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A WARNING ABOUT USING PREDICTED VALUES FROM REGRESSION
MODELS FOR EPIDEMIOLOGIC INQUIRY

ABSTRACT

In many settings researchers may not have direct access to data on one or more variables needed for
an analysis, and instead may use regression-based estimates of those variables. Using such estimates
in place of original data, however, introduces complications and can result in uninterpretable analyses.
In simulations and observational data we illustrate the issues that arise when an average treatment
effect is estimated from data where the outcome of interest is a prediction from an auxiliary model.
We show that bias in any direction can result, both under the null and alternative hypotheses.

Keywords proxy variables · measurement error · imputation

Introduction

In many settings researchers lacking direct access to data on variables needed for an analysis rely instead on regression-
based estimates of those variables. Regression-based estimates are routinely used as exposures, outcomes, and effect
modifiers or covariates in epidemiologic studies, including some appearing in top epidemiology journals [1, 2, 3, 4, 5, 6].
These include some types of small area estimates [7, 8], models to estimate the composition of biological samples [9],
models that combine biomarker data with demographic covariates [10], and models of frailty in aging research [2, 11].
Our motivating example is a small area estimation model [7, 8] which purports to be useful for "informing local health
policy-makers, improving community-based public health program planning and intervention strategy development,
and facilitating public health resource allocation and delivery." But using regression-based estimates in place of original
data can result in uninterpretable analyses and is rarely valid.

We use primary analysis to refer to the analysis that answers a question of interest and primary data to refer to the data
used in the primary analysis. We use auxiliary model to refer to a regression model, fit to auxiliary data, that provides
estimates of a variable, V , that is required for the primary analysis but is not available in the primary data. We show
in simulations that the common use of predictions from auxiliary models in primary analyses can result in spurious
association estimates, including estimates that are in the opposite direction from the truth.

Terminology and notation

primary analysis analysis that answers question of interest
primary data data used in primary analysis
V variable required for primary analysis but not available in primary data
auxiliary model regression model used to estimate V
auxiliary data data used for auxiliary model
Z auxiliary data covariates used as independent variables in model for V
g(Z) function that predicts V ; result of the auxiliary model

Our warnings apply to any estimate of V that can be expressed as a function of covariates, i.e., the regressors in the
auxiliary model. They do not apply to the use of predicted values from deterministic mathematical models, such as
differential equation models of infectious disease epidemics or models that smooth between observations, e.g., kriging
to estimate air pollution levels. They also do not apply to settings amenable to multiple imputation, where V is observed
for some but not all subjects in the primary data.

What may go wrong when using estimates from auxiliary regression models

Suppose an auxiliary model uses covariates Z to estimate a variable, V , that researchers need for their primary analysis.
As a toy example, suppose that V is blood pressure, and Z includes age, sex, body mass index (BMI), race/ethnicity, and
socioeconomic status (SES). The result of the auxiliary model is a function g(Z) (e.g., Z ′Zβ if the auxiliary model is a
linear regression) that outputs estimated values of V . Plugging the Z for a particular observation into g(Z) estimates
that observation’s V .
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If V is a confounder in a primary analysis, using the estimated V values g(Z) to control for V cannot do better than
optimally controlling directly for Z, because a function of Z can only contain less information than Z alone. In our toy
example, controlling for estimated blood pressure can do no better than correctly specifying a model for the outcome
given the exposure and age, sex, BMI, race/ethnicity, and SES. A paper published in Epidemiology recommended that
researchers interested in estimating the effect of medical interventions on mortality among older adults using Medicare
claims data control for confounding by frailty using a function of age, sex, race/ethnicity, and 20 claims for conditions,
symptoms, and medical equipment (e.g., wheelchair, vertigo, and dementia) shown to be predictive of frailty [3]. If the
association of interest is unconfounded after controlling for these 23 variables, in addition to other measured covariates,
then all 23 variables should be included in any claims-based analysis. If confounding remains after conditioning on
these 23 variables, then no function of them can control for confounding—no matter how predictive it is of frailty.

If V is an exposure or treatment of interest, including g(Z) instead of V in a primary analysis only tells us about
the relationship between a function of Z and the outcome. One problem is that g(Z) may fail to capture features
of V that drive the true effect of interest. Another is that it may introduce spurious associations. For example,
suppose SES has a strong relationship with the outcome of interest. Then V =blood pressure may appear to be a strong
predictor of the outcome simply because SES is an important component of g(Z). In the International Journal of
Epidemiology, researchers suggested estimating early- and mid-life cardiovascular disease (CVD) risk factors as a
function of race/ethnicity, sex, and age cohort in order to use cohort studies of older adults to estimate the associations
of early life risk factors on later life outcomes [1].1 They suggest that estimated risk factors can be used to assess "the
effects of early and midlife exposures on later life outcomes," but any apparent association between these risk factors
and later life outcomes could also be driven by associations with age cohort, sex, or race/ethnicity unrelated to CVD
risk factors.

If V is an outcome, using g(Z) instead of V only tells us about how well the variables in our model of interest predict
a function of Z. As above, g(Z) may fail to capture features of V that are truly affected by the exposure of interest,
or it may introduce spurious associations. In our toy example, if SES is strongly associated with an exposure of
interest (as indeed it often is), this could drive an apparent but spurious relationship with predicted blood pressure. A
paper published in this journal compared definitions of incident chronic kidney disease based on estimated glomerular
filtration rate (eGRF), which is a function of age, sex, Black race/ethnicity, and creatinine, to a definition based only on
creatinine, which is a biomarker for GRF [4]. The creatinine definition identified male sex as a risk factor for incident
CKD whereas the eGRF definitions identified male sex as protective, suggesting "the nonlinear relation between serum
creatinine and eGFR may partially explain this apparent discrepancy." However, the eGRF equation included sex as a
factor thereby defining eGRF as 1.35 times higher for males than for females. Whenever eGRF is used as an outcome
in an epidemiologic study, e.g., [5], this same discrepancy could bias estimates of associations with any exposure that is
differential by sex either towards or away from the null. The use of race in eGRF and other clinical algorithms has
come under increasing criticism [12, 13]; the phenomenon we have just described is one reason why using race as a
predictor can be highly problematic.

When V is an exposure or an outcome, controlling for any elements of Z in the primary analysis can undermine the
predictive power of g(Z) to capture information about V . In the extreme case, controlling for Z could be tantamount to
controlling for g(Z) itself, forcing all estimated associations with g(Z) to be null. In the CVD risk factor analysis [1],
any estimate of the predictor g(Z) that controls for sex, race/ethnicity, or age cohort would likely be attenuated and any
estimate that stratifies by all three covariates would be null.

The problem of a missing variable is an extreme case of missing data, where V is missing for every observation. It
is well-known from the literature on missing data imputation that the joint relationships among all the variables in a
primary analysis must be correctly modeled in the auxiliary data in order for estimated V to be a valid replacement
for the true V [14]. This may not be a problem in most missing data settings where all of the relevant variables are
available in a single data set. But in our setting, this generally entails that all of the variables to be included in a primary
analysis are also included in the auxiliary model for V , with all of the relationships correctly specified. This is almost
never possible: researchers may not have access to the auxiliary data or oversight over how the auxiliary model is fit,
and the auxiliary data may not include all of the primary analysis variables.

In the best-case scenario of a correctly-specified auxiliary model and informative predictors, the auxiliary model may be
very predictive of V , with highly statistically significant coefficients, high R2, etc. Nevertheless, these criteria are not
sufficient to validate the use of predicted V values in subsequent analyses; no matter how “good” the auxiliary model is
for V , if it does not correctly capture the joint relationships among all of the primary analysis variables, it can introduce

1They first estimated smoking as a function of race, sex, age cohort. Denote this function s(race, sex, cohort). Next they
estimated BMI as a function of race, sex, age cohort, and estimated smoking: b(s(race, sex, cohort), race, sex, cohort) – so BMI
is also a function only of race, sex, and age. They subsequently estimated other risk factors as functions of race/ethnicity, sex, cohort,
and previously estimated risk factors.
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meaningful bias into the primary analysis. The bias introduced by replacing V with its estimate will depend on many
factors, and using the predicted V may be better or worse than ignoring V altogether or using a more naive proxy for V .
In simulations we show that associations estimated using predicted V can go in the opposite direction from the true
association, whether V is a confounder, an outcome, or an exposure.

When is it acceptable to use estimates from auxiliary regression models?

Let W be the collection of primary analysis variables that are not available in the auxiliary data. The strategy of
predicting V using auxiliary data on V and Z is unproblematic when either of these two conditional independences
holds:

Z ⊥W |V (1)
or

V ⊥W |Z. (2)
Equivalently, the joint distribution of V , Z, and W factorizes into one component that is a function of V and Z, and
another component that is a function of W and either Z or V , but not both.

In this case, the joint relationships among Z,V , and W can be correctly modeled in the auxiliary data even though W
does not appear in the auxiliary data, because the regression of V on Z only involves f(Z, V ) and not the other factor
in full joint distribution. When the joint distribution factorizes in this way, using g(Z) in place of V is akin to observing
V with error, where the magnitude of the error is directly related to how well g(Z) predicts V .

Motivating example

The Centers for Disease Control and Prevention (CDC) 500 Cities data uses small area estimation models to estimate
the prevalence of health outcomes at the census tract-level based on county-level data. The auxiliary model uses
county-level data to regress V onto age category, sex, race/ethnicity category, and county-level poverty rate. Census
tract data on covariates, Z, coupled with the county-level fitted auxiliary model, is used to predict V at the census
tract-level, g(Z).2 Although the CDC website recommends that these data be used for surveillance purposes, the
original papers proposing the small area models suggest that they can be used to design and assess interventions [7, 8]
and they have frequently been used as outcomes [15, 16, 17, 18], exposures [17], and covariates in epidemiologic
research, sometimes simultaneously.

Simulations

We considered two different simulation settings to mimic analyses of the 500 Cities data that use auxiliary model
predictions as outcome variables in the primary analysis.

We first simulated the county-level data: 4 covariates based on the distributions of the 4 predictors used in the 500 Cities
small area estimation models, the exposure with approximately the same marginal distribution as day-night average
noise, and the outcome with approximately the same conditional distribution as poor sleep conditional on the exposure
of noise.We ran an auxiliary model regressing prevalence of poor sleep on the 4 auxiliary covariates.

Next, we simulated the primary data at the census tract-level, using the same data generating models as the county-level
data. We simulated the true outcome, V , for each observation. To mimic settings in which researchers do not have
access to the true V , we also calculated a predicted outcome g(Z) for each observation by using the auxiliary model. We
compared two analyses, both using the primary data: one using the true V to assess the association between exposure
and V , and one using the predicted values g(Z) that would be available to a researcher. The results are depicted in
Figure 1. In panel A the association reverses direction when V is replaced with g(Z). In panel B, we illustrate the
perils of controlling for an auxiliary model predictor in the primary analysis. Although both the exposure-V and
exposure-g(Z) associations are positive, controlling for race/ethnicity results in a null association.

We also ran two simulations to illustrate the potential consequences of using g(Z) as a covariate or exposure (Figure
2). For panel A, we simulated a continuous covariate V , conditional on an auxiliary predictor Z. We then simulated
exposure and outcome to have a strong negative association conditional on V . We ran this same data-generating process
in auxiliary and analysis data sets. We regressed V on Z in the auxiliary data, and then predicted g(Z)) in the analysis
data. Conditional on g(Z), exposure and outcome have a strong positive association (in the opposite direction of the

2Random effects were included only at the state and county level, meaning that within county the V is predicted from essentially
an ordinary regression model.
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truth). For panel B, in auxiliary and analysis data we simulated a continuous outcome outcome, and then simulated a
continuous exposure V , conditional on an auxiliary predictor but independent of the outcome. We used the model fit
from regressing V on the auxiliary predictor in the auxiliary data to calculate g(Z) in the analysis data. Despite the true
null relationship, g(Z) and the outcome are strongly positively associated.

All code is available at https://github.com/joanacasey/auxiliary_mod_perils.

Observational data analysis

Using logistic regression, we examined associations between day-night average noise and poor sleep using the 500
Cities data. Day-night average noise was estimated from a geospatial sound model over a 24-hour period with a
10-decibel penalty added between 10PM and 7AM [19]. Potential census tract-level confounding variables from the
2011-2015 U.S. American Community Survey included proportion: females, individuals >75 years, non-Hispanic
White and non-Hispanic Black individuals, homeowners, and individuals living below the federal poverty threshold;
and population density (individuals/km2). We included modeled estimates of census tract level NO2 and PM2.5 from
the Center for Air, Climate and Energy Solutions [20]. 3

Although our results appear to show a strong association between noise and poor sleep, these results could be driven by
an association between noise and one of the auxiliary predictors used in the CDC small-area estimation models. For
example, socioeconomic status has previously been shown to be strongly associated with day-night average noise in the
United States [21].

Conclusion

Predictions from auxiliary regression models should not generally be used to learn about associations, mechanisms, or
causal effects. While the predictions themselves can be useful for descriptive purposes, such as health surveillance or
predicting burden of disease, including them as outcomes, exposures, or covariates in larger models for the purpose of
estimating associations or causal effects can result in bias.

The exception to this general principle is when the joint distribution of the variables in the union of the auxiliary and
primary data (X , V , and W ) factorizes into two terms, one of which involves only X and V and the other of which
may involve W and either X or V but not both. This is the case whenever V is a deterministic function of X . In future
work we plan to formalize this principle, quantify departures from the factorization, and characterize the relationship
between such departures and potential bias.
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Figure 1: Simulated associations between day-night average noise level and proportion with poor sleep under two
different scenarios. The figure displays predicted values the corresponding 95% confidence intervals from logistic
regression models. The models in panel A are unadjusted, comparing the associations of the true (blue) and estimated
(red) outcomes with exposure. In panel B the unadjusted associations between exposure and g(Z) (green) and the
association between exposure and V adjusted for race/ethnicity (blue) are positive, but the association between exposure
and g(Z) adjusted for race/ethnicity (red) is null.

Figure 2: Simulated associations between exposure and outcome. The figure displays predicted values and the
corresponding 95% confidence intervals from linear regression models. Panel A illustrates the association between
exposure and outcome adjusted for a true (blue) versus predicted (red) covariate and the model in panel B illustrates the
unadjusted association between an outcome and a predicted (purple) and true (orange) exposure.
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Figure 3: Association between day-night average noise and predicted proportion poor sleep in the nationwide 500 Cities
dataset. The figure displays predicted values from logistic regression models. Panel A displays the unadjusted model.
Adjusted model 1 (panel B) includes only covariates that are not in the auxiliary model: population density, N02,
PM2.5, and homeownership. Adjusted model 2 (panel C) includes the same covariates plus those from the auxiliary
model: age category, sex, race/ethnicity category, and county-level poverty rate.
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