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Bifurcation analysis of a Gradient Symbolic Computation model of incremental
processing

Pyeong Whan Cho (pcho4@jhu.edu)

Paul Smolensky (smolensky@jhu.edu)
Department of Cognitive Science, Johns Hopkins University

3400 N. Charles Street, Baltimore, MD 21218 USA

Abstract

Language is ordered in time and an incremental processing
system encounters temporary ambiguity in the middle of sen-
tence comprehension. An optimal incremental processing sys-
tem must solve two computational problems: On the one hand,
it has to keep multiple possible interpretations without choos-
ing one over the others. On the other hand, it must reject
interpretations inconsistent with context. We propose a re-
current neural network model of incremental processing that
does stochastic optimization of a set of soft, local constraints
to build a globally coherent structure successfully. Bifurcation
analysis of the model makes clear when and why the model
parses a sentence successfully and when and why it does not—
the garden path and local coherence effects are discussed. Our
model provides neurally plausible solutions of the computa-
tional problems arising in incremental processing
Keywords: Harmonic Grammar; Gradient Symbolic Compu-
tation; neural networks; incremental processing; parsing; dy-
namical systems theory; bifurcations

Introduction
Sentence comprehension requires building a hierarchical con-
stituent structure from sequentially presented words. Psy-
cholinguists agree that human language comprehension is in-
cremental, which means the processing system builds up an
interpretation with partial input before a whole sentence is
presented. An optimal1 incremental processing system must
solve two closely related computational problems: (a) it must
be able to keep multiple possibilities consistent with the infor-
mation that has been processed, say context. (b) At the same
time, it has to reject the interpretations inconsistent with con-
text which may be consistent with bottom-up input.

For clarity, consider a finite language consisting of four
sentences {“cats sleep”, “cats yawn”, “dogs sleep”, “dogs
yawn”}. A first word (e.g., “cats”) of a sentence creates tem-
porary ambiguity which can be resolved after processing a
second word (e.g., “sleep”) of the sentence. An optimal sys-
tem must be able to consider both grammatical continuations
without choosing one over the other after processing the first
word. Simultaneously, the system must be able to reject im-
possible interpretations before reading a second word (e.g.,
“sleep”) such that it does not take a wrong interpretation (e.g.,
“dogs sleep”).

In this study, we propose a neural network model of incre-
mental processing and show (a) how the proposed model can
solve two computational problems in a principled way and

1Human language processing may not be optimal due to perfor-
mance issues. In this study, we investigate the competence of the
proposed model.

(b) when and why the model fails to build a target structure.
It will turn out that the model’s failure looks like either the
garden path effect (Frazier, 1987; Frazier & Rayner, 1982) or
the local coherence effect (Tabor, Galantucci, & Richardson,
2004) both of which are well established in the psycholin-
guistics literature.

The remainder of the paper is organized as follows. First,
we briefly describe a phrase structure grammar of our inter-
est. Second, we present an overview of the model; summarize
the results without technical details; and discuss the implica-
tion of the model. The technical details of the analysis are
presented in “Bifurcation analysis of the GSC model”, which
is followed by a conclusion.

A Grammar of Interest
In the present study, we investigate the Gradient Symbolic
Computation (GSC) model (Smolensky, Goldrick, & Mathis,
2014) that implements a phrase structure grammar G, consist-
ing of four rewrite rules: G = {S1→A B, S2→A C, S3→D
B, S4→ D C} where S1, S2, S3, S4 are the starting symbols.
Grammar G generates a finite language presented in the in-
troduction. We designed the simple language for the follow-
ing reasons: (a) the language shares the same computational
problems with more complex languages. (b) The GSC model
implementing a more complex grammar is more difficult to
analyze. The simplicity of the grammar makes it possible to
investigate the model thoroughly. (c) Parsing a sentence of
the language looks trivial but can be difficult for continuous-
time recurrent neural network models that utilize highly local
constraints and do not explicitly monitor complete structures.

Overview of the Model and Results
The GSC model is a brain-like, continuous-time continuous-
state dynamical systems model that can gradually build dis-
crete symbolic structures. There is a transparent mapping
between the symbolic structures and the activation patterns
(vectors in a continuous vector space) (Smolensky, 1990) so
it allows us to study the nature of the intermediate states in
the middle of sentence comprehension.2 The GSC model
does stochastic optimization of constraints implementing the

2A popular connectionist alternative is the Simple Recurrent
Network (Elman, 1990; Frank, 2009). Although it has been suc-
cessful in modeling human sentence comprehension performance,
the model works in discrete time and develops a rather hard-to-
understand internal representation.
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grammar and those implementing a force quantization push-
ing towards those neural states that encode fully discrete sym-
bolic trees (for details, see Smolensky et al., 2014). The
model maximizes Total Harmony, a measure of goodness of
an activation state: H(a,γ) = HG(a)+HB(a)+γHQ(a) where
a is an activation state and γ (≥ 0) is quantization strength.
Grammar Harmony HG measures how much a state satisfies
grammatical constraints and is defined by principles (Hale &
Smolensky, 2006). Bowl Harmony HB measures how close a
state is to a baseline activation state. Quantization Harmony
HQ, roughly speaking, measures how close a state is to dis-
crete symbolic states.3

In incremental processing, we assume: (a) the model reads
the first word of a sentence at 0 of γ. (b) γ increases mono-
tonically in time without assuming any specific function. (c)
The model reads the second word at a certain value of γ (= γc)
and then γ continues to increase. The topic of the paper is a
formal understanding of how γ’s temporal trajectory results
in correct parsing, garden path, or local coherence errors.

We performed numerical bifurcation analysis of the model
(for a brief introduction, see Meijer, Dercole, & Oldeman,
2009)—the details are presented in the next section. The re-
sults suggest that there is a range of γc values (γ1 < γc < γ2)
that guarantees accurate parsing (case 1). If the model reads
the first word (e.g., ‘A’) of a sentence (e.g., ‘A B’) too long
such that γc > γ2, the model randomly chooses one structure
(e.g., [S2 A C]) over the other (e.g., [S2 A B]) before it reads
the second word, althouth both structures are consistent with
the first word. It is a garden path error (case 2). If the model
reads the second word too quickly (γc < γ1), the model does
not reject the structures (e.g., [S3 D B] or [S4 D C]) inconsis-
tent with the first word (e.g., ‘A’). Thus, when the model reads
the second word at γc(< γ1), sometimes the model fails to
build the target structure because a non-target structure (e.g.,
[S3 D B]) is consistent with the second word (’B’) and it is
still considered by the model as a possible grammatical struc-
ture. We argue it is an local coherence error (case 3).

We argue our model has a potential as a processing model
of incremental structure building. Our model provides neu-
ral/mathematical solutions of the computational problems
arising in incremental processing; we know when and why
the model parses a sentence correctly and when and why it
does not. Unlike other constraint satisfaction models (Spivey
& Tanenhaus, 1998; Tabor & Hutchins, 2004; Vosse & Kem-
pen, 2000), the GSC model is contructed in a principled way
using Harmonic Grammar (Prince & Smolensky, 1997) and
tensor product representation (Smolensky, 1990). Its dynam-

3HG(a) = 0.5aTWa + bTa + extTa; HB(a) = −0.5β||a− z||2;
HQ(a) = −0.5∑r∈R(∑ f∈F a2

f ,r − 1)2− 0.5∑ f∈F,r∈R a2
f ,r(a f ,r − 1)2

where W and b are the weight matrix and the bias vector which are
constructed by Harmonic Grammar. a is an activation vector, ext
is an external input vector, a f ,r is an acitvation value of a filler/role
binding (Smolensky, 1990), F and R are the index sets of fillers and
roles, z (= 0.5 1) is the baseline activation vector, β is the strengh to
pull a state to z and was set to 10. HQ implements a constraint that
only one filler must occupy a role.

ics can be understood thoroughly not with simulations but
based on principles of dynamics (see the next section)—the
GSC model is not a blackbox. Unlike probabilistic symbolic
models of sentence comprehension (Hale, 2001; Levy, 2008),
the GSC model describes how the state changes in continuous
time and proposes the solutions of computational problems
at the algorithmic level. More importantly, the GSC model
is not an implementation of structural probabilistic models
where the structural hypothesis space is discrete. A blend
state in the GSC model—an intermediate state that is located
between the states encoding fully discrete structures—is not
the representation of a probability distribution across discrete
symbolic structures.

The GSC model proposes an interesting way of keeping
past and predicting the future. In the GSC model, the present
(blend state) contains past. Unlike the memory-based model
proposed by Lewis, Vasishth, and Van Dyke (2006), there
is no need of retrieval processes.4 Given a word input, the
present contains the future as well. In the next section, it will
be shown that the GSC model travels along a one-dimensional
manifold (a subspace of the full representation space) which
can evolve to multiple grammatical structures consistent with
both top-down context and bottom-up word input.

The proposed GSC model is not complete. Processing dif-
ficulty in sentence comprehension is typically measured in
reading times rather than in parsing accuracy in behavioral
experiments but the model does not make a prediction on
word reading times directly.5 First, we point out that psy-
cholinguistic models such as the garden path model (Frazier,
1987) and the unrestricted race model (Traxler, Pickering, &
Clifton Jr., 1998) propose longer reading times indicate the
revision of the initial parse that turns out to be wrong. At
this point, the GSC model does not have the ability to revise
its interpretation. Parsing failures (cases 2 and 3) overviewed
in this section (see also paths [2] and [3] in Figure 4) should
be interpreted as the initial parsing failure rather than the fi-
nal product. If we assume the reanalysis requires more time,
there is a close relationship between the accuracy of initial
parsing and the reading times. One way to implement the
revision of the initial interpretation is to allow the model to
reduce γ when it detects the present blend state is inconsis-
tent with the bottom-up input—probably by detecting a sud-
den decrease in Grammar Harmony. Second, slow reading
times may not necessarily suggest the revision of the ini-
tial parse. For example, in the constraint-satisfaction mod-
els (MacDonald, Pearlmutter, & Seidenberg, 1994; Spivey &
Tanenhaus, 1998; Tabor & Hutchins, 2004), processing delay
is observed when multiple interpretations compete with each
other without parsing failure. In the GSC model, there may

4We do not argue retrival processes do not involve in human sen-
tence comprehension. The GSC model suggests retrieval may not be
the core process in incremental structure building.

5The model has a potential to make reading time predictions but
at this point, we do not know with what information the model can
make a decision when to read a next word. The model may be able
to make such decisions by monitoring γ.
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be a manifold which takes longer to travel along than other
manifolds.

We conclude the GSC model can provide a different ap-
proach to incremental processing and may improve our un-
derstanding of the process.

Bifurcation analysis of the GSC model
Background

Figure 1: An arbitrary energy landscape (energy = -Total Har-
mony) and a disconnectivity graph constructured from the en-
ergy landscape. p1-p4 indicate the local minima and E1-E5
(E1 < · · ·< E5) indicate the energy levels.

Consider an arbitray energy function E(x, p) in which x is
a state variable and p is a parameter. The left side of Fig-
ure 1 presents an arbitrary energy landscape (energy = -Total
Harmony) when p is set to a certain value. Now consider a
system that minimizes the energy function. When no noise
is assumed, the system rolls down the hills of the energy
landscape (i.e., gradient descent): dx/dt = −dE(x, p)/dx =
f (x, p). At a local minimum or a local maximum, the sys-
tem will not change anymore because the gradient vanishes
there. Those states x∗ where f (x∗, p) = 0 are called equilib-
rium points (or fixed points). We can check what happens if
a system is slightly displaced from an equilibrium point x∗.
If the system approaches x∗, the state (e.g., the local minima
p1-p4) is asymptotically stable and often called an attractor.
If the system moves away from x∗, the equilibrium state (e.g.,
the local maxima) is unstable.

If the system is high dimensional, it is not easy to visual-
ize the energy landscape. In that situation, we can focus on
the topology of the energy landscape by constructing a dis-
connectivity graph (Wales, Miller, & Walsh, 1998; Becker &
Karplus, 1997). The terminal nodes of the disconnectivity
graph (the right side of Figure 1) correspond to the attractors
(local minima of the energy landscape, or equivalently local
maxima of the harmony surface). The nonterminal nodes in-
dicate the height of a ridge (called energy barrier) between
two local minima. The magnitude of noise required to cross
over an energy barrier is determined by the barrier’s height
(Chiang, Hwang, & Sheu, 1987). For example, the height of
the energy barrier from p1 to p2 (= E4-E2) is greater than the
height of the energy barrier from p2 to p1 (= E4-E3), sug-
gesting there is a certain level of noise at which the p2-to-p1
transition is possible while the p1-to-p2 transition is not.

The equilibrium points may be created, destroyed, or
change their stability when a parameter’s value changes.
Such qualitative change in the dynamics of the system is
called bifurcation (Strogatz, 1994) and the parameter values
at which bifurcations happen are called bifurcation points.
When a bifurcation occurs, the topology of the disconnec-
tivity graph changes. In this stuy, we use the continua-
tion method (Meijer et al., 2009) to discover the equilibrium
points at different parameter values and detect bifurcations.
At the same time, we construct a disconnectivity graph from
the set of equilibrium points detected at a particular parameter
value to visualize the toplogy of the energy landsacpe. The
combination of the two techniques allows us to understand
the dynamics of the GSC model thoroughly.

Method

The GSC model maximizes Total Harmony H(a;γ,α), or
equivalently minimizes energy E(a;γ,α) = −H(a;γ,α) in
which a is a 27-dimensional activation state vector, γ (≥ 0)
is the quantization strength parameter, and α is a variable in-
dicating whether the model is reading the first (α = 0) or the
second (α = 1) word of a sentence ‘A B’.6

First, we used the continuation method to discover the one-
dimensional manifold of equilibrium points in the 28 dimen-
sional vector space (27 state variables + 1 parameter γ) when
the first word ‘A’ was presented (i.e., α = 0). To use the con-
tinuation method, we should know the equilibrium points at a
particular γ value. In the GSC model, it is not difficult. When
γ = 0, we can ignore nonlinear quantization dynamics and
at the setting, the GSC model is a linear dynamical system
which was constructed to have a single global optimum. The
equilibrium point was discovered by the Newton’s method.
Alternatively, the global attractor can be discovered by in-
tegrating the differential equations ∇aH(a,γ,α) numerically.
Once an equilibrium state was discovered, we used the con-
tinuation method to discover the one-dimensional manifold
of equilibrum points.

We iterated the process with every attractor discovered
when γ = 200. When γ is very large, the equilibrium points
are mostly determined by Quantization Harmony. The func-
tion was designed to have the attractors at a subset of the ver-
tices of the unit hypercube [0,1]27. The actual attractors must
be close to those vertices. By applying the Newton’s method,
we could find all the attractors when γ = 200. Besides the
attractors, there are many unstable equilibrium points at the γ

value and finding those points is much more difficult. Instead
of trying to find those unstable fixed points at the paramter
setting, we used the continuation method to discover the un-
stable equilibrium points, assuming that the unstable equilib-
rium points are connected to the stable equilibrium points on
the manifold of the equilibrium points when γ is allowed to

6Given that all four sentences of the language are symmetric, we
focus on the case in which the model is reading a sentence ‘A B’ and
investigate when and how the model can build the target structure [S1
A B] successfully.
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change. If we start to follow the manifold from a stable equi-
librium point, we will reach an unstable equilibrium point.

The numerical bifurcation analysis with the continuation
method was performed by using a MATLAB package, the
Continuation Core and Toolboxes (COCO)7. After perform-
ing bifurcation analysis, we chose specific γ values (γ = 20,
25, 35, 70) and constructed a disconnectivity graph at each γ

value to investigate the topology of the energy landscape.
We did not perform bifurcation analysis and construct the

disconnectivity graphs when the model reads the second word
‘B’ (α = 1). Instead, the equilibrium points and the topology
of the harmony landscape were inferred, based on symme-
try, from those discovered from numerical bifurcation analy-
sis when the model reads the first word ‘A’.

Result

The continuation method discovered 795 branches of the
equilibrium points including 1589 equilibrium points at 200
of γ when α = 0.8 Most branches are not relevant in our dis-
cussion of the model dynamics so we focus on a small num-
ber of important branches (see Figure 2). First, look at the
branches (1), (2), and (5). A saddle-node bifurcation occurs
at γ1 ≈ 21.3 and a subcritical pitchfork bifurcation occurs at
γ2 ≈ 59.6 (for introduction, see Strogatz, 1994). Second, look
at the branches (3) and (4) which evolve to the states repre-
senting [S3 D B] and [S4 D C] both of which are inconsistent
with the first word ‘A’. Those branches are disconnected from
the other branches. We suspect the branches evolving to the
states representing grammatical/ungrammatical structures in-
consistent with the input word are disconnected from the ma-
jor branch evolving to the states representing the grammatical
structures consistent with the input.

Figure 2: The bifurcation digram. The solid and dashed lines
indicate stable and unstable equilibria, respectively. Only the
branches evolving to (1) [S1 A B], (2) [S2 A C], (3) [S3 D
B], (4) [S4 D C], and (5) a blend of S1 and S2 are presented.
The vertical lines indicate the γ values at each of which a
disconnectivity graph was constructued (see Figure 3).

7http://sourceforge.net/projects/cocotools/
8The COCO could not finish continuation successfully along

96 of 891 branches. All those cases occurred when the software
switched to a new branch at a branch point (where multiple branches
intersect each other) and tried to follow a differnet branch; the
branch before switching was connected to an ungrammatical struc-
ture (e.g., [C D ]) at 200 of γ. Those cases need further investigation
but those branches are not important in the discussion of the model.

From Figure 2, we can predict the state change while the
model is reading the first word ‘A’. Recall that γ is assumed to
increase in time. The system has a single global attractor in
the region where γ < γ1. Thus, regardless of the initial state,
the system will reach the global equilibrium point before γ

passes γ1. At γ1, two more attractors emerge from a saddle-
node bifurcations but they are separated from the equilibrium
point along branch (5) where the system is. The system keeps
following the major branch until γ passes γ2 at which a sub-
critical pitchfork bifurcation occurs and the equilibrium point
loses its stability. Thereafter, even with a very small noise,
the system moves to either branch (1) or (2).

Figure 3 shows the topology of the energy landscape at four
different γ values (see also Figure 2). When γ = 20 (Fig-
ure 3a), there is a single attractor. When γ = 25 (Figure 3b),
there are three local optima on branches (1), (2), and (5). If
the system has followed the major branch, the system will
be at the attractor on branch (5) represented by the leftmost
terminal node. The attractor is separated from other attrac-
tors on branches (1) and (2) by energy barriers. When γ = 35
(Figure 3c), the energy landscape has more attractors but all
newly emerged attractors are separated from the three attrac-
tors on branches (1), (2), and (5) by high energy barriers. The
bottommost part of the graph inside the square has the same
local structure as Figure 3b. The blend state on branch (5) is
still stable so the system will be at the equilibrium point. Fig-
ure 3d presents the disconnectivity graph when γ = 70. The
graph is very complex and not easy to read. The squred re-
gion at the bottom is magnified in the third panel of the top
row in Figure 4. At that time, the equilibrium point on branch
(5) is not stable any more. The system moves to the branches
of stable equilibrium points, either (1) or (2).

Recall that each word in the language is consistent with two
grammatical structures and inconsistent with the other two
grammatical structures. Given the symmetry, the equilibrium
states when the model reads the second word ‘B’ (α = 1) can
be inferred from the equilibrium states when the model reads
the first word ‘A’. More specifically, when the model reads the
second word ‘B’, the system forms a different set of branches
of equilibrium points which has the same structure as shown
in Figure 2. At this time, the equilibrium points along branch
(2) evolves into the state representing [S3 D B] and the equi-
librium points along branch (5) evolves into the blend of the
blend of [S1 A B] and [S3 D B]. Equilibrium points on branch
(1) still evolves into the state representing [S1 A B].

Now consider what will happen if the model reads the sec-
ond word ‘B’ at γc. Figure 4 shows three qualitatively differ-
ent cases in incremantal processing.

Case 1 (see path [1] in Figure 4): The model reads ‘B’
when γ1 < γc < γ2; γc = 35 in the current example. While γ

increases from 0 to γc, the state quickly approaches a global
attractor and follows the major branch (see branch (5) in Fig-
ure 2). The state change is indicated by the arrow (annotated
as [1]/[2]) from panel (a) to panel (b) in Figure 4. When the
model reads ‘B’ at γc = 35, the harmony landscape changes
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(a) (b) (c) (d)

Figure 3: Topological change in the harmony landscape (given a first word ‘A’) as γ increases (γ = 20, 25, 35, 70)

abruptly. The previously stable equilbrium state becomes un-
stable so the state moves to a local optimum when α = 1.
It turns out the previous equilibrium point is located inside
the basin of attraction of an equilibrium point along a branch
corresponding branch (1) in Figure 2. The state change is in-
dicated by the arrow (annotated as [1]) from panel (b) to panel
(e). As γ increases further, the new equilibrium point evolves
to the state representing the target structure [S1 A B]; see the
arrow (annotated as [1]) from panel (e) to panel (f). When
small noise is assumed, the model builds the target structure
with certainty.

Case 2 (garden path; see path [2] in Figure 4): The model
reads ‘B’ when γc > γ2; γc = 70 in the example. As in Case 1,
the system reaches the global attractor and follows the mani-
fold of the global attractors in the beginning. However, when
γ passes γ2(≈ 59.6), the equilibrium point on branch (5) loses
its stability. With a small noise, the system moves to a new
equilibrium point, either one on branch (1) or one on branch
(2); see the arrows from panel (b) to panel (c). As suggested
in Figure 3, the system cannot move to other attractors be-
cause they are separted by high energy barriers. When the
model reads the second word at γc = 70, the harmony land-
scape changes abruptly. The attractors (1) and (2) in the top
right panel are located in the basins of attraction of the new
attractors (1) and (2) in the bottom right panel, respectively.
The state will be at either (1) or (2) in the bottom right panel
depending on where the system was (see the arrows from
panel (c) to panel (f). It suggests if the system was following
branch (2) while processing the first word, the system will
build a non-target structure [S2 A C] with the second word in-
put, although it is inconsistent with the bottom-up input. This
case is like the garden path effect in that the system chose one
possibility over the others when it encounters ambiguity.

Case 3 (local coherence; see path [3] in Figure 4): The
model reads ‘B’ when γc < γ1; γc = 20 in the example. As in
Case 1, the system reaches the global attractor and follows the
manifold of the global attractors in the beginning. When the
model reads ‘B’ at γc = 20, the state moves to a new global
optimum; see the arrow [3] from panel (a) to panel (d). As
γ increases, the system follows the major branch of equilib-
rium points (see the arrow from panel (d) to panel (e)) until
γ passes γ2 when the system moves to either a branch lead-

ing to the target structure or a branch leading to a non-target
structure [S3 D B] (see the arrows [3] from panel (e) to panel
(f)). The latter case is an extreme version of the local co-
herence effect; the system failed to use top-down information
(context provided by the first word ‘A’) and relied only on
the bottom-up information to choose the locally coherent but
globally incoherent structure.

[1]/[2]

[1]

[1]

[2b]

[2a]

[2a]
[2b]

[3]

[3]

[3a]

[3b]

α = 0

γ = 20 γ = 35 γ = 70

α = 1

(a) (b) (c)

(f)(e)(d)

Figure 4: Parsing accuracy depends on γc. The arrows indi-
cate the state change expected while the model processes a
sentence ‘A B’ ([1] γc = 35, [2] γc = 70, [3] γc = 20). The
panels in the second and third columns correspond to the re-
gions included in the panels (c) and (d) in Figure 3.

Conclusion
In this study, we investigated how the GSC model handles
temporary ambiguity to parse a sentence successfully in in-
cremental processing. The model considers all structures
consistent with context (the words that the model has pro-
cessed) without choosing one over the others by being at a
stable blend state which can evolve into the possible gram-
matical structures, suggesting the usefulness of the continu-
ous representation space. We point out that the blend state
does not represent a disjunctive set of those structures so
the GSC model is not an implementation of the probabilistic
models. On the other hand, the model rejects the structures
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inconsistent with the input by developing high energy barriers
between attractors.

More importantly, the model explains when and why the
model fails to parse a sentence correctly. When γ increases
too quickly, the model chooses one interpretation over the
other possible ones. When γ increases too slowly, the model
fails to separate globally incohrerent interpretations from
globally coherent ones. The present study suggests that ac-
curate parsing in the GSC model requires an optimal control
of quantization strength γ.
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