
UCLA
UCLA Previously Published Works

Title
Multi-site EEG studies in early infancy: Methods to enhance data quality.

Permalink
https://escholarship.org/uc/item/7z74j5pv

Authors
Dickinson, Abigail
Booth, Madison
Daniel, Manjari
et al.

Publication Date
2024-10-01

DOI
10.1016/j.dcn.2024.101425
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7z74j5pv
https://escholarship.org/uc/item/7z74j5pv#author
https://escholarship.org
http://www.cdlib.org/


Developmental Cognitive Neuroscience 69 (2024) 101425

Available online 31 July 2024
1878-9293/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Next-gen tools

Multi-site EEG studies in early infancy: Methods to enhance data quality

Abigail Dickinson a,*, Madison Booth b, Manjari Daniel a, Alana Campbell c, Neely Miller d,
Bonnie Lau e, John Zempel f, Sara Jane Webb g, Jed Elison h, Adrian K.C. Lee i, Annette Estes i,
Stephen Dager j, Heather Hazlett c, Jason Wolff d, Robert Schultz k, Natasha Marrus f,
Alan Evans l, Joseph Piven c, John R. Pruett Jr. f, Shafali Jeste b,m, for the IBIS Network
a Center for Autism Research and Treatment, Semel Institute for Neuroscience, University of California, Los Angeles, CA, USA
b Department of Neurology, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
c Carolina Institute for Developmental Disabilities, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
d Center for Neurobehavioral Development, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
e Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA, USA
f Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
g Center for Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA, USA
h Institute of Child Development, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
i Department of Speech and Hearing Sciences, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, USA
j Department of Radiology, University of Washington, Seattle, WA, USA
k Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
l McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
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A B S T R A C T

Brain differences linked to autism spectrum disorder (ASD) can manifest before observable symptoms. Studying
these early neural precursors in larger and more diverse cohorts is crucial for advancing our understanding of
developmental pathways and potentially facilitating earlier identification. EEG is an ideal tool for investigating
early neural differences in ASD, given its scalability and high tolerability in infant populations. In this context,
we integrated EEG into an existing multi-site MRI study of infants with a higher familial likelihood of developing
ASD. This paper describes the comprehensive protocol established to collect longitudinal, high-density EEG data
from infants across five sites as part of the Infant Brain Imaging Study (IBIS) Network and reports interim
feasibility and data quality results. We evaluated feasibility by measuring the percentage of infants from whom
we successfully collected each EEG paradigm. The quality of task-free data was assessed based on the duration of
EEG recordings remaining after artifact removal. Preliminary analyses revealed low data loss, with average in-
session loss rates at 4.16 % and quality control loss rates at 11.66 %. Overall, the task-free data retention
rate, accounting for both in-session issues and quality control, was 84.16 %, with high consistency across sites.
The insights gained from this preliminary analysis highlight key sources of data attrition and provide practical
considerations to guide similar research endeavors.

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental
condition characterized by social and behavioral impairments that
typically emerge in the latter part of the first and second year of life
(American Psychiatric Association., 2013; Estes et al., 2015; Zwai-
genbaum and Penner, 2018). Identifying early brain differences

associated with ASD holds significant promise for detecting at-risk in-
fants (Girault and Piven, 2020; Hazlett et al., 2017; Jeste et al., 2015;
McPartland et al., 2020), elucidating early neurobiological pathways
(Jeste and Nelson, 2009; Modi and Sahin, 2017), and paving the way for
timely interventions that leverage the brain’s heightened plasticity early
in life.

EEG is a scalable and non-invasive tool for investigating early brain
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development in infants with a higher likelihood (HL) of developing ASD
(~20 %) (Ozonoff et al., 2011) compared to the general population
(~2 %) (Maenner et al., 2023). EEG studies describe differences in
spectral power and connectivity during the first year of life that precede
ASD diagnosis or its associated behavioral symptoms (Dickinson et al.,
2020; Gabard-Durnam et al., 2019; Haartsen et al., 2019; Jones et al.,
2016; Orekhova et al., 2014; Peck et al., 2021; Righi et al., 2014).
However, given that only a subset of HL infants will progress to an ASD
diagnosis, large-scale, multisite studies are necessary to improve our
understanding of these early neural differences and advance their po-
tential in clinical settings. By pooling resources, expertise, and partici-
pants across various geographical locations, multi-site studies can
ultimately reach larger and more representative participant groups,
maximizing the clinical utility of identified neural markers. One such
initiative is the Infant Brain Imaging Study (IBIS) Network. Spanning
five US data collection sites, IBIS combines behavioral assessments,
magnetic resonance imaging (MRI), and EEG in HL infants at 6, 12, and
24 months to examine brain and behavioral predictors and trajectories
linked to subsequent ASD diagnosis at 24 months.

Previously, IBIS has used MRI to examine early brain development,
identifying functional and structural brain differences that precede ASD
diagnosis (Emerson et al., 2017 Hazlett et al., 2017; Shen et al., 2013;
Shen et al., 2017; Wolff et al., 2012). While MRI provides intricate
structural images and information about brain function using the blood
oxygen level-dependent (BOLD) signal as a proxy for brain activity, EEG
directly measures the electrical activity of neuronal ensembles,
capturing rapid and dynamic temporal shifts in neural patterns. As such,
EEG allows us to examine functional patterns and neural correlates of
sensory processing while infants are awake, offering insights that com-
plement those obtained from infant MRI, typically conducted during
sleep. For instance, EEG may be beneficial in capturing measures of
active visual processing that can complement recent MRI findings
implicating visual system differences in ASD (Girault et al., 2022). EEG
is also cost-effective and adaptable to various environments, making it
highly suitable for extensive longitudinal studies and the development
of scalable ASD screening markers.

Combining EEG and MRI in large-scale, multi-site studies is essential
for a comprehensive understanding of early neural development in ASD.
However, integrating EEG into multisite studies such as IBIS presents
significant challenges. Reliable EEG data collection requires rigorous
protocols and strict standardization across sites (McPartland et al., 2020;
Webb et al., 2023). Furthermore, infants are generally more sensitive to
unfamiliar lab settings, and this can affect various types of data collec-
tion, including behavioral assessments, MRI, and EEG. For instance,
infants may struggle to complete EEG recording sessions and frequently
exhibit physiological or movement artifacts that compromise data us-
ability (Hervé et al., 2022; Van Diessen et al., 2015). Incomplete ses-
sions, shorter recording durations, and artifacts lead to EEG data loss
rates as high as 50 % (Cuevas et al., 2014; Stets et al., 2012), limiting
generalizability. Given that IBIS was originally established based on MRI
expertise, the potential for data loss was further exacerbated by varying
levels of EEG experience across the participating sites.

This paper describes our standardized approach to address these
challenges and incorporate EEG into the IBIS network. We combined our
team’s in-house expertise with established guidance from the literature,
specifically focusing on recommended procedures for infant EEG
acquisition (Cuevas et al., 2014; Hervé et al., 2022; Van Der Velde and
Junge, 2020; Webb et al., 2015; Van Noordt et al., 2020) and best
practices for multi-site data collection (Abraham et al., 2017; Jones
et al., 2019; Volkow et al., 2021; Webb et al., 2020). This paper has two
primary goals: (1) to describe the comprehensive protocol designed for
the collection, harmonization, and quality control of multi-site infant
EEG data within the IBIS network (see Fig. 1), and (2) to examine EEG
data quality using this standardized approach. Our assessments provide
insight into the protocol’s feasibility, evaluated through protocol
completion rates, and data quality, measured by the amount of usable

data remaining after artifact removal.

2. Methods

2.1. Participants

Participants were enrolled in the Infant Brain Imaging Study-Early
Prediction (IBIS-EP) project, a prospective cohort study across five
sites: Washington University in St. Louis, University of Washington in
Seattle, Children’s Hospital of Philadelphia, University of Minnesota,
and the University of North Carolina at Chapel Hill. Infants were
required to have a full older sibling diagnosed with ASD. Sibling di-
agnoses were validated using medical records, the Social Communica-
tion Questionnaire (SCQ) (Rutter, Bailey, et al., 2003), and the Autism
Diagnostic Interview-Revised (ADI-R) (Rutter, Le Couteur, et al., 2003).
Additional eligibility criteria included: 1) Gestational age > 36 weeks; 2)
Absence of medical or neurological conditions influencing growth,
development, cognition (e.g., seizure disorders), or significant sensory
impairments (e.g., vision or hearing loss); 3) No known genetic syn-
dromes associated with ASD; 4) No immediate family history of psy-
chosis, schizophrenia, or bipolar disorder (Family Interview for Genetic
Studies; (Maxwell, 1992)); 5) No MRI contraindications, and 6) English
as primary home language. These criteria were ascertained during a
family history interview and aligned with those used in previous IBIS
studies (Emerson et al., 2017; Hazlett et al., 2017).

The target recruitment for IBIS-EP is 250 infants, with 50 infants at
each of the five participating sites. The protocol includes EEG and MRI
recordings (non-simultaneous) at 6, 12, and 24 (MRI only) months of age
and behavioral testing at 6, 12, and 24 months (See Fig. 2A). Infants
were enrolled at 6 months of age. Research visits were scheduled over
two days to avoid overwhelming families and participants. MRI and
behavioral assessment data were collected on the first day, followed by
EEG and the remaining behavioral assessments on the second day. Visits
at 6 and 12 months were scheduled within a testing window of − 1 week/

Fig. 1. Schematic diagram illustrating the structured three-phased approach
used to integrate EEG data collection into IBIS.
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+3 weeks from the preferred date based on the infant’s birth date. Prior
to data collection, all study protocols were reviewed and approved by a
centralized IRB at Washington University in St. Louis. A parent or
guardian provided written informed consent for each participating in-
fant, in compliance with the Declaration of Helsinki. The data described
in this paper include all 6-month (n = 73) and 12-month (n = 47) EEG
recordings conducted before the preliminary data review cutoff date of
January 1st, 2023. Demographic information for this preliminary sam-
ple is detailed in Table 1.

A dedicated team, independent from the five data collection sites,
coordinated EEG efforts, including training, troubleshooting, and data
quality reviews. Clinical outcomes and EEG-derived variables pertinent
to our research objectives are outside the scope of this paper since data
collection is still in progress. However, we present feasibility and quality
metrics related to our initial efforts in EEG data acquisition.

2.2. EEG paradigms

EEG data were collected during three distinct paradigms, organized
into five testing blocks (Fig. 2B). We selected these paradigms based on
their suitability for infant populations and their capacity to provide in-
sights into different aspects of brain function, including resting-state
functional architecture and low-level visual and auditory processing.
These paradigms also align with established IBIS-EP goals, providing
opportunities for integrated analyses.

2.2.1. Task-free
We recorded continuous EEG data under task-free conditions for a

total of 9 minutes, divided into three 3-minute blocks. Floating bubbles
were presented on a laptop screen, consistent with the procedures used
to obtain task-free recordings from infant populations (Levin et al.,
2017).

2.2.2. Visual evoked potentials (VEP)
A conventional VEP paradigm displayed a black-and-white square

checkerboard pattern on the IBIS laptop screen, set against a mean
luminance background with a small red fixation cross in the center. The
contrast of the checkerboard was reversed every 500 ms for 160 trials.

2.2.3. Auditory evoked potentials (AEP)
A sound bar (ELEGIANT SR200) presented a pure tone, calibrated to

80 dB SPL. The auditory stimulus was a 500 Hz pure tone with a dura-
tion of 300 ms, including a 10 ms onset and offset ramp. The tone was
presented 140 times, with a randomized inter-stimulus interval varying
between 800 and 1200 ms. A video of floating bubbles (identical to the
task-free paradigm) was displayed to keep infants engaged This para-
digm lasted approximately 3.5 minutes.

Fig. 2. Schematics figures detailing A) The IBIS-EP protocol, with new additions (EEG and eye tracking) in red, and B) the paradigm-specific protocol for
EEG recordings.

Table 1
Demographic characteristics of the interim sample, collapsed across sites.

6 Months
N = 73

12 Months
N = 47

n Percent n Percent

Sex
Female 28 38.36 % 18 38.30 %
Male 45 61.64 % 29 61.70 %

Ethnicity
Hispanic 22 30.14 % 14 29.79 %
Non-Hispanic 51 69.86 % 33 70.21 %

Race
Asian 3 4.11 % 3 6.38 %
Black 3 4.11 % 3 6.38 %
White 51 69.86 % 31 65.96 %
More than one race 4 5.48 % 3 6.38 %
Unknown or not reported 12 16.44 % 7 14.89 %

Family Income
<25 K 5 6.85 % 2 4.26 %
25–35 K 5 6.85 % 3 6.38 %
35–50 K 5 6.85 % 4 8.51 %
50–75 K 13 17.81 % 7 14.89 %
75–100 K 7 9.59 % 7 14.89 %
100–150 K 10 13.70 % 4 8.51 %
150–200 K 10 13.70 % 10 21.28 %
>200 K 9 12.33 % 5 10.64 %
Unknown or not reported 9 12.33 % 5 10.64 %

Note. While there is partial overlap between the 6- and 12-month samples, it is
not complete. As of January 1st, 2023, 39 infants had participated in both their
6- and 12-month EEG sessions. Additionally, 8 infants were enrolled at 12
months, having been unable to participate earlier due to the COVID-19
pandemic. The remaining infants in the sample either had not reached the age
of 12 months (n = 15) or missed their 12-month EEG for various reasons (n =

19).
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2.3. Standardized EEG acquisition setup

EEG acquisition relies on multiple components functioning together,
with millisecond precision communication, including a data-acquisition
computer (DAC) and an experiment control computer (ECC) that typi-
cally has two screens that allow for experimental control and stimulus
display to the participant. Despite these standard components, equip-
ment, and setup can vary significantly across EEG labs due to unique
study requirements and shared equipment use. Such variations can
affect data consistency and quality and impede data processing and
troubleshooting, particularly in remote multi-site studies. Standardizing
and streamlining equipment ensures consistent data collection across
sites and reduces technical disruptions and variations that may emerge
over time.

2.3.1. Streamlining EEG equipment
Due to budgetary considerations, we optimized the use of existing

EEG equipment at each site. All sites had consistent foundational com-
ponents, such as the EGI NetAmps amplifier and associated Hydrocel
Geodesic Sensor Nets (see Fig. 3A for relevant site-specific differences).
To enhance consistency, each site received an IBIS-specific laptop which
dually functioned as an ECC and a participant display monitor (see
Fig. 3B). This streamlined hardware setup minimized disruptions to and
from other ongoing studies at each site. Despite DAC variations across
sites, stringent control over recording parameters was achieved using
EGI NetStation software with a standardized acquisition template.
Consistent peripheral hardware was also used across sites, including
devices for stimulus presentation (ELEGIANT SR200 Soundbar), con-
trolling and timing stimuli (wireless keyboard; AV device), and video
recording (Cimkiz A860 USB 2.0 HD Webcam) as described below.

2.3.2. Synchronizing stimulus-specific timing
Precisely aligning timing markers with the causal stimuli is crucial

during AEP and VEP paradigms, which are designed to capture stimulus-
elicited responses on a millisecond level. Although the ECC transmits
stimulus presentation markers to the DAC, hardware communication
latencies can compromise the temporal accuracy of these markers. We
used the Audio/Visual (AV) Device provided with the EGI system to test
stimulus timing, as a stimulus tracking device. We repurposed the
Audio/Visual (AV) Device from the EGI system, originally meant for
testing stimulus timing, as a stimulus tracking device. Specifically, by
directly recording sound output from the laptop (AEP) and detecting
luminance changes using a photodiode sensor affixed to the laptop
screen (VEP), the AV device ensured the precise stimulus-EEG data
alignment, which is critical for ERP analysis.

2.4. Standardized training and data collection protocols

2.4.1. Data collection standardization
The core EEG team visited each data collection site to implement

equipment and provide hands-on training, which included an intro-
duction to EEG, nuances of infant EEG data collection, and guidelines for
interacting with participants/families and ensuring their comfort. A
comprehensive Manual of Procedures (MOP) was developed and main-
tained to detail standardized protocols for EEG data acquisition,
including electrode placement, calibration procedures, and procedural
checklists to ensure that each session adhered to a systematic and
consistent approach. The MOP also detailed equipment specifications,
the functionality of each component, and how they communicated. This
ensured that research assistants at each site were proficient in the
equipment set-up and could identify and address challenges.

We implemented a specific EEG acquisition template within Net-
Station’s Workbench to ensure session uniformity of pre-set filters,
visualization layouts, sampling rates, and synchronized audio-video
participant recordings. Identical E-Prime (Psychology Software Tools)
scripts implemented through the IBIS-specific laptop were used to con-
trol experimental stimuli, timing, and data collection across sites. Each
site also received a ‘calibration file’ to run before every EEG session. The
calibration file allowed the experimenter to identify any issues before
starting the session. This included checks for accurate stimulus presen-
tation, successful transmission of stimulus markers to the DAC, and
calibration of the external speakers’ volume to 75 dB SPL using a sound
level meter.

2.4.2. Training
We developed a comprehensive training program tailored to meet

the needs of all team members and address the specialized requirements
of infant populations. This program included online workshops, hands-
on sessions, and continuous support for troubleshooting. Training was
ongoing and systematically structured to ensure consistency and stan-
dardization in data acquisition methodologies, particularly in the
context of staff turnover inherent to longitudinal, multi-site studies. The
training sessions were specifically designed to optimize data quality by
balancing infant comfort with required adaptations while maintaining
consistent site procedures and practices. We scheduled regular calls bi-
weekly for EEG coordinators and monthly for broader EEG teams, and
tracked and updated all issues in the MOP with resolutions. The MOP
served as a dynamic reference for current research assistants and a vital
tool for training new staff, ensuring continuity in the context of staff
turnover. Examples of training materials are available on our OSF page
(https://osf.io/73wbs/?view_only=823d2a95dec74fa8a975330c4b080
5dd).

2.5. Quality control checks

We established a rapid feedback and quality control framework to
maintain consistent EEG data quality across sites. After each session,
sites uploaded EEG data to LORIS (Longitudinal Online Research and
Imaging System), a secure central database managed by McGill Uni-
versity. LORIS is a web-based, open-source platform originally designed

Fig. 3. A) Site-specific EEG system details B) Standardized laptop implemented across sites (1) Standardized IBIS Laptop; 2) Integrated photocell for monitoring
visual stimuli; 3) Auxiliary connection transmits auditory timing from laptop to AV device; 4) AV Device relays stimulus timing to DAC; 5) Soundbar for auditory
stimuli; 6) Guidelines for pre-session laptop checks).
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for large neuroimaging datasets (Das et al., 2012). The core EEG team
evaluated data files and corresponding in-session video recordings,
providing in-depth feedback (described in more detail below) within
24–48 hours.

2.5.1. Identifying technical issues
Various technical issues can arise during EEG recordings, potentially

compromising data integrity if left undetected. To mitigate this, the
central EEG team carefully reviewed each recording for protocol
adherence, correct stimulus tagging, and technical irregularities. This
thorough review process allowed for the prompt detection of issues such
as inconsistent stimulus markers or elevated levels of environmental
noise. Upon identifying any issues, we addressed them using trouble-
shooting guides and virtual real-time support when necessary. These
proactive measures ensured problems were resolved before impacting
future recordings.

2.5.2. Tailored feedback
Beyond technical oversight, the core EEG team reviewed each

recording to assess data quality. We evaluated the recorded data and
associated video files to provide specific feedback on protocol adherence
and collection procedures. This process included verifying proper elec-
trode net positioning and reviewing behavioral management methods.
Common feedback suggestions included incorporating breaks to alle-
viate infant fatigue, minimally distracting toys, and avoiding specific
soothing techniques that introduced additional movement-based arti-
facts (e.g., rocking the infant or providing a pacifier). These suggestions
were informed by our team’s collective experience with developmental
populations and established guidance available in the literature
(Abraham et al., 2017; Volkow et al., 2021; Webb et al., 2020). Feedback
after each session ensured consistent, high-quality data across sites and
served as an effective training tool to refine data collection practices.
The prompt response time allowed for rapid issue detection, which was
crucial given the narrow age window for infant data collection in this
study. Additionally, the quick turnaround in feedback helped all team
members maintain uniform standards for protocols and data quality.

2.6. Analysis

2.6.1. Feasibility
We assessed protocol feasibility by measuring completion rates and

analyzing variations by paradigm, site, and timepoint.: We evaluated
overall protocol completion rates at 6 and 12 months by categorizing the
extent of the EEG protocol completed into three categories: full protocol,
partial protocol, or no data. Paradigm-Specific Completion Rates: We
further assessed completion rates for each of the three paradigms
separately (task-free, AEP, and VEP) by determining whether at least
one full paradigm block was completed. This metric allowed us to
investigate if data losses disproportionately affected a particular para-
digm and to identify any paradigm-specific issues across different sites
or timepoints. We used Fisher’s exact and chi-square tests to inspect site-
or timepoint-specific variations in protocol completion rates, paradigm-
specific completion rates, and sources of data loss. To examine site-
specific variations, we compared each site’s feasibility metrics to the

combined average of the others using Fisher’s exact test (Table 2).

2.6.2. Data quality
To assess data quality, we quantified the amount of task-free data

remaining after artifact removal. Artifact removal procedures priori-
tized an unbiased quality assessment over specific data analysis needs.
Offline data processing was performed using EEGLAB (Delorme and
Makeig, 2004) and custom MATLAB scripts. Specifically, we used a
general amplitude-based detection algorithm to remove artifacts
consistently, rather than using more sophisticated measures that vary in
their aggressiveness based on the quality of the data collected for each
infant (e.g., artifact subscale reconstruction, Chang et al., 2018). While
artifact removal can vary depending on the specific metric under study
(power, coherence, connectivity, etc.), we used an objective
amplitude-based approach to provide a more transparent benchmark of
EEG data quality. Data were imported into EEGLAB and filtered
(1–50 Hz). Continuous data were examined for artifacts using the erplab
toolbox function pop_continuousartdet, implemented in eeglab (Delorme
and Makeig, 2004; Lopez-Calderon and Luck, 2014). To mitigate the
impact of artifact rejection being unduly influenced by the sequence of
data removal (channels or segments), we implemented a two-stage
cleaning process. First, we targeted channels and segments impacted
by large amplitude artifacts, using a threshold of ±600 µV. Specifically,
any channels that deviated beyond this threshold for more than 25 % of
an infant’s total resting recording, followed by segments where more
than 5 % of channels exceeded this limit, were removed. After removing
channels and data segments contaminated by large artifacts, continuous
EEG data then underwent a second stage of cleaning to remove channels
that deviated ±200 µV for more than 5 % of an infant’s total resting
recording, and then data segments where >5 % of channels deviated ±

200 µV. This stepwise approach allowed us to effectively remove both
prominent and subtle artifacts while balancing the preservation of
channels and data segments.

Data quality was defined as the duration (seconds) of task-free EEG
retained after artifact removal. As a secondary assessment of data
quality, we also examined channel retention rates. We used separate
generalized linear mixed models (GLMMs) to model data quality metrics
(seconds retained; proportion of channels retained) and examine if they
varied across sites and timepoints. When modelling longitudinal data,
GLMMs allow for both fixed and time-varying covariates, and auto-
matically handle the random missing data due to incomplete EEG visits.
GLMMs incorporated main effects for site, timepoint, and their in-
teractions, with a subject-level random intercept. Site D was excluded
from channel retention analyses as its electrode montage comprised 64
electrodes instead of the 128 electrodes used at other sites. While
evaluating the proportion of channels retained might seem less biased,
montages with fewer electrodes might inherently retain a larger pro-
portion of channels as researchers can dedicate more time to reducing
impedances when there are fewer electrodes.

2.6.3. Signal characteristics
In addition to data quality metrics, we present power spectral density

(PSD) plots of the artifact-free spontaneous EEG data. Examining PSDs
helps to confirm the consistency of the signals captured across sites,
identify any atypical patterns, and examine if we see expected age-
related shifts. As such, although a formal analysis of spectral power is
not within the scope of the current paper, providing the PSDs for qual-
itative examination serves to provide a more transparent understanding
of the data collected so far and signal characteristics across various sites.

Before extracting power measures, we applied Independent
Component Analysis (ICA) and removed any components where iclabel
determined the primary source to be non-neural. To ensure uniformity
across all sites, we interpolated the data to a consistent 64-channel
montage and reduced its sampling rate to 500 Hz. Power was
computed using the pwelch function implemented in MATLAB, with two-
second windows and a 50 % overlap. Recognizing varied data duration

Table 2
Outcome metrics for assessing feasibility and data quality.

Outcome Metrics

Quantitative Qualitative

Feasibility Overall Protocol
Completion Rates.

Paradigm-Specific
Completion Rates.

Data
Quality

Seconds of task-free
EEG data retained
after artifact
removal.

Number of channels
retained in task-free
EEG data after artifact
removal.

Inspect signal
characteristics
(using PSDs).

A. Dickinson et al.
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among participants, we employed a permutation-based approach to
calculate power. Specifically, we derived power from a random 60-sec-
ond segment of the EEG, repeating this 500 times for each participant,
with the average of all permutations representing the final power for
each individual. This approach helps to ensure that differences in the
amount of available data do not impact power estimates (Xie et al.,
2022). Plotted PSDs represent average power across all channels.

3. Results

3.1. Feasibility

3.1.1. Overall completion rates
Of the 73 infants who attended an EEG session at 6 months, 100 % (n

= 73) were netted and EEG recording was successfully initiated. Only
two sessions (2.74 %) were terminated before the completion of any
paradigms, 1 due to infant fussiness and 1 due to a technical error. EEG
data were successfully collected from 71 infants at 6 months, with 52
participants (71.23 %) completing the full protocol and an additional 19
(26.03 %) completing at least one paradigm (task-free, AEP, or VEP; See
Table 3). Of the 47 infants who attended an EEG session at 12 months,
100 % (n = 47) were netted and EEG recording was successfully initi-
ated. One session was terminated before the completion of any para-
digms due to infant fussiness that could not be alleviated. Additionally,
technical issues interrupted two recordings before any paradigms were
finished, resulting in three 12-month files with no completion (6.38 %).
As such, data was successfully collected from 44 infants at 12 months,
with 35 participants (74.47 %) completing the full protocol and an
additional 9 (19.14 %) participants completing at least one paradigm
(See Table 3).

We categorized participants based on full completion, partial
completion, and no completion of the protocol (See Fig. 4). Given the
low numbers of infants in the no-completion group, our analysis
centered on comparing full and partial completion rates. A Fisher’s exact
test indicated no significant difference in the distribution of full versus

partial completions across the two timepoints (p = 0.82). Chi square
tests found no significant differences in full vs partial completion be-
tween sites at 6 (x2 (df) = 3.739 (4), p = 0.44), or 12 months (x2 (df) =
7.421 (4), p = 0.12). In terms of data collection, there were only two
failed sessions at 6 months and three at 12 months (i.e., no data were
collected for at least one paradigm). We examined in-session success by
comparing each sites collection rate in relation to the combined average
of the others, finding no site-specific differences for in-session success at
6 (p > 0.43) or 12 months (p > 0.16).

3.1.2. Paradigm-specific completion rates
The EEG protocol included 3 blocks of task-free EEG, one block of

AEP, and one block of VEP. However, the number of completed para-
digms for each infant varied (see Fig. 4). Chi square test revealed no
significant differences in paradigm completion rates and timepoint (x2

Table 3
Completion rates for the full EEG protocol, as well as paradigm-specific
completion rates, at each timepoint. ‘Full Protocol’ describes participants who
completed all 5 EEG blocks. Task-Free, AEP and VEP numbers reflect partici-
pants who engaged in a minimum of one block for the respective paradigms.

6 Months

Total Sample Full Protocol Task-Free VEP AEP

Site A n 12 7 12 11 8
% 58.33 % 100 % 91.67 % 66.67 %

Site B n 14 11 14 12 14
% 78.57 % 100 % 85.71 % 100 %

Site C n 18 12 17 14 13
% 66.66 % 94.44 % 82.35 % 76.47 %

Site D n 7 6 7 7 6
% 85.71 % 100 % 100 % 85.71 %

Site E n 22 16 21 19 21
% 72.73 % 95.45 % 90.48 % 100 %

Total n 73 52 71 63 62
% 71.23 % 97.260 % 88.73 % 87.32 %

12 Months
Total Sample Full Protocol Task-Free VEP AEP

Site A n 9 6 8 8 7
% 66.67 % 88.89 % 88.89 % 77.78 %

Site B n 6 2 6 2 6
% 33.33 % 100 % 33.33 % 100 %

Site C n 12 10 11 11 12
% 83.33 % 91.67 % 91.67 % 100 %

Site D n 9 8 8 8 8
% 88.89 % 88.89 % 88.89 % 88.89 %

Site E n 11 9 11 11 11
% 81.82 % 100 % 100 % 100 %

Total n 47 35 44 40 44
% 74.47 % 93.62 % 85.11 % 93.62 %

Fig. 4. Paradigm-Specific EEG Completion Rates Across Sites and Time Points.
(A) Completion rates for Task-Free, AEP, and VEP paradigms aggregated across
all five sites at 6 and 12 months. (B-C) Detailed completion rates for each
paradigm, broken down by individual site at the B) 6-month, and (C) 12-
month timepoint.
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(df) = 0.272 (2), p = 0.87). Separate chi square tests at 6 and 12 months
also indicated no differences in paradigm completion rates across sites
(6 months: x2 (df) = 1.143 (8), p= 0.997; 12 months: x2 (df) = 2.249 (8),
p = 0.972 (Figs. 5 and 6).

3.2. Data quality

3.2.1. Data quality attrition
Files contaminated with line noise exceeding our amplitude-based

cleaning threshold were deemed unusable. This affected 13.7 % (n =

10) of recordings at 6 months, and 8.5 % (n = 4) at 12 months (see
Table 4). Detailed metrics on the number of seconds and channels
retained for the remaining participants (6 months n = 61; 12 months n =

40) are provided in Table 5, offering more nuanced insights into the
overall data quality achieved across our sample.

3.2.2. Data duration
The average duration of artifact-free data was 463.07 seconds (SD =

126.34) at 6 months, and 496.93 seconds (SD = 89.40) at 12 months
(See Table 4 and Fig. 4). Statistical analysis (GLMM) found no significant
effect of age (t (90) = 0.426, p = 0.671), suggesting that the data
duration retained did not differ significantly between time points.
Furthermore, non-significant p-values for all interaction terms (all p >

0.27) indicated no interactions between time and site. However, a
marginal main effect of site was observed, with Site D showing higher
data lengths compared to the reference site (Site A) (t (90) = 1.949, p =

0.054).

3.2.3. Channel retention
In a secondary assessment of data quality, we also examined the

proportion of channels retained. On average, 71.10 % (SD = 10.83) of
channels were retained at month 6, and 73.98 % (SD = 11.82) at month
12. Statistical analysis (GLMM) found no significant effect of age (t (77)
= 0.592, p= 0.555), site, (p> 0.09) or interactions between site and age
(p > 0.20) on the proportion of channels retained.

3.2.4. Signal characteristics
Qualitative inspection of power spectral density (PSD) plots (see

Fig. 7) revealed typical characteristics of infant brain activity, including
consistent power distribution across sites and expected developmental
shifts with age. Furthermore, the power distribution indicates no sig-
nificant contamination from higher-frequency noise sources. This initial
examination of signal properties, alongside quantitative feasibility and
quality metrics, confirms the reliability and suitability of the data for
future analysis.

4. Discussion

EEG and MRI studies have revealed early indicators of brain differ-
ences in ASD before behavioral symptoms emerge. By capturing data
across distinct task-free, auditory, and visual paradigms, we can
examine the overall functional architecture of the brain as well as spe-
cific circuit mechanisms involved in sensory processing. This multifac-
eted approach provides opportunities to detect early indicators of
atypical neural development and better understand infant circuit
development in ASD. Here, we describe a framework for integrating EEG
into a multi-site MRI study of early ASD infant brain development. We
provide a transparent reference to guide future endeavors and discuss
the implications of these methods for our ongoing data collection stra-
tegies and multi-site infant EEG research more broadly.

4.1. Protocol feasibility

Interim analysis revealed consistently high completion rates across
sites, timepoints, and paradigms (AEP, VEP, and task-free). An average
of 72.5 % of infants successfully completed the entire protocol over both
timepoints, and 95.8 % completed at least one paradigm. These data
suggest that the protocol duration is appropriately calibrated for infant
participants, neither underutilizing nor exceeding their engagement
capacity. Striking this balance is crucial for maximizing data collection
while ensuring a comfortable participant experience. For task-free data
specifically, attrition rates due to in-session issues (including technical
errors and infant fussiness) were 2.74 % at 6 months and 6.38 % at 12
months. These rates are consistent with the in-session data attrition rates
for task-free EEG data described in a large study (n >1000) of similarly
aged infants collected at one site (5 months: 3.2 %; 10 months: 4.4 %;
Van der Velde and Junge, 2020).

Furthermore, despite strict stimulus timing controls that can increase
the likelihood of equipment-related data loss, we observed similarly
high completion rates in both AEP and VEP paradigms. The imple-
mentation of real-time stimulus presentation recording minimized
timing disruptions that could affect VEP and AEP data integrity, and

Fig. 5. EEG Protocol Completion Rates Across Sites and Time Points. (A) Total
protocol completion rates aggregated across all five sites at 6 and 12 months.
(B) Protocol completion rates broken down by site for the 6-month time point.
(C) Protocol completion rates broken down by site for the 12-month time point.
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rapid feedback identified and addressed any issues that emerged.

4.2. Data quality

We assessed data retention rates after artifact removal as a marker of
data quality and usability. A subset of participants failed the data
cleaning algorithm, as pervasive line noise above specified amplitude
thresholds led to all channels being removed. This resulted in the
exclusion of 13.7 % of recordings at 6 months and 8.5 % at 12 months.
Despite this issue, our attrition rates compare favorably with those in
similar age-group EEG studies. For example, Van der Velde & Junge
(2020) reported attrition rates of 23.4 % at 5 months and 18.5 % at 10
months for continuous task-free data (< 90 seconds of data).

The remaining participants contributed at least five minutes of
artifact-free data (6 months: 419 seconds; 12 months: 440 seconds). This
duration is suitable for many metrics of interest, including spectral
power, connectivity, entropy, and complexity (Gudmundsson et al.,
2007; Haartsen et al., 2020; Miljevic et al., 2022). For instance,
~20–40 seconds of data is adequate for stable calculation of many

Fig. 6. A-B) Box plots showing the retained data duration (in seconds) at each site, with a total average plotted in gray for A) 6 and B) 12 months. C-D) Box plots
showing the proportion of channels retained at each site, with a total average plotted in gray for C) 6 and D) 12 months.

Table 4
Data Attrition Rates. This table presents the percentage of data loss at each site
(and the overall total), categorized by the source of attrition. Sources include in-
session issues (infant fussiness or technical errors) and data loss due to low-
quality data. Note that in the present study, all files rejected for low-quality
data were due to the presence of pervasive line noise.

Month 6 Month 12

In
Session

Quality
Control

Total
Data Loss

In
Session

Quality
Control

Total
Data Loss

Site
A

0/12 2/12 2/12 1/9 2/9 3/9
0 % 16.67 % 16.67 % 11.11 % 22.22 % 33.33 %

Site
B

0/14 8/14 8/14 0/6 2/6 2/6
0 % 57.14 % 57.14 % 0 % 33.33 % 33.33 %

Site
C

1/18 0/18 1/18 1/12 0/12 1/12
5.56 % 0 % 5.56 % 8.33 % 0 % 8.33 %

Site
D

0/7 0/7 0/7 1/9 0/9 1/9
0 % 0 % 0 % 11.11 % 0 % 11.11 %

Site
E

1/22 0/22 1/22 0/11 0/11 0/11
4.55 % 0 % 4.55 % 0 % 0 % 0 %

Total 2/73 10/73 12/73 3/47 4/47 7/47
2.74 % 13.70 % 16.44 % 6.38 % 8.51 % 14.89 %

Table 5
Quality metrics for task-free data. This table presents the metrics used to assess
data quality, the absolute data duration (in seconds), and the percentage of
channels retained post-cleaning. Values are described individually for each site,
with the average across sites presented as ‘Total.’.

Month 6 Month 12

Site Duration Retained
(Seconds)

Channels
Retained
(%)

Duration Retained
(Seconds)

Channels
Retained
(%)

Mean (SD)
[Range]

Mean (SD)
[Range]

Mean (SD)
[Range]

Mean (SD)
[Range]

Site
A

418.95 (161.85)
[113.32–580.63]

67.3 (9.98)
[50–83]

440.45 (134.89)
[167.90–515.10]

69.83
(9.54)
[57–83]

Site
B

367.17 (163.94)
[104.04–536.26]

71.17
(9.50)
[58–81]

468.91 (43.29)
[426.93–521.37]

58 (15.81)
[41–77]

Site
C

469.34 (114.55)
[178.63–558.32]

66.71
(8.96)
[50–80]

499.94 (54.01)
[347.03–546.84]

71.55
(8.61)
[52–85]

Site
D

524.93 (77.11)
[356.67–578.56]

80 (9.07)
[68–91]

561.44 (21.62)
[525.02–593.59]

84.75
(7.23)
[75–93]

Site
E

485.78 (107.02)
[152.05–662.18]

73.48
(11.75)
[37–89]

487.98 (112.29)
[352.32–671.80]

76.64
(9.71)
[56–89]

Total 463.07 (126.34)
[104.04–662.18]

71.10
(10.83)
[37–91]

496.93 (89.40)
[167.90–671.80]

73.98
(11.82)
[41–93]

A. Dickinson et al.



Developmental Cognitive Neuroscience 69 (2024) 101425

9

spectral characteristics, including power (Gudmundsson et al., 2007).
Furthermore, 40 seconds of data has been used as a benchmark in many
studies of developmental populations (Dickinson et al., 2017), including
infants (Gabard-Durnam et al., 2019). Data quality metrics also showed
low variation across sites, indicating consistent retention of task-free
data. Analysis of PSDs further confirmed this consistency, revealing
expected infant power distributions. Combined with feasibility metrics,
these data quality assessments indicate that thorough training and
standardized protocols can support consistently high-quality data,
regardless of prior experience levels.

Our preliminary analysis highlights external environmental noise
interference as the main source of data loss. Specifically, despite suc-
cessful initial data capture, several files were identified as unusable due
to disruptions affecting the integrity of the recorded data, providing
insight into potential systematic problems. The sources of post-session
data loss can generally be categorized into internal issues (file corrup-
ted, recording error) or external sources (large mains line noise).
Overall, we saw higher rates of external issues (compared to internal).
Recognizing this, we will take future efforts to preemptively detect and
address noise issues, integrating quantitative metrics of 60 Hz noise
levels during file reviews. While not all sources of noise are easily
addressable, such as construction-related 60 Hz interference (Site B),
continuous monitoring of these rates will facilitate early detection of
emerging noise concerns, enabling us to proactively mitigate potential
data losses.

4.3. Limitations & next steps

This study employed an amplitude-based artifact detection method

to objectively measure the seconds of data retained post-cleaning,
providing a clear, tangible view of signal integrity. This initial assess-
ment offered a valuable “snapshot” of data quality, but it was not
tailored to extract specific metrics of interest. Although this objective
method shows consistent cleaning rates across timepoints, more
advanced techniques, such as artifact subspace reconstruction (ASR)
(Chang et al., 2018), which flexibly accommodate each infant’s unique
data characteristics, may be better suited for specific future analyses.
Furthermore, these estimates will not necessarily translate to other
paradigms (AEP and VEP). While we saw high completion of AEP and
VEP paradigms, task-specific considerations, such as visual inattention,
impacted data retention. For instance, the first stage of VEP data pro-
cessing will involve removing periods of inattention to the screen,
identified through a review of synchronized video footage. Finally, it
remains a challenge to establish a standard benchmark for data retention
rates, especially in infant studies. Nonetheless, these initial evaluations
suggest that we will retain a significant amount of high-quality data,
versatile enough to support a broad range of metrics and analyses, as
described above.

There are multiple approaches to establishing research collabora-
tions across multiple sites, each with unique advantages and challenges.
For example, retrospective pooling of data from independent studies
offers flexibility and logistical simplicity, potentially yielding larger
datasets. Conversely, stringent cross-site standardization, while
ensuring uniform data collection and reducing variability, may restrict
the number of participating sites. This study adopted a standardized
approach to maximize consistency across sites, a decision partly driven
by the substantial heterogeneity inherent in ASD and typical infant
development, in order to reduce additional variability in data collection

Fig. 7. Power Spectral Densities (PSDs) for 6-month and 12-month EEG data, averaged across all scalp channels. Shaded regions represent 95 % confidence intervals.
A) Overlaying PSDs from each site reveals high consistency in signal characteristics at both 6- and 12-month timepoints. B) PSDs show consistent age-related changes
in signal characteristics between 6 and 12 months at each site, aligning with anticipated developmental trends.
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that could otherwise obscure or misrepresent crucial neural differences.
Less tightly controlled multi-site approaches will also play a vital role

in autism biomarker discovery. To have a meaningful impact, bio-
markers must be consistently and reliably measurable across different
systems and conditions, extending beyond the specific methodologies of
any single study or research group. In practice, clinics and research in-
stitutions may operate with varying levels of resources, employ diverse
procedures, and utilize different EEG systems. Therefore, future en-
deavors, adopting more flexible multi-site approaches and varied pro-
cedures and systems will help us to establish biomarkers that are
consistently detectable across diverse real-world settings. Ultimately the
goal is to identify biomarkers that are both scientifically robust and
broadly applicable in diverse clinical and research environments.

4.4. Conclusions

Despite the inherent unpredictability of infant data collection, it is
feasible to obtain consistent EEG signals across sites with varying
acquisition parameters and levels of expertise. Our approach offers a
practical and realistic framework for future research, aiming to achieve
high-quality data collection while maintaining the integrity and goals of
the broader study. The balance between standardization and adapt-
ability in our methodology is key for advancing multi-site, multimodal
neuroscience research. This strategy establishes a solid foundation for
identifying biomarkers, which can be further explored in multi-site
initiatives, ensuring both precision and versatility in their application.
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