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SUMMARY

Current catalogs of regulatory sequences in the human genome are still incomplete and lack cell 

type resolution. To profile the activity of gene regulatory elements in diverse cell types and tissues 

in the human body, we applied single-cell chromatin accessibility assays to 30 adult human tissue 

types from multiple donors. We integrated these datasets with single-cell chromatin accessibility 

data from 15 fetal tissue types to reveal the status of open chromatin for approximately 1.2 

million candidate cis-regulatory elements (cCREs) in 222 distinct cell types comprised of >1.3 

million nuclei. We used these chromatin accessibility maps to delineate cell type-specificity of 
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fetal and adult human cCREs and to systematically interpret the noncoding variants associated 

with complex human traits and diseases. This rich resource provides a foundation for the analysis 

of gene regulatory programs in human cell types across tissues, life stages, and organ systems.

Graphical Abstract

In Brief

A cell-type-resolved map of human cis-regulatory elements, derived from single cell analysis of 

diverse tissue types, facilitates functional interpretation of the noncoding variants associated with 

complex human traits and diseases.

Keywords

Single cell ATAC-seq; GWAS; cis regulatory elements; enhancers; chromatin accessibility; 
epigenome; noncoding variants

INTRODUCTION

The human body is comprised of various organs, tissues and cell types, each with highly 

specialized functions. The genes expressed in each tissue and cell type – and in turn 

their physiologic roles in the body – are regulated by cis-regulatory elements such as 

enhancers and promoters (Carter and Zhao, 2020). These sequences dictate the expression 
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patterns of target genes by recruiting sequence specific transcription factors (TFs) in a 

cell-type specific manner (Shlyueva et al., 2014). Upon binding of TFs, cis-regulatory 

elements frequently adopt conformational changes such that they are more accessible to 

endonucleases or transposases, enabling genome-wide discovery of candidate cis-regulatory 

elements (cCREs) by combining assays incorporating these enzymes with high throughput 

sequencing (Buenrostro et al., 2013; John et al., 2013; Klemm et al., 2019). However, 

conventional assays have, in large part, used heterogeneous tissues as input materials 

to produce population average measurements, and consequently, the current catalogs of 

candidate regulatory sequences in the human genome (Andersson et al., 2014; Meuleman 

et al., 2020; Moore et al., 2020; Roadmap Epigenomics et al., 2015; Shen et al., 2012) still 

lack information about the cell type-specific activities of most elements. This limitation has 

hampered our ability to study gene regulatory programs in distinct human cell types and to 

interpret the noncoding DNA in the human genome.

Genome wide association studies (GWAS) have identified hundreds of thousands of genetic 

variants associated with a broad spectrum of human traits and diseases. The large majority 

of these variants are noncoding (Claussnitzer et al., 2020). Observations that annotated 

cis-regulatory elements in disease-relevant tissues and cell types are enriched for noncoding 

disease risk variants (Ernst et al., 2011; Maurano et al., 2012; Roadmap Epigenomics et 

al., 2015) led to the hypothesis that a major mechanism by which noncoding variants 

influence disease risk is by affecting transcriptional regulatory elements in specific cell 

types. However, annotation of these noncoding risk variants has been hindered by a lack of 

cell type-resolved maps of regulatory elements in the human genome. While innovative 

approaches to distinguish causal variants from local variants in linkage disequilibrium 

(LD) using fine mapping (Wakefield, 2009), and to link variants to target genes using co-

accessibility of open chromatin regions in single-cells (Pliner et al., 2018) or 3-dimensional 

chromosomal contact-based linkage scores (Nasser et al., 2020), have made important 

strides toward the prioritization of causal variants and the prediction of their target genes, 

functional interpretation of the noncoding variants continues to be challenging.

Single-cell omics technologies, enabled by droplet-based, combinatorial barcoding or other 

approaches, have now enabled the profiling of transcriptome, epigenome and chromatin 

organization from complex tissues at single-cell resolution (Grosselin et al., 2019; Klein et 

al., 2015; Lake et al., 2018; Luo et al., 2017a; Macosko et al., 2015; Preissl et al., 2018). In 

particular, combinatorial cellular barcoding-based assays such as sci-ATAC-seq (Cusanovich 

et al., 2015) have permitted the identification of cCREs in single nuclei without the need for 

physical purification of individual cell types. The resulting data can be used to deconvolute 

cell types from mixed cell populations and to dissect cell type-specific transcriptomic and 

epigenomic states in primary tissues. While these tools have been applied to mammalian 

tissues including murine biosamples (Cusanovich et al., 2018; Lareau et al., 2019; Li et al., 

2021; Preissl et al., 2018; Sinnamon et al., 2019), human fetal tissues (Domcke et al., 2020; 

Trevino et al., 2021), and a few individual adult human organ systems (Chiou et al., 2019; 

Corces et al., 2020; Hocker et al., 2020; Wang et al., 2020), we still lack comprehensive 

cell-type-resolved maps of cCREs from most primary tissues of the adult human body.
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In the present study we used a modified sci-ATAC-seq protocol optimized for flash frozen 

primary tissues (Hocker et al., 2020; Preissl et al., 2018) to profile chromatin accessibility 

in 30 adult human tissue types from multiple donors. We profiled 615,998 nuclei from 

these tissues, grouped them into 111 distinct cell types based on similarity in chromatin 

landscapes, and identified a union of 890,130 open chromatin regions corresponding to 

cCREs from the resulting maps. We next integrated these data with a recent fetal cell atlas 

of chromatin accessibility (Domcke et al., 2020) to reveal open chromatin profiles for >1.3 

million cells across the human lifespan, and chromatin accessibility maps at 1,154,611 

cCREs covering 14.8% of the genome for 222 cell types. Finally, we used this cCRE 

atlas to interpret cell types and target genes for noncoding variants associated with 240 

complex human traits and diseases, reveal cell type-disease associations and suggest relevant 

therapeutic targets in human cell types. We created an interactive web atlas to disseminate 

this resource [CATLAS, Cis-element ATLAS] http://catlas.org/humanenhancer.

RESULTS

Single-cell chromatin accessibility analysis of adult human primary tissues

To generate a cell atlas of cCREs in the adult human body, we performed sci-ATAC-seq 

(Cusanovich et al., 2015; Preissl et al., 2018) with primary tissue samples collected from 30 

distinct anatomic sites in postmortem adult human donors (Figure 1A, Table S1). Tissue 

samples were chosen to survey a breadth of human organ systems which differed in 

their nuclear compositions and sensitivities to mechanical dissociation, posing a technical 

challenge. We thus optimized nuclear isolation methods and buffer conditions for different 

tissue types (Table S1, see STAR Methods). Subsequently, we generated sci-ATAC-seq 

datasets using a semi-automated workflow (Hocker et al., 2020; Preissl et al., 2018) and 

sequenced resulting libraries to 6,464 raw sequence reads per nucleus on average, with a 

median read duplication rate of 44.88% (Table S2). After filtering out lower quality nuclei 

and potential doublets, we finally obtained high quality open chromatin profiles for 615,998 

nuclei, with a median of 2,822 unique open chromatin fragments per nucleus and an average 

transcription start site (TSS) enrichment score of 12.8 (±3.2) per nucleus (Figure 1B, Table 

S2, see STAR Methods and Data S1).

Analyzing large single-cell chromatin accessibility datasets has been challenging. In the 

latest development of SnapATAC (Fang et al., 2021), we further improved its scalability 

to handle millions of cells. Using this algorithm, we first identified 30 major cell groups 

(Figure 1B), 22 (73%) of which were found to consist of multiple subclusters during a 

second round of clustering analysis (see STAR Methods and Methods S1). Altogether we 

uncovered a total of 111 distinct cell clusters (Figure 1B-E).

Annotation of major and sub-classes of human cell types

To annotate the resulting cell clusters, we first curated a set of marker genes from the 

PanglaoDB marker gene database (Franzén et al., 2019) corresponding to expected human 

cell types. We utilized chromatin accessibility at the promoter as a proxy for gene activity 

and computed cell-type enrichment scores for each of the 111 clusters to create initial cell 

cluster annotations (see STAR Methods and Methods S1). We next manually reviewed these 
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assignments based on focused consideration of marker gene accessibility (see Methods S1). 

Altogether, we annotated each of the 30 major cell groups and all 111 distinct clusters 

with a cell type label (Figure 1E, Table S3). For example, within the major cell group 

of gastrointestinal epithelial cells, higher resolution subclustering and annotation revealed 

three clusters of colon epithelial cells, one cluster of enterocytes from the small intestine, 

two clusters of goblet cells from the colon and small intestine respectively, and three rare 

populations with distinct chromatin accessibility profiles including enterochromaffin cells 

(0.060% of total nuclei), tuft cells (0.050% of total nuclei), and Paneth cells (0.045% of total 

nuclei) (Figure 1B-C).

Encouragingly, several prevalent cell types detected in most tissue samples such as 

endothelial cells and myeloid cells clustered based on cell type rather than tissue of origin 

or individual (Figure 1E). On the other hand, tissue-resident fibroblasts clustered into seven 

subtypes with diverse tissues of origin for each (Figure 1E). Notably, the majority of the 111 

cell types exhibited high tissue specificity. For example, highly specialized cell types such 

as follicular cells, pneumocytes, and hepatocytes were restricted to only one tissue type, 

reflecting their tissue-specific functions (Figure 1E). Finally, we observed that the cell types 

we identified by sci-ATAC-seq are highly concordant with those identified by single-cell 

RNA-seq experiments on corresponding tissues (Data S1).

An atlas of cCREs in adult human cell types

To identify accessible chromatin regions in each of the 111 cell types, we aggregated 

chromatin accessibility profiles from all nuclei comprising each cell cluster and applied 

a peak calling procedure optimized for single-cell data (see STAR Methods and Methods 

S1). We then merged these accessible chromatin regions to obtain a list of 890,130 

non-overlapping cCREs (Figure 2A). These cCREs covered 58.9% of the elements in 

the registry of cCREs published by the ENCODE consortium (Moore et al., 2020), and 

also included 420,152 previously unannotated elements (Figure S1A). To benchmark these 

cCREs, we next compared chromatin accessibility profiles between biosamples profiled 

by bulk DNase-seq and cell types identified by sci-ATAC-seq in the current study. In 

aggregate, sci-ATAC-seq cell types resembled primary cell type biosamples more closely 

than bulk tissue or immortalized cell line biosamples (Figure S1B), and prevalent cell types 

with higher tissue abundance defined by sci-ATAC-seq showed closer similarities to bulk 

DNase-seq biosamples than rare cell types did (Figure S1C). Out of the 111 cell types 

profiled in the current study, 44 (40%) did not show statistically significant correlation with 

any bulk biosample profiled by the ENCODE consortium (Figure S1D). Many of these cell 

types were rare: their median maximal tissue abundance was only 3.2%, and 36 (81.8%) of 

them constituted fewer than 10% of all cells in any tissue. Taken together, these findings 

suggest that our dataset contributes previously underrepresented cCREs from in vivo human 

cell types to existing catalogues, particularly from cell types with low abundance in bulk 

tissues.

To assess the potential function of these cCREs, we next compared them with catalogs 

of transgenic reporter-validated mammalian enhancers (Visel et al., 2007) and found 

that validated tissue-specific enhancers exhibited much higher chromatin accessibility in 
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cell types comprising a large proportion of nuclei identified in the corresponding tissue 

(Figure 2B). For example, validated enhancers in heart showed higher average chromatin 

accessibility in atrial cardiomyocytes (z-score: 1.41) and ventricular cardiomyocytes (z-

score: 1.43) compared with other cell types (Figure 2B), suggesting a good correlation 

between cell type-specific chromatin accessibility and tissue-specific enhancer activity. 

We further found that eQTLs from 49 adult tissue types (Consortium, 2020) were most 

commonly accessible in prevalent cell types, such as endothelial and smooth muscle cells. 

In addition, eQTLs from homogenous tissues, such as liver and thyroid, displayed strongest 

accessibility in the corresponding cell type which comprised a large proportion of nuclei 

identified in the tissue (Figure S2A-B). These results suggest that bulk tissue eQTLs best 

represent sequence variants associated with gene expression in abundant cell types and 

homogenous tissues, and may be less representative for rarer cell types within homogenous 

tissues or for unique cell types from heterogenous tissues.

We next categorized each cCRE based on distance to the nearest TSS as shown in Figure 

2A. The majority (80.94%) of cCREs in the current catalogue resided more than 2,000 bp 

away from annotated TSSs. cCREs located directly over TSSs or near promoter regions 

displayed higher levels of sequence conservation and elevated chromatin accessibility 

(Figure 2C-D). By contrast, gene-distal cCREs were less accessible and showed larger 

variance relative to their accessibility (Figure 2D), suggesting the presence of shared 

programs of highly accessible promoter-proximal cCREs alongside variable programs of 

gene-distal cCREs across cell types and species. To further dissect cell-type specific 

chromatin signatures and regulatory programs, we applied an entropy-based strategy (Schug 

et al., 2005) to reveal 435,142 cCREs that demonstrated restricted accessibility in one 

or a few cell types (Figure 2E, see STAR Methods). We next applied GREAT ontology 

enrichment analysis and motif enrichment analysis on cell-type restricted cCREs to reveal 

putative biological processes and TFs of each cell type, which largely correlated with 

expected cell type-specific functions (FDR < 0.01). For instance, cCREs restricted to 

hepatocytes yielded biological process ontology terms such as steroid metabolic process 

(Figure 2F), and were enriched for the binding sites of hepatocyte nuclear factor TF family 

members HNF1A/B, HNF4A/G, and ONECUT1/2 (Figure 2G) (Costa et al., 2003).

Integrative analysis of adult and fetal chromatin accessibility

To examine transcriptional regulators and cCRE remodeling between fetal and adult stages, 

we re-processed data from a recent cell atlas of chromatin accessibility in 15 human fetal 

tissue types (Domcke et al., 2020) using the same quality control, clustering, and annotation 

strategies described above, which lead to the discovery of 111 fetal cell types and 802,025 

cCREs (Figure S3, Table S3). Combining these cCREs with those identified from the adult 

cell types, we mapped a total of 1,154,611 distinct cCREs spanning 14.8% of the human 

genome in 222 fetal and adult cell types (Mendeley Data: 10.17632/yv4fzv6cnm.1). These 

cCREs covered 58.5% and 69.7% of the elements in the EpiMap (Boix et al., 2021) and 

the ENCODE cCRE registry (Moore et al., 2020), respectively. In addition, 34.8% and 

51.0% of our cCREs were not annotated by the EpiMap and the ENCODE cCRE registry, 

respectively.
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To compare the 222 fetal and adult cell types across the two atlases of chromatin 

accessibility, we utilized SnapATAC followed by batch-correction to obtain a low 

dimensional representation of the 1,323,041 nuclei from both fetal and adult tissues 

(Figure 3AB, see STAR Methods). We next performed phylogenetic analysis to place the 

fetal and adult cell types into different groups based on the distance defined in the low 

dimensional space (see STAR Methods, Figure S4A). In general, cell types belonging to 

different lineages separated into independent groups and harbored specific cCREs that were 

enriched for previously characterized lineage-specific TF motifs (Figure S4B). However, 

while many fetal cell types such as lymphoid, myeloid, and endothelial cells clustered near 

their adult counterparts in the tree, some cell types such as neurons and skeletal myocytes 

differed drastically between adult and fetal stages (Figure S4A), suggesting distinct cCRE 

usage by these cell types during development. To more systematically quantify differences 

in chromatin accessibility between adult and fetal cell types, we compared normalized 

accessibility across the list of 1,154,611 cCREs for each pair of fetal and adult cell types 

(Figure 3C-D, Figure S5). We found that fetal cell types such as immune and endothelial 

cells showed a relatively higher correlation with their adult counterparts than did other cell 

types such as neurons, glial cells, and skeletal myocytes (Figure 3D), consistent with the 

findings from our phylogenetic analysis. Together, these analyses suggest that the extent 

to which cCREs remodel to achieve developmental-stage specific functions varies greatly 

between human cell types.

To reveal the specific elements that may underlie fetal or adult-specific regulatory 

programs, we calculated life stage-specific cCREs for major cell groups which contained 

corresponding adult and fetal cell types (Figure 4A). Characterization of these elements 

revealed striking life stage-specific regulatory programs (Figure 4B-C). For example, 

skeletal myocytes differentiate substantially during pre and post-natal development (Chal 

and Pourquié, 2017) and showed lower global similarity between life stages than most 

other major cell types (Figure 3C-D). In total, we identified 72,648 differentially accessible 

(DA) cCREs between fetal and adult skeletal myocytes (Figure 4D). DA cCREs in fetal 

myocytes were associated with biological processes such as embryo development and 

response to wounding, and were enriched for motifs of myogenic regulatory TFs (MRFs) 

which orchestrate normal myogenesis (Mary Elizabeth Pownall et al., 2002) (Figure 4E-F), 

highlighting the role of these elements in regulating myogenic properties of fetal myocytes. 

On the other hand, adult skeletal myocyte DA cCREs were associated with biological 

processes related to muscle adaptation to contractile activity as well as insulin and steroid 

hormone response, and were enriched for MEF family members (P = 1e-424) and AP-1 

complex members including FOSL1 (P = 1e-274) (Figure 4D-E), suggesting a role for these 

elements in regulating transcriptional responses to hormonal exposures and load bearing 

in adult skeletal muscle. In line with these ontology results and with established patterns 

of myosin isoform expression across the human lifespan (Schiaffino and Reggiani, 2011; 

Schiaffino et al., 2015; Stuart et al., 2016), we discovered DA cCREs at loci encoding 

marker genes of pre-natal myocytes including MYH3 and MYH8, the heavy chains of 

embryonic and neonatal myosin respectively, as well as markers of type I (slow) and type 

II (fast) twitch adult myocytes including MYH6/MYH7 and MYH1/MYH2 respectively 

(Figure 4F). Taken together, these findings reveal the regulatory elements that may underlie 
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the proliferative capacity and mature functionality of fetal and adult skeletal myocytes, 

respectively, and emphasize the value of this dataset alongside emerging human cell atlases 

collected at different timepoints along the lifespan for determining life stage-specific gene 

regulatory programs at cell type resolution.

Delineation of cell-type specificity of human cCREs

To characterize the cell-type specificity of cCREs across fetal and adult cell types, we 

organized the 1,154,611 cCREs into 150 clusters, referred to as cis-regulatory modules 

(CRMs), based on their normalized accessibility across the 222 cell types. While several 

CRMs displayed shared accessibility patterns across all cell types, most CRMs were limited 

either to single fetal or adult cell types or to groups of cell types that reflected shared 

cellular lineages (Figure 5A). To annotate putative functions of CRMs, we applied GREAT 

ontology enrichment analysis (McLean et al., 2010). Broadly, CRMs showing preferential 

accessibility in specific fetal and adult cell types were enriched for biological process 

ontology terms related to both cell type and life stage-specific cellular processes (FDR < 

0.01) (Figure 5B-C).

To identify sequence features underlying these CRMs, we next measured the enrichment of 

1,565 human TF motifs across the 150 CRMs to reveal putative master regulators of fetal 

and adult human cell types. This analysis revealed a comprehensive catalogue of fetal and 

adult cell and lineage-specific TF motifs. For example, a module with strong accessibility 

in adult CD8+ T cells and natural killer T cells was distinguished by enrichment for TBR, 

EOMES, and TBX TF family motifs (Module 8, P < 1e-84; Figure 5B-D), modules with 

strong accessibility in B cells were distinguished by enrichment for EBF family TF motifs 

(Module 13, P = 1e-27; Module 17, P = 1e-197) and a module with strong accessibility 

in adult mast cells was distinguished by GATA family member motif enrichment (Module 

25, P = 1e-84) (Figure 5B-D). Further, the module with the strongest accessibility across 

all identified cell types was characterized by enrichment of the SP1 motif (Module 1, P 

= 1e-9180), consistent with the original description of SP1 as a regulator of ubiquitously-

expressed housekeeping genes (Black et al., 2001). In addition to these well-characterized 

associations, we also report previously undefined TF associations with human cell types that 

are challenging to study in their in vivo tissue contexts: for example, motifs of the ESRR 

(Module 92, P = 1e-357; Module 93, P = 0.1) and FOX (Module 92, P = 1e-36; Module 

93, P = 1e-255) TF family were preferably enriched in modules accessible in fetal (Module 

92) and adult (Module 93) gastric epithelial cells respectively (Figure 5A), and motifs of 

the FOS and JUN families were enriched in modules accessible in fetal and adult adrenal 

cortical cells (Modules 135-138, P < 1e-10; Figure 5A).

Association of human cell types with complex traits and diseases

We next sought to use our 1.2 million cell type-resolved cCREs to interpret genetic variants 

associated with complex traits and multigenic disease phenotypes. We downloaded the 

NHGRI-EBI GWAS catalogue (Buniello et al., 2019) and retained 1,123 well-powered 

GWAS with 10 or more significant SNPs and over 20,000 cases (14% of 8,219 GWAS 

publications). We then used a hypergeometric test to measure the enrichment of trait-

associated variants within cCREs identified from the 222 fetal and adult cell types. GWAS 
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variants of 450 traits/diseases were found to be enriched in cCREs from at least one cell type 

(FDR < 0.1%) (Figure S6). As a comparison, EpiMap, a comprehensive enhancer catalogue 

comprising 833 epigenomic maps from bulk human tissue samples, primary cells and ex 
vivo cell lines (Boix et al., 2021), captured 457 GWAS studies (FDR < 0.1%) (Figure S6). 

For the 290 traits shared by both this study and EpiMap, our data captured the strongest 

GWAS enrichment in 74.8% of cases (217 of 290) and provided improved resolution by 

linking complex traits to specific cell type(s) (Figure S6). Further, for 160 additional traits, 

we were able to identify enrichments that were not detected in previous analyses (Figure 

S6), highlighting the added value of cell type-resolved cCREs maps.

The GWAS enrichment analysis above considered only index variants, i.e., SNPs in genome-

wide significant loci. However, the index variants may not represent the specific causal 

variants due to linkage disequilibrium (Schaid et al., 2018) and much of the heritability 

lies in SNPs with associations that do not reach genome-wide significance (Yang et al., 

2010). We thus curated 240 GWAS studies with publicly available summary statistics and 

examined the enrichment of their associated SNPs within cCREs annotated in fetal and 

adult cell types using stratified linkage disequilibrium score regression (LDSC), a method 

for identifying functional enrichment from GWAS summary statistics using genome-wide 

information from all SNPs and explicitly modeling linkage disequilibrium (Finucane et al., 

2015). This analysis revealed a total of 3,220 significant (FDR < 0.1) associations between 

fetal and adult cell types and human traits and disease phenotypes (Figure 6, Table S4). 

These enrichments revealed many expected cell type-disease phenotype relationships - for 

example, eczema risk variants were strongly enriched in adult T lymphocyte cCREs, atrial 

fibrillation risk variants were strongly enriched in both adult and fetal atrial and ventricular 

cardiomyocyte cCREs (FDR < 0.001), and thyroid stimulating hormone variants were 

enriched in follicular cell cCREs (Figure 6, Table S4). In addition to expected relationships, 

our analysis also revealed GWAS enrichment for human cell types not presently annotated 

by bulk DNase-seq or ATAC-seq data. These included a strong enrichment of coronary 

artery disease variants in adult vascular smooth muscle cCREs (FDR < 0.001) in addition 

to fetal and adult fibroblast, pericyte, and endothelial cell cCREs (FDR < 0.01), COPD 

variants in several adult stromal smooth muscle cell types (FDR < 0.01), triglyceride and 

HDL cholesterol level-associated variants in adult adipocyte cCREs (FDR < 0.01), and a 

nominal enrichment of ulcerative colitis variants in colon epithelial cell cCREs (P < 0.02). 

Interestingly, we detected substantial differences in the enrichment of disease and trait 

associated noncoding variants in subtypes of adult and fetal fibroblasts. These included a 

significant enrichment of variants associated with birth weight in fetal fibroblasts (FDR 

< 0.01) but not in adult fibroblasts (Table S4). Further, we detected differences in the 

enrichment of disease and trait variants in subtypes of adult fibroblasts, each of which 

displayed unique regulatory elements in addition to comparable chromatin accessibility at 

a set of core fibroblast cCREs (Figure S7). While all adult fibroblast populations were 

enriched for variants associated with standing height to an equivalent degree (FDR < 

0.001), adult epithelial fibroblasts displayed a striking enrichment for variants associated 

with balding (FDR < 0.001) and only adult cardiac fibroblasts showed any enrichment for 

variants associated with myocardial fractal dimensions (FDR < 0.1; Table S4).
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Systematic interpretation of molecular functions for noncoding risk variants

Many noncoding genetic variants enriched within cCREs from the analysis above are 

hypothesized to alter the expression of disease-associated genes by disrupting TF binding 

to cis-regulatory elements (Claussnitzer et al., 2020). To systematically interpret molecular 

mechanisms for the specific genetic variants associated with complex traits, we first applied 

the Activity-by-Contact (ABC) model (Fulco et al., 2019) to link the cCREs identified in 

111 adult cell types to their target genes using our previously published promoter capture 

Hi-C data from 15 adult human tissues (Jung et al., 2019) (See STAR Methods). This 

analysis revealed 5,723,307 unique distal cCRE-to-gene linkages across the 111 adult cell 

types, with a median of 726,514 total linkages and 6,804 cell type-specific linkages per 

cell type (Figure S8). Second, we determined the probability that variants from 48 GWAS 

were causal for disease or trait association (Posterior probability of association, PPA) using 

Bayesian fine-mapping (Wakefield, 2009). We defined likely causal variants as those with a 

PPA > 0.1, and found that they were more likely to reside within cCREs than variants with 

low PPA (Figure S8A). Overall, we detected 3,096 likely causal variants residing within 

cCREs mapped in 111 adult human cell types (Figure 7A-B, Table S5), 2,096 of which were 

linked to putative target genes via the ABC model (Figure 7A, Table S5). Third, we applied 

our recently developed deltaSVM models for 94 TFs (Yan et al., 2021) to identify variants 

potentially disrupting binding by these regulators. This analysis revealed 527 TF binding 

sites predicted to be significantly altered by the likely causal variants (Figure 7A, Table S5). 

The intersection of these lists prioritized 361 likely causal variants that 1) resided within a 

human cell type cCRE, 2) significantly altered TF binding 3) and were linked to one or more 

target genes (Figure 7A-B, Table S5).

For example, one likely causal variant for ulcerative colitis (rs16940186) resided within an 

intergenic cCRE restricted to epithelial cells of the gastrointestinal tract, particularly colon 

epithelial cells, enterocytes, and goblet cells (Figure 7C). The cCRE containing rs16940186 

was predicted to contact the TSS of IRF8 (ABC score > 0.015), which encodes a TF 

involved in the regulation of immune cell maturation (Salem et al., 2020) and regulation of 

innate immunity in gastric epithelial cells (Yan et al., 2016). The rs16940186 risk allele is 

an eQTL associated with increased IRF8 expression in human colon tissue and, consistent 

with these findings, deltaSVM models predicted this risk allele to create a binding site for 

the ETS family of activating TFs (Figure 7C), which are expressed in intestinal epithelia 

and have been suggested to regulate intestinal epithelial maturation (Jedlicka et al., 2009). 

One other prioritized likely causal risk variant for osteoarthritis (rs75621460) resided within 

a cCRE that was primarily accessible in immune cell types, was predicted to target the 

immunosuppressive cytokine gene TGFB1, and disrupted a binding site for the zinc-finger 

TF ERG1 (Figure 7D).

DISCUSSION

Detailed knowledge of the regulatory programs that govern gene expression in the human 

body has key implications for understanding human development and disease pathogenesis. 

Here, we used single-cell ATAC-seq to profile chromatin accessibility in 615,998 cells 

across 30 adult human tissues representing a wide range of human organ systems and 
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integrated this dataset with single-cell chromatin accessibility data from human fetal tissues 

(Domcke et al., 2020). We mapped the state of activity for approximately 1.2 million cCREs 

across 222 fetal and adult cell types, bridging the key gap of cell type resolution in the 

annotation of candidate regulatory elements in the human genome. This work highlights 

the value of integrating human sci-ATAC-seq datasets from multiple sources and timepoints 

(Chiou et al., 2019; Domcke et al., 2020; Hocker et al., 2020; Wang et al., 2020) and, in 

the future, integration of these data along with new human single-cell datasets of increasing 

scale, breadth, and depth will enable a comprehensive understanding of gene regulatory 

features of human cell types throughout the lifespan.

While genome-wide association studies (GWAS) have been broadly used to enhance our 

understanding of polygenic human traits and reveal clinically-relevant therapeutic targets 

for complex diseases, to date the discovery of new variants has far outpaced our ability 

to interpret their molecular functions (Claussnitzer et al., 2020). Two central goals of the 

current study were thus to link individual human cell types to complex traits and to leverage 

cCRE maps to interpret the molecular functions of specific noncoding risk variants. By 

applying our datasets alongside cutting-edge methods to prioritize likely causal variants in 

LD, link distal cCREs to putative target genes, and predict motifs altered by risk variants, we 

revealed thousands of cell type-trait associations and created a framework to systematically 

interpret noncoding risk variants. For example, we highlight the likely causal ulcerative 

colitis-associated variant rs16940186. This risk variant may function to increase IRF8 
expression in gastrointestinal epithelial cells by creating a binding site for ETS family TFs in 

a GI epithelial-specific enhancer, and thereby alter the transcriptional responses of intestinal 

epithelial cells to inflammatory cytokines. Pending functional validation experiments, our 

results suggest that targeting IRF8 in GI epithelial cells could be a potential therapeutic 

target for ulcerative colitis. As future GWAS in large cohorts with detailed phenotyping, 

whole genome sequencing efforts, and additional association studies employing long 

read technologies to capture structural variants become available, we anticipate that this 

combined resource and framework will be of continued utility for the interpretation of 

molecular functions for noncoding genetic variants. This resource thus lays the foundation 

for the analysis of gene regulatory programs across human organ systems at cell type 

resolution, and accelerates the interpretation of noncoding sequence variants associated with 

complex human diseases and phenotypes. The datasets can be accessed and explored at 

http://catlas.org/humanenhancer.

Limitations of the Study

The current study is still limited in several ways: firstly, we solely integrated data from two 

discrete life stages and in an incomplete sampling of organ systems. While we utilized tissue 

from anatomic sites corresponding directly to existing biosamples in large-scale databases 

(Carithers et al., 2015; Stranger et al., 2017), the size and diversity of adult human organ 

systems make it difficult to representatively sample them in their entirety. Additionally, 

our assay solely profiles chromatin accessibility in dissociated nuclei, and thus misses 

key orthogonal molecular and spatial information. Future assays that incorporate gene 

expression, chromatin accessibility, histone modifications, DNA methylation, chromosomal 
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conformation, TF binding, and spatial information in the same single-cell will greatly 

enhance our understanding of gene regulation in human cell types (Zhu et al., 2020).

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and request for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Bing Ren (biren@health.ucsd.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Single-nucleus ATAC-seq datasets generated in this study have been deposited at 

GEO and are publicly available as of the date of publication. Accession numbers 

are listed in the key resources table and Table S2. This paper analyzes existing, 

publicly available data. These accession numbers for these datasets are listed 

in the key resources table. Raw data from Figures 1, 2, 4, 6, S4 and S6 were 

deposited on Mendeley at 10.17632/yv4fzv6cnm.1.

• All original code has been deposited at Github and is publicly available as of the 

date of publication. Links are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—Adult human tissue samples were acquired by the ENTEx 

collaborative project (Stranger et al., 2017) via the GTEx collection pipeline (Carithers 

et al., 2015). Donor characteristics including age and sex are provided in Table S1. All 

human donors were deceased, and informed consent was obtained via next-of-kin consent 

for the collection and banking of deidentified tissue samples for scientific research. Donor 

eligibility requirements were as described previously (Carithers et al., 2015), and excluded 

individuals with metastatic cancer and individuals who had received chemotherapy for 

cancer within the prior two years.

METHOD DETAILS

Tissue feasibility testing for sci-ATAC-seq—Frozen tissue samples were sectioned on 

dry ice into two aliquots of equivalent mass. For nuclear isolation, one aliquot was subjected 

to manual pulverization via mortar and pestle while submerged in liquid nitrogen, and the 

other aliquot was homogenized in a gentleMACS M-tube (Miltenyi) on a gentleMACS 

Octo Dissociator (Miltenyi) using the “Protein_01_01” protocol in MACS buffer (5 mM 

CaCl2, 2 mM EDTA, 1X protease inhibitor (Roche, 05-892-970-001), 300 mM MgAc, 10 

mM Tris-HCL pH 8, 0.6 mM DTT) and pelleted with a swinging bucket centrifuge (500 

x g, 5 min, 4°C; 5920R, Eppendorf). Pulverized frozen tissue and pelleted nuclei from 

gentleMACS M-tubes were each split into two further aliquots. One aliquot from each of 

the two nuclear isolation conditions was then resuspended in 1 mL Nuclear Permeabilization 
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Buffer (1X PBS, 5% Bovine Serum Albumin, 0.2% IGEPAL CA-630 (Sigma), 1 mM DTT, 

1X Protease inhibitor), and the other aliquot from the same nuclear isolation condition 

was resuspended in 1 mL OMNI Buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM 

MgCl2, 0.1% Tween-20 (Sigma), 0.1% IGEPAL-CA630 (Sigma) and 0.01% Digitonin 

(Promega) in water), yielding a total of four nuclear isolation/nuclear permeabilization 

buffer conditions tested for each tissue type. Nuclei were rotated at 4 °C for 5 minutes 

before being pelleted again with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, 

Eppendorf). After centrifugation, permeabilized nuclei were resuspended in 500 μL high salt 

tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM 

Mg-acetate, 17.6% DMF) and counted using a hemocytometer. Concentration was adjusted 

to 2,000 nuclei/9 μl, and 2,000 nuclei were dispensed 12 wells of a 96-well plate per 

nuclear isolation/permeabilization condition (samples were processed in batches of 4 nuclear 

isolation/permeabilization conditions per 2 different tissue samples). For tagmentation, 1 

μL barcoded Tn5 transposomes (Table S6) were added using a BenchSmart™ 96 (Mettler 

Toledo), mixed five times, and incubated for 60 min at 37 °C with shaking (500 rpm). To 

inhibit the Tn5 reaction, 10 μL of 40 mM EDTA (final 20mM) were added to each well 

with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min 

with shaking (500 rpm). Next, 20 μL of 2x sort buffer (2 % BSA, 2 mM EDTA in PBS) 

were added using a BenchSmart™ 96 (Mettler Toledo). All 12 wells from each nuclear 

isolation/permeabilization condition were combined into a separate FACS tube, and stained 

with Draq7 at 1:150 dilution (Cell Signaling). For each nuclear isolation/permeabilization 

condition, we used a SH800 (Sony) to sort four wells containing 0 nuclei per well and four 

wells containing 80 nuclei per well into one 96-well plate (total of 768 wells) containing 

10.5 μL EB (25 pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma)). After addition of 

1 μL 0.2% SDS using a BenchSmart™ 96 (Mettler Toledo), the 96 well plate was incubated 

at 55 °C for 7 min with shaking (500 rpm). 1 μL 12.5% Triton-X was added to each well 

to quench the SDS. Next, 12.5 μL NEBNext High-Fidelity 2× PCR Master Mix (NEB) 

were added to each well and samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 

°C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were 

assayed for DNA library concentration using the PerfeCTa NGS Quantification RT-qPCR 

Kit (Quanta Biosciecnces) according to manufacturer’s protocols, and subsequently returned 

to the thermal cycler for a second round of PCR amplification (72 °C 5 min, 98 °C 30 

s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 4 cycles, held at 12 °C). After the second 

PCR amplification, for each nuclear isolation/permeabilization condition, wells containing 0 

nuclei were combined and wells containing 80 nuclei were combined. The resulting DNA 

libraries were purified according to the MinElute PCR Purification Kit manual (Qiagen) 

and size selection was performed with SPRISelect reagent (Beckmann Coulter, 0.55x and 

1.5x). Final libraries were quantified using a Qubit fluorimeter (Life technologies) and a 

nucleosomal pattern of fragment size distribution was verified using a Tapestation (High 

Sensitivity D1000, Agilent). We calculated a signal to noise ratio for final feasibility test 

libraries using LightCycler® 480 SYBR Green I Master Mix (Roche) along with custom 

primers for the promoter of human GAPDH (5’-CATCTCAGTCGTTCCCAAAGT-3’, 

5’-TTCCCAGGACTGGACTGT-3’) and a heterochromatic gene desert region (5’-

CCCAAACTCTGAGAGGCTTATT-3’, 5’-GAGCCATCATCTAGACACCTTC-3’). For each 

tissue type, the nuclear isolation/permeabilization condition that resulted in optimized 
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nuclear yield (nuclei/mg tissue), library concentrations > 50 pM per 80 sorted nuclei, 

nucleosomal distribution pattern of fragments, and a log2(signal to noise ratio) > 3.3 was 

selected for combinatorial indexing-assisted single nucleus ATAC-seq (Table S1).

Combinatorial indexing-assisted single nucleus ATAC-seq—Combinatorial 

indexing-assisted single nucleus ATAC-seq was performed as described previously (Preissl 

et al., 2018) with slight modifications (Hocker et al., 2020) and using new sets of oligos 

for tagmentation and PCR (Table S6). Nuclei were isolated and permeabilized according 

to the optimized conditions from feasibility testing (Table S1). After resuspension in 

permeabilization buffer, nuclei were rotated at 4 °C for 5 minutes before being pelleted 

again with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). After 

centrifugation, permeabilized nuclei were resuspended in 500 μL high salt tagmentation 

buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 11 mM Mg-acetate, 

17.6% DMF) and counted using a hemocytometer. Concentration was adjusted to 2,000 

nuclei/9 μl, and 2,000 nuclei were dispensed into each well of a 96-well plate per 

sample (96 tagmentation wells/sample, samples were processed in batches of 2-4 samples). 

For tagmentation, 1 μL barcoded Tn5 transposomes (Table S6) were added using a 

BenchSmart™ 96 (Mettler Toledo), mixed five times, and incubated for 60 min at 37 °C 

with shaking (500 rpm). To inhibit the Tn5 reaction, 10 μL of 40 mM EDTA (final 20mM) 

were added to each well with a BenchSmart™ 96 (Mettler Toledo) and the plate was 

incubated at 37 °C for 15 min with shaking (500 rpm). Next, 20 μL of 2x sort buffer (2 

% BSA, 2 mM EDTA in PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All 

wells were combined into a separate FACS tube for each sample, and stained with Draq7 at 

1:150 dilution (Cell Signaling). Using a SH800 (Sony), 20 nuclei per sample were sorted per 

well into eight 96-well plates (total of 768 wells) containing 10.5 μL EB (25 pmol primer 

i7, 25 pmol primer i5, 200 ng BSA (Sigma)). Preparation of sort plates and all downstream 

pipetting steps were performed on a Biomek i7 Automated Workstation (Beckman Coulter). 

After addition of 1 μL 0.2% SDS, samples were incubated at 55 °C for 7 min with shaking 

(500 rpm). 1 μL 12.5% Triton-X was added to each well to quench the SDS. Next, 12.5 

μL NEBNext High-Fidelity 2× PCR Master Mix (NEB) were added and samples were 

PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12 cycles, 

held at 12 °C). After PCR, all wells were combined. Libraries were purified according to the 

MinElute PCR Purification Kit manual (Qiagen) using a vacuum manifold (QIAvac 24 plus, 

Qiagen) and size selection was performed with SPRISelect reagent (Beckmann Coulter, 

0.55x and 1.5x). Libraries were purified one more time with SPRISelect reagent (Beckman 

Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter (Life technologies) and 

a nucleosomal pattern of fragment size distribution was verified using a Tapestation (High 

Sensitivity D1000, Agilent). Libraries were sequenced on a NextSeq500 or HiSeq4000 

sequencer (Illumina) using custom sequencing primers with following read lengths: 50 + 10 

+ 12 + 50 (Read1 + Index1 + Index2 + Read2). Primer and index sequences are listed in 

Table S6.

Demultiplexing of single nucleus ATAC-seq sequencing reads—For each 

sequenced single nucleus ATAC-Seq library, we obtained four FASTQ files, two for paired 

end DNA reads and two for the combinatorial indexes for i5 and T7 (768 and 364 indices, 
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respectively). We selected all reads with up to 2 mismatches per i5 and T7 index (Hamming 

distance between each pair of indices is 4) and integrated the concatenated barcode at the 

beginning of the read name in the demultiplexed FASTQ files. The customized scripts can 

be found at: https://gitlab.com/Grouumf/ATACdemultiplex/.

Quality control metrics: TSS enrichment and unique fragments—TSS positions 

were obtained from the GENCODE database v31 (Frankish et al., 2019). Tn5 corrected 

insertions were aggregated ±2000 bp relative (TSS strand-corrected) to each unique TSS 

genome wide. Then this profile was normalized to the mean accessibility ± (1900 to 2000) 

bp from the TSS and smoothed every 11 bp. The max of the smoothed profile was taken as 

the TSS enrichment. We then filtered out all single-cells that had fewer than 1,000 unique 

fragments and/or a TSS enrichment of less than 7 for all data sets.

Overall clustering strategy—We utilized multiple rounds of clustering analysis to 

identify cell clusters. The first round of clustering analysis was performed on individual 

samples. We divided the genome into 5kb consecutive windows and then scored each cell for 

any insertions in these windows, generating a window by cell binary matrix for each sample. 

We filtered out those windows that are generally accessible in all cells for each sample using 

z-score threshold 1.65. Based on the filtered matrix, we then carried out dimension reduction 

followed by graph-based clustering to identify cell clusters. We called peaks for each cluster 

using the aggregated profile of accessibility and then merged the peaks from all clusters 

to generate a union peak list. Based on the peak list, we generated a cell-by-peak count 

matrix and used Scrublet (Wolock et al., 2019) to remove potential doublets. Next, to carry 

out the second round of clustering analysis, we merged peaks called from all samples to 

form a reference peak list. We then generated a single binary cell-by-peak matrix using cells 

from all samples and again performed the dimension reduction followed by graph-based 

clustering to obtain the major cell groups across the entire dataset. To further dissect 

cell-type heterogeneity within the major cell groups, we then performed another round of 

clustering analysis for each of the identified major cell group to identify subclusters.

Doublet removal—We applied Scrublet to the cell-by-peak count matrix with default 

parameters. Doublet scores returned by Scrublet were then used to fit a two-component 

Gaussian mixture model using the “BayesianGaussianMixture” function from the python 

package “scikit-learn”. The component with larger mean doublet score is presumably 

formed by doublets and cells belonging to it were removed from downstream analysis.

Dimension reduction—To find the low-dimensional manifold of the single-cell data, 

we adapted our previously published method, SnapATAC (Fang et al., 2020), to reduce 

the dimensionality of the peak by cell count matrix. The previous iteration of SnapATAC 

utilized spectral embedding for dimension reduction. To increase scalability of spectral 

embedding, we applied the Nyström method (Bouneffouf and Birol, 2016) for handling large 

datasets. Specifically, we first randomly sampled 35,000 cells as the training data. We then 

computed the Jaccard index between each pair of cells in the training set and constructed 

the similarity matrix S. We computed the matrix P = D−1S, where D is the diagonal matrix 

such that Dii = ΣjSij. The eigendecomposition was performed on P and the eigenvector with 
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eigenvalue 1 was discarded. From the rest of the eigenvectors, we took the first 30 of them 

corresponding to the largest eigenvalues as the spectral embedding of the training data. We 

utilized the Nyström method to extend the embedding to the data outside the training set. 

Given a set of unseen samples, we computed the similarity matrix S′ between the new 

samples and the training set. The embedding of the new samples is given by U′ = S′UΛ−1, 

where U and Λ are the eigenvectors and eigenvalues of P obtained in the previous step.

Correction of Batch Effects—We performed batch correction for each tissue separately. 

Inspired by the mutual nearest neighbor batch-effect-correction method (Haghverdi et al., 

2018), we developed a variant using mutual nearest centroids to iteratively correct for batch 

effects in multiple donor samples. Specifically, after dimension reduction we performed 

k-means clustering on individual replicate or donor sample with k equal to 20. We choose 

this number because the number of major clusters in a given tissue sample is typically less 

than 20. We then computed the centroid for each cluster and identified pairs of mutual 

nearest centroids across different batches. These mutual nearest centroids were used as 

the anchors to match the cells between different batches and correct for batch effects as 

described previously (Haghverdi et al., 2018). We found that the result can be further 

improved by performing above steps iteratively. However, too many iterations may lead to 

over-correction. We therefore used two iterations in this study.

Graph-based clustering algorithm—We constructed the k-nearest neighbor graph 

(k-NNG) using low-dimensional embedding of the cells with k equal to 50. We then 

applied the Leiden algorithm (Traag et al., 2019) to find communities in the k-NNG 

corresponding to cell clusters. The Leiden algorithm can be configured to use different 

quality functions. The modularity model is a popular choice but it suffers from the issue of 

resolution-limit, particularly when the network is large (Traag et al., 2011). Therefore, we 

used the modularity model only in the first round of clustering analysis to identify initial 

clusters. In the final round of clustering, we chose the constant Potts model as the quality 

function since it is resolution-limit-free and is better suited for identifying rare populations 

in a large dataset (Traag et al., 2011). To determine the optimal number of clusters, we 

varied the resolution parameter in the Leiden algorithm and computed the clustering stability 

and average silhouette score under each resolution. Cluster stability was defined as the 

consistency, measured by the average adjusted rand index, of results from five independent 

clustering analyses on perturbed inputs. The perturbation was introduced in a way that 2% of 

the edges were randomly selected and subjected to removal. We selected the resolution that 

leads to both high average silhouette score and high clustering stability as well as biological 

considerations, e.g., number of known cell types in the tissue, marker gene accessibility.

Peak calling and peak filtering—For each cell cluster, initial peak calling was 

performed on Tn5-corrected single-base insertions (each end of the Tn5-corrected 

fragments) using the MACS2 (Zhang et al., 2008) callpeak command with parameters “–

shift −100 –extsize 200 –nomodel –call-summits –nolambda – keep-dup all”, filtered by 

the ENCODE hg38 blacklist (accession: ENCFF356LFX). Due to the varying abundance of 

cell types in each tissue, single-cell assays typically profile different cell types at different 

sequencing depths. To account for these differences, we adapted peak calling cutoffs to 
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different sequencing depths. Specifically, we choose a cutoff of FDR less than 0.1, 0.05, 

0.025, 0.01, and 0.001, corresponding to the situations when the number of reads is with 

then range of 0-5 million, 5-25 million, 25-50 million, 50-100 million, and 100 million 

and above. Using simulated datasets, we found that this procedure achieved good balance 

between the sensitivity and specificity for detecting peaks under different sequencing depths. 

Next, based on the chromatin accessibility at the single cell level, we developed a peak 

filtering procedure to further reduce the false positive rate by retaining only those peaks 

that were accessible in a significant fraction of the cells compared to background regions. 

To do so, we first randomly selected 1 million regions from the genome and for each of 

these regions we calculated the fraction of cells that are accessible. These were used to fit a 

beta distribution as the null model. We then computed the fraction of accessible cells and its 

significance level for each candidate peak identified by MACS2. Candidate peaks with FDR 

< 0.01 were included in the final peak list.

Generating the union peak set—To compile a union peak set, we combined peaks from 

all clusters and extended the peak summits by 200 bp on either side. Overlapping peaks were 

then handled using an iterative removal procedure. First, the most significant peak, i.e., the 

peak with the smallest p-value, was kept and any peak that directly overlapped with it was 

removed. Then, this process was iterated to the next most significant peak and so on until all 

peaks were either kept or removed due to direct overlap with a more significant peak.

Computing relative accessibility scores—We define an accessible locus as the 

minimal genomic region that can be bound and cut by the Tn5 enzyme. We use L ⊂ N 
to represent the set of all accessible loci. We further define a pseudo-locus as the set of 

accessible loci that relates to each other in certain meaningful way (for example, nearby 

loci, loci from different alleles). In this example, pseudo-loci correspond to peaks. We use 

{di \ di ⊂ L} to represent the set of all pseudo-loci. Let al be the accessibility of accessible 

locus l, where l ∈ L. We define the accessibility of pseudo-locus di as Ai = Σk∈di ak, 

i.e., the sum of accessibility of accessible loci associated with di. Let Cj be the library 

complexity (the number of distinct molecules in the library) of cell j. Assuming unbiased 

PCR amplification, then the probability of being sequenced for any fragment in the library 

is: sj = 1 − (1 − 1
Cj

)kj, where kj is the total number of reads for cell j. If we assume that 

the probability of a fragment present in the library is proportional to its accessibility and 

the complexity of the library, then we can deduce that the probability of a given locus l in 

cell j being sequenced is: plj ∝ alCjSj. For any pseudo-locus di, the number of reads in di 

for cell j follows a Poisson binomial distribution, and its mean is mij = Σk∈di Pkj ∝ CjSj 

Σk∈di ak = CjSjAi. Given a pseudo-locus (or peak) by cell count matrix 0, we have: Σj Oij 

= Σjmij. Therefore, Ai = Z
∑jOij
∑jCjsj

, where Z is a normalization constant. When comparing 

across different samples the relative accessibility may be desirable as they sum up to a 

constant, i.e., ΣiAi = 1 × 106. In this case, we can derive Ai =
∑jOij
∑ijOij

∗ 106.

Assigning cell types to cell clusters—To annotate the cell clusters, we first curated a 

set of marker genes from the PanglaoDB (Franzén et al., 2019) corresponding to expected 
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cell types. We aggregated open chromatin fragments from each cluster and utilized the 

promoter accessibility, defined as RPM of +/− 1kb around TSS, as the proxy for gene 

activity. We then computed the raw cell type enrichment score as the logarithm of the 

geometric mean of marker genes’ activity. The final enrichment scores were obtained by 

applying two rounds of z-score transformation, first across cell types and then across 

cell clusters, on raw enrichment scores. For each cluster, we picked the cell type that 

showed strongest enrichment to make initial assignments. Finally, we manually reviewed 

these assignments and made adjustments based on focused consideration of marker gene 

accessibility in conjunction with information about tissue(s) of origin.

Identification of cell type-restricted peaks—We used a Shannon entropy-based 

method (Schug et al., 2005) to identify cell type-specific peaks. Given the relative 

accessibility scores of a peak across clusters, we first converted the scores to probabilities: 

pi = qi/Σiqi. The entropy was then calculated by: Hp = −Σtpt log2(pt). The specificity score is 

Qp\t = Hp – log2(pt). To estimate the statistical significance of specificity scores, we assumed 

that under the null hypothesis each peak has an average accessibility level across all cell 

types and that the log base 2 of the cell-type-dependent fold changes from the average level 

follow a normal distribution with mean equal to zero and standard deviation s. The value of s 
was estimated using the top 50% least variable peaks, and 500,000 samples were then drawn 

to form the empirical distribution of Qp that are used to determine the p-values of specificity 

scores. The cell-type-restricted peaks were then identified using a p-value cutoff of 0.025.

Cell-type enrichment analysis of fine-mapped GTEx eQTLs—The fine-mapped 

eQTLs (GTEx Analysis V8) in each of the 49 tissues or cell lines were downloaded from 

the GTEx portal (https://gtexportal.org). For each tissue, we first identified the overlapping 

cCREs with its eQTLs. We then calculated the average of log-transformed accessibility 

scores of these peaks in each of the 111 cell types. This yielded a tissue by cell-type table 

containing raw cell-type enrichment scores of eQTLs from each tissue. The raw enrichment 

scores were then normalized row-wise using z-score transformation. For each tissue, we 

define the maximum cell-type enrichment as the largest value of z-scores across 111 cell 

types. In general, we found that homogenous tissues tend to have higher maximum cell-type 

enrichment than tissues that are more heterogenous.

Differential peak analysis—To carry out differential peak analysis between foreground 

set and background set, we first removed all peaks with fold changes of relative accessibility 

less than 2. For each peak, we then built a full model and a reduced model.

log
Pfull

1 − Pfull
= β0 + β1r + β2c

log
Preduced

1 − Preduced
= β0 + β1r

Preduced and Pfull represent the likelihood of the reduced model and full model respectively. 

r contains the logarithm of number of fragments. c is categorical variable indicating if the 

cell comes from foreground or background. We then used a likelihood ratio test framework 
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to determine whether the full model provided a significantly better fit of the data than 

the reduced model. We selected the sites using a 5% FDR threshold (Benjamini-Hochberg 

method).

Identification of fibroblast core signature and subtype-specific signatures—
We first performed pairwise differential peak analysis for the seven fibroblast subtypes. We 

then defined fibroblast core signature as peaks that are shared by all subtypes and were not 

called as differentially accessible in any of the pairwise comparison. Likewise, we defined 

the specific signature for a subtype as peaks that are differentially more accessible in the 

given subtype for every pairwise comparison.

Measuring the similarity of chromatin accessibility profiles between cell types 
identified by sci-ATAC-seq and bulk biosamples—We downloaded bulk DNase-seq 

data from the ENCODE portal. We excluded samples collected at embryonic stage or 

originated from kidney, bladder or brain tissues, as we did not perform experiments on 

those tissues. As a result, 638 datasets were kept for downstream analysis. For each of the 

DNase-seq datasets, we calculated its Pearson correlation coefficient with 111 identified 

cell types based on RPKM values at identified cCREs. These correlation scores were then 

scaled using z-score transformation across 111 cell types. We used the maximum of scaled 

correlation scores to represent each biosample’s overall similarity with sci-ATAC-seq cell 

types.

Identification of cCRE modules—A cCRE module is defined as co-accessible regions 

that share similar accessibility pattern across cell types. To identify cCRE modules, we first 

performed quantile normalization on the log2 transformed matrix containing accessibilities 

of 1,154,611 cCREs in 222 fetal and adult cell types. For each cCRE, we then divided its 

accessibility vector by the L2 norm, which allowed us to better extract the accessibility 

pattern from the data. Next we applied the k-mean algorithm to this matrix to identify 

clusters of cCREs. Using the “elbow” method, we determined the number of clusters to be 

150.

Motif enrichment analysis—We measured the enrichment of 1565 human TF motifs 

consisting of the JASPAR (2018) core non-redundant vertebrate motifs, the HOCOMOCO 

v1156 human motif set and the SELEX motifs by Jolma et al.. We computed the 

enrichments for each of the 1565 motifs relative to a joint cCRE background and filtered 

the list using FDR cutoff 0.01. For each motif. We reported the motif with the highest 

enrichment for each of the 286 previously identified motif archetypes (Vierstra et al., 2020).

Identification of candidate driver TFs—We used the Taiji pipeline (Zhang et al., 2019) 

to identify candidate driver TFs in each cell cluster. Briefly, for each cell type cluster, we 

constructed the TF regulatory network by scanning TF motifs at the accessible chromatin 

regions and linking them to the nearest genes. The network is directed with edges from TFs 

to target genes. The genes’ weights in the network were determined based on the relative 

accessibility of their promoters. The weights of the edges were calculated by the relative 

accessibility of the promoters of the source TFs. We then used the personalized PageRank 

algorithm to rank the TFs in the network.
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Integration of adult and fetal datasets—To integrate our dataset with the recent cell 

atlas of fetal chromatin accessibility (Domcke et al., 2020), we downloaded the fragment 

files for 63 fetal samples spanning 15 tissues and converted the genomic coordinates 

from GRC37 (hg19) to GRCh38 using the UCSC liftOver tool. We then performed the 

quality control, cell filtering and cell clustering using the same pipeline described above 

and identified 111 fetal cell types. Next, we combined the QC passed cells from adult 

and fetal datasets and performed the joint embedding using the SnapATAC algorithm. We 

considered fetal or adult cells as belonging to different batches, and used a linear model to 

remove technical batch effects for each dimension in the reduced dimensional space. Using 

these batch-corrected lower-dimensional representations, we applied the UMAP algorithm to 

visualize the cells in a 2D space and used the FASTME algorithm (Guindon and Gascuel, 

2003) to construct the phylogenetic tree for adult and fetal cell types.

Differential peak analysis between fetal and adult cells—To perform differential 

peak analysis between fetal and adult samples, we modified the likelihood-ratio test 

framework described above to account for technical batch effects between two datasets. 

We started with three set of cells. The first two sets of cells corresponded to foreground 

and background sets that are subject to the differential test. The third set was the auxiliary 

set corresponding to remaining cells that were not from the first two sets. The auxiliary set 

served as a proxy to estimate the batch effects. For instance, when performing differential 

test between two sub-trees of the phylogenetic tree of fetal and adult cell types, for each 

sub-tree we randomly sampled an equal number of cells for each cell type in the sub-tree. 

The cells sampled from one branch were considered as foreground and those from the other 

were considered as background. The remaining cells did not belong to the two sub-trees 

form the auxiliary set. For each peak, we then built a full model and a reduced model.

log
Pfull

1 − Pfull
= β0 + β1r + β2s + β3t + β4c

log
Preduced

1 − Preduced
= β0 + β1r + β2s + β3t

Preduced and Pfull represent the likelihood of the reduced model and full model respectively. r 
contains the logarithm of number of fragments. s is a categorical variable indicating whether 

the cell comes from the fetal tissue or the adult tissue. t indicates whether the cell comes 

from the auxiliary set. c indicates whether the cell comes from foreground set. We then 

used a likelihood ratio test framework to determine whether the full model provided a 

significantly better fit of the data than the reduced model. We selected the sites using a 1% 

FDR threshold (Benjamini-Hochberg method).

Generation of bigwig tracks—Each Tn5-corrected insertion was extended in both 

directions by 100 bp to form a 200-bp fragment. We then counted the number of fragments 

overlapping with each base on the genome and generated a bedgraph file. The bedgraph file 

was converted to bigwig file using the “bedGraphToBigWig” tool.

Zhang et al. Page 20

Cell. Author manuscript; available in PMC 2021 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Linking cCREs to target genes—We downloaded the chromosome interactions called 

from published promoter capture Hi-C data in 14 human tissues (Jung et al., 2019). In each 

tissue, we first filtered the chromosome interactions using a lenient p-value cutoff of 0.1. We 

then created the chromosome interaction matrix using the normalized interaction frequency. 

The interaction matrices from 14 tissues were then averaged to get the final interaction 

matrix. We applied the Activity-by-Contact (ABC) Model (Fulco et al., 2019) to compute 

the ABC Score for each cCRE-gene pair as the product of Activity (chromatin accessibility) 

and Contact (interaction frequency), normalized by the product of Activity and Contact for 

all other cCREs. We retained all distal cCRE-gene connections with an ABC score greater 

than 0.015.

Stratified linkage disequilibrium (LD) score regression—We used LD score 

regression (Bulik-Sullivan et al., 2015) v1.0.1 to estimate genome-wide GWAS enrichment 

for disease and non-disease phenotypes within cell type resolved cCREs (peaks called on 

each cell cluster via MACS2 (Zhang et al., 2008) using the above parameters). We compiled 

published GWAS summary statistics for complex diseases (Bentham et al., 2015; Bronson 

et al., 2016; Consortium, 2019; Cordell et al., 2015; Jansen et al., 2019; Ji et al., 2017; Jin 

et al., 2016; Luo et al., 2017b; Mahajan et al., 2018; Malik et al., 2018; Michailidou et 

al., 2017; Nielsen et al., 2018; Nikpay et al., 2015; Okada et al., 2014; Paternoster et al., 

2015; Pividori et al., 2019; Sakornsakolpat et al., 2019; Schafmayer et al., 2019; Shadrina et 

al., 2019; Tachmazidou et al., 2019; Tin et al., 2019; Watanabe et al., 2019; Wiberg et al., 

2019; Wuttke et al., 2019) and endophenotypes (Astle et al., 2016; Hoffmann et al., 2018; 

Kemp et al., 2017; Kilpeläinen et al., 2016; Manning et al., 2012; Saxena et al., 2010; Shrine 

et al., 2019; Strawbridge et al., 2011; Teumer et al., 2018; Warrington et al., 2019) within 

European populations. Using cell type resolved cCREs as a binary annotation, we created 

custom partitioned LD score files by following the steps outlined in the LD score estimation 

tutorial. As background annotations, we included all baseline annotations in the baseline-LD 

model v1.2 as well as partitioned LD scores created from all merged cCREs. For each trait, 

we used LD score regression to then estimate coefficient p-value for each cell type relative 

to the background annotations and used the Benjamini-Hochberg procedure to correct for 

multiple tests.

GWAS enrichment analysis—We downloaded the NHGRI-EBI GWAS catalogue 

(Buniello et al., 2019) (downloaded from https://www.ebi.ac.uk/gwas/docs/file-downloads 

on July 7, 2021) and pruned the catalogue using an approach described previously (Boix 

et al., 2021). Specifically, for each trait and PMID combination, we ranked associations 

by their significance (P value) and added SNPs iteratively if they were not within 5 kb of 

previously added SNPs. We then compiled a compendium of 1,123 well-powered GWAS 

with 10 or more significant SNPs and over 20,000 cases (14% of 8,219 GWAS publications) 

that capture over 81,057 GWAS loci.

For each cell type and trait combination, we computed the number of intersections between 

trait associated SNPs and cell-type associated cCREs. We compared this number with the 

number of intersections between SNPs and the entire set of cCREs from all cell types, using 

a hypergeometric test to evaluate the statistical significance of enrichments. To estimate the 

Zhang et al. Page 21

Cell. Author manuscript; available in PMC 2021 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/gwas/docs/file-downloads


false discovery rate, we generated 1,000 null GWAS with the same lead SNP set size by 

randomly shuffling the trait associations across GWAS locations. We then computed the 

null association P values for each permuted GWAS and used the 0.1% top quantiles as the 

cut-off.

Fine mapping—We performed genetic fine mapping for GWAS of diseases and 

endophenotypes that had sufficient coverage (i.e., were at least imputed into 1000 

Genomes). For GWAS with available fine mapping data, we took 99% credible sets 

directly from the supplemental tables. For GWAS without available fine mapping data, we 

calculated approximate Bayes factors (Wakefield, 2009) (ABF) for each variant assuming 

prior variance ω = 0.04. For every trait, we obtained index variants for each locus from the 

supplemental tables of the respective study. We extracted all variants in at least low linkage 

disequilibrium (r2 > 0.1 using the European subset of 1000 Genomes Phase 3 (Auton et 

al., 2015)) in a large window (±2.5 Mb) around each index variant. We calculated posterior 

probabilities of association (PPA) for each variant by dividing its ABF by the cumulative 

ABF for all variants within the locus. We then defined 99% credible sets for each locus by 

sorting variants by descending PPA and keeping variants adding up to a cumulative PPA of 

0.99.

Predicting the effects of noncoding variants on TF binding—To identify SNPs 

that affect TF binding, we employed deltaSVM models as described previously (Yan et al., 

2021). Briefly, 40 bp sequences centered on each SNP were used as input to 94 previously 

trained and validated TF models. For each SNP, we predicted the binding scores for both 

alleles by running "gkmpredict". A SNP was considered to be bound if the binding score 

passed the pre-defined threshold for either allele. Among those SNPs, deltaSVM scores 

were calculated using the "deltasvm.pl" script and SNPs with deltaSVM scores passing the 

threshold for the corresponding model are predicted to affect TF binding.

External genome browser track data—Genome browser tracks displaying ChIP-seq 

and DNase-seq signal from bulk transverse colon datasets and human primary T cell 

datasets were downloaded from ENCODE with the following identifiers: ENCSR340MRJ, 

ENCSR557OWY, ENCSR500QVK, ENCSR792VLP, ENCSR627UDJ, ENCSR902BOX, 

ENCSR218OEZ, ENCSR222QLW.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters were reported either in individual figures or corresponding figure 

legends. Statistical details of experiments can be found in “METHOD DETAILS”. All 

statistical analyses were performed in either R or Python.

ADDITIONAL RESOURCES

The raw data and analyzed results are available at our interactive web portal: http://

catlas.org/humanenhancer.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlight

• >1.3 million chromatin accessibility profiles from 30 adult and 15 fetal 

human tissues

• An atlas of ~1.2 million candidate cis-regulatory elements across 222 cell 

types

• Cell type specificity of fetal and adult candidate cis-regulatory elements

• Interpretation of noncoding variants associated with complex traits and 

diseases

Zhang et al. Page 31

Cell. Author manuscript; available in PMC 2021 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 ∣. Single-cell chromatin accessibility analysis of 30 adult human primary tissues.
A) A total of 92 biosamples from 30 tissue types, were used for sci-ATAC-seq. The 

number of nuclei profiled per tissue is denoted in parentheses. B) Clustering of 615,998 

nuclei revealed 30 major cell groups. Each dot represents a nucleus colored by cluster 

ID. Embedding was created by Uniform Manifold Approximation and Projection (UMAP) 

(McInnes et al., 2018). C) An example illustrating subclusters within the major cell group 

of gastrointestinal (GI) epithelial cells revealed by iterative clustering. D) Bar plot showing 

the number of cell types identified in each of the 30 human tissues, counting only cell types 

constituting >0.2% of all cells in the given tissue. E) Distribution of cell types across human 

tissues. The dendrogram on the left was created by hierarchical clustering of cell clusters 

based on chromatin accessibility. The bar chart represents relative contributions of tissues to 

cell clusters. Raw data are available on Mendeley Data: 10.17632/yv4fzv6cnm.1.
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Figure 2 ∣. An atlas of cCREs in adult human cell types.
A) Classification of 890,130 cCREs across the human genome based on their distances 

to annotated TSSs. B) Heatmap showing the average chromatin accessibility for each of 

four groups (blood vessel, forebrain, heart, negative control) of validated tissue-specific 

enhancers from the VISTA database (Visel et al., 2007) across indicated cell types. Z-

scores were calculated using all 111 cell types. The top 10 cell types in each validated 

enhancer group are shown. C) Average phyloP (Pollard et al., 2010) conservation scores 

of cCREs stratified by groups defined in A. Genomic background is indicated in gray. 

D) Two-dimensional density plot showing the median chromatin accessibility compared 

with the range (difference between maximum and minimum) of chromatin accessibility 

across 111 cell clusters for 890,130 cCREs, stratified by groups defined in A. E) Heatmap 

representation of 435,142 cCREs showing cell-type-restricted patterns in 111 cell types. 

Color represents log2-transformed chromatin accessibility. F,G) Heatmaps showing GO 
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terms (F) and TF motifs (G) with maximal enrichment in cell-type-restricted cCREs of 

selected cell types. Only the most enriched TF motif in each of the previously identified 

motif archetypes (Vierstra et al., 2020) was selected as the representative and the top 10 

motifs were selected for each cell type. Color represents −Log10P. Full GO and motif 

enrichments are available on Mendeley Data: 10.17632/yv4fzv6cnm.1.
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Figure 3 ∣. Integrative analysis of adult and fetal single-cell chromatin accessibility atlases.
A) Number of sci-ATAC-seq cells per tissue type for 30 adult and 15 human fetal tissue 

types that were integrated. Matching tissue types between adult and fetal datasets are 

highlighted in red or blue respectively. Standard: sentinel tissue (trisomy 18 cerebrum). B) 

UMAP embedding of 1,323,041 nuclei from fetal and adult tissues. Each dot in the scatter 

plot represents a nucleus, colored by life stage. C) Heatmap showing Pearson correlation 

coefficient (PCC) between 69 adult cell types and 89 fetal cell types from 17 manually 

defined cell groups that are present in both adult and fetal tissues. A comprehensive heatmap 

is provided in Figure S5. D) Bar plot showing the median PCC for each major cell group 

indicated in C.
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Figure 4 ∣. Differential chromatin accessibility landscapes in adult and fetal human cell types.
A) Dot plot showing the number of adult and fetal specific cCREs detected for each major 

cell group indicated in C. B-C) Significant GO biological process ontology terms and 

transcription factor motif enrichments for adult-specific (B) and fetal-specific (C) cCREs. 

D) Heatmap representation of 72,648 differentially accessible (DA) cCREs between fetal 

and adult skeletal myocytes along with significant GREAT biological process ontology 

enrichments (McLean et al., 2010). Color represents log-transformed normalized signal. E) 
Significantly enriched TF motifs within fetal and adult skeletal myocyte DA cCREs. The 

most enriched motif within each motif archetype (Vierstra et al., 2020) was selected and 

the top three were displayed. F) Genome browser tracks showing chromatin accessibility for 

fetal and adult skeletal myocytes along with DA cCREs between the adult and fetal skeletal 

myocytes. Indicated genes are shown in black, other genes are shown in gray. TSSs of the 

indicated genes are shaded in red and blue.
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Figure 5 ∣. Delineation of CRE modules across 222 fetal and adult human cell types.
A) Heatmap representation of chromatin accessibility for 1,154,611 cCREs across 222 

fetal and adult cell types. Color represents normalized chromatin accessibility. cCREs were 

organized into 150 modules by K-means clustering, indicated by the color bars on the right. 

20 groups of lineage-specific modules (colored boxes) are highlighted. B-D) Heatmaps 

showing chromatin accessibility (B), GO terms (C) and motifs (D) with maximal enrichment 

in a subset of CRE modules (rows) for immune cell types. The GO and motif heatmaps are 

colored by enrichment −log10P. Only the most enriched TF motif in each of the previously 

identified motif archetypes (Vierstra et al., 2020) was selected as the representative and the 

top 5 motifs were selected for each module. Full GO and motif enrichments are available on 

Mendeley Data: 10.17632/yv4fzv6cnm.1.
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Figure 6 ∣. Association of fetal and adult human cell types with complex traits and diseases.
A) Heatmap showing enrichment of risk variants associated with disease and non-disease 

traits from genome wide association studies in human cell type-resolved cCREs. Cell type-

stratified linkage disequilibrium score regression (LDSC) analysis was performed using 

GWAS summary statistics for 240 phenotypes. Total cCREs identified independently from 

each fetal and adult cell type were used as input for analysis. P-values were corrected 

using the Benjamini Hochberg procedure for multiple tests. FDRs of LDSC coefficient are 

displayed. 66 selected traits were highlighted on the left, with PubMed identifiers (PMIDs) 

or “UKB”, indicating summary statistics downloaded from the UK Biobank, enclosed in 

parentheses. Numerical results are reported in Table S4. B) Dot plots showing significance 

of enrichment for selected traits from panel A within cCREs from 222 fetal and adult cell 

types. Each circle represents a cell type. Large circles pass the cutoff of FDR < 1% at 
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−log10(P) = 3.55. The top 3 most highly associated cell types are labeled for each trait. 

Comprehensive data are provided in Table S4.
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Figure 7 ∣. Systematic interpretation of molecular functions of noncoding risk variants.
A) Schematic illustrating the workflow for annotating fine-mapped noncoding risk variants. 

B) Table showing the number of likely causal variants (PPA > 0.1), number of cCREs 

overlapping likely causal variants, number of cell types in which overlapping cCREs 

are accessible, top cell types variants are enriched in based on LD score regression 

(Bulik-Sullivan et al., 2015), number of predicted target genes for likely causal variants, 

and significantly altered motifs predicted by deltaSVM model trained using SNP-SELEX 

data for 10 examples out of 48 total fine-mapped diseases and traits. Comprehensive 

data are provided in Table S5. C,D) Fine mapping and molecular characterization of an 

ulcerative colitis (UC) risk variant (C) in a gastrointestinal (GI) epithelial cell cCRE and 

an osteoarthritis variant (D) in an immune cell cCRE. Genome browser tracks (GRCh38) 

display ChIP-seq and DNase-seq from ENCODE human colon datasets (C) and primary 

T cell datasets (D) as well as chromatin accessibility profiles for cell types from sci-ATAC-

seq. Chromatin interaction tracks show linkages between the variant-containing cCREs and 

genes from promoter capture Hi-C data via Activity-by-Contact (ABC) (Fulco et al., 2019) 

analysis. All linkages shown have an ABC score > 0.015. PPA: Posterior probability of 

association.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Adult Human Tissue Samples ENTEx Collaboration https://www.encodeproject.org/entex-matrix/?
type=Experiment&status=released&internal_tags=ENTEx

Chemicals, peptides, and recombinant proteins

Tn5 transposase QB3 Macrolab at UC 
Berkeley

N/A

SPRISelect reagent Beckman Coulter Cat# B23319

DRAQ7 Cell Signaling Cat# 7406

NEBNext High-Fidelity PCR Master 
Mix

topNEB Cat# M0541L

LightCycler 480 SYBR Green I 
Master Mix

Roche Cat# 04707516001

Critical commercial assays

gentleMACS Octo Dissociator Miltenyi Cat# 130-095-937

Deposited data

sci-ATAC-seq data of human adult 
tissues

This paper GEO: GSE184462

sci-ATAC-seq data of human lung 
samples

(Wang et al., 2020) dbGaP: phs001961

sci-ATAC-seq data of human heart 
samples

(Hocker et al., 2021) dbGaP: phs002204

sci-ATAC-seq data of human islet 
samples

(Chiou et al., 2021) GEO: GSE160472

sci-ATAC-seq data of human fetal 
tissues

(Domcke et al., 2020) https://descartes.brotmanbaty.org/bbi/human-chromatin-during-
development/
dbGaP: phs002003

raw data used to produce the figures This paper Mendeley Data: 10.17632/yv4fzv6cnm.1

Oligonucleotides

Custom Tagmentation Oligos This paper Table S18

Custom PCR Primers This paper Table S18

Custom Sequencing Primers This paper Table S18

Software and algorithms

BWA version 0.7.17 (Li and Durbin, 2009) https://github.com/lh3/bwa

Samtools version 1.9 (Danecek et al., 2021) https://github.com/samtools/samtools

Taiji version 1.3.0 (Zhang et al., 2019) https://github.com/Taiji-pipeline/Taiji

Python package: taiji-utils version 
0.2.3

This paper https://pypi.org/project/taiji-utils/

liftOver (Kent et al., 2002) http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver

ATACdemultiplex version 0.46.12 This paper https://gitlab.com/Grouumf/ATACdemultiplex/

bedGraphToBigWig (Kent et al., 2002) http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/
bedGraphToBigWig

R version 4.0.5 R Foundation for 
Statistical Computing

https://www.r-project.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Python version 3.8 Python Software 
Foundation

https://www.python.org/

Python package: umap-learn version 
0.5.0

https://pypi.org/project/umap-learn/

Python package: scrublet (Wolock et al., 2019) https://github.com/swolock/scrublet

GREAT version 4.0.4 (McLean et al., 2010) http://great.stanford.edu/public/html/
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