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Abstract
Satellite observations show that the surface urban heat island intensity (SUHII) has been increasing
over the last two decades. This is often accompanied by an increased urban-rural contrast of
vegetation greenness. However, the contribution of uneven vegetation trends in urban and rural
areas to the trend of SUHII is unclear, due to the confounding effects of climate change and
changes in man-made infrastructures and anthropogenic heat sources. Here we use a data-model
fusion approach to quantify such contributions during the peak growing season. We show that the
LAIdif (the urban-rural difference of leaf area index) is increasing (P < 0.05) in 189 of the selected
228 global megacities. The increasing trend of LAIdif from 2000 to 2019 accounts for about one
quarter of the trend in satellite-derived SUHII, and the impact is particularly evident in places with
rapid urbanization and rural cropland intensification. The marginal sensitivity of SUHII to LAIdif
is the strongest in hot-humid megacities surrounded by croplands and in hot-dry megacities
surrounded by mixed woody and herbaceous vegetation. Our study highlights the role of
long-term vegetation trends in modulating the trends of urban-rural temperature differences.

1. Introduction

Today more than 55% of the world’s population lives
in urban areas and this number will reach 68% by
2050 (United Nations 2019). Urbanization is one of
the most visible anthropogenic land use/land cover
changes (Weng et al 2004, Peng et al 2012). In addi-
tion to producing anthropogenic heat fluxes, urbaniz-
ation alters many other aspects of the surface energy
budget, resulting in higher surface and near-surface
temperatures in cities than their rural surroundings, a
phenomenon known as the urban heat island (UHI)
effect (Zhao et al 2014, Oke et al 2017, Manoli et al
2019, Li et al 2019a). With global warming (Hansen
et al 2010), the combined effects of UHIs and heat-
waves will pose significant threats to public health
(Kovats and Hajat 2008, Li and Bou-Zeid 2013, Mora
et al 2017, Liao et al 2018a, 2021) and increase the

global cooling power consumption (Li et al 2019b).
Previous studies suggest that the spatial variations of
the surface UHI intensity (SUHII), which is defined
as the difference of land surface temperature (LST)
between urban and rural areas, are strongly con-
trolled by background climates andmainly follow the
precipitation gradient, but the spatial variations of
SUHII with biome types remain elusive (Kalnay and
Cai 2003, Zhao et al 2014, Zhou et al 2016, Manoli
et al 2019, Li et al 2019a).

Vegetation is a key control of land-atmosphere
interactions. Changes in vegetation characteristics
affect the surface energy budget through altering
radiation, convection, evapotranspiration (ET), and
heat storage (Sellers et al 1997, Peng et al 2012,
Li et al 2014, Zhao et al 2014, Chen et al 2020a,
Wang et al 2020a). Contrast in vegetation green-
ness between urban and rural areas is found to be
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significantly correlated with the SUHII (Weng et al
2004, Oleson 2012, Peng et al 2012, Chakraborty
and Lee 2019). Owing to land-use management and
climate change, trends in vegetation greenness over
urban and rural areas are often different, which can
either enhance or reduce the urban-rural vegetation
contrast, thereby altering the SUHII (Oleson 2012,
Li et al 2016). Satellite observations show widespread
enhancements in leaf area index (LAI) surround-
ing built-up areas (Chen et al 2019). Meanwhile,
many urban areas become comparably less green,
or exhibit declines in vegetation greenness, and are
expected to becomemore impervious (Seto et al 2012,
Schneider et al 2015). Yao et al suggest that the global
rural greening trend correlates with the increasing
trend of satellite-derived SUHII (2019). However, it
is unclear the extent to which the SUHII trend is
directly caused by the biophysical effects of uneven
vegetation changes between urban and rural areas
(Chakraborty and Lee 2019), which is confounded
by the simultaneous changes in climatic conditions,
anthropogenic heat fluxes, andman-made infrastruc-
tures (Kalnay and Cai 2003, Zhao et al 2014, Li
et al 2019a).

Herewe aim to quantify the contribution of veget-
ation’s long-term trend to the SUHII trend (trends are
henceforth indicated by∆). We study LST instead of
near-surface air temperatures because LST is directly
constrained by the surface energy balance equation
(Chen et al 2020a) and its apparent change is observ-
able from satellites. It has been reported that the
SUHII is several folds stronger than the intensity
of near-surface air UHI, making it easier to detect
the vegetation biophysical effects (Venter et al 2021).
We use a process-based attribution framework (the
two-resistance mechanism method, TRM) to isol-
ate the effect of LAIdif trend on the SUHII trend
(Rigden and Li 2017, Liao et al 2018b, 2021, Li
and Wang 2019, Wang et al 2019, 2020b, Li et al
2019a, Moon et al 2020, Chen et al 2020a, 2020b,
Wang and Li 2021) (see section 2 and supplement-
ary information (available online at stacks.iop.org/
ERL/16/124071/mmedia)). This framework is based
on the surface energy balance equation in which
changes in vegetation greenness primarily alter the
albedo for shortwave radiation, the aerodynamic res-
istance for scalar transfers, the surface resistance for
water vapor transfer, the ground heat flux, and the
emissivity (Chen et al 2020a). Acknowledging that
the mechanism causing SUHII differ between day-
time and nighttime (Peng et al 2012, Yang et al
2021) as a starting point we analyze the impacts
of vegetation dynamics on the trends of daily aver-
age SUHII. We focus on the peak growing seasons,
the three consecutive months with the largest mean
LAI, during which the vegetation biophysical effects
on LST are the strongest (Imhoff et al 2010, Peng
et al 2012).

2. Methods

2.1. Land cover and definition of urban and rural
patches
Land cover information is provided by the Collection
6 Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover product (MCD12C1, yearly,
0.05◦× 0.05◦) (Friedl and Sulla-Menashe 2015).
We use the International Geosphere-Biosphere Pro-
gramme (IGBP) classification layer to define contigu-
ous urban and rural areas (figure S1). First, a pixel
is termed urban if it is classified as ‘urban and built-
up lands’ by IGBP in any year between 2001 to 2018.
This allows us to capture a maximum possible urban
extent in the presence of urbanization, and is equi-
valent to assuming that a pixel can be transformed
into an urban area and that the process is irrevers-
ible (Schneider 2012). A fixed urban extent alsomakes
the trend of urban LAI unambiguous since allowing
the urban extent to vary might cause an LAI trend
even if the LAI of each pixel does not change. This
implemented, a fixed urban extent effectively captures
the underlying vegetation changes due to urban foot-
print changes (Yang et al 2019). Second, we label all
adjacent urban pixels (i.e. eight-neighbours) as an
urban patch. Each urban patch must have at least
16 pixels, which is about 493 km2 at the equator.
Third, in order to match the resolution of the reana-
lysis data (i.e. the enhanced land component of the
European Centre for Medium-Range Weather Fore-
casts Reanalysis, or ERA5-Land), we aggregate the
pixels within each urban patch from 0.05◦× 0.05◦ to
0.1◦× 0.1◦ resolution. During the aggregation pro-
cess, a coarse-resolution pixel is marked as urban
only if at least two of the four fine-resolution pixels
are classified as urban (Schneider et al 2009). We
repeat the second step to further merge the adjacent
urban patches newly produced by the aggregation.
Fourth, after identifying the urban patch, we define
the rural patch as a surrounding 0.1◦-buffer zone
(∼11 km), which allows the urban and rural areas to
be approximately equal. Rural patches include only
land pixels. Finally, we term a pair of urban and
rural patches as amegacity.We analyze 228megacities
worldwide after excluding five megacities where the
TRM framework fails due to negative aerodynamic
or surface resistances (physically meaningless) (Liao
et al 2018b). They are Cape Town (South Africa),
Samarkand (Uzbekistan), Lahore (Pakistan), Almaty
(Kazakhstan), and Dalian (China). Due to the spatial
aggregation in our pre-processing of the land cover
data, some megacities consist of multiple geometric-
ally contiguous municipal cities, such as megacities
of the Rhine-Ruhr (Germany), New York and Phil-
adelphia (USA), the Greater Los Angeles (USA), the
Pearl River Delta (China), the Yangtze River Delta
(China), and the Tokyo Capital Region (Japan), etc.
We note that the uncertainties in the MODIS land
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cover maps may propagate to the identification of
urban and rural areas (Friedl et al 2002). Since our
study focusesmore on LST and LAI contrasts between
urban and rural areas and their associated changes at
the patch scale the accuracy of urban patch identific-
ation should be sufficient for this study.

2.2. MODIS LAI and LST
MODIS Collection 6 LAI products (MOD15A2H and
MYD15A2H) are used in this study (Myneni et al
2015a, 2015b), which are 500 m, eight day compos-
ites. Ground data have been used to verify the qual-
ity of the LAI products (Yan et al 2016a, 2016b),
and these products have been widely used in pre-
vious work (Chen et al 2019, Piao et al 2020). In
this study, the LAI products are filtered with qual-
ity flags and composited to monthly averages using
the number of days as the weight of each original
eight day composite. We exclude pixels contamin-
ated by clouds, aerosols, shadows, snow, and ice, and
fill the gaps using the climatological mean monthly
LAI during the study period (Samanta et al 2011,
Chen et al 2019). The monthly LAI is further aggreg-
ated to 0.1◦× 0.1◦ and averaged to obtain the peak
growing season mean. The peak growing season is
defined as the three consecutive months with the
highest mean LAI for each three month moving win-
dow (figure S2(a)). Then we calculate the average LAI
for urban and rural patches (figure S3), as well as their
difference (LAIdif), for each megacity. Finally, LAI
trends (∆LAI) are estimated using theMann-Kendall
test.

The MODIS LST products (i.e. MOD11C3 and
MYD11C3) are used to compute SUHII for each
megacity (0.05◦× 0.05◦, monthly composite, 2000–
2019) (Wan et al 2015a, 2015b). We average the day-
time and the nighttime LSTs, and use the average as a
proxy for daily mean LST. According to the product
user guide, the following quality filtering is applied:
‘Mandatory QA flags’, ‘Emissivity Error flag’ and ‘LST
Error flag’ have to be ‘00’ or ‘01’; ‘Data quality flag’
has to be ‘0’. All MODIS LST data are converted to
the same spatial and temporal resolution as the LAI
data. We note that the MODIS SUHII is not used to
calculate the impact of vegetation trend on the SUHII
trend, which is diagnosed by the attribution method
in section 2.5. The trend in MODIS SUHII is a res-
ult of vegetation biophysical effects, human-induced
effects, and large-scale atmospheric changes (Zhou
et al 2019).

2.3. ERA5 reanalysis
We use monthly averaged variables from ERA5-Land
reanalysis (0.1◦× 0.1◦, diel average, 2000–2019) as
inputs for the attribution framework described in
section 2.5, including albedo (α), surface solar radi-
ation downwards (Sin), surface thermal radiation
downloads (Lin), surface net thermal radiation (Lnet),

surface latent heat flux (LE), surface sensible heat
flux (H), and surface pressure (Ps) (Muñoz-Sabater
2019). Further, aridity index is calculated as the ratio
of annual precipitation (Pr) to potential evapotran-
spiration (PET). ERA5-Land is a replay of the land
component of the ERA5 reanalysis with an improved
spatial resolution, including an elevation correction
for the thermodynamic near-surface state (Muñoz-
Sabater et al 2021).

In addition, we use monthly averaged air tem-
perature and specific humidity at the lowest pressure
level from ERA5 reanalysis (0.25◦× 0.25◦, diel aver-
age, 2000–2019) (Hersbach et al 2019). Depending on
the surface pressure, the height of these atmospheric
variables is about 40–100m. This height is assumed to
be above the surface roughness layer (Lee et al 2011),
although in reality this assumption may be violated
over some forest or urban areas (Oke et al 2017, Li
and Wang 2019, Novick and Katul 2020), which may
undermine the validity of Monin–Obukhov similar-
ity theory in calculating the turbulent fluxes.

2.4. Population and Köppen–Geiger climate zones
The Gridded Population of the World, Version 4
(GPWv4): Population Count, Revision 11 at the res-
olution of 30 arc-second for two single years (2000
and 2020) are used. This dataset is produced by the
Center for International Earth Science Information
Network at Columbia University (CIESIN 2018). We
also use the global map of Köppen–Geiger classifica-
tion at 1 km resolution (Beck et al 2018). In this study,
the global climates are divided into four main groups
(figure S2(c)): A (tropical), B (arid/dry), C (temper-
ate), and D (continental). None of the 228 megacities
are located in the E (polar) category.

2.5. Diagnosing the impact of vegetation trend on
the trend of SUHII
Changes in the SUHII are due to the combined effects
of vegetation dynamics, changes in anthropogenic
heat sources and man-made infrastructures, and
large-scale climate change. We quantify the impact
of uneven urban and rural vegetation trends on the
trend of SUHII based on the TRMmethod. The TRM
method was first developed to attribute the effect of
land cover changes on LST using paired flux meas-
urements or climate model simulations (Rigden and
Li 2017, Liao et al 2018b, Wang et al 2019, 2020b, Li
et al 2019a, Moon et al 2020, Wang and Li 2021). In
this study, we attribute the vegetation-induced LST
change (i.e. the urban-rural LST difference that is
solely caused by LAI difference between urban and
rural areas, denoted as SUHIILAI) to five biophysical
factors, namely, albedo (α), aerodynamic resistance
(ra), surface resistance (rs), emissivity (ε), and the
groundheat flux (which is computed as the residual of
energy balance and denoted as REB) (Lawrence et al
2018, Chen et al 2020a), as follows:
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where ∂Ts
∂LAI is the sensitivity of LST to LAI over the

reference (i.e. rural areas) (supplementary informa-
tion), LAIu and LAIr are the LAIs in urban and rural
areas, respectively, LAIdif is the urban-rural LAI dif-
ference. It is stressed that SUHIILAI is different from
the satellite-observed SUHII that is affected by a vari-
ety of other influences as discussed earlier. Since the
goal is to quantify the impact of vegetation trends on
the trend of SUHII, we replace the LAIdif by the trend
in LAIdif (i.e.∆LAIdif):
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where ∆SUHIILAI is the trend in the SUHII induced
by the trend in LAIdif and the sensitivity is denoted as
∂SUHII
∂LAIdif

.

3. Results and discussion

3.1. Background LAIdif and SUHII
Overall LAI is higher in rural areas than in urban areas
(i.e. LAIdif < 0, figure 1(a)). We divide the world into
11 subcontinental regions (figure S2(b)). Megacities
in eastern SouthAmerica (ESA), easternNorthAmer-
ica (ENA), and Oceania (OC) have relatively large
LAIdif values (<−1 m2 m–2, table 1), but the largest
LAIdif value is detected in the equatorial megacity of
Singapore and Johor Bahru (–3 m–2m–2). The LAIdif
values are also large in coastal regions in eastern South
America (ESA) and East Asia (EA) (figure 1(a)). In
arid and semi-arid regions, the LAIdif values are close
to zero or weakly positive (table 1, figure 1(a)).

For comparison with LAIdif, the daily mean
SUHII fromTerraMODIS is shown (figure 1(b)). The
daily mean SUHII from Terra (overpass time: 10:30
a.m./p.m. local time) agrees with that of Aqua (over-
pass time: 1:30 p.m./a.m.), with Aqua SUHII having

slightly larger magnitude (slope = 1.05, figure 1(d)).
Considering the longer time series and less cloud
cover in the morning, we use the daily mean SUHII
from Terra for the following analysis. The SUHII is
the strongest in North America (i.e. WNA and ENA)
(table 1) and is also large in many coastal regions of
ESA, EA, southeast Asia, and Europe (figure 1(b)).
Notably, we find urban cool islands (i.e. SUHII < 0 K)
in arid places such as Saharan Africa and West
Asia (figure 1(b)). Statistically SUHII is negatively
correlated with LAIdif (slope = −0.92, p < 0.001,
figure 1(c)) and LAIdif explains 33% of the SUHII
variance (figure 1(c)).

3.2. Trends in LAIdif
Of the 228 megacities, 189 show a decreasing trend
of LAIdif (becomes more negative) during the peak
growing season, 90 of which are statistically signi-
ficant (p < 0.05, figure 2(a)). In contrast, only 39
megacities show an increasing trend in LAIdif, of
which only two are statistically significant (p < 0.05,
figure 2(a)). The absolute and relative values of
∆LAIdif have similar spatial patterns (figures 2(a)
and S4), which are nonetheless different from the
spatial pattern of the background LAIdif (figure 1(a)).
The strongest declines in LAIdif, which exceed
−0.25 m–2m–2 decade–1 (or 25% decade–1), occur in
East Asia (EA, table 1) where strong greening trends
are observed in rural China likely due to land-use
management, along with declines in urban greenness
due to rapid urbanization (Wang et al 2012, Chen
et al 2019). LAIdif is also declining rapidly in grow-
ing megacities such as the Gulf of Guinea in Africa,
Southeast Asia, Sydney in Oceania, and Calgary and
Edmonton in North America (figure 2(a)).

A decreasing trend of LAIdif may imply one of the
following three scenarios: (a) rural greening is faster
than urban greening, (b) rural browning is slower
than urban browning, or (c) rural areas are green-
ingwhile urban areas are browning.Our results indic-
ate that 133 of the 228 megacities are greening simul-
taneously in both urban and rural areas but the rural
areas are greening faster (uG-rG), suggesting a slow-
down in terms of urbanization. Such megacities are
concentrated in ENA, Europe, and extend into coastal
regions in EA (figure 2(b)). In addition, 52 megacit-
ies show urban browning and rural greening (i.e. uB-
rG), reflecting a moderate rate of urbanization. These
are distributed worldwide but are almost absent in
Europe. Together these two categories (i.e. with neg-
ative LAIdif trends) include 185 megacities. Of the
remaining 43 megacities, 37 show both urban and
rural browning (uB-rB), which imply rapid urbaniza-
tion, and six showurban greening and rural browning
(uG-rB).

3.3. Trends in SUHII
We quantify the SUHII trend caused by the
LAIdif trend (i.e. ∆SUHIILAI) using the TRM
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Figure 1. Spatial distribution of the background LAIdif (a) and Terra SUHII (b) during the peak growing season defined as the
climatological mean between 2000–2019. (c) Scatter plot of LAIdif and Terra SUHII. Black line represents the best-fit line.
(d) Scatter plot of Terra and Aqua SUHIIs. Red line represents the 1:1 line.

Table 1. Ranking of 11 subcontinental regions by mean background LAIdif and Terra SUHII, trends in LAIdif and LAI-induced SUHII,
and population change in the past two decades. The rankings are color-coded in the column direction. Numbers represent mean± one
standard deviation.

LAIdif Terra SUHII ∆LAIdif ∆SUHIILAI ∆Population

(m2m–2) (K) (m2m–2 decade–1) (K decade–1) (million)

WNA –0.68± 0.38 1.77± 0.88 –0.044± 0.051 0.025± 0.028 1.00± 1.07 1

ENA –1.23± 0.36 1.71± 0.38 –0.046± 0.038 0.028± 0.027 0.47± 0.59 2

WSA –0.66± 0.56 1.50± 1.80 –0.025± 0.032 0.013± 0.021 1.84± 1.60 3

ESA –1.36± 0.69 1.67± 0.62 –0.050± 0.049 0.015± 0.026 1.38± 1.22 4

WEU –0.99± 0.28 1.24± 0.56 –0.021± 0.032 0.014± 0.024 0.39± 0.61 5

EEU –0.90± 0.40 0.88± 0.66 –0.048± 0.034 0.036± 0.029 0.23± 0.96 6

SSA –1.02± 0.32 1.16± 0.55 –0.084± 0.076 0.037± 0.030 3.22± 2.38 7

WCA+ SAH –0.26± 0.45 0.15± 1.18 –0.014± 0.023 0.016± 0.031 1.30± 1.72 8

SSEA –1.10± 0.83 1.34± 0.96 –0.079± 0.053 0.060± 0.069 6.18± 4.04 9

EA –0.99± 0.55 1.38± 0.63 –0.116± 0.078 0.069± 0.059 2.38± 4.66 10

OC –1.12± 0.21 1.42± 0.40 –0.010± 0.078 –0.008± 0.019 0.04± 0.10 11

WNA: western North America; ENA: Eastern North America; WSA: western South America; ESA: Eastern South America; WEU:

western Europe; EEU: eastern Europe; SSA: Sub-Saharan African; WCA+ SAH: Western and Central Asia+ Saharan Africa; SSEA:

South and Southeast Asia; EA: East Asia; OC: Oceania.

method (figure 2(c)). Due to the strongest
LAIdif trend, EA shows the largest ∆SUHIILAI

(mean= 0.069 K decade–1), followed by SSEA (South
and Southeast Asia, mean = 0.06 K decade–1), and
SSA (sub-Saharan Africa, mean = 0.037 K decade–1)

(table 1). These regions have experienced rapid
urbanization and population growth over the
past 20 years (table 1). Of the top 20 megacit-
ies with the largest positive ∆SUHIILAI globally
(mean = 0.14 K decade–1), 15 are in China. For
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Figure 2. (a) Trends in LAIdif from 2000 to 2019. LAIdif is the difference between urban and rural LAI. Symbol ‘×’ indicates
p < 0.05. (b) Trend category match for urban and rural LAI. uB-rB: urban browning and rural browning. uB-rG: urban browning
and rural greening. uG-rB: urban greening and rural browning. uG-rG: urban greening and rural greening. (c) Trends in
LAIdif-induced SUHII (i.e.∆SUHIILAI) and (d) trends in Terra MODIS SUHII from 2000 to 2019.

individual megacities, Hefei (China) and Chennai
(India) rank 1st and 2nd in terms of ∆SUHIILAI

(0.29 and 0.28K decade–1, respectively) (table S1) and
both of them show a trend (∆SUHIILAI) exceeding
20% decade–1 (table S1). This is due to rural (cro-
pland) greening and urban browning (i.e. uB-rG)
in both megacities, which is reflected in their higher
∆LAIdif (Hefei in EA:−0.31 m2m–2 decade–1, Chen-
nai in SSEA: −0.11 m2m–2 decade–1) compared to
the average ∆LAIdif in their respective subcontinent
regions (table 1). The opposite vegetation trends in
urban and rural areas imply an increase in the urban
temperature and a decrease in the rural temperature,
which lead to an elevated SUHII.

The spatial patterns of ∆SUHIILAI and the trend
of SUHII (i.e.∆SUHII) directly computed fromTerra
MODIS are in reasonable agreement, but the mag-
nitude of∆SUHIILAI is on average about one-fourth
of ∆SUHII (figures 2(c) and (d)). The difference
between ∆SUHIILAI and ∆SUHII highlights that
uneven vegetation trends in urban and rural areas
are not the sole contributor to the trend in SUHII
(Oleson 2012, Li et al 2016). Evaluating the role of
non-vegetation factors is out of the scope of this
study, which requires, at the very least, data of anthro-
pogenic heat fluxes and modeling the urban surface
energy budget (Wang andLi 2021). But those are chal-
lenging and subject to large uncertainties (Allen et al
2011, Oleson 2012, Zhao et al 2014, Li et al 2016,
Jin et al 2019, Zheng et al 2021). The contribution
of anthropogenic heat flux to the SUHII could be
0.75–7.5 K according to a previous fine-resolution
modeling study (Wang and Li 2021), which may
explain the opposite signs between ∆SUHIILAI and
∆SUHII over theU.S. Great Lakes region (figures 2(c)

and (d)). According to the U.S. Energy Information
Administration, there is a strong declining trend in
energy-related carbon dioxide emissions in the Great
Lakes region from 2000 to 2018 (EIA 2021). As a
result, the anthropogenic heat flux might be also
declining and thus ∆SUHII is weaker compared to
∆SUHIILAI.

3.4. The sensitivity of SUHII to LAIdif
The sensitivity of SUHII to LAIdif is a marginal sens-
itivity under the current climatological states. It rep-
resents how much the SUHII is altered with a small
change in LAIdif. This sensitivity has been shown
to reasonably capture temperature changes caused
by small perturbations, such as those caused by the
two-decade vegetation trends shown above (Chen
et al 2020a). It should be used with caution for under-
standing the SUHII which encodes large perturba-
tions (Chen et al 2020b). The TRM method decom-
poses the sensitivity of SUHII to LAIdif (i.e.

∂SUHII
∂LAIdif

)
into five contributors (figure S5). Surface resistance,
which represents the ability to bring water to the sur-
face, dominates ∂SUHII

∂LAIdif
in 177 of the 228 megacit-

ies among different biophysical factors (figure 3(b)).
Thus, the spatial variability of LAI-induced SUHII
changes at the global scale is primarily controlled
by changes in the ability of land areas to evapor-
ate water. This finding is consistent with the con-
clusion of previous studies (Bateni and Entekhabi
2012, Li et al 2019a), namely, vegetation changes
mainly affect LST through the ET process. The
∂SUHII
∂LAIdif

in the remaining 51 megacities are domin-
ated by aerodynamic resistance. Themegacities where
∂SUHII
∂LAIdif

is dominated by aerodynamic resistance have
significantly lower aridity index (Pr/PET) than those
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Figure 3. (a) Marginal sensitivity of SUHII to LAI during the study period. (b) Dominant factors controlling sensitivity of SUHII
to LAI. The contributions are color-coded by the Euclidean distance to the origin of the hyper-dimension space, which consists of
the five biophysical pathways. Only three major biophysical pathways are visualized in RGB false color. (c) Average sensitivity of
SUHII to LAI (upper) and aridity index (lower) grouped by Köppen–Geiger climate zones and biome types. Error bars represent
one standard deviation. Biomes are separated into forests (FO), mixed woody and herbaceous vegetation (W+H), and croplands
(CRO). The color coding in (c) is the same as that in figure S2(c), which represents the spatial distribution of bio-climatic classes.

dominated by surface resistance (mean ± 1 standard
deviation: 0.31 ± 0.27 vs. 0.51 ± 0.27, two sample
t-test: p < 10–5). Aerodynamic resistance represents
the convective heat transfer efficiency affecting both

sensible heat and latent heat fluxes. Many megacities
where ∂SUHII

∂LAIdif
is dominated by aerodynamic resist-

ance are located in arid to semi-arid western United
States (Zhao et al 2014), Saharan Africa, and West
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Asia (figures 3(b) and S2(c)) (Li et al 2021). In
these megacities, changes in aerodynamic resistance
caused by the vegetation trend aremore likely to affect
SUHII through sensible heat flux. However, for those
megacities in the eastern United States where the cli-
mate is relatively humid (figures 3(b) and S2(c)),
changes in aerodynamic resistance are more likely to
affect SUHII through changing the latent heat flux
(Chen et al 2020a). The contribution of LAI-induced
albedo changes is on average about 6% to the ∂SUHII

∂LAIdif
(figure S5), which depends on the sensitivity of light-
extinction to LAI change within the vegetation can-
opy. As expected, contributions from other factors
(i.e. ground heat flux and emissivity) are not signi-
ficant (Chen et al 2020a).

We further group the ∂SUHII
∂LAIdif

according to the
Köppen–Geiger climate zones and biome types
(figure S2(c)). First, SUHII is most sensitive to LAIdif
in megacities located in arid/dry areas surrounded
by mixed woody and herbaceous biomes (W + H,
figure 3(c)). In most of these areas, ∂SUHII

∂LAIdif
is domin-

ated by aerodynamic resistance (figure 3(b)). Second,
∂SUHII
∂LAIdif

increases from megacities surrounded by
forests to megacities surrounded by croplands in a
given climate regime (except for the arid/dry cli-
mate) (figure 3(c)). The higher sensitivity for mega-
cities surrounded by croplands implies that for an
equal change in LAIdif, intensification of rural crop-
lands can increase SUHII more strongly. Incidentally,
the LAIdif trends are large for cropland-surrounded
megacities, especially in the continental and trop-
ical climates (figure S6). As a result of the combined
effects of higher sensitivities and larger LAIdiff trends,
13 of the top 20 megacities with the largest positive
∆SUHIILAI are surrounded by croplands (table S1).

Why is ∂SUHII
∂LAIdif

higher in megacities surroun-
ded by croplands than those surrounded by forests
(figure 3(c))? Due to the relatively low LAI in cro-
plands on average (figure S6), the absorption of
photosynthetically active radiation (PAR) is unsatur-
ated. Therefore, compared to natural vegetation, an
increase in crop LAI can absorb more PAR, which
provides more available energy to trigger the open-
ing of stomata and increases the evaporative cooling,
leading to a larger ∂SUHII

∂LAIdif
(Li et al 2021). Furthermore,

croplands potentially have more water available for
ET due to irrigation (D’Odorico et al 2020). These
combined effects of canopy structure, radiation field,
and water availability shape the higher aridity index
(i.e. wetter) in croplands than other biomes across
different climate zones (figure 3(c)). All of these are
consistent with the finding that ∂SUHII

∂LAIdif
is mainly con-

trolled by surface resistance (figure 3(b)). For mega-
cities surrounded by forests, the low ∂SUHII

∂LAIdif
is due to

their high background LAI in both rural and urban
areas (figure S3). The high background LAI makes
the biophysical factors insensitive to LAI due to sat-
uration effects, especially for radiation and surface
resistance.

4. Conclusion

In this study, we quantify the biophysical effects of
vegetation dynamics on the contrast of LST between
urban and rural areas over 228megacities. Our results
show that increases in LAIdif contribute to a quarter
of the increasing trends in SUHII. The biophys-
ical effects of vegetation trends on SUHII trends
are determined by two major aspects. First, they
depend on the magnitude of LAIdif trends, which
is a joint effect of human land-use management
and climate change such as warming and elevated
atmospheric CO2 (Zhu et al 2016, Chen et al 2019,
Piao et al 2020). Trends in LAIdif are most evident
in megacities in Asia. Second, vegetation biophys-
ical effects also depend on the sensitivity of SUHII
to LAIdif, which is controlled by background cli-
mate and biome type. We find that this sensitivity
is the strongest in hot-humid megacities surroun-
ded by croplands and in hot-dry megacities sur-
rounded bymixed woody and herbaceous vegetation.
However, their dominant mechanisms are different.
The former is mainly controlled by surface resistance
which affects the latent heat flux, while the latter is
mainly controlled by aerodynamic resistance which
affects both sensible heat flux and latent heat flux
depending on water availability. The high sensitivities
suggest that continued cropland intensification and
semi-arid woody vegetation encroachment in rural
areas may enhance SUHII; while increasing urban
vegetation in these megacities can reduce LAIdif and
thus mitigate SUHII. The highest background LAIdif
and SUHII are concentrated in megacities surroun-
ded by forests in North and South America, but the
sensitivity of SUHII to LAIdif is relatively low in these
regions because of the high background LAI in urban
and rural areas. Therefore, to reduce SUHII by the
same amount as in megacities surrounded by crop-
lands,megacities surrounded by forestswould need to
increase more urban greenness or invoke additional
measures such as adopting white roofs and reducing
anthropogenic heat emissions.

Data availability statement

The data that support the findings of this study are
openly available. MODIS LAI MOD15A2H: https://
doi.org/10.5067/MODIS/MOD15A2H.006. MODIS
LAIMYD15A2H: https://doi.org/10.5067/MODIS/
MYD15A2H.006. MODIS LST MOD11C3: https://
doi.org/10.5067/MODIS/MOD11C3.006. MODIS
LST MYD11C3: https://doi.org/10.5067/MODIS/
MYD11C3.006. MODIS Land Cover: https://doi.org/
10.5067/MODIS/MCD12C1.006. CIESIN Grid-
ded Population of the World: https://doi.org/
10.7927/H4JW8BX5. Köppen-Geiger climate clas-
sification: https://doi.org/10.1038/sdata.2018.214.
ERA5-Land monthly averaged data: https://
doi.org/10.24381/cds.68d2bb30. ERA5 monthly
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averaged data on pressure levels: https://doi.org/
10.24381/cds.6860a573. Scripts for the TRM
framework are available at https://doi.org/10.5281/
zenodo.5594686. CESM2/CLM5 release code is
available at http://www.cesm.ucar.edu/models/
cesm2/release_download.html. R-package for Mann-
Kendall test is available at https://cran.r-project.org/
web/packages/zyp/index.html.
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