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Developmental effects of fipronil on Japanese Medaka (Oryzias 
latipes) embryos

Scott D. Wagnera,1, Tomofumi Kurobea,*, Bruce G. Hammocka, Chelsea H. Lama, Gary Wua, 
Natalia Vasylievab, Shirley J. Geeb, Bruce D. Hammockb, and Swee J. Teha

aAquatic Health Program, School of Veterinary Medicine, Department of Anatomy, Physiology, 
and Cell Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

bDepartment of Entomology and UCD Comprehensive Cancer Center, University of California, 
Davis, One Shields Avenue, Davis, CA 95616, USA

Abstract

Pesticides in urban runoff are a major source of pollutants in aquatic ecosystems. Fipronil, a 

phenylpyrazole insecticide, found in structural pest control products, turf grass control, and home 

pet flea medication, has recently increased in use and is commonly detected in urban runoff. 

However, little is known about the effects of fipronil on aquatic organisms at early developmental 

stages. Here, we evaluated toxicity of fipronil to embryos of Japanese Medaka (Oryzias latipes, 

Qurt stain) using a high-throughput 96-well plate toxicity test. Male and female embryos (< 6 h 

post fertilization) were exposed to concentrations of fipronil ranging from 0.1–910 μg L−1 for 14 

days or until hatching. Embryos were subjected to gross and microscopic examinations of 

developmental adverse effects as well as transcriptome analysis using RNA-seq. Results indicated 

a positive dose-response in reduced hatching success, increased gross deformity (tail curvature) at 

a lowest-observed-effect concentration (LOEC) of 200 μg L−1 and delayed hatching (~1 day at the 

highest concentration, LOEC = 600 μg L−1). The transcriptome analysis indicated that fipronil 

exposure enhanced expression of titin and telethonin, which are responsible for muscle 

development. It is therefore possible that the formation of a tail curvature is due to asymmetrical 

overgrowth of muscle. Our results indicate that sub-lethal effects occur in embryonic stages of an 

aquatic vertebrate following exposure to high concentrations of fipronil, although no adverse 
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effects at the highest published environmentally relevant concentration (6.3 μg L−1) were 

observed.

Graphical abstract

Adverse effects:

• Decreased hatching success

• Delayed hatching

• Formation of tail curvature, likely due to overgrowth of muscle (up-regulation of titin 

and telethonin genes was detected by RNA-seq)

• Impaired swimming ability
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1. Introduction

Aquatic organisms are exposed to various types of pollutants including pesticides, which 

originate from agricultural and urbanized areas (Gan et al., 2012; Weston et al., 2005). 

Pesticides from urban areas are an important pollutant in waterways due to their toxicity to 

non-target resident aquatic organisms (e.g., Amweg et al., 2006; Bloomquist, 1996; Tingle et 

al., 2003; Weston et al., 2005, 2009). Fipronil, a phenylpyrazole insecticide found in 

structural pest control products, turf grass control, and home pet flea medication, has 

become prominent among the many pesticides detected in surface waters (Jiang et al., 2010; 

Simon-Delso et al., 2015; Sprague and Nowell, 2008). Fipronil has gained in use as a 

replacement for the older pesticide classes of pyrethroids and organophosphates in urban 

areas, causing its environmental concentrations to increase (Gan et al., 2012; Weston et al., 

2009). Simon-Delso et al. (2015) estimated that neonicotinoids and fipronil account for 

roughly 33% of the global insecticide market. A recent study reports environmental 

concentrations of fipronil in the range of 0.13–12.6 μg L−1 in California (Gan et al., 2012). It 

is not registered for agricultural use in California, however, it is applied for such use in other 

states and detections in environmental samples range from 0.01–6.4 μg L−1 (Mize et al., 

2008).
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Fipronil causes high toxicity to invertebrates through inhibition of gamma-amino butyric 

acid (GABA)-gated chloride and glutamate-gated chloride channels (Cole et al., 1993; 

Hainzl et al., 1998; Zhao et al., 2004). Fipronil can affect non-targeted organisms, including 

vertebrates, by inhibiting repolarization of nerve cells through blocking the influx of 

chloride anions, leading to hyper-excitation and death (Stehr et al., 2006). Beggel et al 

(2012) reported up-regulation of the vitellogenin gene, a marker for oestrogenic endocrine 

disruption, in larval stage of fathead minnow by fipronil exposure, suggesting fipronil acts as 

an endocrine disruptor and exerts sex-specific effects. The USEPA (1996) reported that 

fipronil affects growth of Rainbow Trout larvae at a no-observed-effect concentration 

(NOEC) of 0.0066 ppm and a lowest-observed-effect concentration (LOEC) of 0.015 ppm, 

and that the metabolite, MB 46136, is more toxic than the parent compound to Rainbow 

Trout and Bluegill Sunfish. Wirth et al. (2004) reported no effect of fipronil on the fish 

Cyprinidon variegatus at concentrations up to 5 000 ng L−1 in an estuarine mesocosm 

experiment, but reduced survival of Grass Shrimp at 355 ng L−1, suggesting potential food 

web effects for fishes. Thus, the adverse effects of fipronil on fish at larval, juvenile, and 

adult stages are well documented by previous laboratory studies (Beggel et al., 2012; Bencic 

et al., 2013; Nillos et al., 2009; USEPA, 1996; Wirth et al., 2004). However, little is known 

about the developmental toxicity, endocrine disruption, and sex-specific effects of fipronil on 

the embryonic stage of teleosts.

Developmental toxicity studies offer a unique perspective on ecological and organismal 

health. Organisms at the embryonic stage are the most vulnerable to chemical toxicity 

effects due to a lack of protective mechanisms (Hood, 1996; McKim, 1977; Spitsbergen et 

al., 1991). Moreover, tissue and vital biological systems are differentiating and developing, 

thus any disruption or impact can exert lifelong consequences such as formation of 

deformities. The cumulative effect of these factors makes developing organisms ideal for 

toxicity studies (McKim, 1977).

Japanese Medaka as used in this study provides several advantages over other commonly 

used fish models. The primary advantage is that Medaka is sexually dimorphic. At 2 days 

post fertilization, the sex of a Medaka Qurt strain embryo can be identified based on visible 

spots on the dorsal side of the head. Males are leucophore positive, a genetically-tied trait 

(lf= leucophore free, female: Xlf/Xlf and male Xlf/Y+) which causes brown pigmentation to 

become apparent on the back of the head (Kinoshita, 2009; Wada et al., 1998). Additionally, 

Medaka is a hardy species that is easy to culture with individual fish providing egg clutches 

of > 20 eggs per day. Embryos typically hatch within 7–10 days of fertilization (Kinoshita, 

2009). This extended development time is ideal for investigating developmental effects given 

that more time is allowed for toxic action to occur compared to other fish model species 

such as Zebrafish.

Here, we report the developmental toxicity of fipronil across multiple levels of biological 

organization (hatching success, phenotypic observation, and transcriptome analysis using 

RNA-seq) in Japanese Medaka.
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2. Materials and methods

2.1. Fipronil solutions

The powder form of fipronil (purity 98%) was purchased from ChemService (West Chester, 

PA) and was used to prepare a series of stock solutions. All stock solutions were prepared 

with HPLC grade methanol (Thermo Fisher Scientific, Waltham, MA). First, a 10 000000 μg 

L−1 stock solution was made, and then diluted in a step-wise manner (1:10 serial dilutions).

Two sets of experimental solutions were prepared; the first set of solutions covers wide 

range of concentrations at 1:10 serial dilutions (0.1, 1.0, 10.0, 100, and 1 000 μg L−1) and 

the second set was made to test concentrations between 200 to 1 000 μg L−1 with an 

increment of 200 (200, 400, 600, 800 and 1 000 μg L−1). The experimental solutions were 

prepared by spiking stock solutions into reconstituted water: pH 8.0, alkalinity 80 mg L−1 

CaCO3, hardness 100 mg L−1 CaCO3 (Horning and Weber, 1985). The final concentration of 

the methanol in all the experimental solutions was 0.01% (v/v ratio) as suggested by 

American Society of Testing and Materials (ASTM E1241-92). A 0.01% methanol in 

reconstituted water (v/v ratio) was used as a vehicle control. A small portion of freshly 

prepared experimental solution was collected in amber glass vials prior to the initiation of 

the exposure and stored at −80 °C for measurement of fipronil concentration by enzyme-

linked immunosorbent assay (ELISA) as described in the next section (Vasylieva et al., 

2015).

2.2. Indirect competitive ELISA

All the buffers were prepared with ultrapure deionized (DI) water and the compositions are 

listed as follows: phosphate-buffered saline (PBS, 10 mM, pH 7.5), PBST (PBS containing 

0.05% Tween 20), coating buffer (14 mM Na2CO3, 35 mM NaHCO3, pH 9.8), blocking 

buffer (1% BSA in PBST), and substrate buffer (0.1 M sodium citrate/acetate buffer, pH 

5.5). Substrate solution contained 0.2 mL of 0.6% 3,3′,5,5′-Tetramethylbenzidine (in 

dimethyl sulfoxide, w/v), 0.05 mL of 1% H2O2 in 12.5 mL of substrate buffer. Stop solution 

was 2M H2SO4.

Plates were coated with 1 μg mL−1 antigen (1-CON, Vasylieva et al. 2015) diluted in the 

coating buffer (100 μL per well). After incubation for 1 h at room temperature (RT), the 

solution was replaced with the blocking buffer (200 μL per well) and plates were incubated 

over night at 4 °C or for 1–4 h at room temperature (RT). Plates were then washed with 

PBST 3 times prior to sample loading. The standards in the assay buffer were prepared in 

glass vials and loaded on the coated plate in triplicate wells (50 μL per well). The 

experimental solutions in low concentrations (0.1–10 μg L−1) were directly added to the 

wells pre-loaded with the assay buffer while samples with high fipronil concentrations (100–

1 000 μg L−1) were diluted with the assay buffer before addition to the plate (Vasylieva et al. 

2015). An equal volume of anti-fipronil serum (#2268 diluted in PBS, 50 μL per well) was 

added at 1:4 000 dilution, giving final 1: 8 000 dilution in the plate. The plates were 

incubated for 1 h at RT and then washed 5 times with PBST. Goat anti-rabbit IgG-HRP 

conjugate was added at 100 μL per well in a 1:20,000 dilution as instructed by manufacturer 

(Abcam, Cambridge, MA). The plates were incubated for 1 h at RT and washed 5 times with 
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PBST. Substrate solution was added (100 μL per well) and was left to develop color for 10 

min. The reaction was stopped by addition of stop solution (50 μL per well) and absorbance 

was read at 450 nm. SigmaPlot ver. 11.0 software was used for curve fitting and data 

analysis to find IC50 values and the equation of the standard curve. The assay was performed 

four separate times.

2.3. Embryo exposures

Medaka embryos were exposed to nine concentrations of fipronil over the entire embryonic 

period (the nominal concentrations: 0.1, 1.0, 10.0, 100, 200, 400, 600, 800, and 1 000 μg 

L−1). A total of five fipronil exposures were run; three of the exposures occurred at 

concentrations of 0.1, 1.0, 10.0, 100, and 1 000 μg L−1 while the other two were at 200, 400, 

600, 800 and 1 000 μg L−1. All the exposures were performed with a newly developed 96-

well plate method (Truong et al. 2011). Traditional beaker or petri dish exposure methods 

generate a large volume of waste, accumulate costly disposal fees, require large and complex 

temperature control mechanisms (i.e. water baths), and expose embryos in large groups, 

making tracking of individual responses difficult. Exposure using the 96-well plate method 

eliminates all of these problems; temperature control is managed via a commonly-used 

environmental chamber, one well holds only 250 μL of experimental solution, and each 

developing embryo can be observed without disruption and tracked separately under a 

dissecting microscope. Medaka embryos (< 6 h post fertilization) were collected from the 

culture facility at the Aquatic Health Program, University of California, Davis. Immediately 

after collection, embryos were cleaned with DI water and sorted for health and viability, then 

placed in 15 mL of experimental solutions in 50 mL Pyrex beakers for batch exposure (50 

eggs per beaker, one beaker per concentration). Medaka embryos were kept in the beakers 

until male and female embryos could be identified (~4 d post-fertilization). At 2 days post-

exposure (dpe), a 50% (7.5 mL) water change was performed. At 4 dpe, embryos were 

separated by sex and moved into a 96-well plate (Costar 9016, Non-sterile, Polystyrene, Flat 

Bottom, Medium Binding). Embryos were not placed initially in 96-well plates both to allow 

time to determine sex of the embryos, and to remove unfertilized eggs. This also allowed us 

to ensure that equal numbers of each sex were exposed and to conclusively attribute hatching 

failures to experimental conditions. Each well contained 250 μL of fresh experimental 

solution and one embryo was placed in each well. A total of 32 or more eggs were used for 

the exposure per treatment. More than 50% of total well volume was changed every other 

day during the remainder of the experiment. The fish embryos in the 96-well plates were 

kept in an environmental chamber (Percival Scientific, Perry, IA, Model 136LLVL) at 25 °C 

on a 16:8 h light:dark cycle with light intensity of 808 Lux during the experiment. All 

embryos were observed daily, and signs of abnormal development, mortality, and hatching 

success were recorded. Hatched larvae were kept in the 96-well plates up to 24 h after hatch 

for assessing abnormal development as well as swimming ability, and then euthanized using 

tricaine methane sulfonate (Tricaine-S, Western Chemical, Inc., Ferndale, WA). Larval fish 

lying on their side at the bottom of the wells at 24 h post hatch were considered as “impaired 

swimming”. Hatchlings were not fed during the exposure. The fish embryos that failed to 

hatch were terminated at 14 dpe.
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2.4. Statistical analysis

We analyzed the data for a sex specific effect of fipronil on hatching success, hatching time, 

and tail curvature (measured at hatch) using multi-model inference (Anderson et al., 2000; 

Burnham and Anderson, 2002). For statistical analysis, individual fish in each well were 

treated as replicates. For both the hatching success and tail curvature data, each model had 

binomial distributions of error because the response variable is a success/failure (i.e., the fish 

either hatched or it did not). Using the error distribution appropriate for the type of data 

(e.g., binomial distribution for success/failure data) provides accurate estimates of 

confidence intervals (Bolker et al. 2009). Models fit to the hatching success data included 

H~ (an intercept only model), H~C and H~C+S, where H is hatching success (1 is success, 0 

is failure), C is the nominal concentration (μg L−1), and S is a dummy variable for sex (1 is 

male, 0 is female). Models used to analyze the tail curvature data included TC~ (an intercept 

only model), TC~C and TC~C+S, where TC is a variable where ‘1’ is a curved tail and ‘0’ is 

no tail curvature, C is the nominal concentration of fipronil in μg L−1, and S is a dummy 

variable for sex (1 is male, 0 is female). For the hatching time analysis we built models with 

Gaussian error distributions. Models included D~ (an intercept only model), D~C, D~C+S, 

D~C+S+C×S, where D is days to hatching, C is concentration (μg L−1), and S is sex. We 

included the interaction model to determine whether fipronil influences hatching time 

differently for each sex, potentially indicating endocrine disrupting effects. Because 

exposures were run five times over the course of several months, we also tested for an effect 

of time for each of the responses by including a variable for ‘temporal block’ in the best 

model and comparing it to a model without the temporal block variable. In each case time 

was insignificant, so we did not include ‘time’ in the models and present the data from the 

five time points together. For the tail curvature analysis, more than half the larvae had the 

deformity at the highest concentration, allowing us to calculate an ED50. We used the 

methodology described in Hammock et al. (2015) for the calculation.

In addition to the above analyses, we performed three one-way analysis of variances 

(ANOVAs) to determine the lowest-observed-effect concentration (LOEC) for hatching 

success, tail curvature, and hatching time. A logistic transformation was used on the 

hatching success and tail curvature data because the response variables are binary. 

Concentration was the only independent variable used for each ANOVA. Dunnett’s tests 

were conducted following all three ANOVAs to find the LOECs.

2.5. RNA-seq

An additional exposure was performed to characterize gene expression patterns of embryos 

at the lowest concentration of fipronil. For RNA-seq, the lowest-observed effect 

concentration at which development of the tail curvature was observed (200 μg L−1) was 

used since non-specific responses due to overdose fipronil exposure (e.g. cell necrosis) were 

our concern. The exposure was conducted as follows: Medaka embryos were collected as 

described above (2.3. Embryo exposures), followed by batch exposure in glass beakers (210 

embryos in 50 mL of fipronil solution, 200 μg L−1). The same number of embryos were also 

exposed to 0.01% methanol as a vehicle control. On 4 dpe, the embryos were separated by 

sex and then placed into a 96-well plate as described above (one embryo per well). The 

experimental solution (> 50%) was changed every other day. At the end of the exposure (7 
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dpe, Stage 37: Pericardial cavity formation stage, Kinoshita et al. 2009), all the embryos in 

each treatment for each sex were pooled together and then randomly divided into 3 groups 

(n = 10 per group) to obtain a sufficient amount of total RNA for library preparation and to 

minimize bias from individual variation. The sampling time was chosen to ensure that 1) all 

the fish were still at embryonic stage and 2) embryos were exposed to fipronil long enough 

to induce changes in gene expression patterns.

Only male embryos were used for the gene expression analysis in order to standardize test 

results. Total RNA was isolated using TRIzol Reagent by following the manufacturer’s 

instructions (Thermo Fisher Scientific). The quality of the total RNA was assessed using an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) available at the DNA 

Technologies Core Facility at UC Davis (http://dnatech.genomecenter.ucdavis.edu) and 

ensured that the quality and integrity of the total RNA samples were above the required 

criteria for library preparation (RNA Integrity Number > 8.0). No genomic DNA 

contamination was detected.

The library preparation and sequencing reaction for RNA-seq was performed by the DNA 

Technologies Core Facility at University of California, Davis. Transcripts with poly(A) tail 

were enriched from the total RNA samples with Bio-Poly(A) beads (Bioo Scientific, Austin, 

Texas). Strand-specific RNA-seq libraries were generated with barcoded adapters using the 

NEXTflex Rapid Directional kit (Bioo Scientific) according to the instructions of the 

manufacturer. Uniform fragment size distribution for all libraries was verified with a 

Bioanalyzer. The concentration of the libraries were quantified with Qubit Fluorometer 

(Thermo Fisher Scientific), pooled equimolarly, and sequenced on a HiSeq 2500 instrument 

(Illumina, San Diego, CA) with single-end 50 bp reads.

The sequencing data were processed using a series of bioinformatics programs. Prior to the 

data analysis, the sequence data in FASTQ format were subjected to quality check as well as 

trimming poor bases using programs in the FASTX-Toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/index.html). The Medaka reference genome sequence was obtained from the 

Ensembl database (downloaded on December 18th 2014, http://www.ensembl.org/

index.html) and indexed using Bowtie2-build available within the package of Bowtie2 ver. 

2.2.4 (Langmead and Salzberg, 2012). The FASTQ sequence data were used for mapping to 

the reference genome sequence using TopHat ver. 2.0.13 (Kim et al., 2013). The output files 

generated for each library were then used for transcript assembly, merging, and statistical 

analysis using Cufflinks, Cuffmerge, and Cuffdiff within Cufflinks ver. 2.2.1 package, 

respectively (Trapnell et al., 2010, 2012). All the analyses were performed with the default 

settings. The gene expression level was expressed as “mapped fragments per kilobase of 

exon model per million mapped reads (FPKM)” and genes with a false discovery rate (FDR) 

lower than 0.05 were considered as differentially expressed by the fipronil exposure. A two-

tailed t-test was used to test for significance against a null hypothesis that there was no 

change while a one–tailed t-test using the estimated posterior distribution for that gene was 

used in cases where there were zero fragments mapped in one condition (Trapnell et al., 

2013). The genes for which expression was significantly altered by fipronil exposure were 

subsequently annotated by BLASTX against protein database (nr) obtained from the NCBI 

website (downloaded on April 8th 2015, approximately 64 million sequences were available, 
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http://www.ncbi.nlm.nih.gov/). All the data processing with bioinformatics programs was 

performed using custom workstation built with 2X Xeon E5-2630 6 core CPU with 128GB 

ECC RAM, 4× HDD in RAID 10 configuration for Data Storage, 64bit Linux system.

Data interpretation of RNA-seq datasets based on a limited number of selected individual 

genes has a risk of misinterpretation and likely produces inconsistent results when analyzed 

by researchers with different research backgrounds and expertise. To overcome this issue, a 

Gene Set Enrichment Analysis (GSEA) was performed to investigate biological functions 

altered by fipronil exposure using gene ontology terms rather than individual genes. A 

GSEA was performed using GOstat, a Bioconductor package written in R (Falcon and 

Gentleman, 2006; R Core Team, 2016). A setting for Cuffdiff (FDR < 0.075) was used to 

obtain a larger number of differentially expressed genes to perform the analysis, and a total 

of 2,021 genes were identified as differentially expressed by the fipronil exposure with the 

setting. The DNA sequences for the differentially expressed Medaka genes by fipronil 

exposure were retrieved using a custom shell script and further used to obtain Gene Product 

IDs by running a BLASTX search against the annotated Medaka protein sequences 

downloaded from the QuickGO database available at the EBI website (http://www.ebi.ac.uk/

QuickGO/GAnnotation). For BLASTX, a cutoff value of 95% identity was used to remove 

sequences showing low similarities, and only non-redundant Gene Product IDs were used 

for the GSEA. All the Medaka genes expressed in the samples as well as successfully 

annotated by BLASTX were utilized as “universe” or “background” (Falcon and Gentleman, 

2006). The hyperGTest function, which implements the hypergeometric calculation, was 

used for the analysis (P value cutoff = 0.05).

2.6. Reverse transcriptase quantitative PCR (RT-qPCR)

RNA-seq results for the selected number of genes were validated by RT-qPCR as described 

in our previous publications (Rochman et al. 2014; Ramírez-Duarte et al. 2016). Briefly, 

total RNA (1 μg) used for RNA-seq was subjected to DNase treatment (AMPD1, Sigma-

Aldroch), followed by cDNA synthesis using Superscript II Reverse Transcriptase following 

to the manufacturers’ instructions (Life Technologies). The primers for RT-qPCR were 

designed by PrimerExpress ver. 3.0 (Thermo Fisher Scientific, Waltham, MA, USA) and 

targets and corresponding primer sequences are listed in Table S1 (Supplementary Data). 

The reaction cocktail was prepared with Maxima SYBR Green qPCR Master Mix (Thermo 

Fisher Scientific) and the reactions were performed using an AB7900 HT FAST 

Thermocycler available at UC Davis Real-time PCR Research and Diagnostics Core Facility 

(http://www.vetmed.ucdavis.edu/vme/taqmanservice/). Each sample was analyzed in 

triplicate. The cycle threshold value (Ct) for each target gene was determined and relative 

expression levels in fold change was calculated by the 29−ΔΔCt method (Schmittgen and 

Livak, 2008). The geometric means of three house keeping genes, glyceraldehyde-3-

phosphate dehydrogenase (GADPH), ribosomal protein L7 (RPL7), and 18S ribosomal RNA 

were used for data normalization (Zhang and Hu, 2007). A Pearson’s correlation coefficient 

test was performed to assess the linear relationship of the gene expression data from RNA-

seq and RT-qPCR using the package “Hmisc” written in R (R Core Team, 2016). The gene 

expression data were log2 transformed prior to the statistical test.
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3. Results

3.1. Measured fipronil concentrations

The measured fipronil concentrations for the selected experimental solutions are listed in 

Table S2 (Supplementary Data). The 0.1 μg L−1 concentration was below the limit of 

detection (LOD) of the ELISA method. Assay #1 found no results for the 1.0 μg L−1 sample 

(Table S2, Supplementary Data), therefore, only three replications were utilized for 

measuring the concentration for the 1.0 μg L−1 sample, which produced a mean (± standard 

deviation) of 3.0 ± 1.14 μg L−1. Four replicate measurements for the 10.0 μg L−1 sample had 

a mean of 6.3 ± 0.94 μg L−1. The 100 μg L−1 sample had a mean of 86 ± 8.20 μg L−1. A 

mean of 910 ± 113.52 μg L−1 was found for the 1 000 μg L−1 sample. The experimental 

solutions collected for ELISA (200, 400, 600, and 800 μg L−1) were accidentally lost during 

the analysis. Throughout the rest of the paper, we report measured concentrations for the 

experimental solutions for which the ELISA data are available, otherwise nominal 

concentrations are reported (0.1, 3.0, 6.3, 86, 200, 400, 600, 800, and 910 μg L−1).

3.2. Embryo exposures

3.2.1. Mortality—Mortality was not observed due to the fipronil exposure even at the 

highest concentration tested in this study (910 μg L−1).

3.2.2. Hatching success—Embryos exposed to fipronil exhibited a decrease in hatching 

success in a dose-dependent manner (Fig. 1, Tables 1 and 2). The embryos in the vehicle 

control group hatched at a success rate of 94.6% whereas 82.8% of embryos hatched 

successfully at 910 μg L−1 fipronil exposure (Table 1). The influence of fipronil on hatching 

success was unequivocal, as the two models with a parameter for fipronil concentration 

received an AICc weight proportion of 0.999 (Table 2), and the fipronil parameter estimate 

did not overlap zero for the top-ranked model (slope = − 0.00239598, 95% CI = −0.00327, 

−0.00152). While the top-ranked model did not include sex, the second-ranked model, which 

had a parameter for sex, received substantial AICc support (AICc weight = 0.45, Table 2). 

Males had slightly higher hatching success than females, however, the results are 

inconclusive regarding the influence of sex on hatching success (Tables 1 and 2). The 

ANOVA mirrored the results of the model comparison, yielding a P value of < 0.0001 

(F[9,459] = 5.3433). The Dunnett’s test showed that the LOEC was 910 μg L−1 (P < 0.0001 

and P = 0.2091 for control versus 910 μg L−1 and 800 μg L−1, respectively).

3.2.3. Tail curvature—Fipronil exposure caused development of tail curvature (Fig. 2, 

Table 2, slope = 0.00486541, 95% CI = 0.00385, 0.00534) and the frequency of fish with the 

deformity increased in a dose-dependent manner (Fig. 3). Females showed a slightly higher 

rate of tail curvature (Table 2, parameter estimate = −0.66, 95% CI = −1.21, −0.11). Based 

on the model without sex, the ED50 was 668.1 μg L−1 (95% CI = 592.0, 747.9 μg L−1). In 

Fig. 3, the model represents the probability of an individual acquiring the discrete effect. 

Approximately 77% of embryos exposed to 910 μg L−1 fipronil developed tail curvature 

while the embryos in the control group did not exhibited the deformity. The ANOVA also 

indicated a difference in tail curvature between concentrations (ANOVA, F[9,420] = 41.3618, 

P =< 0.0001). The Dunnett’s test revealed that the LOEC is 200 μg L−1 (P = 0.0031), while 
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the lowest concentration at which curved tails were observed (though statistically equal to 

the control) was 86 μg L−1.

3.2.4. Swimming behavior—Beginning at 86 μg L−1, embryos exposed to fipronil 

exhibited difficulty swimming and were lying on their side (detected by gross observation of 

concentration versus effect, Table 1). At the concentrations of 200 μg L−1 and above, nearly 

all hatched larvae exhibited impaired swimming ability (Table 1). This impaired swimming 

ability was observed in all larvae with tail curvature and in some larvae without the visible 

physical deformity as well. While such fish were not swimming, they were still alive, with 

heartbeats and movement of pectoral fins. Counts of heartbeat and movement of pectoral 

fins were not recorded in this study.

3.2.5. Delayed hatching—Hatching time was delayed by fipronil, as the three top-ranked 

hatching time models all had a parameter for concentration of fipronil, receiving a combined 

AICc weight of 0.999 (Table 2). The top-ranked model included parameters for fipronil 

concentration and sex (Table 2). Females appeared to have slightly longer development time 

(delayed hatching) than males, but the effect was equivocal as the model without a sex 

parameter received some AICc weight (0.26; Table 2). This effect was independent of 

fipronil, as the model with an interaction between sex and concentration did not receive 

strong AICc support (Table 2, Fig. 4), and the confidence interval for the interaction 

parameter overlapped zero (0.0015, 95% CI = −0.0045, 0.0075). Fipronil exposure delayed 

hatching time by ~1 day at 910 μg L−1 in both males and females. An ANOVA (F[9,419] = 

6.1892, P =< 0.0001) followed by a Dunnett’s test revealed that the LOEC is 600 μg L−1 (P 
= 0.0161).

3.3. RNA-seq

The sequencing reaction generated approximately 61 million (M) reads for fipronil exposed 

groups and 58 M reads for the control groups (Table 3). Of them, 83 to 86% of the reads 

were successfully aligned and mapped to the Medaka reference genome sequence, providing 

over 15 M reads per sample for the analysis (Table 3). In total, 36,102 unique genes, 

including protein coding and non-coding RNA, were detected in at least one of the six 

groups. This includes novel genes, which were not predicted in a previous publication 

(Kasahara et al., 2007). With a false discovery rate (FDR) of 0.05, the expression of 174 

genes was altered by the fipronil exposure with 69 and 105 genes significantly up- and 

down-regulated, respectively. This includes genes belonging to various categories, such as 

muscle growth and cardiac function (Supplemental Data Table S3).

The fipronil exposure altered a number of molecular functions as shown in Table 4. This 

includes biological functions involved in homeostasis of nerve cells in the central nervous 

system, such as voltage-gated calcium channel activity, calcium channel activity, and 

calcium ion transmembrane transporter activity. In addition, molecular functions of actin 

binding and cytoskeletal protein binding were also affected by the fipronil exposure (Table 

4). However, alternation of molecular functions that are involved in endocrine system (e.g. 

thyroid hormone signaling pathway) were not detected.
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3.4. RT-qPCR

Pearson’s correlation coefficient test indicated that there was a significant positive 

correlation between the RNA-seq and RT-qPCR results (r = 0.61, n = 15, P = 0.025, Fig. 5).

4. Discussion

The intent of this study was to investigate developmental toxicity, endocrine disruption, and 

sex specific effects of fipronil using endpoints across multiple levels of biological 

organization. Previous studies have applied a similar approach using larval Zebrafish and 

Fathead Minnow (Beggel et al., 2012; Stehr et al., 2006), however to our knowledge this is 

the first study to report global transcriptome changes in embryos exposed to fipronil at such 

an early stage. Results here confirm that previously reported findings on the toxicity of 

fipronil to larval fish can be reproduced in the embryo (Stehr et al., 2006). Although acute 

mortality, endocrine disruption, and a sex-specific response were not observed in this study, 

our results suggest that fipronil exposure during embryonic developmental stages causes 

various adverse effects such as a decrease in hatching success, induction of tail curvature, 

impairment of swimming ability, and a delay in hatching time. The transcriptome analysis 

using RNA-seq indicates that fipronil exposure alters expression of genes which are involved 

in muscle development among other functions. All the results in this study demonstrate that 

fipronil disrupts embryonic development and causes various adverse effects to Medaka at 

high concentrations.

Development of tail curvature was a prominent effect found in this study. The frequency of 

fish exhibiting the deformity increased in a dose-dependent manner, demonstrating that the 

effect is due to fipronil. The tails of embryos in fipronil exposed groups appeared thicker and 

wider compared to the vehicle control group, although this effect was not quantified. 

Although speculative, it could be due to abnormal growth of the muscle, where one lateral 

side of the developing tail grows faster than the other, causing the more densely packed, 

higher growth muscle to contract and lead to the observed tail curvature. For example, Li et 

al. (2009) observed a tail curvature in Zebrafish embryos exposed to arsenic and suggested 

that the effect could be due to abnormal cell proliferation and apoptosis in the tail. Beggel et 

al. (2010) found increased weight and scoliosis in larval Fathead Minnow following fipronil 

exposure. In addition, Stehr et al., 2006 reported that Zebrafish embryos exposed to fipronil 

showed disrupted muscle morphology such as shortened myotomes. Similarly, our previous 

study also reported skeletal deformity in Sacramento Splittail embryos exposed to selenium 

and splittail larvae exposure to esfenvalerate and diazinon (Teh et al., 2002, 2004). As 

suggested by other researchers, tail curvature could be a biomarker for adverse 

developmental effects in fish embryos (Cheng et al., 2000; Li et al., 2009).

The disruption of muscle development due to fipronil exposure is supported by 

transcriptome analysis by RNA-seq, followed by GSEA. Individual genes involved in 

muscle development such as titin, telethonin, and myozenin-2 were altered by fipronil 

exposure (Labeit and Kolmerer, 1995; Valle et al., 1997; Takada et al., 2001). Titin, the 

titanic protein associated with sarcomere assembly, was up-regulated in embryos exposed to 

fipronil. Titin is a massive protein involved in the assembly and function of vertebrate 

striated muscles and plays a central role in muscle contraction and elasticity (Labeit and 
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Kolmerer, 1995). Telethonin, encoded by the titin-cap (TCAP) gene, is involved in the 

assembly of titin and the anchoring of the Z disk of the sarcomere (Mues et al., 1998; Valle 

et al., 1997; Zou et al., 2006). Both titin and telethonin were significantly up-regulated in 

embryos exposed to fipronil compared to the vehicle control. Supporting the result, 

alternation of the molecular functions of actin binding and cytoskeletal protein binding 

(muscle-related processes) were detected by GSEA. This is in accord with the hypothesis 

proposed earlier explaining the tail curvature observed in so many of the larvae exposed to 

the high concentrations of fipronil. Abnormal muscle development was not directly lethal to 

the fish in our experiments, however it can dramatically decrease survival of larval fish as it 

negatively affects their swimming ability (Teh et al., 2004).

The RNA-seq also revealed that the fipronil exposure altered expression of genes belonging 

to other categories, such as cardiac function. One gene for which expression was enhanced 

by fipronil was ANKRD1, a marker for early differentiation of cardiac myogenesis, involved 

in cardiac muscle function (Arimura et al., 2009). ANKRD1 encodes cardiac ankyrin-repeat 

domain containing protein (CARP), a transcription factor which translocates to the nucleus 

in response to mechanical stress (Moulik et al., 2009). Aihara et al. (2000) identified CARP 

as a marker of cardiac hypertrophy. Given the link between cardiac effects and CARP 

reported in the literature, it is possible that cardiac function was compromised by fipronil 

exposure. In this study hypertrophy of cardiac muscle or other dysfunction was not observed 

by gross examination. However, further analyses such as visualization of cardiac muscle by 

whole mount in situ hybridization or development of transgenic fish with GFP expressing in 

the heart may provide more insight into effects of fipronil on cardiac function.

Our results regarding the concentrations which cause impairment of swimming ability are 

congruent with the previous findings reported by Beggel et al. (2010); swimming ability was 

disrupted in larval Fathead Minnow following exposure to fipronil at concentrations of 142 

μg L−1 and higher. Thus, at similar concentrations, fipronil caused similar effects to both 

embryonic and larval fish. Findings in both studies suggest that the fipronil mechanism of 

impairing swimming ability is not species- or life stage-specific.

A delay in hatching, an outcome of fipronil exposure as shown in this study, has several 

potential consequences. The nutritional condition of larvae can be worsened following 

delayed hatching time (Semmens and Swearer, 2011), possibly leading to starvation after 

hatching. This is a possibility due to yolk reserve depletion following prolonged incubation. 

During this extended incubation period, metabolism, growth, and development continue in 

the embryo, all of which are fueled by energy reserves in the yolk sac. When hatching does 

occur, the yolk sac is smaller and the larvae are in poor nutritional condition, and each 

adversely affects the odds of survival (Semmens and Swearer, 2011). The effects of delayed 

hatching are not well known physiologically or ecologically, highlighting the need for more 

studies to better understand the consequences of this effect.

5. Conclusion

In this study, we found that embryos exposed to fipronil at high concentrations exhibited 

impaired embryonic development by causing various adverse effects. Although adverse 
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effects to Medaka embryos was not observed at the current environmentally relevant 

concentrations of fipronil, aquatic organisms may be exposed to high doses of fipronil by 

accidental spills and illegal use. In addition, data from the high dose exposures allows us to 

establish signatures that are related to mechanisms of action of fipronil. This has partially 

been achieved with RNA-seq in this study, however further investigation on mechanisms of 

action will pinpoint how exactly the physiological effects surface. Such results will facilitate 

the hazard identification and will guide regulators as to which concentrations are the 

threshold for acceptable embryo exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Fish embryos exposed to fipronil exhibited impaired embryonic development.

2. The adverse effects include decreased hatching success and tail curvature.

3. Fipronil exposure enhanced expression of genes involved in muscle 

development.
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Figure 1. 
Results and modeling of embryo hatching success following exposure to fipronil (nominal 

concentrations). The solid line is the top-ranked model (Table 2) and the broken lines 

represent the 95% confidence interval of the model. The data and predictions encompass all 

fipronil concentrations to which embryos were exposed. A small random number was added 

to each point to prevent the points from overlapping (i.e., the ‘jitter’ function in R).
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Figure 2. 
Healthy, swimming larva in vehicle control group (Panel A) versus larva with impaired 

swimming ability with tail curvature at 910 μg L−1 fipronil exposure group (Panel B).
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Figure 3. 
Results and modeling of the tail curvature data. The solid line represents the top-ranked 

model and the broken lines are the 95% confidence intervals of the model (Table 2). A small 

random number was added to each point to prevent the points from overlapping (i.e., ‘jitter’ 

function in R).
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Figure 4. 
Results and modeling of the time (in days) until hatching following exposure to fipronil 

(nominal concentrations). The solid lines represent the top-ranked model (Table 2) and the 

broken lines are the 95% confidence intervals of the model. The lower solid line is the mean 

prediction for males and the upper solid line is the mean prediction for females.
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Figure 5. 
Comparison of RNA-seq and RT-qPCR results for the selected genes. The grey line indicates 

a linear regression (slope = 0.7690, intercept = 0.4633, R2 = 0.3633). See Table S1 

(Supplementary Data) for the gene abbreviations.
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Table 2

Relative support for hatching success, tail curvature, and hatching day models. H refers to proportion hatching 

success, C to fipronil concentration, and S to sex of the embryo. TC~ refers to proportion tail curvature, C to 

concentration of fipronil, and S to sex of the embryo. D refers to days to hatching, C to fipronil concentration, 

S to sex of the embryo, and C×S to the interaction between these parameters.

Endpoint Experiment model df ΔAICc AICc wt

H~C 2 0  0.55

Hatching success H~C+S 3 0.4  0.45

H~ (Intercept only) 1 30.4 <0.001

TC~C+S 3 0  0.59

Tail curvature TC~C 2 0.7  0.41

TC~ (Intercept only) 1 148.3 <0.001

D~C+S 4 0  0.48

Hatching day D~C 3 1.2  0.26

D~C+S+C×S 5 1.3  0.25

D~ (Intercept only) 2 52.1 <0.001

df is the degrees of freedom, ΔAICc is the difference in AICc between the model of interest and the top-ranked model, and AICc wt is the 

proportion of AICc weight.

Chemosphere. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wagner et al. Page 25

Ta
b

le
 3

Su
m

m
ar

y 
of

 s
eq

ue
nc

in
g 

re
ad

s 
fo

r 
th

e 
tr

an
sc

ri
pt

om
e 

an
al

ys
is

 b
y 

R
N

A
-s

eq

T
re

at
m

en
t

G
ro

up
N

o.
 o

f 
re

ad
s 

ge
ne

ra
te

d
R

ea
d 

le
ng

th
 a

ft
er

 t
ri

m
m

in
g 

(b
p)

N
o.

 o
f 

re
ad

s 
al

ig
ng

ed
 a

nd
 m

ap
pe

d 
to

 t
he

 r
ef

er
en

ce
 g

en
om

e
P

er
ce

nt
ag

e 
of

 a
lig

ne
d 

an
d 

m
ap

pe
d 

re
ad

s

Fi
pr

on
il

Fi
pr

on
il 

1
2,

02
,1

4,
62

0
41

1,
73

,3
4,

33
7

85
.8

Fi
pr

on
il 

2
2,

04
,4

0,
71

6
41

1,
75

,1
6,

67
1

85
.7

Fi
pr

on
il 

3
2,

04
,8

4,
18

3
41

1,
75

,9
5,

65
1

85
.9

C
on

tr
ol

C
on

tr
ol

 1
2,

01
,6

2,
25

9
41

1,
73

,6
0,

82
0

86
.1

C
on

tr
ol

 2
1,

93
,9

6,
45

8
41

1,
63

,3
1,

32
1

84
.2

C
on

tr
ol

 3
1,

89
,5

6,
56

0
41

1,
58

,8
6,

03
4

83
.8

Chemosphere. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wagner et al. Page 26

Ta
b

le
 4

L
is

t o
f 

m
ol

ec
ul

ar
 f

un
ct

io
ns

 a
lte

re
d 

by
 f

ip
ro

ni
l e

xp
os

ur
e 

fr
om

 g
en

e 
se

t e
nr

ic
hm

en
t a

na
ly

si
s.

 M
ed

ak
a 

ge
ne

s 
di

ff
er

en
tia

lly
 e

xp
re

ss
ed

 b
y 

fi
pr

on
il 

ex
po

su
re

 (
n 

=
 2

,0
21

, F
D

R
 <

 0
.0

75
) 

w
er

e 
us

ed
 f

or
 th

e 
an

al
ys

is
.

G
O

M
F

ID
P

va
lu

e
O

dd
sR

at
io

E
xp

C
ou

nt
C

ou
nt

Si
ze

M
F

Te
rm

G
O

:0
03

04
14

<
 0

.0
00

1
5.

12
1.

86
8

47
Pe

pt
id

as
e 

in
hi

bi
to

r 
ac

tiv
ity

G
O

:0
06

11
34

<
 0

.0
00

1
4.

86
1.

94
8

49
Pe

pt
id

as
e 

re
gu

la
to

r 
ac

tiv
ity

G
O

:0
06

11
35

0.
00

11
4.

97
1.

66
7

42
E

nd
op

ep
tid

as
e 

re
gu

la
to

r 
ac

tiv
ity

G
O

:0
00

48
66

0.
00

11
4.

97
1.

66
7

42
E

nd
op

ep
tid

as
e 

in
hi

bi
to

r 
ac

tiv
ity

G
O

:0
00

48
57

0.
00

23
3.

83
2.

38
8

60
E

nz
ym

e 
in

hi
bi

to
r 

ac
tiv

ity

G
O

:0
00

39
64

0.
00

45
48

.9
0.

12
2

3
R

N
A

-d
ir

ec
te

d 
D

N
A

 p
ol

ym
er

as
e 

ac
tiv

ity

G
O

:0
00

48
67

0.
00

47
7.

03
0.

71
4

18
Se

ri
ne

-t
yp

e 
en

do
pe

pt
id

as
e 

in
hi

bi
to

r 
ac

tiv
ity

G
O

:0
00

52
45

0.
00

59
10

.5
1

0.
4

3
10

V
ol

ta
ge

-g
at

ed
 c

al
ci

um
 c

ha
nn

el
 a

ct
iv

ity

G
O

:0
00

37
79

0.
00

64
2.

59
4.

63
11

11
7

A
ct

in
 b

in
di

ng

G
O

:0
00

48
42

0.
00

72
3.

9
1.

74
6

44
U

bi
qu

iti
n-

pr
ot

ei
n 

tr
an

sf
er

as
e 

ac
tiv

ity

G
O

:0
00

42
22

0.
00

78
3.

06
2.

89
8

73
M

et
al

lo
en

do
pe

pt
id

as
e 

ac
tiv

ity

G
O

:0
00

52
62

0.
01

17
5.

18
0.

91
4

23
C

al
ci

um
 c

ha
nn

el
 a

ct
iv

ity

G
O

:0
00

41
75

0.
01

61
2.

08
6.

7
13

16
9

E
nd

op
ep

tid
as

e 
ac

tiv
ity

G
O

:0
01

67
46

0.
01

87
2.

57
3.

37
8

85
T

ra
ns

fe
ra

se
 a

ct
iv

ity
, t

ra
ns

fe
rr

in
g 

ac
yl

 g
ro

up
s

G
O

:0
00

81
34

0.
01

96
6.

13
0.

59
3

15
T

ra
ns

cr
ip

tio
n 

fa
ct

or
 b

in
di

ng

G
O

:0
00

83
74

0.
02

1
12

.2
2

0.
24

2
6

O
-a

cy
ltr

an
sf

er
as

e 
ac

tiv
ity

G
O

:0
05

26
89

0.
03

22
4.

9
0.

71
3

18
C

ar
bo

xy
lic

 e
st

er
 h

yd
ro

la
se

 a
ct

iv
ity

G
O

:0
00

80
92

0.
03

25
1.

87
7.

37
13

18
6

C
yt

os
ke

le
ta

l p
ro

te
in

 b
in

di
ng

G
O

:0
01

50
85

0.
04

38
3.

27
1.

35
4

34
C

al
ci

um
 io

n 
tr

an
sm

em
br

an
e 

tr
an

sp
or

te
r 

ac
tiv

ity

A
bb

re
vi

at
io

ns
- 

G
O

M
FI

D
: g

en
e 

on
to

lo
gy

 (
G

O
) 

m
ol

ec
ul

ar
 f

un
ct

io
n 

id
en

tif
ic

at
io

n 
nu

m
be

r, 
Pv

al
ue

: s
ta

tis
tic

al
 c

on
fi

de
nc

e 
in

 P
 v

al
ue

 o
bt

ai
ne

d 
by

 h
yp

er
ge

om
et

ri
c 

te
st

, O
dd

sR
at

io
: o

dd
s 

ra
tio

 o
f 

en
ri

ch
m

en
t o

f 
G

O
 I

D
, E

xp
C

ou
nt

: t
he

 e
xp

ec
te

d 
co

un
t o

f 
ge

ne
s 

w
ith

 th
e 

gi
ve

n 
G

O
 te

rm
, C

ou
nt

: t
he

 c
ou

nt
 o

f 
ge

ne
s 

th
at

 a
re

 a
nn

ot
at

ed
 to

 G
O

ID
 in

 th
e 

se
t o

f 
di

ff
er

en
tly

 e
xp

re
ss

ed
 g

en
es

, S
iz

e:
 th

e 
co

un
t o

f 
ge

ne
s 

th
at

 a
re

 
an

no
ta

te
d 

to
 G

O
ID

 in
 th

e 
ba

ck
gr

ou
nd

, M
FT

er
m

: d
es

cr
ip

tio
n 

of
 m

ol
ec

ul
ar

 f
un

ct
io

n 
(M

F)
 f

or
 G

O
ID

.

Chemosphere. Author manuscript; available in PMC 2018 January 01.


	Abstract
	Graphical abstract
	1. Introduction
	2. Materials and methods
	2.1. Fipronil solutions
	2.2. Indirect competitive ELISA
	2.3. Embryo exposures
	2.4. Statistical analysis
	2.5. RNA-seq
	2.6. Reverse transcriptase quantitative PCR (RT-qPCR)

	3. Results
	3.1. Measured fipronil concentrations
	3.2. Embryo exposures
	3.2.1. Mortality
	3.2.2. Hatching success
	3.2.3. Tail curvature
	3.2.4. Swimming behavior
	3.2.5. Delayed hatching

	3.3. RNA-seq
	3.4. RT-qPCR

	4. Discussion
	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4



