
UCLA
UCLA Previously Published Works

Title
Fluctuation Theorems for Entropy Production and Heat Dissipation in 
Periodically Driven Markov Chains

Permalink
https://escholarship.org/uc/item/7z75481s

Journal
Journal of Statistical Physics: 1, 137(1)

ISSN
1572-9613

Authors
Shargel, Benjamin Hertz
Chou, Tom

Publication Date
2009-10-01

DOI
10.1007/s10955-009-9836-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7z75481s
https://escholarship.org
http://www.cdlib.org/


J Stat Phys (2009) 137: 165–188
DOI 10.1007/s10955-009-9836-8

Fluctuation Theorems for Entropy Production and Heat
Dissipation in Periodically Driven Markov Chains

Benjamin Hertz Shargel · Tom Chou

Received: 29 March 2009 / Accepted: 17 September 2009 / Published online: 26 September 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry
in the rate function of either the time-averaged entropy production or heat dissipation of a
process. Such theorems have been proved for various general classes of continuous-time de-
terministic and stochastic processes, but always under the assumption that the forces driving
the system are time independent, and often relying on the existence of a limiting ergodic
distribution. In this paper we extend the asymptotic fluctuation theorem for the first time
to inhomogeneous continuous-time processes without a stationary distribution, considering
specifically a finite state Markov chain driven by periodic transition rates. We find that for
both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the
rate function is generalized to an analogous relation between the rate functions of the origi-
nal process and its corresponding backward process, in which the trajectory and the driving
protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the
long time average of each quantity in the forward process are exponentially more likely than
spontaneous negative fluctuations in the backward process, and vice-versa, revealing that
the distributions of fluctuations in universes in which time moves forward and backward
are related. As an additional result, the asymptotic time-averaged entropy production is ob-
tained as the integral of a periodic entropy production rate that generalizes the constant rate
pertaining to homogeneous dynamics.

Keywords Fluctuation theorem · Large deviations · Entropy production

1 Introduction

Following the initial computer simulations of Evans et al. [9] and the pioneering paper by
Gallavotti and Cohen [12], the study of fluctuation theorems has led to a fascinating conflu-
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ence of irreversible thermodynamics, stochastic processes and large deviation theory. Unlike
its original role in statistical physics of formalizing the thermodynamic limit for equilibrium
ensembles, the contribution large deviation theory makes in this context is to characterize
the fluctuations in the long time average of the entropy production or heat dissipation of a
stochastic process, which models a physical system whose number of degrees of freedom or
incomplete description makes a deterministic treatment infeasible. To see how this charac-
terization comes about and these disparate fields fit together, consider an stochastic process
ξt over a state space S with law μ(x, t), which for simplicity we take to be either a density or
discrete distribution. The Gibbs entropy of the process, viewed as an ensemble of paths (or
a measure over that ensemble), is − ∫

S
logμ(x, t)μ(dx, t), which leads one to identify the

entropy along a single stochastic trajectory as − logμ(ξt , t) [33]. The time derivative of this
quantity equals the difference between the rate of entropy produced by the stochastic parti-
cle and the rate of entropy, or heat (divided by a nonphysical temperature), dissipated to its
environment. Maes [25] as well as Lebowitz and Spohn [24] further recognized that under
general circumstances the total entropy production equals the logarithmic Radon-Nikodym
derivative of the forward path measure P governing the process with respect to its corre-
sponding backward path measure P B which, under Crooks’ more general definition [4], is
obtained by time-reversing all temporal inhomogeneities driving the process and composing
with a path-reversal transformation. As P B(ω) equals the probability of observing a path ω

unfold in reverse as time runs backward from time t to 0, the entropy production may be
interpreted as the log likelihood of observing ω in a universe in which time runs forward
as opposed to backward. The existence of the derivative (i.e, the equivalence of P and P B )
depends on a condition called at times dynamic reversibility [27] or ergodic consistency [8],
which ensures that the time-reversal of any trajectory realizable in the forward process is
realizable in the backward process.

The Radon-Nikodym definition for entropy production was later justified thoroughly by
Maes and collaborators for a wide range of deterministic and stochastic processes [26, 27].
It is nearly identical to that of the dissipation function Ω in deterministic mechanics [8, 34],
except that the forward and backward measures in that case put full mass on the constant
energy manifold of trajectories obeying Hamilton’s equations. The logarithmic derivative
is nonzero for nonstationary processes, which model physical systems evolving far from
equilibrium, as well as for stationary ones violating detailed balance, modeling systems
in a nonequilibrium steady state. Its expectation under P equals the relative entropy of P

with respect to P B , which is always nonnegative, consistent with a weak reading of the
second law of thermodynamics. The time-extensive microscopic heat dissipation Lebowitz
and Spohn termed an action functional, a quantity that is equal to the above logarithmic
derivative up to the difference of boundary terms − log μ(ξt ,t)

μ(ξ0,0)
, precisely the net change in

system entropy.
Recent work has exploited the thermodynamic framework above by proving that either

the time-averaged entropy production or heat dissipation satisfies a large deviation princi-
ple, whose corresponding rate function satisfies the same symmetry as the one proved by
Gallavotti and Cohen [12] to hold for the time-averaged phase space contraction of chaotic
dynamical systems. We refer to this as an asymptotic fluctuation theorem (AFT) or, simply,
a fluctuation theorem, and distinguish it from transient fluctuation theorems, which hold at
finite times but are not large deviation results. Kurchan first proved an AFT [21] for the
entropy production of Langevin processes under the assumption of nondegeneracy for the
maximum eigenvalue of their evolution operator, and Lebowitz and Spohn then proved it
[24] for the heat dissipation of time-homogeneous Markov chains and Itô diffusions, whose
assumed limiting stationary distribution guarantees this condition. The cases of continuous
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and discrete time Markov chains were handled in a rigorous fashion by Jiang et al. [18,
19], and Ge et al. extended the discrete time case to include time-periodic inhomogeneities
in the transition matrix [16]. Maes took a different approach from the others, studying the
dynamics of finite volume Gibbs states on Z

d under general space-time potentials [25].
Interestingly, it has been shown that unlike their entropy production, the heat dissipation

of Langevin processes does not satisfy an AFT, at least in the conventional sense [39, 40],
displaying importance of the boundary terms distinguishing these quantities. Along similar
lines, Rákos and Harris have recently shown [30] that infinite state spaces can result in the
divergence of the boundary terms, causing a breakdown of the Gallavotti-Cohen symmetry.
It is unclear, however, whether this breakdown, which arises from the failure of the Hamil-
tonian operator to satisfy Kurchan’s nondegeneracy requirement, is really a function of the
state space’s cardinality as much as its non-compactness (the state space of a Markov chain
being effectively endowed with the discrete metric). In the case of deterministic dynamics,
Bonetto et al. have argued that apparent violations of AFTs by particle systems with singu-
larities in the interparticle potential (owing, for example, to hard cores) can be corrected by
subtracting “unphysical” singular terms from the phase space contraction rate [2].

While so much effort recently has gone into circumscribing the range of applicability
of the AFT, the purpose of our present work is to extend it for the first time to the case of
inhomogeneous, continuous time dynamics. We consider in particular a Markov chain on
a finite state space, whose infinitesimal generator is a continuous and periodic function of
time but only required to be irreducible at a single moment. The finiteness of the state space
ensures that the complexity of the model is isolated within the time dimension, avoiding
in particular the issues raised in [30]. Such a process can be used to model phenomena as
diverse as the fluctuation-driven transport of molecular motors [1], stochastic resonance in
lasers and neuron firing [13], quasienergy banding in periodically-driven mesoscopic elec-
tric circuits [3], and seasonality in population dynamics [31], as well as periodically-driven
deterministic processes amenable to coarse-graining. Continuous time models of all of these
phenomena were previously outside the scope of AFTs, all of which had been proved un-
der the assumption of homogeneous dynamics, because they rely fundamentally on a time-
dependent protocol driving the process. Indeed, few systems in nature operate within a sta-
tic environment, and so to gain true scientific relevance AFTs must ultimately accommodate
time-inhomogeneities. While our assumption of periodicity remains a restriction to potential
applications, we believe that having laid out in this paper the mathematical issues involved
in introducing time-dependent driving, our arguments can serve as a blueprint for future
work that seeks to loosen this restriction.

Whereas the authors mentioned above have proved AFTs for either the action functional
or entropy production of a process alone, we prove for both, finding that the absence of
boundary terms in the action functional simplifies the derivation of its free energy but com-
plicates that of its fluctuation symmetry. The fluctuation symmetry for both quantities takes
the form I (z)−IB(−z)=−z, where I is the rate function under the forward process and IB

under the backward process, which reduces to the usual Gallavotti-Cohen symmetry when
the driving protocol is symmetric inside every driving period and, hence, has no temporal
orientation. Its interpretation is that spontaneous positive fluctuations in the long time aver-
age of each quantity in one process is exponentially more likely than spontaneous negative
fluctuations in the other, a relation that is symmetric with respect to the two processes.

We also derive the almost sure asymptotic time-averaged entropy production as the in-
tegral

∫ T

0 ep(s) ds, where ep(s) is a T -periodic instantaneous entropy production rate, with
T ∈ R

+ the period of the driving. This expression generalizes existing ones known for ho-
mogeneous [14, 18] and periodically inhomogeneous, but discrete time [16], chains. Our
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proofs are guided strategically by those of Lebowitz and Spohn, but, as discussed above,
the inhomogeneity of the process necessitates more involved, and rigorous, arguments. The
virtue of this is that our proofs, unlike those of Leibowitz and Spohn, do not rely explicitly
on the existence of a stationary distribution for the process (indeed, only a periodic quasi-
stationary distribution exists), raising the open question of how insensitive the existence of
an AFT is to the details of the asymptotic regime of the process. Put another way, how far
can our assumption of periodicity on the driving rates be relaxed but still guarentee an AFT?
We address this question in the final section of the paper, proving that uniform continuity and
boundedness of the rates alone, which are implied by the assumptions described in Sect. 2,
are not sufficient. This shows that any minimal set of conditions on the rates are closer to
those assumed in this paper than one might initially suspect.

A number of theoretical and experimental results already exist for periodically-driven
stochastic processes. Integral and transient fluctuation theorems have been proved for
periodically-driven two-state Markov chains [32, 37], quantum systems [22], as well as clas-
sical harmonic oscillators modeled by a Langevin process [20, 35]. It must be emphasized
that these studies differ from ours because they do not prove large deviations results. As the
technicalities we deal with in this paper reveal, the transition from transient to asymptotic
fluctuation theorem, even for processes as simple as finite state Markov chains, is not an
automatic or obvious one, but depends on the details of the driving protocol.

Similarly, in spite of the close relation between discrete and continuous time Markov
chains, our results cannot be obtained from those of Ge et al. The set of transition probabil-
ities in their case is finite, and the uniformity of the waiting times between jumps enables
the inhomogeneous chain on S to be re-represented as a homogeneous chain on the larger
(but still finite) space ST ′ , where T ′ ∈N is the period of the transition probabilities. Our set
of transition rates is uncountable, on the contrary, and is sampled randomly by the process,
ensuring no convenient reduction to a homogeneous problem. It is possible, of course, that
with the proper scaling of the transition probabilities (under which the periodicity T ′ would
diverge), the continuous time path measure may be obtained as the weak limit of the dis-
crete time path measures, analogous to Donsker’s theorem for Brownian motion. However,
as has been mentioned, the rate functions for the heat dissipation and entropy production of
the continuous process do not simply inherit the fluctuation symmetry of their discrete ap-
proximants. Instead, the internal symmetry of each rate function is replaced by a symmetry
between it and its counterpart under the corresponding backward process.

The rest of the paper is organized as follows. We begin by making the appropriate de-
finitions, and then derive a backward equation for the moment generating function of the
action functional, whose fundamental solution we obtain using both Floquet theory and the
time-ordered exponential operator. This enables us to identify the free energy of the action
functional as the nondegenerate principal Floquet eigenvalue of the fundamental solution,
thereby proving the existence and strict convexity of its Legendre-Fenchel transform, the
rate function. We then show that the free energies of the action functional under the forward
and backward path measures satisfy a symmetry relation analogous to the one found by
Lebowitz and Spohn in the case of time-homogeneous dynamics, implying the fluctuation
theorem symmetry between the forward and backward rate functions. All of these results
are subsequently proved for the entropy production in place of the action functional, along
with the consequent generalization of the second law of thermodynamics and a derivation of
the asymptotic time-averaged entropy production and associated production rate. We con-
clude with a look beyond periodic driving, considering the case of uniformly continuous and
bounded rates.
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2 Definitions and Setup

Let (Xt )t≥0 be a continuous time Markov chain on the probability space (Ω, F ,P ), where
Ω =D(0,∞) is the space of càdlàg paths (i.e., right-continuous with left limits) over a fi-
nite state space, which, without loss of generality, we take to be {1,2, . . . ,N}, and P is the
Markov path measure with initial distribution π . The process generates the right-continuous
filtration Ft =⋂

s>t σ (Xr,0 ≤ r ≤ s), representing information known about the process
up to and infinitesimally beyond time t , with Ft ↑ F , and evolves according to transition
rates kij (t), such that the probability of jumping from state i to j within a time window
[t, t + τ ] equals kij (t)τ + o(τ). These rates are assumed to be such that the infinitesimal
generator A(t) = (kij (t))

N
i,j=1 is continuous ∀t ≥ 0, T -periodic, and irreducible for some

t∗ ∈ [0, T ], but whose adjacency graph, representing which states currently communicate,
may otherwise change over time and become reducible. We further require that the rates sat-
isfy the so-called dynamic reversibility [27] or ergodic consistency condition [8], whereby
kij (t) > 0 ⇐⇒ kji(t) > 0, which again ensures that the time-reversal of any realizable tra-
jectory in the forward process is realizable in the backward one. The law of the process,
μ(i, t)= P (ω ∈Ω :Xt(ω)= i), satisfies the forward Kolmogorov equation [24]

∂μ

∂t
=A∗(t)μ (1)

with initial condition μ(·,0) = π , where ·∗ denotes the adjoint. We take (τi)i≥1 to be the
random jumping times of the process and σi =Xτi , with σ0 =X0.

Let us now define the objects we will primarily be concerned with, the entropy production

S(t0, t)= log
dP[t0,t]

dP B
[0,t−t0]

,

equal to the logarithmic Radon-Nikodym derivative between the forward and backward path
measures (to be discussed shortly), and the action functional

W(t0, t)= S(t0, t)− log
μ(Xt0 , t0)

μ(Xt , t)
=

∑

t0<τi<t

log
kσi−1σi

(τi)

kσiσi−1(τi)
(2)

representing heat dissipation, where log(μ(Xt0 , t0)/μ(Xt , t)) equals the net difference
in system entropy between times t0 and t . (μ(Xs, s) here should be interpreted as
μ(i, s)|i=Xs(ω).) Exponential factors representing holding times between jumps have been
canceled on the RHS of (2) (see [15, 17]); a full representation of the forward path density
can be found in (29) in Sect. 5. For a comprehensive justification of the definitions used
above for entropy production and heat dissipation, see [17, 19, 26, 27, 33].

P[t0,t] above is our Markov path measure restricted to [t0, t] and P B
[0,t−t0] is the correspond-

ing backward path measure, defined as follows. Let P−[0,t−t0] be a measure obtained from
P[t0,t] by setting its initial distribution μ−(·,0)= μ(·, t) and its rates k−ij (s)= kij (t − s) for
0≤ s ≤ t − t0, and let r(ω)s = lims′↑t−s ωs′ be the path-reversal transformation, with ω ∈Ω

a sample path. We then define P B
[0,t−t0] ≡ P−[0,t−t0] ◦ r . Note that r is involutive on Ω , pre-

serving the càdlàg property of paths, and that the law of the backward process, μB(·, s),
defined for 0 ≤ s ≤ t − t0, is implicitly a function of t due to r . It satisfies the final condi-
tion μB(·, t)= μ−(·,0)= μ(·, t). Note crucially that the backward process is not a Markov
process with respect to the filtration (Fs)0≤s≤t . Indeed, μB(·,0)= μ−(·, t), and so the small-
est σ -algebra that the event {X0 = i} is measurable with respect to under this process is Ft . It
is, however, Markovian with respect to the backward time filtration Gt =⋂

s<t σ (Xr, s ≤ r).
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Reversing both the path and the rates in the backward path measure ensures that the tran-
sitions of a reversed path in the P−-governed process occur under the same local conditions
(i.e., instantaneous rates) as those of the original path do in the forward process. Intuitively,
if P[0,t](ω) is the probability of observing the trajectory ω unfold as time runs forward from
0 to t , then P B

[0,t](ω) is the probability of observing that trajectory unfold in reverse as time
runs backward from t to 0, with the filtration Gt representing the past. From an Archimedian
perspective “outside of time” [28], neither direction of time should be preferred a priori.
S(0, t) is therefore truly a measure of irreversibility: Thinking of ω as a spacetime curve
instead of an oriented trajectory, S(0, t)(ω) gives the log likelihood of ω being realized in a
universe where time runs forward as opposed one in which time runs backward, with the sign
of its expectation—dependent on which measure we integrate with respect to—indicating
the overall direction of time’s arrow.

It has been argued recently [10], we should note, that the expectation of S(0, t), the
mutual entropy H(P[0,t],P B

[0,t]), is too sensitive to rare irreversible events to be a use-
ful measure of irreversibility, and that the quantity A = 1

2 H(P[0,t], 1
2 (P[0,t] + P B

[0,t])) +
1
2 H(P B

[0,t],
1
2 (P[0,t] + P B

[0,t])) should be used instead. The “asymmetry” A equals the amount
of information gained about the direction of time’s arrow from watching one realization of
the process.

The first theorem that we will prove is the existence and differentiability of the free
energy function of the action functional W(0, t),

cW (λ)= lim
t→∞

1

t
log Eπ,0

(
eλW(0,t)

)
, (3)

which guarantees a large deviation property for W(0, t)/t with rate function IW (z) =
supλ∈R

{λz− cW (λ)}. Here Eν,t0(·) denotes expectation conditioned on the chain having dis-
tribution ν at time t0. Our second main result is the symmetry relation cW (λ)= cB

W (−(1+λ))

between it and the free energy of the action functional under the backward process,

cB
W (λ)= lim

t→∞
1

t
log E

B
μ(·,t),t

(
eλWB(0,t)

)
, (4)

which reduces to the usual Gallavotti-Cohen symmetry when the generator is a symmet-
ric function of time within each driving period, in which case the backward path measure
reduces to the path-reversed measure P[0,t] ◦ r considered in [18, 19, 24, 26, 27]. (Note
that even in this scenario these authors’ results do not apply, because the dynamics remain
time-dependent and non-stationary.) See [32] for a discussion in the context of transient
fluctuation theorems.

In the definition (4), the expectation is taken with respect to P B
[0,t], and WB(0, t) repre-

sents the heat dissipated by a process that traces the curve ω backward through time. Since
each transition σi → σi−1 at time τi increases WB(0, t) by logkσiσi−1(τi)/kσi−1σi

(τi), we
simply have WB(0, t) = −W(0, t). Similarly, the entropy production under the backward
process SB(0, t) = logdP B

[0,t]/dP[0,t] = −S(0, t). The key point is that while W and WB

(resp. S and SB ) are distinct functions, when evaluated under P[0,t] and P B
[0,t], respectively,

they represent the same physical quantity. For additional discussion of this and the relation
between forward and backward measures in general, see Sect. 3.1 of [17].

3 Large Deviations of Heat Dissipation

To prove the existence of the limit (3), we first derive a backward equation for the
time-dependent moment generating function uλ(t0, t), whose elements uλ(i, t0, t) equal
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Ei,t0 [eλW(t0,t)], where the expectation is conditioned on the process being at state i at time t0.
For notational economy we define Λλ(t0, t) = eλW(t0,t) and w(i, j, t) = log(kij (t)/kji(t)).
As a general rule we use λ as a subscript in order to emphasize its distinction from time
parameters, with the exception of the free energy. Finally, we use the convention that all
matrix inequalities, denoted by �, and limits are defined component-wise.

Proposition 3.1 uλ(t0, t) satisfies the Kolmogorov backward equation

∂

∂t0
uλ(t0, t)=−Lλ(t0)uλ(t0, t) (5)

where

Lλ(t0)i,j =
{

kij (t0)
1+λkji(t0)

−λ, i �= j

−Ki(t0), i = j,
(6)

and Ki(t0)=∑N

j �=i kij (t0) is the escape rate from state i at time t0.

Proof Because the jump times of a Markov chain are isolated almost surely and its paths
are càdlàg, we interpret the partial derivative in (5) to be the left derivative: ∂

∂t0
uλ(t0, t) =

limh→0+ uλ(t0,t)−uλ(t0−h,t)

h
. Evaluating the second term in the numerator is the crux of the

problem. We begin with

lim
h→0+

uλ(i, t0 − h, t) = lim
h→0+

Ei,t0−h[Λλ(t0 − h, t)]
= lim

h→0+
Ei,t0−h[Ei,t0−h(Λλ(t0 − h, t0)Λλ(t0+, t)|Ft0)]

= lim
h→0+

Ei,t0−h[Λλ(t0 − h, t0)Ei,t0−h(Λλ(t0+, t)|Ft0)]
= lim

h→0+
Ei,t0−h[Λλ(t0 − h, t0)EXt0 ,t0(Λλ(t0+, t)].

Here the limit t0+ is taken before the limit h ↓ 0, and in the last line we have used the
Markov property inherited by Λλ(t0, t) from Xt . Since t0 is not an accumulation point for
jumps almost surely and we are operating in the small h limit, at most one jump can occur
between t0 − h and t0. The last line therefore becomes

lim
h→0+

Ei,t0−h

[
eλw(i,Xt0 ,t0)

EXt0 ,t0

(
Λλ(t0+, t)

)]

= lim
h→0+

N∑

j=1

Ei,t0−h

[
eλw(i,Xt0 ,t0)

EXt0 ,t0

(
Λλ(t0+, t)

)
1Xt0=j

]

= lim
h→0+

N∑

j=1

eλw(i,j,t0)
Ei,t0−h

[
Ej,t0

(
Λλ(t0+, t)

)
1Xt0=j

]
,

with 1A denoting the indicator of the event A. Regardless of whether a jump occurs at t0
(that is, Xt0 = j �= i), no jumps may occur during a sufficiently small period after t0. The
inner expectation therefore equals uλ(j, t0, t) and our limit is

lim
h→0+

N∑

j=1

eλw(i,j,t0)uλ(j, t0, t)Ei,t0−h[1Xt0=j ]
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= lim
h→0+

N∑

j=1

eλw(i,j,t0)uλ(j, t0, t)p(i, j, t0 − h, t0), (7)

where p(i, j, t0 − h, t) is the transition probability of being at j at time t0 given having
been at i at t0 − h. For i �= j this equals kij (t0 − h)h+ o(h) and, for i = j , it equals 1−
Ki(t0 − h)h+ o(h), with Ki defined in the statement of the Proposition. We therefore have,
by continuity of the kij ,

lim
h→0+

uλ(i, t0 − h, t) = lim
h→0+

N∑

j �=i

(kij (t0)h+ o(h))eλw(i,j,t0)uλ(j, t0, t)

+ (1−Ki(t0)h+ o(h))uλ(i, t0, t)

and the component-wise derivative becomes

∂

∂t0
uλ(i, t0, t) = lim

h→0+
1

h
[uλ(i, t0, t)− uλ(i, t0 − h, t)]

= −
[ N∑

j �=i

kij (t0)
1+λkji(t0)

−λuλ(j, t0, t)−Ki(t0)uλ(i, t0, t)

]

.

Collecting components into a vector equation, we obtain (5). �

Before stating the first main theorem, we introduce a concept from quantum field theory
that will be useful. For a family of operators {O(s)}s∈R, define the time-ordering operator T
[36] by T

∏n

j=0 O(sj )=O(sn) · · ·O(s1)O(s0), where s0 < · · ·< sn is any finite sequence in
R. Now, given t0 < t1, we define the time-ordered exponential

T
(

exp
∫ t1

t0

O(s)ds

)

= lim
n→∞ exp

(
t1 − t0

n
O(sn

n−1)

)

· · · exp

(
t1 − t0

n
O(sn

1 )

)

× exp

(
t1 − t0

n
O(sn

0 )

)

when the limit exists, where {sn
j = t0 + j (t1 − t0)/n}nj=0 is a sequence of uniform partitions

of [t0, t1].
Recall that a matrix is called quasipositive if its entries are nonnegative, strictly on the

diagonal. Our results rely on the fact that the time-ordered exponential operator, like the
usual exponential operator, transforms quasipositivity into strict positivity. The proof re-
quires some clever bounding arguments.

Lemma 3.2 Let 0 ≤ t0 < t1 and L : [0,∞)→MN×N(R) be a continuous function whose
values are quasipositive ∀t ≥ 0 and irreducible for some t∗ ∈ (t0, t1). Then the matrix
T (exp

∫ t1
t0

L(t)dt) has strictly positive entries.

Proof Without loss of generality, we take t0 = 0, the length of the interval being the only
relevant factor. By uniform continuity of L(t) on [0, t1], choose supt∈[0,t1],1≤i≤N L(t)−ii <

M <∞, where the superscript denotes the negative part of the number, so that E(t) =
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L(t) +MI has strictly positive diagonal entries and nonnegative off-diagonal ones, ∀t ∈
[0, t1]. Employing the partitions {sn

j } defined above, we have

exp

(
t1

n
L(sn

n−1)

)

· · · exp

(
t1

n
L(sn

0 )

)

= exp

(
t1

n
L(sn

n−1)+
Mt1

n
I − Mt1

n
I

)

· · · exp

(
t1

n
L(sn

0 )+ Mt1

n
I − Mt1

n
I

)

= e−Mt1 exp

(
t1

n
E(sn

n−1)

)

· · · exp

(
t1

n
E(sn

0 )

)

� e−Mt1

(

I + t1

n
E(sn

n−1)

)

· · ·
(

I + t1

n
E(sn

0 )

)

. (8)

By irreducibility of L(t∗), let 0 < α < min1≤i,j≤N(E(t∗)N)i,j , and define Eα to be the N×N

matrix whose entries are all α. By continuity of E(t), choose δ small enough so that ∀t∗ <

u1, . . . , uN < t∗ + δ, E(u1) · · ·E(uN)�Eα . Finally, let k = �nt∗/t1� and �= �n(t∗ + δ)/t1�
denote the index of the first partition point after t∗ and the last one before t∗+δ, respectively,
so that �− k ≥ nδ/t1 − 2. We can then rewrite (8) as

e−Ms1

(

I + t1

n
E(sn

n−1)

)

· · ·
(

I + t1

n
E(sn

�+1)

)(

I + t1

n
E(sn

� )

)

· · ·
(

I + t1

n
E(sn

k )

)

×
(

I + t1

n
E(sn

k−1)

)

· · ·
(

I + t1

n
E(sn

0 )

)

� e−Mt1

(

I + t1

n
E(sn

� )

)

· · ·
(

I + t1

n
E(sn

k )

)

� e−Mt1

(
�− k

N

)(
t1

n

)N

Eα

� e−Mt1
(nδ/t1 − 2) · · · (nδ/t1 − (N + 1))

(n/t1)N

1

N !Eα

n→∞−−−→ e−Mt1
δN

N !Eα.

Therefore, choosing 0 < β < e−Mt1δNα/N !, we have that the entries of T (exp
∫ t1

0 L(t)dt)

are bounded below by β . �

Note that by the irreducibility and ergodic consistency conditions on A(t), Lλ(t) is ir-
reducible at t∗, and, hence, the lemma applies to it. We recall that our assumptions on the
generator A(t) are sufficiently weak that the rates kij (t) may drop down to zero, thereby
changing the structure of its adjacency graph and possibly rendering it reducible. Irreducibil-
ity of A(t) over an arbitrarily small interval is sufficient, nevertheless, for all states of the
chain to communicate after t∗.

Theorem 3.3 Given the periodicity, continuity, irreducibility and ergodic consistency con-
ditions on the generator A(t), the free energy cW (λ) exists, is continuously differentiable
∀λ ∈R, and is independent of π .

Proof Rewriting the free energy as limt→∞ 1
t

log〈π,uλ(0, t)〉, where 〈·〉 denotes the inner-
product on R

N, our strategy is to represent uλ(0, t) in terms of the Floquet fundamental
solution to (5), whose associated flow operator we will show has strictly positive entries and
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whose periodic component can be bounded so as not to affect the asymptotics. The Perron-
Frobenius theorem will then allow us to identify the free energy as the principal Floquet
eigenvalue of the fundamental solution, which depends smoothly on λ.

We begin by noticing that in our backward equation, uλ(t0, t) evolves according to
the matrix −Lλ(t0), whose off-diagonal terms are non-positive and whose corresponding
flow will therefore not have exclusively positive entries. Instead of integrating forward, we
therefore elect to change variables and integrate back to uλ(0, t) from the known value
uλ(t, t) ≡ (1 1 · · ·1)∗. To wit, let τ = t − t0, and define ũλ(τ, t) = uλ(t − τ, t) = uλ(t0, t)

and similarly L̃λ(τ )= Lλ(t0). Then

∂

∂τ
ũλ(τ, t)=− ∂

∂t0
uλ(t0, t)= Lλ(t0)uλ(t0, t)= L̃λ(τ )ũλ(τ, t). (9)

Recall that the fundamental solution to (9) with initial condition ũλ(0, t)= (1 1 · · ·1)∗ is
a square matrix whose N columns are N linearly independent solutions to the ODE. The
Floquet theorem [41] guarantees that by periodicity of L̃λ(τ ), this fundamental solution
has the form Φλ(τ, t) = eτHλ(t)Pλ(τ, t), where Pλ is T -periodic and continuous in τ and
Hλ(t) is complex. We choose in particular the principle fundamental solution, which satisfies
Φλ(0, t)= I , so that ũλ(τ, t)=Φλ(τ, t)ũλ(0, t). This theorem is derived by first noting that
by periodicity of L̃λ, if Φλ(τ, t) is a fundamental solution of (9), then so is Φλ(τ+T , t). This
implies that the two matrices are linearly dependent, and hence there exists a nonsingular
matrix C(t) such that Φλ(τ + T , t) = C(t)Φλ(τ, t). Hλ(t) is defined as 1

T
logC(t), since

nonsingular matrices always possess a logarithm. We may therefore identify eT Hλ(t) as the
flow operator that evolves solutions T units of time into the future, which is independent of
the current time τ . From (9), it can then be represented as

eT Hλ(t) = T
(

exp
∫ τ+T

τ

L̃λ(s)ds

)

, ∀0≤ τ ≤ t − T , (10)

which, by the lemma, has strictly positive entries. A second dividend of this representation
is that because the RHS does not depend on t , neither does Hλ.

By the Perron-Frobenius theorem, eT Hλ possesses a nondegenerate positive, maximum
eigenvalue eT ϑ(λ) and a positive eigenvector vλ spanning its corresponding one-dimensional
eigenspace. This makes ϑ(λ) the nondegenerate principal Floquet eigenvalue of the funda-
mental solution Φλ, which, as a simple root of the characteristic equation of Hλ, is continu-
ously differentiable with respect to λ by the implicit function theorem [23]. Evaluating the
free energy function,

cW (λ) = lim
t→∞

1

t
log Eπ,0

(
eλW(0,t)

)= lim
t→∞

1

t
log〈π,uλ(0, t)〉

= lim
t→∞

1

t
log〈π, ũλ(t, t)〉 = lim

t→∞
1

t
log〈π, etHλPλ(t, t)(1 1 · · ·1)∗〉

= lim
t→∞

1

t
log

(〈π,vλ〉etϑ(λ)〈vλ,Pλ(t, t)(1 1 · · ·1)∗〉)

= ϑ(λ)+ lim
t→∞

1

t
log〈vλ,Pλ(t, t)(1 1 · · ·1)∗〉 (11)

where we have used the uniqueness of the maximal eigenvalue and then the positivity of vλ

to eliminate the dependence on π .
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Our final task is to show the remaining limit vanishes by bounding the quadratic form
Q(t) = 〈vλ,Pλ(t, t)(1 1 · · ·1)∗〉 between positive numbers, uniformly in t . To achieve this,
we again exploit the time-ordered exponential representation of the flow. Taking t =mT +r ,
where 0≤ r < T , by the factoring property of such operators [36]

emT HλerHλPλ(t, t) = T
(

exp
∫ t

0
L̃λ(s)ds

)

= T
(

exp
∫ t

r

L̃λ(s)ds

)

T
(

exp
∫ r

0
L̃λ(s)ds

)

= emT Hλ T
(

exp
∫ r

0
L̃λ(s)ds

)

.

Multiplying by e−rHλe−mT Hλ on the left, we have

Pλ(t, t)= e−rHλ T
(

exp
∫ r

0
L̃λ(s)ds

)

. (12)

The presence of r but not t on the RHS reveals that P̄λ(t) ≡ Pλ(t, t) is T -periodic, and
the form of (12) ensures that it is uniformly continuous on its periodic domain. We may
conclude from this that the matrix norm of Pλ(t, t) is bounded in t , and so the quadratic
form is bounded above.

Because we may have r < t∗, the time at which the generator is irreducible, the lemma
does not guarantee for us that T (exp

∫ r

0 L̃λ(s)ds) has strictly positive entries. However, it
is straightforward to see by adding and subtracting M > sups∈[0,r],1≤i≤N L̃λ(s)

−
ii times the

identity from L̃λ(s) that this matrix exponential does have nonnegative entries, strictly on
the diagonal. From this we may conclude that

wλ ≡ T
(

exp
∫ r

0
L̃λ(s)ds

)

(1 1 · · ·1)∗ � 0

with wλ �= 0. Taking Rv⊥λ to be the projection operator onto the orthogonal subspace of vλ,
by (12),

Q(t) = 〈vλ,Pλ(t, t)(1 1 · · ·1)∗〉

= 〈vλ, e
−rHλ T

(

exp
∫ r

0
L̃λ(s)ds

)

(1 1 · · ·1)∗〉

= 〈vλ, e
−rHλwλ〉 = 〈vλ, e

−rHλ(〈vλ,wλ〉vλ +Rv⊥λ wλ)〉 = e−rϑ(λ)〈vλ,wλ〉2 > 0.

This is our uniform lower bound. �

Remark 3.4 One novelty of the proof of Theorem 3.3 vis-á-vis the proofs of large deviation
principles by Lebowitz and Spohn [24], Jiang et al. [18] and others is that it does not rely on
the existence of an ergodic distribution for the dynamics. Indeed, no stationary distribution
exists. By (1), μ(·, t) evolves according to the periodic matrix A∗(t), and so by the Floquet
theorem can be represented as μ(·, t)= etBP (t)π , where P (t) is T -periodic. Because A∗(t)
is quasipositive always and irreducible at t∗, by Lemma 3.2 and an argument analogous
to that in the proof of Theorem 3.3, etB has strictly positive entries and thus a Perron-
Frobenius eigenvalue. This eigenvalue must be 1, otherwise probability conservation would
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be violated. Taking v to be the corresponding positive eigenvector and Rv⊥ the projection
onto the subspace of R

N orthogonal to it,

μ(·, t)= etBP (t)π = 〈P (t)π, v〉v + etBRv⊥P (t)π ∼ 〈P (t)π, v〉v. (13)

We see that the asymptotic limit of any initial distribution π is T -periodic through P (t), and
therefore that no stationary distribution exists. As proved in Theorem 5.2, this asymptotic
limit takes the place of the usual stationary distribution in the expression for the instanta-
neous entropy production rate.

Corollary 3.5 The time-averaged action functional W(0, t)/t satisfies a large deviation
principle with continuous and strictly convex good rate function

IW (z)= sup
λ∈R

{λz− cW (λ)}. (14)

Proof Existence and differentiability of cW (λ) everywhere imply, by the Gärtner-Ellis the-
orem [5], that W(0, t)/t satisfies a large deviation principle with rate function IW (z) =
supλ∈R

{λz− cW (λ)}. Strict convexity of IW (z) can be deduced by contradiction. If the con-
vex envelope of IW (z) (the supremum of all convex functions minorizing it) contained an
interval of strict linearity with slope λ0, then the free energy’s derivative would jump at λ0

by Legendre duality, violating its continuity (see [38] for an intuitive discussion).
Continuity requires a more detailed argument. Differentiability of cW (λ) implies that

(14) can be computed from calculus: IW (z) = λzz − cW (λz), where λz is defined implic-
itly through c′W(λz)= z. As the free energy may not be strictly convex, however, λz is not
necessarily unique. The set {λz ∈ R : c′W(λz) = z} is in fact a closed interval [λmin

z , λmax
z ],

which reduces to a single point only for z corresponding to non-linear portions of cW (λ).
The RHS of (14) achieves its maximum at every λz in this interval, including, in particular,
at the endpoints.

Let us now consider a sequence zn converging to z. We then have lim infn→∞ λzn ≥ λmin
z

and lim supn→∞ λzn ≤ λmax
z , which, by continuity of cW (λ), implies that

lim sup
n→∞

IW (zn) = lim sup
n→∞

λznzn − cW (λzn)≤ IW (z)

≤ lim inf
n→∞ λznzn − cW (λzn)= lim inf

n→∞ IW (zn),

or limn→∞ IW (zn)= IW (z).
Finally, recall that IW (z) is called a good rate function if all sets of the form {z ∈ R :

IW (z)≤ a} are compact. This is implied directly by convexity and continuity. �

Remark 3.6 Differentiability of the free energy is crucial in the proof of the corollary. With-
out it, IW (z) may be non-convex, with the Legendre-Fenchel transform of cW (λ) yielding
only its convex envelope. In such situations there exists no general method for accessing the
rate function. This breakdown in Legendre duality has been proved [7] to be a necessary and
sufficient condition for the nonequivalence of the canonical and microcanonical ensembles
in statistical mechanics, whereby mean energies equal to slopes not present in the convex
free energy profile (due to a nonanalyticity) cannot be realized in the canonical ensem-
ble. Even given continuous differentiability of the free energy, however, we cannot improve
upon the continuity result for the rate function to conclude differentiability. The reason is
that the free energy may contain linear parts, each of which creates a nonanalyticity in the



Fluctuation Theorems for Entropy Production and Heat Dissipation 177

rate function. This is why we speak of the two as being related by the Legendre-Fenchel
transform instead of the better known Legendre transform, which is defined only between
differentiable functions.

We now prove our primary result for the action functional.

Theorem 3.7 The free energy cB
W (λ) exists, is continuously differentiable ∀λ ∈R and satis-

fies, together with cW (λ), the symmetry relation

cW (λ)= cB
W (−(1+ λ)), (15)

implying the fluctuation theorem

IW (z)− IB
W (−z)=−z, (16)

where IB
W is the continuous and strictly convex good rate function of the action functional

under the backward process.

Proof Obtaining an explicit representation of the free energy cB
W (λ) is simply a matter of

bootstrapping from the work we did in Proposition 3.1 and Theorem 3.3. It is implied by
the discussion in Sect. 2 that if we reverse time and the orientation of the driving rates
kij (t), then the forward process becomes the backward process up to boundary conditions.
In particular, the backward action functional WB(t0, t)(ω) equals the heat accumulated by
traversing the path ω backward from time t − t0 to time 0. This immediately implies

∂

∂t0
uB

λ (t0, t)=−Lλ(t − t0)u
B
λ (t0, t)

for the moment generating function uB
λ (t0, t), with components uB

λ (i, t0, t)= E
B
i,t0
[eλWB(t0,t)].

Intuitively, increasing t0 still decreases the moment generating function, only in the back-
ward process the increments that are lost correspond to jumps at t − t0. Were we to recapitu-
late the proof of Proposition 3.1, the filtration Ft used in the conditional expectations would
be replaced by Gt , representing equivalently the future of the forward process and the past
of the backward one. Making the change of variables τ = t − t0, with ũB

λ (τ, t)= uB
λ (t0, t),

we obtain

∂

∂τ
ũB

λ (τ, t)= Łλ(τ )ũB
λ (τ, t). (17)

The solution to this equation can be represented as ũB
λ (τ, t) = eτHB

λ P B
λ (τ, t)(1 1 · · ·1)∗ for

some T -periodic P B
λ and real HB

λ , whose matrix exponential has strictly positive entries.
Writing the free energy as cB

W (λ) = limt→∞ 1
t

log〈μ(·, t), ũB
λ (t, t)〉, by a chain of equali-

ties similar to (11) and the ensuing argument, cB
W (λ) equals the continuously differentiable

Perron-Frobenius eigenvalue of HB
λ . The desired properties for its rate function IB

W (z) then
follow from the arguments in Corollary 3.5.

We now use the symmetry relation L∗−(1+λ) = Lλ (and L̃∗−(1+λ) = L̃λ) observed from (6)
to prove that

(HB
−(1+λ))

∗ =Hλ. (18)
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Indeed, as eT HB
λ is a flow operator, mapping solutions of (17) T units of time forward (in

the direction of increasing τ ), irrespective of the current time, it has the representation

eT HB
λ = T

(

exp
∫ τ+T

τ

Lλ(s)ds

)

, ∀0≤ τ ≤ t − T .

Fixing one such τ and letting {sn
j }0≤j≤n be the sequence of uniform partitions of [τ, τ + T ]

with mesh size T/n, we then have

e
T (HB−(1+λ)

)∗ =
(
e

T HB−(1+λ)

)∗

= lim
n→∞

{

exp

(
T

n
L−(1+λ)(s

n
n−1)

)

· · · exp

(
T

n
L−(1+λ)(s

n
1 )

)

exp

(
T

n
L−(1+λ)(s

n
0 )

)}∗

= lim
n→∞ exp

(
T

n
Lλ(s

n
0 )

)

exp

(
T

n
Lλ(s

n
1 )

)

· · · exp

(
T

n
Lλ(s

n
n−1)

)

= lim
n→∞ exp

(
T

n
L̃λ(t − sn

0 )

)

exp

(
T

n
L̃λ(t − sn

1 )

)

· · · exp

(
T

n
L̃λ(t − sn

n−1)

)

= T
(

exp
∫ t−τ

t−(τ+T )

L̃λ(s)ds

)

= eT Hλ,

where the final equality is justified by the fact that (t − τ)− [t − (τ + T )] = T . We were
also able to interchange the limit and adjoint operators because a sequence of matrices An

converges component-wise to A iff A∗n converges to A∗. By the uniqueness of matrix loga-
rithms, (18) holds.

To prove (15), let Hλvλ = cW (λ)vλ, where cW (λ) is the maximal eigenvalue of Hλ and vλ

is its corresponding positive eigenvector. By similarity of matrices to their adjoints, cW (λ)

is also the maximal eigenvalue of H ∗λ and, hence, of HB
−(1+λ), via (18). But we have al-

ready shown cB
W (−(1+ λ)) to be maximal for HB

−(1+λ), and so by uniqueness of the Perron
Frobenius eigenvalue, cW (λ)= cB

W (−(1+ λ)).
The fluctuation theorem (16) now follows from the Gärtner-Ellis theorem:

IW (z) = sup
λ∈R

{λz− cW (λ)} = sup
λ∈R

{λz− cB
W (−(1+ λ))}

= sup
λ∈R

{−(1+ λ)z− cB
W (λ)} = IB

W (−z)− z. (19)

�

Remark 3.8 The careful reader will notice that the λ dependence in the relation (15) that we
obtain matches that in the free energy symmetries of [18] and [16], but not [24]. The reason is
one of convention. The scaled cumulant generating function e(λ)= limt→∞− 1

t
log〈e−λW(t)〉

in [24] satisfying the symmetry e(λ)= e(1− λ) is the canonical free energy function [38],
familiar from statistical mechanics when t is the particle number, W(t) the Hamiltonian of
a configuration and λ the inverse temperature, but distinct from our free energy function (3)
by the minus signs. It nevertheless gives rise to the same symmetry for the rate function as
ours (in the special case of homogeneous dynamics) via the Legendre-like identity IW (z)=
supλ∈R

{e(λ)− λz} [24]. For an in depth discussion of the relationship between the physics
and mathematical notions of entropy and free energy, see [38].



Fluctuation Theorems for Entropy Production and Heat Dissipation 179

Remark 3.9 When the generator A(t) is symmetric within each driving period, IB
W = IW

and our fluctuation theorem (16) reduces to the usual IW (z) − IW (−z) = −z, which says
that the odd part of IW is linear with slope −1/2. When time-inhomogeneities are involved,
however, the fluctuation theorem no longer represents an internal symmetry of a single rate
function. If we interpret it as a formula for computing the large deviations of heat dissipation
in the forward process in terms of those in the backward process, then the invariance of (16)
with respect to the joint transformation IB

W ↔ IW , z↔−z, which amounts to reversing the
roles of the forward and backward process (recall that WB(0, t)=−W(0, t)), indicates an
invariance in the large deviations of heat dissipation with respect to time reversal.

4 Large Deviations of Entropy Production

We now prove results analogous to the ones above, but with the action functional W(0, t)

replaced by the entropy production S(0, t) of the stochastic particle, whose free energies
under the forward and backward processes are

cS(λ)= lim
t→∞

1

t
log Eπ,0

(
eλS(0,t)

)
and cB

S (λ)= lim
t→∞

1

t
log E

B
μ(·,t),t

(
eλSB(0,t)

)
. (20)

Because the proofs are very similar, we cover only the modifications that must be made.

Theorem 4.1 Given the periodicity, continuity, irreducibility and ergodic consistency con-
ditions on A(t), the free energy cS(λ) exists, is continuously differentiable ∀λ ∈ R, and
is independent of π . The time-averaged entropy production S(0, t)/t therefore satisfies a
large deviation principle with continuous and strictly convex good rate function IS(z) =
supλ∈R

{λz− cS(λ)}.

Proof Let υλ(t0, t) denote the moment generating function of S(t0, t), with elements
υλ(i, t0, t) = Ei,t0 [eλS(t0,t)]. The derivation of the backward equation we prove for υλ be-
gins identically to that in Proposition 3.1, except that we replace w(i, j, t) with

s(i, j, t0, t)= log
kij (t0)

kji(t0)
+ log

μ(i, t0)

μ(j, t)
.

These new increments incorporate the boundary terms so that the entropy production be-
comes an additive process like the action functional, with the representation

S(t0, t)= lim
‖P‖→0

n∑

i=0

s(Xti ,Xti+1 , ti , ti+1),

where P = {ti}ni=0 is a partition of [t0, t]. Starting from the expression (7), we have

lim
h→0+

υλ(i, t0 − h, t) = lim
h→0+

N∑

j=1

eλs(i,j,t0−h,t0)υλ(j, t0, t)p(i, j, t0 − h, t0)

= lim
h→0+

N∑

j �=i

(
kij (t0 − h)μ(i, t0 − h)

kji(t0 − h)μ(j, t0)

)λ

(kij (t0)h+ o(h))υλ(j, t0, t)
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+
(

μ(i, t0 − h)

μ(i, t0)

)λ(
1−Ki(t0)h+ o(h)

)
υλ(i, t0, t).

By the forward evolution equation (1) for μ,

(
μ(i, t0 − h)

μ(i, t0)

)λ

= 1− hλ
∂tμ(i, t0)

μ(i, t0)
+ o(h)

= 1− hλ

N∑

j �=i

kji(t0)
μ(j, t0)

μ(i, t0)
+ hλKi(t0)+ o(h),

which we insert into the previous expression to obtain

lim
h→0+

υλ(i, t0 − h, t) = lim
h→0+

N∑

j �=i

(
kij (t0 − h)μ(i, t0 − h)

kji(t0 − h)μ(j, t0)

)λ

(kij (t0)h+ o(h))υλ(j, t0, t)

+ (
1−Ki(t0)h+ o(h)

)
υλ(i, t0, t)

− υλ(i, t0, t)hλ

N∑

j �=i

kji(t0)
μ(j, t0)

μ(i, t0)
+ hλKi(t0)υλ(i, t0, t).

Our component-wise derivative for υλ(i, t0, t) then becomes

∂

∂t0
υλ(i, t0, t) = lim

h→0+
1

h
[υλ(i, t0, t)− υλ(i, t0 − h, t)]

= −
[ N∑

j �=i

kij (t0)
1+λkji(t0)

−λ

(
μ(i, t0)

μ(j, t0)

)λ

υλ(j, t0, t)

+
(

λ

N∑

j �=i

kji(t0)
μ(j, t0)

μ(i, t0)
+ (1− λ)Ki(t0)

)

υλ(i, t0, t)

]

, (21)

which yields the linear backward equation ∂
∂t0

υλ(t0, t)=−Mλ(t0)υλ(t0, t), where

Mλ(t0)ij =
⎧
⎨

⎩

kij (t0)
1+λkji(t0)

−λ
(

μ(i,t0)

μ(j,t0)

)λ
, i �= j

λ
∑N

��=i k�i(t0)
μ(�,t0)

μ(i,t0)
+ (1− λ)Ki(t0), i = j.

(22)

The existence of the off-diagonal terms of Mλ(t0) for t0 < t∗ appears problematic here,
because we are dividing by μ(j, t0), which may be zero. However, in order for this to be a
problem, we must have kij (t0) and μ(i, t0) both positive. By continuity of these quantities,
they must have been positive on [t0− δ, t0] for some small δ, ensuring that μ(j, t0) > 0. The
same argument justifies the finiteness of the diagonal terms.

The rest of the proof is identical to that of Theorem 3.3 and Corollary 3.5, where we
make the change of variables τ = t − t0 and use the Floquet theorem to factor the new
solution υ̃λ(τ, t) into a periodic matrix and an exponential flow matrix with strictly positive
entries. The free energy cS(λ) is then the principal Floquet eigenvalue of the latter, which
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by uniqueness is a continuously differentiable function of λ, implying a large deviation
principle with continuous and strictly convex good rate function equal to the Legendre-
Fenchel transform of cS(λ). �

Remark 4.2 Equation (21) and definition (22) reduce to (11) and the subsequent definition
of �(λ) in [18] when the time-dependence of our transition rates is dropped. Conspicuous
in the definitions of Mλ(t0) and �(λ) is that, unlike for Lλ, the adjoint and λ→−(1+ λ)

transformations are not inverses, implying that the analogue of Hλ in the proof above—
call it Ĥλ—will not satisfy (18). This does not invalidate the fluctuation theorem, however,
because we merely require that Ĥλ and Ĥ ∗−(1+λ) have the same maximum eigenvalue, not
necessarily be equal themselves. The fluctuation theorem for entropy production, in fact, is
very straightforward.

Theorem 4.3 The free energy cB
S (λ) exists, is continuously differentiable ∀λ ∈R and satis-

fies, together with cS(λ), the symmetry relation

cS(λ)= cB
S (−(1+ λ)),

implying the fluctuation theorem

IS(z)− IB
S (−z)=−z, (23)

where IB
S is the continuous and strictly convex good rate function of the entropy production

under the backward process.

Proof P[0,t] and P B
[0,t] are mutually absolutely continuous by the ergodic consistency of A(t)

[15]. That their Radon-Nikodym derivatives with respect to each other are then reciprocals
almost surely is a basic measure-theoretic fact [11]. Together, these justify the moment gen-
erating function symmetry

Eπ,0
(
eλS(0,t)

) =
∫

Ω

(
dP[0,t]
dP B
[0,t]

(ω)

)λ

P[0,t](dω)=
∫

Ω

(
dP[0,t]
dP B
[0,t]

(ω)

)λ
dP[0,t]
dP B
[0,t]

(ω)P B
[0,t](dω)

=
∫

Ω

(
dP B
[0,t]

dP[0,t]
(ω)

)−(1+λ)

P B
[0,t](dω)= E

B
μ(·,t),t

(
e−(1+λ)SB(0,t)

)
,

which is equivalent to the fundamental fluctuation relation of Harris and Schütz [17], cast
instead in a quantum Hamiltonian formalism. We then immediately have the free energy
symmetry

cS(λ) = lim
t→∞

1

t
log Eπ,0

(
eλS(0,t)

)= lim
t→∞

1

t
log E

B
μ(·,t),t

(
e−(1+λ)SB(0,t)

)

= cB
S (−(1+ λ)),

in which the existence and continuous differentiability of the RHS comes along for free,
along with the stated properties of its corresponding rate function. By the Gärtner-Ellis
theorem and equalities analogous to (19), this implies the fluctuation theorem symmetry. �
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Informally, the fluctuation theorem symmetry (23) yields the following generalization of
the second law of thermodynamics:

P (S(0, t)/t = z)

P B(SB(0, t)/t =−z)
∼ ezt . (24)

This has the interpretation that spontaneous positive fluctuations in the time-averaged
entropy production of the forward process are exponentially more likely than spontaneous
negative fluctuations in the backward process, and vice-versa. Thus, for processes driven by
time-dependent protocols, the distributions of entropy production fluctuations in universes
in which time moves forward versus backward are interrelated. Only when the protocol is
symmetric within each driving period (i.e., has no temporal orientation) does (24) reclaim
its usual irreversibility interpretation that positive entropy production fluctuations in the for-
ward process are exponentially more likely than negative ones.

Taking �z = [z− ε, z+ ε], −�z = [−z− ε,−z+ ε] and |�z| = ε, we formalize (24)
as follows.

Corollary 4.4

lim
|�z|→0

lim
t→∞

1

t
log

P (S(0, t)/t ∈�z)

P B(SB(0, t)/t ∈−�z)
= z.

Proof By both the large deviation upper and lower bounds [6], limt→∞ 1
t

logP (S(0, t)/

t ∈ J )=− infζ∈J IS(ζ ) for any closed, bounded interval J ⊂ R, and similarly for SB(0, t).
Therefore, by (23) and continuity of IS and IB

S ,

lim
|�z|→0

lim
t→∞

1

t
log

P (S(0, t)/t ∈�z)

P B(SB(0, t)/t ∈−�z)
= lim
|�z|→0

− inf
ζ∈�z

IS(ζ )+ inf
ζ∈−�z

IB
S (ζ )

= −IS(z)+ IB
S (−z)= z. �

5 Time-Averaged Entropy Production and Entropy Production Rate

Our final main result is a derivation of the asymptotic time-averaged entropy production and
its associated instantaneous entropy production rate. We begin with the following lemma,
which is a well-known large deviations result for countable sequences of random variables
[6] and requires only slightly more work in the continuous parameter case.

Lemma 5.1 The time-averaged entropy production S(0, t)/t converges exponentially and
P[0,t]-a.s. to c′S(0).

Proof By Theorem 4.1, the rate function

IS(z)= sup
λ∈R

{λz− cS(λ)} (25)

is strictly convex. It is immediate from the definition (20) that cS(0) = 0, and so from the
inverse transform cS(λ)= supz∈R

{λz− IS(z)} we obtain

0= cS(0)= sup
z∈R

{−IS(z)} = − inf
z∈R

{IS(z)},
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which, along with strict convexity, implies that IS(z) attains its minimum and zero uniquely
at some z∗. That z∗ = c′S(0) can be seen from the following argument. Recall from the proof
of Corollary 3.5 that IS(z)= λzz−cS(λz), where λz is defined implicitly through c′S(λz)= z.
At the same time, since cS(0) = 0, it is clear that (25) is minimized when λ ≡ λz∗ = 0, or
z∗ = c′S(0).

Exponential convergence of S(0, t)/t to c′S(0) is now immediate, because for any ε > 0,
the large deviation upper bound

lim sup
t→∞

1

t
logP[0,t]

(∣
∣
∣
∣
S(0, t)

t
− c′S(0)

∣
∣
∣
∣≥ ε/2

)

≤− inf
|z−c′

S
(0)|≥ε/2

IS(z)≡−αε < 0

guarantees that for large t ,

P[0,t]
(∣

∣
∣
∣
S(0, t)

t
− c′S(0)

∣
∣
∣
∣≥ ε/2

)

≤ e−
αε
2 t . (26)

(The factor 1/2 multiplying ε will be needed in a triangle inequality argument to follow.)
Almost sure convergence now follows from several applications of the Borel Cantelli

lemma, which says that if the probabilities of a countable sequence of events are summable,
then the events happen finitely often almost surely (i.e., only a finite number of them occur).
In this case, we have that the events |S(0, n)/n− c′S(0)| ≥ ε/2 occur finitely often, where
time has been restricted to the positive integers. To show that the same holds for general t ,
let (tj )j≥1 be any sequence of real numbers tending to∞. Then

P[0,t]
(∣

∣
∣
∣
S(0, tj )

tj
− S(0, �tj�)

�tj�
∣
∣
∣
∣≥ ε/2

)

≤ P[0,t]
(∣

∣
∣
∣
S(0, tj )

tj
− c′S(0)

∣
∣
∣
∣+

∣
∣
∣
∣c
′
S(0)− S(0, �tj�)

�tj�
∣
∣
∣
∣≥ ε/2

)

≤ P[0,t]
(∣

∣
∣
∣
S(0, tj )

tj
− c′S(0)

∣
∣
∣
∣≥ ε/4

)

+P[0,t]
(∣

∣
∣
∣
S(0, �tj�)
�tj� − c′S(0)

∣
∣
∣
∣≥ ε/4

)

.

But by an inequality analogous to (26), these latter probabilities can be bounded by
a common exponential for large tj , indicating, by Borel-Cantelli, that S(0, tj )/tj and
S(0, �tj�)/�tj� differ by more than ε/2 only finitely often (almost surely). The triangle
inequality then gives us |S(0, tj )/tj − c′S(0)| < ε for large t , precluding, as the tj ’s were
arbitrary, the possibility of |S(0, t)/t − c′S(0)| ≥ ε for large t . This is precisely the definition
of almost sure convergence to c′S(0). �

Theorem 5.2 The time-averaged entropy production satisfies

0≤ lim
t→∞

S(0, t)

t
= 1

T

∫ T

0
ep(s)ds <∞, (27)

where the convergence is exponential and P[0,t]-a.s., the instantaneous entropy production
rate

ep(s)= 1

2

N∑

i,j=1

(ν(i, s)kij (s)− ν(j, s)kji(s)) log

(
ν(i, s)kij (s)

ν(j, s)kji(s)

)

(28)

is defined for 0≤ s ≤ t , and ν(·, t)= limt→∞μ(·, t) is T -periodic.
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Proof By the lemma, we already have convergence in both senses to c′S(0), so what remains
is to evaluate this derivative. In doing so, we make use of the fact that the free energy is
convex and that limits and derivatives commute for sequences of convex functions [6].

cS
′(0) = ∂

∂λ
lim
t→∞

1

t
log Eπ,0

(
eλS(0,t)

)∣∣
∣
λ=0
= lim

t→∞
1

t

∂

∂λ
log Eπ,0

(
eλS(0,t)

)∣∣
∣
λ=0

= lim
t→∞

1

t
Eπ,0S(0, t)= lim

t→∞
1

t
H(P[0,t],P B

[0,t]).

Recall that H(P[0,t],P B
[0,t]) here is the relative entropy of P[0,t] with respect to P B

[0,t],
which are mutually absolutely continuous by the ergodic consistency criterion on A. By
nonnegativity of the relative entropy, we have the left inequality of (27). Our goal is now
to factor the Radon-Nikodym derivative dP[0,t]/dP B

[0,t] for finite t . To accomplish this, we
note that on the event that the Markov chain jumps m times between times t0 and t , its
path ω is characterized by the states (σi(ω))m

i=0 it visits in sequence and the waiting times
(τi+1(ω)−τi(ω))m

i=0 between them. (Here we have set τ0(ω)= t0 and τm+1(ω)= t .) Because
the former are discrete and the latter have a density, as well as the fact that the number of
jumps J (ω)= J ([t0, t])(ω) over the interval is finite a.s., the path measure P[t0,t] has density

f[t0,t](ω)= f[t0,t],J (ω)(σ0(ω), . . . , σJ(ω)(ω), τ1(ω), . . . , τJ (ω)(ω)) (29)

where

f[t0,t],m(σ0, . . . , σm, τ1, . . . , τm)

= P (J ([t0, t])=m)μ(σ0, t0)×
m−1∏

i=0

(

Kσi
(τi+1) exp

[

−
∫ τi+1

τi

Kσi
(s)ds

]
kσi ,σi+1(τi+1)

Kσi
(τi+1)

)

× exp

[

−
∫ t

τm

Kσm(s)ds

]

. (30)

A similar density f −[t0,t](ω) exists for the measure P−[t0,t]. For notational clarity in what fol-
lows, let us write the restriction of a path ω to an interval E ⊂R as ωE . Given an M ∈ Z and
t > 0, define the partition variables s� ≡ s

M,t
� = �t

M
and scale parameter h = t

M
. Recalling

that P B
[0,t](ω)= P−[0,t](r(ω)), we have by the Markov property

1

t
H(P[0,t],P B

[0,t])

= 1

t

∫

Ω

log
dP[0,t]
dP B
[0,t]

(ω)P[0,t](dω)

= 1

t

∫

Ω

log

(
μ(ω0,0)

μ−(r(ω)0,0)

M−1∏

�=0

f(s�,s�+1](ω(s�,s�+1]|Xs� = ωs�)

f −(s�,s�+1](r(ω)(s�,s�+1]|Xs� = r(ω)s� )

)

P[0,t](dω)

= 1

t

M−1∑

�=0

∫

Ω

log

(
μ(ωs� , s�)f(s�,s�+1](ω(s�,s�+1]|Xs� = ωs�)

μ(ωs�+1 , s�+1)f
−
(sM−1−�,sM−�](r(ω)(sM−1−�,sM−�]|XsM−1−�

= r(ω)sM−1−�
)

)

× P[0,t](dω).
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Here we have rewritten the boundary term μ(ω0,0)

μ−(r(ω)0,0)
= μ(ω0,0)

μ(ωt ,t)
as the telescoping product

∏M−1
�=0

μ(ωs�
,s�)

μ(ωs�+1 ,s�+1)
and reversed the order of the density terms in the denominator. On the

sets

Ω�,t,M,i,j = {ω ∈Ω : ωs� = ωs�− = i and ωs�+1 = ωs�+1− = j},
which partition Ω up to a set of zero measure (the s� are continuity points of Xt a.s.), the
densities on top and bottom and the measure integrated against simplify so that we obtain

1

t

M−1∑

�=0

N∑

i,j=1

∫

Ω�,t,M,i,j

log
μ(i, s�)[P (Xs�+1 = j |Xs� = i)+ o(h)]

μ(j, s�+1)[P−(XsM−�
= i|XsM−1−�

= j)+ o(h)]P[0,t](dω)

= 1

t

M−1∑

�=0

N∑

i,j=1

log
μ(i, s�)kij (s�)h+ o(h)

μ(j, s�+1)k
−
j i(sM−1−�)h+ o(h)

P[0,t](Ω�,t,M,i,j )

= 1

M

M−1∑

�=0

1

h

N∑

i,j=1

log
μ(i, s�)kij (s�)

μ(j, s�+1)k
−
j i(sM−1−�)

(μ(i, s�)kij (s�)h+ o(h))

= 1

t

M−1∑

�=0

h

N∑

i,j=1

μ(i, s�)kij (s�) log
μ(i, s�)kij (s�)

μ(j, s�+1)kji(s�+1)
.

The o(h) correction in the first line is justified by taking t ↓ t0 in (30) and noting that
P (J ([t0, t0 + h]) = m) = o(hm). Letting M ↑ ∞ now in the Riemann sum, by continuity
of μ(·, t) and the rates,

1

t
H(P[0,t],P B

[0,t])=
1

t

∫ t

0

N∑

i,j=1

μ(i, s)kij (s) log
μ(i, s)kij (s)

μ(j, s)kji(s)
ds. (31)

By Remark 3.4, for all initial distributions π , μ(·, t) is asymptotic to a periodic distribu-
tion ν(·, t) equal to the RHS of (13), with which we may replace it in the expression above
in the limit t →∞. Let us now take φ(s) to be the integrand on the RHS of (31), so that
φ(s)∼ ep(s). Given ε > 0 and choosing an M large enough so that |φ(s)− ep(s)|< ε

2 for
s > M , for sufficiently large t

1

t

∫ t

0
|φ(s)− ep(s)|ds ≤ 1

t

∫ M

0
|φ(s)− ep(s)|ds + 1

t

∫ t

M

ε

2
ds

≤ ε

2
+ ε

2

(
t −M

t

)

< ε.

We may then finally conclude, by periodicity of ep(s), that

lim
t→∞

S(t)

t
= lim

t→∞
1

t
H(P[0,t],P B

[0,t])= lim
t→∞

1

t

∫ t

0
φ(s)ds

= lim
t→∞

1

t

∫ t

0
ep(s)ds = 1

T

∫ T

0
ep(s)ds. �
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Remark 5.3 The result (27) that we obtain above is the continuous time analogue of
Ge et al.’s complete entropy production rate [16] for discrete time, periodically time-
inhomogeneous Markov chains. The form of ep(s) itself is a time-dependent generalization
of both (33) in [14], where ep(s) is interpreted as the difference between backward and
forward dynamical entropy rates, and (4) in [18]. From a dynamical systems perspective,
ν(·, t) is an attracting limit cycle for μ(·, t) in the space of distributions on {1, . . . ,N}, rep-
resenting a sort of periodic steady state. The mean entropy produced along this cycle is the
mean entropy produced by μ(·, t) in the long time limit. We see below that when the time
dependence of the transition rates is dropped, the limit cycle collapses to a fixed point and
ep(s) reduces to the constant entropy production rate of homogeneous chains.

Corollary 5.4 When kij (t)≡ kij , ∀0≤ i, j ≤N ,

0≤ lim
t→∞

S(0, t)

t
= ep ≡ 1

2

N∑

i,j=1

(μ(i)kij −μ(j)kji) log

(
μ(i)kij

μ(j)kji

)

, (32)

where the convergence is exponential and P[0,t]-almost sure and μ is the unique invariant
distribution of Xt .

Proof The existence and uniqueness of μ are guaranteed by the ergodic theorem. We then
have ν(·, t) = limt→∞μ(·, t) = μ, from which the result immediately follows by Theo-
rem 5.2. �

6 Beyond Periodic Driving

The key modeling assumption made in this paper is that the transition rates driving the
Markov chain are time-periodic. Despite the wealth of interesting physical and biologi-
cal processes characterized by this type of driving, examples of which were given in the
introduction, an open question remains as to whether there exists a reasonable set of min-
imal conditions on the transition rates that are weaker than periodicity but still guarentee
existence of an AFT. By “reasonable”, we mean that the conditions be both concise and
easily verifiable for a wide range of applications. It is well known that transient fluctuation
theorems make no assumptions about the protocol driving the process, suggesting that the
minimal conditions necessary for an AFT to hold truly would be minimal. An initial guess
might be that uniform continuity and boundedness are sufficient, which would prevent the
number of jumps of the chain from growing faster than linearly in time as well as preventing
pathological behavior due to discontinuous or infinitely rapid driving. The following result
shows that this guess is incorrect.

Proposition 6.1 Given arbitrary constants 0 < α < β , there exists a Markov chain whose
transition rates are uniformly continuous and bounded between α and β , but whose time-
averaged entropy production does not satisfy an AFT.

Proof The plan is to take 0 < α < β as given and then construct a chain with the properties
above. We begin by choosing distinct constants α < kij < β for 1 ≤ i, j ≤ N such that the
generator Ac = (kij ) does not satisfy detailed balance, which of course is always possible.
Note that Ac is irreducible because all its entries are positive, and so it possesses a unique
ergodic distribution. We now choose a number γ > 1 such that α < γ kij < β for all i and j ,
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and let τ be the mixing time of the chain generated by γAc (the typical time until conver-
gence to its ergodic distribution), which is equal to the reciprocal of the second largest real
part of the eigenvalues of γAc . The generator A(t) of our chain is constructed as follows.
With t0 ≡ 0, we choose t1 τ and then iteratively set tk = ktk−1. A(t) is initially defined to
be Ac for t2k ≤ t < t2k+1 and γAc for t2k+1 ≤ t < t2k . We then modify it by smoothing out
the discontinuities in any manner that leaves A(t) uniformly continuous in time.

In order to prove that S(0, t)/t does not satisfy a large deviation property and, hence,
an AFT, we show that its free energy cS(λ) fails to converge almost everywhere. To begin,
define cS(λ, t)= 1

t
log Eπ,0(e

λS(0,t)) so that cS(λ)= limt→∞ cS(λ, t). Now let ep denote the
instantaneous entropy production rate of a process generated by Ac , which is defined by
(32) and must be positive because the rates kij do not satisfy detailed balance. Note that ep

is homogeneous of degree 1 with respect to the rates, so that the entropy production rate of
the process generated by γAc is γ ep . Having defined the tk to grow such that tk−1/tk→ 0,
over timescales much longer than the mixing times for Ac and γAc , we see by Corollary 5.4
that

S(0, t)=
{

tep + o(1), t2k ≤ t < t2k+1

tγ ep + o(1), t2k+1 ≤ t < t2k,

where o(1) denotes a term that vanishes as t→∞. This implies that for λ > 0,

lim inf
t→∞ cS(λ, t) = lim

t→∞
1

t
log Eπ,0

(
eλ(tep+o(1))

)= lim
t→∞

1

t
log Eπ,0

(
eλtep

)

< lim
t→∞

1

t
log Eπ,0

(
eλ(tγ ep+o(1))

)= lim sup
t→∞

cS(λ, t)

and hence c(λ) does not exist. The inequality is reversed for λ < 0, so we see that the free
energy only exists for the trivial value λ= 0. �

Since uniform continuity and boundedness are implied by continuity and periodicity,
the preceding result shows that the minimal conditions on the transition rates are closer to
those assumed in this paper than one might initially suspect. What periodicity guarentees but
uniform continuity and boundedness do not is that the rates cannot be tuned over arbitrarily
long timescales, exactly the loophole we exploited above. It remains to be seen, however,
how this condition can be formulated more precisely and whether there are other conditions
must be included in our minimal set.
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