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Abstract: P2-type Na2/3Ni1/3Mn2/3O2 is an air-stable cathode material for sodium-ion 28 

batteries. However, it suffers irreversible P2-O2 phase transition in 4.2-V plateau and 29 

shows poor cycling stability and rate capability within this plateau. To evaluate the 30 

practicability of this material in 2.3-4.1 V voltage range, single-crystal micro-sized 31 

P2-type Na2/3Ni1/3Mn2/3O2 with high rate capability and cycling stability is 32 

synthesized via polyvinylpyrrolidone (PVP)-combustion method. The electrochemical 33 

performance is evaluated by galvanostatic charge-discharge tests. The kinetics of Na
+
 34 

intercalation/ deintercalation is studied detailly with potential intermittent titration 35 

technique (PITT), galvanostatic intermittent titration technique (GITT) and cyclic 36 

voltammetry (CV). The discharge capacity at 0.1 C in 2.3-4.1 V is 87.6 mAh g
-1

. It 37 

can deliver 91.5% capacity at 40 C rate and keep 89% after 650 cycles at 5C. The 38 

calculated theoretical energy density of full cell with hard carbon anode is 210 Wh 39 

kg
-1

. The moderate energy density associated with high power density and long cycle 40 

life is acceptable for load adjustment of new-energy power, showing the prospect of 41 

practical application. 42 

 43 

 44 

1. Introduction 45 

In recent years, sodium-ion batteries have been paid more and more attentions by 46 

researchers due to the high demand of resources for large-scale applications such as 47 
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electric vehicles and energy storage
1-8

. Layered transition metal oxides (TMO) are 48 

promising competitors in practical cathode materials for sodium ion batteries due to 49 

their convenient synthesis, simple structure and abundant resources
9-11

. Xiang and 50 

Chen et al. point out that TMO materials have high energy density and large space to 51 

improve cycling and rate performance, so they are the most promising cathode 52 

materials for sodium-ion batteries
6
.  53 

The TMO materials for sodium-ion batteries have two main structures: P2- and 54 

O3-type structures
7
. Comparatively, P2 structure has better rate performance because 55 

sodium ions are located in the prismatic sites and can easily migrate to the adjacent 56 

sites
9
. On the contrary, sodium ions in O-type structure are in octahedral sites, then 57 

their migration must go through tetrahedral sites. Because of the large volume of 58 

sodium ions, this migration barrier is relatively high, resulting relatively poor rate 59 

capability for O-type structure. Considering this, we focus on P2-type TMOs in this 60 

paper. Among the P2-type TMOs, manganese-based sodium transition metal oxides, 61 

NayMn1-xMxO2 (x, y ≤ 1, M = Ni, Fe, Co, Ti, Cu, Mg, Li, etc.), have been widely 62 

studies
12-18

. However, the rate capability and cycling stability of them are still 63 

unsatisfied. In addition, many of NayMn1-xMxO2 are not stable in air due to the Jahn–64 

Teller active Mn
3+19

. These disadvantages hinder the application of these materials.  65 

P2-type Na2/3Ni1/3Mn2/3O2 is an air-stable compound because the Mn is +4 valence 66 

while Ni is +2 valence
20, 21

. It was firstly reported by Dahn's group in 2001
22

. The 67 

initial discharge capacity of this material in 1.6-4.5 V voltage range is over 200 mAh 68 

g
-1

 but the cycling stability and rate capability are very poor due to the irreversible 69 
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P2-O2 phase transition and sluggish kinetic in the 4.2-V plateau
23

. A recent study 70 

points out there may be poorly reversible oxygen activities in this plateau which 71 

causes capacity decay
24

. To improve, Liu et al. reported an Al2O3 coated 72 

Na2/3Ni1/3Mn2/3O2 that shows ~160 mAh g
-1

 initial discharge capacity in 2.5-4.3 V 73 

range and keeps 73.2% after 300 cycles
25

. The Al2O3 coated Na2/3Ni1/3Mn2/3O2 shows 74 

improved but still limited rate capability, e.g. 120 mAh g
-1

 at 1C. Risthaus et al. 75 

improved the cycling stability of Na2/3Ni1/3Mn2/3O2 by optimizing electrolyte 76 

component and additive
24

. Another solution is limiting voltage cut-off to avoid P2-O2 77 

transition. Shirley Meng’s group greatly enhanced the cycling stability through 78 

shrinking cut-off voltages to 2.3-4.1 V
23

. The Na2/3Ni1/3Mn2/3O2 exhibits stable 79 

cycling with initial discharge capacity of 82 mAh g
-1

 and capacity retention after 50 80 

cycles of 92%, although the rate capability is still not satisfied. For such a relatively 81 

small capacity (80~90 mAh g
-1

), this material must be endowed with some highlights 82 

before it can be applied. We believe that super high rate capability can compensate the 83 

shortage of capacity. 84 

Previously, we reported a polyvinylpyrrolidone (PVP)-combustion method. With 85 

this method, we prepared some TMO materials for Li-ion and Na-ion batteries with 86 

high rate capability and cycling stability
26-30

. PVP can fix metal ion on the 87 

macromolecular chain via chelation, so the precursor is very uniform which benefits 88 

good electrochemical performance. In this paper, we prepared P2-type 89 

Na2/3Ni1/3Mn2/3O2 with high rate capability and cycling stability by this method and 90 

discussed its practical prospect. 91 
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 92 

 93 

2. Experimental 94 

2.1 Material synthesis 95 

Na2/3Ni1/3Mn2/3O2 was prepared by PVP-combustion method. Stoichiometric 96 

NaOAc·4H2O, Ni(OAc)2·4H2O and Mn(OAc)2·4H2O, and PVP (the molar ratio of 97 

PVP monomer to total metal ions was 2.0) were dissolved in deionized water and pH 98 

= 3 was achieved by adding 1:1 HNO3. The mixture was stirred at 120 °C to obtain 99 

dried gel. The dried gel was ignited on a hot plate to induce a combustion process 100 

which lasted for several minutes. The resulting precursor was preheated at 400 °C for 101 

2 h and then calcined at 1000 °C for 6 h with the heating rate of 5 °C min
−1

. After heat 102 

treatment, the oven was switched off and the sample was cooled down naturally. The 103 

whole process was performed in air.  104 

2.2 Physical characterization 105 

The morphology was examined using a JEOL 7500F scanning electron microscope 106 

(SEM). The analysis of the phase purity and the structural characterization were made 107 

by X-ray powder diffraction (XRD) using a Bruker D2 PHASER diffractometer 108 

equipped with Cu Kα radiation. Soft x-ray absorption spectroscopy (sXAS) was 109 

performed in the iRIXS endstation at Beamline 8.0.1 of the Advanced Light Source 110 

(ALS) at LBNL. All the sXAS spectra have been normalized to the beam flux 111 

measured by the upstream gold mesh. The experimental energy resolution is 0.15 eV 112 

without considering core-hole lifetime broadening.  113 
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2.3 Electrochemical tests 114 

The Na2/3Ni1/3Mn2/3O2 cathode was prepared by mixing 80 wt.% active material, 10 115 

wt.% acetylene black (AB) and 10 wt.% polyvinylidene fluoride (PVdF) binder in 116 

N-methylpyrrolidone (NMP) to form a slurry. The slurry was doctor-bladed onto 117 

aluminum foil, dried at 60 °C, and then punched into electrode discs with a diameter 118 

of 12.7 mm. The prepared electrodes were dried at 130 °C for 12 h in a vacuum oven 119 

and show typically an active material loading of about 4 mg cm
-2

. The 120 

electrochemical cells were fabricated with the Na2/3Ni1/3Mn2/3O2 cathode, sodium foil 121 

anode, 1 mol L
−1

 NaClO4 in propylene carbonate (PC) as electrolyte, and double 122 

layered glass fiber as separator in an argon-filled glove box. Electrochemical 123 

performances were evaluated using CR2325 coin cells. The galvanostatic 124 

charge-discharge tests were performed using Maccor 4000. The galvanostatic 125 

intermittent titration technique (GITT) test, potential intermittent titration technique 126 

(PITT) test and cyclic voltammetry (CV) measurements were conducted using 127 

Bio-Logic VMP-3 multichannel electrochemical Analyzer. In the PITT test, a small 128 

potential step size (10 mV) and a low enough cutoff current (C/50) were adopted to 129 

ensure the equilibrium states were achieved at every potential step. All the cells keep 130 

30 °C during electrochemical tests. 131 

 132 

3. Results and discussion 133 

3.1 Structure and morphology 134 

As shown in Fig. 1a, the XRD pattern of the as-prepared Na2/3Ni1/3Mn2/3O2 135 
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confirms the formation of well crystallized material. All the diffraction peaks can be 136 

labeled as hexagonal P2-type structure and P63/mmc space group
20, 22, 31

. Fig. 1b&c 137 

shows the SEM image and corresponding calculated particle size distribution of the 138 

well-crystallized Na2/3Ni1/3Mn2/3O2. The morphology is smooth-faced without 139 

secondary-particle structure. The particle size distribution is between 1 μm and 5 μm 140 

and mean size is 2.2 μm which is counted from 200 particles in a lower magnification 141 

SEM image. Such morphology is not only good for high tap-density but also generally 142 

desirable for improving the cycling stability due to lower side reactions. Moreover, it 143 

is believed that this single-crystal morphology without significant grain boundaries 144 

and defects could facilitate ionic diffusion and then could improve rate capability
27

. 145 

Mn and Ni oxidation states in the as-prepared Na2/3Ni1/3Mn2/3O2 are studied by soft 146 

X-ray absorption spectroscopy (sXAS), which is performed at the Advanced Light 147 

Source (ALS) and shown in Fig. 2 with Mn
4+

 and Ni
2+

 standard spectra. Mn and Ni 148 

L-edge sXAS spectra directly probes the electron dipole transition from 2p core level 149 

to the 3d valence states
32-36

. Both TEY (total electron yield, surface sensitive) and 150 

TFY (total fluorescence yield, bulk sensitive) L3-edge spectra of Mn and Ni highly 151 

agree with Mn
4+

 and Ni
2+

 standard spectra, respectively. The larger t2g (lower energy 152 

peak) and eg (higher energy peak) split of as-prepared Na2/3Ni1/3Mn2/3O2 than that of 153 

calculated Ni
2+

 is due to stronger crystal field in this material. Thus, the Mn and Ni 154 

valence in this as-prepared material is +4 and +2, respectively. 155 

3.2 Charge and discharge profiles at low rate 156 

The theoretical initial specific charge and discharge capacity of Na2/3Ni1/3Mn2/3O2 157 
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is 173 and 259 mAh g
-1

 assuming 2/3 and 1 mol Na
+
 be transferred, respectively. For 158 

this as-prepared Na2/3Ni1/3Mn2/3O2, the initial charge profile at 0.1C shown in Fig. 3a 159 

can be divided to three plateaus in general: 3.3 V, 3.7 V and 4.2 V. The specific 160 

capacity and Na transfer amount of the three plateaus are 41, 44, 80 mAh g
-1

 and 0.16, 161 

0.33, 0.31 mol (calculated by Faraday’s constant and molar mass, assuming all the 162 

capacity are contributed by Na
+
 transfer), respectively. The corresponding x values in 163 

NaxNi1/3Mn2/3O2 after these plateaus are 0.51, 0.34 and 0.03. These values are very 164 

close to the calculation 
23

, showing the perfect structure obtained by the 165 

PVP-combustion method.  166 

The structure keeps P2 type before 4.0 V and the 3.3-V and 3.7-V plateaus are 167 

considered as in-plane ordering transfer 
23

. Lu and Dahn 
22

 consider the sharp steps at 168 

x = 2/3, x = 1/2, and x = 1/3 may correspond to the composition of phases with 169 

ordered arrangements of intercalant. During the long and flat 4.2-V plateau with ~1/3 170 

Na
+
 extracted, the structure suffers P2-O2 phase change 

23
. During this P2-O2 phase 171 

change, the central MO2 sheet glides in the a-b plane, which causes stacking faults 172 

because there are two choices for the slide direction. Thus, the charging and 173 

discharging process involving 4.2-V plateau should show poor reversibility and 174 

sluggish kinetics. In a recent work, Risthaus et al. 
24

 point out that oxygen redox 175 

involved at this stage through O-K edge XAS. This provides a new insight to 176 

understand the unsatisfied electrochemical performance of the 4.2-V plateau. 177 

However, as we pointed out previously 
37-40

, sXAS is unreliable for studying oxygen 178 

redox but mRIXS is an ideal tool to fingerprint it in battery electrodes. Quantitative 179 
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study of oxygen redox in this material will be shown in further works. 180 

NaNi1
3
Mn2

3
O2

1

3
Na,   1.8 V

↔      Na2
3
Ni1

3
Mn2

3
O2

1

6
Na,   3.3 V

↔       Na1
2
Ni1

3
Mn2

3
O2 

1

6
Na,   3.7 V

↔       Na1
3
Ni1

3
Mn2

3
O2

1

3
Na,   4.2 V

↔       Na0Ni1
3
Mn2

3
O2                                  (1) 181 

In the discharging process to 1.5 V, a new 1.8 V plateau comes up besides the three 182 

plateaus discussed above, which leads to a high discharge capacity of 221 mAh g
-1

, 183 

corresponding to Na0.89Ni1/3Mn2/3O2 at fully discharged state. In a summary, the 184 

charge and discharge process of Na2/3Ni1/3Mn2/3O2 can be approximatively explained 185 

in eq. (1). 186 

Fig. 3b shows the CV curves with a 0.05 mV s
-1

 scan speed between 1.5 and 4.4 V. 187 

All the redox peaks in CV agree with the charge and discharge profiles. Generally 188 

speaking, the reversibility in 3-4 V is better than that below 3 V and above 4 V. This 189 

suggests the thermodynamic is more reversible and/or the kinetics is faster in 3-4 V.  190 

3.3 Rate capability and kinetics of Na
+
 intercalation/deintercalation 191 

Rate capability of the as-prepared Na2/3Ni1/3Mn2/3O2 is measured by both normal 192 

and fast tests, which are shown in Fig. 4a to 4c. Fast rate test method was developed 193 

by Newman et al. 
41

 The mechanism and procedure of fast rate tests were discussed in 194 

our previous work
28

. As shown in Fig. 4b, the cell is discharged at 40 C to 2.0 V, then 195 

after 5-min rest, the cell’s voltage is about 3.2 V, afterwards it is discharged at 20 C. 196 

In the same way, the rest and discharge alternate at 10 C, 5 C, 2 C, 1C, C/2 and C/5. 197 

The capacity during 40 C discharge plus that during 20 C is considered as the capacity 198 

for 20 C. The “40 C + 20 C +10 C” capacity is the capacity for 5 C, and so on. Both 199 

normal and fast tests suggest the rate capability of this material in 2.3-4.1 V is much 200 
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better than previous reports (see Table 1). The discharge capacity in 2.3-4.1 V at 0.1 C 201 

and 5 C are 87.6 mAh g
-1

 and 83.6 mAh g
-1

 with normal rate test, respectively. The 202 

ratio of 5 C/0.1 C is 95.4%, namely, the discharge capacity decreases only a little from 203 

0.1 C to 5 C. The ratio of 40 C/0.1 C is 91.5% with fast rate test, showing superior 204 

high-rate capability in 2.3-4.1 V. While the rate capability in 1.5-4.1 V and 2.3-4.5 V 205 

(see Fig. S1 and S2) are not as good as that in 2.3-4.1 V due to the possible sluggish 206 

kinetics in 1.8 V and 4.2 V plateau, the results agree with previous data
25, 42, 43

. 207 

To further understand the kinetics of Na
+
 intercalation/deintercalation, the Na

+
 208 

diffusion coefficient is measured by cyclic voltammetry (CV) and potentiostatic 209 

intermittent titration technique (PITT) tests. The methods and calculation procedures 210 

are described in our previous works 
27, 28

. In the PITT experiments, the sodium 211 

chemical diffusion coefficient, 𝐷Na+, can be calculated from the slope of the linear 212 

region in the ln I(t) vs. t plot, as defined in equation (2): 213 

      

2

2Na

ln( ) 4

π

d I L
D

dt
  

                                        (2) 214 

where I is the current in the potential step and L is the diameter of a spherical 215 

particle. Fig. 4e and 4f show the calculated DNa values from PITT method at different 216 

Na
+
 intercalation/deintercalation stage. In the charging process, the Na

+
 diffusion 217 

coefficient in the 3.3-V and 3.7-V plateaus is about 10 times higher than that in 4.2-V 218 

plateau. Similarly, in the discharging process, the coefficient in the 3.3-V and 3.7-V 219 

plateaus also about 10 times higher than that in 4.1-V and 1.8-V plateau, explaining 220 

the much better rate capability in 2.3-4.1 V than it in 1.5-4.1 V or 2.3-4.5 V range. 221 

In the CV test, for a reversible reaction relating Na
+
 ion diffusion behavior, the 222 
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sodium chemical diffusion coefficient (𝐷Na+) can be determined on the basis of the 223 

following Randles-Sevcik equation: 224 

𝑖p = 0.4463𝑛
3

2𝐹
3

2𝐶Na𝐴𝑅
−
1

2𝑇−
1

2𝐷Na

1

2 𝑣
1

2                                   (3) 225 

At 30 °C: 226 

𝑖p = (2.67 × 10
5)𝑛

3

2𝐶Na𝐴𝐷Na

1

2 𝑣
1

2                                       (4) 227 

where ip is the peak current value (A), n is the number of electrons per reaction 228 

species (for Na
+
 n = 1), CNa is the bulk concentration of lithium-ion in the electrode 229 

(0.024 mol cm
−3

), A is the surface area of electrode (here is 1.26 cm
2
), DNa is the 230 

sodium chemical diffusion coefficient (cm
2
 s

−1
), and v is the scan rate (V s

−1
). The CV 231 

tests are run from 2.3 V to 4.1 V, the scan rates in the start 3 cycles are 0.05 mV s
-1

, 232 

0.2 mV s
-1

 and 0.5 mV s
-1

, respectively. After that, the scan rate keeps 0.5 mV s
-1

 for 233 

20 cycles. The cell rests 2 h for balance between different cycles. The high 234 

repeatability of the different cycles in Fig. 4d suggests a reversible reaction relating 235 

Na
+
 ion diffusion behavior, so the equation (4) could be used to calculate DNa. From 236 

the slope of linear fit of the peak current (ip) vs. the square root of the scan rates (v
½
), 237 

the calculated DNa of 3.7-V oxidation peak is 3.5×10
-10

 cm
2
 s

-1
. This value is roughly 238 

consistent with PITT results (the average value of four points around the 3.7-V 239 

plateau is 2.9×10
-10

 cm
2
 s

-1
), suggesting very fast Na

+
 intercalation kinetics of this 240 

material. 241 

With the calculated sodium diffusion coefficient, the diffusion time of Na
+
 in the 242 

particles can be estimated by L
2
 = Dt. The mean particle size is 2.2 μm, so L

2
 = 4.8 × 243 

10
-8

 cm, t ≈ 2 min. This could roughly explain the high discharge capacity at 40 C 244 
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(discharging time is 1.5 min). On the other hand, the diffusion coefficient determines 245 

the upper limit of rate capability. In a half cell, the rate capability is also affected by 246 

electrode structure, contact of battery component, separator and electrolyte. For 247 

example, the sodium diffusion coefficient in this work is similar with some previous 248 

reports 
23, 31

, but our rate capability is much higher than them. This may be explained 249 

by the uniform single-crystal morphology in this work which can improve the 250 

homogeneity of cathode material and conductive additive. 251 

Overpotential is another important data for kinetics of Na
+
 intercalation/ 252 

deintercalation besides sodium diffusion coefficient. Overpotential can interpret the 253 

electrode polarization and be used to estimate irreversible heat generation which is 254 

important for batteries safety 
44

. This has never been studied in Na2/3Ni1/3Mn2/3O2. 255 

Galvanostatic intermittent titration technique (GITT) is usually used to anylysis 256 

overpotential. As shown in Fig. 5a, the voltage profile of GITT is composed of 257 

galvanostatic charging or discharging and relax alternately. The charging or 258 

discharging rate is 0.1 C, each charging or discharging step is 10-min long or until 259 

cut-off voltage, and each relax step is 40-min long or until |dV/dt| < 1 mV min
-1

. Fig. 260 

5b exhibits a typical potential response within the GITT test as well as the definition 261 

of the IR-drop, ηIR, and the overpotential due to mass transport limitation, ηD. The 262 

IR-drop is due to both ohmic resistance and the charge transfer at the 263 

electrolyte-electrode interface. The ηD is caused by mass transport limitations and 264 

depends on x in NaxNi1/3Mn2/3O2 
44

. 265 

Fig. 5c and 5d show the ηIR and ηD during charging and discharging in the 1
st
 and 2

nd
 266 
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cycles. The ηIR and ηD values at same x value are rather different in charging 267 

(desodiation) and discharging (sodiation). The ηD and ηIR values are generally low in 268 

the initial charging except some points. The ηD and ηIR values at plateau 1 in the 269 

discharging are both higher than the values in charging while the ηD values at plateau 270 

3 in the discharging are much higher than the values in charging. In the 2
nd

 cycle, the 271 

ηD values become higher in the start of charging, and the ηD values at plateau 3 in the 272 

discharging are higher than the values in the 1
st
 cycle. Nevertheless, the ηD and ηIR 273 

values at plateau 1 and 2 are similar with those in 1
st
 cycle. These results indicate that 274 

plateau 3 has poor reversibility and cyclability. Fig. 5e and 5f show ηIR and ηD values 275 

at different plateau during cycling. The ηIR and ηD at charging plateau 1&2 and 276 

discharging plateau 1 change very little during cycling. In the contrary, the ηD at 277 

plateau 3 (both charging and discharging) increase greatly during cycling, and the ηD 278 

at plateau 3 in discharging become to increase after 5 cycles. These results suggest the 279 

mass transport limitation increase is the main factor of the overpotential increase 280 

during cycling. The increase of ηD in discharging also explains why fast rate test 281 

method can give intrinsic rate capability results: the mass transport limitation 282 

increases along with cycling, and normal rate test usually needs several cycles, but the 283 

fast rate test only need 1 cycle. 284 

3.4 Cycling stability 285 

Although the capacity retention in 1.5-4.1 V is 60% after 300 cycles and that in 286 

1.5-4.5 V is even much lower (see Fig. S3), the as-prepared Na2/3Ni1/3Mn2/3O2 shows 287 

very excellent cycling stability in 2.3-4.1 V range. Fig. 6a and 6b show that the 288 



14 

 

capacity retention is 94% and 69% in 2.3-4.1 V at 1C after 300 and 900 cycles, 289 

respectively. This is consistent with the CV test in Fig. 4d, in which the curves 290 

coincide well at different cycles. The coulombic efficiency is close to 100% during 1C 291 

cycling. As shown in Fig. 6c, at 5C high rate, this material also shows very stable 292 

cycling in 2.3-4.1 V with an 89% capacity retention after 650 cycles. The much better 293 

cycling stability in 2.3-4.1 V than that in 1.5-4.1 V or 1.5-4.5 V is benefited by 294 

avoiding P2-O2 phase change 
23

 and the formation of Mn
3+24

.  295 

As shown in table 1, the as-prepared Na2/3Ni1/3Mn2/3O2 shows the best cycling 296 

performance compared with previous reports. The excellent cycling stability might be 297 

attributed to: i) The PVP-combustion method. The remarkable advantages of 298 

PVP-assisted combustion method over other polymer-pyrolysis methods has been 299 

discussed previously
32

. PVP helps a homogeneous distribution of the constituents at 300 

the atomic level and improves the crystallization, purity and homogeneity of 301 

Na2/3Ni1/3Mn2/3O2
26-28, 32, 45

. ii) The uniform single-crystal morphology and 302 

appropriate particle size. The smooth single-crystal morphology could suppress side 303 

reactions. The particle size is both not too small (mostly higher than 1 μm) and not too 304 

big (mostly lower than 4 μm), possibly preventing metal ion solution and cracks 305 

which occur on the surface of big particles
46

. 306 

 307 

4. Conclusions 308 

Na2/3Ni1/3Mn2/3O2 with ultra-high rate capability and excellent cycling stability in 309 

2.3-4.1 V range is synthesized via PVP-combustion method. The comprehensive 310 
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electrochemical performance is improved compared with previous reports which are 311 

shown in Table 1. The discharge capacity is 87.6 mAh g
-1

 at 0.1 C rate in 2.3-4.1 V. 312 

This capacity is comparable with Li1+xMn2-xO4 material 
47

, and the theoretical energy 313 

density of full cell with hard carbon anode 
48

 (reversible capacity is 370 mAh g
-1

) is 314 

210 Wh kg
-1

 (average voltage of full cell is 3.0 V). Moreover, this material can deliver 315 

91.5% capacity at 40 C rate and keep 89% after 650 cycles at 5C. The moderate 316 

energy density associated with high power density and long cycle life is acceptable 317 

for load adjustment of new-energy power, showing the prospect of practical 318 

application
8
. 319 

The kinetics of Na
+
 intercalation/deintercalation is studied detailly with PITT, 320 

GITT and CV. The Na
+
 diffusion coefficient in the 3.3-V and 3.7-V plateaus is about 321 

10 times higher than that in 4.2-V plateau. The CV test indicates the DNa of 3.7-V 322 

oxidation peak is 3.5×10
-10

 cm
2
 s

-1
. The GITT tests show the mass transport limitation 323 

increase is the main factor of the overpotential increase during cycling. 324 

 325 
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Table 1. Comparation of the electrochemical performance between this work and 420 

references. 421 
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Referen

ces 

Preparation 

method 

Voltage 

cut-off 

(V) 

Capacity 

(mAh g-1) 

Rate 

 (mAh 

g-1) 

Capacity fading 

(% per cycle) 

Na+ diffusion 

coefficient (cm2 s-1) 

Ref.31 sol-gel 2.0-4.0 
93.0@0.1 

C 

58.2@20 

C 
0.025@1 C ~10-10 

Ref.23 co-precipitation 2.3-4.1 87@0.1 C 62.4@2 C 0.16@0.2 C 7×10-9 – 1×10-10 

Ref 43 solid state 2.5-4.3 101@0.1 C 45@5 C 0.21@0.5 C ~10-12 

Ref.49 spray pyrolysis 2.0-4.0 86@0.1 C 81@1 C 0.038@0.1 C - 

Ref.42 solid state 2.0-4.0 
88.5@0.1 

C 
77.4@2 C 0.74@0.5 C - 

This 

work 

PVP-combustio

n 
2.3-4.1 

87.6@0.1 

C 

80.2@40 

C 
0.02@1 C ~10-10 

 422 

 423 

 424 



Fig. 1

Fig. 1. Morphology and structure of the Na2/3Ni1/3Mn2/3O2. (a) XRD pattern. (b) SEM image and 
particle size distribution counted from a lower-magnification SEM image.
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Fig. 2
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Fig. 2. Soft X-ray absorption spectra of Na2/3Ni1/3Mn2/3O2 associated with standard spectra. (a) Mn 
L3-edge. (b) Ni L3-edge. 
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Fig. 3. (a) Voltage profiles of Na2/3Ni1/3Mn2/3O2 during initial charge and discharge process at 0.1 C 
between 1.5-4.5 V. (b) Cyclic voltammetry curve of Na2/3Ni1/3Mn2/3O2 with a 0.05 mV s-1 scan speed.



Fig. 4

Fig. 4. Rate capability and kinetics of Na2/3Ni1/3Mn2/3O2. (a) The charging and discharging profiles 
between 2.3-4.1 V at different rates. (b) The discharging profile during fast rate test and diagram of 
capacity calculation at different rates. (c) The capacity retention at different rates relative to 0.2 C 
between 2.3-4.1 V during fast rate test. (d) Cyclic voltammetry curves with different scan speed. (e-f) 
The Na+ diffusion coefficient measured potentiostatic intermittent titration technique (PITT) tests 
associated with voltage curves during tests.
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Fig. 5. galvanostatic intermittent titration technique (GITT) tests and overpotentials of 
Na2/3Ni1/3Mn2/3O2. (a) The charging and discharging profiles vs. time. (b) Diagram of ηIR and ηD. (c-d) 
The overpotentials during GITT tests associated with voltage curves vs Na content in 1st and 2nd

cycles. (e) ηIR at different plateau in (a) at different cycles. (f) ηD at different plateau in (a) at different 
cycles. 
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Fig. 6. Cycling stability of Na2/3Ni1/3Mn2/3O2. (a) The discharge capacity vs. cycle numbers between 
2.3-4.1 V  and 1.5-4.1 V at 1 C. (b) The charge and discharge capacity and coulombic efficiency vs. 
cycle numbers between 2.3-4.1 at 1 C. (c) The charge and discharge capacity and coulombic 
efficiency vs. cycle numbers between 2.3-4.1 at 5 C. 
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