respect to the SOP. Hence, this problem becomes equivalent

to the sensor placement problem whose solution is the desired relative position of the SOP

with respect to the UAV. This scenario is illustrated in Fig. 7.4, where the dark blue marks

indicate the endpoints of the unit LOS vectors to the 4 GNSS satellites and the red mark

indicates the relative position of the SOP that minimizes the WVDOP. Since eT3PNe3 is a

scalar, then g(PN) = g′(PN). Subsequently, only g(PN) is plotted. It can be seen from Fig.

7.4 that g(PN) (and consequently g′(PN)) is nonconvex and has several local minima and

maxima.

Figure 7.2: Visualization of g (PN) = tr [PN ]. (a) 3-D pattern plot where g (PN) is propor-
tional to the radial distance to the 3-D surface and the corresponding sensor location is its
projection onto the unit sphere. The dark blue markers indicate the endpoints of the unit
LOS vectors to 4 pre-deployed sensors. The red marker indicates the endpoint of the vector
x that minimizes g (PN). (b) Surface plot showing g (PN) as a function of the azimuth angle
φ and elevation angle θ.
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Figure 7.3: Visualization of g′ (PN) = det [PN ]. (a) 3-D pattern plot where g′ (PN) is
proportional to the radial distance to the 3-D surface and the corresponding sensor location
is its projection onto the unit sphere. The dark blue markers indicate the endpoints of
the unit LOS vectors to 4 pre-deployed sensors. The red marker indicates the endpoint of
the vector x that minimizes g′ (PN). (b) Surface plot showing g′ (PN) as a function of the
azimuth angle φ and elevation angle θ.

Figure 7.4: Visualization of g (PN) = eT3PNe3. (a) 3-D pattern plot where the VDOP
g (PN) is proportional to the radial distance to the 3-D surface and the corresponding sensor
location is its projection onto the unit sphere. The dark blue markers indicate the endpoints
of the unit LOS vectors to 4 GNSS satellites. The red marker indicates the endpoint of the
vector x that minimizes the WVDOP. (b) Surface plot showing the WVDOP as a function
of the azimuth angle φ and elevation angle θ.

In the next section, a method for obtaining the global minimum of g(PN) is developed.
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7.3 DOP Minimization

In this section, the minimization problems (7.1) and (7.2) are formulated as quadratically

constrained fractional quadratic programs and the global solutions are subsequently dis-

cussed.

7.3.1 DOP Minimization as a Quadratically Constrained Frac-

tional Quadratic Program

Let the measurement noise covariance RN after placing the Nth sensor (navigation source)

have the following partitioning

RN =






RN−1 rN

rTN σ2
N




 .

Let its inverse YN be partitioned according to

YN , R−1
N =






YN−1 yN

yT

N µ2
N




 .

The estimation error covariance matrix after placing the Nth sensor (navigation source) may

then be expressed as

PN ,
(
P−1

0 +HT

NR
−1
N HN

)−1

=
(
P−1

0 +HT

N−1YN−1HN−1 + µ2
NhNh

T

N + hNy
T

NHN−1 +HT

N−1yNh
T

N

)−1

=
(
M+ uuT

)−1
, (7.3)
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where u , µNhN + 1
µN

HT

N−1yN and M , P−1
0 + HT

N−1

(

YN−1 − 1
µ2N
yNy

T

N

)

HN−1. Using

the matrix inversion lemma, it can be shown that M = P−1
0 +HT

N−1R
−1
N−1HN−1. If a prior

is available, then HN−1 does not need to be full column rank. If no prior is available, then

M = HT

N−1R
−1
N−1HN−1, in which case HN−1 must be full column rank. Either way, M

is positive definite and so is its inverse. Using the matrix inversion lemma, PN may be

expressed as

PN = M−1 −M−1uuTM−1

1 + uTM−1u
. (7.4)

Next, g(PN) and g
′(PN) are re-expressed as fractional quadratic cost functions.

Trace Minimization

Using (7.4), g(PN) may be expressed as

g(PN) = C − tr
[
TM−1uuTM−1TT

]

1 + uTM−1u
,

where C , tr
[
TM−1TT

]
. Using the cyclic properties of the trace, the cost function may be

expressed as

g(PN) = C +
uTQu

1 + uTM−1u
, (7.5)

where Q , −M−1TTTM−1. Note that hN =
[
xT,−1

]
T

and let Q, M−1, ζ , QHT

N−1yN ,

and ψ , M−1HT

N−1yN have the following partitioning

Q=






Ā1 b̄1

b̄T1 c̄1




, M

−1=






Ā2 b̄2

b̄T2 c̄2




, ζ=






ζ1

ζ2




, ψ=






ψ1

ψ2




.
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Then, g (PN) may be expressed as

g (PN) = g(x) , C +
g1(x)

g2(x)
,

where gn(x) , x
TAnx− 2bTnx+ cn, n = 1, 2, and

A1 , µ2
NĀ1,

b1 , µ2
N b̄1 − ζ1,

c1 , µ2
N c̄1 +

1

µ2
N

yT

NHN−1QHT

N−1yN − 2ζ2,

A2 , µ2
NĀ2,

b2 , µ2
N b̄2 −ψ1,

c2 , µ2
N c̄2 +

1

µ2
N

yT

NHN−1M
−1HT

N−1yN − 2ψ2 + 1.

Subsequently, the DOP minimization problem in (7.1) may be posed as

minimize
x∈F

g(x), (7.6)

where F =
{
x ∈ R

3 : xTx = 1
}
.

Determinant Minimization

Using (7.4) and Sylvester’s determinant theorem, g′(PN) may be expressed as

g′(PN) = C ′
(

1 +
uTQ′u

1 + uTM−1u

)

, (7.7)
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where Q′ , −M−1T′T
(

T′M−1T′T
)−1

T′M−1 and C ′ , det
[

T′M−1T′T
]

. Let Q′ and ζ ′ ,

Q′HT

N−1yN have the following partitioning

Q′ =






Ā′
1 b̄′1

b̄′1
T c̄′1




 , ζ ′ =






ζ ′1

ζ ′2




 .

Then, g′ (PN) may be expressed as

g′ (PN) = g′(x) , C ′ +
g′1(x)

g2(x)
,

where g′1(x) , x
TA′

1x− 2b′T1x+ c′1, and

A′
1 , µ2

NĀ
′
1,

b′1 , µ2
N b̄

′
1 − ζ ′1,

c′1 , µ2
N c̄

′
1 +

1

µ2
N

yT

NHN−1Q
′HT

N−1yN − 2ζ ′2.

Subsequently, the DOP minimization problem in (7.2) may be posed as

minimize
x∈F

g′(x). (7.8)

Note that (7.6) and (7.8) are of the form

minimize
x∈F

f(x) = C0 +
f1(x)

f2(x)
, (7.9)

where f(x), f1(x), f2(x), and C0 can be either g(x), g1(x), g2(x), and C; or g
′(x), g′1(x),

g2(x), and C
′, respectively.

Remark: Note that this analysis is readily extendable to range measurements instead of
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pseudorange, i.e, zj =
∥
∥rrj − rs

∥
∥ + vj . In this case, An, bn, cn, A

′
n, b

′
n, and c

′
n for n = 1, 2

become

A1 , µ2
NQ,

b1 , −QHT

N−1yN ,

c1 ,
1

µ2
N

yT

NHN−1QHT

N−1yN ,

A2 , µ2
NM

−1,

b2 , −M−1HT

N−1yN ,

c2 ,
1

µ2
N

yT

NHN−1M
−1HT

N−1yN + 1.

A′
1 , µ2

NQ
′,

b′1 , −Q′HT

N−1yN ,

c′1 ,
1

µ2
N

yT

NHN−1Q
′HT

N−1yN .

7.3.2 Domain Approximation

Although (7.9) minimizes the ratio of two quadratic forms, it is not a quadratically con-

strained fractional quadratic program due to the feasible domain. As discussed in [130], the

constraint was shown to take the form

C2
1 ≤ xTGx ≤ C2

2 , (7.10)

where C2
2 > C2

1 ≥ 0 and G is a positive definite matrix. In what follows, a method for

transforming the constraint in (7.9) into the form of (7.10) is presented.

First, it must be established that f(x) is continuous. It can be seen from (7.5) and (7.7)

that both denominators are greater than one since M−1 ≻ 0, i.e., g2(x) ≥ 1 and g′2(x) ≥ 1.
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Consequently f(x) is continuous. Next, denote x⋆0 the true optimal solution of (7.9). Since

f(x) is continuous, then for every δ0 > 0 where ‖x− x⋆0‖2 < δ0, there exists ǫ0 > 0 such

that |f(x)− f (x⋆0)| < ǫ0. Now, let ǫ0 ≡ ǫ⋆ < min
x∈L

|f(x)− f(x⋆0)|, where L is the set of

local minima on F excluding x⋆0. Therefore, there exists δ⋆ such that ‖x− x⋆0‖2 < δ⋆. In

order to satisfy the form of the constraint given in (7.10), the set F is approximated with

F2 =
{
x ∈ R

3 : 1 ≤ xTx ≤ 1 + δ
}
, (7.11)

where δ > 0 is made infinitely small. This approximation is needed to formulate the DOP

minimization problem as the quadratically constrained fractional quadratic problem dis-

cussed in the next subsection. It can be seen that

lim
δ→0
F2 = F .

Denote x⋆δ the solution to

minimize
x∈F2

f(x).

Since F2 is not strictly the unit sphere, then x⋆δ may not be a unit vector. Define x⋆ to be

a unit vector along x⋆δ as

x⋆ ,
x⋆δ
‖x⋆δ‖2

. (7.12)

This vector x⋆ will be shown to converge to the optimal solution of (7.9) x⋆0. Let δ be

small enough such that ‖x⋆0 − x⋆δ‖2 < δ⋆. Moreover, it can be seen from Fig. 7.5 that

‖x⋆0 − x⋆‖2 < ‖x⋆0 − x⋆δ‖2 since x⋆ is the projection of x⋆δ onto the unit sphere.
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Figure 7.5: Visualization of F and F2 and the relationship between x⋆, x⋆0, and x
⋆
δ.

Consequently, for a sufficiently small δ, the following holds

‖x⋆0 − x⋆‖2 < δ⋆ ⇒ |f (x⋆0)− f (x⋆)| < ǫ⋆,

implying that x⋆ converges to the solution of (7.9). Since C is independent of x, the original

optimization problem in (7.9) may be approximated with

minimize
x∈F2

f1(x)

f2(x)
. (7.13)

7.3.3 Quadratically Constrained Fractional Quadratic Program

Solution

The quadratically constrained fractional quadratic program was studied in [130]. Note that

A1 (A′
1) and A2 are symmetric and there are no conditions on their definiteness. In case

An (A′
n) is not symmetric, it can be replaced by An+A

T
n

2

(
A

′

n+A
′T

n

2

)

without changing the

problem. In (7.13), A2 ≻ 0 (A′
2 ≻ 0), since it is a diagonal block of a positive definite

matrix. The only assumption needed to solve (7.13) is that f2(x) is bounded below on F2

by a positive number γ. It can be seen from (7.5) and (7.7) that this assumption is trivially

satisfied with f2(x) ≥ 1. An iterative bisection algorithm for obtaining an ǫ-global optimal

solution x⋆ for the problem (7.13) was developed in [130], specifically

α⋆ ≤ f1 (x
⋆)

f2 (x⋆)
≤ α⋆ + ǫ,
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where x⋆ ∈ F2, α
⋆ , min

x∈F2

{
f1(x)
f2(x)

}

, and ǫ is an arbitrarily small positive number. An upper

and lower bound m and M , respectively, on min
x∈F2

{
f1(x)
f2(x)

}

must first be established. The

following bounds may be established on f1 and f2

f1(x) =







uTQu ≤ 0,

uTQ′u ≤ 0,
, f2(x) = 1 + uTM−1u ≥ 1,

since Q � 0, Q′ � 0, and M−1 ≻ 0. Subsequently, m and M may be chosen to be

M = 0, m ≤ −max
x∈F2

−f1 (x) =







−max
x∈F2

−g1 (x),

−max
x∈F2

−g′1 (x),
. (7.14)

Noting that ‖hN‖22 ≤ h+ δ, where h = 2 for pseudorange measurements and h = 1 for range

measurements, the following inequality holds

0 ≤ ‖u‖2 ≤ µN
√
h+ δ +

1

µN

∥
∥HT

N−1yN
∥
∥
2
.

Therefore, m may be chosen to be

m=−







[

µN
√
h+ δ+ 1

µN

∥
∥HT

N−1yN
∥
∥
2

]2

λmax (−Q) ,
[

µN
√
h+ δ+ 1

µN

∥
∥HT

N−1yN
∥
∥
2

]2

λmax (−Q′) .
(7.15)

where λmax(·) denotes the largest eigenvalue.

The following equivalency was shown in [132]

min
x∈F2

{
f1 (x)

f2 (x)

}

≤ α ⇔ min
x∈F2

{f1 (x)− αf2 (x)} ≤ 0.

This equivalency enables (7.13) to be solved using a bisection algorithm, which is summarized

in Algorithm 1.
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Algorithm 1 DOP Minimization

1: Given: m,M (cf. (7.14) and (7.15)), and ǫ,
2: Initialization: l0 = m, u0 =M,
3: ∆ul = 1 + ǫ,
4: while ∆ul > ǫ, k ≥ 1, do
5: αk =

lk−1+uk−1

2
,

6: Solve minimize
x∈F2

βk = f1(x)− αkf2(x),
7: if β⋆k ≤ 0 then
8: lk ← lk−1, uk ← αk,
9: else
10: lk ← αk, uk ← uk−1,

11: ∆ul ← uk − lk,
12: Return x⋆ = argmin

x∈F2

{f1 (x)− ukf2 (x)}.

Next, the algorithm for minimizing f1 (x)− αf2 (x) is described. It can be seen that mini-

mizing f1 (x)− αf2 (x) is equivalent to minimizing xTÃx− 2b̃Tx+ c̃, where

Ã , A1 − αA2, b̃ , b1 − αb2, c̃ , c1 − αc2.

In the case of minimizing g′(PN), An, bn, and cn are replaced by A′
n, b

′
n, and c′n, respec-

tively. Note that Ã is symmetric; therefore, it is diagonalizable with the following eigenvalue

decomposition

Ã = UΛUT,

where U is orthonormal and Λ is a diagonal matrix whose diagonal elements are the eigen-

values of Ã, denoted λi. The eigenvalues and eigenvectors of Ã are re-ordered such that

λ1 ≥ λ2 ≥ λ3. With the change of variable x , Us and defining w , UTb = [w1, w2, w3]
T,

the following optimization problems are equivalent

minimize
x∈F2

f1(x)− αf2(x) ⇔ minimize
s∈F2

sTΛs− 2wTs+ c̃. (7.16)
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The solution of (7.16) is given by s⋆ = [s⋆1, s
⋆
2, s

⋆
3]
T [130], with

s⋆i =
wi

λi − η⋆ − ξ⋆
,

(η⋆, ξ⋆) =







(η̄, 0) , if λ3 ≤ 0

(η̄, 0) , if λ3 > 0 and h(η̄, 0) > h(0, ξ̄)
(
0, ξ̄
)
, otherwise,

and η̄ and ξ̄ are the solutions to the optimization problems

maximize
η≤min{λ−3 ,0}

h (η, 0) (7.17)

maximize
0≤ξ<λ3

h (0, ξ) , (7.18)

respectively, where λ−3 is the left-hand limit of λ3 and

h (η, ξ) , −
3∑

i=1

w2
i

λi − η − ξ
+ (1 + δ)η + ξ + c̃.

The functions h1(η) , h(η, 0) and h2(ξ) , h(0, ξ) are called secular functions [132]. These

functions are strictly concave for η, ξ < λ3, making (7.17) and (7.18) convex optimization

problems. Therefore, one may solve for h′1(η) ≡ 0 (h′2(ξ) ≡ 0) using iterative methods (e.g.,

Newton’s method) and if η̄ ≥ 0
(
ξ̄ ≤ 0

)
, set η̄ ≡ 0

(
ξ̄ ≡ 0

)
. Finally, x⋆δ is obtained from

x⋆δ = Us⋆ and x⋆ is obtained from (7.12).

7.4 Simulation Results

In this section, three sets of Monte Carlo (MC) simulations are performed to validate the

proposed approach. In the first set, described in Subsection 7.4.1, the solution obtained
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with the proposed algorithm is plotted against the global optimal solution obtained by

exhaustively sweeping the entire feasible space, showing that the solution obtained with

the proposed algorithm always converges to the global optimal solution. In the second set,

described in Subsection 7.4.2, the solution obtained with the proposed algorithm is plotted

against the solution obtained with a general purpose solver, showing that the proposed

algorithm outperforms the general purpose solver. In the third set, described in Subsection

7.4.3, the solution obtained with the proposed algorithm is plotted against the solution of an

existing method that aims at maximizing the area of the polygon formed by the endpoints of

the unit LOS vectors pointing from the source to the sensor [1], showing the superiority of the

proposed algorithm over the method in [1]. Moreover, the proposed algorithm is evaluated

in the case of source localization and simulation results, provided in Subsection 7.4.5, show

that the proposed algorithm always yields a lower WGDOP compared to the one obtained

with a general purpose solver.

7.4.1 Proposed Algorithm versus Global Optimal Solution

In the first set of simulations, the two cost functions were evaluated for three cases: (1)

the WGDOP, i.e., T = T′ = I4×4, (2) the WHDOP, i.e., T = T′ = [I2×2 02×2], and

(3) the WVDOP, i.e., T = T′ = eT3 . For each case, 104 MC runs were conducted for

N = 6 and 8. The optimal solutions computed using the proposed approach, denoted g(x⋆)

and g′(x⋆), were plotted against the global optimal solutions, denoted g⋆(PN) and g
′⋆(PN),

obtained by exhaustively sweeping the entire feasible set, respectively (see Figs. 7.6 and

7.7). The positions of the N − 1 pre-deployed sensors were generated randomly by drawing

N − 1 elevation angles from U
(
−π

2
, π
2

)
and N − 1 azimuth angles from U (0, 2π), where

U(a, b) denotes the uniform distribution with support over [a, b]. The measurement noise

covariance RN is also generated randomly at each iteration. It can be seen that the optimal

solutions obtained by the proposed approach were identical to the optimal solution obtained
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by exhaustively sweeping the feasible set. Note that the WVDOP results for g′(PN) is not

plotted since in the WVDOP problem, g(PN) = g′(PN).
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Figure 7.6: MC simulation results comparing the global optimal solution g⋆(PN) obtained
by exhaustively sweeping the feasible set versus the optimal solution g(x⋆) obtained with
the proposed approach. Results corresponding to the WGDOP, WHDOP, and WVDOP
problems are given for N = 6 and 8 sensors. MC points are overlayed over a line defined by
g(x⋆) = g⋆(PN), showing a perfect match.
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Figure 7.7: MC simulation results comparing the global optimal solution g′⋆(PN) obtained
by exhaustively sweeping the feasible set versus the optimal solution g′(x⋆) obtained with the
proposed approach. Results corresponding to the WGDOP and WHDOP problems are given
for N = 6 and 8 sensors. MC points are overlayed over a line defined by g′(x⋆) = g′⋆(PN),
showing a perfect match.

7.4.2 Proposed Algorithm versus Nonlinear Numerical Optimiza-

tion Solver Solution

In this second set of simulations, the two cost functions were evaluated for the same three

cases. For each case, 104 MC runs were conducted for N = 6 and 8. The optimal solutions

computed using the proposed approach was plotted against the global optimal solutions

denoted g⋆
fmincon

(PN) and g′⋆
fmincon

(PN) obtained by using Matlab’s nonlinear numerical

optimization solver fmincon (see Figs. 7.8 and 7.9). The Matlab solver was initialized ran-

domly. The position of the N−1 pre-deployed sensors and the measurement noise covariance

RN were generated the same way as in the first set of simulations. It can be seen that all MC

simulation points lie either on or below the g(x⋆) = g⋆
fmincon

(PN) and g
′(x⋆) = g′⋆

fmincon
(PN)
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lines, indicating that g(x⋆) ≤ g⋆
fmincon

(PN) and g
′(x⋆) ≤ g′⋆

fmincon
(PN) for all MC runs. The

proposed method outperforms Matlab’s fmincon, since fmincon may converge to a local

minimum instead of the global minimum. Note that fmincon could be configured to employ

one of four numerical algorithms (for the given constraints): interior − point (default),

sqp (sequential quadratic program), sqp− legacy, and active − set. It was found that all

four algorithms yielded g(x⋆) ≤ g⋆
fmincon

(PN) and g
′(x⋆) ≤ g′⋆

fmincon
(PN) for all MC runs.
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Figure 7.8: MC simulation results comparing the optimal solution g⋆
fmincon

(PN) obtained
using Matlab’s fmincon versus the optimal solution g(x⋆) obtained with the proposed
approach. Results corresponding to the WGDOP, WHDOP, and WVDOP problems are
given for N = 6 and 8 sensors. MC points are overlayed over or lie beneath a line defined
by g(x⋆) = g⋆

fmincon
(PN), showing that g(x⋆) ≤ g⋆

fmincon
(PN).
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Figure 7.9: MC simulation results comparing the optimal solution g′⋆
fmincon

(PN) obtained
using Matlab’s fmincon versus the optimal solution g′(x⋆) obtained with the proposed
approach. Results corresponding to the WGDOP and WHDOP problems are given for
N = 6 and 8 sensors. MC points are overlayed over or lie beneath a line defined by g′(x⋆) =
g′⋆

fmincon
(PN), showing that g′(x⋆) ≤ g′⋆

fmincon
(PN).

7.4.3 Proposed Algorithm versus Area Maximization Solution

In this third set of simulations, the proposed method is compared with the method described

in [1]. In [1], the authors propose to maximize the area of the polygon whose vertices are

the endpoints of the unit LOS vectors pointing from the source to the sensors in a 2-D

environment. Area maximization is intimately related to DOP minimization, yielding a

solution that is close to the one obtained by DOP minimization. The area maximization’s

elegant solution is shown to be the bisector of the largest angle between consecutive sensors

on the unit circle [1]. To compare against the area maximization criterion, the proposed

algorithm is adapted to a 2-D environment, i.e., rrj =
[
xrj , yrj

]T
and rs = [xs, ys]

T, and

thus x = [cos(φ) sin(φ)]T. The cost function considered was g(x) with T = I3×3 and

RN = IN×N . A total of 104 MC runs were conducted for N = 4 and 6. The optimal
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solutions computed using the proposed approach were plotted against the global optimal

solutions obtained using the method in [1] denoted g⋆area(PN) in Fig. 7.10. The position

of the N − 1 pre-deployed sensors were generated the same way as in the first two sets

of simulations. It can be seen that all MC simulation points lie either on or below the

g(x⋆) = g⋆area(PN) lines, indicating that g(x⋆) ≤ g⋆area(PN) for all MC runs. It can also be

seen that the proposed method outperforms the one proposed in [1].

g
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)

g
(x
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4 6

Figure 7.10: MC simulation results comparing the optimal solution g⋆area(PN) obtained using
the method proposed in [1] versus the optimal solution g(x⋆) obtained with the proposed
approach. Results corresponding to the GDOP problems are given for (a) N = 4 and (b)
N = 6 sensors. MC points are overlayed over or lie beneath a line defined by g(x⋆) =
g⋆area(PN), which shows that g(x⋆) ≤ g⋆area(PN).

7.4.4 Discussion

The simulation results presented in Subsections 7.4.1 and 7.4.2 reveal that while general-

purpose nonlinear optimal solvers could converge to a local minimum, the proposed algorithm

always converges to the global minimum, regardless of the configuration of the pre-deployed

sensors (navigation sources) or the measurement noise covariance matrix. It is important to

note that initialization affects the final solution in the general-purpose nonlinear numerical

optimization solver. However, there is no way of knowing where the solver must be initialized

to guarantee its convergence to the global optimal solution. This justifies why fmincon

was initialized randomly on the unit sphere. In contrast, the proposed method does not
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need any initialization and always converges to the global optimum. The simulation results

presented in Subsection 7.4.3 reveal that although the area maximization problem is a good

approximation of the DOP minimization problem, it does not yield a lower GDOP than the

one obtained using the proposed method.

Next, the complexity of the proposed algorithm is analyzed. First, the complexity of obtain-

ing the global minimum by exhaustively sweeping the feasible space is discussed. Consider a

uniform gridding of the elevation and azimuth angles. Denote S to be the resulting number

of discrete intervals in the elevation angle range. Since the azimuth angle range is twice as

large as the elevation angle range, the resulting number of discrete intervals in the azimuth

angle range will be 2S. Therefore, there will be 2S2 feasible points to evaluate. However,

the complexity of the proposed algorithm is independent of the gridding resolution. In [130],

it is noted that the computationally expensive part of the proposed algorithm is computing

the eigenvalues of Ã, which has a complexity of O(n3), where n is the size of the matrix.

However, in the optimization problems addressed in this chapter, the size of Ã is always 3,

which means that the cost of the proposed algorithm is constant; namely O(1) per iteration.

Therefore, as S increases, the number of feasible solutions increases quadratically, whereas

the complexity of the proposed algorithm remains constant. In the previous simulation re-

sults, ǫ was chosen to be ǫ ≡ 10−7. In order to obtain this resolution in the exhaustive

sweeping approach, S must be greater than 6.28 × 107, which is impractically large. Note

that both algorithms are comparable in memory allocation and do not require a lot of mem-

ory. The simulations were conducted on a desktop computer with an Intel i7 processor

clocked at 3.6 GHz with 16 GB of RAM. For S = 128, the sweeping algorithm iteration took

on average 0.185 seconds, while the proposed algorithm took 0.00183 seconds per iteration,

which is approximately 200 times faster than the sweeping algorithm.

182



7.4.5 Application to Source Localization

In this section, the proposed algorithm is applied to source localization with a mobile agent.

To this end, four sensors were pre-deployed randomly around an unknown source. The

sensors are making pseudorange measurements to localize the unknown source. It is desired

to deploy a mobile agent that chooses its next position so to minimize the WGDOP associated

with localizing the source. The diagonal elements of the measurement noise covariance were

set to {10, 11, 9, 8, 12} and all the off-diagonal elements were set to 2. The measurements

taken by the sensors and the moving agent are processed in a centralized, sequential manner.

After each measurement taken by the sensors and the mobile agent, the prior P0(k) is

updated according to

P−1
0 (k + 1) = P−1

0 (k) +HT

N(k)R
−1
N HN(k),

where k is the time-step index and HN(k) is the measurement Jacobian evaluated at the

sensors’ fixed positions and the mobile agent’s current position. The mobile agent’s optimal

position was determined for 10 successive time-steps using the proposed algorithm as well as

Matlab’s fmincon for comparison purposes. The simulation results are shown in Fig. 7.11,

from which it can be seen that the proposed method outperforms fmincon. It is important

to note that this method can also be applied to the case of a mobile source or to the case

where the sensors are making range measurements to a mobile target.
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Figure 7.11: Simulation results demonstrating the application of the proposed algorithm
to source localization. (a): Four sensors are pre-deployed around a source and are making
pseudorange measurements to localize it. A mobile agent is then deployed to minimize the
WGDOP for 10 consecutive time-steps. (b): WGDOP results for the proposed algorithm
and Matlab’s fmincon.
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Chapter 8

Performance Evaluation of TOA

Positioning in Asynchronous 4G and

5G Networks: A Stochastic Geometry

Approach

This chapter is organized as follows. Section 8.1 describes the TOA measurement model.

Section 8.2 presents the positioning cases, characterizes their corresponding SPEBs, and

establishes relationships between the SPEBs. Section 8.3 provides numerical simulation

results evaluating the cumulative density function (cdf) of the SPEBs and validating the

established relationships. The notation in this chapter is independent from the one used in

previous chapters.

Notation: In the rest of the paper, lower-case bold variables (e.g., x) indicate column vectors

and upper-case bold variables (e.g., X) indicate matrices. The matrix IN indicates the N×N

identity matrix. The vector 1N indicates an N×1 vector of ones. Let diag [x1, . . . , xN ] denote
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the diagonal matrix whose elements are x1, . . . , xN .

8.1 System Model

In the following, let pUE , [xUE, yUE]
T denote the UE’s two-dimensional (2–D) position and

pBSn , [xBSn
, yBSn ]

T denote the n-th BS’s 2–D position, where n = 1, . . . , N , and N is the

total number of available BSs. The TOA measurement made by the UE on the n-th BS,

expressed in meters, can be parameterized as

zn = dn + c · [δtUE − δtBSn ] + vn, (8.1)

where dn , ‖pUE − pBSn‖, δtUE and δtBSn are the UE’s and the n-th BS’s clock biases, respec-

tively, and vn is the measurement noise, which is modeled as a zero-mean Gaussian random

variable with variance σ2
n. Several models of σ2

n as a function of the signal-to-noise ratio,

distance, bearing angle, signal bandwidth, etc. were established [133]. The measurement

noise variance also accounts for errors due to multipath propagation. In 5G applications,

where the transmission bandwidths are sufficiently large, it is assumed that the first path,

i.e., the direct path (DP), does not overlap with other multipath components. In this case,

the DP is resolvable and the multipath signal boils down to a signal that is composed of

the DP only for positioning, thereby attaining its maximum accuracy. Therefore, assuming

limited interference between BSs, σ2
n is modeled as

σ2
n =

c2

8π2β2

(
dn
dmin

)α
1

S/N0

,

where β is the effective signal bandwidth, α is the path-loss exponent, S is the transmitted

signal power, and N0 is the power spectral density of the additive white Gaussian channel

noise [81]. Moreover, it is assumed that δtUE ∼ N
(
0, σ2

δtUE

)
, δtBSn ∼ N

(
0, σ2

δtBS

)
, and vn
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and vm are uncorrelated for n 6= m. Equation (8.1) can be written in vector form as

zN = dN + cδtUE1N − cδtBSN + vN ,

zN , [z1, . . . , zN ]
T , dN , [d1, . . . , dN ]

T ,

δtBSN , [δtBS1 , . . . , δtBSN ]
T , vN , [v1, . . . , vN ]

T .

Furthermore, define the following quantities

Σv , cov [vN ] = diag
[
σ2
1 , . . . , σ

2
N

]
,

ΣδtBS
, cov [δtBSN ] = σ2

δtBS
IN , ΣδtUE

, σ2
δtUE

1N1
T

N .

8.2 UE Positioning Cases and SPEB Characterization

This section analyzes three positioning cases and the SPEB is formulated for each case.

8.2.1 UE Positioning Cases

Consider the following three cases with different UE prior knowledge about its clock bias

statistics:

Case I: The UE is estimating its position only and knows the statistics of its own and

the BSs’ clock biases. Hence, the parameter θI associated with this case and the resulting

likelihood function pI(z; θI) are defined as

θI , pUE, pI(z; θI) = N (z;d,ΣI) , (8.2)
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where ΣI , Σv + c2ΣδtBS
+ c2ΣδtUE

.

Case II: The UE is estimating its position and clock bias and knows the statistics of the

BSs’ clock biases only. Hence, the parameter θII associated with this case and the resulting

likelihood function pII(z; θII) are defined as

θII ,
[
pTUE, δtUE

]T
, pII(z; θII) = N (z;ρ,ΣII) , (8.3)

where ρ , d+ cδtUE1N and ΣII , Σv + c2ΣδtBS
.

Case III: The UE is estimating its position only, knows the statistics of the BSs’ clock biases,

and assumes the UE is synchronized with the system, i.e., δtUE is assumed to be zero, which

is not necessarily true. Hence, the parameter θIII associated with this case and the resulting

likelihood function pIII(z; θIII) are defined similarly to Case I as

θIII , θI , pIII(z; θIII) = pI(z; θI). (8.4)

Remark 1. The main difference between Case I and Case III is that the UE assumes its

bias is zero; hence, the CRLB of Case I cannot be achieved in Case III. This assumption is

often made in the TOA localization literature and the goal of this paper is to show the drastic

effect of this assumption. To study Case III, an estimator that achieves the CRLB in the

absence of UE clock bias, i.e., Case I with σ2
δtUE

= 0, is applied and its MSE is studied.

8.2.2 SPEB General Definition

The position MSE of any estimator will be lower-bounded according to MSE ≥ SPEB. In

this paper, maximum likelihood estimators (MLEs) are used to estimate the UE position

and/or clock bias from TOA measurements. Such MLEs will closely approach the CRLB,

with small differences due to linearization errors. For estimators that achieve the CRLB, the

188



position MSE becomes the SPEB; hence the choice of SPEB as a performance metric to be

studied. It is important to note that the purpose of this paper is not to obtain an analytical

expression of the distribution of the SPEB, but explicitly express the SPEB as a function of

random variables whose distributions are known and have been validated (e.g., bearing angles

and distances between the UE and BSs). In addition to the fact that obtaining analytical

expressions is intractable, such analysis would require a rigorous treatment that cannot fit

into this letter. Instead, this work aims to characterize through Monte Carlo simulations the

SPEB of the three different aforementioned cases and to draw key observations. Moreover,

this paper aims to compare analytically the SPEBs of each cases in a deterministic sense,

i.e., for a given BPP realization. The SPEB for each case is defined as

SPEB , trace
{[

(I(θ))−1]

2×2

}

,

where I(θ) is the Fisher information matrix (FIM) of parameter θ and [A]2×2 indicates the

upper 2 × 2 diagonal block of matrix A. In the case of the FIM, this block corresponds to

the two position parameters.

SPEB for Case I

From pI(z; θI), the FIM for Case I can be shown to be

I(θI) = GTΣ−1
I G, G ,






cosφ1, . . . , cosφN

sinφ1, . . . , sinφN






T

,

where φn is the n-th BS’s bearing angle, and the SPEB is given by

SPEBI = trace
[(
GTΣ−1

I G
)−1
]

.
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It is worth mentioning that SPEBI is achievable. A weighted nonlinear least-squares (WNLS)

estimator with weighting matrix Σ−1
I , which is the MLE of θI , can achieve SPEBI .

SPEB for Case II

From pII(z; θII), the FIM for Case II can be shown to be

I(θII) = HTΣ−1
II H, H = [G 1N ] .

Using block matrix inversion, the SPEB for Case II can be shown to be

SPEBII = trace
[(
GTΨIIG

)−1
]

,

ΨII = Σ−1
II −

Σ−1
II 1N1

T

NΣ
−1
II

1T

NΣ
−1
II 1N

.

Similarly to Case I, a WNLS estimator with weighting matrix Σ−1
II is the MLE of θII and

can achieve SPEBII . Note that not knowing the statistics of δtUE is equivalent to having a

diffuse prior.

SPEB for Case III

The CRLB in Case III cannot be achieved because of the model mismatch. Therefore, instead

of SPEB, the MSE of a WNLS with weighting matrix Σ−1
II estimating the UE position is used

to characterize Case III. This case arises when the estimator assumes full synchronization

of the UE with the network. Instead of using MSEIII , the SPEBIII notation is abused in

order to keep the notation consistent with SPEBI and SPEBII . Subsequently, SPEBIII can
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be shown to be

SPEBIII = trace
[
KΣIIIK

T
]
,

where K ,
(
GTΣ−1

II G
)−1

GTΣ−1
II and ΣIII , ΣI .

8.2.3 Performance Comparison

First, define SPEB0 as the SPEB where there is no UE clock bias, which is the case often

assumed in the literature. This SPEB can be expressed as

SPEB0 = trace
[(
GTΣ−1

II G
)−1
]

.

The following three lemmas establish relationships between the SPEB for each case and

SPEB0.

Lemma 8.2.1. The SPEB for Case I can be expressed as

SPEBI = SPEB0 +
c2σ2

δtUE

1 + c2σ2
δtUE

γ2
κ2, (8.5)

for some κ2 ≥ 0 and γ2 > 0 that are a function of the BSs’ positions.

Proof. Using the matrix inversion lemma, Σ−1
I may be expressed as

ΨI , Σ−1
I = Σ−1

II −
c2σ2

δtUE
Σ−1
II 1N1

T

NΣ
−1
II

1 + c2σ2
δtUE

(
1T

NΣ
−1
II 1N

) .

Using the matrix inversion lemma again, the following can be shown

(
GTΣ−1

I G
)−1

=
(
GTΣ−1

II G
)−1

+
K1N1

T

NK
T

1
c2σ2δtUE

+ 1T

NΨ01N
, (8.6)
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where Ψ0 , Σ−1
II −Σ−1

II G
(
GTΣ−1

II G
)−1

GTΣ−1
II . The matrix Ψ0 may be expressed as

Ψ0 = Σ
− 1

2
II PΣ

− 1
2

II ,

where Σ
− 1

2
II is a square-root of Σ−1

II and P , IN−Σ− 1
2

II G
(
GTΣ−1

II G
)−1

GTΣ
− 1

2
II is an idempo-

tent orthogonal projection matrix, i.e., PP = P. Subsequently, the quadratic form 1T

NΨ01N

may be expressed as

1T

NΨ01N=1T

NΣ
− 1

2
II PPΣ

− 1
2

II 1N =
∥
∥
∥PΣ

− 1
2

II 1N

∥
∥
∥

2

, γ2.

It is important to note that although
∥
∥
∥PΣ

− 1
2

II 1N

∥
∥
∥

2

≥ 0, it is assumed for simplicity that the

trivial case is never achieved; hence γ2 > 0. Taking the trace of (8.6), using the linear and

cyclic properties of the matrix trace, and defining κ2 , ‖K1N‖2, (8.5) is deduced.

Lemma 8.2.2. The SPEB for Case II does not depend on σ2
δtUE

and can be expressed as

SPEBII = SPEB0 +
1

γ2
κ2, (8.7)

for γ2 > 0.

Proof. The proof of Lemma 8.2.2 follows the same steps as in Lemma 8.2.1, for the same

values of γ2 and κ2 defined earlier.

It is important to note that since SPEBII does not depend on σ2
δtUE

, accurate positioning is

possible in Case II even when σ2
δtUE

is very large.

Lemma 8.2.3. The SPEB for Case III can be expressed as

SPEBIII = SPEB0 + c2σ2
δtUE

κ2. (8.8)
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Proof. The proof of Lemma 8.2.3 follows the same steps as in Lemma 8.2.1, for the same

value of κ2 defined earlier.

The lemmas stated above expose the relationships between the SPEBs of each case. It can

be seen that

SPEBI ≤ SPEBII , SPEBI ≤ SPEBIII .

At the limits of c2σ2
δtUE

, the following can be observed

lim
σ2δtUE

→∞
SPEBI = SPEBII ,

lim
σ2δtUE

→0
SPEBI = lim

σ2δtUE
→0

SPEBIII = SPEB0.

Recall that a WNLS estimator with weighting matrix Σ−1
I closely approaches SPEBI for

Case I, with small differences due to linearization errors. This in turn means that the afore-

mentioned WNLS estimator, although not explicitly formulated as such, is equivalent to a

WNLS estimating the UE clock bias when σ2
δtUE

is very large. On the other hand, when

σ2
δtUE

is zero, there will be a constant “loss of information” between Case I and Case II since

in Case II, some information from the measurements are going to estimate a non-existing

quantity.

Another interesting observation is that SPEBIII is not always greater than SPEBII , and

the sign of the inequality between SPEBIII and SPEBII depends on the values of γ2 and

σ2
δtUE

. This result is somewhat counter-intuitive: in some cases, ignoring the existence of

the UE bias yields better performance than estimating it along with the UE position. This

happens when 1
γ2

> c2σ2
δtUE

. For example, for N = 4, {φn}4n=1 = {10◦, 175◦, 250◦, 330◦},
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ΣII = 4I, and c2σ2
δtUE

= 16, then 1
γ2
≈ 19.4 > 16. This can be explained as the tradeoff

between (i) losing information on the UE position from the TOA measurements when more

parameters are being estimated and (ii) additional error in the measurement. In practice

however, c2σ2
δtUE
≫ 1

γ2
, hence SPEBII will be practically lower than SPEBIII .

8.3 Numerical Analysis

This section presents the BS position model and Monte Carlo simulation results to numer-

ically analyze the cdf of the SPEBs in an asynchronous cellular network. For each Monte

Carlo simulation, 104 realizations of the SPEB are generated to calculate the cdf.

8.3.1 BS Position Model

The BS network is modeled as a BPP, where N ≥ 3 BSs are independently and uniformly

distributed over an annular region centered at the origin o, i.e., Bo(dmin, dmax) = π(d2max −

d2min) [76], where dmin is the minimum distance required for the far-field assumption to hold

and dmax is the maximum distance for which ranging signals can be detected by the receiver

(see Fig. 8.1(a) for N = 15). Such model has been proven to accurately describe the

distribution of BSs in 4G networks [78]. The location of the n-th BS can be represented by

(dn, φn), as shown in Fig. 8.1(b).

8.3.2 Numerical Analysis Settings

The path-loss exponent was chosen to be α = 3.7 to characterize the path-loss in deep urban

and indoor environments. The number of BSs was varied between 5, 10, 15, and 20. The

Monte Carlo simulation parameters are shown in Table 8.1.
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o

Bo (dmin; dmax)

Figure 8.1: (a) BPP realization with N = 15. (b) Parametrization of the n-th BS position
by its range dn and bearing angle φn to the UE.

The 3GPP2 protocol requires BS clock biases to be bounded by ǫ ∼ 3µs [49]. Assuming the

BS clock biases to be uniformly distributed between −ǫ and ǫ, a moment matching method

can be used to approximate a Gaussian pdf for δtBSn in order to maintain the Gaussian

assumption in the analysis, leading to the values in Table 8.1. The UE clock bias was chosen

similarly. Although there are no synchronization requirements for the UE, UEs will get

timing information from the servicing BS and synchronize to it. Therefore, reasonably small

values of the UE clock bias are considered in the numerical analysis.

Table 8.1: Parameter values for Monte Carlo simulations

Parameter Value/Assumption

Wireless network model BPP

N (number of BSs) 5, 10, 15, 20

α (path-loss exponent) 3.7

S/N0 60 dB

dmin 10 m

dmax 200 m

β (effective bandwidth) 100 MHz
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8.3.3 Numerical Results

Numerical results are provided next for several simulation scenarios. Note that the cdf of

the PEB =
√
SPEB is provided for a more intuitive visualization.

Best Case Scenario: Perfectly Synchronized Network

The best case scenario is provided for comparison purposes. In this scenario, the UE and

BS clock biases are assumed to be zero, i.e., perfectly synchronized UE-BS network. Note

that in this scenario, Case I and Case III will perform similarly and Case II is expected to

perform worse. The results for all cases shown in Fig. 8.2 for N = 5, 10, 15, and 20.

0 50 100 150 200 250 300
0

0.5

1

Figure 8.2: Cdf of PEBI = PEBIII and PEBII in the absence of UE and BS clock biases for
N = 5, 10, 15, and 20. The black arrow indicates the direction of change of the cdf as N
increases.

Effect of BS Clock Biases

Next, the effect of BS clock biases is evaluated by setting N = 15 and
√
3σδtUE

= 1µs, and

σδtBS
was varied. The results are shown in Fig. 8.3.

The effect of BS clock bias can be seen by comparing Figs. 8.2 and 8.3: all the cdfs are

shifted to the right. Moreover, Fig. 8.3 shows that as σδtBS
decreases and σδtUE

becomes
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Figure 8.3: Cdf of PEBI , PEBII and PEBIII for N = 15,
√
3σδtUE

= 1 µs and
√
3σδtBS

=
0.25, 1.5, and 3 µs. The black arrow indicates the direction of change of the cdf as σδtBS

decreases.

more dominant, Cases I and II still improve significantly but Case III almost saturates since

the UE bias is taking over.

Effect of UE Clock Biases

Next, the effect of UE clock bias is evaluated by setting N = 15 and
√
3σδtBS

= 0.25µs, and

σδtUE
was varied. The results are shown in Fig. 8.4.

Fig. 8.4 shows how sensitive Case III is to the UE clock bias, while, as expected, the cdf of

SPEBII does not change with σδtUE
. When σδtUE

becomes very small, Case I and Case III

coincide, also as expected. The key takeaway from Fig. 8.4 is the importance of estimating

the UE clock bias, even if some performance may be sacrificed. The difference between Case

II and Case III (Case II performs better) is enormous for large values σδtUE
, while it is only

very small (Case III performs better) when σδtUE
is small.

Effect of Number of BSs

Next, the effect of N is evaluated. To this end,
√
3σδtBS

was fixed to 0.25 µs,
√
3σδtUE

to 1

µs, and N was varied. The results are shown in Fig. 8.5.
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Figure 8.4: Cdf of PEBI , PEBII and PEBIII for N = 15,
√
3σδtBS

= 0.25 µs and
√
3σδtUE

=
0.1, 1, and 3 µs. The black arrow indicates the direction of change of the cdf as σδtUE

decreases.

0 100 200 300 400 500
0

0.5

1

Figure 8.5: Cdf of PEBI , PEBII and PEBIII for
√
3σδtBS

= 0.25 µs,
√
3σδtUE

= 1 µs and
N = 5, 10, 15, and 20. The black arrow indicates the direction of change of the cdf as N
increases.

Fig. 8.5 shows the intuitive result of the performance improving as N increases. It was

noticed that the PEB is decreasing at a much slower rate than in the absence of biases, as

can be seen by comparing Fig. 8.5 to Fig. 8.2. This reduction is due to the tradeoff that

comes with adding more BSs: improvement in the UE-BS geometry at the cost of additional

biases.
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Chapter 9

Conclusions

This dissertation presented an SDR architecture for cellular CDMA-based navigation. Mod-

els of the cellular CDMA signals were first developed and optimal extraction of relevant

positioning and timing information was discussed. Next, a description of the acquisition and

tracking stages of a LabVIEW-based SDR was presented. The statistics of the pseudorange

error of the proposed SDR in an additive white Gaussian channel were derived. Furthermore,

the discrepancy between the clock biases observed by a receiver in two different sectors of the

BTS cell was analyzed and modeled as a stochastic dynamic sequence. The consistency of

the obtained model was experimentally analyzed in different locations, at different times, and

for different cellular providers. Experimental results validating the pseudoranges produced

by the proposed SDR were presented, in which the SDR’s pseudoranges followed closely the

true range between mobile UAV-mounted and car-mounted receivers and two cellular BTSs.

Next, a navigation a differential framework for navigating with pseudorange measurements

from cellular SOPs was presented. Theoretical lower bounds on the navigation performance

under errors due to the discrepancy between BTS sector clock biases were derived and an-

alyzed. Moreover, a lower bound on the logarithm of the determinant of the estimation
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error covariance was derived for non-identical measurement noise variances and a receiver–

BTS configuration that achieves this bound was identified. A practical upper bound on the

position error due to the discrepancy between sector clock biases was characterized. Exper-

imental results showed an improvement of nearly 11 m in the RMSE when the discrepancy

is accounted for utilizing the statistical model relating observed clock biases from different

sectors of the same BTS cell.

For more precise navigation, a differential framework for navigation using carrier phase mea-

surements from cellular SOPs was proposed. The proposed CD-cellular framework requires

no prior knowledge of the receiver’s position and achieves centimeter-level accuracy. MC

simulations were presented to characterize the performance of the proposed framework as

a function of the total number of hearable BTSs and the size of the batch estimator. A

preliminary study of a CD-cellular network design in terms of number of bases needed, com-

munication and synchronization requirements, and software and hardware considerations for

real-time implementation was provided. Experimental results were presented demonstrating

a UAV navigating with sub-meter-level accuracy exclusively using the proposed framework.

Next, a non-differential framework for navigating using carrier phase measurements from

cellular SOPs that leverages the relative stability of quasi-synchronous cellular BTSs clocks

was discussed. This stability also allows to parameterize the SOP clock biases by a common

term plus some small deviations from the common term, which alleviates the need for a

reference receiver. The clock deviations were subsequently modeled as a stochastic sequence

using experimental data. Next, performance bounds were established for this framework.

Experimental data show that a single UAV can navigate with sub-meter level accuracy for

more than 5 minutes using this framework.

An EKF-based framework for navigation with carrier phase measurements from asynchronous

cellular signals was then presented. It was shown that (i) this framework is observable and

(ii) the EKF error state is asymptotically stable in a mean square sense and bounded with
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probability one. A lower bound for the EKF’s estimation error covariance was provided.

MC simulations showed that this bound is not violated and studied the performance of the

proposed framework for varying (i) number of BTSs, (ii) initial receiver speeds, and (iii)

receiver clock qualities. Two sets of experimental results on two different UAVs showed that

this framework can achieve meter-level accuracy.

In addition to navigation frameworks, a method for obtaining a global minimum for the DOP

minimization problem was proposed. Two equivalent problems were formulated, where it

was assumed that a receiver (navigation source) was to be added to a set of pre-deployed

receivers (navigation sources) to optimally estimate the 3-D position and clock bias of a

source or target. To deal with the nonconvexity of the problem, a method for obtaining

the global minimum was presented by formulating the DOP minimization problem as a

quadratically constrained fractional quadratic problem. Simulation results were provided

validating the global optimality of the solution obtained from the proposed algorithm.

Finally, this dissertation evaluated the SPEB of UE positioning in asynchronous 4G and 5G

networks for three cases: (i) the UE bias statistics are known and only the UE position is

estimated, (ii) the UE bias statistics are unknown and UE clock bias is estimated along with

its position, and (iii) the UE clock bias statistics are unknown and only the UE position is

estimated. The SPEB for each case was derived and the cdf of the SPEB for each case was

evaluated numerically using stochastic geometry models.
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Appendices

A Derivation of Equation (3.22)

Using (3.20), the limit of log det
[
P⋆
x,y

]
can be expressed as

lim
k→∞

log det
[
P⋆
x,y

]
= lim

k→∞
log
[

4
(
σ2
eq

)2
]

= log

[

4
(

lim
k→∞

σ2
eq

)2
]

, (A.1)

It follows from (3.21) that

lim
k→∞

σ2
eq =

(

σ2
η +

c2λ2

α

)

σ2
η

Nσ2
η + (N −Ns)

c2λ2

α

=

(

1 +
σ2η

c2λ2

α

)

σ2
η

N
σ2η

c2λ2

α

+ (N −Ns)
. (A.2)

Based on experimental data [85], ση ≈ 1 to 2 m, cλ ≈ 0.4 to 4 m, and α ≈ 10−4 to 10−3 Hz.

Therefore, the ratio
σ2η

c2λ2

α

is negligible, hence

lim
k→∞

σ2
eq ≈

σ2
η

N −Ns

,
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therefore (A.1) becomes

lim
k→∞

log det
[
P⋆
x,y

]
≈ log

[

4

(
σ2
η

N −Ns

)2
]

.

B Derivation of Equation (3.23)

Using (3.20), log det
[
P⋆
x,y

]
can be expressed as

log det
[
P⋆
x,y

]
= log

[

4
(
σ2
eq

)2
]

= log(4)− 2 log

(
1

σ2
eq

)

, (B.3)

Noting that σ2
eq =

σ2η[σ2η+σ2ǫ (k)]
Nsσ2η+(N−Ns)[σ2η+σ2ǫ (k)]

, (B.3) becomes

log det
[
P⋆
x,y

]
= log(4)− 2 log

[
Ns

σ2
η + σ2

ǫ (k)
+
N

σ2
η

− Ns

σ2
η

]

= log(4)−2 log
{
N

σ2
η

[

1−Ns

N

(

1− σ2
η

σ2
η+σ

2
ǫ(k)

)]}

= −2 log
[

1− Ns

N

(

1− σ2
η

σ2
η + σ2

ǫ (k)

)]

+ log(4)− 2 log

(
N

σ2
η

)

︸ ︷︷ ︸

, ξ (constant)

.

For large k, the ratio
σ2η

σ2η+σ
2
ǫ (k)

= 1− 1

1+
σ2
η

σ2
ǫ (k)

becomes negligible (see Appendix A), therefore

log det
[
P⋆
x,y

]
≈ −2 log

(

1− Ns

N

)

+ ξ.
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C Derivation of Equation (3.25)

In this appendix, the expression for the optimal estimation error covariance for the batch

estimator given in (3.25) is derived. From (3.24), σ̄2
ǫ (k) may be expressed as σ̄2

ǫ (k) = kσ̄2
ǫ (1).

Therefore, the elements of Rǫ can be approximated by [Rǫ]m,n ≈ min {m,n} σ̄2
ǫ (1), hence

Rǫ ≈ σ̄2
ǫ (1)ΓK ,

where [ΓK ]m,n = min {m,n} , m, n = 1, . . . , K. For the batch estimator, the sum
L∑

l=1

Nl1
T

KR
−1
l 1K

becomes

L∑

l=1

Nl1
T

KR
−1
l 1K = Ns1

T

K

(
σ2
ηIK×K +Rǫ

)−1
1K

+ (N −Ns) 1
T

K

(
σ2
ηIK×K

)−1
1K

= Ns1
T

K

(
σ2
ηIK×K + σ̄2

ǫ (1)ΓK
)−1

1K

+
(N −Ns)K

σ2
η

=
Ns

σ̄2
ǫ (1)

1T

K

(
σ2
η

σ̄2
ǫ (1)

IK×K + ΓK

)−1

1K

+
(N −Ns)K

σ2
η

.

By defining β ,
σ2η
σ̄2ǫ (1)

and γ (β,K) , 1T

K (βIK×K + ΓK)
−1 1K , the above expression simplifies

to

L∑

l=1

Nl1
T

KR
−1
l 1K =

Ns

σ̄2
ǫ (1)

γ (β,K) +
(N −Ns)K

σ2
η

. (C.4)

It can be shown that ΓK = UUT, where U is a lower triangular matrix with all its nonzero

elements equal to one. Subsequently, using the matrix inversion lemma, γ(β,K) can be
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expressed as

γ(β,K) = 1T

K

[

1

β
I− 1

β2
U

(

I+
1

β
UTU

)−1

UT

]

1K ,

where the K ×K subscript on the identity matrices is dropped for compactness of notation.

The above expression may be expressed as

γ(β,K) =
K

β

[

1− 1

Kβ
1T

KU
(
βI+UTU

)−1
UT1K

]

.

A plot of γ(β,K) as a function of K and β is shown in Fig. C.1 (a). It can be seen that for

a given β, γ(β,K) approaches a finite value for relatively large K. This function is defined

as f(β) = γ(β,K0), where K0 > 10, and is shown in Fig. C.1 (b). Note that f(β) in Fig.

C.1 (b) was obtained by evaluating γ(β,K) at K = 15.
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Figure C.1: Plot of (a) γ(β,K) and (b) f(β) = γ(β,K0) where K0 > 10.

For large K (greater than 10), (C.4) becomes

L∑

l=1

Nl1
T

KR
−1
l 1K =

Nsf(β)σ
2
η + (N −Ns)Kσ̄

2
ǫ (1)

σ̄2
ǫ (1)σ

2
η

. (C.5)
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It follows from the definition of R that

L∑

l=1

NlR
−1
l = NsR

−1
ǫ +

(N −Ns)
σ2
η

IK×K. (C.6)

From (C.5)–(C.6) and (3.17) in Theorem 3.2, the estimation error covariance matrix with

the minimum determinant is given by (3.25).
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D Derivation of the Maximum Likelihood Estimate for

EKF Initialization

This appendix derives x̂MLini
and PMLini

used in the EKF initialization. For a sufficiently

small T , the receiver velocity at k = 1 may be expressed as

ṙr(1) =
1

T
[rr(1)− rr(0)] , (D.7)

and the n-th BTS’s clock drift at k = 1 as

cδ̇tn(1) ≈
1

T
[cδtn(1)− cδtn(0)] . (D.8)

From (D.7) and (D.8), one may express x(0) as

x(0) = F−1x(1). (D.9)

Using (6.2), (6.5), and (D.9), the following measurement equation is obtained

zini = hini [x(1)] + vini, (D.10)

where the vector-valued function hini is given by

hini [x(1)] =












rr(1)

rr(1)− T ṙr(1)

h [x(1)]

h [F−1x(1)]












,
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and the measurement noise vector is given

vini =
[
vT
rr
(1), vT

rr
(0), vT(1), vT(0)

]T
,

which is a zero-mean white Gaussian random vector with the block-diagonal covariance

matrix

Σini = diag [Σrr(1),Σrr(0),R(1),R(0)] .

The ML estimate of x(1) can be therefore obtained from (D.10) according to

x̂MLini
= argmax

x(1)

Λ [zini;x(1)], (D.11)

where Λ [zini;x(1)] is the likelihood function of zini parameterized by x(1), which is the

multivariate Gaussian probability density function with zero-mean and covariance Σini. The

maximization problem in (D.11) is equivalent to

x̂MLini
=argmin

x(1)

{zini−hini[x(1)]}TΣ−1
ini {zini−hini[x(1)]} ,

which can be solved using the Gauss-Newton method. It can be shown that

x̂MLini
=
[

r̂Tr,MLini
, cδ̂t1,MLini

, . . . , cδ̂tN,MLini
,

ˆ̇rTr,MLini
, c

ˆ̇
δt1,MLini

, . . . , c
ˆ̇
δtN,MLini

]T

,

r̂r,MLini
= zrr(1), (D.12)

ˆ̇rr,MLini
=

1

T
[zrr(1)− zrr(0)] , (D.13)

cδ̂tn,MLini
= zn(1)− dr,n(1), (D.14)

cˆ̇δtn,MLini
=

1

T
[zn(1)−zn(0)+dr,n(0)−dr,n(1)] , (D.15)
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with dr,n(j) , ‖zrr(j)− rsn‖ for j = 0, 1. It can also be shown that the estimation error

covariance associated with x̂MLini
is given by

PMLini
= AiniΣiniA

T

ini, (D.16)

Aini ,

























I2×2 02×2 02×N 02×N

−hT

r,1(1) 01×2 eTN,1 01×N
...

...
...

...

−hT

r,N(1) 01×2 eTN,N 01×N

1
T
I2×2 − 1

T
I2×2 02×N 02×N

− 1
T
hT

r,1(1)
1
T
hT

r,1(0)
1
T
eTN,1 − 1

T
eTN,1

...
...

...
...

− 1
T
hT

r,N(1)
1
T
hT

r,N(0)
1
T
eTN,N − 1

T
eTN,N

























,

with hr,n(j) ,
zrr (j)−rsn

dr,n(j)
for j = 0, 1, and eN,n ∈ R

N is the standard basis vector consisting

of a one at the n-th element and zeros elsewhere.

E Derivation of the Upper Bounds in (6.6)

In this appendix, the estimation error covariance associated with the initial speed estimate

v̂r1 ,

∥
∥
∥ˆ̇rr,MLini

∥
∥
∥ and the initial velocity direction unit vector estimate ûr1 ,

ˆ̇
rr,MLini

‖ˆ̇rr,MLini‖ are

studied. Let vr1 , ‖ṙr(1)‖ denote the true initial speed and ur1 ,
ṙr

‖ṙr‖ denote the true initial

direction unit vector. Using first-order Taylor series expansion around ṙr(1), the initial speed

estimate may be approximated with

v̂r1 ≈ vr1 − uT

r1
˜̇rr,ini, (E.17)
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where ˜̇rr,ini , ṙr(1) − ˆ̇rr,MLini
. The initial speed estimation error can be calculated from

(E.17) as

ṽr1 , vr1 − v̂r1 = uT

r1
˜̇rr,ini,

and its associated estimation error variance may obtained according

σ2
vr1

, E
[
ṽ2r1
]
= uT

r1
E
[
˜̇rr,ini ˜̇r

T

r,ini

]
ur1.

It can be shown from (D.13) and (D.16) that

Pṙ,ini , E
[
˜̇rr,ini˜̇r

T

r,ini

]
=

1

T 2
Σ̄rr ,

where Σ̄rr , Σrr(0) +Σrr(1). Since ur1 is a unit vector, σ2
vr1

may bounded according to

σ2
vr1
≤ λmax,ṙ

T 2
, (E.18)

where λmax,ṙ denotes the maximum eigenvalue of Σ̄rr . Note that since Σ̄rr is positive definite,

then λmax,ṙ is a positive real number that only depends on Σ̄rr .

Next, the estimation error covariance of ûr1 is characterized. Using first-order Taylor series

expansion around ṙr, ûr1 may be approximated with

ûr1 ≈ ur1 −Ψ˜̇rr,ini, (E.19)

where Ψ , 1
vr1

(
I2×2 − ur1uT

r1

)
. The initial direction unit vector estimation error can be

calculated from (E.19) as

ũr1 , ur1 − ûr1 = Ψ˜̇rr,ini,
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The matrix Ψ is an annihilator matrix; therefore, ‖Ψ‖ = 1. The estimation error covariance

associated with ũr1 is given by

Pur1
, E

[
ũr1ũ

T

r1

]
=

1

v2r1
ΨΣ̄rrΨ

T. (E.20)

Using (D.7) and (E.20),
∥
∥Pur1

∥
∥ may be bounded according to

σ2
ur1

,
∥
∥Pur1

∥
∥ ≤ λmax,ṙ

‖rr(1)− rr(0)‖2
. (E.21)

F Theoretical Background on Observability

and EKF Estimation Error Bounds

This appendix provides relevant theoretical background on observability and EKF estimation

error bounds.

F.1 Observability of Linear and Nonlinear Systems

Consider the discrete-time linear time-varying system

x(k + 1) = F(k)x(k) + Γ(k)u(k) , (F.22)

y(k) = H(k)x(k) , (F.23)

where x ∈ R
nx is the system’s state, u ∈ R

nu is the input, and y ∈ R
ny is the measurement.

Observability of the discrete-time linear time-varying system defined in (F.22)–(F.23) is

usually determined by studying the rank of either the observability Gramian or the observ-

ability matrix. The following theorem from [134] states a necessary and sufficient condition
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for observability of linear time-varying systems through the l-step observability matrix.

Theorem F.1. The discrete-time linear time-varying system defined in (F.22)–(F.23) is

l-step observable if and only if the l-step observability matrix, defined as

O (k, k + l) ,












H (k)

H (k+1)Φ (k+1, k)

...

H (k+l−1)Φ (k+l−1, k)












(F.24)

is full rank, i.e., rank [O (k, k + l)] = nx. The matrix function Φ(k, j) is the discrete-time

state transition matrix, which is defined as

Φ (k, j) ,







F (k − 1)F (k − 2) · · ·F (j) , k ≥ j + 1

I, k = j.

Linear observability tools may be applied to nonlinear systems by linearizing the dynamics

and measurements to obtain F(k), Γ(k), and H(k) [33]. The observability results in such

case are only valid locally.

F.2 EKF Error Bounds

The following useful lemma from [135] establishes bounds on the Kalman filter’s estimation

error covariance.

Lemma F.1. Consider the discrete-time linear time-varying stochastic system

x(k + 1) = F(k)x(k) + Γ(k)u(k) +w(k), (F.25)

z(k) = H(k)x(k) + v(k), (F.26)
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where x ∈ R
nx is the system’s state, u ∈ R

nu is the input, w ∈ R
nx is a zero-mean white

sequence with covariance Q(k), z ∈ R
nz is the measurement, and v ∈ R

nz is a zero-mean

white sequence with covariance R(k). Assume that w(k) and v(j) are uncorrelated for all k

and j. Let P(k + 1|k) be a solution to the matrix Riccati difference equation in the Kalman

filter estimating the state of system (F.25)–(F.26) given by

P(k + 1|k) = F(k)
{
P(k|k − 1)−P(k|k − 1)HT(k) ·

[
H(k)P(k|k − 1)HT(k) +R(k)

]−1 ·

H(k)P(k|k − 1)}FT(k) +Q(k).

Let the following hold:

1. There are real numbers q, q̄, r, r̄ > 0 such that Q(k) and R(k) are bounded by

qI � Q(k) � q̄I, rI � R(k) � r̄I.

2. The matrices F(k) and H(k) satisfy the uniform observability condition.

3. The initial condition P(1|0) of the matrix Riccati difference equation in the Kalman

filter is positive definite.

Then, there are real numbers p, p̄ > 0 such that P(k + 1|k) is bounded via

pI � P(k + 1|k) � p̄I, ∀ k > 0.

Next, theoretical background on EKF estimation error bounds is provided. Consider the
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discrete-time nonlinear stochastic system

x(k + 1) = f [x(k),u(k)] +w(k) (F.27)

z(k) = h [x(k)] + v(k), (F.28)

where x ∈ R
nx is the system’s state, u ∈ R

nu is the input, w ∈ R
nx is a zero-mean white

sequence with covariance Q(k), z ∈ R
nz is the measurement, and v ∈ R

nz is a zero-mean

white sequence with covariance R(k).

An EKF is employed to estimate x(k). Define the EKF linearization errors

ϕ(k) , f [x(k),u(k)]− f [x̂(k|k),u(k)]

− F(k) [x(k)− x̂(k|k)] (F.29)

χ(k) , h [x(k)]− h [x̂(k + 1|k)]

−H(k) [x(k)− x̂(k + 1|k)] , (F.30)

where F(k) and H(k) are the dynamics and observation Jacobians, respectively, evaluated at

x̂(k|k) and x̂(k+1|k), respectively. The main theorem from [117] that establishes conditions

for the boundedness of x̃(k|k) is stated.

Theorem F.2. Consider the system defined in (F.27)–(F.28) and consider an EKF esti-

mating its state vector. Moreover, let the following assumptions hold

1. There are positive real numbers f̄ , h̄, p, p̄, q, r > 0 such that the following bounds hold
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for every k > 0

‖F(k)‖ ≤ f̄ (F.31)

‖H(k)‖ ≤ h̄ (F.32)

pI � P(k + 1|k) � p̄I (F.33)

qI � Q(k) (F.34)

rI � R(k). (F.35)

2. The matrix F(k) is nonsingular for every k > 0.

3. There are positive real numbers ǫϕ, ǫχ, κϕ, κχ > 0 such that the nonlinear functions

ϕ(k) and χ(k) are bounded via

‖ϕ(k)‖ ≤ κϕ ‖x̃(k|k)‖2 (F.36)

‖χ(k)‖ ≤ κχ ‖x̃(k|k)‖2 , (F.37)

with ‖x̃(k|k)‖ ≤ ǫϕ and ‖x̃(k|k)‖ ≤ ǫχ.

Then, the estimation error x̃(k|k) is exponentially bounded in mean square and bounded with

probability one as per Definitions 6.3.1 and 6.3.2, respectively, provided that (i) the initial

estimation error satisfies

‖x̃(1|1)‖ ≤ ǫ (F.38)

and (ii) the covariance matrices of the noise terms are bounded via

Q(k) � δI, R(k) � δI, (F.39)

for some ǫ, δ > 0.
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