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Abstract

RNA sequencing (RNA-seq) is transforming genome biology, enabling comprehensive
transcriptome profiling with unprecendented accuracy and detail. Due to technical limitations of
current high-throughput sequencing platforms, transcript identity, structure and expression level
must be inferred programmatically from partial sequence reads of fragmented gene products. We
evaluated 24 protocol variants of 14 independent computational methods for exon identification,
transcript reconstruction and expression level quantification from RNA-seq data. Our results show
that most algorithms are able to identify discrete transcript components with high success rates,
but that assembly of complete isoform structures poses a major challenge even when all
constituent elements are identified. Expression level estimates also varied widely across methods,
even when based on similar transcript models. Consequently, the complexity of higher eukaryotic
genomes imposes severe limitations in transcript recall and splice product discrimination that are
likely to remain limiting factors for the analysis of current-generation RNA-seq data.

Introduction

High-throughput sequencing instruments necessitate a shotgun approach for all but the
shortest target molecules. Full-length representation of most cellular RNAs from sequencing
data requires computational reconstruction of transcript structures. The majority of such
programs infer transcript models based on the accumulation of read alignments to the
genomel4, although some take the alternative approach of de novo reconstruction, where
contiguous transcript sequences are assembled without use of a reference genome®’.

Here we present a detailed evaluation of computational methods for transcript reconstruction
and quantification from RNA-seq data, in a framework based on the ENCODE Genome
Annotation Assessment Project (EGASP)8. Developers of leading software programs were
invited to participate in a consortium effort, the RNA-seq Genome Annotation Assessment
Project (RGASP), to benchmark methods to predict and quantify expressed transcripts from
RNA-seq data. Results were evaluated from methods based on genome alignments
(AUGUSTUS?, Cufflinks®, Exoneratel®, GSTRUCT, iReckon?, mGene!l, mTim,
NextGeneidl2, SLIDE#, Transomics, Trembly, Tromer13) as well as de novo assembly
(Oases® and Velvetl4). Our results identify aspects of RNA-seq analysis where current
approaches are relatively adept, along with more challenging areas for future improvement.

Results

A total of 24 transcript reconstruction protocols were evaluated, based on alternate
parameter usage of 14 software packages (Supplementary Table 1 and Supplementary Note
1). Programs were run by the original developers, with the exception of Cufflinks, iReckon
and SLIDE. To assess the ability of each method to interpret transcript expression from
RNA-seq data without prior knowledge of gene content, programs were run without genome
annotation, aside from iReckon and SLIDE which require such information. Performance
was benchmarked relative to the subset of annotated exons to which RNA-seq reads mapped
(coverage =1 read pair per 100 bp) and their corresponding transcripts (see Methods).

Identification of annotated features

We first assessed the degree to which gene components reported by each algorithm matched
the reference annotation at the nucleotide level. From the C. elegans data, the methods
AUGUSTUS, mGene and Transomics displayed excellent performance in detecting exonic
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bases, but also reported the expression of significant proportions of genomic sequence
outside of reference exons (Fig. 1 and Supplementary Table 2). Recall (sensitivity) was
generally lower for D. melanogaster, although most protocols exceeded 75% for both model
organisms. Performance decreased for human data, where tradeoffs between precision and
recall were more apparent. SLIDE and iReckon must be provided with gene annotation, and
therefore outperformed most other methods. Even so, iReckon attained low precision at the
nucleotide level, primarily due to the prediction of transcript isoforms with retained introns.
AUGUSTUS, Exonerate, GSTRUCT, NextGeneid, Trembly and Velvet attained both
precision and recall above 60% on the human data. The highest recall for methods without
annotation was observed for Tromer and Cufflinks, albeit at the cost of low precision. These
programs consistently displayed high sensitivity across the three species, but the precision
rates for Tromer in particular indicates a tendency for overprediction. Notably, the
AUGUSTUS de novo protocol, which predicts transcripts using the genomic sequence
alone, reached nearly the same level of sensitivity as the corresponding protocol that also
integrates RNA-seq data, but with significantly lower precision.

Exon identification from RNA-seq data

We assessed the ability of each method to identify individual exons from RNAseq data
relative to the reference annotation (Fig. 2). Accurate determination of transcription start and
end sites is a known shortcoming of RNA-seq, and together with biological variation
impairs the identification of transcript boundaries®1°. To mitigate this we allowed the 5/-
ends of first exons and 3’-ends of terminal exons to differ from the reference coordinates
(see Methods and Supplementary Fig. 2). Without these relaxed criteria, agreement in
transcription start site and polyadenylation site positioning between predicted and annotated
exons was extremely rare (Supplementary Fig. 3). Similarly, prediction accuracy for
translation start and stop sites was low compared to internal exon boundaries, which can be
inferred from spliced alignments (Supplementary Fig. 3 and Supplementary Table 3).
Allowing for variable transcript boundaries led to significant improvements (Table 1,
Supplementary Tables 4 and 5). Although most protocols exhibited the lowest precision for
the human RNA-seq data, for all three species performance approached that of iReckon and
SLIDE, despite the latter two benefiting from the use of high-quality gene annotation.

Coding exons can be identified directly from genomic sequence by the presence of
translation start/stop sites and splice acceptors and donors. Programs such as AUGUSTUS,
Exonerate, mGene, NextGeneid, Tromer and Transomics exploit these features to improve
exon discovery. Of these, AUGUSTUS, mGene and Transomics identified a greater
proportion of annotated coding exons than Exonerate, mTim, NextGeneid and Tromer
(Supplementary Fig. 4). These methods augment data-driven transcript reconstruction with
ab initio gene prediction, leading us to conclude that higher sensitivity measures are due to
more extensive utilization of the underlying genomic sequence, thereby reducing the need
for support from RNA-seq data.

We investigated the impact of sequencing depth on exon detection rates (Fig. 3a). Through
the use of ab initio prediction, AUGUSTUS, mGene and Transomics were able to detect
exons from protein-coding transcripts present at very low abundance. All other methods
required a minimum average read depth to identify exons. Exon detection increased with
sampling coverage at a roughly linear rate until reaching a plateau. One exception was
Tromer, which often reported short exon fragments of 50-75 bp flanking introns without
extending them to full exons (Supplementary Fig. 5). With increasing coverage, Tromer
showed a tendency to predict very long exons spanning multiple annotated features. To a
lesser extent Oases and Velvet also showed reduced performance for high-coverage exons
(Supplementary Fig. 6).
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The ab initio prediction advantage of AUGUSTUS, mGene and Transomics was lost for
non-coding transcripts, which lack the consensus motifs exploited by these methods
(Supplementary Fig. 7). Nevertheless, detection rates were similar to other protocols
(Supplementary Fig. 8). Non-coding RNAs tend to be expressed at lower levels than protein-
coding genes (Supplementary Fig. 9), and were detected with lower sensitivity even when
controlling for differences in sequencing coverage (Fig. 3a and Supplementary Fig. 7).
Exons of pseudogenes and processed transcripts were usually identified with higher
frequency than those from long intergenic non-coding (linc) RNAs (Supplementary Fig. 10).

Several methods were unable to accurately determine the strand orientation for unspliced
transcripts, resulting in low sensitivity for constituent exons (Fig. 2a and Supplementary Fig.
11). As the RNA-seq libraries were produced using standard protocols without strand
specificity, directionality is inferred from sequence features such as translation and splicing
signals. Accordingly, AUGUSTUS, mGene and NextGeneid outperformed other methods in
the assignment of single-exon transcripts to the correct orientation (Fig. 2a and
Supplementary Fig. 2). The overall impact on performance was limited to the proportion of
single-exon transcripts in each species (3% for C. elegans, 14% for D. melanogaster and 7%
for H. sapiens).

Intron detection from RNA-seq data

The relative number and size of introns differ markedly between the three species used for
this study (Supplementary Table 6). Overall AUGUSTUS, mGene and Transomics showed
the highest intron detection rates (Fig. 3b). However, Transomics exhibited a sharper decline
with increased intron length. This trend was apparent for all methods except Tromer, where
a markedly lower detection rate was observed for introns shorter than 300 bp. To better
characterize the differences in intron detection between methods, we classified reported
introns based on overlap with known splice sites (Fig. 4). Most protocols predominantly
detected known introns; several, however, also predicted a substantial number of introns
with one or two novel splice sites. The highest frequencies of novel junctions were predicted
by mGene, Transomics, Tromer, Velvet and the AUGUSTUS protocol that used only
genomic sequence.

To explain this trend, we note that intron detection is highly dependent on the underlying
read alignments, and that some aligners are more conservative than others (Engstrom et al.,
this issue). For example, PALMapper2® was used as the alignment component in the mGene
and mTim protocols. This aligner places more reads across unannotated splice sites than
GEM?1, GSNAP?22 and TopHat23:24; the latter programs form part of the NextGeneid,
GSTRUCT and Cufflinks protocols, respectively.

Assembly of exons into transcript isoforms

We next evaluated the performance of each method in linking exons into defined splice
products. We initially determined the gene loci for which any expression was reported,
regardless of whether a valid transcript was identified, followed by those consistent with at
least one annotated isoform (Supplementary Fig. 12). Most algorithms detect transcription at
over 80% of gene loci where expression is supported by RNA-seq reads. However,
performance decreased substantially when considering genes for which at least one
annotated transcript had been identified. For unguided transcript reconstruction, valid
isoforms were assembled for roughly half of expressed genes on average (H. sapiens mean
41%, max 61%; D. melanogaster mean 55%, max 73%; C. elegans mean 50%, max 73%),
and for those only one isoform was typically identified (Supplementary Fig. 13).
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A significant reduction in sensitivity was also observed from the gene to transcript level,
even when using the flexible evaluation mode for first and terminal exons (Fig. 5a and
Supplementary Table 5). The best performing methods identified at most 56-59% of spliced
protein-coding transcripts from C. elegans (AUGUSTUS, mGene and Transomics), 43%
from D. melanogaster (AUGUSTUS) and merely 21% from H. sapiens (Trembly).
Sensitivity increased by roughly 10% when partial isoform matches were considered, as did
precision when including partial predictions consistent with annotated isoforms (Fig. 5a).

Greater sequencing depth improved transcript assembly for D. melanogaster and C. elegans
(Supplementary Fig. 14a), whereas in H. sapiens transcript detection remained low despite
sequencing coverage in excess of 4,000 read pairs/kb in exonic regions. Generally, at least
one consistent isoform was identified for highly expressed genes: >50% in D. melanogaster
and C. elegans, and >35% in H. sapiens (Supplementary Fig. 14b). Detection rates were
even lower for non-coding RNAs (Supplementary Fig. 15). Pseudogenes were reported with
similar frequency to protein-coding genes by AUGUSTUS, mGene, NextGeneid and
Transomics, as pseudogenes retain partially intact coding sequences that can be identified by
these methods (Supplementary Fig. 16).

The dramatic differences between species is further due to the tendency of methods to assign
one splice product per gene (Supplementary Table 1). Whereas it is rare for genes in C.
elegansand D. melanogaster to give rise to more than one or two transcript isoforms, human
genes are annotated with an average of three to four, and it is unclear how many are
simultaneously expressed. Assigning a single transcript model per gene will therefore
impede the detection of multiple isoforms expressed in a given sample.

To identify the limiting factors in this process, for each method we calculated the number of
known transcripts for which 1) all exons were identified, 2) exactly one exon was missing,
3) more than one exon was missing and 4) no exons were detected at all (Fig. 5b). The
results clearly show that missing exons severely compromise transcript identification. For a
significant fraction of transcripts not all exons are identified, ranging from 30% in C.
elegans to greater than 60% in H. sapiens. Interestingly, while Trembly did not perform as
well as AUGUSTUS, mGene and Transomics at the exon level, this method reported the
highest number of transcripts for which all exons were represented from H. sapiens data. In
contrast, AUGUSTUS, mGene and Transomics detected at least one exon for most
transcripts. The remaining methods failed to identify any exons for nearly 20% of all
transcripts expressed in the RNA-seq data. SLIDE exhibited the same trend despite the
provision of annotated exon coordinates.

We then examined the topology of transcript structures to determine how well each method
was able to link exons into complete isoforms. Even in cases where all exons of an
annotated transcript had been identified, full isoforms were often not assembled
(Supplementary Figure 16). For C. elegansand D. melanogaster most methods were able to
reconstruct 60% of transcripts from the RNA-seq data. However, from the H. sapiens data
less than 40% of known transcripts were assembled. Tromer stands out as an exception: the
program identified all exons for relatively few genes, but once accounted for these were
frequently linked into annotated transcript structures. Further inspection showed that these
tended to be short isoforms comprising two to three exons on average, and thus represent a
more tractable subset of the transcriptome.

Provision of transcript start and end sites gave iReckon an advantage for the more complex
human transcriptome, as evidenced by increased accuracy in assembling partial transcripts.
In contrast, SLIDE consults exon coordinates but ignores their connectivity, performing at a
level similar to methods without any prior transcript-level information. Reported transcript
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structures often differed substantially (Fig. 6a), and few were consistent across all methods
(Supplementary Fig. 17). Pairwise agreement (Fig. 6b) was markedly higher for the model
organisms than for human (median 25%), reflecting the number of partial isoforms
identified as a function of transcriptome complexity.

Quantification of expression levels from RNA-seq data

A common feature of transcript reconstruction software is the estimation of expression
levels from transcribed genes. These are given as digital read counts normalized by
transcript length and sequencing depth (reads per kilobase of exon model per million
mapped reads, RPKM)2>, RPKM values were reported at the transcript level from a subset
of methods. A range of expression level distributions is evident (Supplementary Fig. 17), but
generally show strong agreement between AUGUSTUS, iReckon, mGene and Trembly for
all three RNA-seq data sets (Supplementary Fig. 18-21). One source of variation arises from
gene loci where divergent or incomplete transcript models have been computed (Fig. 5a,
Supplementary Figs. 22 and 23). However, expression level estimates can vary considerably
even where concordant transcript structures are reported (Supplementary Fig. 17). Such
differences were also apparent after scaling the RPKM distributions to equalize median
expression values.

To establish independent expression level quantification we assayed a set of human genes
using the NanoString nCounter amplification-free detection system26 (Supplementary Table
7-9). Correlation between NanoString counts and RNA-seq RPKMs ranged from 0.35 for
Transomics to 0.68 for Cufflinks (Fig. 6¢ and Supplementary Fig. 25). Many methods failed
to report numerous targeted exons or junctions that were expressed according to NanoString
counts. Read support at those loci was typically sparse, with 19 probes having no
corresponding alignments from the RNA-seq data. These were, however, represented by low
NanoString counts, indicating that the nCounter assay exhibits higher sensitivity for low-
abundance transcripts than RNA-seq (Supplementary Fig. 25). For 10 of the unsupported
NanosString probes, consistent isoforms were still reported by either AUGUSTUS, iReckon,
mGene, SLIDE or Transomics. Thus, although the expression levels of these genes reflect
the lower limits of detection for both technologies, sequencing reads dispersed over the gene
body can allow for adequate transcript identification where ab initio methods or gene
annotation were applied.

In general, all methods displayed higher identification rates for exons and junctions with
higher NanoString counts, and reliable detection from RNA-seq data is dependent on read
depth (Supplementary Figs. 26a and b). Nonetheless, each failed to report a subset of exons
and junctions despite the availability of adequate RNA-seq alignments (Supplementary Fig.
26b). Comparing NanoString counts with RPKM values of the predominant isoform
reported for each gene (irrespective of whether the targeted exon or junction was identified)
improved correlation for most methods, and significantly for mTim and Transomics (Fig. 6¢
and Supplementary Fig. 28).

Discussion

Technical limitations imposed by short-read sequencing lead to a number of computational
challenges in transcript reconstruction and quantification. We carried out a communal effort
to evaluate software tools from 14 developer teams, in realistic RNA-seq applications for
species with high-quality reference genomes. Our assessments spanned a range of
increasingly stringent metrics, from nucleotide-level correspondence with annotated
transcript components to the assembly of full-length, multi-exonic splice variants.
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AUGUSTUS, mGene and Transomics performed well at nucleotide- and exon-level
detection for protein-coding genes. These methods predict transcript features from
translation and splicing signals in the genomic sequence, reporting the model best supported
by RNA-seq data. Combining ab initio prediction with experimental data can thus be more
effective detecting genes expressed at low abundance, or from samples with low sequencing
coverage. Even so, the benefits of this approach were most evident for C. elegans and
lessened with increased transcriptome complexity.

The more challenging task of isoform reconstruction was reflected by lower performance in
transcript-level evaluations. These results underscore the difficulty of transcript assembly,
which relies on two outcomes: all exons comprising a given transcript must be identified,
then connected to form the correct isoform structure. For most transcripts, automated
methods failed to identify all constituent exons, and in cases where all exons were reported
the protocols tested often failed to assemble them into complete isoforms. Whereas methods
using ab initio prediction retain an advantage in detecting individual exons, others
performed better at linking them together. For example, Trembly detected fewer exons than
AUGUSTUS, mGene and Transomics, but identified the greatest number of valid transcript
isoforms in H. sapiens. GSTRUCT did not reach the same detection rate as Trembly, but
featured the highest overall precision of all methods. In H. sapiensand C. elegans, 57% and
60% of transcripts reported by GSTRUCT matched known isoforms and 76% in D.
melanogaster.

AUGUSTUS, GSTRUCT, mGene, Transomics and Trembly thus outperformed other
methods evaluated here, but no single protocol excelled at all metrics. Comparing the
performance of AUGUSTUS with and without RNA-seq data as input revealed that using
experimental evidence only slightly improved exon-level detection, but increased transcript-
level precision. Transomics featured enhanced precision for high-abundance transcripts, but
expression level differences had little impact on detection sensitivity. Precision was a
consistent strength of GSTRUCT, whereas mGene exhibited diminished performance on
human RNA-seq data underscoring that choice of method can depend on the organism under
study.

Accurate identification of single-exon transcripts proved difficult for many of the methods
tested. For spliced transcripts, the correct strand can typically be inferred from the genomic
sequence at exon-intron boundaries. In the absence of this information single-exon
transcripts were detected at much lower frequency. Antisense non-coding RNAs were
another problematic class of transcripts missed by the methods evaluated. In these cases the
detection of discrete transcription products may benefit from library construction methods
that preserve strand orientation, such that exon coverage and read depth better reflect the
expression of contiguous RNAs.

Significant variation was observed in the range of expression level estimates reported for
transcripts arising from the same gene loci. This was exacerbated by non-uniform exon
detection and linkage between methods, but was also apparent when similar or identical
transcript structures were reported. Thus, it may be unreliable to directly compare gene-
based RPKM values from sample data processed independently with different software
tools. RNA-seq data to be compared from disparate sources should be treated in an identical
manner from the initial processing steps. Where this is not possible, care should be taken to
ensure that similar gene models have been identified, and RPKM distributions should be
inspected before applying expression level thresholds in downstream analyses.
Alternatively, uniform quantification of predicted transcripts can be performed with
dedicated software2’-29,
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The potential for non-coding RNA discovery and characterization is a distinct advantage of
RNA-seq over gene-based expression profiling. However this remains a challenging area for
automated analysis methods. Performance is often impaired by lower expression levels of
non-coding transcripts relative to many protein-coding genes, coupled with the inherent lack
of translational features at the sequence level. The presence of open reading frames and
translation start/stop signals allowed some methods to identify protein-coding transcripts
even at very low expression levels, whereas the detection of non-coding RNAs at high
confidence required much greater read depth. Sequencing coverage thus appears to be
crucial for accurate non-coding RNA analysis.

Two of the methods evaluated here, Velvet and Oases, carry out direct transcriptome
assembly rather than aligning sequencing reads to a reference genome. Velvet was originally
developed for genome assembly from short read data. Oases is an adaption of that software,
taking into account the unique challenges posed by transcriptome assembly from RNA-seq
data, such as uneven exon representation due to amplification bias or tandem expression of
multiple transcript isoforms. As expected, both methods attained similar performance at the
nucleotide and exon levels. At the transcript level, however, Oases achieved higher detection
rates for the more complex transcriptomes of D. melanogaster and H. sapiens. Although
performance is generally enhanced by genome alignment strategies, studies based on
organisms with a genome build of lower quality may benefit from a combined approach
exploiting both genome alignments and de novo strategies.

The methods evaluated here can be applied to a range of analysis strategies, largely
dependant on the state of the reference genome assembly and associated gene annotation for
the target species (see Supplementary Table 10 and Supplementary Note 1). To improve the
accuracy of existing annotation using RNA-seq data, both Cufflinks and iReckon consult
known gene structures during the transcript assembly process and may be useful in refining
the coordinates of exon and transcript boundaries. Where a finished genome and high-
quality annotation are available, Cufflinks and rQuant (part of the mGene protocol) can be
applied solely for transcript quantification, which can be further improved by correcting for
fragment bias. Gene prediction algorithms such as AUGUSTUS and mGene can be used to
automate the annotation of novel genomes, whereas RNA-seq experiments based on partial
or low-quality genome builds can be approached with a de novo assembler like Oases. This
last application is expected to receive increasingly wider attention with the continued
sequencing of new genomes.

RNA-seq offers the potential to refine existing gene annotation through the discovery of
novel exons and junction sites. However, unannotated transcript isoforms assembled from
RNA-seq data should be interpreted with care, and those critical to an experimental study
subjected to independent validation. The expression of multiple transcript isoforms and
novel splice variants presents a major obstacle to accurate transcriptome reconstruction.
Both exon identification and novel RNA discovery can improve with increased read depth,
but the benefits of additional sampling to transcript assembly are inherently limited by the
library construction requirements of current high-throughput sequencing platforms.
Ultimately, the evolution of RNA-seq will move toward single-pass determination of intact
transcripts. Third-generation instruments will realize that potential and inspire new
computing approaches to meet the next wave of innovation in transcriptome analysis.

RNA-seq data

RNA-seq data were generated as part of the ENCODE3? and modENCODE projects3?,
along with a third data set of compatible sequencing format and read depth, and represent
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three widely-studied species: Homo sapiens (liver hepatocellular carcinoma cell line
HepG2)32, Drosophila melanogaster (L3 stage larvae)33, and Caenorhabditis elegans (L3
stage larvae)34. These were chosen to reflect realistic examples of varying transcriptome
complexity, and where high-quality annotated reference genomes are available. Libraries
were prepared for the lllumina platform and sequenced in 76 nt paired-end format to obtain
approximately 100 million read pairs per sample.

H. sapiens RNA-seq data correspond to ENCODE32 HepG2 whole cell long polyA+ RNA
CALTECH replicate 2, available from http://www.encodeproject.org. The D. melanogaster
data set comprised a total of five sequencing runs from the modENCODE project33 for three
L3 stage larval samples, and can be obtained from the Sequence Read Archive (http://
www.ncbi.nlm.nih.gov/sra) under accession numbers SRR023546, SRR023608,
SRR023505, SRR027108 and SRR026433. The C. elegans RNA-seq data have previously
been described34 and are available under accesssion SRR065719. All of the data used in this
study have been consolidated as a single experimental record in the ArrayExpress repository
(http://www.ebi.ac.uk/arrayexpress) under accession E-MTAB-1730.

Reference gene annotation

As not all genes are expressed in the samples used in the study, benchmarking methods
against the entire set of annotated genes would underestimate transcript detection sensitivity.
Therefore, we processed the genome annotations (H. sapiens: GENCODESC v15 (Ensembl
release 70), D. melanogaster: FB2013 01, C. elegans: WS200) to include only exons and
transcripts with sufficient support in the RNA-seq data. Reads were mapped to the reference
genomes using STAR version 2.2.0c, an independent RNA-seq aligner that is not a
component in any of the evaluated transcript assembly methods35. To improve spliced
alignment, STAR was provided with exon junction coordinates from the reference
annotations. Default alignment parameters were used for the human data. For D.
melanogaster and C. elegans, the intron size limit was reduced to 100,000 and 15,000
respectively (using options --alignintronMax and -- alignMatesGapMax). For each
annotated exon, the read coverage (number of uniquely mapped read pairs divided by exon
length) was computed and exons with a value below 0.01 fragments per bp were excluded
from further analysis. Only transcripts for which all exons satisfied this criterion were
included in transcript-level assessments. The threshold was determined by examining the
exonic read coverage distribution, which consisted of three main features: a small peak at
the low end (coverage < 0.01 fragments per bp), a dominant peak (coverage > 0.1) and a
shoulder in between. Inspection of read alignments suggested that spurious reads are
overrepresented in the minor peak, whereas the shoulder region comprises low-abundance
transcripts and was therefore included in the analysis. To rule out potential bias imparted by
the choice of alignment program, sensitivity and precision metrics were calculated for
expressed genes based on several different spliced aligners (GSNAP, STAR and TopHat2)
with no significant change to the results (Supplementary Fig. 28-30).

Transcript prediction and assembly

Developer teams were provided with RNA-seq data and reference genome sequences for
each species. To avoid potential biases, teams were not informed of the final evaluation
criteria, and were not provided with gene annotation unless otherwise noted (e.g. iReckon,
SLIDE). Developers providing transcript models for evaluation could not access
submissions from other teams, and were prohibited from participating in the analysis phase
as part of the study design. Details of transcript reconstruction protocols are provided in
Supplementary Note 1.
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Data processing for Cufflinks, iReckon and SLIDE

RNA-seq reads were aligned with TopHat version 2.0.3 using parameters suited to each
species. The genomes of D. melanogaster and C. elegans contain a high percentage of small
introns (Supplementary Table 2); examining their size distributions led us to set the
parameters -i, --min-coverage-intron and --min-segment-intron to 30 for C. elegans, 40 for
D. melanogaster and 50 for H. sapiens.

Cufflinks was run with default settings except for the parameter --min-intron-length which
was set to 30 for C. elegans, 40 for D. melanogaster and 50 for H. sapiens, consistent with
the TopHat alignments. To maintain the greatest compatibility with submitted results that
were computed without annotation, iReckon was run with the minimum annotation
requirements, i.e. start and end sites of all annotated transcripts (not filtered by read
coverage). SLIDE was run in discovery mode and provided with the full unfiltered
annotation for each genome.

Evaluation of prediction sets

Feature predictions were evaluated against the filtered reference annotation sets at four
structural levels: nucleotide, exon, transcript and gene. The nucleotide-level metrics measure
the ability of methods to identify exonic regions, ignoring the strand and exact boundaries of
features. Nucleotide-level precision was computed as the number of genomic base pairs
within both annotated and predicted exons, divided by the number of genomic base pairs
within predicted exons. Similarly, nucleotide recall was computed as the number of genomic
base pairs shared between annotated and predicted exons, divided by the number of genomic
base pairs within annotated exons.

The exon-level metrics measure the ability of the different algorithms to identify the correct
strand and boundaries of exons. Precision was calculated as the percentage of reported exons
with an annotated counterpart, and recall denotes the percentage of annotated exons that
were correctly assembled. Annotated exons were classified as first, internal, terminal and
those comprising unspliced transcripts (single exons). Unless stated otherwise, a flexible
evaluation mode was employed for first, terminal and single exons. Specifically, first and
terminal exons were required to have correctly predicted internal borders only, and exons
constituting unspliced transcripts were scored as correct if covered to at least 60% by a
predicted transcript. Exons shared between different transcript isoforms were counted once.
For comparison, certain analyses were also carried out using a fixed evaluation mode, where
annotated and predicted exons were required to match exactly.

Transcript-level precision was computed as the percentage of reported spliced transcripts
matching an annotated transcript, and recall as the percentage of annotated spliced
transcripts with a counterpart in the transcript reconstruction output. Consistent with the
flexible evaluation mode for exons (see above), transcript start and end sites were allowed to
differ between reference and prediction, but splice sites were required to match exactly.
Genes were scored as correctly predicted if at least one annotated transcript isoform in a
given gene locus was correct. To estimate the degree of similarity between transcript
predictions, a pairwise agreement score was calculated. The score a[i,j] denotes the fraction
of transcription products predicted by protocol i consistent with those from protocol j.
Methods were ordered by hierarchical clustering based on the distance metric 1 — (a[i,j] +
afj.i) /2.

Evaluation of transcript quantification

To compare transcript quantification results between methods, we identified for each
annotated gene the corresponding predominant transcript reported; this was defined as the
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transcript with the highest reported RPKM value among those isoforms intersecting
annotated exons of the gene. A subset of human transcripts was quantified independently by
NanoString assays. Genes of at least 1 kb in length, for which annotated exon-intron
structures have been manually curated, and having at least two transcripts satisfying these
criteria were selected. A total of 109 genes were targeted by 141 distinct probes, designed
against specific exons or splice junctions.

NanoString counts were compared to the highest RPKM value reported for transcript
isoforms consistent with the probe design (correlation r¢) or for any isoform from the locus
(correlation ry). Predicted transcripts were required to contain the exon or junction targeted
by the NanoString probe. Where multiple such transcripts were reported for the same gene,
the highest RPKM value was used. Where no such transcript was reported, an RPKM of
zero was assigned. Percentages reflect the probes for which transcripts satisfying these
criteria were reported. Pearson’s r was calculated based on the log-transformed NanoString
counts and RNA-seq RPKM values. Expression values were incremented by 1 prior to
transformation to avoid infinite numbers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Summary of nucleotide- and exon-level performance for the methods evaluated.

(a) Performance at detecting exonic nucleotides. Recall (green) indicates the proportion of
known exon sequence in each genome covered by assembled transcripts, and precision (red)
the proportion of reported expressed sequence confined to known exons. (b) Performance at
detecting individual exons, shown as the percentage of reference exons with a matching
feature in the submission (recall, green), and the proportion of reported exons that agree
with annotation (precision, red). Programs run with gene annotation are grouped separately.
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Figure 2. Influence of exon rank and sequencing cover age on detection performance.

(a) Detection sensitivity for annotated human exons classified as first, internal, terminal or
single (i.e., those comprising an entire transcript). Exon boundaries were required to be
predicted exactly as annotated (left, center) or by employing relaxed criteria for exons at
transcript boundaries (right). See Supplementary Figure 3 for a corresponding analysis for
the model organisms. (b) Sensitivity for detection of annotated exons stratified by read

depth.

Nat Methods. Author manuscript; available in PMC 2014 June 01.

I
100



s1duosnuBlA Joyny sispund OINd edoin3 g

s1dLIOSNUBIA JouIny sispund OINd 8doin3 ¢

Steijger et al.

Sensitivity

o

Sensitivity

100

0 20 40 60 80

40 60 80 100

20

H. sapiens D. melanogaster

C. elegans

<243

T T T T T 1 T T T T 17 171 T

Al X X X X ¥ X O X O 0O O © X Xx 0 O

BvegEIi fIVEEREr V9
2

Y vOYVN vvyveya

Intron length

Figure 3. Intron detection performance.

<54 —

<68 —
<154 -

<332

<661 -

=661 -

Page 15

AUGUSTUS all
AUGUSTUS high
AUGUSTUS no RNA
Cufflinks

Exonerate all
Exonerate high
GSTRUCT

mGene

mGene graph

mTim

NextGeneid
NextGeneidAS
NextGeneidAS ab-initio
Oases

Transomics all
Transomics high
Trembly all

Trembly high

Tromer

Velvet

Velvet + AUGUSTUS

iReckon full
iReckon ends
SLIDE all
SLIDE high

(a) Annotated introns were binned on length and sensitivity was calculated separately for
each bin. (b) Reported introns were classified by overlap with splice sites annotated in the

reference gene sets.
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Figure 4. Transcript assembly performance.
(a) Reference transcripts with a matching submission entry (transcript-level recall, green)
and reported transcripts that match the reference (transcript-level precision, red). (b)
Transcripts for which various subsets of constituent exons have been reported. (c)
Percentage of transcripts, for which all exons have been identified, that were correctly
assembled to a full-length annotated splice variant.
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Figure 5. Transcript assembly performance.
(a) Reference transcripts with a matching submission entry (transcript-level sensitivity, blue)
and reported transcripts that match the reference (transcript-level precision, orange). (b)

Transcripts for which various subsets of constituent exons have been reported.
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Figure 6. Examples of transcript callsand expression level estimates.

(a)The upper tracks show RNA-seq read coverage (from STAR alignments; see Methods)
and annotated genes. Exon predictions from the 10 methods that quantified transcripts are
illustrated below the annotated gene by colored boxes. Exons predicted to belong to the
same transcript isoform are connected. Original and median-scaled RPKM values are
presented to the right and left, respectively, of the transcript models. For the gene RPF2, all
methods reported different isoforms and expression levels. Where multiple overlapping
isoforms were reported, that with the higher RPKM was chosen for visualization, and
spliced isoforms were prioritized over unspliced ones. The noncoding RNA U6 is not
expressed. (b) Heat maps illustrate pairwise agreement between reported transcript isoforms
for H. spaiens (left), D. melanogaster (center) and C. elegans (right). (c) Correlation
between reported RPKM values and NanoString counts (Pearson r of log-transformed
values). NanoString counts were compared to the highest RPKM value reported for
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transcript isoforms consistent with the probe design (correlation r) or for any isoform from
the locus (correlation r¢).
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