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Saliva Liquid Biopsy for Point-of-Care 
Applications
Katri Aro, Fang Wei, David T. Wong and Michael Tu*

School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA

Saliva is a non-invasive biofluid, which is easy to collect, transport, and store. Because of 
its accessibility and connection to systemic diseases, saliva is one of the best candidates 
for the advancement of point-of-care medicine, where individuals are able to easily mon-
itor their health status by using portable convenient tools such as smartphones. There 
are a variety of scenarios with which saliva can be used: studies have been conducted 
on using saliva to measure stress hormones, enzyme levels, developmental disease 
biomarkers, and even cancer mutations. If validated biomarkers were combined with 
high-quality detection tools, saliva would open up a new frontier in high-quality health-
care, allowing physicians and patients to work together for real-time health monitoring 
and high-impact personalized preventative medicine. One of the most exciting emerging 
frontiers of saliva is liquid biopsy, which is a non-invasive means to assess the presence 
and characteristics of cancer in a patient. This article will review current basic knowledge 
of biomarkers, review their relation to different diseases and conditions, and explore 
liquid biopsy for point-of-care applications.

Keywords: saliva, liquid biopsy, point-of-care, biomarker, cancer

iNTRODUCTiON

In the era of new diagnostic methods and treatment options, patient care is rapidly changing. There 
are many new paradigms in the evolution of modern healthcare: the White House has advocated for 
precision medicine, which tailors individualized treatment to the patient (1). Early detection is another 
emerging paradigm, which seeks to decrease patient morbidity and mortality by detecting disease at 
a phase where it is easily treatable. Early detection usually improves the success of treatment, prevents 
complications, and enhances patient prognosis. This is highlighted in common diseases affecting 
large populations such as cardiovascular diseases, diabetes mellitus, and various malignancies, as a 
recent review discusses (2). Precision medicine and early detection merge together with a third major 
paradigm: point-of-care diagnostics. Point-of-care diagnostics is a field of investigation that explores 
technologies that allows patients and health providers to gain actionable medical information rapidly 
and conveniently. Point-of-care diagnostics seeks to achieve “bed-side” diagnosis, removing the time 
delay that is caused by the conventional workflow of collecting samples and transporting them to a 
central lab for testing. The paradigm of point-of-care diagnostics joined to precision medicine and 
early detection paint a compelling vision of the future: one where doctors and patients can use small 
and portable devices to rapidly assess a patient’s health status, catching diseases extremely early and 
allowing ultracustomized treatment based on a patient’s personal characteristics.

One of the most critical questions that must be answered in point-of-care personalized medi-
cine, however, is the question of which biomarkers to use for health monitoring. A biomarker is 
defined as a measurable, objective indicator of an individual’s normal and abnormal physiological 
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FiGURe 1 | Topics to be addressed in this article. Discussion will begin 
with addressing the biology and clinical context of saliva diagnostics and then 
a brief survey of saliva collection and novel detection tools.
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state and indicates any change in that state. If these biomarkers 
are appropriately applied and patients are correctly instructed 
on how to respond to altered biomarker levels, this can be an 
immense benefit to rapid and personalized healthcare. Popular 
examples of well-selected and applied point-of-care biomarker 
tests is the detection of human chorionic gonadotropin in urine 
as a predictor of a woman’s pregnancy status, a test invented in 
1968 and popularized through the off-the-shelf home pregnancy 
test kit (3). Another widely applied point-of-care biomarker test 
is the testing of glucose levels for diabetes monitoring through 
portable glucose meters. These success stories are extremely 
encouraging precedents for personalized point-of-care medicine, 
and physicians and scientists have hoped to widen the research 
of what we can detect at the point-of-care setting. Numerous 
studies have been conducted over the past decades on count-
less diseases, exploring clinically relevant biomarkers for the 
detection and follow-up of pathologies such as oral cancer (4), 
pancreatic cancer (5), lung cancer (6), ovarian cancer (7), and 
breast cancer (8).

Since the dawn of the new millenium, research has paved 
the way for demonstrating that saliva is a highly viable biofluid 
for diagnostic application. Saliva includes various components, 
including DNA, RNA, proteins, metabolites, and microbiota. 
Saliva, as an inexhaustible biofluid, provides real-time data of 
the patient’s health status with a variety of possible translational 
applications. Saliva collection is straightforward, easily accessible 
and repeatable, and non-invasive. Moreover, the patient can 
provide the sample independently, even at one’s home without 
any extensive equipment and handling. In this targeted review, we 
present current knowledge and future aspects of utilizing saliva 
as a reliable biofluid for disease-specific biomarker development, 
describe some existing methods that have been advocated for 
being useful for the point-of-care context (Figure  1), with an 
extended exploration of the electric field-induced release and 
measurement (EFIRM) method.

SALivARY BiOMARKeRS

In performing assessment of whether saliva biomarkers can be 
applied to clinical practice and used for diagnostic purposes, 
some key obstacles must be overcome. First, it must be credibly 
demonstrated that there are targets that are present in the salivary 

milieu that can be linked to a distal disease. Second, biomarker 
tests are not always perfectly accurate, and the scientific commu-
nity is discussing how to best address the issue of false positives or 
false negatives. The only way to address this question is through 
a rigorous biomarker discovery process and a rigorous statistical 
validation of that biomarker. Third, a biomarker must not only 
be discovered and validated, but there must be also a credible 
mechanistic demonstration of constituents from a distal disease 
being transported to the oral cavity. While research is still being 
actively conducted to try to address these three key obstacles, 
much progress has been made.

Work by Li et al. (9) successfully discovered and analyzed the 
salivary transcriptome in 2004 in cell-free saliva, paving the way 
for further studies and explorations of extracellular nucleic acid 
targets. Hu et al. (9) also successfully performed proteomic profil-
ing of the saliva. Further investigation over the past few years has 
also allowed scientists to elucidate the role of micro-ribonucleic 
acids (miRNAs) in saliva. miRNAs are single-stranded, non-
coding RNAs, which in humans play a crucial role in cell dif-
ferentiation, cell cycle progression, stress response, and apoptosis. 
miRNAs have a role in carcinogenesis and have been identified 
as potential biomarkers in different malignancies (10), including 
nasopharyngeal carcinoma (NPC) (11). A recent review outlines 
several aberrantly expressed miRNAs in NPC, which can be used 
as diagnostic and prognostic biomarkers and also as possible 
therapeutic targets (11). When the miRNA expression profile 
in NPC and furthermore in other malignancies has been fully 
understood, early diagnosis and even screening of the disease 
may become a reality. These earlier studies beginning in 2004 and 
recent studies help pave a way to saliva being a useful diagnostic 
medium for a variety of contexts:

 1. Systemic diseases: many studies have been published to link 
salivary transcriptomic profiles to diseases affecting large 
populations: acute myocardial infarction (12–15), diabetes 
mellitus (16), Sjogren’s syndrome (17), developmental issues 
concerning premature neonates (18), cystic fibrosis (19, 20), 
and Parkinson’s disease (21–23). Based on a pilot study, matrix 
metalloproteinases may show elevated levels in saliva among 
patients with oral vesiculoerosive diseases acting as potential 
diagnostic markers or therapeutic targets (24). The use of 
saliva to detect cardiac troponin in patients showing suitable 
symptoms has been studied (12), but need further validation. 
In addition, salivary biomarkers have been studied among 
certain cancers, e.g., oral (4, 25), breast (8), pancreatic (5), 
ovarian (7), melanoma (26), gastric (27), and lung cancers 
(26).

 2. Oral hygiene and periodontal disease: saliva also has an imme-
diate effect on general hygiene and healthcare. Specifically, 
saliva has protective influence on dental structures and oral 
mucosa while containing several antibacterial components and 
buffering capacity. The composition of saliva varies according 
to a number of factors such as genetics, oral hygiene, general 
health, medication in use, tobacco use, alcohol consumption, 
and any previous treatment that might affect salivary gland 
function (e.g., surgery, radiation therapy). Cariogenic bacteria 
produce acids and lead eventually to caries (28). Periodontitis 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


3

Aro et al. Saliva Liquid Biopsy Applications

Frontiers in Public Health | www.frontiersin.org April 2017 | Volume 5 | Article 77

is a chronic inflammation of the periodontium. It is caused 
by persistent bacterial infection, which can lead to the loss of 
supportive material to the teeth, and it has currently high 47% 
prevalence in the adult population (29). The clinical diagnosis 
of periodontitis depends on time-consuming measurements, 
and the diagnosis is often delayed due to the lack of clear 
symptoms. As both caries and periodontitis can lead to tooth 
loss, the importance of preventive measures and early detec-
tion turn out as of high importance. Not only do these actions 
benefit individuals but also they are cost-effective. Ji and Choi 
(30) present in a recent review future insights to validate 
salivary biomarkers for the early diagnosis of periodontitis. 
Microbial DNA constitutes 30% of the salivary genome, leav-
ing the rest 70% to be of human origin (31).

 3. Pharmacotherapy: saliva can also be utilized in monitoring 
therapeutic drug level and treatment responses, for example, 
in persons with epilepsy (32). Furthermore, saliva may act as 
a monitoring tool, for example, to assess the levels of nicotine 
and cotinine in subjects who smoke (33, 34), to determine 
the possibility of drug abuse (35), and to excessive alcohol 
consumption (36).

These studies that have examined salivary constituents in 
disease coupled with mechanistic examination of the relationship 
of saliva with distal diseases (such as demonstrated by Lau et al. 
(37) for pancreatic cancer) show that obstacles to salivary testing 
for disease are steadily being eroded, and it may be only a matter 
of time before we have multiple thoroughly vetted biomarkers in 
saliva.

AN eMeRGiNG FRONTieR: LiQUiD 
BiOPSY AND CiRCULATiNG CeLLS  
AND DNA

In the quest to advance the state of the field in point-of-care cancer 
diagnostics, a recent push has been in the field of liquid biopsy, 
which seeks to provide a convenient method of diagnosing and 
identifying cancer types from biofluids, instead of conventional 
biopsy of tissue samples. The latter carries limitations in regards 
to tumor heterogeneity and also provides information only from 
the time of tumor sampling without the possibility for continuous 
sampling, which is more easily accomplished with liquid biopsies. 
Biofluid testing may also provide significant means for early 
detection when the disease shows no other clinical signs that 
would be visible or detectable. There are a few notable constitu-
ents that have been linked to cancer, which are targeted in the 
biofluid: the first notable constituent that has been targeted for 
liquid biopsy is the circulating tumor cells (CTCs) which are shed 
by the primary tumor into the bloodstream. The second notable 
constituent that has been targeted by liquid biopsy is circulating 
tumor DNA (ctDNA), which can be extracted or detected from 
a biofluid.

Many promising analyses of CTCs have developed, as 
outlined in a recent review (38). The utilization of a variety 
of techniques is diverse, ranging from mechanical techniques 
that can isolate CTCs based on the unique physical proper-
ties of cells to molecular techniques that isolate based on the 

surface markers of a tumor (39). However, concerns about 
their effectiveness exist due to the low concentrations of CTCs 
among blood cells, which means that either a large volume 
of sample may be required to be passed through an isolation 
system or an ultrasensitive method for detecting these cells be 
used. A further issue of CTC purification and testing for cancer 
diagnostics is the fact that CTCs possess heterogeneity, and as 
a result, the tumor cells isolated from a biofluid specimen may 
possess genetic alterations that do not accurately reflect the 
genetic profile of a primary tumor (38).

The second major constituent considered for liquid biopsy, 
ctDNA, is also being actively investigated with the hope that 
the obstacles typically present in CTCs would be minimized by 
targeting ctDNA instead. As opposed to the various purification 
techniques that require high sample volumes and specialized 
equipment, ctDNA targets can simply be isolated through 
traditional DNA extraction methods (40). On a clinical level, it 
should also be noted that ctDNA may also aid in other molecular 
diagnostics besides cancer, inasmuch as concentrations of circu-
lating cell-free DNA can furthermore indicate several conditions 
besides cancer, such as autoimmune diseases, stroke, sepsis, 
trauma, and myocardial infarction (41, 42).

Both CTC and ctDNA targets for cancer profiling offer various 
advantages and disadvantages, and while there is no definitive 
answer regarding the future of liquid biopsy diagnostics, in 
general, it can be stated that ctDNA has had a greater ascendency 
in recent years since it is simpler to work with (inasmuch as it 
does not require the usage of specific extraction methods such 
as beads or microfluidics to achieve separation from a biofluid 
sample) (43). It should also be noted that much of the biology 
behind CTC and ctDNA is also under investigation for their 
precise relationship with distal cancers. For example, for ctDNA, 
it is hypothesized that they are stably found in biofluids because 
they are encapsulated in extracellular vesicles (EVs), which are 
membrane-bound structures and are released by cells into the 
circulation. Preliminary mechanistic studies, for example, have 
found that pancreatic cancer exosomes have been found to be 
transported to the oral cavity in a mouse model (37). If the links 
between distal cancers and the oral cavity can be thoroughly 
vetted and validated through investigation, it can help further 
our ability to precisely, effectively, and non-invasively diagnose 
cancers through bodily fluids.

SALivA’S ReLATiON TO viRUS-
ASSOCiATeD HeAD AND NeCK CANCeRS

With the recent push for liquid biopsy and our constantly pro-
gressing understanding of salivary biomarkers, it seems logical 
that saliva liquid biopsy will be a logical next step. One such can-
cer that seems highly relevant for salivary testing is head and neck 
cancer. The estimated incidence of head and neck cancer is rising 
with nearly 690,000 new cases annually (44). Most of these are 
squamous cell carcinomas (SCCs), and 50% of the patients recur 
locally or at a distant site, which leads to a dismal median survival 
of less than a year (45). Most oropharyngeal cancer (OPC) cases 
in the Western World are caused by human papilloma virus 
(HPV), especially type 16 (46), and the incidence seems to be 
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increasing (47) also among elderly (48). The prevalence of HPV 
infection in the healthy population is approximately 7%, of which 
1% is attributed to HPV type 16 (49), without necessarily carrying 
an increased risk for developing a subsequent cancer. The reason 
why the prevalence among men is three to five times higher than 
in women (49, 50) needs further elucidation, but it is clear that 
HPV-induced OPC is male predominant (51). Individual’s capac-
ity to eliminate their HPV infection without any further disease 
burden and furthermore a relatively low incidence of OPC have 
decreased the need and efforts to screen for this cancer. The 
US Centers for Disease Control and Prevention (52) presents 
still low HPV vaccination coverage figures in the US, although 
14 million people are infected with HPV annually (52), carry-
ing an increased risk for cervical cancer, anal cancer, and OPC. 
Despite the currently available HPV vaccine that targets also 
the oncogenic type 16, other HPV types and species have been 
advocated for developing OPC (53). Detecting HPV in saliva, 
which would serve as a biomarker, has gained much interest as 
its use in diagnostics and follow-up among these patients would 
be beneficial (54, 55), although the sensitivity in OPC needs 
improvement. Early detection of OPC would result in the pos-
sibility to single-modality treatment without exposing the patient 
to the toxicity and later side effects of oncological treatment. This 
aspect of treatment de-escalation among HPV-positive OPC is 
under research (56).

This emerging knowledge regarding liquid biopsy and bio-
marker targets may have radical implications for point-of-care 
saliva testing in our management of head and neck cancers. 
The Cancer Genome Atlas data report TP53, PIK3CA, FAT1, 
and CDKN2A as key mutations in head and neck SCCs (57). 
In concordance with these findings, Bettegowda et  al. (58) 
reported that in plasma samples, approximately 70% of head 
and neck SCCs show detectable ctDNA mutant fragments, and 
Lebofsky et  al. (59) concluded that the mutational profile of 
a tumor from a biopsy was consistent with ctDNA in 97% of 
cases. Furthermore, among these forms of cancers, Wang et al. 
(55) showed saliva to serve as a diagnostic medium for DNA 
detection. Epstein–Barr virus (EBV) has also been linked to 
NPC (60). NPC shows distinct geographical variation, as it is 
more common in Southeast Asia and Southern China. NPC 
is difficult to diagnose in its early stages due to the anatomi-
cal location, and while it carries high metastatic potential, it 
typically responds well to treatment. Still, despite treatment 
improvements over the years, worldwide NPC causes 50,000 
deaths annually (61). A study showed 95% of NPC patients to 
show EBV-DNA in plasma correlating with the activity of the 
disease (62), a tendency also shown by others (63). It seems 
evident that surveillance of patient’s EBV levels may aid in the 
follow-up of patients with NPC. But the concern still remains 
for early-stage diagnostics.

POiNT-OF-CARe APPLiCATiONS AND 
FUTURe OF SALivARY DiAGNOSTiCS

As the basic knowledge regarding salivary biomarkers grows and 
the landscape of modern medicine advances, it is evident that 

salivary biomarkers will improve efficient clinical workflow. The 
capstone of any successful biomarker study is that the appropriate 
implantation of the biomarker test is a streamlined workflow for 
two important steps in a clinical workflow: sample collection and 
sample detection.

Sample Collection: Methods of Collecting 
and Processing Saliva
While saliva is on the whole primarily water, there are still many 
constituents such as mucins, proteins, and enzymes that have 
the potential of interfering with test performance. Successful 
analysis of the salivary components requires an optimized pro-
cess for sample collection, processing, and storage procedures. 
Partly due to diurnal variation, it is imperative that all these 
aspects are stable between various collection and analyzing 
points, especially when testing the same individual at different 
time points. Also, the consistency of saliva may alter within a 
person and between persons, which needs to be considered 
when detecting and validating possible new salivary biomarkers. 
If not correctly addressed, poor application of collection and 
sample processing can be particularly detrimental to the devel-
oping world, where resources for sample collection, diagnostic 
laboratory tests, and treatment are even more limited compared 
to an industrialized nation, and diagnostic tools with inadequate 
trained personnel may result in further misdiagnosis and mal-
practice. In a research performed in University of California, 
Los Angeles (UCLA), it has been established that the processing 
of collected saliva samples from patients should be performed 
within an hour of collection into a collection tube (64). After 
collection of the salivary sample from a patient, centrifugation 
is performed to separate cells from the saliva: the supernatant 
is clearly formed after centrifugation, separated from the pellet 
of cells from the whole saliva, and then stabilizing agents are 
added to these separated samples and are stored at −80°C for 
long-term preservation (64).

However, recent studies in salivary testing systems seem to 
show that saliva in the future may be more and more easy to 
collect, store, and transport. An example of this is in the RNA-
Prosal, which consists of an absorbent that can be inserted into 
the mouth to collect saliva, and a filtered nozzle, which allows 
removal of cellular debris and salivary mucins that may disrupt 
biodetection (65). The study conducted in this work found that 
a streamlined collection and filtration unit was comparable to 
a conventional lab-based collection and centrifugation system. 
This is encouraging evidence that collection and processing issues 
that might be present in saliva diagnostic methods can be solved 
soon.

Sample Detection: Techniques and Tools 
for Point-of-Care Salivary Biomarker 
Detection
Inasmuch as the field of biomarkers for saliva is vast, diverse, 
and everdeveloping, a wide stream of development that parallels 
investigations into useful biomarkers is the development of tools 
for point-of-care testing in saliva. One of the key requirements 
of this field for a tool is that it be appropriately designed to 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


5

Aro et al. Saliva Liquid Biopsy Applications

Frontiers in Public Health | www.frontiersin.org April 2017 | Volume 5 | Article 77

accommodate for the salivary matrix, which may have molecular 
constituents in a lower concentration than in other traditionally 
used biofluids. Various strategies have been taken to meet this 
requirement: some tools have molecule capturing and quantifica-
tion techniques that allow them to have higher sensitivity than 
traditional tools, while some tools take steps to extract and enrich 
the amount of target molecules. This is an exciting field of salivary 
diagnostics that captures imagination. Many of these tools offer 
the promise of making personalized healthcare easily accessible 
to all patients. Some key technologies that are related to this are 
discussed below.

Photometric
Shetty et  al. (66) presented in their study a portable biosensor 
to test salivary alpha-amylase, indicating sympathetic nervous 
system activity and showing individual’s stress level. The saliva 
collector is placed under the tongue to be saturated with saliva 
and then alpha-amylase reacts with a chemical with a change of 
color, which can be read with a portable optical readout device, 
all within 30 s. The complementary metal oxide semiconductor in 
smartphone cameras allows its detection of chemiluminescence 
(67). In addition, the vast processing and storing capacity in 
today’s smartphones could enable its use in self-made assays 
and monitoring, reporting results online. Zangheri et  al. (67) 
developed a chemiluminescence imaging system utilizing a 
smartphone camera to quantify cortisol level in human saliva. 
The test requires a limited amount of saliva collected with a swab, 
and test results are available in 30 min. Carrio et al. (68) showed a 
drug-of-abuse detection test using smartphones, integrated with 
a lateral flow assay system. The possibilities for a smartphone 
in translational and point-of-care applications are tremendous, 
limiting the need for regular visits to health care providers and 
therefore also decreasing costs.

Electrochemical
Electrochemistry utilizes the specific electrical reactions or 
byproducts that result from a biological reaction and quantifies 
them to make an assessment of the biological state. Beginning 
with the advent of the Clark glucose electrode, which allowed 
the measurement of glucose levels by having blood glucose 
react with glucose oxidase, electrochemical techniques have 
been actively explored as a solution to aiding the management 
of diseases. This has been explored in the field of salivary 
diagnostics: Zhang et  al. (69) presented a smartphone-based 
analysis of salivary alpha-amylase, providing quantitative 
results in 5  min. They showed positive correlation with the 
physiological state of the patients. These are compelling point-
of-care tests with minimal effort regarding sample collection 
and processing, rapid readout, and data collection. Singh et al. 
(70) review exploratory studies of salivary cortisol levels, and 
Lee and Compton (71) also explored the usage of electrochem-
istry and novel carbon nanotubes for the detection of salivary 
biomarkers. These studies appear primarily to be tentative 
proof-of-concept examinations of salivary biomarkers and 
their potential for electrochemical, but they serve as examples 
in applying the field of electrochemistry to biodetection in 
saliva. The appeal of electrochemistry is that inasmuch it is 

mediated through only circuits and biochemical reactions; 
electrochemical devices can be easily miniaturized and still 
highly sensitive.

Electronic Nose
Using a wide variety of technologies such as metal oxide gas sen-
sors or mass spectroscopy (72), electronic nose technology seeks 
to be able to capture volatile compounds in the air that may be 
related to a particular pathology. Fend et  al. (73), for example, 
performed an initial investigation on the feasibility of detecting 
tuberculosis from the constituents of sputum samples that went 
into the air, comparing the results of electronic nose detection 
with traditional culture-based methods of assessment. Shih et al. 
(74) have also conducted studies on whether these electronic nose 
technologies can be used in a real-time detection scenario. While 
there seems to be a need for this branch of field to further advance 
in regards to practical oral point-of-care devices on relevant 
biomarkers, it seems that electronic nose technology has the 
potential to be used in portable investigations, as demonstrated 
by the work by Roine et al. (75).

Microfluidics
The field of microfluidics involves the microscale manipulation 
of fluids through small channels. This field of study is typically 
integrated with other biodetection methods, but it possesses high 
potential because it can be used for specialized manipulation of 
samples in a way to concentrate or extract the specific components 
of saliva that may be related to a disease. Examples of microfluidic 
technologies include the optoelectronic and microfluidic system 
developed by Zilberman and Sonkusale (76) for the detection of 
stomach cancer biomarkers, which allowed for unfiltered saliva to 
be analyzed for ammonium and carbon dioxide levels, which are 
correlated to the presence of Helicobacter pylori in the stomach. 
Another notable example that bodes well for the future of point-
of-care diagnostics is the platform developed by Chen et al. (77) 
for the detection of bacterial pathogens, which allows saliva to be 
collected on a sample and then run through a miniaturized unit 
that can automate all the nucleic extraction, polymerase chain 
reaction (PCR) amplification, and detection steps for easy detec-
tion of pathogens.

All of these core technologies have been combined and used 
in creative fashions through multiple proof-of-concept studies, 
all with the goal of making biodetection as sensitive and efficient 
as possible. The various proofs of concepts displayed by the sci-
entists and engineers who utilize these technologies show that a 
future where rapid detection of salivary biomarker targets at the 
point of care is possible.

eFiRM: THe iNTeGRATiON OF SALivARY 
BiOMARKeRS AND eFFiCieNT 
BiODeTeCTiON

One of the most exciting recent proof-of-concept studies of point-
of-care biomarker testing in saliva is work that has come out of 
research at UCLA. This work is a liquid biopsy technique called 
EFIRM. It is an electrochemical detection technique that utilizes 
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a system of immobilized probes and readout enzymes to capture 
biomarker targets directly from saliva. Electric fields can facilitate 
nucleic acid hybridization (78, 79), and EFIRM is based on this 
principle (80), allowing selective hybridization of sequences to 
probes (81). After the active hybridization capture of a nucleic 
acid sequence in the biofluid is performed, a specific detector 
probe with a fluorescein label is hybridized to the remaining, 
unbound mutation sequence. At the last step, oxidation and 
reduction reactions are generated with a reporter enzyme and 
tetramethylbenzidine-based substrate solution. These reactions 
occur at the surface of the electrode, and the measure is used to 
quantify the detectable target sequence (82). If the ctDNA is cap-
tured in an EV and potentially difficult to access, EFIRM has also 
been shown to be able to be used for lysing the EV before the DNA 
inside it degrades (80). When performed, the EFIRM process can 
be performed rapidly in less than 30 min from a sample of saliva 
in a point-of-care fashion. Current versions of EFIRM require the 
use of power from wall outlets, but the method is simple enough 
to be used in a field setting with minimal equipment and battery 
power.

This EFIRM technology sets an exciting precedent for the 
future of point-of-care salivary diagnostics because of its high 
accuracy. A recent blinded study conducted by Wei et al. (83) 
explored the detection of epidermal growth factor receptor 
(EGFR) mutation in saliva among patients with non-small cell 
lung cancer with EFIRM technology. Targeting these EGFR 
mutations that are related to lung cancer, EFIRM was able to 
accomplish an astounding sensitivity and specificity of over 95% 
in a cohort of lung cancer patients, distinguishing the genetic 
makeup of cancers from a biofluid sample. The application of 
EFIRM shows many of the ideals that scientists and engineers 
have hoped for in a point-of-care saliva system: the biomarker 
selected was extremely correlated to a cancer state, the biode-
tection system was able to perform with high sensitivity and 
specificity, and detection was able to be rapidly (<30 min) per-
formed with a minimal amount of sample (<200 μL of saliva or 
plasma sample). Aside currently used PCR-based technologies 
for oncogene mutation detection, EFIRM offers the possibility 
to detect biomarkers from biofluids more efficiently with less 
workload. Without the need for DNA extraction and nucleic 
acid sequence amplification, EFIRM can perform an analysis 
of the mutation status rapidly in less than an hour. This is vital 
when considering a reliable objective measure for point-of-care 
applications. Currently, in most cases, the mutational status in 
a patient is known only after analyzing a tissue specimen. To 
obtain that, one needs to perform invasive procedures. Also, 
when monitoring treatment response, and possible recurrences, 
time is the issue. Sequential saliva sample collection is far 
more rapid and cost-effective than, e.g., imaging. Also, current 
imaging modalities are not able to detect small tumor volumes 
or micrometastases preceding clinically evident lesions. As a 
proof of principle, a pilot study conducted in 17 patients with 
non-small cell lung cancer showed that saliva assays conducted 
using EFIRM perform accurately, non-invasively, and rapidly 
compared with biopsy tissue-based testing for EGFR mutation 

status and can be used in continuous monitoring during treat-
ment (84). If the results of EGFR can be further extended, it will 
show that point-of-care salivary diagnostics are realities that we 
may see very soon.

These preliminary results presented by EFIRM are promis-
ing demonstrations. In order to further our understanding of 
diagnostics, it appears that the reasonable next step would be 
to run direct comparisons between EFIRM and other possible 
point-of-care techniques. For example, microfluidics possesses 
novel opportunities for purifying and isolating constituents 
from biofluids, and if microfluidic techniques for biodetection 
were compared with EFIRM on the same batch of samples, it 
would be a helpful study for assessing the relative merits of each 
point-of-care technology. Similarly, to assess EFIRM’s viability 
as a diagnostic tool in general, comparison studies could also be 
conducted of EFIRM with the gold standard methods of detect-
ing ctDNA targets (e.g., droplet digital PCR or next-generation 
sequencing). These gold standard methods for detection are the 
techniques for detection that have been the most robustly tested 
on large clinical cohorts, but typically require the purification–
extraction of DNA from large volumes of biofluid specimens. 
EFIRM’s feasibility and robustness as a method would be best 
confirmed by a definitive trial using both EFIRM and a gold 
standard method in parallel.

CONCLUSiON

This brief overview of the current knowledge of salivary biomark-
ers and their future role in point-of-care applications demon-
strates the need for more advanced technologies. Since it is shown 
that liquid biopsy and saliva as a media for biomarker detection 
are suitable and desirable, the efforts to improve the sensitivity 
of detection are in demand. EFIRM-based liquid biopsy can 
bring high-sensitivity detection on a relevant biomarker with 
an extremely streamlined protocol, and as a result, point-of-care 
diagnostics seem like an exciting reality that is coming soon. 
There is much work to be done in all the facets of salivary research 
(i.e., biomarker discovery, biodetection methods), but the future 
seems closer than ever!
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