UCLA

Papers

Title

Adaptive Management of Irrigation with Feedback Control to Avoid Groundwater Pollution by Nitrate

Permalink

https://escholarship.org/uc/item/7z6076vr

Authors

Park, Yeonjeong Ewart, John Harmon, T C

Publication Date

2006-06-26

Adaptive Management of Irrigation with Feedback Control to Avoid Groundwater pollution by Nitrate

Yeonjeong Park¹ (yp32@ucla.edu), John Ewart² (jewart@ucmerced.edu) and Thomas C. Harmon² (tharmon@ucmerced.edu)

¹Department of Civil and Environmental Engineering, Box 159310, UCLA, Los Angeles, CA 90095 ²School of Engineering, Box 2039, UC Merced, Merced, CA 95344

1. Reclaimed Water is Reused for Irrigation

Agricultural Irrigation with Secondary Effluent from Palmdale Reclamation Plant

The Secondary Effluent is Irrigated with Centerpivot Sprinkler System

4. Embedded Networked Sensing System in Palmdale, CA

Drawing by Jason Fisher

- Receding Horizon Feedback Control (RHFC)

Predictive simulation models

Optimization models (to maximize reclaimed water input and

to comply regulatory threshold)

Controller/Regulator

Initial conditions

Output

Irrigate with

application

rate

System

 $\min \left[C(t) - C_{threshold} \right] dt$

C(t): nitrate

Feedback State Estimation or Parameter Estimation

5. Adaptive Control

Optimization

The concept of

receding horizon approach

Prediction

Horizon

Sensor

data

6. Results of Adaptive Control

Adaptive control using sensor networks and Receding Horizon Feedback Control is efficient and promising to identify a system, to control irrigation process, and eventually to prevent groundwater pollution while realizing the benefits of reclaimed water.

Acknowledgement UCLA's Center for Embedded Netw Sensing (CENS) under cooperative agreement #CCR-0120778 with the Na Science Foundation is gratefully

2. But, the problem is ...

Nitrate in the reclaimed water has the potential to pollute underlying groundwater

3. Solutions are ...

- Observations to identify our system
- Embedded Networked Sensing (ENS)

- Prediction models to forecast nitrate transport in subsurface system - Simulation models
- Adaptive Control methodology to prevent from nitrate pollution by adjusting the irrigation rate based on current observations and simulation models
- Receding Horizon Feedback Control

7. Conclusions