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O C E A N O G R A P H Y

Elucidating ecological complexity: Unsupervised 
learning determines global marine eco-provinces
Maike Sonnewald1,2*, Stephanie Dutkiewicz1, Christopher Hill1, Gael Forget1

An unsupervised learning method is presented for determining global marine ecological provinces (eco-provinces) 
from plankton community structure and nutrient flux data. The systematic aggregated eco-province (SAGE) 
method identifies eco-provinces within a highly nonlinear ecosystem model. To accommodate the non-Gaussian 
covariance of the data, SAGE uses t-stochastic neighbor embedding (t-SNE) to reduce dimensionality. Over a hundred 
eco-provinces are identified with the density-based spatial clustering of applications with noise (DBSCAN) algorithm. 
Using a connectivity graph with ecological dissimilarity as the distance metric, robust aggregated eco-provinces 
(AEPs) are objectively defined by nesting the eco-provinces. Using the AEPs, the control of nutrient supply rates 
on community structure is explored. Eco-provinces and AEPs are unique and aid model interpretation. They could 
facilitate model intercomparison and potentially improve understanding and monitoring of marine ecosystems.

INTRODUCTION
Provinces are regions in the ocean or on land where the complex 
biogeography has been organized into coherent and meaningful 
regions (1). Such provinces are important for comparing and con-
trasting locations, characterizing observations, monitoring, and conserva-
tion efforts. The intractably complicated and nonlinear interactions 
that create these provinces make unsupervised machine learning 
(ML) methods well suited to objectively determine provinces because 
the covariances within the data manifest as intricate and non-Gaussian. 
Here, an ML method is presented, which systematically identifies 
unique marine ecological provinces (eco-provinces) from the Darwin 
global three-dimensional (3D) physical/ecosystem model (2). The term 
“unique” is used to signify that the identified region is sufficiently 
different from other regions that they do not overlap. The method 
is called the systematic aggregated eco-province (SAGE) method. 
For useful classification, an algorithmic method needs to allow for 
both (i) global classification and (ii) a multiscale analysis that can be 
both spatially and temporally nested/aggregated (3). In this study, 
the SAGE method is first presented, and the identified eco-provinces 
are discussed. The eco-provinces could facilitate understanding of 
factors controlling community structure, provide insight useful for 
monitoring strategies, and assist in the tracking of ecosystem changes.

Terrestrial provinces are often classified according to similarity 
in climate (precipitation and temperature), soil, vegetation, and fauna 
and used to aid management, biodiversity studies, and disease 
control (1, 4). Ocean provinces are more difficult to define. The ma-
jority of organisms are microscopic, and the boundaries are fluid. 
Longhurst et al. (5) provided one of the first global classifications 
of marine provinces based on environmental conditions. These 
“Longhurst” provinces were defined using variables such as mixing 
rates, stratification, and irradiance, along with Longhurst’s extensive 
experience as a seagoing oceanographer of other key conditions im-
portant to the marine ecosystem. The Longhurst provinces have been 
widely used, for example, to assess primary production and carbon 
fluxes, to aid fisheries, and to plan in situ observational campaigns 

(5–9). Toward defining provinces more objectively, methods such as 
fuzzy logic and regional unsupervised clustering/statistics have been 
used (9–14). Such methods have the goal of identifying meaningful 
structures that can identify provinces in available observational data. 
For instance, dynamic seascape provinces (12) use self-organizing maps 
to reduce noise and hierarchical (tree-based) clustering to identify 
provinces on the basis of regional satellite–derived ocean color pro-
ducts [chlorophyll a (Chl-a), normalized fluorescence line height, and 
colored dissolved organic material] and physical fields (sea surface 
temperature and salinity, absolute dynamic topography, and sea ice).

Plankton community structure is of interest as their ecology has 
a large impact on higher trophic levels and also on carbon uptake 
and hence climate. Despite this, identifying global eco-provinces based 
on plankton community structure remains a challenging and elusive 
goal. Ocean color satellites can potentially offer insight in terms of 
coarse-grained size fractionation of phytoplankton or suggest dom-
inance of functional groups (15), but cannot currently provide details 
of community structure. More recent surveys [e.g., Tara ocean (16)] 
are providing unprecedented measurements of community structure; 
there are, at present, only sparse in situ observations at a global scale 
(17). Previous studies have largely determined “biogeochemical prov-
inces” based on identifying biochemical similarities such as in primary 
production, Chl, and available light (12, 14, 18). Here, numerical model 
output [Darwin (2)] is used, and eco-provinces are determined in 
terms of community structure and nutrient fluxes. The numerical 
model used in this study has global coverage and compares favor-
ably to available in situ data (17) and remotely sensed fields (note 
S1). The numerical model data used in this study have the advantage 
of global coverage. The model ecosystem consists of 35 phytoplankton 
and 16 zooplankton types (see Materials and Methods). The model 
plankton types interact nonlinearly with non-Gaussian covariance 
structure such that simple diagnostics are not well suited to identi-
fying unique and coherent patterns in the emergent community struc-
ture. The SAGE method presented here provides a novel method to 
examine the complex Darwin model output.

The transformative power of data science/ML techniques can 
allow overwhelmingly complicated model solutions to reveal com-
plex, but robust, structures in the covariance of data. A robust method 
is defined as one that can faithfully reproduce results within a given 
error margin. Determining robust patterns and signals is a challenge 
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even in simple systems. Emergent complexity can appear complicated/
intractable until the underlying principles giving rise to the ob-
served patterns are determined. Key processes setting ecosystem 
composition are inherently nonlinear. The presence of nonlinear inter-
actions can confound robust classification, and methods that make 
strong assumptions about the underlying statistical distributions 
of the covariance of data need to be avoided. High-dimensional and 
nonlinear data are common in oceanography and likely have cova-
riance structures with intricate, non-Gaussian, topology. While data 
with a non-Gaussian covariance structure can hamper robust clas-
sification, the SAGE method is novel as it was designed to allow identi-
fication of clusters with arbitrary topology.

The goal of the SAGE method is to objectively identify emergent 
patterns that could help further ecological understanding. Following a 
clustering-based workflow similar to that in (19), the ecological and 
nutrient flux variables are used to determine unique clusters within 
the data, referred to as eco-provinces. The SAGE method presented 
in this study (Fig. 1) first reduces the dimensionality from 55 to 
11 dimensions by summing over the a priori defined plankton func-
tional groups (see Materials and Methods). The dimensionality is fur-
ther reduced by a probabilistic projection onto a 3D space using the 
t-stochastic neighbor embedding (t-SNE) method. Unsupervised 
clustering identifies regions of close ecological proximity [density- 
based spatial clustering of applications with noise (DBSCAN)]. Both 
t-SNE and DBSCAN are suitable for the inherently nonlinear eco-
system numerical model data. The resulting eco-provinces are then 
back-projected onto the globe. Over a hundred unique eco-provinces 
are determined, suitable for regional studies. To consider global 
coherent ecosystem patterns, the eco-province utility is increased 
using the SAGE methods ability to aggregate the eco-provinces into 

aggregated eco-provinces (AEPs). The level of aggregation, termed 
“complexity,” can be adjusted to a desired level of detail. The mini-
mum complexity number for robust AEPs is determined. The chosen 
focus is on the SAGE method and on exploring the minimal complex-
ity AEP case to determine controls on the emergent community struc-
tures. Patterns can subsequently be analyzed, offering ecological insight. 
The approach presented here can also be used more widely, for example, 
for model intercomparison by assessing where similar eco-provinces are 
found in different models to highlight discrepancies and similarities.

RESULTS
Identifying and AEPs
The SAGE method defines eco-provinces using output from a global 
3D physical/ecosystem numerical model [Darwin (2); see Materials 
and Methods and note S1]. The ecosystem component consists 
of 35 phytoplankton types and 16 zooplankton types, with seven a 
priori defined functional groups: prokaryotes and eukaryotes adapted 
to low nutrient environments, coccolithophores with calcium car-
bonate coverings, nitrogen-fixing diazotrophs (often a key missing 
nutrient), diatoms with siliceous coverings, mixotrophic dinoflagellates 
that both photosynthesize and graze other plankton, and zooplankton 
grazers. Sizes span 0.6 to 2500 m equivalent spherical diameter. 
The model distribution of size and functional grouping of phyto-
plankton capture gross features seen in satellite and in situ observa-
tions (see figs. S1 to S3). The similarity between the numerical model 
and the observed ocean suggests that provinces defined from the 
model may have application to the in situ ocean. Note the caveats 
that the model only captures some of the diversity of phytoplankton 
and only some of the range of physical and chemical forcings of the 

Fig. 1. The SAGE method workflow. (A) Sketch of the workflow to determine the eco-provinces; raw 55-dimensional data reduced using summation within functional 
groups to 11-dimensional model output, including biomass of seven functional/trophic groups of plankton and four nutrient supply rates. Negligible values and per-
sistent ice cover areas are discarded. Data are normalized and standardized. The 11-dimensional data are given to the t-SNE algorithm to highlight statistically similar 
feature combinations. DBSCAN selects the clusters carefully setting parameter values. The data are finally projected back onto a latitude/longitude projection. Note that 
this process is repeated 10 times, as a slight stochastic element is possible through the application of t-SNE. (B) illustrates how the AEPs are arrived at by repeating the 
workflow in (A) 10 times. For each of the 10 realizations, the interprovince Bray-Curtis (BC) dissimilarity matrix is determined based on the biomass of the 51 phytoplankton 
types. The BC dissimilarity within the aggregated provinces is determined going from a complexity of 1 AEP to full complexity of 115. The BC benchmark is set by 
Longhurst provinces.
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in situ ocean. The SAGE method could lead to a better understand-
ing of the highly regional controlling mechanisms of the model com-
munity structure.

The dimensionality of the data is initially reduced by including 
only the surface, 20-year time-mean sum of biomass, within each 
plankton functional group. Surface source terms for the flux of nu-
trients (nitrogen, iron, phosphate, and silicic acid supply) are also 
included, following earlier studies showing their key roles in setting 
community structure [e.g. (20, 21)]. Summation over functional groups 
reduces the problem from 55 (51 plankton and 4 nutrient fluxes) to 
11 dimensions. In this initial study, depth and temporal variability 
are not considered because of computational limitations imposed by 
the algorithms.

Dimensionality reduction with t-SNE
The SAGE method is able to identify important relationships be-
tween the nonlinear processes and interacting key features in the biomass 
of functional groups and nutrient fluxes. Obtaining robust, repro-
ducible, provinces is not possible with the 11-dimensional data using 
learning methods based on Euclidean distances such as K-means 
(19, 22). This is because the underlying distributions of the covariance 
of key features that define the eco-provinces are not seen to inhabit 
shapes that are Gaussian. K-means, using Voronoi cells (straight lines), 
is not able to preserve non-Gaussian underlying distribution.

The seven plankton functional group biomasses and the four 
nutrient fluxes form an 11-dimensional vector, x. Thus, x is a vector field 
on the model grid, where each element xi represents the 11-dimensional 
vector defined on the model’s horizontal grid. Each index i uniquely 
identifies a grid point on the sphere, with (lon, lat) = (i, i). The log 
of the biomass data is used and is discarded if a model grid cell has 
a biomass less than 1.2 × 10−3mg Chl/m3 or ice cover is over 70%. 
The data are normalized and standardized such that all data exist in 
the range [0 to 1], with the mean removed and scaled to unit variance. 
This is done so the features (biomass and nutrient fluxes) do not be-
come conditioned by contrasts in the ranges of possible values. The 
clustering should capture the variational relationships from the key 
probabilistic distances between features rather the geographic distances. 
Quantifying these distances, important features emerge while un-
necessary detail is discarded. In ecological terms, this is necessary 
because some phytoplankton types that have little biomass can have 
large biogeochemical impact, e.g., diazotrophs fixing nitrogen. The 
covariability of these types is highlighted when the data are standard-
ized and normalized.

The t-SNE algorithm is used to make existing similar regions stand 
out more clearly, by emphasizing feature proximity in the high- 
dimensional space in a lower-dimensional representation. Previous 
work aiming to build deep neural networks for remote sensing ap-
plications used t-SNE, demonstrating its skill in separating key features 
(23). This is a necessary step toward identifying robust clusters in 
the feature data while avoiding nonconvergent solutions (note S2). 
Using a Gaussian kernel, t-SNE preserves the statistical properties 
of the data by mapping each high-dimensional object onto a point 
in 3D phase space in a way that ensures a high probability of similar 
objects being close in both the high- and low-dimensional space (24). 
Given a set of N high-dimensional objects x1,..., xN, the t-SNE algorithm 
performs a reduction by minimizing the Kullback-Leibler (KL) di-
vergence (25). The KL divergence is a measure of how different one 
probability distribution is from a second reference probability dis-
tribution, effectively assessing the likelihood of association between a 

low-dimensional rendition of the high-dimensional features. If xi is 
the i-th object and xj is the j-th object in the N-dimensional space, 
and yi is the i-th object and yj is the j-th object in the low-dimensional 
space, t-SNE defines a probability of similarity, p

   p  j∣i   =   
exp (− ∥  x  i   −  x  j    ∥   2  / 2   i  

2 )
  ─────────────────   

 ∑ k≠i     exp (− ∥  x  i   −  x  k    ∥   2  / 2   i  
2 )

    

and the same for a reduced dimensional set

   q  i∣j   =   
 (1 + ∥  y  i   −  y  j    ∥   2 )   

−1
 
  ──────────────  

 ∑ k≠i    (1 + ∥  y  j   −  y  k    ∥   2 )   
−1

  
    

The KL divergence is

  KL(P ‖ Q ) =  ∑ 
 i≠j

      p  ij   log   
 p  ij   ─  q  ij      

Figure 2A illustrates the effect of reducing the 11-dimensional 
combined biomass and nutrient flux vector set to 3D. The motiva-
tion for applying t-SNE can be likened to that of principal compo-
nents analysis (PCA), using variance attributes to emphasize regions/
properties of the data and thus reduce the dimensionality. The t-SNE 
method was found to be superior to PCA in delivering robust and 
reproducible results for the eco-provinces (see note S2). This is like-
ly because the orthogonality assumption that underlies PCA is not 
appropriate for identifying key interactions between highly nonlin-
early interacting features because PCA focuses on linear covariance 
structure (26). Using remotely sensed data, Lunga et al. (27) illus-
trate how complex and nonlinear spectral features that depart from 
Gaussian distributions can be highlighted using SNE methods.

Clustering: Finding similar regions with DBSCAN
The points in the t-SNE scatterplot in Fig. 2A are each associated 
with a latitude and longitude. If two points are close to each other in 
Fig. 2A, this is because their biomass and nutrient fluxes are similar, 
not due to geographical proximity. The colors in Fig. 2A are the 
clusters found using the DBSCAN method (28). Looking for dense-
ly packed observations, the DBSCAN algorithm uses the distance in 
the 3D representation between points (ϵ = 0.39; see Materials and 
Methods for a discussion of this choice), and the number of similar 
points is needed to define a cluster (here 100 points, see above). The 
DBSCAN method makes no assumptions about the shapes or num-
bers of clusters in the data, as follows:

1) A random data point yi is selected.
2) The number of immediately neighboring points within distance 

ϵ of yi is measured.
3) The cluster boundary is determined repeating step 2 iterative-

ly for all points identified as within distance ϵ. If the number of points 
is larger than the set minimum, it is designated as a cluster.

4) A new point is chosen at random from the remaining unclas-
sified data, and the method is repeated.

The data that do not meet the minimum cluster member and dis-
tance ϵ metric are counted as “noise” and not assigned a color. DB-
SCAN is a fast and scalable algorithm, with a worst-case performance 
of O(n2), and is effectively not stochastic for the present analysis. Set-
ting the minimum number of points was determined using expert 
assessment, with results not being robust within ≈±10 after adjust-
ment of the distance ϵ. This distance was set using the degree of con-
nectiveness (Fig. 6A) and the percentage of ocean covered (Fig. 6B). 
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The connectiveness is defined as the resultant number of clusters 
and is sensitive to the ϵ parameter. A low connectiveness indicates 
underfitting, artificially grouping areas together. A high connective-
ness indicates overfitting. A higher minimum number could con-
ceivably be used, but arriving at a robust solution would be unlikely 
if the minimum exceeds ca. 135 (see Materials and Methods for fur-
ther details).

Back-projecting onto the globe
The 115 clusters identified in Fig. 2A are presented projected back 
onto the globe in Fig. 2B. Each color corresponds to a coherent com-
bination of biogeochemical and ecological factors identified by 
DBSCAN. Once the clusters are determined, the association of each 
point in Fig. 2A to a specific latitude and longitude is used to project 
clusters back to the geographical domain. Figure 2B illustrates this 
with colors of clusters the same as in Fig. 2A. Similar colors should 
not be interpreted as ecological similarity, as they are assigned by the 
order in which the algorithm discovers clusters.

Regions in Fig. 2B can be seen as qualitatively similar to estab-
lished regions in the physics and/or biogeochemistry of the ocean. 
For example, the clusters in the Southern Ocean are zonally symmet-
ric, oligotrophic gyres emerge, sharp transitions suggest the influ-
ence of trade winds, and distinct regions associated with upwelling 
are seen, e.g., in the equatorial Pacific.

Ecological similarity: Bray-Curtis dissimilarity
To understand the ecological context of the eco-provinces, the in-
tracluster ecology is assessed using a variant on the Bray-Curtis (BC) 
dissimilarity metric (29). The BC metric is a statistic used to quan-
tify the community structure dissimilarity between two different sites. 
The BC metric is applied to the biomass of the 51 types of phyto- and 
zooplankton

  B  C   n  i   n  j     = 1 −   
2  C   n  i   n  j     ─  S   n  i     +  S   n  j    

    

BCninj refers to the dissimilarity of assemblage ni compared to 
assemblage nj, where Cninj is the minimum of biomass of individual 
types present in both assemblages ni and nj, while Sni refers to the 
sum over all the biomass present in both assemblages ni and Snj. The 
BC dissimilarity is similar to a distance metric but operates in a 
non-Euclidean space, which is likely better suited to ecological data 
and its interpretation.

For each cluster identified in Fig. 2B, the intra- and interprov-
ince BC dissimilarity can be assessed. The intraprovince BC dissim-
ilarity refers to the dissimilarity between the province mean and each 
point in it. The interprovince BC dissimilarity refers to how similar 
one province is to each other province. Figure 3A illustrates the 
symmetric BC matrix (0, black: perfect correspondence; 1, white: 
completely dissimilar). Each line in this plot demonstrates patterns 
in the data. Figure 3B demonstrates the geographical implications 
of the BC results from Fig. 3A for individual provinces. For a prov-
ince in the low nutrient oligotrophic region, Fig. 3B demonstrates 
that large areas are reasonably similar symmetrically around the 
equator and in the Indian Ocean, but the higher latitudes and up-
welling regions are markedly different.

The intraprovince BC dissimilarity within each province from 
Fig. 2B is illustrated in Fig. 4A. Determined using the mean area 
averaged assemblage within one cluster, and determining the BC 
dissimilarity of each grid point within the province to the mean, 
it illustrates how well the SAGE method is able to separate the 
51 types of the model data according to ecological similarity. The 
global mean intracluster BC dissimilarity for all 51 types is 0.102 
±0.0049.

The equivalent Longhurst intraprovince BC dissimilarity is pre-
sented in Fig. 4B using the biomass of the 51 plankton types, with a 
global mean across provinces of 0.227, and a standard deviation 
across grid points referenced to the province BC dissimilarity of 0.046. 
This is larger than for the clusters identified in Fig. 1B. Using the 
sum of the seven functional groups instead, the mean intraseasonal 
BC dissimilarity of the Longhurst provinces increases to 0.232.

Fig. 2. Eco-provinces in geographical and t-SNE space. (A) Modeled nutrient supply rates, phytoplankton, and zooplankton functional group biomass as rendered by 
the t-SNE algorithm and colored by province using DBSCAN. Each point represents one point in the high-dimensional space, with the majority of points captured as is 
demonstrated in Fig. 6B. Axes refer to “t-SNE” dimensions 1, 2, and 3. (B) Geographical projection of the provinces discovered by DBSCAN onto the origin latitude-longitude 
grid. Colors should be considered arbitrary but correspond to (A).
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The maps of the global eco-provinces offer intricate detail of eco-
logical interactions that are unique and offer a refinement in terms 
of ecosystem structure over using Longhurst provinces. The eco- 
provinces are anticipated to provide insight into the processes con-
trolling the numerical model ecosystem, and such insights could 
assist exploration of in situ efforts. For the purpose of this study, the 
over hundred provinces cannot be adequately showcased. The fol-
lowing section presents the SAGE method to aggregate provinces.

Defining AEPs
One of the uses of provinces is to facilitate understanding of where 
they are and how they are governed. To identify emergent proper-
ties, the method in Fig. 1B illustrates the nesting of ecologically sim-
ilar provinces. Eco-provinces are grouped together in terms of their 
ecological similarity, and this grouping of provinces is called AEPs. 
An adjustable level of “complexity” is set in terms of the number of 
aggregated provinces that will be considered. The term complexity 
is used as it allows the level of the emergent properties to be adjusted. 
For defining meaningful aggregation, the mean intraprovince BC 
dissimilarity from the Longhurst provinces of 0.227 is used as a 
benchmark below which the aggregated provinces are no longer con-
sidered useful.

The eco-provinces are coherent across the globe, as demonstrated 
in Fig. 3B. Some configurations are very “common,” as seen using 
the interprovince BC dissimilarity. Inspired by methods from ge-
netics and graph theory, “connectivity graphs” are used to sort the 
>100 provinces according to which province they are most similar 
to. The metric of “connectivity” here is determined using the inter-
province BC dissimilarity (30). The number of spatially larger prov-
inces that the >100 provinces can be sorted into is here referred to 
as the complexity. The AEPs are the product of sorting the full >100 
provinces into this subset of the most dominant/highly connected 
eco-provinces; each eco-province is assigned to the dominant/highly 
connected eco-province they are most similar to. This aggregation 

determined by the BC dissimilarity allows a nested approach to 
global ecology.

The chosen complexity can be anything from 1 to the full com-
plexity from Fig. 2A. At low complexities, the AEPs can become 
degenerate because of the probabilistic dimensionality-reduction step 
(t-SNE). Degeneracy implies that the eco-provinces could be assigned 
to different AEPs between iterations, changing the geographical area 
covered. Fig. 4C illustrates the spread of the intraprovince BC dis-
similarity in the AEPs of increasing complexity across 10 realizations 
(illustration in Fig. 1B). In Fig. 4C, 2 (blue area) is a measure of the 
degeneracy within the 10 realizations, and the green line represents 
the Longhurst benchmark. A complexity of 12 is demonstrated to 
keep the intraprovince BC dissimilarity both below the Longhurst 
benchmark in all realizations and a relatively small 2 degeneracy. 
In sum, the minimum recommended complexity is 12 AEPs, for 
which the mean intraprovince BC dissimilarity assessed using the 
51 plankton types is 0.198 ±0.013, as seen in Fig. 4D. Using the sum 
of the seven plankton functional groups, the mean intraprovince BC 
dissimilarity 2 is instead 0.198 ±0.004. The comparison between 
the BC dissimilarity computed with either the seven functional group 
summed biomass or the full 51 plankton types biomasses suggests 
that the SAGE method is appropriate for the 51-dimensional case, 
although it was trained on the biomass sum of the seven functional 
groups.

Depending on the purpose of any study, a different level of com-
plexity could be considered. A regional study might want the full com-
plexity (i.e., all 115 provinces). As an example and for clarity, the 
lowest recommended complexity 12 is considered.

Utility of AEPs: Community structure and their controls
As an example of the utility of the SAGE method, here, the mini-
mum complexity 12 AEPs are used to explore the controls on the 
emergent community structure. Figure 5 illustrates the ecological 
insights grouped by AEPs (named A to L): The geographical extent 

Fig. 3. The eco-province BC dissimilarity. (A) BC dissimilarity metric evaluated for every province compared to every other for the global surface 20-year mean of the 
51 plankton biomasses. Note the expected symmetry of the values. (B) Spatial projection of one column (or row). The global distribution of BC dissimilarity metric evaluated 
for a province in the oligotrophic gyre compared to every other for the global surface 20-year mean. Black (BC = 0) denotes an identical region, while white (BC = 1) de-
notes no similarity.
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(Fig. 5C), functional group biomass composition (Fig. 5A), and nu-
trient supply (Fig. 5B) scaled by N in the stoichiometric Redfield 
ratio (N:Si:P:Fe, 1:1:16:16 ×103) are shown. For this latter panel, P is 
multiplied by 16 and Fe by 16×103,so the bars are comparable to the 
phytoplankton nutrient requirements.

The identified AEPs are unique. There is some symmetry around 
the equator in the Atlantic and Pacific oceans, and similar but aug-
mented regions exist in the Indian Ocean. Some AEPs hug the western 
sides of continents associated with upwelling regions. The Antarctic 
circumpolar current is seen as a large zonal feature. The subtropical 
gyres stand out as complex series of oligotrophic AEPs. The familiar 
patterns of differences in biomass between picoplankton dominated 
oligotrophic gyres and diatom rich polar regions are apparent in these 
provinces.

AEPs with very similar total phytoplankton biomass can have very 
different community structure and cover very different geographical 
areas, such as D, H, and K, which have similar total phytoplankton 
biomass. AEP H is present mainly in the equatorial Indian Ocean 
and has a larger population of diazotrophs. AEP D is found in sev-
eral basins, but is prominent in the Pacific surrounding the very 
highly productive region around the equatorial upwelling. The shape 

of this province in the Pacific is reminiscent of planetary wave trains. 
AEP D has very few diazotrophs but more coccolithophores. AEP K 
is found only in the high Arctic Ocean and has more diatoms and 
fewer picoplankton than the other two provinces. It is notable that 
zooplankton biomass in the three regions is also very different, with 
AEP K having relatively low zooplankton abundance, but AEP D and 
H having relatively similar, higher, levels. Thus, although their bio-
mass (and hence also Chl-a) is similar, these provinces are very dif-
ferent: Chl-based province detection would likely not capture these 
differences.

It is also apparent that some AEPs that have very different bio-
mass can be similar in terms of their phytoplankton community struc-
ture. This is seen in AEP D and E for example. These are close to 
each other, in the Pacific, where AEP E is close to the highly productive 
AEP J. Again, there is not a clear connection between phytoplankton 
biomass and zooplankton abundance.

The AEPs can be understood in terms of the nutrient supplies to 
them (Fig. 5B). Diatoms only exist where there is sufficient silicic 
acid supply; generally, the higher the silicic acid supply, the higher 
the diatom biomass. Diatoms are seen in AEPs A, J, K, and L. The 
proportion of diatom biomass relative to other phytoplankton is 

Fig. 4. Heuristic processes to determine a minimum level of biogeochemical complexity. (A, B, and D) The intraprovince BC dissimilarity is assessed as the mean BC 
dissimilarity of the individual grid point communities compared to the mean province with no reduction in complexity. (B) The global mean intraprovince BC dissimilari-
ty is 0.227 ±0.117. This is the benchmark for the ecologically motivated sorting presented in this work [green line in (C)]. (C) Averaged intraprovince BC dissimilarity: The 
black line illustrates the intraprovince BC dissimilarity of increasing complexity. The 2 is from 10 repeats of the eco-province recognition process. For the full complexity 
in the provinces discovered by DBSCAN, (A) illustrates that an intraprovince BC dissimilarity of 0.099 is reached, while sorting into a complexity of 12 as suggested by 
(C) results in an intraprovince BC dissimilarity of 0.200, as demonstrated in (D).
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dictated by how much N, P, and Fe are supplied relative to the dia-
toms demands. For instance, AEP L is dominated by diatoms and 
has the highest supply of Si relative to the other nutrients. In con-
trast, though more productive, AEP J has fewer diatoms and less Si 
supply (both total and relative to the other nutrients).

Diazotrophs have the ability to fix N, but also grow slowly (31). 
They coexist with other phytoplankton where there is an excess of 
Fe and P relative to the demands of the nondiazotrophs (20, 21). 
It is notable that there is higher diazotroph biomass, where the 
amount of Fe and P supply is relatively large relative to the N sup-
ply. In this manner, the diazotroph biomass is larger in AEP H than 
in J, although the overall biomass in AEP J is higher. Note that AEP 
J and H are very different geographically, with H located in the 
equatorial Indian Ocean.

The insight gained from patterns in the minimum complexity of 
12 AEPs would be much less clear if the unique ecosystem structure 
was not separated into provinces. SAGE-generated AEPs facilitate 
the coherent and simultaneous comparison of the complicated and 
high-dimensional information from the ecosystem model. The AEPs 
effectively highlight why and where Chl is not a good proxy for de-
termining community structure or abundance of zooplankton in higher 

trophic levels. A detailed analysis of the topic of an ongoing study is 
beyond the scope of this paper. The SAGE method provides a way 
to explore other mechanisms in the model in a more tractable way 
than looking from point to point.

DISCUSSION AND CONCLUSION
The SAGE method is presented, designed to help elucidate the over-
whelmingly complicated ecological data from a global physical/ 
biogeochemical/ecosystem numerical model. Eco-provinces are deter-
mined by summation of biomass across plankton functional groups, 
application of the t-SNE probabilistic dimensionality reduction 
algorithm, and clustering using the unsupervised ML method 
DBSCAN. An interprovince BC dissimilarity/graph theory method 
for nesting is applied to arrive at robust AEPs useful for global inter-
pretation. Both the eco-provinces and AEPs are unique by construc-
tion. The AEP nesting can be adjusted between the full complexity 
of the original eco-provinces and the minimum recommended 
threshold of 12 AEPs. The nesting and determination of a minimal 
complexity for AEPs are seen as a crucial step, as the probabilistic 
t-SNE makes the <12 complexity AEPs degenerate. The SAGE method 

Fig. 5. AEP interpretation for complexity 12. Sorting the provinces into the 12 AEPs A to L. (A) Biomass (mgC/m3) of the ecological ensemble in the 12 provinces. 
(B) Nutrient flux rates (mmol/m3 per year) for dissolved inorganic nitrogen (N), iron (Fe), phosphate (P), and silicic acid (Si). Fe and P are multiplied by 16 and 16×103, respec-
tively, so that the bars are normalized to the phytoplankton stoichiometric requirements. (C) Note the distinction between polar, subtropical gyres and dominantly 
seasonal/upwelling regions. Monitoring stations are marked as follows: 1, SEATS; 2, ALOHA; 3, station P; and 4, BATS.
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is global and spans a complexity range from >100 AEPs to 12. For 
simplicity, the present focus is on the complexity 12 global AEPs. 
Future studies, particularly regional ones, could find a smaller spatial 
subset within the global eco-provinces useful and potentially per-
form the aggregation within such a smaller region to leverage the same 
ecological insight as is discussed here. Suggestions are offered 
regarding how these eco-provinces, and insight gained from them, 
could be used for further ecological understanding, facilitate model 
intercomparison, and potentially improve monitoring of marine 
ecosystems.

The eco-province and AEPs that the SAGE method identified are 
based on data from a numerical model. Numerical models are, by 
definition, simplified constructs that attempt to capture the essence 
of a target system, and different models can vary in their plankton 
distributions. The numerical model used in this study does not fully 
capture some of the patterns observed (e.g., in Chl estimates of the 
equatorial regions and Southern Ocean). Capturing only a fraction 
of the diversity in the real ocean, and not resolving the meso- and 
sub-mesoscale, likely affects nutrient fluxes and smaller-scale com-
munity structures. Despite these shortcomings, AEPs are shown to be 
useful in helping to understand the complex model. The AEPs offer 
a potential numerical model intercomparison tool, by assessing where 
similar ecological provinces are found. The present numerical model 
captures gross patterns of remotely sensed phytoplankton Chl-a con-
centrations and distributions of plankton size and functional groups 
(note S1 and fig. S1) (2, 32).

The AEPs fit into oligotrophic versus mesotrophic regions as in-
dicated by the 0.1 mgChl-a/m−3 contour (fig. S1B): AEPs B, C, D, E, 
F, and G are oligotrophic, and the remainder are in regions of higher 
Chl-a. The AEPs show some correspondence to the Longhurst prov-
inces (fig. S3A), for example, the Southern Ocean and equatorial Pacific. 
In some regions, the AEPs cover several Longhurst regions and vice 
versa. Because the intent of the delineation of provinces here and 
in Longhurst is not the same, differences are anticipated. Multiple 
AEPs within a single Longhurst province suggest that some regions 
with similar biogeochemistry may have very different ecosystem 
structure. The AEPs show some correspondence to physical regimes 
as revealed using unsupervised learning (19), such as in high upwelling 

regimes (e.g., Southern Ocean and the equatorial Pacific; fig. S3, C 
and D). Such correspondences suggest where plankton community 
structure is strongly influenced by ocean dynamics. In regions such as 
the North Atlantic, AEPs cross through physical provinces. Mecha-
nisms causing these discrepancies could include processes such as 
dust delivery, leading to very different nutrient regimes even within 
a similar physical regime.

The eco-provinces and AEPs suggest that using Chl alone is not 
able to identify ecological composition, as is already appreciated by 
the marine ecological community. This is seen in AEPs with similar 
biomass but markedly different ecological composition (e.g., D and 
E). In contrast, AEPs such as D and K have very different biomass 
but similar ecological composition. The AEPs emphasize that the 
relationship between biomass, ecological composition, and zooplank-
ton abundance is complex. For example, while AEP J stands out in 
terms of both high phytoplankton and zooplankton biomass, AEP’s 
A and L have similar phytoplankton biomass but A has much high-
er zooplankton abundance. The AEPs highlight that phytoplankton 
biomass (or Chl) cannot be used to predict zooplankton biomass. 
Zooplankton is the base of the food chain for fisheries, and more accu-
rate estimates could lead to better resource management. Future ocean 
color satellites [e.g., PACE (plankton, aerosol, cloud and ocean eco-
system)] might be better positioned to help estimate phytoplankton 
community structure. Using AEP predictions, estimates of zooplank-
ton from space could potentially be facilitated. Methods like SAGE, 
together with new technology, as well as the increasing in situ data 
available (e.g. Tara and follow-on studies) for ground truthing, could 
together provide a step toward satellite- based monitoring of the health 
of an ecosystem.

The SAGE method provides a convenient way to assess some of 
the mechanisms that control the features in the provinces, e.g., bio-
mass/Chl, net primary production, and community structure. For 
example, the relative amount of diatoms is set by the imbalance in 
the Si to N, P, and Fe supplies relative to the phytoplankton stoi-
chiometric requirements. With balanced supply rates, communities 
are diatom dominated (L), and where supply rates are less balanced 
(i.e., with lower Si supply relative to the diatoms nutrient demands), 
diatoms comprise only a smaller fraction (K). Diazotrophs thrive where 

Fig. 6. Setting the DBSCAN parameters. Setting the parameters for t-SNE, the resultant number of found clusters is used as a measure of the connectiveness (A) and the 
percentage of the data assigned to a cluster (B). The red dot illustrates the optimal combination of coverage and connectedness. The minimum number was set on the 
basis of minimum number relevant for ecology.
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the Fe and P supplies are in excess of the N supplies (e.g., E and H). 
Explorations of controlling mechanisms are made substantially more 
useful through the context provided by AEPs.

The eco-provinces and AEPs are regions of similar community 
structures. A time series from a location within one eco-province or 
AEP could be seen as a point of reference and a representative of the 
area covered by the eco-province or AEP. Long-term in situ moni-
toring stations offer such time series. Long-term in situ datasets will 
continue to be invaluable, and the SAGE method could be seen as a 
method to help determine locations where new sites would be most 
useful from the perspective of monitoring community structure. For 
example, the time series from a long-term oligotrophic habitat as-
sessment (ALOHA) is in AEP B (Fig. 5C, label 2) in an oligotrophic 
region. Because ALOHA is close to the boundary to another AEP, 
the time series may not be representative of the whole region, as 
previously suggested (33). Within the same AEP B, the time series 
SEATS (southeast asia time-series) is southwest of Taiwan (34), fur-
ther from the boundaries of other AEPs (Fig.  5C, label 1), and 
could serve as a better location within which to monitor AEP B. The 
BATS (bermuda atlantic time-series study) time series in AEP C 
(Fig. 5C, label 4) is very close to the border of AEPs C and F, sug-
gesting that monitoring AEP C using the BATS time series directly 
could be problematic. The P station (Fig. 5C, label 3) in AEP J is 
quite far from an AEP boundary and could therefore be more repre-
sentative. The eco-provinces and AEPs could help establish a monitor-
ing framework suitable for assessing global change, as the provinces 
allow assessment of where in situ sampling could offer key insight. The 
SAGE method can be developed further for application to climatolog-
ical data to assess temporal province variability.

The success of the SAGE method is achieved through careful 
application of data science/ML methods, together with domain-specific 
knowledge. Specifically, dimensionality reduction is performed 
using t-SNE, retaining the covariance structure of the high dimen-
sional data, and facilitating visualizing the covariance topology. The 
data are arranged in streaks and sheets of covariance (Fig. 2A), indicating 
that purely distance-based metrics such as K-means are inappropri-
ate as they often assume a Gaussian (round) underlying distribution 
(discussed in note S2). The DBSCAN method is appropriate for 
arbitrary covariance topologies, offering robust identification pro-
vided that careful attention is given to setting parameters. The t-SNE 
algorithm is computationally costly, limiting its present application 
to larger data volumes, meaning that application to depth- or time- 
varying fields is difficult. Work on the scalability of t-SNE is ongoing. 
The t-SNE algorithm has the potential to scale well in the future, as 
the KL distance is readily parallelizable (35). Alternative promising 
methods of dimensionality reduction that, to date, scale better in-
clude the uniform manifold approximation and projection (UMAP) 
technique, but evaluation in the context of oceanographic data is 
necessary. Implications of better scalability would be classification, 
e.g., over the mixed layer, for global climatologies or models with 
varying complexity. The regions that fail to be classified within any 
province by SAGE can be seen as the remaining black dots in Fig. 2A. 
Geographically, these regions are largely in highly seasonal areas, 
suggesting that capturing the time-evolving eco-provinces would pro-
vide better coverage.

To construct the SAGE method, ideas from complex systems/
data science have been leveraged, exploiting the ability to determine 
clusters of functional groups (high probability of close proximity in 
an 11-dimensional space) and determine provinces. These provinces 

delineate a specific volume in our 3D t-SNE phase space. Similarly, 
Poincaré sections can be used to assess the “volume” of state space 
occupied by a trajectory to determine “regular” or “chaotic” behavior 
(36). For the static 11-dimensional model output, the volume occu-
pied after data are cast into a 3D phase space could be interpreted 
similarly. The relation between geographical area and the area in 3D 
phase space is not simple but can be interpreted in terms of ecolog-
ical similarity. The more conventional BC dissimilarity metric was 
preferred for this reason.

Future work will repeat the SAGE method for seasonally varying 
data to assess the spatial variability in the identified provinces and 
AEPs. A future goal is to leverage this method to help determine which 
provinces could be determined by satellite measurements such as 
Chl-a, remotely sensed reflectance, and sea-surface temperature. This 
would allow remote sensing assessments of ecological composition and 
highly agile monitoring of the eco-provinces and their variability.

MATERIALS AND METHODS
The purpose of this study is to present the SAGE method for defin-
ing eco-provinces by their distinct plankton community structure. 
Here, more detail is provided on the physical/biogeochemical/eco-
system model, as well on parameter selection for t-SNE and DBSCAN 
algorithms.

Model framework
The physical component of the model comes from the Estimating 
the Circulation and Climate of the Ocean [ECCOv4; (37)] global 
state estimate described by (38). The state estimate has a nominally 
1∘ resolution. A least-squares with Lagrange multipliers approach is 
used to obtain observationally adjusted initial and boundary condi-
tions as well as internal model parameters, resulting in a free-running 
version of the MIT General Circulation Model (MITgcm) (39) that 
is optimized to track observations.

The biogeochemical/ecosystem is described more fully (i.e., equa-
tions and parameter values) in (2). The model captures the cycling 
of C, N, P, Si, and Fe through inorganic and organic pools. The ver-
sion used here includes 35 phytoplankton: 2 pico-prokaryotes and 
2 pico-eukaryotes (that are adapted to low nutrient environments), 
5 coccolithophores (that have calcium carbonate coverings), 5 di-
azotrophs (that fix nitrogen gas and thus are not limited by availability 
of dissolved inorganic nitrogen), 11 diatoms (that form siliceous cover-
ings), 10 mixotrophic dinoflagellates (that can both photosynthesize 
and graze other plankton), and 16 zooplankton (which graze on other 
plankton). These are referred to as “biogeochemical functional groups,” 
as they affect the biogeochemistry of the ocean differently (40, 41) 
and are frequently used in observational and modeling studies. In 
this model, each functional group is made up of several plankton of 
different sizes spanning 0.6 to 2500 m equivalent spherical diameter.

Parameters influencing phytoplankton growth, grazing, and sink-
ing are related to size, with specific differences between the six phy-
toplankton functional groups (32). Results from this 51 plankton 
component of the model have been used in several recent studies 
(42–44), though in a different physical framework.

The coupled physical/biogeochemical/ecosystem model was run 
for 20 years from 1992 to 2011. Output from the model includes the 
plankton biomass, nutrient concentrations, and rate of supply of the 
nutrients (DIN, PO4, Si, and Fe). For this study, the 20-year mean of 
these outputs was used as the input for the eco-provinces. Distribution 
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of Chl, plankton biomass, and nutrient concentrations, as well as dis-
tributions of functional groups compare well with satellite and in 
situ observations [see (2, 44), note S1, and figs. S1 to S3].

Parameter selection for t-SNE and DBSCAN
For the SAGE method, the main source of stochasticity comes from 
the t-SNE step. Stochasticity can hinder reproducibility, meaning 
that results are not robust. The SAGE method uses a stringent test 
of robustness, by identifying one set of parameters for t-SNE and 
DBSCAN that consistently identify clusters when repeated. Determin-
ing t-SNE parameter “perplexity” can be understood as determining 
the degree to which the mapping from high to low dimensionality 
should respect local or more global features of the data. A perplexi-
ty of 400 and 300 iterations was arrived at.

For the clustering algorithm DBSCAN, the minimum size of 
the data points within a cluster and the distance metric ϵ need to be 
determined. The minimum number is set using expert guidance with 
knowledge of what is appropriate for the present numerical model-
ing framework and resolution; a minimum number of 100 was set. 
A higher minimum number (ca. <135, before the upper band of green 
widens) could conceivably be used but would not be able to act as a 
substitute for the aggregation method based on the BC dissimilarity. 
The degree of connectiveness (Fig. 6A) is used to set the ϵ parameter, 
favoring a higher coverage (Fig. 6B). The connectiveness is defined 
as the resultant number of clusters and is sensitive to the ϵ parameter. 
A low connectiveness indicates underfitting, artificially grouping 
areas together. A high connectiveness indicates overfitting. Overfitting 
is also problematic because it indicates that the initial stochastic guess 
can lead to results that are not reproducible. Between these two ex-
tremes, there is a drastic increase (often referred to as an “elbow”), 
indicating the optimal ϵ. In Fig. 6A, a sharp increase is seen to a 
plateau (yellow, >200 clusters), followed by a sharp decrease (green, 
100 clusters) up to a minimum of ca 130, surrounded by regions of 
very few clusters (blue, <60 clusters). In the blue regions for a min-
imum of 100, either one cluster largely dominates the whole ocean 
(ϵ < 0.42) or most of the ocean is not classified and is deemed as 
noise (ϵ > 0.99). The yellow region has a highly variable, nonrepro-
ducible, cluster distribution, with increasing noise as ϵ is reduced. 
The green region of sharp increase is referred to as the elbow. This 
is the optimal region, where robust clusters can be identified, as 
determined using the intraprovince BC dissimilarity, despite the 
probabilistic t-SNE. Using Fig. 6 (A and B), ϵ was set to 0.39. With a 
larger minimum number, arriving at an ϵ that allows robust classi-
fication would be unlikely, with values >135 seen to have a wider green 
region. The widening of this region suggests that the elbow will be 
more difficult to find or absent.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaay4740/DC1
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