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ABSTRACT OF THE DISSERTATION

On the Effects of Network Structure on the Achievable Rates for Multiple Unicasts

By

Chun Meng

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2014

Associate Professor Athina Markopoulou, Chair

In this dissertation, we consider the problem of multiple unicast sessions over directed acyclic

graphs. Although characterizing the rate region of inter-session network coding is a well-

known open problem, we consider three particular network models. We design schemes,

characterize the rates they achieve, and highlight the relation between achievable rates and

network structure.

First, we consider networks, where the core is simple and all intelligence lies at the edge. Each

intermediate node can only perform random linear network coding. We apply a precoding-

based inference alignment technique at the edge, and refer to it as precoding-based network

alignment (or PBNA). This approach combines the simplicity of RLNC in the core of the

network with the guarantees of alignment (rate 1/2 per session). We observe that network

structure may introduce dependencies, which we refer to as coupling relations, between ele-

ments of the transfer matrix, which might affect the achievable rate of PBNA. We identify

the minimal set of such coupling relations, and we interpret them in terms of network struc-

ture properties. We also present polynomial-time algorithms to check the existence of these

coupling relations on a given directed acyclic graph.

Second, we consider networks, where each node can perform linear network coding (not

necessarily random). We propose a constructive method: (i) the unicast sessions are first

xi



partitioned into multiple disjoint subsets of unicast sessions; (ii) each subset of unicast

sessions is then mapped to a multicast session, for which a linear network coding scheme is

constructed. Together, these serve as a linear network coding scheme for the original multiple

unicast sessions, which we refer to as the multicast-packing coding scheme (MPC). We show

that the rate region of MPC is characterized by a set of linear constraints. We also propose

a practical simulated annealing algorithm for approximating the optimal performance of

MPC. Using simulations, we demonstrate the benefits of MPC as well as the efficiency of

the simulated annealing algorithm.

Third, we consider networks, where each node can perform network coding (linear or non-

linear) or simple routing. There exist networks, for which network coding doesn’t provide

any benefit over routing, which we refer to as routing-optimal networks. We identify a class

of routing-optimal networks, which we refer to as information-distributive networks, defined

by three structural features. We show that information-distributive networks don’t subsume

all routing-optimal networks. We present examples of information-distributive networks,

including some examples from index coding and a single unicast session with hard deadline

constraints.

xii



Chapter 1

Introduction

1.1 Overview of Network Coding

Network coding was first proposed as an alternative transmission method to routing scheme

[1]. In a network coding scheme, in addition to simply replicating and forwarding received

data, each node in the network can perform coding operations on the data it receives. Com-

pared with routing, network coding provides more flexibility to utilize network resources, and

thus more opportunities to enhance the performance of the network. It was shown that for

a single multicast, network coding scheme can achieve better transmission rate than routing

scheme [1]. It was also shown that network coding scheme usually incurs lower cost than

routing scheme, when both transmission schemes achieve the same rate [2]. Some researchers

showed that network coding can increase the power-efficiency of wireless networks [3, 4].

According to the types of coding operations performed by the nodes in a network, network

coding schemes can be classified into two classes, i.e., linear network coding schemes and

non-linear network coding schemes. In a linear network coding scheme [5, 6], the symbols

transmitted along each edge are treated as elements from a finite field; at each node, the

1
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(b) Nonlinear network coding
scheme

Figure 1.1: Illustration of linear and non-linear network coding schemes. In the above figures,
X is a symbol generated by u, and Yau, Ybu, Yuv denote the symbols transmitted along the
edges (a, u), (b, u), (u, v) respectively. In a linear network coding scheme, as shown in (a),
X, Yau, Ybu, Yuv belong to a finite field Fq, and Yuv is a linear combination of Yau, Ybu and X,
Yuv = α1Yau + α2Ybu + βX, where α1, α2, β ∈ Fq. In a nonlinear network coding scheme,
as shown in (b), X, Yau, Ybu, Yuv belong to a finite alphabet Σ (not necessarily a finite field),
and Yuv is an arbitrary function (not necessarily linear combination) of Yau, Ybu and X,
Yuv = f(Yau, Ybu, X).

symbols transmitted along an outgoing edge are linear combinations of the symbols received

and generated (in case the node is a sender) by the node. In contrast, in a non-linear network

coding scheme [1], the symbols transmitted along each edge are treated as elements from

a finite alphabet (not necessarily a finite field), and at each node, the symbols transmitted

along an outgoing edge can be any arbitrary functions (not necessarily linear combinations)

of the symbols received and generated by the node. An illustration of these two network

coding schemes is presented in Fig. 1.1.

The fundamental network coding problem is to characterize the rate region achieved by

network coding schemes (linear or non-linear) for various transmission scenarios, e.g., single

multicast and multiple unicasts, and design network coding schemes that achieve the rate

region. The research work on this problem can be roughly grouped into two categories,

i.e., intra-session network coding schemes and inter-session network coding schemes. In

the followings, we will introduce these two categories of network coding schemes, and briefly

review related work.
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1.1.1 Intra-Session Network Coding

In an intra-session network coding scheme, only symbols from the same sender can be coded

together. We will present an example of intra-session network coding scheme.

Example 1.1.1. Consider the network as shown in Fig. 1.2, where each edge has capacity of

one, and represents a delay-free and error-free channel. There exist two multicast sessions:

s1 → {d1, d2} and s2 → {d3, d4}, i.e., d1 and d2 both require the symbols sent by s1,

and d3 and d4 both require the symbols sent by s2. Assume si (i = 1, 2) transmits three

symbols X
(1)
i , X

(2)
i , X

(3)
i , all of which belong to the binary field F2. The transmission process

continues for two time slots. For an edge (p, q), let Y
(t)
pq denote the symbol transmitted

along (p, q) during time slot t. The network coding scheme for the first time slot is: Y
(1)
s1a =

Y
(1)
ab = Y

(1)
ad1

= X
(1)
1 , Y

(1)
s1u = Y

(1)
ub = Y

(1)
uv = Y

(1)
vd2

= X
(2)
1 , Y

(1)
bc = Y

(1)
cd1

= Y
(1)
cd2

= X
(1)
1 + X

(2)
1 ,

Y
(1)
s2h

= Y
(1)
hf = Y

(1)
fg = Y

(1)
hd4

= Y
(1)
gd3

= Y
(1)
gd4

= X
(1)
2 , and the other edges transmit zeros.

Apparently, d3, d4 both receive X
(1)
2 . Since d1 receives X

(1)
1 and X

(1)
1 +X

(2)
1 along (a, d1) and

(c, d1) respectively, it can decode both X
(1)
1 , X

(2)
1 . Similarly, d2 can also decode X

(1)
1 , X

(2)
1 .

The network coding scheme for the second time slot is: Y
(2)
s1a = Y

(2)
ab = Y

(2)
ad1

= Y
(2)
bc =

Y
(2)
cd1

= Y
(2)
cd2

= X
(3)
1 , Y

(2)
s2u = Y

(2)
uf = Y

(2)
uv = Y

(2)
vd3

= X
(2)
2 , Y

(2)
s2h

= Y
(2)
hf = Y

(2)
hd4

= X
(3)
2 ,

Y
(2)
fg = Y

(2)
gd3

= Y
(2)
gd4

= X
(2)
2 + X

(3)
2 , and the other edges transmit zeros. Thus, d1, d2 both

receive X
(3)
1 , and d3, d4 both decode X

(2)
2 , X

(3)
3 . Clearly, the above network coding scheme

achieves a rate of 3
2

for each multicast session. �

Remark. In the above example, since the symbols from different senders cannot be coded

together, (u, v) can only transmit the symbols sent by either s1 or s2, but not linear combi-

nations of the symbols sent by them. Also note that both (s1, d3) and (s2, d2) are not used in

this network coding scheme. This is because the receivers only receive linear combinations

of the symbols sent by the same sender, and thus, the symbols transmitted along these two

edges cannot help the receivers decode their required symbols.
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Figure 1.2: Intra-session network coding vs. inter-session network coding. In the figure,
each edge has capacity of one, and represents a delay-free and error-free channel. There are
two multicast sessions: s1 → {d1, d2} and s2 → {d3, d4}. The maximal symmetrical rate
achieved by an intra-session network coding scheme is 3

2
, whereas an inter-session network

coding scheme achieves a symmetrical rate of two, which is 30% better than the optimal
intra-session network coding scheme.

The intra-session network coding problem is greatly simplified by the constraint that only

symbols from the same sender can be coded together. As shown in [1, 6], the rate region

of intra-session network coding scheme (linear or nonlinear) can be characterized by the

minimum cut bounds. Using the duality between minimum cut and maximum flow, the rate

region can be easily calculated by simple linear programming technique [7, 8]. Moreover, it

is known that linear network coding scheme is sufficient to achieve the whole rate region

of any (linear or nonlinear) intra-session network coding schemes [5]. Either a centralized

polynomial-time algorithm [9] or distributed approaches [10, 11] can be used to find such a

network coding scheme in an efficient manner.

1.1.2 Inter-Session Network Coding

In contrast to intra-session network coding schemes, in an inter-session network coding

scheme, both symbols from the same sender and those from different senders can be coded
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together. As we will show below, for some networks, intra-session network coding schemes

are unable to unleash the full potential of the network, and inter-session network coding

schemes can achieve better rates than intra-session network coding schemes.

Example 1.1.2. We reconsider the example as shown in Fig. 1.2. Using the linear pro-

gramming formulations presented in [7], it can be verified that the maximum symmetrical

rate achieved by intra-session network coding schemes for the two multicast sessions is 3
2
,

i.e., using intra-session network coding schemes, each sender can send at most three symbols

to their corresponding receivers in two time slots. We will show that inter-session network

coding can achieve a symmetrical rate of two for the two multicast sessions, i.e., each sender

can send four symbols to their corresponding receivers in two time slots, which is 33% better

than the optimal intra-session network coding scheme. Let X
(1)
i , X

(2)
i denote the two symbols

sent by si (i = 1, 2). The network coding scheme is as follows: Ys1a = Yab = Yad1 = X
(1)
1 ,

Ys1u = Yub = Ys1d3 = X
(2)
1 , Ybc = Ycd1 = Ycd2 = X

(1)
1 + X

(2)
1 , Ys2h = Yhf = Yhd4 = X

(1)
2 ,

Ys2u = Yuf = Ys2d2 = X
(2)
2 , Yfg = Ygd3 = Ygd4 = X

(2)
1 +X

(2)
2 , Yuv = Yvd2 = Yvd3 = X

(2)
1 +X

(2)
2 .

Note that in this network coding scheme, (u, v) transmits X
(2)
1 + X

(2)
2 , which is a linear

combination of the symbols sent by s1 and s2, whereas in the intra-session network coding

scheme constructed in Example 1.1.1, (u, v) transmits uncombined symbols X
(2)
1 and X

(2)
1 .

Similar to Example 1.1.1, d1 can decode both X
(1)
1 and X

(2)
1 . Upon reception of X

(2)
1 +X

(2)
2

and X
(2)
2 , d2 decodes X

(2)
1 . Together with X

(1)
1 + X

(2)
1 that is received along (c, d2), it then

decodes X
(1)
1 . Likewise, both d3 and d4 can decode X

(1)
2 , X

(2)
2 . Clearly, the above network

coding scheme achieves a symmetrical rate of two. �

Remark. In the inter-session network coding scheme constructed in the above example, both

(s1, d3) and (s2, d2) are useful, because they help d2 and d3 decode their required symbols

from the combined symbol Yuv. In contrast, as shown in Example 1.1.1, these two edges are

useless in any intra-session network coding schemes, because the symbols transmitted along

these two edges come from different senders, and cannot help the receivers to decode their
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required symbols in any intra-session network coding scheme. This suggests that inter-session

network coding schemes are more efficient in utilizing network resources than intra-session

network coding schemes.

However, allowing symbols from different senders to be mixed together makes the problem

of characterizing the rate region of inter-session network coding schemes significantly dif-

ficult. For example, it is known that there are networks with multiple unicasts for which

linear network coding scheme1 can achieve arbitrarily better rate than routing schemes [12].

However, the rate region of linear network coding schemes for the general multi-sender and

multi-receiver transmission scenarios is still unknown except for simple networks. Moreover,

there exist networks for which nonlinear network coding schemes achieve better rate than

linear network coding schemes [13, 14]. Thus, in general, nonlinear network coding should

be considered in order to fully utilize network resources. The consideration of nonlinear net-

work coding makes the network coding problem even more challenging, because the coding

operations in a nonlinear network coding scheme are literally unlimited. Most of recent ap-

proaches to characterizing the rate region of nonlinear network coding schemes employ tools

from information theory. For example, in [15], the authors proposed to use Shannon-type

information inequalities to approximate the rate region of nonlinear network coding schemes.

However, it was later pointed out that there are networks for which non-Shannon-type infor-

mation inequalities provide tighter bounds than Shannon-type information inequalities [16].

Some researchers proposed to use entropy functions to calculate the rate region of nonlinear

network coding schemes [17,18]. Unfortunately, this approach is difficult to use because the

entropy functions are vectors of an exponential number of dimensions, which explode very

quickly with network size.

Finding an inter-session network coding scheme that achieves the optimal rate is also difficult.

It was shown that finding the optimal linear network coding scheme is NP-hard [19]. More-

1In the rest of this thesis, unless specified otherwise, all network coding schemes refer to inter-session
network coding schemes.
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over, it was later found that even finding a linear / nonlinear network coding scheme that

achieves a rate close to the optimal rate is NP-hard [20]. Therefore, most researchers resort

to heuristic or constructive approaches that achieves only sub-optimal rates. For example,

in [21, 22], the authors proposed to use linear optimization methods to find linear network

coding schemes over butterfly structures in the network. Based on the linear programming

formulations proposed in [21], a routing-scheduling-coding strategy was proposed to jointly

solve the network coding design problem and queue scheduling problem [23]. In [24], the

authors presented a tiling approach to finding linear network coding schemes by applying

dynamic programming technique. Some researchers applied game theory to find network cod-

ing schemes for multiple unicasts [25, 26]. An evolutionary approach was proposed to find

linear network coding schemes for multiple unicasts [27]. Some researchers proposed simple

XOR-based network coding schemes for wireless networks by utilizing the broadcast nature

of wireless channel [28, 29]. Most of these approaches focus on finding sub-optimal linear

network coding schemes, and the rate region of which is usually calculated via simulations.

1.2 Motivation

Network structure plays a central role in determining the rate region of network coding

schemes, and directly affects the ways the symbols transmitted in the network are combined

together. In the followings, we will use examples to illustrate how network structure affects

the rate region of network coding schemes.

One important effect of network structures is that they may introduce dependency relation-

ships among the symbols transmitted in the network, and the symbols transmitted through

the network may be correlated. These correlations are important in determining the achiev-

able rate of a random linear network coding scheme, as we will see in Chapter 2.

Example 1.2.1. Consider the network shown in Fig. 1.3a, where there are three unicast
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Figure 1.3: Effects of network structure on the rate region of network coding scheme. In
each of the above networks, the capacities of all the edges equal one, and there are multiple
unicast sessions in the network, with si (1 ≤ i ≤ 4) and di being the sender and the
receiver of the ith unicast session respectively. In (a), the network structure introduces
dependency among the received symbols at d1 and d2, which will affect the achievable rate
of a random network coding scheme, as shown in Chapter 2. In (b), due to the network
structure, combing X1 and X3 brings no benefit since it takes two more time slots for d1, d3

to decode the combined symbols, but combining X1 with X2 or X3 with X4 is beneficial
because the involved receivers can immediately decode their required symbols. In (c), the
network structure make it unnecessary to combine symbols throughout the network, and
routing can achieve the same rate vector as any network coding schemes.

sessions (si, di) (i = 1, 2, 3), and each edge has capacity of one. Suppose each sender si

transmits a symbol Xi to its corresponding receiver di. Under linear network coding scheme,

the received symbol at di is a linear combination of X1, X2, X3: Zi = m1i(x)X1 +m2i(x)X2 +

m3i(x)X3, wheremji(x) (j = 1, 2, 3) denotes the linear coefficient ofXj. Eachmji(x) is called

a transfer function, and is a polynomial in terms of the coding coefficients in the network2.

Note that if we remove edge e from the network, d1 and d2 will be both disconnected from

s2 and s3. As we will show in Section 2.5, this implies that m22(x)m31(x) = m32(x)m21(x),

i.e., the symbols received at d1 and d2 are correlated. �

At a high level, there are two contradicting trends in an inter-session network coding scheme.

One trend is to mix symbols from different senders such that useful information can be

transmitted through bottlenecks in the network. For instance, in the network coding scheme

in Example 1.1.2, (u, v) is a bottleneck between the two multicast sessions, and it transmits a

linear combination X
(2)
1 +X

(2)
2 , which carries useful information for both multicast sessions.

2x denotes the vector of all the coding coefficients in the network.
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The other trend is to decode the mixed symbols by using network capacities other than those

occupied by the mixed symbols. For example, in Example 1.1.2, (s1, d3) and (s2, d2) transmit

symbols that are used to decode the mixed symbol along (u, v). While the first trend tends

to reduce consumption of network resources, the second trend usually increases consumption

of network resources. As we will illustrate below, network structure is a determining factor

on how to make the trade-off between these two trends. Specifically, it determines whether

the symbols from one sender can or cannot be combined with the symbols from another

sender such that the cost incurred by decoding symbols is paid off by the benefits gained

from combining symbols.

Example 1.2.2. Consider the network shown in Fig. 1.3b, in which each edge has capacity

of one. There are four unicast sessions in the network, with the ith (1 ≤ i ≤ 4) unicast

session being ωi = (si, di), where si and di are the sender and the receiver of ωi respectively.

Suppose each sender si transmits a symbol Xi to its corresponding receiver di. It can be

easily seen that both X1 and X2 can be combined together along (u, v), because both d1

and d2 can decode their required symbol from this combined symbol by using the symbol

transmitted along (s2, d1) and (s1, d2) respectively. For instance, let Yuv = X1 +X2, Ys2d1 =

X2, and Ys1d2 = X1. Clearly, d1 and d2 can decode X1 and X2 respectively from their

received symbols. Similarly, X3 can be combined with X4 along (u, v). For either case,

the edge capacities used for decoding purpose are disjoint with the edge capacities used

for transmitting combined symbols, and hence the combined symbol and the symbol used

to decode the combined symbol can be transmitted simultaneously. However, it does no

good to combine X1 with X3 along (u, v). For example, suppose (u, v) transmits a linear

combination Yuv = X1 + X3. In order to decode X1, d1 must receive X3. Since (u, v) is the

only edge that connects s3 to d1, the only way for d1 to receive X3 is to let s3 transmit X3

along (u, v). Similarly, in order to decode X3, s1 must send X1 to d3 along (u, v). Since all

the three transmissions need to occupy the edge capacity of (u, v), it takes three time slots

for the two receivers d1, d3 to decode their required symbols. This is even worse than purely
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routing the two symbols X1, X3 along (u, v), which takes only two time slots. Hence, the

benefit of combining X1 and X3 is surpassed by the cost incurred by decoding the combined

symbol. �

Furthermore, network structure determines whether it is necessary to mix symbols through-

out the network. As we’ve seen in the above example, combining symbols is usually ac-

companied with sending symbols for the purpose of decoding the combined symbols. In

some networks, the network capacities consumed by these two types of symbols can be used

to simply routing uncoded symbols such that the two corresponding transmission schemes

achieve the same transmission rate, i.e., mixing symbols is not necessary for such networks.

In the followings, we present such an example.

Example 1.2.3. Consider the network shown in Fig. 1.3c, in which each edge has capacity of

one, and there are three unicast sessions (si, di) (i = 1, 2, 3). We’ll show that mixing symbols

is not necessary for this network. Assume each sender si sends a symbol Xi to di. We consider

two network coding schemes. In the first network coding scheme, (u, v) transmits a linear

combination X1 + X2. It can be easily seen that d2 can immediately decode X2 from the

combined symbol if (s1, d2) transmits X1. However, in order for d1 to decode the combined

symbol, the only choice is to let s2 transmit X2 along (u, v). Since both X1 + X2 and X2

need to occupy the edge capacity of (u, v), it takes two time slot for d1, d2 to decode their

required symbols. Apparently, a more straightforward way is to route X1 and X2 along the

paths P1 = {(s1, u), (u, v), (v, d1)} and P2 = {(s2, u), (u, v), (v, d2)} respectively. Hence, it is

not necessary to mix X1 and X2. In the second network coding scheme, (u, v) transmits a

linear combination X1 +X2 +X3. Similar to above, d3 can immediately decode X3 from the

combined symbol, if (s1, d3), and (s2, d3) transmit X1 and X2 respectively. However, it takes

at least two additional time slots for d2 and d1 to decode their required symbols from the

combined the symbol. For instance, in one time slot, (u, v) transmits X1 +X3, and thus d2

can decode X2 by adding X1 +X2 +X3 and X1 +X3 together; in the next time slot, (u, v)
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transmits X2 +X3, and thus d1 can decode X1 by adding X1 +X2 +X3 and X2 +X3 together.

However, a straightforward way is to simply route X1, X2, X3 along the paths P1, P2, and

P3 = {(s3, u), (u, v), (v, d3)} respectively. Therefore, it is not necessary to mix X1, X2 and

X3. In fact, as we will show in Chapter 4, for this network, given a network coding scheme

(linear or nonlinear), there is always a routing scheme that achieves the same rate vector

as the network coding scheme, implying that it is not necessary to combine symbols in the

network. �

1.3 Contributions

In this thesis, we consider inter-session network coding for multiple unicasts on directed

acyclic graphs. In particular, we attempt to understand the effects of network structure

on the region of network coding schemes. We consider three network models: (i) dummy

networks in which except for the senders and the receivers, all the intermediate nodes can

only perform random linear network coding, i.e., there is no intelligence in the middle of

the network; (ii) linear networks where each node can perform linear network coding, i.e.,

coding at each node are limited to linear operations; (iii) nonlinear networks in which each

node can perform nonlinear network coding, i.e., the coding operations at each node are

unlimited. Clearly, the three network models describe three different levels of complexity

in terms of coding operations that each node in the network is able to perform. We will

study how network structure affects the rate region of network coding for the three network

models. We make the following contributions.
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1.3.1 Precoding-Based Network Alignment for Three Unicast Ses-

sions

We consider the network coding problem across three unicast sessions under the dummy

network model, where except for the senders and the receivers, all the intermediate nodes

in the network can only perform random linear network coding operations. We assume

the sender and the receiver of each unicast session are both connected to the network via

a single edge of unit capacity. We refer to this communication scenario as a Single-Input

Singe-Output scenario or SISO scenario for short. In particular, we consider precoding-based

linear schemes, in which each sender uses a precoding-matrix to encode symbols, and all the

intermediate nodes perform random linear network coding.

Our basic idea is that under the dummy network model, the network behaves like a wireless

interference channel, and hence we can borrow some of the techniques, such as precoding-

based interference alignment [30], which are originally developed for wireless interference

channel, to the network setting. We refer to this approach as precoding-based network

alignment approach, or PBNA for short. One advantage of PBNA is that it significantly

simplifies network code design since the nodes in the middle of the network perform random

network coding. Another advantage is that PBNA can achieve the optimal symmetrical rate

achieved by any precoding-based linear schemes.

However, unlike wireless interference channel, network structure may introduce dependency

between transfer functions, which we refer to coupling relations (see Example 1.2.1). These

coupling relations may affect the rate achieved by PBNA. Therefore, traditional interference

alignment techniques, which are developed for the wireless interference channel, cannot be

directly applied to DAGs with network coding but (i) they need to be properly adapted in

the new setting and (ii) their achievability conditions need to be characterized in terms of

the network topology.
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In this part of the thesis, we make the following contributions:

• Graph-related properties : We find that due to network topology, the transfer functions

usually possess special properties, called graph-related properties, which are absent in

general polynomials. These graph-related properties play important roles in identify-

ing all possible coupling relations that may affect the achievable rate of PBNA, and

characterizing the topological features of these coupling relations.

• Achievability Conditions : Using two graph-related properties, i.e., Linearization Prop-

erty and Square-Term Property, we identify the minimal set of coupling relations be-

tween network transfer functions, the presence of which will potentially affect the

achievable rate of PBNA.

• Interpretation of Coupling Relations : We present interpretations of these coupling

relations in terms of network topology. Based on these interpretations, we present

polynomial-time algorithm to check the existence of these coupling relations.

1.3.2 Multicast-Packing Coding Scheme for Multiple Unicast Ses-

sions

We consider the network coding problem for multiple unicast sessions under the linear net-

work model, where all the nodes in the network can perform any linear network coding

operations, including random linear network coding operations. As it is NP-hard to find the

optimal linear network coding scheme for the network setting, we consider a constructive

approach to constructing liner network coding schemes. The ideas of this approach consists

of the following points: (i) we can partition the multiple unicast sessions into several disjoint

groups; (ii) we map each group of unicast sessions into multiple multicast sessions, such that

each receiver in the group can decode all the symbols sent by the senders in the group; (iii) we
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construct linear network coding schemes for these multicast sessions by using a deterministic

approach [9] or a random approach [10]. These linear network coding schemes collectively

serve as a linear network coding scheme for the original multiple unicast sessions. We refer

to such a linear network coding scheme as a multicast-packing coding scheme or MPC for

short.

Our proposed scheme, MPC, has the following strengths:

• The MPC approach, i.e., partitioning the unicast sessions to subsets of unicast sessions

and mapping each subset to a multicast network coding problem, is general enough to

be applied to any directed acyclic graph.

• Given a partition of the set of the unicast flows, the rate region of MPC can be

characterized by using the minimum cut bounds. Using the duality between minimum

cut and max flow, the rate region can be quickly calculated by using linear programming

technique. In contrast, previous constructive approaches are difficult to analyze due

to the lack of succinct mathematical formulations.

• In order to find the best MPC, we only need to search the space of all partitions of the

set of unicast flows, independently of the network size. This is clearly more efficient

and scalable than other constructive approaches, whose combinatorial optimization

involved the network graph in addition to the set of flows.

Although the search space is independent of the network size, its size is still exponential

in the number of unicast sessions. Thus, we utilize a suboptimal, yet efficient, simulated

annealing technique to find good partitions of the unicast flows.

We use simulations over appropriately chosen scenarios to evaluate the performance of MPC.

Simulation results show that MPC achieves up to 30% performance gain over routing, and
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the convergence speed of the simulated annealing algorithm is 5 times faster than the evolu-

tionary approach [27], which is, to our best knowledge, the fastest algorithm in the literature.

1.3.3 Routing-Optimal Networks for Multiple Unicast Sessions

We consider nonlinear networks, where each node in the network can perform nonlinear

coding operations, i.e., the coding operations allowed at each node are unlimited. In general,

for nonlinear networks, linear network coding is insufficient to utilize network capacities to

its full potential, and nonlinear network coding schemes can achieve better rates than linear

network coding schemes. Yet, there exist networks for which simple routing schemes can

achieve the whole rate region achieved by any linear and nonlinear network coding schemes,

i.e., it is not necessary to combine symbols in these networks. We refer to these networks

as routing-optimal networks. We attempt to answer the following questions: (i) what are

the distinct topological features of routing-optimal networks? (ii) why do these features

make the network routing-optimal? The answers to these problems will not only explain

which kind of networks can or cannot benefit from network coding, but will also better our

understanding on how network topologies affect the rate region of network coding.

In this part of the thesis, we make the following contributions:

• We identify a class of networks, called information-distributive networks, which are

defined by three topological features. The first two features capture how the edges in

the cut-sets are connected to the sources and the sinks, and the third feature captures

how the paths in the path-sets overlap with each other. Due to these features, given

a network code, there is always a routing scheme such that it achieves the same rate

vector as the network code, and the traffic transmitted through the network is exactly

the source information distributed over the cut-sets between the sources and the sinks.
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• We prove that if a network is information-distributive, it is routing-optimal. We also

show that the converse is not true. This indicates that the three features might be too

restrictive in describing routing-optimal networks.

• We present examples of information-distributive networks taken from the index coding

problem [31] and single unicast with hard deadline constraint.

1.4 Thesis Outline

The structure of the rest of the thesis is as follows. In Chapter 2, we present a detailed

discussion about precoding-based network alignment scheme for three unicast sessions. In

Chapter 3, we present the multicast-packing coding scheme (MPC). In Chapter 4, we discuss

about routing-optimal networks, in particular information-distributive networks. Finally, in

Chapter 5, we conclude and summarize.
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Chapter 2

Precoding-Based Network Alignment

for Three Unicast Sessions

2.1 Introduction

In this chapter, we consider the problem of linear network coding across three unicast sessions

over a network represented by a directed acyclic graph (DAG), where the sender and the

receiver of each unicast session are both connected to the network via a single edge of unit

capacity. We refer to this communication scenario as a Single-Input Single-Output scenario

or SISO scenario for short. This is the smallest, yet highly non-trivial, instance of the

problem. Furthermore, we consider a network model, in which the middle of the network

only performs random linear network coding, and restrict our approaches to precoding-based

linear schemes, where the senders use precoding matrices to encode source symbols1. Apart

from being of interest on its own right, we hope that this can be used as a building block and

for better understanding of the general network coding problem across multiple unicasts.

1The precise definition of precoding-based linear scheme is presented in Section 2.3.
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Figure 2.1: Analogy between a SISO scenario employing linear network coding and a wireless
interference channel, each with three unicast sessions (si, di), i = 1, 2, 3. Both these systems
can be treated as linear transform systems and are amenable to interference alignment tech-
niques.

We consider the following approach to finding a network coding scheme, originally proposed

by Das et al. [32]. The idea is that under the linear network coding framework, a SISO

scenario behaves roughly like a wireless interference channel. As shown in Fig. 2.1, the entire

network can be viewed as a channel with a linear transfer function, albeit this function is

no longer given by nature, as it is the case in wireless, but is determined by the network

topology, routing and coding coefficients. This analogy enables us to apply the technique

of precoding-based interference alignment, designed by Cadambe and Jafar [30] for wireless

interference channels. We adapt this technique to our problem and refer to it as precoding-

based network alignment, or PBNA for short: precoding occurs only at source nodes, and all

the intermediate nodes in the network perform random network coding. One advantage of

PBNA is complexity: it significantly simplifies network code design since the nodes in the

middle of the network perform random network coding. Another advantage is that PBNA

can achieve the optimal symmetrical rate achieved by any precoding-based linear schemes,

as shown in [33].

An important difference between the SISO scenario and the wireless interference channel is

that there may be algebraic dependencies, which we refer to as coupling relations, between

elements of the transfer matrix, which we refer to as transfer functions. These are introduced

by the network topology and may affect the achievable rate of PBNA [34]. Such algebraic
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dependencies are not present in the wireless interference channel, where channel gains are

independent from each other such that the precoding-based interference alignment scheme

of [30] can achieve 1/2 rate per session almost surely. Therefore, traditional interference

alignment techniques, developed for the wireless interference channel, cannot be directly

applied to networks with network coding but (i) they need to be properly adapted in the

new setting, and (ii) their achievability conditions need to be characterized in terms of the

network topology.

We make the following contributions:

• Graph-Related Properties: We identify some important graph-related properties of

transfer functions, including the Linearization Property and the Square-Term Prop-

erty, which play important roles in identifying the minimal set of coupling relations

that may potentially affect the achievable rate of PBNA.

• Achievability Conditions: We identify the minimal set of coupling relations between

transfer functions, the presence of which will potentially affect the achievable rate of

PBNA.

• Interpretation of Coupling Relations: We further interpret these coupling relations in

terms of network topology.

• Algorithm to Check Coupling Relations: We present polynomial-time algorithms for

checking the existence of these coupling relations.

The rest of this chapter is organized as follows. In Section 2.2, we review related work. In

Section 2.3, we present the problem setup and formulation. In Section 2.4, we present our

proposed precoding-based interference alignment (PBNA) scheme for the network setting.

In Section 2.5, we present an overview of our main results. In Section 2.6, we discuss in depth

the achievability conditions of PBNA. In Section ??, we provide polynomial-time algorithms

19



to check the presence of the coupling relations that may affect the achievable rate of PBNA.

Section 2.7 summarizes this chapter. In Appendices A-D, we present detailed proofs for the

lemmas and the theorems presented in this paper.

2.2 Related Work

2.2.1 Network Coding for Two Unicast Sessions

Network coding across two unicasts is one case that has been best understood up to now.

Wang and Shroff provided a graph-theoretical characterization of sufficient and necessary

condition for the achievability of symmetrical rate of one for two multicast sessions, of which

two unicasts is a special case, over networks with integer edge capacities [35–37]. They

showed that linear network code is sufficient to achieve this symmetrical rate. Wang et

al. [38] further pointed out that there are only two possible capacity regions for the network

studied in [37]. They also showed that for layered linear deterministic networks, there are

exactly five possible capacity regions. Kamath et al. [39] provided a edge-cut outer bound

for the capacity region of two unicasts over networks with arbitrary edge capacities.

2.2.2 Network Coding for More Than Two Unicast Sessions

For network coding across more than two unicasts, there is only limited progress. It is known

that there exist networks in which network coding significantly outperforms routing schemes

in terms of transmission rate [12]. However, there exist only approximation methods to

characterize the rate region for this setting [15]. Moreover, it is known that finding linear

network codes for this setting is NP-hard [19]. Therefore, only sub-optimal and heuristic

methods exist to construct linear network code for this setting. For example, Ratnakar
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et al. [22] considered coding pairs of flows using poison-antidote butterfly structures and

packing a network using these butterflies to improve throughput; Traskov et al. [21] further

presented a linear programming-based method to find butterfly substructures in the network;

Ho et al. [40] developed online and offline back pressure algorithms for finding approximately

throughput-optimal network codes within the class of network codes restricted to XOR

coding between pairs of flows; Effros et al. [24] described a tiling approach for designing

network codes for wireless networks with multiple unicast sessions on a triangular lattice;

Kim et al. [27] presented an evolutionary approach to construct linear code. Unfortunately,

most of these approaches don’t provide any guarantee in terms of performance. Moreover,

most of these approaches are concerned about finding network codes by jointly considering

code assignment and network topology at the same time. In contrast, PBNA is oblivious

to network topology in the sense that the design of encoding/decoding schemes is separated

from network topology, and is predetermined regardless of network topology. The separation

of code design from network topology greatly simplifies the code design of PBNA.

The part of our work that identifies coupling relations is related to some recent work on net-

work coding. Ebrahimi and Fragouli [41] found that the structure of a network polynomial,

which is the product of the determinants of all transfer matrices, can be described in terms

of certain subgraph structures; Zeng et al. [42] proposed the Edge-Reduction Lemma which

makes connections between cut sets and the row and column spans of the transfer matrices.

2.2.3 Interference Alignment

The original concept of precoding-based interference alignment was first proposed by Cadambe

and Jafar [30] to achieve the optimal degree of freedom (DoF) for K-user wireless interference

channel. After that, various approaches to interference alignment have been proposed. For

example, Nazer et al. proposed ergodic interference alignment [43]; Bresler, Parekh and Tse
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proposed lattice alignment [44]; Jafar introduced blind alignment [45] for the scenarios where

the actual channel coefficient values are entirely unknown to the transmitters; Maddah-Ali

and Tse proposed retrospective interference alignment [46] which exploits only delayed CSIT.

Interference alignment has been applied to a wide variety of scenarios, including K-user wire-

less interference channel [30], compound broadcast channel [47], cellular networks [48], relay

networks [49], and wireless networks supported by a wired backbone [50]. Recently, it was

shown that interference alignment can be used to achieve exact repair in distributed storage

systems [51] [52].

2.2.4 Network Alignment

The idea of PBNA was first proposed by Das et al., who also proposed a sufficient condition

for PBNA to asymptotically achieve a symmetrical rate of 1/2 per session [32]. However,

the sufficient achievability condition proposed in [32] contains an exponential number of

constraints, and is very difficult to verify in practice. Later, Ramakrishnan et al. observed

that whether PBNA can achieve a symmetrical rate of 1/2 per session depends on network

topology [34], and conjectured that the condition proposed in [32] can be reduced to just six

constraints. Han et al. [53] proved that this conjecture is true for the special case of three

symbol extensions. They also identified some important properties of transfer functions,

which are used in this paper. In [54], Meng et al. showed that the conjecture in [34] is false

for more than three symbol extensions, and reduced the condition proposed in [32] to just

12 constraints by using two graph-related properties of transfer functions. Later, Meng et

al. reduced the 12 constraints to a set of 9 constraints [33] by using a result from [53], and

proved that they are also necessary conditions for PBNA to achieve 1/2 rate per session.

They also provided an interpretation of all the constraints in terms of graph structure. At

the same time and independently, a technical report by Han et al. [55] also provided a similar

characterization.
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2.3 Problem Formulation

2.3.1 Network Model

A network is represented by a directed acyclic graph G = (V,E), where V is the set of

nodes and E the set of edges. We consider the simplest non-trivial communication scenario

where there are three unicast sessions in the network. The ith (i = 1, 2, 3) unicast session

is represented by a tuple ωi = (si, di,Xi), where si and di are the sender and the receiver of

the ith unicast session, respectively; Xi = (X
(1)
i , X

(2)
i , · · · , X(ki)

i )T is a vector of independent

random variables, each of which represents a packet that si sends to di. Each sender si is

connected to the network via a single edge σi, called a sender edge, and each receiver node

di via a single edge τi, called a receiver edge. Each edge has unit capacity, i.e., can carry

one symbol of F2m in a time slot, and represents an error-free and delay-free channel. We

group these unicast sessions into a set Ω = {ω1, ω2, ω3}. We refer to the tuple (G,Ω) as a

single-input and single-output communication scenario, or a SISO scenario for short. An

example of SISO scenario is shown in Fig. 2.1a. Clearly, in a SISO scenario, each sender can

transmit at most one symbol to its corresponding receiver node in a time slot.

Given an edge e = (u, v) ∈ E, let u = head(e) and v = tail(e) denote the head and

the tail of e, respectively. Given a node v ∈ V , let In(v) = {e ∈ E : head(e) = v}

denote the set of incoming edges at v, and Out(v) = {e ∈ E : tail(e) = v} the set of

outgoing edges at v. Given two distinct edges e, e′ ∈ E, a directed path from e to e′ is a

subset of edges P = {e1, e2, · · · , ek} such that e1 = e, ek = e′, and head(ei) = tail(ei+1)

for i ∈ {1, 2, · · · , k − 1}. The set of directed paths from e to e′ is denoted by Pee′ . For

i, j ∈ {1, 2, 3}, we also use Pij to represent Pσiτj .

Each node in the network performs scalar linear network coding operations on the incoming

symbols [5] [6]. The symbols transmitted in the network are elements of a finite field F2m .
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Let X̂i be the symbol injected at the sender node si. Thus, for an edge e = (u, v) ∈ E, the

symbol transmitted along e, denoted by Ye, is a linear combination of the incoming symbols

at u:

Ye =


X̂i if e = σi;∑

e′∈In(u) xe′eYe′ otherwise.

(2.1)

where xe′e denotes the coding coefficient that is used to combine the incoming symbol Ye′ into

Ye. Following the algebraic framework of [6], we treat the coding coefficients as variables.

Let x denote the vector consisting of all the coding coefficients in the network, i.e., x =

(xe′e : e′, e ∈ E, head(e′) = tail(e)).

Due to the linear operations at each node, the network functions like a linear system such

that the received symbol at τi is a linear combination of the symbols injected at sender nodes:

Yτi = m1i(x)X̂1 +m2i(x)X̂2 +m3i(x)X̂3 (2.2)

In the above formula, mji(x) (j = 1, 2, 3) is a multivariate polynomial in the ring F2[x], and

is defined as follows [6]:

mji(x) =
∑
P∈Pji

tP (x) (2.3)

Each tP (x) denotes a monomial in mji(x), and is the product of all the coding coefficients

along path P , i.e., for a given path P = {e1, e2, · · · , ek},

tP (x) =
k−1∏
i=1

xeiei+1
(2.4)

Thus, tP (x) represents the signal gain along a path P , and mji(x) is simply the summation

of the signal gains along all possible paths from σj to τi. We refer to mji(x) as the transfer
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function from σj to τi.

We make the following assumptions:

1. The nodes in V − {si, di : 1 ≤ i ≤ 3} can only perform random linear network coding,

i.e., there is no intelligence in the middle of the network. The variables in x all take

values independently and uniformly at random from F2m .

2. Except for the senders and the receivers, all other nodes in the network have zero

memory, and therefore cannot store any received data.

3. The senders have no incoming edges, and the receivers have no outgoing edges.

4. The random variables in all Xi’s are mutually independent. Each element of Xi has

an entropy of m bits.

5. The transmissions within the network are all synchronized with respect to the symbol

timing.

2.3.2 Transmission Process

The transmission process in the network continues for N ∈ Z>0 time slots, where N ≥

max{k1, k2, k3}. Both N and ki are parameters of the transmission scheme. We will show

how to set these parameters in Section 2.4. Let x(t) = (x
(t)
e′e : e′, e ∈ E, head(e′) = tail(e))

denote the vector of coding coefficients for time slot t, where x
(t)
e′e represents the coding

coefficient used to combine the incoming symbol along e′ into the symbol along e for time

slot t. For an edge e, let Y
(t)
e denote the symbol transmitted along e during time slot t,

and Ye = (Y
(1)
e , Y

(2)
e , · · · , Y (N)

e )T the vector of all the symbols transmitted along e during

the N time slots. Define a vector of variables, ξ = (x(1),x(2), · · · ,x(N), θ1, θ2, · · · , θk), where
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θ1, · · · , θk are variables, which take values from F2m , and are used in the encoding process

at the senders.

Each sender si first encode Xi into a vector X̂i of N symbols:

X̂i = ViXi (2.5)

where Vi is an N ×ki matrix, each element of which is a rational function in F2m(ξ)2, and is

called the precoding matrix at si. Define the following N×N diagonal matrix which includes

all the transfer functions mji(x
(t)) for the N time slots:

Mji =



mji(x
(1)) 0 · · · 0

0 mji(x
(2)) · · · 0

...
...

. . .
...

0 0 · · · mji(x
(N))


(2.6)

Hence, the input-output equation of the network can be formulated in a matrix form as

follows:

Yτi = M1iX̂1 + M2iX̂2 + M3iX̂3

= M1iV1X1 + M2iV2X2 + M3iV3X3

= MiX

(2.7)

where Mi = (M1iV1 M2iV2 M3iV3), and X = (XT
1 XT

2 XT
3 )T . Since the elements

of Mji (1 ≤ j ≤ 3) and Vj are rational functions in F2m(ξ), the elements of Mi are also

rational functions in terms of ξ.

2Given a field F, F(x1, · · · , xk) denotes the field consisting of all multivariate rational functions in terms
of (x1, · · · , xk) over F.
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2.3.3 Precoding-Based Linear Scheme

In this paper, we consider the following transmission scheme, called precoding-based linear

scheme:

Definition 2.3.1. Given a SISO scenario (G,Ω), a precoding-based linear scheme for (G,Ω)

is a transmission scheme, where each sender si (1 ≤ i ≤ 3) uses a precoding matrix Vi to

encode source symbols, and the variables in ξ all take values independently and uniformly

at random from F2m . We use a tuple λ = (ξ,Vi : 1 ≤ i ≤ 3) to denote a precoding-based

linear scheme.

From the above definition, it can be seen that a precoding-based linear scheme is a random

linear network coding scheme. Given a precoding-based linear scheme, let Psucc denote the

probability that the denominators of the precoding matrices are all evaluated to non-zero

values, and all receivers can successfully decode their required source symbols from received

symbols.

Definition 2.3.2. Given a precoding-based linear scheme λ = (ξ,Vi : 1 ≤ i ≤ 3), we say

that it achieves the rate tuple (k1
N
, k2
N
, k3
N

), if limm→∞ Psucc = 1.

Given a precoding-based linear scheme, if the conditions of the above definition is satisfied,

by choosing sufficiently large finite field F2m , a random assignment of values to ξ will enable

each receiver to successfully decode its required source symbols with high probability. In this

sense, given sufficiently large F2m , a precoding-based linear scheme works for most random

realizations of ξ, but not all realizations.

Before proceeding, we introduce the following Schwartz-Zippel Theorem [56].

Theorem 2.3.1 (Schwartz-Zippel Theorem). Let Q(x1, x2, · · · , xn) be a non-zero multivari-

ate polynomial of total degree d in the ring F[x1, x2, · · · , xn], where F is a field. Fix a finite
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Figure 2.2: An illustrative example for precoding-based linear scheme.

set S ⊆ F. Let r1, r2, · · · , rn be chosen independently and uniformly at random from S.

Then,

Pr(Q(r1, r2, · · · , rn) = 0) ≤ d

|S|

Example 2.3.1. We use an example to illustrate the above concepts. Consider the network

in Fig. 2.2. Note that under the network model considered in the paper, interference is

almost unavoidable at the receivers. Consider a receiver di. Without loss of generality,

assume that the (1, 1) element of Vj (i 6= j) is a non-zero rational function f11(ξ). Thus,

the (1, 1) element of MjiVj is a non-zero rational function mji(x
(1))f11(ξ). Due to Theorem

2.3.1, the probability that mji(x
(1))f11(ξ) is evaluated to zero under a random assignment

of values to ξ approaches to zero as m → ∞. Hence, the probability that MjiVj = 0

approaches zero as m→∞. This means that interference is almost unavoidable at di.

Next, we present a precoding-based linear scheme that achieves a symmetric rate of 1
3

per

unicast session. Let N = 3, and k1 = k2 = k3 = 1. Consider the following precoding matrix

V1 = (θ
(1)
1 θ

(2)
1 θ

(3)
1 ). According to Eq. (2.7), the output vector at di is Yτi = MiX, where

Mi is as follows:

Mi =


m1i(x

(1))θ
(1)
1 m2i(x

(1))θ
(1)
2 m3i(x

(1))θ
(1)
3

m1i(x
(2))θ

(2)
1 m2i(x

(2))θ
(2)
2 m3i(x

(2))θ
(2)
3

m1i(x
(3))θ

(3)
1 m2i(x

(3))θ
(3)
2 m3i(x

(3))θ
(3)
3


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It can be verified that det(Mi) is a non-zero polynomial in F2m(ξ)3. Let d be the total degree

of det(Mi). Due to Theorem 2.3.1, we have:

Psucc ≥Pr(det(Mi) 6= 0)

=1− Pr(det(Mi) = 0) ≥ 1− d

2m

Since limm→∞(1 − d
2m

) = 1, it follows that limm→∞ Psucc = 1. Hence, the above precoding-

based linear scheme achieves a symmetric rate 1
3

per unicast session. As we will show in

Section 2.6, using precoding-based alignment scheme, which is a special case of precoding-

based linear scheme, each unicast session can achieve a symmetric rate 1
2

per unicast session,

which is the optimal symmetric rate achieved by any precoding-based linear schemes. �

Table 2.1 summarizes the notations used in this paper, in which e′, e ∈ E and 1 ≤ i, j, k ≤ 3.

2.4 Applying Precoding-Based Interference Alignment

to Networks

In this section, we first present how to utilize precoding-based interference alignment tech-

nique to find a precoding-based linear scheme for (G,Ω). Then, we present achievability

conditions for PBNA. We then introduce the concept of “coupling relations,” which are

essential in determining the achievability of PBNA.

Throughout this section, we assume that all the senders are connected to all the receivers

via directed paths, i.e., mij(x) is a non-zero polynomial for all 1 ≤ i, j ≤ 3. This is the

most challenging case, since each receiver may suffer interference from the other two senders.

3It can be seen that each row of Mi is of the form (m1i(x)θ1 m2i(x)θ2 m3i(x)θ3). Since m1i(x)θ1,
m2i(x)θ2 and m3i(x)θ3 are linearly independent, according to Lemma 2.4.2 (see Subsection 2.4.2), det(Mi)
is a non-zero polynomial.
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Table 2.1: Summary of Notations

Notations Meanings
ωi = (si, di) The ith unicast session, where si and di are the sender and receiver

of ωi respectively.
σi, τi The sender edge and the receiver edge for ωi.
Xi A vector that holds all the source symbols transmitted from si to

di.
F2m The finite field which forms the support for all the symbols trans-

mitted in the network.
xe′e The coding coefficient used to combine the incoming symbol along

e′ to the symbol along e.
x The vector consisting of all the coding coefficients in the network.
Pe′e The set of directed paths from e′ to e.
Pji The set of directed paths from σj to τi.
tP (x) The product of coding coefficients along path P . It represents a

monomial in a transfer function.
mji(x) The transfer function from σj to τi.
x(t) The vector consisting of all the coding coefficients in the network

for time slot t.
ξ A vector that holds all the coding coefficients in the network for

the whole transmission process, and the variables used in the en-
coding process at all the senders.

Vi The precoding matrix used to encode the symbols sent by si.
Mji A diagonal matrix, in which the element at coordinate (l, l) is the

transfer function mji(x
(l)).

Ai, Bi The alignment condition and the rank condition for ωi.
V∗i The precoding matrix proposed in [30] (see Eq. (2.12)-(2.14)).
Pi, T The diagonal matrices used in the reformulated alignment condi-

tions Eq. (2.10) and the reformulated rank conditions B′1 ∼ B′3.
In The n× n identity matrix.
pi(x), η(x) The rational functions that form the elements along the diagonals

of Pi and T respectively
αijk The last edge that forms a cut-set between σi and {τj , τk} in a

topological ordering of the edges in the network.
βijk The first edge that forms a cut-set between {σj , αijk} and τk in a

topological ordering of the edges in the network.
Ce′e The set of edges that forms a cut-set between e′ and e.
Cij The set of edges that forms a cut-set between σi and τj .
gcd(f(x), g(x)) The greatest common divisor of two polynomials f(x) and g(x).

This case also models most practical communication scenarios, in which it is common that

all the senders are connected to all the receivers. The other setting, where some sender si

is disconnected from some receiver dj (i 6= j), i.e., mij(x) is a zero polynomial, is easier to

deal with, since there is less interference at receivers. We defer the later case to Section 2.6,

where we show that this case can be handled similarly as the first case.
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2.4.1 Precoding-Based Network Alignment Scheme

In this section, we present how to apply interference alignment to networks to construct a

precoding-based linear scheme for (G,Ω). The basic idea is that under linear network coding,

the network behaves like a wireless interference channel4, which is shown below:

Ui = H1iW1 +H2iW2 +H3iW3 +Ni i = 1, 2, 3 (2.8)

where Wj, Hji, Ui, and Ni (j = 1, 2, 3) are all complex numbers, representing the transmitted

signal at sender j, the channel gain from sender j to receiver i, the received signal at receiver

j, and the noise term respectively. As we can see from Eq. (2.2), in a network equipped

with linear network coding, X̂j’s (j 6= i) play the roles of interfering signals, and transfer

functions the roles of channel gains. This analogy enables us to borrow some techniques,

such as precoding-based interference alignment [30], which is originally developed for the

wireless interference channel, to the network setting.

A precoding-based network alignment scheme is defined as follows:

Definition 2.4.1. Given a SISO scenario (G,Ω), n ∈ Z>0, and s ∈ {0, 1}, a precoding-

based network alignment scheme with 2n + s symbol extensions, or a PBNA for short, is

a precoding-based linear scheme λ = (ξ,Vi : 1 ≤ i ≤ 3), which satisfies the following

conditions:

1. V1 is a (2n + s) × (n + s) matrix with rank n + s on F2m(ξ), and V2,V3 are both

(2n+ s)× n matrices with rank n on F2m(ξ).

4The wireless interference channel that we consider here has only one sub-channel.
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2. The following equations are satisfied [30]:

A1 : span(M21V2) = span(M31V3)

A2 : span(M32V3) ⊆ span(M12V1)

A3 : span(M23V2) ⊆ span(M13V1)

where for a matrix E, span(E) denotes the linear space spanned by the column vectors

contained in E.

3. The variables in ξ all take values independently and uniformly at random from F2m .

Definition 2.4.2. Given a SISO scenario (G,Ω), and a rate tuple (R1, R2, R3) ∈ Q3
>0, we

say that (R1, R2, R3) is asymptotically achievable through PBNA, if there exists a sequence

(λn)∞n=1, where each λn is a PBNA for (G,Ω), such that each λn achieves a rate tuple

rn ∈ Q3
>0, and limn→∞ rn = (R1, R2, R3).

In the above definition, Ai (1 ≤ i ≤ 3) is called the alignment condition for ωi. It guarantees

that the undesired symbols or interferences at each receiver are mapped into a single linear

space, such that the dimension of received symbols or the number of unknowns is decreased.

2.4.2 Achievability Conditions of PBNA

The following lemma provides sufficient conditions for PBNA schemes to achieve the rate

tuple ( n+s
2n+s

, n
2n+s

, n
2n+s

).

Lemma 2.4.1. Assume that all the senders and all the receivers are connected via directed

paths. Consider a PBNA λ = (ξ,Vi : 1 ≤ i ≤ 3). It achieves the rate tuple ( n+2
2n+s

, n
2n+s

, n
2n+s

),
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Precoding at 
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Random linear network coding in 
the middle of the network 

𝒢 

Decoding at 
receivers 

Figure 2.3: Applying precoding-based interference alignment to a network which satisfies
the rank conditions of PBNA as per Lemma 2.4.1. At each sender edge σi (i = 1, 2, 3),
the input vector Xi is first encoded into 2n + s symbols through the precoding matrix Vi;
then the encoded symbols are transmitted through the network in 2n + s time slots via
random linear network coding in the middle of the network; at each receiver edge τi, the
undesired symbols are aligned into a single linear space, which is linearly indepdent from the
linear space spanned by the desired signals, such that the receiver can decode all the desired
symbols.

if the following conditions are satisfied [30]:

B1 : rank(M11V1 M21V2) = 2n+ s

B2 : rank(M12V1 M22V2) = 2n+ s

B3 : rank(M13V1 M33V3) = 2n+ s

Proof. Suppose B1 ∼ B3 are satisfied. Define the following matrices:

D1 = (M11V1 M21V2)−1

D2 = (M12V1 M22V2)−1

D3 = (M13V1 M33V3)−1

Let fi(ξ) denote the product of the denominators of all the elements in Vi, and gi(ξ) the

product of the denominators of all the elements in Di. Thus, fi(ξ), gi(ξ) are both non-zero

polynomials in F2m [ξ]. Define q(ξ) =
∏3

i=1 fi(ξ)gi(ξ). Let d denote the total degree of q(ξ).

Suppose ξ0 is an assignment of values to ξ such that q(ξ0) 6= 0. Hence, the denominators
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of the elements in Vi’s and Di’s are evaluated to non-zeros. Moreover, Xi is a sub-vector

of Di|ξ0Yτi , where Di|ξ0 is a matrix acquired through evaluating each element of Di under

the assignment ξ = ξ0. Thus, all the receivers can decode their required source symbols.

Hence, the probability Psucc that all the receivers can decoded their required source symbols

satisfies the following inequalities:

Psucc ≥ Pr(q(ξ) 6= 0) = 1− Pr(q(ξ) = 0) ≥ 1− d

2m

where the last inequality follows from Theorem 2.3.1. Since limm→∞(1 − d
2m

) = 1, we have

limm→∞ Psucc = 1. Hence, λ achieves ( n+s
2n+s

, n
2n+s

, n
2n+s

). �

In Lemma 2.4.1, Bi (1 ≤ i ≤ 3) are called the rank condition for ωi. Bi guarantees that

di can decode its required source symbol with high probability when the the size of F2m is

sufficiently large. In Fig. 2.3, we use a figure to illustrate how to apply PBNA to a network

which satisfies the rank conditions.

We can further simplify the alignment conditions as follows. First, we reformulate A1 ∼ A3

as follows:

A ′
1 : M21V2 = M31V3A

A ′
2 : M32V3 = M12V1B

A ′
3 : M23V2 = M13V1C

where A is an n × n invertible matrix, and B, C are both (n + s) × n matrices with rank

n. A direct consequence of A ′
2 and A ′

3 is that the precoding matrices are not independent

from each other: Both V2 and V3 are determined by V1 through the following equations:

V2 = M13M
−1
23 V1C V3 = M12M

−1
32 V1B (2.9)
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Substituting the above equations into A ′
1 , the three alignment conditions can be further

consolidated into a single equation:

TV1C = V1BA (2.10)

where T = M13M21M32M
−1
12 M−1

23 M−1
31 . Eq. (2.10) suggests that alignment conditions intro-

duce constraint on V1. Thus, in general, we cannot choose V1 freely.

Finally, using Eq. (2.9) and Eq. (2.10), the rank conditions are transformed into the following

equivalent equations:

B′1 : rank(V1 P1V1C) = 2n+ s

B′2 : rank(V1 P2V1C) = 2n+ s

B′3 : rank(V1 P3V1CA−1) = 2n+ s

where P1 = M13M21M
−1
11 M−1

23 , P2 = M13M22M
−1
12 M−1

23 , and P3 = M21M33M
−1
23 M−1

31 . Re-

calling each Mkl (1 ≤ k, l ≤ 3) is a diagonal matrix (see Eq. (2.6)) with the elements along

the diagonal being of the form mkl(x), Pi and T are both diagonal matrices. Define the

following functions:

p1(x) =
m13(x)m21(x)

m11(x)m23(x)
p2(x) =

m13(x)m22(x)

m12(x)m23(x)

p3(x) =
m21(x)m33(x)

m23(x)m31(x)
η(x) =

m13(x)m21(x)m32(x)

m12(x)m23(x)m31(x)

(2.11)

It can been seen that pi(x) and η(x) form the elements along the diagonals of Pi and T

respectively.

Next, we reformulate the rank conditions in terms of pi(x) and η(x). To this end, we need

to know the internal structure of V1. We distinguish the following two cases:
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Case I : η(x) is non-constant, and thus T is not an identity matrix. For this case, Eq.

(2.10) becomes non-trivial, and we cannot choose V1 freely. We use the following precoding

matrices proposed by Cadambe and Jafar [30]:

V∗1 = (w Tw · · · Tnw) (2.12)

V∗2 = M13M
−1
23 (w Tw · · · Tn−1w) (2.13)

V∗3 = M12M
−1
32 (Tw T2w · · · Tnw) (2.14)

where w is a column vector of 2n+ 1 ones. The above precoding matrices correspond to the

configuration where s = 1, A = In, C consists of the left n columns of In+1, and B the right

n columns of In+1. It is straightforward to verify that the above precoding matrices satisfy

the alignment conditions.

We consider the following matrix,

H =



f1(y1) f2(y1) · · · fr(y1)

f1(y2) f2(y2) · · · fr(y2)

· · · · · · · · · · · ·

f1(yr) f2(yr) · · · fr(yr)


where fi(y) (i = 1, 2, · · · , r) is a rational function in terms of a vector of variables y =

(y1, · · · , yk) in F2m(y), and the jth row of H is simply a repetition of the vector (f1(y), · · · , fr(y)),

with y being replaced by a vector of variables yj = (yj1, · · · , yjk). Due to the particular

structure of H, the problem of checking whether H is full rank can be simplified to checking

whether f1(y), · · · , fr(y) are linearly independent, as stated in the following lemma. Here,

f1(y), · · · , fr(y) are said to be linearly independent, if for any scalars a1, · · · , ar ∈ Fq, which

are not all zeros, a1f1(y) + · · ·+ arfr(y) 6= 0.

Lemma 2.4.2. det(H) 6= 0 if and only if f1(y), · · · , fr(y) are linearly independent.
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Proof. See Theorem 1 of [53]. �

An important observation is that using the precoding matrices defined in Eq. (2.12)-(2.14),

all of the matrices involved in B′1,B
′
2,B

′
3 have the same form as H. Specifically, each row

of the matrix in B′i is of the form:

(1 η(x) · · · ηn(x) pi(x) · · · pi(x)ηn−1(x)) (2.15)

where for 1 ≤ j ≤ n + 1, the jth element is ηj−1(x), and for n + 2 ≤ j ≤ 2n + 1, the jth

element is pi(x)ηj−n−2(x). Hence, using Lemma 2.4.2, we can quickly derive:

Lemma 2.4.3. Assume that all the senders are connected to all the receivers via directed

paths, and η(x) is non-constant. Consider a PBNA λn = (ξ,Vi : 1 ≤ i ≤ 3), where Vi

is defined in Eq. (2.12)-(2.14). λn achieves the rate tuple ( n+1
2n+1

, n
2n+1

, n
2n+1

), if for each

1 ≤ i ≤ 3, the following condition is satisfied:5

pi(x) /∈ Sn =

f(η(x))

g(η(x))
: f(z), g(z) ∈ Fq[z], f(z)g(z) 6= 0,

gcd(f(z), g(z)) = 1, df ≤ n, dg ≤ n− 1


(2.16)

Proof. If Eq. (2.16) is satisfied, the rational functions in Eq. (2.15) are linearly independent.

Therefore, due to Lemma 2.4.2, condition B′i is satisfied. Hence, due to Lemma 2.4.1,

( n+1
2n+1

, n
2n+1

, n
2n+1

) is achieved by λn. �

Note that each rational function f(η(x))
g(η(x))

∈ Sn represents a constraint on pi(x), i.e., pi(x) 6=
f(η(x))
g(η(x))

, the violation of which invalidates the use of the PBNA for achieving the rate tuple

( n+1
2n+1

, n
2n+1

, n
2n+1

) through the precoding matrices defined in Eq. (2.12)-(2.14). Also note

5Notation: For two polynomials f(x) and g(x), let gcd(f(x), g(x)) denote their greatest common divisor,
and df the degree of f(x).
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that Eq. (2.16) only guarantees that PBNA achieves a symmetrical rate close to one half.

In order for each unicast session to asymptotically achieve a transmission rate of one half,

we simply combine the conditions of Lemma 2.4.3 for all possible values of n, and get the

following result:

Theorem 2.4.1. Assume that all the senders are connected to all the receivers via directed

paths, and η(x) is non-constant. The symmetrical rate 1
2

is asymptotically achievable through

PBNA, if for each 1 ≤ i ≤ 3,

pi(x) /∈ S ′ =

f(η(x))

g(η(x))
: f(z), g(z) ∈ Fq[z], f(z)g(z) 6= 0,

gcd(f(z), g(z)) = 1


(2.17)

Proof. Consider the PBNA scheme λn defined in Lemma 2.4.3. If Eq. (2.17) is satis-

fied, Eq. (2.16) is satisfied, and thus λn achieves the rate tuple ( n+1
2n+1

, n
2n+1

, n
2n+1

). Since

limn→∞( n+1
2n+1

, n
2n+1

, n
2n+1

) = (1
2
, 1

2
, 1

2
). This implies that the symmetrical rate 1

2
is asymptoti-

cally achievable through PBNA. �

Case II: η(x) is constant, and thus T is an identity matrix. For this case, Eq. (2.10) becomes

trivial. In fact, we set n = 1, s = 0, and BA = C, and hence Eq. (2.10) can be satisfied by

any arbitrary V1. Specifically, we use the following precoding matrices:

V1 = (θ1 θ2)T (2.18)

V2 = M13M
−1
23 (θ1 θ2)T (2.19)

V3 = M12M
−1
32 (θ1 θ2)T (2.20)

where θ1, θ2 are variables. The above precoding matrices correspond to the configuration

where A = B = C = I2. Using the above precoding matrices, A1 ∼ A3 all become equalities,
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i.e., the interfering signals are perfectly aligned into a single linear space. Meanwhile, using

these precoding matrices, each row of the matrix in B′i is of the following form:

(θ pi(x)θ) (2.21)

Hence, using Lemma 2.4.2, we can quickly derive:

Theorem 2.4.2. Assume that all the senders are connected to all the receivers via directed

paths, and η(x) is constant. Consider the PBNA scheme λ = (ξ,Vi : 1 ≤ i ≤ 3), where the

precoding matrices are defined in Eq. (2.18)-(2.20). Then λ achieves the symmetrical rate

1
2
, if for each 1 ≤ i ≤ 3, pi(x) is non-constant.

Proof. If pi(x) is not constant, the functions in Eq. (2.21) are linearly independent, and

therefore B′i is satisfied due to Lemma 2.4.2. Thus, (1
2
, 1

2
, 1

2
) is achieved by λ according to

Lemma 2.4.1. �

As shown in the above theorem, if η(x) is constant, each unicast session can achieve one half

rate in exactly two time slots by using PBNA.

2.4.3 Coupling Relations and Achievability of PBNA

In the previous section, we reformulated the achievability conditions of PBNA in terms of

the functions pi(x) and η(x). One critical question is: What is the connection between

the reformulated conditions and network topology? We start by illustrating that through

examples of networks whose structure violates these conditions. Let’s first consider the

network shown in Fig. 2.4a. Due to the bottleneck e, it can be easily verified that p1(x) =

p2(x) = p3(x) = η(x) = 1, and thus the conditions of Theorem 2.4.2 are violated. Moreover,

consider the network shown in Fig. 2.4b. It can be easily verified that for this network,
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(a) p1(x) = p2(x) = p3(x) = η(x) = 1)

𝜎1 

𝜎2 

𝜎3 

𝜏3 

𝜏1 

𝜏2 

𝑒1 

𝑒2 

(b) p1(x) = η(x)
1+η(x)

Figure 2.4: Examples of realizable coupling relations: The left network realizes the coupling
relations pi(x) = η(x) = 1 such that the conditions of Theorem 2.4.2 are violated; in the

right network, η(x) 6= 1, but p1(x) = η(x)
1+η(x)

, which violates the conditions of Theorem 2.4.1.

η(x) 6= 1, and p1(x) = η(x)
1+η(x)

. Thus the conditions of Theorem 2.4.1 are violated. Moreover,

by exchanging σ1 ↔ σ2 and τ1 ↔ τ2, we obtain another example, where p2(x) = 1 + η(x),

and thus the conditions of Theorem 2.4.1 are again violated. While the key feature of the

first example can be easily identified, it is not obvious what are the defining features of the

second example. Nevertheless, both examples demonstrate an important difference between

networks and wireless interference channel: In networks, due to the internal structure of

transfer functions, network topology might introduce dependence between different transfer

functions, e.g., p1(x) = 1 or p1(x) = η(x)
1+η(x)

; in contrast, in wireless channel, channel gains

are algebraically independent almost surely.

The above dependence relations can be seen as special cases of coupling relations, as defined

below.

Definition 2.4.3. A coupling relation is an equation in the following form:

f(mi1j1(x),mi2j2(x), · · · ,mikjk(x)) = 0 (2.22)

where f(z1, z2, · · · , zk) is a polynomial in F2m [z1, · · · , zk], 1 ≤ il, jl ≤ 3 for 1 ≤ l ≤ k. If

there exists a network G such that the transfer functions mi1j1(x), mi2j2(x), · · · , mikjk(x)

satisfy the above equation, we say that the coupling relation Eq. (2.22) is realizable, or G
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realizes the coupling relation Eq. (2.22).

As shown in Theorem 2.4.1, each rational function f(η(x))
g(η(x))

∈ S ′ represents a coupling relation

pi(x) = f(η(x))
g(η(x))

.

The existence of coupling relations greatly complicates the achievability problem of PBNA.

As shown previously, most of the coupling relations, such as p1(x) = 1 and p1(x) = η(x)
1+η(x)

,

are harmful to PBNA, because their presence violates the conditions of Theorems 2.4.1 and

2.4.2. The only exception is η(x) = 1, which does help simplify the construction of precoding

matrices, and thus is beneficial to PBNA. Indeed, as shown in Theorem 2.4.2, this coupling

relation allows interferences to be perfectly aligned at each receiver, and each unicast session

can achieve one half rate in exactly two time slots. Unfortunately, as we will see in Section

??, this coupling relation requires that the network possesses particular structures, which

are absent in most networks. For this reason, we will mainly focus on the case η(x) 6= 1,

which is applicable for most networks.

One interesting observation is that not all coupling relations are realizable. For example,

consider the coupling relation p1(x) = η3(x), where both p1(x) and η(x) are non-constants.

Let p1(x) = u(x)
v(x)

, η(x) = s(x)
t(x)

denote the unique forms 6 of p1(x) and η(x) respectively.

Consider a coding variable xee′ that appears in both u(x)
v(x)

and s(x)
t(x)

. Because the maximum

degree of each coding variable in a transfer function is at most one, according to Eq. (2.11),

the maximum of the degrees of xee′ in u(x) and v(x) is at most two. However, it can be

easily seen that the maximum of the degrees of xee′ in s3(x) and t3(x) is at least three.

Therefore, it is impossible that p1(x) = η3(x). This example suggests that there exists

significant redundancy in the conditions of Theorem 2.4.1. More formally, it raises the

following important question:

6For a non-zero rational function h(y) ∈ Fq(y), its unique form is defined as h(y) = f(y)
g(y) , where

f(y), g(y) ∈ Fq[y] and gcd(f(y), g(y)) = 1.
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Q1: Which coupling relations pi(x) = f(η(x))
g(η(x))

∈ S ′ are realizable?

The answer to this question allows us to reduce the set S ′ defined in Theorem 2.4.1 to its

minimal size. For i = 1, 2, 3, we define the following set, which represents the minimal set

of coupling relations we need to consider:

S ′i =

f(η(x))

g(η(x))
∈ S ′ : pi(x) =

f(η(x))

g(η(x))
is realizable

 (2.23)

Then the next important question is:

Q2: Given pi(x) = f(η(x))
g(η(x))

∈ S ′i, what are the defining features of the networks for which this

coupling relation holds?

As we will see in the rest of this paper, the answers to Q1 and Q2 both lie in a deeper

understanding of the properties of transfer functions. Intuitively, because each transfer

function is defined on a graph, it usually possesses special properties. The graph-related

properties not only allow us to reduce S ′ to the minimal set S ′i, but also enable us to identify

the defining features of the networks which realize the coupling relations represented by S ′i.

In the derivation of Theorem 2.4.1, we only consider the precoding matrices defined in Eq.

(2.12)-(2.14). However, the choices of precoding matrices are not limited to these matrices.

In fact, as we will see in Section 2.6, given different A,B, and C, we can derive different

precoding matrix V1 such that Eq. (2.10) is satisfied. This raises the following interesting

question:

Q3: Assume some coupling relation pi(x) = f(η(x))
g(η(x))

∈ S ′i is present in the network. Is it

still possible to utilize PBNA via other precoding matrices instead of those defined in Eq.

(2.12)-(2.14)?

As we will see in Section 2.6, the answer to this question is negative. The basic idea is that
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each precoding matrix V1 that satisfies Eq. (2.10) can be transformed into the precoding

matrix in Eq. (2.12) through a transform equation V∗1 = G−1V1F
−1, where G is a diagonal

matrix and F a full-rank matrix (See Lemma 2.6.3). Using this transform equation, we

can prove that if the precoding matrices cannot be used due to the presence of a coupling

relation, then any precoding matrices cannot be used.

2.5 Overview of Results

In this section, we state our main results. Proofs are deferred to Appendices.

2.5.1 Sufficient and Necessary Conditions for PBNA to Achieve

Symmetrical Rate 1
2

Since the construction of V1 depends on whether η(x) is constant, we distinguish two cases.

Case 1: η(x) Is Not Constant

Theorem 2.5.1 (The Main Theorem). Assume that all the senders are connected to all

the receivers via directed paths, and η(x) is not constant. The three unicast sessions can

asymptotically achieve the rate tuple (1
2
, 1

2
, 1

2
) through PBNA if and only if the following

conditions are satisfied:

m11(x) 6= m13(x)m21(x)

m23(x)
,
m12(x)m31(x)

m32(x)
,

m13(x)m21(x)

m23(x)
+
m12(x)m31(x)

m32(x)

(2.24)
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m22(x) 6= m12(x)m23(x)

m13(x)
,
m32(x)m21(x)

m31(x)
,

m12(x)m23(x)

m13(x)
+
m32(x)m21(x)

m31(x)

(2.25)

m33(x) 6= m23(x)m31(x)

m21(x)
,
m13(x)m32(x)

m12(x)
,

m23(x)m31(x)

m21(x)
+
m13(x)m32(x)

m12(x)

(2.26)

Proof. See Appendix B. �

Eq. (2.24)-(2.26) can be reformulated into the following equivalent conditions:

p1(x) /∈ S ′1 =

1, η(x),
η(x)

1 + η(x)

 (2.27)

p2(x) /∈ S ′2 = {1, η(x), 1 + η(x)} (2.28)

p3(x) /∈ S ′3 = {1, η(x), 1 + η(x)} (2.29)

Note that in Theorem 2.5.1, we reduce the conditions of Theorem 2.4.1 to its minimal size,

such that each S ′i as defined in Eq. (2.27)-(2.29) represents the minimal set of coupling

relations that are realizable. Moreover, as we will see later, each of these coupling relations

has a unique interpretation in terms of the network topology. The interpretations further

provide polynomial-time algorithms to check the existence of these coupling relations.

The conditions of the Main Theorem can be understood from the perspective of the in-

terference channel. As shown in Section 2.4.1, under linear network coding, the network

behaves as a 3-user wireless interference channel, where the channel coefficients mij(x) are

all non-zeros. Let H denote the matrix with the (i, j)-element being mij(x). It is easy to see

that the first two inequalities in Eq. (2.24)-(2.26) can be rewritten as Mkl(H) 6= 0 for some
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k 6= l, where Mkl(H) denotes the (k, l)-Minor of H. For example, m11(x) 6= m13(x)m21(x)
m23(x)

is

equivalent to M32(H) 6= 0, and m11(x) 6= m12(x)m31(x)
m32(x)

is equivalent to M23(H) 6= 0. Suppose

that there exists Mkl(H) = 0 for some k 6= l. For such a channel, it is known that the

sum-rate achieved by the three unicast sessions cannot be more than 1 in the information

theoretical sense (see Lemma 1 of [57]), i.e., no precoding-based linear scheme can achieve

a rate beyond 1/3 per user. Therefore, given that all senders are connected to all receivers,

the condition Mkl(H) 6= 0 is information theoretically necessary for achievable rate 1/2 per

session. Hence, the first two inequalities of Eq. (2.24)-(2.26) are simply the information

theoretic necessary conditions, so they must hold for any precoding-based linear schemes.

Case II: η(x) Is Constant

In this case, we can choose V1 freely by setting BA = C. As stated in the following theorem,

each unicast session can achieve one half rate in exactly two time slots.

Theorem 2.5.2. Assume that all the senders are connected to all the receivers via directed

paths, and η(x) is constant. The three unicast sessions can achieve the rate tuple (1
2
, 1

2
, 1

2
)

in exactly two time slots through PBNA if and only if the following conditions are satisfied:

m11(x) 6= m13(x)m21(x)

m23(x)
(2.30)

m22(x) 6= m12(x)m23(x)

m13(x)
(2.31)

m33(x) 6= m23(x)m31(x)

m21(x)
(2.32)

Proof. See Section 2.6.3. �
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𝜏1 𝜏3 
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(b) α312 and β312

Figure 2.5: A graphical illustration of the four edges, α213, β213, α312, and β312, which are
important in defining the networks that realize η(x) = 1.

Eq. (2.30)-(2.32) can be reformulated into the following equivalent conditions:

pi(x) 6= 1 ∀1 ≤ i ≤ 3

2.5.2 Topological Interpretations of the Feasibility Conditions

As we have seen, the following coupling relations are important for the achievability of

PBNA: 1) η(x) = 1; 2) pi(x) = 1 and pi(x) = η(x) where i = 1, 2, 3; 3) p1(x) = η(x)
1+η(x)

,

pi(x) = 1 + η(x), where i = 2, 3. As we will see, the networks that realize these coupling

relations have special topological properties. We defer all the proofs to Appendix C.

We assume that all the edges in E are arranged in a topological ordering such that if

head(e) = tail(e′), e must precede e′ in this ordering.

Definition 2.5.1. Given two subsets of edges S and D, we define an edge e as a bottleneck

between S and D if the removal of e will disconnect every directed path from S to D.

Given 1 ≤ i, j, k ≤ 3, let αijk denote the last bottleneck between σi and {τj, τk} in this

topological ordering, and βijk the first bottleneck between {σj, αijk} and τk.
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As shown below, the four edges, α213, β213, α312, and β312, are important in defining the

networks that realize η(x) = 1. A graphical illustration of the four edges is shown in Fig.

2.5.

Theorem 2.5.3. η(x) = 1 if and only if α213 = α312 and β213 = β312.

In [53], the authors independently discovered a similar result. Consider the example shown

in Fig. 2.4a. It is easy to see that in this example, α213 = α312 = β213 = β312 = e, and thus

η(x) = 1. In Fig. 2.6a, we show another example, where α213 = α312 = e1, β213 = β312 = e2,

and thus η(x) = 1.

Given two subsets of edges, S and D, a cut-set C between S and D is a subset of edges, the

removal of which will disconnect every directed path from S to D. The capacity of cut-set

C is defined as the summation of the capacities of the edges contained in C. The minimum

cut between S and D is the minimum capacity of all cut-sets between S and D.

Theorem 2.5.4. The following statements hold:

1. p1(x) = 1 if and only if the minimum cut between {σ1, σ2} and {τ1, τ3} equals one;

p1(x) = η(x) if and only if the minimum cut between {σ1, σ3} and {τ1, τ2} equals one.

2. p2(x) = 1 if and only if the minimum cut between {σ1, σ2} and {τ2, τ3} equals one;

p2(x) = η(x) if and only if the minimum cut between {σ2, σ3} and {τ1, τ2} equals one.

3. p3(x) = 1 if and only if the minimum cut between {σ2, σ3} and {τ1, τ3} equals one;

p3(x) = η(x) if and only if the minimum cut between {σ1, σ3} and {τ2, τ3} equals one.

For instance, in Fig. 2.4a, the cut-set with minimum capacity between {σ2, σ3} and {τ1, τ2}

contains only one edge e, and thus p2(x) = η(x).

Given two edges e1 and e2, we say that they are parallel with each other if there is no directed

paths from e1 to e2, or from e2 to e1. As shown below, two edges are important in defining
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(b) p2(x) = η(x)

Figure 2.6: Additional examples of coupling relations

the networks that realizes the third coupling relation in Eq. (2.27)-(2.29), e.g., α213 and α312

are used to define the networks that realize p1(x) = η(x)
1+η(x)

, and so on.

Theorem 2.5.5. The following statements hold:

1. p1(x) = η(x)
1+η(x)

if and only if the following conditions are satisfied: a) α312 is a bottleneck

between σ1 and τ2; b) α213 is a bottleneck between σ1 and τ3; c) α312 is parallel with

α213; d) {α312, α213} forms a cut-set between σ1 from τ1.

2. p2(x) = 1 + η(x) if and only if the following conditions are satisfied: a) α123 is a

bottleneck between σ2 and τ3; b) α321 is a bottleneck between σ2 and τ1; c) α123 is

parallel with α321; d) {α123, α321} forms a cut-set between σ2 from τ2.

3. p3(x) = 1 + η(x) if and only if the following conditions are satisfied: a) α231 is a

bottleneck between σ3 and τ1; b) α132 is a bottleneck between σ3 and τ2; c) α231 is

parallel with α132; d) {α231, α132} forms a cut-set between σ3 from τ3.

Consider the network as shown in Fig. 2.4b. It is easy to see that e2 = α312 and e1 = α213,

and all the conditions in 1) of Theorem 2.5.5 are satisfied. Therefore, this network realizes

the coupling relation p1(x) = η(x)
1+η(x)

. Note that these three coupling relations are mutually

exclusive when η(x) is not constant. If any two of these coupling relation were to occur in the

same network, then it would induce a graph structure that forces η(x) to be a constant [53].
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2.6 Achievability Conditions of PBNA

In this section, we first present two graph-related properties, namely Linearization Property

and Square-Term Property, which play important roles in the proof of the sufficiency of the

conditions of Theorem 2.5.1. Then, we explain the main ideas behind Theorem 2.5.1, and

the proof of 2.5.2. Consistent with Section 2.5, we distinguish two cases based on whether

η(x) is constant. The full proof is provided in Appendix B.

2.6.1 Graph-Related Properties

Since the transfer functions are defined on graphs, they exhibit special graph-related proper-

ties introduced by the graph structure. In the following discussion, we consider the general

form of pi(x) as below

h(x) =
mab(x)mpq(x)

maq(x)mpb(x)
(2.33)

where a, b, p, q = 1, 2, 3 and a 6= p, b 6= q. Moreover, by the definition of transfer function,

the numerator and denominator of h(x) can be expanded respectively as follows:

mab(x)mpq(x) =
∑

(P1,P2)∈Pab×Ppq
tP1(x)tP2(x)

maq(x)mpb(x) =
∑

(P3,P4)∈Paq×Ppb
tP3(x)tP4(x)

Hence, each path pair in Pab ×Ppq contributes a term in mab(x)mpq(x), and each path pair

in Paq × Ppb contributes a term in maq(x)mpb(x).

The first graph-related property, namely Linearization Property, is stated in the following

lemma. According to this property, if pi(x) is not constant, it can be transformed into its

simplest non-trivial form, i.e., a linear function or the inverse of a linear function, through a
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partial assignment of values to x.

Lemma 2.6.1 (Linearization Property). Assume h(x) is not constant. Let h(x) = u(x)
v(x)

such that gcd(u(x), v(x)) = 1. Then, we can assign values to x other than a variable xee′

such that u(x) and v(x) are transformed into either u(xee′) = c1xee′ + c0, v(xee′) = c2 or

u(xee′) = c2, v(xee′) = c1xee′ + c0, where c0, c1, c2 are constants in F2m , and c1c2 6= 0.

Proof. See Appendix A. �

The second property, namely Square-Term Property, is presented in the following lemma.

According to this property, the coefficient of x2
ee′ in the numerator of h(x) equals its counter-

part in the denominator of h(x). Thus, if x2
ee′ appears in the numerator of h(x) under some

assignment to x, it must also appear in the denominator of h(x), and vice versa.

Lemma 2.6.2 (Square-Term Property). Given a coding variable xee′ , let f1(x) and f2(x) be

the coefficients of x2
ee′ in mab(x)mpq(x) and maq(x)mpb(x) respectively. Then f1(x) = f2(x).

Proof. See Appendix A. �

2.6.2 η(x) Is Not Constant

In this subsection, we first present a simple method to quickly identify a class of networks,

for which PBNA can asymptotically achieve symmetric rate 1
2
. Then, we sketch the outline

of the proof for the sufficiency of Theorem 2.5.1. Next, we explain the main idea behind the

proof for the necessity of Theorem 2.5.1.
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A Simple Method Based on Theorem 2.4.1

As shown in Theorem 2.4.1, the set S ′ contains an exponential number of rational functions,

and thus it is very difficult to check the conditions of Theorem 2.4.1 in practice. Interestingly,

the theorem directly yields a simple method to quickly identify a class of networks for which

PBNA is feasible. The major idea of the method is to exploit the asymmetry between pi(x)

and η(x) in terms of effective variables. Here, given a rational function f(y), we define a

variable as an effective variable of f(y) if it appears in the unique form of f(y). Let V(f(y))

denote the set of effective variables of f(y). Intuitively, this asymmetry allows us more

freedom to control the values of pi(x) and η(x) such that they can change independently,

which makes the network behave more like a wireless channel. The formal description of the

method is presented below:

Corollary 2.6.1. Assume all mij(x)’s (i, j = 1, 2, 3) are non-zeros, and η(x) is not constant.

Each unicast session can asymptotically achieve one half rate through PBNA if for i = 1, 2, 3,

pi(x) 6= 1 and V(η(x)) 6= V(pi(x)).

Proof. If the above conditions are satisfied, we must have pi(x) 6= f(η(x))
g(η(x))

∈ S ′. Thus, the

theorem holds. �

Consider the networks shown in Fig. 2.7a and Fig. 2.2, which we replicate in Fig. 2.7b for

easy review. As shown in these examples, due to edge e, η(x) contains effective variables

xσ3e, xeτ2 , which are absent in the unique form of pi(x) (i = 1, 2, 3). Thus, by Corollary

2.6.1, each unicast session can asymptotically achieve one half rate through PBNA. However,

Corollary 2.6.1 doesn’t subsume all possible networks for which PBNA can achieve one half

rate. For instance, in Fig. 2.7c, we show a counter example, where V(η(x)) = V(p1(x)), and

thus Corollary 2.6.1 is not applicable. Nevertheless, it is easy to verify the network satisfies

the conditions of Theorem 2.5.1, and thus PBNA can still achieve one half rate.
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Figure 2.7: Illustration of type III networks. (i) It can be seen that for all the three examples,
PBNA can achieve one half rate. (ii) The three examples can be verified by using different
methods: for (a) and (b), due to edge e, η(x) contains coding variables xσ3e, xeτ2 , which are
absent in the unique forms of p1(x), p2(x) and p3(x), and thus Corollary 2.6.1 applies to both
cases; Corollary 2.6.1 doesn’t apply to (c), but PBNA can still achieve a symmetric rate 1

2

for this network according to Theorem 2.5.1. (iii) For both (a) and (b), routing can only
achieve a symmetrical rate 1

3
; for (c), PBNA and routing can both achieve a symmetrical

rate 1
2
.

Sufficiency of Theorem 2.5.1

As shown in Section 2.4, not all coupling relations pi(x) = f(η(x))
g(η(x))

∈ S ′ are realizable due to

the special properties of transfer functions. Indeed, since the transfer functions are defined

on graphs, they exhibit special properties due to the graph structure. As we will see, these

properties are essential in identifying the minimal sub-set of realizable coupling relations.

In fact, we only need two such properties, namely Linearization Property and Square-Term

Property, which are presented below.

Now, we sketch the outline for the proof of the sufficiency of Theorem 2.5.1. The proof

consists of three steps:

First, we use the Linearization Property and a simple degree-counting technique to reduce

52



S ′ to the following set S ′′1 :

S ′′1 =

a0 + a1η(x)

b0 + b1η(x)
∈ S ′ : a0, a1, b0, b1 ∈ Fq

 (2.34)

Next, we iterate through all possible configurations of a0, a1, b0, b1, and utilize the Lineariza-

tion Property and the Square-Term Property to further reduce S ′′1 to just four rational

functions:

S ′′2 =

1, η(x), 1 + η(x),
η(x)

1 + η(x)

 (2.35)

Finally, we use a recent result from [53] to rule out the fourth redundant rational function in

S ′′2 , resulting in the minimal set S ′i defined in Theorem 2.5.1. The detailed proof is deferred

to Appendix B.

Necessity of the Theorem 2.5.1

We first show how to get a precoding matrix V1 that satisfies Eq. (2.12). The construction

of V1 involves solving a system of linear equations defined on F2m(ξ)(z):

r(z)(zC−BA) = 0 (2.36)

In the above equation, r(z) = (r1(z), · · · , rn+s(z)), where ri(z) ∈ F2m(ξ)(z) for 1 ≤ i ≤ n+s.

Assume r0(z) is a non-zero solution to Eq. (2.36). Substitute z with η(x), and we have

η(x)r0(η(x))C = r0(η(x))BA. Finally, construct the following precoding matrix

VT
1 = (rT0 (η(x(1))) rT0 (η(x(2))) · · · rT0 (η(x(2n+s)))) (2.37)
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Apparently, V1 satisfies Eq. (2.10). Hence, each non-zero solution to Eq. (2.36) corresponds

to a row of V1 satisfying Eq. (2.10). Conversely, it is straightforward to see that each row

of V1 satisfying Eq. (2.10) corresponds to a solution to Eq. (2.36).

As we will prove in Appendix B, rank(zC − BA) = n. If s = 0, zC − BA becomes an

invertible square matrix, and Eq. (2.36) only has zero solution. Thus, in order for Eq.

(2.12) to have a non-zero solution, s must equal 1.

As an example, consider the case where s = 1, n = 2, and 2m = 4. Let α be the primitive

element of F4 such that α3 = 1 and α2 + α + 1 = 0. Moreover, let A = I2 and

C =


1 α

α 1

α2 1

 B =


α2 α

1 1

1 α


It’s easy to verify that r(z) = (α2z2 + α, z + α, z2 + αz + α2) satisfies Eq. (2.36). Thus, we

substitute z with η(xj) and construct VT
1 = (rT (η(x1)) rT (η(x2)) · · · rT (η(x5))). Appar-

ently, Eq. (2.10) is satisfied. From this example, we can see that given different A,B,C,

we can construct different precoding matrix V1, and thus the choices of precoding matrices

are not limited to those defined in Eq. (2.12)-(2.14). An interesting observation is that the

above precoding matrix V1 is closely related to Eq. (2.12) through a transform equation:

V1 = V∗1F, where

F =


α α α2

0 1 α

α2 0 1


Actually, this observation can be generalized to the following Lemma.

Lemma 2.6.3. Assume s = 1. Any V1 satisfying Eq. (2.10) is related to V∗1 through the
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following transform equation

V1 = GV∗1F (2.38)

where V∗1 is defined in Eq. (2.12), F is an (n+1)×(n+1) matrix, and G is a (2n+1)×(2n+1)

diagonal matrix, with the (i, i) element being fi(η(xi)), where fi(z) is an arbitrary non-zero

rational function in F2m(ξ)(z). Moreover, the (n+ 1)th row of FC and the 1st row of FBA

are both zero vectors.

Proof. See Appendix B. �

Using Lemma 2.6.3, we can prove that if a coupling relation pi(x) = f(η(x))
g(η(x))

∈ S ′ is present

in the network, any PBNA cannot achieve one half rate per unicast session. This implies

that the conditions of Theorem 2.5.1 are also necessary for PBNA to achieve one half rate

per unicast session. We defer the detailed proof to Appendix B.

2.6.3 η(x) Is Constant

Proof of Theorem 2.5.2. In the proof of Theorem 2.4.2, we’ve proved the sufficiency of The-

orem 2.5.2. If pi(x) = 1, Pi becomes an identity matrix. We will show that it is impossible

for PBNA to achieve one half rate for each unicast session. We only prove the case for

i = 1. The other cases i = 2, 3 can be proved similarly, and are omitted. The matrix in

the reformulated rank condition B′1 becomes (V1 V1C). Since rank(V1C) = n, there are

n columns in V1 that are linearly dependent of the columns in V1C. Thus, it is impossible

for PBNA to achieve one half rate for ω1. �

In Fig. 2.8, we show an example of this case. Note that the network in Fig. 2.8 has rich

connectivity such that each sender is connected to its corresponding receiver via a disjoint
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Figure 2.8: An example where η(x) = 1 and pi(x) 6= 1 for i ∈ {1, 2, 3}, and thus each unicast
session can achieve one half rate in exactly two time slots due to Theorem 2.5.2. For this
example, routing achieves symmetric rate of one.

directed path. Thus, there is no coding opportunity that can be exploited, and routing

is sufficient to achieve rate 1 per unicast session, which is the maximum symmetric rate

achieved by any network coding schemes. Hence, this class of networks is of less significance

than the class of networks considered in Theorem 2.5.1.

2.6.4 Some si Is Disconnected from Some dj (i 6= j)

In this case, since the number of interfering signals is reduced, at least one alignment con-

dition can be removed, and thus the restriction on V1 imposed by Eq. (2.10) vanishes.

Therefore, we can choose V1 freely, and the feasibility conditions of PBNA can be greatly

simplified. For example, assume m21(x) = 0 and all other transfer functions are non-zeros.

Hence, the alignment condition for the first unicast session vanishes. Using a scheme similar

to above, we set V1 = (θ1 θ2)T , V2 = M13M
−1
23 (θ1 θ2)T and V3 = M12M

−1
32 (θ1 θ2)T , and

thus the interferences at τ2 and τ3 are all perfectly aligned. It is easy to see that (1
2
, 1

2
, 1

2
) is

feasible through PBNA if and only if pi(x) is not constant for every i = 1, 2, 3. Using similar

arguments, we can discuss other cases.
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2.7 Summary

In this chapter, we consider the problem of network coding for the SISO scenarios with three

unicast sessions. We consider a network model, in which the middle of the network performs

random linear network coding. We apply precoding-based interference alignment [30] to

this network setting. We show that network topology may introduce algebraic dependence

(“coupling relations”) between different transfer functions, which can potentially affect the

rate achieved by PBNA. Using two graph-related properties and a recent result from [53], we

identify the minimal set of coupling relations that are realizable in networks. Moreover, we

show that each of these coupling relations has a unique interpretation in terms of network

topology. Based on these interpretations, we present a polynomial-time algorithm to check

the existence of these coupling relations.

This work is limited to three unicast sessions in the SISO scenario (i.e., with min-cut one

per session) and following a precoding-based approach (all precoding is performed at the end

nodes, while intermediate nodes perform random network coding). This is the simplest, yet

highly non-trivial instance of the general problem of network coding across multiple unicasts.

Apart from being of interest on its own right, we hope that it can be used as a building block

and provide insight into the general problem.

There are still many problems that remain to be solved regarding applying interference

alignment techniques to the network setting. For example, one important problem is the

complexity of PBNA, which arises in two aspects, i.e., precoding matrix and field size, and is

inherent in the framework of PBNA. One direction for future work is to apply other alignment

techniques (with lower complexity) to the network setting. The extensions to other network

scenarios beyond SISO with more than three unicast sessions are highly non-trivial. Finally,

the current paper applies precoding at the sources only, while intermediate nodes performed

simply random network coding; an open direction for future work is alignment by network
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code design in the middle of the network as well.

58



Chapter 3

Multicast-Packing Coding Scheme for

Multiple Unicast Sessions

3.1 Introduction

In this chapter, we focus on network coding across multiple unicast sessions over linear

networks, where the nodes in the network can perform linear network coding operations.

It has been shown that determining whether there exists a linear network coding scheme

for multiple unicasts is NP-hard [19]. Thus, constructive and sub-optimal approaches, such

as [21–24,27], have been proposed and shown to improve over routing.

In this chapter, we introduce a constructive inter-session network coding scheme for multiple

unicast sessions, illustrated in the following example.

Example 3.1.1. Let us consider the network N shown in Fig. 3.1a. In this network, five

unicast sessions coexist in the network, where each edge has unit capacity. The ith unicast

session (1 ≤ i ≤ 5) is denoted by ωi = (si, di), where si and di are the sender and the receiver

of ωi, respectively. The set of unicast sessions are represented by Ω = {ωi : 1 ≤ i ≤ 5}.
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(a) (b)

Figure 3.1: A motivating example. In the network N shown in (a), five unicast sessions coex-
ist. In (b), these unicast sessions are partitioned into two disjoint subsets, Ω1 = {ω1, ω2, ω3}
and Ω2 = {ω4, ω5}, and the network N is partitioned into two sub-graphs N1 and N2. Note
that the unicast sessions in Ω1 use only N1, while the unicast sessions in Ω2 use only N2.
Then, we construct linear network coding schemes for Ω1 and Ω2 separately, as shown in
(b), where Xi (1 ≤ i ≤ 5) denotes the source symbol transmitted by si. Note that the
constructed network coding schemes are network coding schemes for two multicast scenarios
over N1 and N2.

Let us partition Ω into two disjoint sets, Ω1 = {ω1, ω2, ω3} and Ω2 = {ω4, ω5}. Also, N is

partitioned into two sub-graphs N1 and N2. The unicast sessions Ω1 and Ω2 use only their

respective subgraphs to transmit symbols, i.e., the unicast sessions in Ω1 (Ω2) uses only N1

(N2). Then, we construct our codes to be the network codes for two multicast scenarios: In

N1, d1, d2 and d3 can decode all the source symbols transmitted by s1, s2 and s3; in N2, d4

and d5 can decode all the source symbols transmitted by s4 and s5. These network codes

also serve as network codes for the original multiple unicast sessions.

Note that several partitions of Ω, other than Ω1 and Ω2 discussed in this example, are also

possible. Part of the contribution of this paper is how to find good partitions. �

The example demonstrates the approach we follow in this paper. First, we partition the

set of unicast flows into disjoint subsets of unicast flows. Second, we map each subset of

unicast flows to a multicast session with the same set of receivers, and linear network codes

are constructed for these multicast sessions by a deterministic [9] or a random approach [10].
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These linear network codes collectively serve as a linear network coding scheme for the

original unicast sessions, which we refer to as Multicast-Packing Coding Scheme or MPC for

short.

MPC has the following strengths. First, the MPC approach, i.e., partitioning the unicast

sessions to subsets of unicast sessions and mapping each subset to a multicast network

coding problem, is general enough to be applied to any directed acyclic graph. Second, given

a partition of the set of the unicast sessions, we use a linear program to quickly analyze

the performance, e.g., maximum common rate and minimum cost, achieved by MPC. In

contrast, previous constructive approaches are difficult to analyze due to the lack of succinct

mathematical formulations. For example, the integer linear programming (ILP) approach

[21] is difficult to analyze since it needs to consider all possible butterfly structures in the

network. On the other hand, the evolutionary approach [27], does not have a mathematical

formulation. Third, in order to find the best MPC, we only need to search the space of all

partitions of the set of unicast sessions, independently of the network size. This is clearly more

efficient and scalable than other constructive approaches, whose combinatorial optimization

involved the network graph in addition to the set of sessions. For example, the approach

in [21] uses integer linear programming to select the best set of butterflies considering all

pairs of unicast sessions, but also all possible coding points on the network topology. The

evolutionary approach [27] involves a random walk in the space of local coding vectors, which

does not scales well with the network size. Although independent of the network size, our

search problem is still exponential in the number of unicast sessions. This is why we utilize

a suboptimal, yet efficient, simulating annealing technique to find good partitions of the

unicast sessions. Simulation results over appropriately chosen scenarios demonstrate the

above points.

The rest of this chapter is organized as follows. In Section 3.2, we present problem setup. In

Section 3.3, we present the formal definition of MPC, and the rate region achieved by MPC.
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In Section 3.4, we present a simulated annealing algorithm to find good partitions for MPC.

In Section 3.5, we present the evaluation of MPC. Section 3.6 concludes this chapter.

3.2 Problem Setup

3.2.1 Network Model

A network is represented by a weighted directed acyclic graph N = (V,E, h), where V and E

denote the node set and the edge set, respectively, and h : E → R≥0 is a function such that

for e ∈ E, h(e) equals the capacity of e. We allow multiple edges between two nodes, and

hence E ⊆ V × V × Z+, where the last integer enumerates edges between two nodes. The

edges are denoted by (u, v, i). If no confusion arises, we simply use (u, v) to represent edges.

We denote the tail and the head of an edge e by head(e) and tail(e), respectively. The sets

of incoming and outgoing edges at a node v are denoted by In(v) and Out(v) respectively,

i.e., In(v) = {e ∈ E : head(e) = v} and Out(v) = {e ∈ E : tail(e) = v}. There are multiple

unicast sessions in the network. We use a set Ω = {ωi = (si, di) : 1 ≤ i ≤ |Ω|} to represent

the multiple unicast sessions, where ωi denotes the ith unicast session, and si, di are the

sender and the receiver of ωi respectively. Given Ω′ ⊆ Ω, S(Ω′) and D(Ω′) denote the set

of senders and the set of receivers involved in Ω′, respectively. For 1 ≤ i ≤ |Ω|, Xi denotes

the vector of source symbols that si transmits to di. Given a vector A, |A| denotes the

dimension of A.

We make the following assumptions to simplify our analysis.

• The symbols transmitted in the network all belong to a finite field Fq.

• The source symbols transmitted by all the senders in S(Ω) are mutually independent

random variables uniformly distributed over Fq.
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• Each edge in the network represents an error-free and delay-free channel.

• The senders are all different nodes, and so are the receivers.

• In(si) = Out(di) = ∅, for 1 ≤ i ≤ |Ω|.

3.2.2 Linear Network Coding Scheme

We define a linear network coding scheme as follows.

Definition 3.2.1. Let t be a positive integer such that dt× h(e)e ≥ 1 for each edge e ∈ E

with positive capacity. Denote k(e) = dt× h(e)e. A linear network coding scheme of length

t for the multiple unicast sessions Ω consists of the following components:

1. For each sender si ∈ S(Ω) and each e ∈ Out(si) with positive capacity, a k(e) × |Xi|

encoding matrix Ee over Fq.

2. For each v ∈ V − (S(Ω) ∪ D(Ω)) and each e ∈ Out(v) with positive capacity, a

k(e)× (
∑

e′∈In(v) k(e′)) encoding matrix Ee over Fq.

3. For each 1 ≤ i ≤ |Ω|, an |Xi| × (
∑

e′∈In(v) k(e′)) decoding matrix Di.

We use a tuple λ = (Ee : e ∈ E, h(e) > 0; Di : 1 ≤ i ≤ |Ω|) to represent the above linear

network coding scheme.

In a linear network coding scheme, for an edge e with positive capacity, the vector of the

symbols transmitted along e, denoted by Ye, is a function of (Xi : 1 ≤ i ≤ |Ω|) defined

recursively as follows:

Ye =


EeXi if e ∈ Out(si);

Ee(Ye′ : e′ ∈ In(v), h(e′) > 0) if e ∈ Out(v), v ∈ V − (S(Ω) ∪D(Ω)).
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Definition 3.2.2. Given a rate vector R = (Ri : 1 ≤ i ≤ |Ω|) ∈ R|Ω|≥0, we say that R is

achievable by linear network coding schemes if for any ε ∈ R>0, there exists a linear network

coding scheme λ = (Ee : e ∈ E, h(e) > 0; Di : 1 ≤ i ≤ |Ω|) of length t such that the

following conditions are satisfied:

1. For each 1 ≤ i ≤ |Ω|, Xi = Di(Ye : e ∈ In(di), h(e) > 0).

2. For each 1 ≤ i ≤ |Ω|, |Xi|
t
> Ri − ε.

The rate region achieved by linear network coding schemes, denoted by Rlnc, is the set of

the rate vectors R’s achievable by linear network coding schemes.

3.3 Packing Multicast for Multiple Unicast Sessions

3.3.1 Multicast-Packing Coding Scheme (MPC)

In this chapter, we present the detailed description of MPC, i.e., mapping multiple unicast

sessions to multicast sessions, when the partition of the original multiple unicast sessions

is given. The problem of how to finding such a partition is considered in Section 3.4. We

use a tuple (s,D), where s ∈ V and D ⊆ V − {s}, to represent a multicast session such

that the nodes in D all require the source symbols transmitted by s. A multicast scenario is

represented by a set of multicast sessions, i.e., Γ = {(si, D) : 1 ≤ i ≤ |Γ|}, where the nodes

in D require all the source symbols transmitted by all si’s.

Definition 3.3.1. A partition of the multiple-unicast scenario Ω is a set of non-empty

disjoint subsets of Ω, G = {Ωi : 1 ≤ i ≤ |G|}, such that Ω =
⋃|G|
i=1 Ωi.

Definition 3.3.2. Given a partition G, an allocation of network capacities with respect to

G is represented by a set of functions H = {hi : E → R≥0 : 1 ≤ i ≤ |G|}, which satisfies the
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following condition:

∑|G|

i=1
hi(e) ≤ h(e) ∀e ∈ E. (3.1)

Given H, we define Ni = (V,E, hi) as a sub-capacitated network, the edge capacities of

which are defined by hi. Given G and H, we can view each Ωi as a multiple-unicast scenario

of smaller scale that works “separately” in the sub-capacitated network Ni.

Example 3.3.1. For example, in Fig. 3.1, the allocation of network capacities are as follows.

If e is an outgoing edge of s1, s2, s3, an incoming edge of d1, d2, d3, or e = e1, h1(e) = 1;

otherwise, h1(e) = 0. If e is an outgoing edge of s4, s5, an incoming edge of d4, d5, or e = e2,

h2(e) = 1; otherwise, h2(e) = 0. �

Suppose G and H are already given. We construct a linear network coding scheme for Ω as

follows. For each Ωi ∈ G, we construct a multicast scenario, Γi = {(sj, D(Ωi)) : sj ∈ S(Ωi)},

over the network Ni = (V,E, hi), such that the receivers in D(Ωi) can decode the source

symbols transmitted by all the senders in S(Ωi). A linear network coding scheme can then

be constructed for this multicast scenario. These linear network coding schemes collectively

serve as a linear network coding scheme, namely a multicast-packing coding scheme, for the

original multiple unicast sessions Ω. More formally, we define a multicast-packing coding

scheme as follows:

Definition 3.3.3. Suppose G is a partition of Ω, and H an allocation of network capacities

with respect to G. Let t be a positive integer such that for 1 ≤ i ≤ |Ω| and e ∈ {e′ ∈ E :

hi(e
′) > 0}, dt × hi(e)e ≥ 1. Denote ki(e) = t × hi(e). A multicast-packing coding scheme

(or a MPC for short) of length t with respect to (G,H) consists of the following components:

1. For each 1 ≤ i ≤ |G|, sj ∈ S(Ωi), and e ∈ Out(sj) such that hi(e) > 0, a ki(e) × |Xj|

encoding matrix Ei,e;
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2. For each 1 ≤ i ≤ |G|, v ∈ V − (S(Ω) −D(Ω)) and e ∈ Out(v) such that hi(e) > 0, a

ki(e)× (
∑

e′∈In(v) ki(e
′)) encoding matrix Ei,e;

3. For each 1 ≤ i ≤ |G| and ωj ∈ Ωi, an |Xj| × (
∑

e′∈In(dj)
ki(e

′)) decoding matrix Di.

We use a tuple γ = (Ei,e,Di : 1 ≤ i ≤ |G|, e ∈ E, hi(e) > 0) to denote the above MPC.

In the MPC defined above, for 1 ≤ i ≤ |G|, and an edge e ∈ {e′ ∈ E : hi(e
′) > 0}, the

vector of the symbols transmitted along e for the unicast sessions in Ωi, denoted by Yi,e, is

a function of (Xj : ωj ∈ Ωi) defined recursively as follows:

Yi,e =


Ei,eXj if e ∈ Out(sj), sj ∈ S(Ωi);

Ei,e(Yi,e′ : e′ ∈ In(v), hi(e
′) > 0) if e ∈ Out(v), v ∈ V − (S(Ω) ∪D(Ω)).

Definition 3.3.4. Given a rate vector R = (Ri : 1 ≤ i ≤ |Ω|) ∈ R|Ω|≥0, we say that R is

achievable by MPC if for any ε ∈ R>0, there exists a partition G of Ω, an allocation H of

network capacities with respect to G, and an MPC γ = (Ei,e,Di : 1 ≤ i ≤ |G|, e ∈ E, hi(e) >

0) of length t with respect to (G,H) such that the following conditions are satisfied:

1. For 1 ≤ i ≤ |G|, (Xj : ωj ∈ Ωi) ⊆ span(Yi,e : e ∈ In(di), hi(e) > 0), and Xj = Dj(Yi,e :

e ∈ In(di), hi(e) > 0) for each ωj ∈ G.

2. For 1 ≤ j ≤ |Ω|, |Xj |
t
> Ri − ε.

The region achieved by MPC, denoted by Rmpc, is the set of all the rate vectors achieved by

MPC.

Remark. We can use the following method to construct an MPC. We add a super sender

s and connect it to each sj ∈ S(Ωi) via |Xj| parallel edges, each of which has unit capacity
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Figure 3.2: An example of MPC. The network is shown in (a), where each edge has unit
capacity, and 4 unicast sessions coexist in the network. In (b), we show the two sub-
capacitated networks N1 and N2 for a partition G = {Ω1 = {ω1, ω2},Ω2 = {ω3, ω4}}, where
the numbers beside the edges marks an allocation of network capacities. In (b), we also show
an MPC of length 2, which achieves one half rate for each unicast session.

and carries a distinct source symbol in Xj. Thus, we transform the multicast scenario with

multiple multicast sessions into a multicast scenario with a single multicast session. Hence,

we can employ the random approach of [10] or the deterministic approach of [9] to construct

linear network coding scheme for this multicast scenario.

Example 3.3.2. Consider the example network as shown in Fig. 3.2a. In this example,

each edge has unit capacity, and four unicast sessions coexist in the network, i.e., Ω = {ωi =

(si, di) : 1 ≤ i ≤ 4}. Each sender si sends only one source symbol Xi to di, i.e., Xi is

a scalar. We consider a partition G = {Ω1 = {ω1, ω2},Ω2 = {ω3, ω4}}. The allocation of

network capacities is as follows. If e is an outgoing edge of s1, s2 or an incoming edge of

d1, d2, h1(e) = 1; if e = (u, v), h1(e) = 1
2
; otherwise, h1(e) = 0. If e is an outgoing edge of

s3, s4 or an incoming edge of d3, d4, h2(e) = 1; if e = (u, v), h2(e) = 1
2
; otherwise, h2(e) = 0.

In Fig. 3.2b, we depict the sub-capacitated networks N1 and N2, where we overlook all the

edges with zero capacities. We also show an MPC of length 2 in Fig. 3.2b. For example,
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the encoding-matrices and the decoding matrices for Ω1 are as follows:

E1,(s1,d2) = E1,(s1,u) = (1 0)T E1,(s2,d1) = E1,(s2,u) = (1 0)T

E1,(u,v) = (1 0 1 0) E1,(v,d1) = E1,(v,d2) = (1 0)T

D1 = D2 = (1 0 1 0)

Note that both d1 and d2 can decode the two source symbols X1 and X2. Similarly, we

can write down the encoding matrices and the decoding matrices for Ω2. Hence, the linear

network coding scheme is an MPC. Clearly, this MPC achieves one half rate for each unicast

session. �

Proposition 3.3.1. The MPC as shown in Fig. 3.1b and Fig. 3.2b achieve the maximal

symmetrical rate achieved by any linear/nonlinear network coding schemes.

Proof. See Appendix E.1. �

The choice of G and H is subject to various practical goals, which we explain in detail in

Section 3.3.3.

3.3.2 Achievability of Multicast-Packing Code

In this section, we characterize the rate region of MPC for a given partition of the unicast

sessions. We first introduce the following concept. Given S ⊂ V and d ∈ V − S, an S − d

flow over N is a function f : E → R≥0 which satisfies the following conditions:

1. For each edge e ∈ E, 0 ≤ f(e) ≤ h(e).
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2. For each node v ∈ V − (S ∪{d}), the following flow conservation law must be satisfied:

∑
e∈In(v)

f(e) =
∑

e∈Out(v)
f(e).

The value of flow f at v ∈ S is defined as val(f, v) =
∑

e∈Out(v) f(e)−
∑

e∈In(v) f(e). A S− d

cut is a partition (W,U) of V such that S ⊆ W , d ∈ U , and W ∪ U = V . The cut-set of

cut (W,U) is defined as C(W,U) = {e ∈ E : tail(e) ∈ W, head(e) ∈ U}. The capacity of cut

(W,U) is defined as the capacity of its cut-set. Let mincut(S, d,N ) denote the minimum

capacity of all S − d cuts over N .

The following theorem fully characterizes the rate region achieved by MPCs with respect to

(G,H).

Theorem 3.3.1. Assume the size of finite field Fq is greater than |Ω|. Let R = (R1, · · · , R|Ω|) ∈

R|Ω|≥0. Then the following statements are equivalent:

1. R is achievable through MPC with respect to (G,H).

2. For each Ωi ∈ G and each dj ∈ D(Ωi), there exists a S(Ωi) − dj flow fij over Ni =

(V,E, hi) such that val(fij, sl) = Rl for each sl ∈ S(Ωi).

3. For each Ωi ∈ G and each dj ∈ D(Ωi), the following condition is satisfied:

∑
sl∈U

Rl ≤ mincut(U, dj,Ni) ∀U ⊆ S(Ωi), U 6= ∅ (3.2)

Proof. See Appendix E.3. �

Example 2 - continued. Let us consider again the example provided in Fig. 3.2a to

explain Theorem 3.3.1. For Ωi = Ω1 and dj = d1, we construct a {s1, s2} − d1 flow f11 over

N1 = (V,E, h1) as follows: For e ∈ {(s1, u), (u, v), (v, d1), (s2, d1)}, f11(e) = 0.5; otherwise,
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f11(e) = 0. For Ωi = Ω1 and dj = d2, we construct a {s1, s2} − d2 flow f12 as follows: For

e ∈ {(s2, u), (u, v), (v, d2), (s1, d2)}, f12(e) = 0.5; otherwise, f12(e) = 0. It is easy to see that

val(f1i, sj) = 0.5 for i = 1, 2 and j = 1, 2. Similarly, we can verify the case for Ωi = Ω2 and

sj = d3, d4. This indicates that the MPC can achieve a symmetrical rate 1
2
. �

3.3.3 Linear Program for MPC

In this section, we formulate a linear program to calculate the performance achieved by MPCs

for a given partition of the unicast sessions. Theorem 3.3.1 yields a set of linear constraints

to describe the rate region achieved by multicast-packing code for a given partition G. In

addition to Eq. (3.1), we add the following linear constraints:

• For each Ωi ∈ G, dj ∈ D(Ωi) and sl ∈ S(Ωi), the value of the S(Ωi)− dj flow fij at sl

equals Rl:

Rl =
∑

e∈Out(sl)
fij(e)−

∑
e∈In(sl)

fij(e). (3.3)

• For each Ωi ∈ G and dj ∈ D(Ωi), fij must satisfy the flow conservation law at each

v ∈ V − (S(Ωi) ∪ {dj}):

∑
e∈Out(v)

fij(e) =
∑

e∈In(v)
fij(e). (3.4)

• For each Ωi ∈ G, dj ∈ D(Ωi) and e ∈ E,

0 ≤ fij(e) ≤ hi(e). (3.5)

Remark. It can be easily seen that if each Ωi only contains one unicast session, the above

linear constraints are reduced to those of a routing scheme, in which each node only forwards
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the symbols it receives. Hence, routing can be viewed as a special case of MPC.

In practice, the above constraints can be combined with additional constraints and various

objectives to form a linear program. In this paper, we consider the following two objectives:

• Maximum common rate: We require that the transmission rate of each unicast session

must be at least a rate R(G). In addition to Eq. (3.1) and Eq. (3.3)-(3.5), we add the

following linear constraint for each sl ∈ S(Ω),

Rl ≥ R(G). (3.6)

The objective is simply:

Maximize R(G). (3.7)

• Minimum cost : We require that the transmission rate of each unicast flow ωl must

be at least a fixed value ql. In addition to Eq. (3.1) and Eq. (3.3)-(3.5), we add the

following constraint for each sl ∈ S(Ω),

Rl ≥ ql. (3.8)

Let a : E → R≥0 be a function such that a(e) denotes the cost of occupying unit

capacity along e. The objective is simply:

Minimize
∑

e∈E

∑|Ω|

i=1
a(e)hi(e). (3.9)

Remark. As it is seen, the allocation of network capacities H are decision variables in the

above linear programs (see Eq. (3.1)). Thus, the solution to these linear programs not only

allows us to evaluate the performance achieved by MPC for a given partition G, but also
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includes H as part of the LP solution. From practical perspective, we only need to find

the best partition G such that the MPC constructed from the LP solution achieves the best

performance among all MPCs for Ω. Yet, when |Ω| becomes large, finding such partition as

an LP solution is computationally expensive. Therefore, we present a practical partitioning

algorithm based on simulated annealing techniques in the next section.

3.4 Simulated Annealing Algorithm to Find Good Par-

titions

In this section, we present a practical partitioning algorithm to approximate the best par-

tition of Ω by employing simulated annealing technique [58]. The running process of the

algorithm is divided into stages, each of which is associated with a positive value T (also

called temperature [58]). During each stage, it performs a random walk in the space of par-

titions of Ω. The probability that it moves from the current partition G to another partition

G1 is

Pr(r, r1, T ) =


1 if r1 is better than r;

exp(−κ|r1−r|
T ) otherwise.

where r, r1 denote the values of the objective function corresponding to G and G1, respectively.

At the end of each stage, we reduce T by a constant factor. Note that in case G1 is worse than

G, there is still probability that the algorithm will move to G1. This strategy prevents the

algorithm from being stuck at a sub-optimal partition, which is typical of a greedy strategy.

The algorithm consists of the following parts:

Initialization (lines 1-4): The algorithm starts with a trivial partition G, in which each Ωi
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Algorithm 1: Algorithm to find good partition

1 G ← {{ωi} : 1 ≤ i ≤ |Ω|} ; // Initialize partition
2 (r,H)← solve(G) ; // Solve LP
3 (ropt,Hopt)← (r,H); Gopt ← G ; // Store the result
4 T ← T0 ; // Setting initial temperature
5 for i← 1 to α do
6 j ← 1, k ← 1;
7 while j ≤ β and k ≤ ζ do
8 G1 ← get(G) ; // Get a new partition from G
9 (r1,H1)← solve(G) ; // Solve LP

10 if r1 is better than ropt then
11 (ropt,Hopt)← (r1,H1);
12 Gopt ← G1;

13 end
14 if oracle(r, r1, T ) = true then
15 r ← r1,G ← G1 ; // Move to the new partition
16 k ← k + 1 ; // Record successful moves

17 end
18 j ← j + 1;

19 end
20 T ← T ∗ η ; // Decrease temperature by a factor

21 end
22 return (ropt,Hopt,Gopt);

23 function get(G)
24 Select Ωi randomly from G; select ωl randomly from Ωi;
25 Select Ωj randomly from G ∪ {∅} such that Ωi 6= Ωj ;
26 Ωi ← Ωi − {ωl}, Ωj ← Ωj ∪ {ωl};
27 if Ωi is empty then G ← G − {Ωi};
28 return G;

29 function oracle(r, r1, T )
30 if r1 is better than r then return true;
31 Randomly select a number δ in the range [0, 1];

32 if δ < exp(−κ|r−r1|T ) then return true;
33 else return false;

contains only one unicast flow ωi (line 1). An LP solver is invoked to compute the solution

(r,H) to the linear program constructed from G (line 2), where r denotes the value of the

objective function, andH the allocation of network capacities included in the solution. Then,

T is initialized to T0 (line 4).

The for-loop (lines 5-22): The major body of the algorithm is the for-loop. Each iteration

of the for-loop corresponds to a stage. The major body of the for-loop is a while-loop (lines

7-19). At the beginning of the while-loop, the algorithm calls a function get to generate a
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Figure 3.3: An example of the running process of the simulated-annealing algorithm for the
network shown in Fig. 3.1. The vertical axis marks the maximal common rates achieved by
MPCs with respect to different partitions. The dashed lines denote the operations performed
by the get function, and the solid arrows represent transitions between partitions. For
example, for the initial partition, the get function moves ω1 from {ω1} to {ω2}, resulting
in the partition {{ω1, ω2}, {ω3}, {ω4}, {ω5}}. The algorithm runs for three stages, with the
transitions in each stage being marked in a different color. The algorithm finds the optimal
partition {{ω1, ω2, ω3}, {ω4, ω5}} after three stages.

new partition G1 from G (line 8). The LP solver is invoked to compute the solution of the

linear program constructed from G (line 9). If r1 is better than the best objective found

previously, the algorithm records this better solution (lines 10-13). A function oracle is then

called to decide if the algorithm moves to the new partition G1 (lines 14-17). At the end

of each stage, T is reduced by a factor η (line 20). The function get is used to generate a

random partition from the given partition G. It first randomly picks up two distinct subsets

Ωi,Ωj, and a unicast session ωl ∈ Ωi. Then, it moves ωl from Ωi to Ωj, and returns the final

partition.

Fig. 3.3 shows an example of the running process of the algorithm for the example of Fig.

3.1. The algorithm starts from {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}}, and the corresponding MPC

achieves a maximal common rate of 2
5
. It then moves to the partition {{ω1, ω2}, {ω3}, {ω4}, {ω5}},

with the maximal common rate increased to 1
2
. Due to the random nature of the anneal-
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ing algorithm, at the next step, it moves to {{ω2, ω4}, {ω1}, {ω3}, {ω5}}, with the maximal

common rate decreased to 2
5
. The whole process consists of three stages, marked in different

colors. Stage 1 (marked in blue) has a higher temperature than stage 2 (marked in purple).

Thus, the algorithm moves more violently in stage 1 than it does in stage 2. At the end of

stage 3, the algorithm reaches the optimal partition.

To deal with large scenarios, we divide the space of partitions of Ω into disjoint sub-spaces,

and assign each of them to a dedicated processor. Then, these processors run the algorithm

in parallel by randomly moving in the assigned sub-spaces. At last, we choose the best

partition returned by these processors.

3.5 Evaluation

3.5.1 Simulation Setup

We evaluate the performance of our approach via simulations. We used a network (see Fig.

3.4), which has been used by other researchers [21,27], for our simulations. It has been shown

by previous work [21,27] that network coding exhibits better performance than routing only

when shared bottlenecks are present. Thus, in our simulations, we focus on communication

scenarios, where senders are separated from receivers by bottleneck links, e.g., e5, e6 and e7,

that have lower bandwidths and higher costs than other links. By changing the positions

of senders and receivers, this network allows us to investigate the influence of the positions

of bottlenecks on the performance of MPCs. The outgoing edges of ai’s (1 ≤ i ≤ 9) and

the incoming edges of bi’s all have infinite capacities and zero costs. Each multiple-unicast

scenario Ω is a subset of {(ai, bj) : 1 ≤ i, j ≤ 9} such that the senders and the receivers are

all distinct. We considered the cases where 3 ≤ |Ω| ≤ 7. For each setting of |Ω|, we randomly

constructed 50 multiple-unicast scenarios. We considered two objectives, maximum common
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Figure 3.4: The network used for simulation.
rate and minimum cost. For the first objective, we considered two capacity settings for the

edges other than the outgoing edges of ai’s and the incoming edges of bi’s:

Scenario 1 : The edges all have unit capacities.

Scenario 2 : h(e2) = h(e5) = h(e7) = 0.5, h(e6) = 0.1. The other edges have unit capacities.

In this network, for the second objective, each edge has infinite capacity. We required that

each unicast session must achieve at least unit rate. We considered two cost settings for the

edges other than the outgoing edges of ai’s and the incoming edges of bi’s:

Scenario 3 : a(e1) = a(e2) = a(e3) = a(e4) = 10, a(e6) = 100. The other edges have unit

costs.

Scenario 4 : a(e3) = a(e5) = a(e7) = 10, a(e6) = 100. The other edges have unit costs.

Scenarios 2-4 model many practical transmission scenarios, where the end users are commu-

nicating with each other through long-distance links, which usually have limited bandwidths

and higher costs than local links. The parameters for the simulated annealing algorithm

were: T0 = 0.5, α = 7, β = 92, ζ = 46, η = 0.9, κ = 7. We used GLPK 4.47 as the LP

solver. All the simulations were run on a desktop computer with Intel core i3 CPU and 2GB

memory.
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Table 3.1: Simulation results.

|Ω| δ (%) λ (%) τ (sec)
3 36 27.78 5.07

4 20 100 4.74

5 10 28.75 11.23

6 46 89.13 9.75

7 34 18.37 13.08

(a) Max. common rate, Scenario 1

|Ω| δ (%) λ (%) τ (sec)
3 18 94.44 3.23

4 20 100 4.74

5 30 96.67 6.71

6 46 89.13 9.75

7 50 84 15.32

(b) Max. common rate, Scenario 2

|Ω| δ (%) λ (%) τ (sec)

3 26 27.94 3.47

4 38 21.46 6.64

5 44 26.04 10.20

6 60 26.73 14.01

7 66 25.36 17.78

(c) Min. cost, Scenario 3

|Ω| δ (%) λ (%) τ (sec)

3 18 30.59 3.91

4 20 29.51 7.11

5 30 27.22 10.8

6 46 24.69 12.16

7 50 23.5 17.76

(d) Min. cost, Scenario 4

3.5.2 Simulation Results

Let qm denote the objective obtained by the partitioning algorithm, qr the optimal objective

achieved by routing, and λsucc the number of scenarios in which qm is better than qr. We

define the following metrics to evaluate the results: i) Performance gain, λ = |qm−qr|
qr
×100%;

ii) ratio of scenarios with gains, δ = λsucc
50
× 100%; iii) the average running time τ of the

partitioning algorithm. We averaged the performance gains over all scenarios with gains.

The simulation results are shown in Table 3.1. We make the following observations:

Except for Scenario 1, the ratio of scenarios for which MPC achieves gains over routing all

increases with |Ω|. Moreover, under Scenarios 2-4, MPC outperforms routing in almost half

of the scenarios when |Ω| = 6, 7. Under Scenario 3, MPC outperforms routing for more

than 60% of the scenarios when |Ω| = 6, 7. For these scenarios, MPC is more scalable than

routing in the sense that the chance of obtaining performance gains through MPC increases

with |Ω|.

Under Scenarios 1-2, we observed that MPC achieves considerably better performance than

routing for some scenarios. Under Scenario 2, MPC nearly doubles the performance of
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routing for the scenarios with gains. Under Scenarios 3-4, MPC still achieves a performance

gain over routing ranging from 23% to 30% for the scenarios with gains. Since the ILP-based

approach [21] converges very slow even for four unicast flows, we compare MPC with the

evolutionary approach [27]. We consider the particular scenario presented in [27], where

Ω = {(a1, b7), (a2, b1), (a7, b2), (a8, b5)} and the cost setting is the same as Scenario 3. For

this scenario, MPC achieves a cost of 148, whereas the best cost achieved by the evolutionary

approach over 30 runs of simulations is 156 [27].

The simulated annealing algorithm is efficient in finding good partitions. For most scenarios,

the running time of the algorithm never exceeds 17 seconds. This is mainly because the

algorithm only needs to search in the space of the partitions of Ω. Note that, even for

|Ω| = 5, the integer linear program in [21] contains around 68700 and 1400 variables, and

around 67500 and 1700 constraints. This makes the converging speed of the integer linear

program very slow, and may fail to converge in a reasonable time. In contrast, for |Ω| = 7 and

|G| = 6, our linear program contains only 750 variables and 791 constraints, and each stage of

the algorithm takes no more than 2 seconds for most scenarios. The evolutionary approach

in [27] performs a random walk in the space of the coding vectors in the network. With each

generation taking around one second, the total running time is around 100 seconds for 100

generations. In contrast, the simulated annealing algorithm preforms a random walk in the

space of the partitions of Ω, which is much smaller than the space of the coding vectors.

This greatly reduces the random steps the algorithm takes. The simulation results fully

demonstrate the efficiency of the simulated annealing algorithm in finding good partitions.

3.6 Summary

In this chapter, we propose a novel approach, MPC, to construct linear network coding

schemes for multiple unicast sessions. We propose a set of linear constraints to describe the
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rate region achieved by MPC for a given partition of the multiple unicast sessions. These

linear constraints can be combined with various objectives and additional constraints to form

linear programs to calculate the performance achieved by MPC. The succinct formulation

of these linear programs allow us to quickly analyze the performance of MPC. We further

present a practical partitioning algorithm to find good partitions such that the resulting

MPC approximates the best performance among all MPCs. Simulation results demonstrate

the performance of MPC and the efficiency of the partitioning algorithm.
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Chapter 4

Routing-Optimal Networks for

Multiple Unicast Sessions

4.1 Introduction

In this chapter, we consider the nonlinear network model, in which each node can perform

non-linear network coding operations. In general, non-linear network coding schemes can

achieve better rate than linear network coding schemes [13]. Yet, there exist networks,

for which routing is sufficient to achieve any rate vector achieved by any linear/nonlinear

network coding schemes. We refer to these networks as routing-optimal networks. We

attempt to answer the following questions: 1) What are the distinct topological features of

these networks? 2) Why do these features make a network routing-optimal? The answers

to these questions will not only explain which kind of networks can or cannot benefit from

network coding, but will also deepen our understanding on how network topologies affect

the rate region of network coding.

A major challenge is that there is currently no effective method to calculate the rate region of
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network coding. Some researchers proposed to use information inequalities to approximate

the rate region [13, 14]. However, except for very simple networks, it is very difficult to use

this approach since there is potentially an exponential number of inequalities that need to

be considered. [17,18] provides a formula to calculate the rate region by finding all possible

entropy functions, which are vectors of an exponential number of dimensions, thus very

difficult to solve even for simple networks.

In this chapter, we employ a graph theoretical approach in conjunction with information

inequalities to identify topological features of routing-optimal networks. Our high-level idea

is as follows. Consider a network code. For each unicast session, we choose a cut-set C

between source and sink, and a set P of paths from source to sink such that each path in P

passes through an edge in C. Since the information transmitted from the source is totally

contained in the information transmitted along the edges in C, we can think of distributing

the source information along the edges in C (details will be explained later). Moreover, we

consider a routing scheme in which the traffic transmitted along each path P ∈ P is exactly

the source information distributed over the edge in C that is traversed by P . Such a routing

scheme achieves the same rate vector as the network code. However, since the edges might

be shared among multiple unicast sessions, such a routing scheme might not satisfy the edge

capacity constraints. This suggests that the cut-sets and path-sets we choose for the unicast

sessions should have special features. These are essentially the features we are looking for to

describe routing-optimal networks.

We make the following contributions:

• We identify a class of networks, called information-distributive networks, which are

defined by three topological features. The first two features capture how the edges in

the cut-sets are connected to the sources and the sinks, and the third feature captures

how the paths in the path-sets overlap with each other. Due to these features, given
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a network code, there is always a routing scheme such that it achieves the same rate

vector as the network code, and the traffic transmitted through the network is exactly

the source information distributed over the cut-sets between the sources and the sinks.

• We prove that if a network is information-distributive, it is routing-optimal. We also

show that the converse is not true. This indicates that the three features might be too

restrictive in describing routing-optimal networks.

• We present examples of information-distributive networks taken from the index coding

problem [31,59] and single unicast with hard deadline constraint.

The rest of this chapter is organized as follows. In Section 4.2, we present related work.

In Section 4.3, we present preliminaries. In Section 4.4, we present the detailed description

of information-distributive networks. In Section 4.5, we present examples of information-

distributive networks related to index coding problem, and single-unicast with hard deadline

constraint. In Section 4.6, we show that information-distributive networks don’t include all

routing-optimal networks.

4.2 Related Work

Network coding was first proposed as an alternative technique to routing, with the expec-

tation that it will achieve better rate than routing. However, it was shown that for certain

networks, the benefits gained from network coding compared with routing are very limited.

For example, Yin et al. considered bidirected networks with a multicast session, where for

each edge (u, v), there exists an edge (v, u) with opposite direction [60]. They showed that

the coding advantage, defined as the ratio between the maximal rate achieved by network

coding and that achieved by routing, is upper-bounded by a link capacity parameter. In

particular, if the two edges with opposite directions have the same capacity, the coding
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advantage equals one, i.e., network coding provides no advantage over routing. Some re-

searchers consider network coding for multiple unicast sessions over undirected networks,

where the capacity of an undirectional edge is shared by the two opposite channels between

the two end nodes of the edge. It was conjectured that network coding provides no benefit

over routing for undirected networks [61]. Jain et al. proved that the conjecture is true for a

undirected bipartite network [62]. They further proved that for directed bipartite networks,

the maximum rate achieved by network coding is upper bounded by a rational number. Xi-

ahou et al. utilized a space information flow approach to prove that the conjecture holds for

certain networks, and they further proved the coding gain is upper bounded for certain undi-

rected networks [63]. Langberg and Médard proved that the coding gain is upper bounded

by 3 for certain networks with strong connectivity [64]. Sengupta et al. showed that network

coding doesn’t provide any benefit over routing for a P2P network model, where the uplink

capacity of each node is much lower than the downlink capacity [65].

4.3 Preliminaries

4.3.1 Network Model

The network is represented by an acyclic directed multi-graph G = (V,E), where V and E

are the set of nodes and the set of edges in the network respectively. Edges are denoted by

e = (u, v, i) ∈ V × V × Z≥0, or simply by (u, v), where v = head(e) and u = tail(e). Each

edge represents an error-free and delay-free channel with capacity rate of one. Let In(v) and

Out(v) denote the set of incoming edges and the set of outgoing edges at node v.

There are K ≥ 1 unicast sessions in the network. The ith unicast session is denoted by

a tuple ωi = (si, di), where si and di are the source and the sink of ωi respectively. The

message sent from si to di is assumed to be a uniformly distributed random variable Yi with
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finite alphabet Yi = {1, · · · , d2nRie}, where Ri is the source information rate at si. All Yi’s

are mutually independent. Given 1 ≤ i ≤ j ≤ K, denote Yi:j = {Ym : i ≤ m ≤ j}. We

assume In(si) = Out(di) = ∅ for all 1 ≤ i ≤ K.

Let mincut(u, v,G) denote the minimum capacity of all cut-sets between two nodes u and

v. Given two nodes u, v, let Puv denote the set of directed paths from u to v. The routing

domain of ωi, denoted by Gi, is the sub-graph induced by the edges of the paths in Psidi .

4.3.2 Routing Scheme

A routing scheme is a transmission scheme where each node only replicates and forwards the

received messages onto its outgoing edges. Define the following linear constraints:

∑
P∈Psidi

fi(P ) ≥ R′i ∀1 ≤ i ≤ K (4.1)

K∑
i=1

∑
P∈Psidi ,e∈P

fi(P ) ≤ 1 ∀e ∈ E (4.2)

where fi(P ) ∈ R≥0 represents the amount of traffic routed through path P for ωi. A rate

vector R = (R′i : 1 ≤ i ≤ K) ∈ RK
≥0 is achievable by routing scheme if there exist fi(P )’s

such that (4.1) and (4.2) are satisfied. The rate region of routing scheme, denoted by Rr, is

the set of all rate vectors achievable by routing scheme.

4.3.3 Network Coding Scheme

A network coding scheme is defined as follows: [17]

Definition 4.3.1. An (n, (ηe : e ∈ E), (Ri : 1 ≤ i ≤ K), (δi : 1 ≤ i ≤ K)) network code with

block length n is defined by:
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1. for each 1 ≤ i ≤ K and e ∈ Out(si), a local encoding function: φe : Yi → {1, · · · , ηe};

2. for each v ∈ V − {si, di : 1 ≤ i ≤ K} and e ∈ Out(v), a local encoding function:

φe :
∏

e′∈In(v){1, · · · , ηe′} → {1, · · · , ηe};

3. for each 1 ≤ i ≤ K, a decoding function: ψi :
∏

e′∈In(di)
{1, · · · , ηe′} → Yi;

4. for each 1 ≤ i ≤ K, the decoding error for ωi is δi = Pr(ψ̃i(Y1:K) 6= Yi), where ψ̃i(Y1:K)

is the value of ψi as a function of Y1:K .

Given e ∈ E, let Ue = φ̃e(Y1:K), where φ̃e(Y1:K) is the value of φe as a function of Y1:K ,

denote the random variable transmitted along e in a network code. For a subset C ⊆ E,

denote UC = {Ue : e ∈ C}.

Definition 4.3.2. A rate vector R = (R′i : 1 ≤ i ≤ K) ∈ RK
≥0 is achievable by network

coding if for any ε > 0, there exists for sufficiently large n, an (n, (ηe : e ∈ E), (Ri : 1 ≤ i ≤

K), (δi : 1 ≤ i ≤ K)) network code such that the following conditions are satisfied:

1

n
log ηe ≤ 1 + ε ∀e ∈ E (4.3)

Ri ≥ R′i − ε ∀1 ≤ i ≤ K (4.4)

δi ≤ ε ∀1 ≤ i ≤ K (4.5)

The capacity region achieved by network coding, denoted by Rnc, is the set of all rate vectors

R achievable by network coding.

Given a network code that satisfies (4.3)-(4.5), the following inequalities must hold:

1

n
H(Ue) ≤

1

n
log(ηe) ≤ 1 + ε ∀e ∈ E (4.6)

1

n
H(Yi) =

1

n
log(d2nRie) ≥ Ri ≥ R′i − ε ∀1 ≤ i ≤ K (4.7)

1

n
I(Yi;UIn(di)) ≥ (1− ε)(R′i − ε)−

1

n
∀1 ≤ i ≤ K (4.8)
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where (4.8) is due to Fano’s Inequality:

1

n
I(Yi;UIn(di)) ≥

1

n
(H(Yi)− δi log |Yi| − 1)

=
1

n
(1− δi)H(Yi)−

1

n
≥ (1− ε)(R′i − ε)−

1

n

4.3.4 Routing-Optimal Networks

Since routing scheme is a special case of network coding, Rr ⊆ Rnc.

Definition 4.3.3. A network is said to be routing-optimal, if Rnc = Rr, i.e., for such

network, routing is sufficient to achieve the whole rate region of network coding.

4.4 A Class of Routing-Optimal Networks

In this section, we present a class of routing-optimal networks, called information-distributive

networks. We first use examples to illustrate the topological features of these networks, and

show why they make the networks routing-optimal. Then, we define these networks more

rigorously.

4.4.1 Illustrative Examples

Example 4.4.1. We start with the simplest case of single unicast. It is well known that

for this case, a network is always routing-optimal [1]. In this example, we re-investigate this

case from a new perspective in order to highlight some of the important features that make

it routing optimal. Let m = mincut(s1, d1, G), and C = {e1, · · · , em} is a cut-set between s1

and d1. Assume R′1 ∈ Rnc. Therefore, for ε = 1
k
> 0 (k ∈ Z>0), there exists a network code
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𝑠1 𝑑1 

𝑒3 

𝑒2 

𝑒1 

1

𝑛
𝐼(𝑌1; 𝑈𝑒1) 

1

𝑛
𝐼(𝑌1; 𝑈𝑒2|𝑈𝑒1) 

1

𝑛
𝐼(𝑌1; 𝑈𝑒3|𝑈𝑒1 , 𝑈𝑒2) 

𝑃1 

𝑃2 

𝑃3 

(a) Single unicast session

𝑒1 

𝑒2 

𝑒3 

𝑒4 

𝑠1 𝑑1 

𝑠2 𝑑2 

1

𝑛
𝐼(𝑌1; 𝑈𝑒1) 

1

𝑛
𝐼(𝑌1; 𝑈𝑒2|𝑈𝑒1) 

1

𝑛
𝐼(𝑌2; 𝑈𝑒2|𝑌1) 

1

𝑛
𝐼(𝑌1; 𝑈𝑒3|𝑈𝑒1 , 𝑈𝑒2) 

1

𝑛
𝐼(𝑌2; 𝑈𝑒3|𝑌1, 𝑈𝑒1) 

𝑃11 

𝑃12 

𝑃13 

𝑃21 

𝑃22 

(b) Two unicast sessions

Figure 4.1: Examples of information-distributive networks, where si, di (1 ≤ i ≤ 2) are the
source and the sink of the ith unicast session respectively. For each network, we also show
a routing scheme that achieves the same rate vector as network coding scheme, where the
dashed lines represent the paths that carry non-zero traffic. Beside each such path, we also
mark the amount of traffic carried by the path.

such that (4.3)-(4.5) are satisfied. In the followings, all the random variables are defined in

this network code.

One important feature of this network is that each path from s1 to d1 must pass through at

least an edge in C. Thus, UIn(d1) is a function of UC . The following inequality holds:

I(Y1;UIn(d1)) ≤ I(Y1;UC) (4.9)

The following equation holds:

I(Y1;UC) =
m∑
j=1

I(Y1;Uej |U{e1,··· ,ej−1}) (4.10)

Intuitively, we can interpret (4.10) as follows: I(Y1;Ue1) is the amount of information about

Y1 that can be obtained from Ue1 , I(Y1;Ue2|Ue1) the amount of information about Y1 that can

be obtained from Ue2 , excluding those already obtained from Ue1 , and so on. Hence, (4.10)

can be seen as a “distribution” of the source information over the edges in C. Moreover, for
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each 1 ≤ j ≤ m, we have:

I(Y1;Uej |U{e1,··· ,ej−1}) ≤ H(Uej) (4.11)

Another important feature is that due to Menger’s Theorem, there exist m edge-disjoint

paths, P1, · · · , Pm, from s1 to d1 such that ej ∈ Pj for 1 ≤ j ≤ m. Due to this feature, we

can construct a routing scheme by simply letting each Pj transmit the information distributed

on ej:

fn,k(P ) =


1
n
I(Y1;Uej |U{e1,··· ,ej−1}) if P = Pj, 1 ≤ j ≤ m

0 otherwise.

(4.12)

In Fig. 4.1a, we depict such a routing scheme. Clearly, due to (4.6) and (4.11), the above

routing scheme satisfies the following inequalities:

fn,k(Pj) ≤
1

n
H(Uej) ≤ 1 +

1

k
(4.13)

Moreover, due to (4.8)-(4.10), we have:

∑
P∈Ps1d1

fn,k(P ) =
m∑
j=1

fn,k(Pj) =
1

n
I(Y1;UC)

≥ 1

n
I(Y1;UIn(d1)) ≥

(
1− 1

k

)(
R′i −

1

k

)
− 1

n

(4.14)

Since fn,k(Pj) have an upper bound (see (4.13)), there exists a sub-sequence (nl, kl)
∞
l=1 such

that each sequence (fnl,kl(Pj))
∞
l=1 approaches a finite limit. Define the following routing
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scheme:

f1(P ) =


liml→∞ f

nl,kl(P ) if P = Pj(1 ≤ j ≤ m);

0 otherwise.

Due to (4.13) and (4.14), the above routing scheme satisfies (4.1) and (4.2). Hence, R′1 ∈ Rr,

which implies Rnc ⊆ Rr. Therefore, the network is routing-optimal. �

As shown above, two features are essential in making a network with single-unicast routing-

optimal. The first feature is the existence of a cut-set such that each path from the source to

the sink must pass through an edge in the cut-set. Due to this feature, the source information

contained in UIn(d1) can be completely obtained from the messages transmitted through the

cut-set C (see (4.9)). The second feature is the existence of edge-disjoint paths P1, · · · , Pm,

each of which passes through exactly one edge in C. Due to this feature, a routing scheme

can be constructed such that the traffic transmitted along the paths P1, · · · , Pm is exactly

the information distributed on the edges in C (see (4.12)). These two features together

guarantee that the routing scheme achieves the same rate as network coding (see (4.13),

(4.14)).

However, extending these features to multiple unicast sessions is not straightforward. One

difference from single unicast is that UIn(di) may not be a function of UC , where C is a cut-set

between si and di, and thus (4.9) might not hold. Another difference is that the information

from multiple unicast sessions might be distributed on an edge, and thus (4.11) might not

hold. Moreover, the paths for multiple unicast sesssions might overlap with each other, and

thus (4.13) might not hold. These differences suggest that the cut-sets and the paths, over

which a routing scheme is to be constructed, should have additional features in order for

the resulting routing scheme to achieve the same rate vector as network coding. We use an

example to illustrate some of these features.
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Example 4.4.2. Consider the network shown in Fig. 4.1b. Consider an arbitrary rate

vector R = (R′1, R
′
2) ∈ Rnc. Therefore, for ε = 1

k
(k ∈ Z>0), there exists a network code that

satisfies (4.3)-(4.5). In the sequel, all the random variables are defined in this network code.

For ω1, we choose a cut-set C1 = {e1, e2, e3} between s1 and d1, and a set of paths P1 =

{P11, P12, P13} that pass through e1, e2, e3 respectively; for ω2, we choose a cut-set C2 =

{e2, e3} between s2 and d2, and a set of paths P2 = {P21, P22} that pass through e2, e3

respectively.

We first investigate C1, C2. One important feature is that each path from s2 to d1 passes

through at least an edge in C1. Thus, C1 is also a cut-set between {s1, s2} and d1, and UIn(d1)

is a function of UC1 . Hence, we have:

I(Y1;UIn(d1)) ≤ I(Y1;UC1) (4.15)

Moreover, Out(s1)∪C2 is a cut-set between {s1, s2} and d2, and UOut(s1) is a function of Y1.

Hence UIn(d2) is a function of Y1, UC2 , which implies:

I(Y2;UIn(d2)|Y1) ≤ I(Y2;UC2 |Y1) (4.16)

We distribute the source information over C1, C2 as follows:

I(Y1;UC1) = I(Y1;Ue1) + I(Y1;Ue2|Ue1)

+ I(Y1;Ue3|U{e1,e2})

I(Y2;UC2|Y1) = I(Y2;Ue2|Y1) + I(Y2;Ue3 |Y1, Ue2)

(4.17)

Another feature about C1, C2 is that edge e1 is connected to only one source s1, and thus Ue1

is a function of Y1. As shown below, this feature guarantees that the information distributed
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on an edge e ∈ C1∪C2 is completely contained in Ue. First, for e1, it can be easily seen that:

I(Y1;Ue1) ≤ H(Ue1) (4.18)

For e2, we have:

I(Y1;Ue2|Ue1) + I(Y2;Ue2|Y1)

(b)
=I(Y1;Ue2|Ue1) + I(Y2;Ue2|Y1, Ue1)

=I(Y1, Y2;Ue2|Ue1) ≤ H(Ue2)

(4.19)

where (b) is due to the fact that Ue1 is a function of Y1, and thus, I(Y2;Ue2|Y1) = I(Y2;Ue2 |Y1, Ue1).

Similarly, for e3, we have:

I(Y1;Ue3|U{e1,e2}) + I(Y2;Ue3 |Y1, Ue2)

(c)
=I(Y1;Ue3|U{e1,e2}) + I(Y2;Ue3 |Y1, U{e1,e2})

=I(Y1, Y2;Ue3 |U{e1,e2}) ≤ H(Ue3)

(4.20)

where (c) is again due to the fact that Ue1 is a function of Y1.

Next, we investigate P1,P2. One important feature is that if P ∈ P1 overlaps with P ′ ∈ P2,

P ∩C1 = P ′∩C2. For example, P12 overlaps with P21, and P12∩C1 = P21∩C2 = {e2}. This

feature ensures that the information distributed over C1, C2 can be further distributed over
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the paths in P1,P2. To see this, we construct the following routing scheme:

fn,k1 (P ) =


1
n
I(Y1;Uej |U{e1,··· ,ej−1}) if P = P1j, 1 ≤ j ≤ 3

0 otherwise.

fn,k2 (P ) =



1
n
I(Y2;Ue2|Y1) if P = P21;

1
n
I(Y2;Ue3|Y1, Ue2) if P = P22;

0 otherwise.

Due to (4.18)-(4.20), we can derive that for each e ∈ C1 ∪ C2,

2∑
i=1

∑
P∈Psidi ,e∈P

fn,ki (P ) ≤ 1

n
H(Ue) ≤ 1 +

1

k
(4.21)

For e4, we have:

2∑
i=1

∑
P∈Psidi ,e4∈P

fn,ki (P )

=fn,k1 (P12) + fn,k2 (P21) ≤ 1

n
H(Ue2) ≤ 1 +

1

k

Likewise, we can prove that (4.21) holds for all the other edges of the paths in P1 ∪P2. Due

to (4.15)-(4.17), the following inequalities hold for i = 1, 2

∑
P∈Psidi

fn,ki (P ) ≥
(

1− 1

k

)(
R′i −

1

n

)
+

1

n
(4.22)

By (4.21), there exists a sub-sequence (nl, kl)
∞
l=1 such that for all P ∈ P1 ∪ P2 and i = 1, 2,
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the sub-sequence (fnl,kli (P ))∞l=1 approaches a finite limit. Define a routing scheme:

fi(P ) =


liml→∞ f

nl,kl
i (P ) if P ∈ Pi, i = 1, 2;

0 otherwise.

(4.23)

Due to (4.21) and (4.22), fi(P ) satisfies (4.1) and (4.2). Hence, R ∈ Rr, and Rnc ⊆ Rr.

The network is routing-optimal. �

4.4.2 Information Distributive Networks

In this section, we present the definition of information-distributive networks. Similarly to

single unicast, for each unicast session ωi (1 ≤ i ≤ K), we choose a cut-set Ci between si

and di such that |Ci| = mincut(si, di, Gi), and a set of paths Pi from si to di. The collection

of these cut-sets, denoted by W = (Ci)
K
i=1, is called a cut-set sequence, and the collection

of these path-sets, denoted by K = (Pi)Ki=1, is called a path-set sequence. For instance, in

Example 4.4.2, we choose a cut-set sequence W = (Ci)
2
i=1, where C1 = {e1, e2, e3} is a cut-

set between s1 and d1, and C2 = {e2, e3} is a cut-set between s2 and d2, and a path-set

sequence K = (Pi)2
i=1, where P1 is a path-set from s1 to d1, and P2 a path-set from s2 to

d2. Moreover, we arrange the edges in each cut-set in W in some ordering. For instance, in

Example 4.4.2, we arrange the edges in C1 in the ordering T1 = (e1, e2, e3), and the edges

in C2 in the ordering T2 = (e2, e3). Each such ordering is called a permutation of the edges

in the corresponding cut-set. The collection of these permutations, denoted T = (Ti)
K
i=1, is

called a permutation sequence. For e ∈ Ci, let Ti(e) denote the subset of edges before e in

Ti. For e ∈ E, define W(e) = {Ci ∈ W : e ∈ Ci}, and α(e) the largest index of the source to

which tail(e) is connected. The first feature is described below.

Next, we formalize the three features we have shown in Example 4.4.2. The first feature is

described below.
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Definition 4.4.1. Given a cut-set sequence W , if for all 1 ≤ i < j ≤ K, each path from sj

to di must pass through an edge in Ci, we say that W is cumulative.

This feature guarantees that the source information contained in the incoming messages at

each sink di can be completely obtained from Y1:i−1, UCi .

Lemma 4.4.1. Consider a network code as defined in Definition 4.3.1. IfW is a cumulative

cut-set sequence, then for each 1 ≤ i ≤ K, Yi is a function of Y1:i−1, UCi , and the following

inequality holds:

I(Yi;UIn(di)|Y1:i−1) ≤ I(Yi;UCi |Y1:i−1) (4.24)

Proof. See Appendix F.2. �

Given a cumulative cut-set sequence W and a permutation sequence T for W , we can

distribute the source information Yi over the edges in Ci as follows:

I(Yi;UCi |Y1:i−1) =
∑
e∈Ci

I(Yi;Ue|Y1:i−1, UTi(e)) (4.25)

The second feature is presented below. Without loss of generality, letW(e) = {Cn1 , · · · , Cnk},

where 1 ≤ n1 < · · · < nk ≤ K.

Definition 4.4.2. Given a cut-set sequence W , we say that it is distributive if there exists

a permutation sequence T for W such that for each e ∈
⋃K
i=1 Ci, the following conditions

are satisfied: for all 1 ≤ j < k,

α(e′) ≤ nk ∀e′ ∈ Tnj+1
(e)− Tnj(e) (4.26)

α(e′) ≤ nj+1 − 1 ∀e′ ∈ Tnj(e)− Tnj+1
(e) (4.27)
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As shown in Example 4.4.2, let T1 = (e1, e2, e3), and T2 = (e2, e3). For e3,W(e3) = {C1, C2},

T2(e3)− T1(e3) = ∅, and thus, (4.26) is trivially satisfied; T1(e3)− T2(e3) = {e1}, α(e1) = 1,

and (4.27) is satisfied. Similarly, we can verify other edges. Hence, W is distributive.

The above two features ensure that the information from multiple unicast sessions that is

distributed on an edge e ∈
⋃K
i=1Ci can be completely obtained from Ue.

Lemma 4.4.2. Consider a network code as defined in Definition 4.3.1. Given a cumulative

cut-set sequenceW , ifW is distributive, for each e ∈
⋃K
i=1Ci, the following inequality holds:

∑
1≤i≤K,e∈Ci

I(Yi;Ue|Y1:i−1, UTi(e)) ≤ H(Ue) (4.28)

Proof. See Appendix F.2. �

The third feature is presented below.

Definition 4.4.3. Given a path-set sequence K for W , we say that K is extendable, if for

all 1 ≤ i < j ≤ K, P1 ∈ Pi and P2 ∈ Pj such that P1 overlaps with P2, P1 ∩ Ci = P2 ∩ Cj.

As shown in Example 4.4.2, let K = {P1,P2}. Clearly, we have P12 ∩ P21 = {e2, e4},

P13 ∩ C1 = P21 ∩ C2 = {e2}, and P13 ∩ P22 = {e3}, P13 ∩ C1 = P22 ∩ C2 = {e3}. Thus, K is

extendable.

Definition 4.4.4. A network with multiple unicast sessions is said to be information-

distributive, if there exist a cumulative and distributive cut-set sequence W , and an ex-

tendable path-set sequence K for W in the network.

As shown in the next theorem, the three features together guarantee that the network is

routing-optimal.

Theorem 4.4.1. If a network is information-distributive, it is routing-optimal.
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𝑠1 𝑑1 

𝑠2 𝑑2 

𝑠3 𝑑3 

𝑣1 

𝑣2 𝑣3 

𝑣4 𝑣5 

𝑣6 𝑣7 

Figure 4.2: An example of information-distributive network with three unicast sessions.

Proof. See Appendix F.2. �

Example 4.4.3. Consider the network shown in Fig. 4.2. Define the following cut-sets:

C1 = {(s,v1), (v2, v3), (v4, v5)} C2 = {(v2, v3), (v4, v5)} C3 = {(v6, v7), (s3, d3)}

Define W = (Ci)
3
i=1. Define the following paths:

P11 = {(s1, v1), (v1, d1)} P12 = {(s1, v2), (v2, v3), (v3, d1)}

P13 = {(s1, v4), (v4, v5), (v5, d1)} P21 = {(s2, v2), (v2, v3), (v3, d2)}

P31 = {(s3, v6), (v6, v7), (v7, d3)} P33 = {(s3, d3)}

Define K = {{P11, P12, P13},{P21, P22},{P31, P32}}. It can be verified that W is cumulative

and distributive, and K is extendable. The network is information-distributive. �

4.5 More Examples

4.5.1 Index Coding

We consider a multiple-unicast version of index coding problem [66]. In this problem, there

are K terminals t1, · · · , tK , a broadcast station s, and K source messages X1, · · · , XK , all
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available at s. AllXi’s are mutually independent random variables uniformly distributed over

alphabet Xi = {1, · · · , 2m}. Each terminal requires Xi, and has acquired a subset of source

messages Hi such that Xi /∈ Hi. s uses an encoding function φ :
∏K

i=1Xi → {1, · · · , 2l} to

encode the source messages, and broadcasts the encoded message to the terminals through

an error-free broadcast channel. Each ti uses a decoding function ψi to decode Xi by using

the received message and the messages in Hi. The encoding function φ and the decoding

functions ψi’s are collectively called an index code, and l is the length of this index code.

The minimum length of an index code is denoted by lmin.

This index coding problem can be cast to a multiple-unicast network coding problem over a

network G1 = (V1, E1), where V1 = {si, di : 1 ≤ i ≤ K} ∪ {u, v}, E1 = {(si, u), (v, di) : 1 ≤

i ≤ K} ∪ {(u, v)} ∪ {(sj, di) : Xj ∈ Hi}. The K unicast sessions are (s1, d1), · · · , (sK , dK).

It can be verified that there exists an index code of length l, if and only if R = ( l
m
, · · · , l

m
)

is achievable by network coding in G1.

Let Ci = {(u, v)}, Pi = {(si, u), (u, v), (v, di)}. Define W = (Ci)
K
i=1 and K = (Pi)Ki=1, where

Pi = {Pi}. Since each Ci contains only one edge, W is distributive. Meanwhile, since all

Pi’s overlap at (u, v), K is extendable.

The following theorem states that if the optimal solution to the index coding problem is to let

the broadcast station transmit raw packet, i.e., no coding is needed, then the corresponding

multiple-unicast network is information-distributive, and the converse is also true.

Theorem 4.5.1. lmin = mK if and only if W is cumulative, i.e., G1 is information-

distributive.

Proof. See Appendix F.3. �

Example 4.5.1. In Fig. 4.3, we show an example of G1, which corresponds to an index

coding problem defined by: H1 = ∅, H2 = {X1}, H3 = {X1, X2}, and H4 = {X2, X3}.
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𝑠1 𝑠2 𝑠3 𝑠4 

𝑑1 𝑑2 𝑑3 𝑑4 

𝑢 

𝑣 

Figure 4.3: The equivalent network coding problem for an index coding problem. The net-
work is information-distributive, and thus no coding is needed in the index coding problem.

Clearly, W is cumulative, and thus lmin = mK. �

4.5.2 Single Unicast with Hard Deadline Constraint

In this example, we consider the network coding problem for a single-unicast session (s, d)

over a network G = (V,E), where each edge e is associated with a delay de ∈ Z>0, and each

node has a memory to hold received data. Given a directed path P , let d(P ) =
∑

e∈P de

denote its delay. For e ∈ E, let δ(e) denote the minimum delay of directed paths from s to

tail(e). The data transmission in the network proceeds in time slots. The messages trans-

mitted from s is represented by a sequence (Y [t])Kt=0, where Y [t] is a uniformly distributed

random variable, and represents the message transmitted from s at time slot t. All Y [t]’s

are mutually independent. We require that each Y [t] must be received by d within τ time

slots. Otherwise, it is regarded as useless, and is discarded. This problem was first proposed

by [67] [68]. Recently, it has been shown that network coding can improve throughput by

utilizing over-delayed information [69].

This problem can be cast to an equivalent network coding problem for multiple unicast

sessions. We construct a time-extended graph G̃ = (Ṽ , Ẽ) as follows: the node set is

Ṽ = {st, dt : 0 ≤ t ≤ K} ∪ {v[t] : 0 ≤ t ≤ K + τ}; for each e = (u, v) ∈ E and

0 ≤ t ≤ K+τ−de, we add an edge e[t] = (u[t], v[t+de]) to Ẽ; for u ∈ V , and 0 ≤ t ≤ K+τ−1,
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we add M edges from u[t] to u[t+ 1], where M is the amount of memory available at u; for

each 0 ≤ t ≤ K, we add J edges from st to s[t] and J edges from d[t + τ ] to dt, where J is

a sufficiently large integer. Thus, the original single unicast session (s, d) is cast to K + 1

unicast sessions (s0, d0), · · · , (sK , dK) over G̃.

Let G̃[t] denote the routing domain for (st, dt), and m = mincut(s0, d0, G̃[0]). It can be seen

that each G̃[t] is simply a time-shifted version of G̃[0]. Given a subset of edges U ⊆ Ẽ, define

U [t] = {(u[k + t], v[l + t]) : (u[k], v[l]) ∈ U}. Let C = {ej[tj] : 1 ≤ j ≤ m} be a cut-set

between s0 and d0 such that ej ∈ E for 1 ≤ j ≤ m, and P = {Pj, · · · , Pm} a set of edge

disjoint paths from s0 to d0 such that ej[tj] ∈ Pj for 1 ≤ j ≤ m. Let P [t] = {P [t] : P ∈ P}.

We consider the cut-set sequence W = (C[t])Kt=0, and the path-set sequence K = (P [t])Kt=0.

Lemma 4.5.1. W is cumulative.

Proof. See Appendix F.3. �

Given U ⊆ Ẽ, a recurrent sequence of U is a sequence consisting of all the edges in U that are

time-shifted versions of the same edge. C[0] is said to be distributive if there is a re-indexing

of the edges in C[0] such that for each recurrent sequence (ep[tnj ])
k
j=1 of C[0], the following

conditions are satisfied:

1. for each 1 < j ≤ k, if eq[tq] ∈ C[0] lies before ep[tnj ], and eq[tq − tnj + tnj−1
] /∈ C[0],

then tq − δ(eq) ≤ tnj − tnj−1
− 1;

2. for each 1 ≤ j < k, if eq[tq] ∈ C[0] lies before ep[tnj ], and eq[tq + tnj+1
− tnj ] /∈ C[0],

then tq − δ(eq) ≤ tnj − tn1 .

P is said to be extendable if for all Pi, Pj ∈ P and e[k], e[l] ∈ Ẽ such that e[k] ∈ Pi and

e[l] ∈ Pj, ei = ej and ti − tj = k − l.
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(a) Original network

𝑠 𝑣1 𝑣2 𝑣3 𝑣4 𝑑 
0 

1 

2 

3 

4 

5 

6 

7 

𝑠0 

𝑑0 

𝑃1 

𝑃3 𝑒8[5] 

𝑒8[6] 

𝑃2 

𝑒6[2] 

(b) Routing domain for (s0, d0)

Figure 4.4: An example of single unicast with deadline constraint τ = 7. (a) shows an net-
work with a single unicast (s, d), where ek, i denotes the alias of an edge and its corresponding
delay respectively. (b) shows the routing-domain between s0 and d0 over the corresponding
time-extended graph G̃, where the node at coordinate (v, t) is v[t]. In this routing-domain,
C[0] = {e8[5], e6[2], e8[6]} is distributive, and P = {P1, P2, P3} is extendable. Hence, G̃ is
information-distributive, and therefore, routing-optimal.

Theorem 4.5.2. If C[0] is distributive, and P is extendable, G̃ is information-distributive,

and thus is routing-optimal.

Proof. See Appendix F.3. �

Example 4.5.2. In Fig. 4.4a, we show an example of single unicast with delay constraint τ =

7. In Fig. 4.4b, we show the routing domain G̃[0] for (s0, d0). Let C[0] = {e8[5], e6[2], e8[6]},

and P = {P1, P2, P3}, where P1, P2, P3 are marked as black dashed lines in Fig. 4.4b. It can

be verified that C[0] is distributive, and P is extendable. Thus, according to Theorem 4.5.2,

G̃ is information-distributive. �

4.6 The Converse is Not True

Note that information-distributive networks don’t subsume all possible routing-optimal net-

works. In the following, we show an example of such a network.
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Figure 4.5: A routing-optimal network that is not information-distributive.

Example 4.6.1. Consider the network as shown in Fig. 4.5. We first show that it is not

information-distributive. Define the following paths:

P11 = {a1, e1, b1}, P12 = {a2, e3, b2}

P21 = {a3, e3, b3}, P22 = {a4, e5, b4}

P31 = {a5, e5, b5}, P32 = {a6, e6, b6}

For 1 ≤ i ≤ 3, let Pi = {Pi1, Pi2}, and K = (Pi)3
i=1. Since each source has only two outgoing

edges, K is the only-possible path-set sequence. It can be verified that for all cumulative

and distributive cut-set sequences, K is not extendable. For instance, let C1 = {a1, e3},

C2 = {e3, b4}, and C3 = {e5, b6}. Clearly, the cut-set sequence W = (Ci)
3
i=1 is cumulative

and distributive. However, it can be seen that P22 overlaps with P31, but P22 ∩ C2 = {b4},

and P31 ∩ C3 = {e5}. Hence, K doesn’t satisfy the condition of Definition 4.4.3. Similarly,

we can verify other cases. Thus, the network is not information-distributive.

Nevertheless, we can show that the network is routing-optimal. Consider an arbitrary rate

vector R = (R′1, R
′
2, R

′
3) ∈ Rnc. For ε = 1

k
(k ≥ 2), there exists a network code of length n

such that (4.6)-(4.8) are satisfied.
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Define the following cut-sets, and permutations of edges:

C1 = {e1, e2, e3} C2 = {e3, e4, e5} C3 = {e5, e6, e7}

T1 = (e1, e2, e3) T2 = (e3, e4, e5) T3 = (e5, e6, e7)

Define the following permutations:

T ′1 = (b1, b2) T ′2 = (b3, b4) T ′3 = (b5, b6)

Let W = (Ci)
3
i=1, and T = (Ti)

3
i=1. Clearly, W satisfies the condition of Definition 4.4.1.

Thus, according to Lemma 4.4.1, for i = 1, 2, 3, the following inequality holds:

I(Yi;UIn(di)|Y1:i−1) ≤ I(UCi ;Yi|Y1:i−1) (4.29)

Moreover, since T satisfies the conditions of Definition 4.4.2. By Lemma 4.4.2, for e ∈⋃3
i=1Ci, the following inequality holds:

3∑
i=1

∑
e∈Ci

I(Yi;Ue|Y1:i−1, UTi(e)) ≤ H(Ue) (4.30)

Define the following paths:

P11 = {a1, e1, b1}, P12 = {a1, e2, b2}, P13 = {a2, e3, b2}

P21 = {a3, e3, b3}, P22 = {a3, e4, b4}, P23 = {a4, e5, b4}

P31 = {a5, e5, b5}, P32 = {a5, e6, b6}, P33 = {a6, e7, b6}
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Let Pi = {Pi1, Pi2, Pi3}. Define a routing scheme as follows:

fn,ki (P ) =


1
n
I(Yi;UP∩Ci |Y1:i−1, UTi(e)) if P ∈ Pi

0 otherwise.

Note the following inequalities hold for i = 1, 2, 3:

1

n
H(Yi) ≥

∑
P∈Pi

fn,ki (P )

=
1

n
I(Yi;UCi |Y1:i−1)

(a)

≥ 1

n
I(Yi;UIn(di)|Y1:i−1)

=
1

n

∑
e∈In(di)

I(Yi;Ue|Y1:i−1, UT ′i (e))

(b)

≥ 1

n
(1− 1

k
)H(Yi)−

1

n
≥ (1− 1

k
)(R′2 −

1

k
)− 1

n

(4.31)

where (a) holds because UIn(di) is a function of UC2 , Y1:i−1; (b) is due to Fano’s Inequality.

For i = 1, 2, 3, e′ ∈
⋃3
i=1Ci, and e ∈ In(di), define the following notations:

yn,ki =
1

n
H(Yi) un,ke′ =

1

n
H(Ue′)

gn,ki,e =
1

n
I(Yi;Ue|Y1:i−1, UT ′i (e))

Thus, (4.31) can be rewritten in a concise form as:

yn,ki ≥
∑
P∈Pi

fn,ki (P ) ≥
∑

e∈In(di)

gn,ki,e

≥(1− 1

k
)yn,ki −

1

n
≥ (1− 1

k
)(R′2 −

1

k
)− 1

n

(4.32)

103



Due to (4.31), it can be seen that:

1

2
yn,ki − 1 ≤ (1− 1

k
)yn,ki −

1

n
≤ 1

n
I(Yi;UIn(di)|Y1:i−1)

≤ 1

n

∑
e∈In(di)

H(Ue) ≤ 2(1 +
1

k
) ≤ 3

This means that yn,ki ≤ 8. Clearly, all yn,ki ’s, un,ke′ ’s, gn,ki,e ’s and fn,ki (P )’s have upper bounds.

Thus, there exists a sub-sequence (nl, kl)
∞
l=1 such that ynl,kli , unl,kle′ , gnl,kli,e and fnl,kli (P ) ap-

proach finite limits when l→∞. Define the following notations:

yi = lim
l→∞

ynl,kli ue′ = lim
l→∞

unl,kle′ gi,e = lim
l→∞

gnl,kli,e

Clearly, the following inequalities holds:

ue′ ≤ 1 gi,e ≤ ue ≤ 1

Define the following routing scheme:

fi(P ) =


liml→∞ f

nl,kl
i (P ) if P ∈ Pi

0 otherwise.

We will prove that this routing scheme satisfies (4.1) and (4.2). According to (4.31), we see

that
∑

P∈Pi fi(P ) ≥ R′2, and thus, (4.1) is satisfied. Moreover, due to (4.30), (4.2) is satisfied

for e ∈
⋃3
i=1Ci. For a3, we have:

fn,k2 (P21) + fn,k2 (P22) =
1

n
I(Y2;U{e3,e4}|Y1)

(c)

≤ 1

n
I(Y2;Ua3|Y1)

≤H(Ua3) ≤ 1 +
1

k

where (c) is due to the fact that U{e3,e4} is a function of Ua3 , Y1. Thus, f2(P21) + f2(P22) ≤ 1,
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and (4.2) is satisfied for a3. Using similar arguments, we can prove that (4.2) is satisfied for

a1, a5. Now consider b4. Due to (4.32), the following equations hold:

y2 = g2,b3 + g2,b4 = f2(P21) + f2(P22) + f2(P23) (4.33)

Meanwhile, since Ub3 is a function of Ue3 , Y1, the following equations hold:

fn,k2 (P21) =
1

n
I(Y2;Ue3|Y1) ≥ 1

n
I(Y2;Ub3|Y1) = gn,k2,b3

Hence, f2(P21) ≥ g2,b3 . Combining with (4.33), we have:

f2(P22) + f2(P23) ≤ g2,b3 ≤ 1

Hence, (4.2) holds for b3. Similarly, we can prove that (4.2) holds for b2, b6. It can be easily

seen that for all the other edges, (4.2) also holds. Therefore, we have proved that R ∈ Rr.

This means that Rnc ⊆ Rr, and the network is routing-optimal. �

4.7 Summary

In this chapter, we present a class of routing-optimal networks, called information-distributive

networks, defined by three topological features. Due to these features, there is always a

routing scheme that achieves the same rate vector as network coding such that the traffic

transmitted through the network is the information distributed over the cut-sets between the

sources and the sinks in the corresponding network coding scheme. We then present some

examples of information-distributive networks related to index coding and single unicast

with hard deadline constraint.
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Chapter 5

Conclusion

In this thesis, we consider the inter-session network coding problem for multiple unicast

sessions over directed acyclic graphs. In particular, we investigate the problem of the effects

of network structure on the rate region achieved by network coding. Based on the types

of coding operations allowed at each node, we consider three network models: (i) dummy

networks, in which each node can only perform random linear network coding; (ii) linear

networks, in which each node can perform linear network coding (not necessarily random);

(iii) nonlinear networks, in which each node can perform nonlinear network coding, i.e., the

coding operations at each node are unlimited.

For the dummy network model, we apply a precoding-based interference alignment approach,

which we refer to as precoding-based network alignment (or PBNA for short), to the network

setting. We show that network structures might introduce dependency relations between

transfer functions, also called coupling relations, which might affect the achievable rate

of PBNA. We observe that since these transfer functions are defined on networks, they

usually possess special properties, called graph-related properties. Using these graph-related

properties, we identify the minimal set of coupling relations, the presence of which will affect
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the achievable rate of PBNA. We present characterizations of these coupling relations in

terms of network topology. Based on these characterizations, we present polynomial-time

algorithms to check the existence of these coupling relations.

For the linear network model, since finding the optimal linear network coding scheme is NP-

hard, we consider a constructive approach to constructing linear network coding schemes,

i.e., partitioning the multiple unicast sessions into disjoint subsets of unicast sessions, and

mapping each subset of unicast session to a multicast scenario. We refer to this approach

as a multicast-packing coding scheme (or MPC for short). We show that the rate region

achieved by MPC for a given partition of the multiple unicast sessions can be described by

a set of linear constraints. These linear constraints can be combined with various objectives

and additional constraints to form linear programs to calculate the performance achieved by

MPC. We further present a practical simulated annealing algorithm to find good partitions

such that the resulting MPC approximates the best performance among all MPCs. Simu-

lation results demonstrate the performance of MPC and the efficiency of the partitioning

algorithm.

For the nonlinear network model, we focus on characterizing the topological features of

routing-optimal networks, i.e., for these networks, linear/nonlinear network coding can-

not provide any benefit over routing. We identify a class networks, namely information-

distributive networks, which are defined by three topological features. We prove that the

information-distributive networks are routing-optimal, and show that information-distributive

networks don’t subsume all possible routing-optimal networks. We further present examples

of information-distributive networks related to the index coding problem, and single-unicast

with hard deadline constraint.
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Appendices

A Proof of Graph-Related Properties of Transfer Func-

tions

A.1 Linearization Property

We first present the following lemma, which plays an important role in the proof of Lineariza-

tion Property and the interpretation of the coupled relations, pi(x) = 1 and pi(x) = η(x).

The basic idea of this lemma is that we can multicast two symbols from two senders to two

receivers via network coding if and only if the minimum cut separating the senders from the

receivers is greater than one.

Lemma A.1. mab(x)mpq(x) 6= maq(x)mpb(x) if and only if there is disjoint path pair

(P1, P2) ∈ Pab × Ppq or (P3, P4) ∈ Paq × Ppb.

Proof. We add a super sender s and connect it to s′a and s′p via two edges of unit capacity,

and a super receiver d, to which we connect d′b and d′q via two edges of unit capacity. Thus,
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Figure A.1: The construction of H (in the proof of the Linearization Property) enabled by Lemma
A.1 (P1 is disjoint with P2)

the transfer matrix at d is

M =

mab(x) maq(x)

mpb(x) mpq(x)


It is easy to see det(M) = mab(x)mpq(x) − maq(x)mpb(x). Hence, we can multicast two

symbols from s to d, i.e., det(M) 6= 0, if and only if the minimum cut separating s from d is

at least two, or equivalently there is a disjoint path pair (P1, P2) ∈ Pab × Ppq or (P3, P4) ∈

Paq × Ppb. �

The key to the proof of Lemma 2.6.1 is to find a subgraph H and consider h(x) restricted to

H, i.e., h(xH) = mab(xH)mpq(xH)

maq(xH)mpb(xH)
, where xH consists of the coding variables in H. In fact, due

to graph structure, we can always find H such that some variable xee′ appears exclusively

in the numerator or the denominator of h(xH). Thus, by assigning values to xH other than

xee′ , we can transform h(xH) into a linear function or the inverse of a linear function in terms

of xee′ . Since h(xH) can be acquired through a partial assignment to x, this transformation

also holds for the whole graph G. The detailed proof is presented below.

115



Proof of Lemma 2.6.1. In this proof, given a path P , let P [e : e′] denote the path segment

of P between two edges e and e′, including e, e′. We arrange the edges of G′ in topological

order, and for e ∈ E ′, let o(e) denote e’s position in this ordering. Moreover, denote h1(x) =

mab(x)mpq(x), h2(x) = maq(x)mpb(x) and d(x) = gcd(h1(x), h2(x)). Let s1(x) = h1(x)
d(x)

and s2(x) = h2(x)
d(x)

. Hence gcd(s1(x), s2(x)) = 1. It follows u(x) = cs1(x), v(x) = cs2(x),

where c is a non-zero constant in F2m . By Lemma A.1, there exists disjoint path pair

(P1, P2) ∈ Pab × Ppq or (P3, P4) ∈ Paq × Ppb. Now we consider the first case.

We arbitrarily select another path pair (P ′3, P
′
4) ∈ Paq×Ppb. Since P1, P

′
3 both originate at σa,

and P2, P
′
3 both terminate at τq, there exist e1 ∈ P1∩P ′3 and e2 ∈ P2∩P ′3 such that the path

segment along P ′3 between e1 and e2 is disjoint with P1∪P2. Similarly, there exist e3 ∈ P2∩P ′4

and e4 ∈ P1 ∩ P ′4 such that the path segment between e3 and e4 along P ′4 is disjoint with

P1 ∪ P2. Construct the following two paths: P ′′3 = P1[σa : e1] ∪ P ′3[e1 : e2] ∪ P2[e2 : τq] and

P ′′4 = P2[σp : e3] ∪ P ′4[e3 : e4] ∪ P1[e4 : τb] (see Fig. A.1). Let H denote the subgraph of G′

induced by P1 ∪ P2 ∪ P ′′3 ∪ P ′′4 .

We then prove that the theorem holds for H. If o(e2) > o(e3) (Fig. A.1a and A.1b), the

variables along P2[e3 : e2] are absent in h2(xH). We then arbitrarily select a variable xee′

from P2[e3 : e2], and write h1(xH) as f(x′H)xee′+g(x′H), where x′H includes all the variables in

xH other than xee′ . Meanwhile, h2(xH) can be written as h2(x′H). Clearly, xee′ will not show

up in d(xH) and thus it can also be written as d(x′H). We then find values for x′H , denoted

by r, such that f(r)h2(r)d(r) 6= 0. Finally, denote c0 = cg(r)d−1(r), c1 = cf(r)d−1(r) and

c2 = ch2(r)d−1(r) and the theorem holds. On the other hand, if o(e2) < o(e3) (see Fig.

A.1c), the variables along P1[e1 : e4] are absent in h2(xH). We then select a variable xee′

from P1[e1 : e4]. Similar to above, it’s easy to see that u(x) and v(x) can be transformed

into c1xee′ + c0 and c2 respectively.

For the case where (P3, P4) ∈ Paq × Ppb is a disjoint path pair, we can show that u(x) and

v(x) can be transformed into c2 and c1xee′ + c0 respectively. �
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Figure A.2: Illustration of Square-Term Property. A term with x2
ee′ introduced by (P1, P2)

in the numerator of h(x) equals another term introduced by (P3, P4) in the denominator of
h(x).

A.2 Square-Term Property

The key to the proof of Lemma 2.6.2 is that due to graph structure, each path pair which

contributes an x2
ee′ term in the numerator of h(x) corresponds to another path pair which

contributes an equivalent x2
ee′ term in the denominator of h(x). This correspondence relation

automatically yields a one-to-one mapping from the x2
ee′ terms in the numerator of h(x) to

those in the denominator of h(x). Thus, the summation of the x2
ee′ terms in the numerator

of h(x) equals the summation of the x2
ee′ terms in the denominator of h(x), and hence

f1(x) = f2(x). The detailed proof is presented below.

Proof of Lemma 2.6.2. First, we define two setsQ1 = {(P1, P2) ∈ Pab×Ppq : x2
ee′ | tP1(x)tP2(x)}

and Q2 = {(P3, P4) ∈ Paq × Ppb : x2
ee′ | tP3(x)tP4(x)}. Consider a path pair (P1, P2) ∈ Q1.

Since the degree of xee′ in tP1(x) and tP2(x) is at most one, we must have xee′ | tP1(x)

and xee′ | tP2(x). Thus e, e′ ∈ P1 ∩ P2. Let P 1
1 , P

2
1 be the parts of P1 before e and af-

ter e′ respectively. Similarly, define P 1
2 and P 2

2 . Then construct two new paths: P3 =

P 1
1 ∪ {e, e′} ∪ P 2

2 and P4 = P 1
2 ∪ {e, e′} ∪ P 2

1 (see Fig. A.2). Clearly, tP1(x)tP2(x) =

tP3(x)tP4(x), and thus (P3, P4) ∈ Q2. The above method establishes a one-to-one map-

ping φ : Q1 → Q2, such that for φ((P1, P2)) = (P3, P4), tP1(x)tP2(x) = tP3(x)tP4(x). Hence,

f1(x) = 1
x2
ee′

∑
(P1,P2)∈Q1

tP1(x)tP2(x) = 1
x2
ee′

∑
(P3,P4)∈Q2

tP3(x)tP4(x) = f2(x). �
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A.3 Other Graph-Related Properties

In this section, we present other graph-related properties, which reveal more microscopic

structures of transfer functions, and are to be used in the proofs of Theorems 2.5.3 and

2.5.5. Before proceeding, we first extend the concept of transfer function to any two edges

e, e′ ∈ E ′, i.e., mee′(x) =
∑

P∈Pee′
tP (x), where Pee′ is the set of paths from e to e′.

The following lemma states that any transfer function mee′(x) is fully determined by the two

edges e, e′.

Lemma A.2. Consider two transfer functions me1e2(x) and me3e4(x). Then me1e2(x) =

me3e4(x) if and only if e1 = e3 and e2 = e4.

Proof. Apparently, the “if” part holds trivially. Now assume e1 6= e3 or e2 6= e4. Then, there

must be some edge which appears exclusively in Pe1e2 or Pe3e4 , implying me1e2(x) 6= me3e4(x).

Thus, the lemma holds. �

The following result was first proved by Han et al. [53]. It states that each transfer function

mee′(x) can be uniquely factorized into a product of irreducible polynomials according to

the bottlenecks between e and e′.

Lemma A.3. We arrange the bottlenecks in Cee′ in topological order: e1, e2, · · · , ek, such

that e = e1, e′ = ek. Then, mee′(x) can be factorized as mee′(x) =
∏k−1

i=1 meiei+1
(x), where

meiei+1
(x) is an irreducible polynomial.

As shown below, any transfer function mee′(x) can be partitioned into a summation of

products of transfer functions according to a cut between e and e′.

Lemma A.4. Assume U = {e1, e2, · · · , ek} is a cut which separates e from e′. If ei||ej for

ei 6= ej ∈ U , we have mee′(x) =
∑k

i=1meei(x)meie′(x). Otherwise, the above equality doesn’t

hold.
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Proof. For ei ∈ U , let P iee′ denote the set of paths in Pee′ which pass through ei. Because

ei||ej for ei 6= ej ∈ U , P iee′ is disjoint with Pjee′ . Hence, mee′(x) =
∑k

i=1

∑
P∈Pi

ee′
tP (x). Note

that meei(x)meie′(x) =
∑

(P1,P2)∈Peei×Peie′
tP1(x)tP2(x). Moreover, each monomial tP (x) in

mee′(x) corresponds to a monomial tP1(x)tP2(x) inmeei(x)meie′(x). Hence, meei(x)meie′(x) =∑
P∈Pi

ee′
tP (x), and the lemma holds. On the other hand, if some ei is upstream of ej,

P i
ee′ ∩ P

j
ee′ 6= ∅, and thus mee′(x) 6=

∑k
i=1

∑
P∈Pi

ee′
tP (x), indicating that the lemma doesn’t

hold. �

B Proofs of Feasibility Conditions of PBNA

B.1 Reducing S ′ to S ′i

In order to utilize the degree-counting technique, we use the following lemma. Basically, it

allows us to reformulate each f(η(x))
g(η(x))

∈ S ′ to its unique form α(x)
β(x)

, such that we can compare

the degrees of a coding variable in α(x) and β(x) with its degrees in the numerator and

denominator of pi(x) respectively.

Lemma B.1. Let F be a field. z is a variable and y = (y1, y2, · · · , yk) is a vector of vari-

ables. Consider four non-zero polynomials f(z), g(z) ∈ F[z] and s(y), t(y) ∈ F[y], such that

gcd(f(z), g(z)) = 1 and gcd(s(y), t(y)) = 1. Denote d = max{df , dg}. Define two polynomi-

als in F[y]: α(y) = f

(
s(y)
t(y)

)
td(y) and β(y) = g

(
s(y)
t(y)

)
td(y). Then gcd(α(y), β(y)) = 1.

Proof. See Appendix D. �

We use the following three steps to reduce S ′ to S ′i.

Step 1 : S ′ ⇒ S ′′1 = {a0+a1η(x)
b0+b1η(x)

: a0, a1, b0, b1 ∈ F2m}. Assume pi(x) = f(η(x))
g(η(x))

∈ S ′. We

will prove that d = max{df , dg} = 1. Let pi(x) = u(x)
v(x)

, η(x) = s(x)
t(x)

denote the unique
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forms of pi(x) and η(x) respectively. Without loss of generality, let f(z) =
∑k

j=0 ajz
j,

g(z) =
∑l

j=0 bjz
j where akbl 6= 0. We first consider the case where l ≤ k and thus d = k.

Define the following two polynomials:

α(x) = f(η(x))tk(x) =
∑k

j=0
ajt

k−j(x)sj(x)

β(x) = g(η(x))tk(x) =
∑l

j=0
bjt

k−j(x)sj(x)

Due to Lemma B.1, we have α(x) = cu(x), β(x) = cv(x), where c in a non-zero constant in

Fq. Moreover, according to Lemma 2.6.1, we assign values to x other than a coding variable

xee′ such that u(x) and v(x) are transformed into:

u(xee′) = c1xee′ + c0 v(xee′) = c2

or u(xee′) = c2 v(xee′) = c1xee′ + c0

where c0, c1, c2 ∈ Fq and c1c2 6= 0. We only consider the first case. The proof for the other

case is similar. In this case, α(x) and β(x) are transformed into α(xee′) = cc1xee′ + cc0 and

β(xee′) = cc2 respectively.

By contradiction, assume d ≥ 2. We first consider the case where l ≤ k and thus d = k. In

this case, we have

α(xee′) =
∑k

j=0
ajt

k−j(xee′)s
j(xee′) = cc1xee′ + cc0

β(xee′) =
∑l

j=0
bjt

k−j(xee′)s
j(xee′) = cc2

Assume s(xee′) =
∑r

j=0 sjx
j
ee′ and t(xee′) =

∑r′

j=0 tjx
j
ee′ , where srtr′ 6= 0. Thus max{r, r′} ≥

1. Note that the degree of xee′ in tk−j(xee′)s
j(xee′) is kr′+j(r−r′). We consider the following

two cases:

Case I: r 6= r′. If r > r′, dα = kr ≥ 2, contradicting that dα = 1. Now assume r < r′.
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Let l1 and l2 be the minimum exponents of z in f(z) and g(z) respectively. It follows that

dα = kr′ − l1(r′ − r) = 1 and dβ = kr′ − l2(r′ − r) = 0. Clearly, l2 > 0 due to dβ = 0. If

r > 0, kr′ − l2(r′ − r) > kr′ − l2r′ ≥ 0, contradicting dβ = 0. Hence, r = 0, and l2 = k due

to dβ = 0. Meanwhile, dα = (k − l1)r′ = 1, which implies that l1 = k − 1 and r′ = 1. Thus,

zk−1 is a common divisor of f(z) and g(z), contradicting gcd(f(z), g(z)) = 1.

Case II: r = r′. Since dα = 1 and dβ = 0, all the terms in α(xee′) and β(xee′) containing xkree′

must be cancelled out, implying that

k∑
j=0

ajt
k−j
r sjr = tkr

k∑
j=0

aj

(
sr
tr

)j
= tkrf

(
sr
tr

)
= 0

l∑
j=0

bjt
k−j
r sjr = tkr

l∑
j=0

bj

(
sr
tr

)j
= tkrg

(
sr
tr

)
= 0

Hence z − sr
tr

is a common divisor of f(z) and g(z), contradicting gcd(f(z), g(z)) = 1.

Therefore, we have proved d = 1 when l ≤ k. Using similar technique, we can prove that

d = 1 when l ≥ k. This implies that f(η(x))
g(η(x))

can only be of the form a0+a1η(x)
b0+b1η(x)

. Hence, we

have reduced S ′ to S ′′1 .

Step 2 : S ′′1 ⇒ S ′′2 = {1, η(x), 1 + η(x), η(x)
1+η(x)

}. We consider the coupling relation p1(x) =

f(η(x))
g(η(x))

. The coupling relations p2(x) = f(η(x))
g(η(x))

and p3(x) = f(η(x))
g(η(x))

can be dealt with similarly.

Define q1(x) = η(x)
p1(x)

= m11(x)m23(x)
m13(x)m21(x)

. Assume the characteristic of Fq is p. Given an integer

m, let mp denote the remainder of m divided by p. Since S ′′1 only consists of a finite number

of rational functions, we iterate all possible configurations of a0, a1, b0, b1 as follows:

Case I: f(z)
g(z)

= a0+a1z
b0+b1z

, where a1a0b1b0 6= 0, and a0b1 6= a1b0. For this case, we have p1(xee′) =

a0+a1p1(xee′ )q1(xee′ )
b0+b1p1(xee′ )q1(xee′ )

. It immediately follows

q1(xee′) =
a0c

2
2 − b0c0c2 − b0c1c2xee′

b1c2
1x

2
ee′ + (2pb1c0c1 − a1c1c2)xee′ + b1c2

0 − a1c0c2
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Let u1(xee′), v1(xee′) denote the numerator and denominator of the above equation respec-

tively. Assume u1(xee′) | v1(xee′) and thus xee′ = a0c2−b0c0
b0c1

is a solution to v1(xee′) = 0.

However, v1(a0c2−b0c0
b0c1

) =
a0c22
b20

(a0b1 − a1b0) 6= 0. Hence, u1(xee′) - v1(xee′). Thus, by the

definition of q1(x) and Lemma 2.6.2, x2
ee′ must appear in u1(xee′), which contradicts the

formulation of u1(xee′).

Case II: f(z)
g(z)

= a0+a1z
b1z

, where a0a1b0 6= 0. Similar to Case I, we can derive

q1(xee′) =
a0c

2
2

b1c2
1x

2
ee′ + (2pb1c0c1 − a1c1c2)xee′ + b1c2

0 − a1c0c2

which contradicts Lemma 2.6.2.

Case III: f(z)
g(z)

= a1z
b0+b1z

, where a1b0b1 6= 0. Thus 1
p1(x)

= b0
a1

1
η(x)

+ b1
a1

. Since the coefficient of

each monomial in the denominators and numerators of p1(x) and η(x) equals one, it follows

a0
b1

= b1
a1

= 1. This indicates that p1(x) = η(x)
η(x)+1

.

Case IV: f(z)
g(z)

= a0
b0+b1z

, where a0b0b1 6= 0. It follows that

q1(xee′) =
a0c

2
2 − b0c0c2 − b0c1c2xee′

b1c2
0 + 2pb1c0c1xee′ + b1c2

1x
2
ee′

Similar to Case I, this also contradicts Lemma 2.6.2.

Case V: f(z)
g(z)

= a0
z

, where a0 6= 0. Hence, q1(xee′) =
a0c22

c21x
2
ee′+2pc0c1xee′+c

2
0
, contradicting Lemma

2.6.2.

Case VI: f(z)
g(z)

= a0 + a1z, where a0a1 6= 0. Thus, it follows p1(x) = a0 + a1η(x). Similar to

Case III, a1 = a0 = 1, implying that p1(x) = 1 + η(x).

Case VII: f(z)
g(z)

= a1z, where a1 6= 0. Similar to Case III, a1 = 1 and hence p1(x) = η(x).

Therefore, we have proved that f(η(x))
g(η(x))

can only take the form of the four rational functions
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in S ′′2 . Thus, we have reduced S ′′1 to S ′′2 .

Step 3 : S ′′2 ⇒ S ′i. We note that in Proposition 3 of [53], it was proved that p1(x) 6= 1 +η(x),

p2(x) 6= η(x)
1+η(x)

and p3(x) 6= η(x)
1+η(x)

. Combined with the above results, we have reduced S ′′2 to

S ′i.

In summary, according to Theorem 2.4.1, if the conditions of Theorem 2.5.1 are satisfied,

the three unicast sessions can asymptotically achieve the rate tuple (1
2
, 1

2
, 1

2
) through PBNA.

B.2 Necessity of the Conditions in Theorem 2.5.1

As shown in Subsection 2.6.2, each row of V1 satisfying the alignment conditions corresponds

to a non-zero solution to Eq. (2.36).

Lemma B.2. rank(zC−BA) = n.

Proof. Denote D = BA. Let ci and di denote the ith column of C and D respectively.

Hence, c1, · · · , cn are linearly independent and so are d1, · · · ,dn. Assume there exist

f1(z), · · · , fn(z) ∈ F2m(ξ)(z) such that
∑n

i=1 fi(z)(zci − di) = 0. Without loss of gen-

erality, assume fi(z) = gi(z)
h(z)

for i ∈ {1, 2, · · · , n}, where gi(z), h(z) ∈ F2m(ξ)[z]. Thus,∑n
i=1 gi(z)(zci − di) = 0. Let k = maxi∈{1,2,··· ,n}{dgi} and assume gi(z) =

∑k
l=0 al,i(ξ)z

l,

where al,i(ξ) ∈ F2m(ξ). Then, it follows

n∑
i=1

gi(z)(zci − di) =
k∑
l=0

n∑
i=1

(al,i(ξ)z
l+1ci − al,i(ξ)zldi)

=zk+1

n∑
i=1

ak,i(ξ)ci +
k−1∑
l=0

zl+1

n∑
i=1

(al,i(ξ)ci − al+1,i(ξ)di)

−
n∑
i=1

a0,i(ξ)di = 0
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Therefore, the following equations must hold:

n∑
i=1

ak,i(ξ)ci = 0
n∑
i=1

a0,i(ξ)di = 0

n∑
i=1

(al,i(ξ)ci − al+1,i(ξ)di) = 0 ∀l ∈ {0, · · · , k − 1}

Thus al,i(ξ) = 0 for any i ∈ {1, · · · , n}, l ∈ {0, · · · , k}, implying fi(z) = 0. Hence, rank(zC−

D) = n. �

The following lemma reveals that any non-zero solution to Eq. (2.36) is linearly dependent

on the particular vector (1, z, z2, · · · , zn), which forms each row of the precoding matrix V∗1.

Corollary B.1. Eq. (2.36) has a non-zero solution if and only if s = 1. Moreover, when

s = 1, Eq. (2.36) has a non-zero solution in the form of r(z) = (1, z, z2, · · · , zn)F, where F

is an (n+ 1)× (n+ 1) matrix over F2m(ξ). Moreover, any solution to Eq. (2.36) is linearly

dependent on (1, z, · · · , zn)F.

Proof. We first prove the “only if” part. If s = 0, zC−BA is an invertible square matrix.

Thus, Eq. (2.36) has only zero solution. Hence, if Eq. (2.36) has only non-zero solution, it

must be that s = 1.

We then prove the “if” part. Assume s = 1. We will construct a non-zero solution to

Eq. (2.36) as follows. There must be an n × n invertible submatrix in zC −D. Without

loss of generality, assume this submatrix consists of the top n rows of zC −D and denote

this submatrix by En+1. Let b denote the (n + 1)th row of zC − D. In order to get a

non-zero solution to equation (2.36), we first fix rn+1(z) = −1. Therefore, equation (2.36)

is transformed into (r1(z), · · · , rn(z))En+1 = b. Let Ei denote the submatrix acquired

by replacing the ith row of En+1 with b. Hence, we get a non-zero solution to (2.36),

r(z) = ( detE1

detEn+1
, · · · , detEn

detEn+1
,−1). Moreover, r̄(z) = (det E1, · · · , det En,− det En+1) is also
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a solution. Note that the degree of z in each det Ei is at most n. Thus, r̄(z) can be formulated

as (1, z, · · · , zn)F, where F is an (n+ 1)× (n+ 1) matrix. Since rank(zC−D) = n, all the

solutions to equation (2.36) form a one-dimensional linear space. Thus, all solutions must

be linearly dependent on r̄(z). �

Based on Corollary B.1, we can easily derive that each V1 satisfying Eq. (2.10) is related to

V∗1 through a transform equation, as defined in Lemma 2.6.3.

Proof of Lemma 2.6.3. Let ri be the ith row of V1, which satisfies Eq. (2.10). According

to Corollary B.1, ri must have the form fi(η(xi))(1, η(xi), · · · , ηn(xi))F, where fi(z) is a

non-zero rational function in F2m(ξ)(z). Hence, V1 can be written as GV∗1F. Moreover, Eq.

(2.36) can be rewritten as follows:

(z, z2, · · · , zn+1)FC = (1, z, · · · , zn)FBA

The right side of the above equation contains no zn+1, and thus the (n + 1)th row of FC

must be zero. Similarly, there is no constant term on the left side of the above equation,

implying that the 1st row of FBA is zero. �

In the followings, we will prove the necessity of the conditions in Theorem 2.5.1. Assume a

coupling relation pi(x) = f(η(x))
g(η(x))

∈ S ′i is present in the network. Without loss of generality,

assume f(z) =
∑p

k=0 akz
k and g(z) =

∑q
k=0 bkz

k, where ap 6= 0 and bq 6= 0. We’ll prove that

it is impossible for ωi to asymptotically achieve one half rate by using any PBNA. We only

consider the case i = 1. The other cases i = 2, 3 can be proved similarly, and are omitted.

Consider a PBNA λ = (ξ,Vi : 1 ≤ i ≤ 3) with 2n + s symbol extensions, where n >

max{p, q}+1. According to Corollary B.1, s must equal 1, and thus V1 is a (2n+1)×(n+1)

matrix. By Lemma 2.6.3, V1 = GV∗1F, where F is an (n + 1) × (n + 1) invertible matrix.
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The jth row of V1 is rj = fj(η(x(j)))(1 η(x(j)) · · · ηn(x(j)))F. Since the (n + 1)th row of

FC is zero, we have

rjC = fj(η(x(j)))(1 η(x(j)) · · · ηn−1(x(j)))H (B.1)

where H consists of the top n rows of FC and rank(H) = n. For 0 ≤ l ≤ n− p− 1, define

the following vector:

al = (

l︷ ︸︸ ︷
0 · · · 0 a0 · · · ap

n−p−l︷ ︸︸ ︷
0 · · · 0)T

bl = (

l︷ ︸︸ ︷
0 · · · 0 b0 · · · bq

n−p−l−1︷ ︸︸ ︷
0 · · · 0)T

It follows that

f(η(x(j)))ηl(x(j)) = (1 η(x(j)) · · · ηn(x(j)))al (B.2)

g(η(x(j)))ηl(x(j)) = (1 η(x(j)) · · · ηn−1(x(j)))bl (B.3)

Define a′l = F−1al and b′l = H−1bl. We can derive:

rja
′
l = fj(η(x(j)))(1 η(x(j)) · · · ηn(x(j)))Fa′l

= fj(η(x(j)))(1 η(x(j)) · · · ηn(x(j)))al

(a)
= fj(η(x(j)))f(η(x(j)))ηl(x(j))

(b)
= fj(η(x(j)))p1(x(j))g(η(x(j)))ηl(x(j))

(c)
= pi(x

(j))fj(η(x(j)))(1 η(x(j)) · · · ηn−1(x(j)))bl

= pi(x
(j))fj(x

(j)))(1 η(x(j)) · · · ηn−1(x(j)))Hb′l

(d)
= pi(x

(j))rjCb′l
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where (a) follows from Eq. (B.2); (b) follows because of the following equation:

p1(x(j)) =
f(η(x(j)))

g(η(x(j)))
=
f(η(x(j)))ηl(x(j))

g(η(x(j)))ηl(x(j))

(c) is due to Eq. (B.3); (d) follows from Eq. (B.1). Let H1 = (V1 P1V1C) denote the

matrix in the reformulated rank condition B′1. Since a0, · · · , an−p−1 are linearly independent,

the above equation means that there are at most n+ 1− (n− p) = p+ 1 columns in V1 that

are linearly independent of the columns in P1V1C. Therefore, d1 can decode at most p+ 1

source symbols. This means that it is impossible for ω1 to achieve one half rate by using any

PBNA. �

C Proofs of Interpretation of Coupling Relations

C.1 η(x) = 1

First, note that η(x) can be rewritten as a ratio of two rational functions η(x) = f213(x)
f312(x)

, where

fijk(x) , mij(x)mjk(x)

mik(x)
. Hence, in order to interpret η(x) = 1, we first study the properties of

fijk(x).

The following lemma is to be used to derive the general structure of fijk(x). Basically, it

provides an easy method to calculate the greatest common divisor of two transfer functions

with one common starting edge or ending edge.

Lemma C.1. The following statements hold:

1. For e1, e2, e3 ∈ E ′ such that e2, e3 are both downstream of e1. Let e be the last edge of

the topological ordering of the edges in Ce1e2∩Ce1e3 . Thenme1e(x) = gcd(me1e2(x),me1e3(x)).

2. For e1, e2, e3 ∈ E ′ such that e1, e2 are both upstream of e3. Let e be the first edge of the
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topological ordering of the edges in Ce1e3∩Ce2e3 . Thenmee3(x) = gcd(me1e3(x),me2e3(x)).

Proof. First, consider the first statement. By Lemma A.3, the following equations hold:

me1e2(x) = me1e(x)mee2(x) andme1e3(x) = me1e(x)mee3(x). Thusme1e(x) | gcd(me1e2(x),me1e3(x)).

Assume gcd(mee2(x),mee3(x)) 6= 1. By Lemma A.3, there exists bottlenecks e4, e5 such

that me4e5(x) | gcd(mee2(x),mee3(x)). Clearly, e5 ∈ Ce1e2 ∩ Ce1e3 and e5 is downstream

of e, which contradicts that e is the last edge of the topological ordering of Ce1e2 ∩ Ce1e3 .

Hence, we have proved that gcd(mee2(x),mee3(x)) = 1, which in turn implies that me1e(x) =

gcd(me1e2(x),me1e3(x)). Similarly, we can prove the other statement. �

Using the above lemma, fijk(x) can be reformulated as a fraction of two coprime polynomials,

as shown below.

Corollary C.1. fijk(x) can be formulated as

fijk(x) =
mσj ,βijk(x)mαijk,τj(x)

mαijk,βijk(x)
(C.4)

where gcd(mσj ,βijk(x)mαijk,τj(x),mαijk,βijk(x)) = 1.

Proof. fijk(x) can be calculated as

fijk(x) =
mσi,αijk(x)mαijk,τj(x)mjk(x)

mσi,αijk(x)mαijk,τk(x)

=
mαijk,τj(x)mjk(x)

mαijk,τk(x)

=
mαijk,τj(x)mσj ,βijk(x)mβijk,τk(x)

mαijk,βijk(x)mβijk,τk(x)

=
mσj ,βijk(x)mαijk,τj(x)

mαijk,βijk(x)

By Lemma , gcd(mαijk,τk(x),mαijk,τj(x)) = 1 and thus gcd(mαijk,βijk(x),mαijk,τj(x)) = 1.

Meanwhile, gcd(mαijk,βijk(x), mσj ,βijk(x)) = 1. Hence, we must have gcd(mσj ,βijk(x)mαijk,τj(x),mαijk,βijk(x)) =
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𝜎𝑖 𝜎𝑗 

𝜏𝑗 𝜏𝑘 

𝛼𝑖𝑗𝑘 

𝛽𝑖𝑗𝑘 

(a) αijk 6= βijk

𝜎𝑖 𝜎𝑗 

𝜏𝑗 𝜏𝑘 

𝛼𝑖𝑗𝑘= 𝛽𝑖𝑗𝑘 

(b) αijk = βijk

Figure C.3: The structure of fijk(x) can be classified into two types: 1) αijk 6= βijk such
that fijk(x) is a rational function with non-constant denominator; 2) αijk = βijk such that
fijk(x) is a polynomial.

1. �

According to Corollary C.1, the structure of fijk(x) must fall into one of the two types,

as shown in Fig. C.3. In Fig. C.3a, αijk 6= βijk and fijk(x) is a rational function, the

denominator of which is a non-constant polynomial mαijk,βijk(x). On the other hand, when

αijk ∈ Cjk and thus αijk = βijk, as shown in Fig. C.3b, fijk(x) becomes a polynomial

mσj ,αijk(x)mαijk,τj(x).

Moreover, using Corollary C.1, we can easily check whether two fijk(x)’s are equivalent, as

shown in the next corollary. It is easy to see that Theorem 2.5.3 is just a special case of this

corollary.

Corollary C.2. Assume i, j, k, i′, k′ ∈ {1, 2, 3} such that i 6= j, j 6= k and i′ 6= j, j 6= k′.

fijk(x) = fi′jk′(x) if and only if αijk = αi′jk′ and βijk = βi′jk′ .

Proof. By Corollary C.1, if αijk = αi′jk′ and βijk = βi′jk′ , we must have fijk(x) = fi′jk′(x).

Conversely, if fijk(x) = fi′jk′(x), mαijk,βijk(x) = mαi′jk′ ,βi′jk′
(x). Thus αijk = αi′jk′ and

βijk = βi′jk′ by Lemma A.2. �
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C.2 pi(x) = 1 and pi(x) = η(x)

Using Lemma A.1, we can easily prove Theorem 2.5.4, as shown below.

Proof of Theorem 2.5.4. Apparently, by Lemma A.1 and the definition of p1(x), p1(x) = 1 if

and only if the minimum cut separating σ1, σ2 from τ1 and τ3 is one, i.e., C12,13 = 1. In order

to interpret p1(x) = η(x), we consider q1(x) = η(x)
p1(x)

= m11(x)m32(x)
m12(x)m31(x)

. Hence p1(x) = η(x) is

equivalent to q1(x) = 1. Similarly, using Lemma A.1, it is easy to see that p1(x) = η(x) if

and only if the minimum cut separating σ1, σ3 from τ1, τ2 is one, i.e., C13,12 = 1. �

C.3 p1(x) = η(x)
1+η(x) and p2(x), p3(x) = 1 + η(x)

Note that the three coupling relations can be respectively reformulated in terms of fijk(x)

as follows:

m11(x) = f312(x) + f213(x)

m22(x) = f123(x) + f321(x)

m33(x) = f231(x) + f132(x)

Thus, as shown below, the three coupling relations can also be interpreted by using the

properties of fijk(x).

Proof of Theorem 2.5.5. We only prove statement 1). The other statements can be proved

similarly. First, we prove the “if” part. Due to α312 ∈ C12 and α213 ∈ C13, f312(x) =

mσ1,α312(x)mα312,τ1(x) and f213(x) = mσ1,α213(x)mα213,τ1(x). Hence, f312(x) + f213(x) =

mσ1,α312(x)mα312,τ1(x) + mσ1,α213(x)mα213,τ1(x). On the other hand, because α312||α213 and

{α312, α213} forms a cut which separates σ1 from τ1, m11(x) = mσ1,α312(x)mα312,τ1(x) +

mσ1,α213(x)mα213,τ1(x) by Lemma A.4. Therefore, m11(x) = f312(x) + f213(x).
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Next we prove the “only if” part. Assume m11(x) = f312(x) + f213(x). If α312 /∈ C12 but

α213 ∈ C13, f312(x) is a rational function whose denominator is a non-constant polynomial,

while f213(x) is a polynomial. Hence f312(x) + f213(x) must be a rational function with

non-constant denominator, and thus m11(x) 6= f312(x) + f213(x). Similarly, if α312 ∈ C12 but

α213 /∈ C13, we can also prove that m11(x) 6= f312(x) + f213(x).

Now assume α312 /∈ C12 and α213 /∈ C13. It follows that f312(x) =
mσ1,β312 (x)mα312,τ1 (x)

mα312,β312 (x)
and

f213(x) =
mσ1,β213 (x)mα213,τ1 (x)

mα213,β213 (x)
. Because η(x) 6= 1, we have f312(x) 6= f213(x), which indicates

that α312 6= α213 or β312 6= β213 by Corollary C.2, and mα312,β312(x) 6= mα213,β213(x). Therefore,

by Lemma A.3, one of the following cases must hold: 1) There exists an irreducible polyno-

mial mee′(x) such that mee′(x) | mα312,β312(x) but mee′(x) - mα213,β213(x); 2) there exists an

irreducible polynomial mee′(x) such that mee′(x) - mα312,β312(x) but mee′(x) | mα213,β213(x).

Consider case 1). We use lcm(α(x), β(x)) to denote the least common multiple of two

polynomials α(x) and β(x). Define the following polynomials:

f(x) = lcm(mα312,β312(x),mα213,β213(x))

f1(x) = f(x)/mα312,β312(x) f2(x) = f(x)/mα213,β213(x)

Hence, we have mee′(x) - f1(x), mee′(x) | f2(x), and the following equation holds:

f312(x) + f213(x)

=
mσ1,β312(x)mα312,τ1(x)f1(x) +mσ1,β213(x)mα213,τ1(x)f2(x)

f(x)

Moreover, due to gcd(mα312,β312(x), mσ1,β312(x)mα312,τ1(x)) = 1, it follows that mee′(x) -

mσ1,β312(x)mα312,τ1(x). This implies that:

mee′(x) - mσ1,β312(x)mα312,τ1(x)f1(x) +mσ1,β213(x)mα213,τ1(x)f2(x)
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However, mee′(x) | f(x). This indicates that f312(x) + f213(x) is a rational function with

non-constant denominator. Thus m11(x) 6= f312(x) + f213(x). Similarly, for case 2), we can

also prove that m11(x) 6= f312(x) + f213(x).

Thus, we have proved that α312 ∈ C12 and α213 ∈ C13. It immediately follows that m11(x) =

mσ1,α312(x)mα312,τ1(x) + mσ1,α213(x)mα213,τ1(x). Hence each path P in Pσ1τ1 either pass

through α312 or α213, implying that {α312, α213} forms a cut separating σ1 from τ1. Moreover,

according to Lemma A.4, α312||α213. �

D Proofs of Lemmas on Multivariate Polynomials

In this section, we present the proof of Lemma B.1. We first prove that Lemma B.1 holds for

the case where s(x) and t(x) are both univariate polynomials. In order to extend this result to

multivariate polynomials, we employ a simple idea that each multivariate polynomial can be

viewed as an equivalent univariate polynomial on a field of rational functions. Specifically, we

prove that the problem of checking if two multivariate polynomials are co-prime is equivalent

to checking if their equivalent univariate polynomials are co-prime. Finally, based on this

result, we prove that Lemma B.1 also holds for the multivariate case.

D.1 The Univariate Case

In the following lemma, we show that Lemma B.1 holds for the univariate case.

Lemma D.1. Let F be a field, and z, y are two variables. Consider four non-zero polynomi-

als f(z), g(z) ∈ F[z] and s(y), t(y) ∈ F[y], such that gcd(f(z), g(z)) = 1 and gcd(s(y), t(y)) =

1. Denote d = max{df , dg}. Define two polynomials α(y) = f( s(y)
t(y)

)td(y) and β(y) =

g( s(y)
t(y)

)td(y). Then gcd(α(y), β(y)) = 1.
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Proof. Assume w(x) = gcd(α(x), β(x)) is non-trivial. Thus we can find an extension field F̄

of F such that there exists x0 ∈ F̄ which satisfies w(x0) = 0 and hence α(x0) = β(x0) = 0.

In the rest of this proof, we restrict our discussion in F̄. Note that gcd(f(z), g(z)) = 1

and gcd(s(x), t(x)) = 1 also hold for F̄. Assume t(x0) = 0 and thus x − x0 | t(x). Since

gcd(s(x), t(x)) = 1, it follows that x− x0 - s(x) and thus s(x0) 6= 0. Hence, either α(x0) 6= 0

or β(x0) 6= 0, contradicting that α(x0), β(x0) are both zeros. Hence, we have proved that

t(x0) 6= 0. Then we have f

(
s(x0)
t(x0)

)
= α(x0)

td(x0)
= 0 and g

(
s(x0)
t(x0)

)
= β(x0)

td(x0)
= 0, which implies

that z− s(x0)
t(x0)

is a common divisor of f(z) and g(z), contradicting gcd(f(z), g(z)) = 1. Thus,

we have proved that gcd(α(y), β(y)) = 1. �

D.2 Viewing Multivariate as Univariate

In order to extend Lemma D.1 to the multivariate case, we first show that each multivariate

polynomial can be viewed as an equivalent univariate polynomial on a field of rational func-

tions. Let y = (y1, y2, · · · , yk) be a vector of variables. For any i ∈ {1, 2, · · · , k}, define yi =

(y1, · · · , yi−1, yi+1, · · · , yk), i.e., the vector consisting of all variables in y other than yi. Note

that any polynomial f(y) ∈ F[y] can be formulated as f(y) = f0(yi)+f1(yi)yi+· · ·+fp(yi)ypi ,

where each fj(yi) is a polynomial in F[yi]. Because F[yi] is a subset of F(yi), f(y) can also

be viewed as a univariate polynomial in F(yi)[yi]. We use f(yi) to denote f(y)’s equivalent

counterpart in F(yi)[yi]. To differentiate these two concepts, we reserve the notations, such as

“|”, “gcd” and “lcm” for field F, and append “1” as a subscript to these notations to suggest

they are specific to field F(yi). For example, for f(y), g(y) ∈ F[y] and u(yi), v(yi) ∈ F(yi)[yi],

g(y) | f(y) means that there exists h(y) ∈ F[y] such that f(y) = h(y)g(y), and u(yi) |1 v(yi)

means that there exists w(yi) ∈ F[yi](yi) such that v(yi) = w(yi)u(yi).

Lemma D.2. Assume g(yi) ∈ F[yi] and f(y) ∈ F[y] is of the form f(y) =
∑p

j=0 fj(yi)y
j
i ,

where fj(yi) ∈ F[yi]. Then g(yi) | f(y) if and only if g(yi) | fj(yi) for each j ∈ {0, 1, · · · , p}.
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Proof. Apparently, if g(yi) | fj(yj) for any j ∈ {0, 1, · · · , p}, g(yi) | f(y). Now assume

g(yi) | f(y). Thus there exists h(y) ∈ F[y] such that f(y) = g(yi)h(y). Let h(y) =∑p
j=0 hj(yi)y

j
i . Hence, it follows that fj(yi) = hj(yi)g(yi) and thus g(yi) | fj(yi). �

The following result follows immediately from Lemma D.2.

Corollary D.1. Let g(yi) and f(y) be defined as Lemma D.2. Then gcd(g(yi), f(y)) =

gcd(g(yi), f0(yi), · · · , fp(yi)).

Proof. Note that any divisor of g(yi) must be a polynomial in F[yi]. Let d(yi) = gcd(g(yi), f(y))

and d′(yi) = gcd(g(yi), f0(yi), · · · , fp(yi)). By Lemma D.2, d(yi) | fj(yi) for any j ∈

{0, 1, · · · , p}, implying that d(yi) | d′(yi). On the other hand, d′(yi) | f(y), and thus

d′(yi) | d(yi). Hence, d(yi) = d′(yi). �

Corollary D.2. For t ∈ {1, 2, · · · , s}, let ft(y) ∈ F[y] be defined as ft(y) =
∑pt

j=0 ftj(yi)y
j
i ,

where ftj(yi) ∈ F[yi]. Let g(yi) ∈ F[yi]. It follows

gcd(g(yi), f1(y), · · · , ft(y))

=gcd(g(yi), f10(yi), · · · , f1p1(yi), · · · , fs0(yi), · · · , fsps(yi))

Proof. We have the following equations

gcd(g(yi), f1(y), · · · , ft(y)) = gcd(g(yi), f1(y), · · · , g(yi), ft(y))

=gcd(gcd(g(yi), f1(y)), · · · , gcd(g(yi), fs(y)))

=gcd(g(yi), f10(yi), · · · , f1p1(yi), · · · , g(yi), fs0(yi), · · · , fsps(yi))

=gcd(g(yi), f10(yi), · · · , f1p1(yi), · · · , fs0(yi), · · · , fsps(yi))

�
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Lemma D.3. For t ∈ {1, 2, · · · , s}, let at(y), bt(y) ∈ F[y] such that bt(y) 6= 0 and gcd(at(y), bt(y)) =

1. For t ∈ {1, 2, · · · , s}, let vt(y) = lcm(b1(y), · · · , bt(y)). Then we have

gcd

(
a1(y)

vs(y)

b1(y)
, · · · , as(y)

vs(y)

bs(y)
, vs(y)

)
= 1

Proof. We use induction on s to prove this lemma. Apparently, the lemma holds for s = 1

due to gcd(a1(y), b1(y)) = 1. Assume it holds for s− 1. Thus it follows

gcd

(
a1(y)

vs(y)

b1(y)
, · · · , as(y)

vs(y)

bs(y)
, vs(y)

)
=gcd

(
a1(y)

vs(y)

b1(y)
, · · · , as(y)

vs(y)

bs(y)
, bs(y)

vs(y)

bs(y)

)
=gcd

(
a1(y)

vs(y)

b1(y)
, · · · , gcd(as(y), bs(y))

vs(y)

bs(y)

)
(a)
=gcd

(
a1(y)

vs(y)

b1(y)
, · · · , as−1(y)

vs(y)

bs−1(y)
,
vs(y)

bs(y)

)
(b)
=gcd

(
a1(y)

vs(y)

b1(y)
, · · · , as−1(y)

vs(y)

bs−1(y)
, gcd

(
vs−1(y),

vs(y)

bs(y)

))
=gcd

(
a1(y)

vs(y)

b1(y)
, · · · , as−1(y)

vs(y)

bs−1(y)
, vs−1(y),

vs(y)

bs(y)

)
=gcd

(
vs(y)

vs−1(y)
gcd

(
a1(y)

vs−1(y)

b1(y)
, · · · , as−1(y)

vs−1(y)

bs−1(y)

)
, vs−1(y),

vs(y)

bs(y)

)
(c)
=gcd

(
vs(y)

vs−1(y)
, vs−1(y),

vs(y)

bs(y)

)
(d)
=gcd

(
bs(y)

gcd(vs−1(y), bs(y))
, vs−1(y),

vs−1(y)

gcd(vs−1(y), bs(y))

)
= gcd(1, vs−1(y)) = 1

In the above equations, (a) is due to gcd(as(y), bs(y)) = 1; (b) follows from the fact that

vs(y)
bs(y)

| vs−1(y) and thus vs(y)
bs(y)

= gcd(vs−1(y), vs(y)
bs(y)

); (c) follows from the inductive assumption;

(d) is due to vs(y) = lcm(vs−1(y), bs(y)) = vs−1(y)bs(y)
gcd(vs−1(y),bs(y))

. �

In general, each polynomial h(yi) ∈ F(yi)[yi] is of the form h(yi) = a0(yi)
b0(yi)

+ a1(yi)
b1(yi)

yi + · · · +
ap(yi)

bp(yi)
ypi , where for each j ∈ {0, 1, · · · , p}, aj(yi), bj(yi) ∈ F[yi], bj(yi) 6= 0, gcd(aj(yi), bj(yi)) =

1, and ap(yi) 6= 0. Note that for each yji which is absent in h(yi), we let aj(yi) = 0 and
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bj(yi) = 1. Moreover, define the following polynomial µh(yi) = lcm(b0(yi), b1(yi), · · · , bp(yi)).

Corollary D.3. For j ∈ {1, 2, · · · , s}, let fj(yi) ∈ F(yi)[yi]. Define v(yi) = lcm(µf1(yi),

· · · , µfs(yi)) and f̄j(y) = v(yi)fj(yi). Thus gcd(v(yi), f̄1(y), · · · , f̄s(y)) = 1

Proof. Assume fj(yi) has the following form:

fj(yi) =
aj0(yi)

bj0(yi)
+
aj1(yi)

bj1(yi)
yi + · · ·+

ajpj(yi)

bjpj(yi)
y
pj
i

where for any j ∈ {1, 2, · · · , s} and t ∈ {0, 1, · · · , pj}, ajt(yi), bjt(yi) ∈ F[yi], bjt(yi) 6= 0

and gcd(ajt(yi), bjt(yi)) = 1. Apparently, v(yi) is the least common multiple of all bjt(yi)’s.

Define ujt(yi) = v(yi)
bjt(yi)

∈ F[yi]. Hence, we have f̄j(y) =
∑pj

t=0 ajt(yi)ujt(yi)y
t
i . Then it

follows

gcd(v(yi), f̄1(y)), · · · , f̄s(y))

(a)
=gcd(v(yi), a10(yi)u10(yi), · · · , a1p1(yi)u1p1(yi), · · · ,

as0(yi)us0(yi), · · · , asps(yi)usps(yi))
(b)
=1

where (a) is due to Corollary D.2 and (b) follows from Lemma D.3. �

Generally, the definitions of division in F[y] and F(yi)[yi] are different. However, the following

theorem reveals the two definitions are closely related.

Theorem D.1. Consider two polynomials f(y), g(y) ∈ F[y], where g(y) 6= 0. Then g(y) |

f(y) if and only if g(yi) |1 f(yi) for every i ∈ {1, 2, · · · , k}.

Proof. The division equation between f(yi) and g(yi) is as follows

f(yi) = hi(yi)g(yi) + ri(yi) (D.5)
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where hi(yi), ri(yi) ∈ F(yi)[yi], and either ri(yi) = 0 or dri < dg. Due to the uniqueness of

Equation (D.5), f(y) | g(y) immediately implies that for any i ∈ {1, 2, · · · , k}, ri(yi) = 0

and thus g(yi) |1 f(yi).

Conversely, assume for every i ∈ {1, · · · , k}, g(yi) |1 f(yi) and hence ri(yi) = 0. Denote

h̄i(y) = µhi(yi)hi(yi). Clearly, h̄i(y) ∈ F[y]. Then, the following equation holds

µhi(yi)f(y) = h̄i(y)g(y)

By Corollary D.3, gcd(µhi(yi), h̄i(y)) = 1. Thus, µhi(yi) | g(y). Define ḡ(y) = g(y)
µhi (yi)

. By

Lemma D.2, ḡ(y) ∈ F[y]. Define u(y) = g(y)
gcd(f(y),g(y))

∈ F[y]. It follows that

u(y) =
g(y)

gcd(f(y), g(y))
=

µhi(yi)ḡ(y)

gcd(h̄i(y)ḡ(y), µhi(yi)ḡ(y))

=
µhi(yi)ḡ(y)

ḡ(y)gcd(h̄i(y), µhi(yi))
=
µhi(yi)ḡ(y)

ḡ(y)
= µhi(yi)

Note that variable yi is absent in u(y). Because yi can be any arbitrary variable in y, it

immediately follows that all the variables in y must be absent in u(y), implying that u(y)

is a constant in F. Hence g(y) | f(y). �

Moreover, in the next theorem, we will prove that checking if two multivariate polynomials

are co-prime is equivalent to checking if their equivalent univariate polynomials are co-prime.

Theorem D.2. Let f(y), g(y) be two non-zero polynomials in F[y]. Then gcd(f(y), g(y)) =

1 if and only if gcd1(f(yi), g(yi)) = 1 for any i ∈ {1, 2, · · · , k}.

Proof. First, assume for any i ∈ {1, 2, · · · , k}, gcd1(f(yi), g(yi)) = 1. We use contradiction

to prove that gcd(f(y), g(y)) = 1. Assume u(y) = gcd(f(y), g(y)) is not constant. Let yi

be a variable which is present in u(y). By Theorem D.1, u(yi) |1 f(yi) and u(yi) |1 g(yi),

which contradicts that gcd1(f(yi), g(yi)) = 1.
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Then, assume gcd(f(y), g(y)) = 1. We also use contradiction to prove that for any i ∈

{1, 2, · · · , k}, gcd1(f(yi), g(yi)) = 1. Assume there exists i ∈ {1, · · · , k} such that v(yi) =

gcd1(f(yi), g(yi)) is non-trivial. Define w(y) = µv(yi)v(yi) ∈ F[y]. Clearly, w(yi) |1 f(yi)

and w(yi) |1 g(yi). Thus, there exists p(yi), q(yi) ∈ F(yi)[yi] such that

f(yi) = w(yi)p(yi) g(yi) = w(yi)q(yi)

Let s(yi) = lcm(µp(yi), µq(yi)). Define p̄(y) = s(yi)p(yi) and q̄(y) = s(yi)q(yi). Apparently,

p̄(y), q̄(y) ∈ F[y]. It follows that

s(yi)f(y) = w(y)p̄(y) s(yi)g(y) = w(y)q̄(y)

Then the following equation holds

s(yi)gcd(f(y), g(y)) = w(y)gcd(p̄(y), q̄(y))

Due to Corollary D.3, gcd(s(yi), gcd(p̄(y), q̄(y))) = gcd(s(yi), p̄(y), q̄(y)) = 1. Hence s(yi) |

w(y). Let w̄(y) = w(y)
s(yi)

. According to Lemma D.2, w̄(y) is a non-trivial polynomial in F[y].

Thus, w̄(y) | gcd(f(y), g(y)), contradicting gcd(f(y), g(y)) = 1. �

D.3 The Multivariate Case

Now, we are in the place of extending Lemma D.1 to the multivariate case.

Proof of Lemma B.1. Note that if we substitute F with F(yi) and gcd with gcd1 in Lemma

D.1, the lemma also holds. Apparently, f(z), g(z) ∈ F(yi)[z]. We will prove that gcd1(f(z), g(z)) =

1. By contradiction, assume r(z) = gcd1(f(z), g(z)) ∈ F(yi)[z] is non-trivial. Let f̄(z) = f(z)
r(z)

and ḡ(z) = g(z)
r(z)

. Clearly, f̄(z) and ḡ(z) are both non-zero polynomials in F(yi)[z]. Then we
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can find an assignment to yi, denoted by y∗i , such that the coefficients of the maximum pow-

ers of z in r(z), f̄(z) and ḡ(z) are all non-zeros. Let r̄(z) denote the univariate polynomial

acquired by assigning yi = y∗i to r(z). Clearly, r̄(z) is a common divisor of f(z) and g(z) in

F[z], contradicting gcd(f(z), g(z)) = 1. Moreover, due to gcd(s(y), t(y)) = 1 and Theorem

D.2, gcd1(s(yi), t(yi)) = 1. Thus, by Lemma D.1, gcd1(α(yi), β(yi)) = 1. Since i can be any

integer in {1, 2, · · · , k}, it follows that gcd(α(y), β(y)) = 1 by Theorem D.2. �

E Proofs for Multicast-Packing Coding Scheme

E.1 Proof of Proposition 3.3.1

To prove Proposition 3.3.1, we use the general framework of network coding scheme as

defined in [17]. Under a network coding scheme defined in [17], each sender si transmits a

random variable Xi. X1, · · · , X|Ω| are mutually independent random variables. Each edge

e ∈ E transmits a random variable Ue, which is a function of the random variables injected

at tail(e), i.e., , the following equations hold:


H(Ue|Xi) = 0 if tail(e) = si;

H(Ue|Ue′ , e′ ∈ E, head(e′) = tail(e)) = 0 otherwise.

Given a subset of edges E ′ ⊆ E, denote UE′ = (Ue : e ∈ E ′). Let δi denote the decoding

error for ωi.

Assume a rate vector R = (Ri : 1 ≤ i ≤ |Ω|) is achievable by network coding schemes.

Then, for any ε > 0, there exists a network coding scheme of length n such that the following
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conditions are satisfied:

1

n
H(Ue) ≤ h(e) + ε ∀e ∈ E (E.6)

δi < ε ∀1 ≤ i ≤ |Ω| (E.7)

1

n
H(Xi) ≥ Ri − ε ∀1 ≤ i ≤ |Ω| (E.8)

By Fano’s inequality, we have:

H(Xi|UIn(di)) ≤ 1 + δiH(Xi) ≤ 1 + εH(Xi) (E.9)

Proof of Proposition 3.3.1. In the following proof, for simplicity, we use Xi:j to denote the

vector (Xi, Xi+1, · · · , Xj). For these two examples, we assume that each unicast session can

achieve a symmetrical rate R. Thus, there is a network coding scheme of length n such that

(E.6)-(E.9) are satisfied. In the rest of this proof, all the random variables are defined in

this network coding scheme.

We first consider the example shown in Fig. 3.1a. Clearly, U(s2,d1) is a function of X2, U(s3,d1)

is a function of X3, and U(v,d1) is a function of Ue1,e2 . Thus, UIn(d1) is a function of Ue1,e2 , X2:3.

Due to (E.9), we have:

H(X1|Ue1,e2 , X2:3) ≤ H(X1|UIn(d1)) ≤ 1 + εH(X1) (E.10)

Similarly, we can derive

H(X5|Ue1,e2 , X1:4) ≤ 1 + εH(X5) (E.11)
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Thus, the following equations hold:

H(X1:5, Ue1,e2) = H(Ue1,e2) +H(X2:3|Ue1,e2) +H(X1|Ue1,e2 , X2:3)

+H(X4|Ue1,e2 , X1:3) +H(X5|Ue1,e2 , X1:4)

(a)

≤H(Ue1,e2) +H(X2:3|Ue1,e2) + 1 + εH(X1) +H(X4|Ue1,e2 , X1:3) + 1 + εH(X5)

=H(Ue1,e2) +H(X2:3|Ue1,e2) +H(X4|Ue1,e2 , X1:3) + 2 + ε(H(X1) +H(X5))

(E.12)

where (a) is due to (E.10) and (E.11). Meanwhile, due to H(Ue1,e2|X1:5) = 0, we have

H(X1:5, Ue1,e2) = H(X1:5). Hence, we can derive:

n(2 + ε)
(b)

≥H(Ue1,e2)

(c)

≥H(X1:5)−H(X2:3|Ue1,e2)−H(X4|Ue1,e2 , X1:3)− 2− ε(H(X1) +H(X5))

≥H(X1:5)−H(X2:3)−H(X4)− 2− ε(H(X1) +H(X5))

(d)
=H(X1) +H(X5)− 2− ε(H(X1) +H(X5))

=(1− ε)(H(X1) +H(X5))− 2

(e)

≥2n(1− ε)(R− ε)− 2

where (b) holds because of (E.6); (c) is due to (E.12); (d) is due to the assumption that

X1, X2, · · · , X5 are mutually independent random variables; (e) follows from (E.8). Thus,

we immediately get: 1 + ε
2
≥ (1− ε)(R− ε)− 1

n
. Let ε→ 0 and n→∞, we then get R ≤ 1.

Since the MPC shown in Fig. 3.1b achieves a symmetrical rate of 1, this establishes the

optimality of MPC for this example.

Next, we consider the example shown in Fig. 3.2a. Similar to above, we can derive

H(X1|U(u,v), X2) ≤ 1 + εH(X1), H(X4|U(u,v), X3) ≤ 1 + εH(X4), and H(X1:4, U(u,v)) =
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H(X1:4). Meanwhile, the following equations hold:

H(X1:4, U(u,v))

=H(U(u,v)) +H(X2|U(u,v)) +H(X1|U(u,v), X2)

+H(X3|U(u,v), X1:2) +H(X4|U(u,v), X1:3)

≤H(U(u,v)) +H(X2|U(u,v)) +H(X3|U(u,v), X1:2) + 2 + ε(H(X1) +H(X4))

Hence, it follows that

n(1 + ε) ≥H(U(u,v))

≥H(X1:4)−H(X2|U(u,v))

−H(X3|U(u,v), X1:2)− 2− ε(H(X1) +H(X4))

≥H(X1:4)−H(X2)−H(X3)− 2− ε(H(X1) +H(X4))

=H(X1) +H(X4)− 2− ε(H(X1) +H(X4))

=(1− ε)(H(X1) +H(X4))− 2

≥2n(1− ε)(R− ε)− 2

Hence, we get: 1
2

+ ε
2
≥ (1 − ε)(R − ε) − 2

n
. Let ε → 0 and n → ∞. We then get R ≤ 1

2
.

Since the MPC in Fig. 3.2b achieves a symmetrical rate 1
2
, this establishes the optimality of

MPC for this example. �

E.2 Proofs of Results on Flow Theory

Given a node u ∈ V , let N+(u) denote the set of downstream neighbours of u. The set

of edges from u to U ⊆ N+(u) is denoted by E+(u, U). The following theorem provides

an iterative approach to calculate mincut(u, v,N ). Given a set of edges E1 ⊆ E, define
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c(E1) =
∑

e∈E1
h(e). If U = ∅, we define mincut(U, v,N ) = 0.

Lemma E.1. Given two distinct nodes u, v ∈ V , let N1 = N+(u) − {v}. The following

equation holds:

mincut(u, v,N ) =
∑

e∈E+(u,v)

h(e) + min
U⊆N1

 ∑
e∈E+(u,U)

h(e) + mincut(N1 − U, v,N )


Proof. Define the following subset of N1:

U1 =argmin
U⊆N1

 ∑
e∈E+(u,U)

h(e) + mincut(N1 − U, v,N )


Denote U2 = N1−U1. Because the outgoing edges of u are not traversed by any path from U2

to v, there exists a U2−v cut-set E1 such that E1∩N+(u) = ∅ and c(E1) = mincut(U2, v,N ).

Clearly, E2 = E+(u, v) ∪ E+(u, U1) ∪ E1 forms a u− v cut-set, the capacity of which is

c(E2) = c(E+(u, v)) + c(E+(u, U1)) + c(E1)

=
∑

e∈E+(u,v)

h(e) +
∑

e∈E+(u,U1)

h(e) + mincut(U2, v,N )

Consider an arbitrary U − v cut-set E3. Apparently, E+(u, v) ⊆ E3. Denote U3 = (E3 −

E+(u, v)) ∩ Out(u) and W3 = E3 − (E+(u, v) ∪ U3). Since the removal of W3 will break up

every path from N1 − U3 to v, W3 is also a (N1 − U3) − v cut-set. Hence, it follows that
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c(W3) ≥ mincut(N1 − U3, v,N ). This indicates that:

c(E3) = c(E+(u, v)) + c(U3) + c(W3)

=
∑

e∈E+(u,v)

h(e) +
∑
e∈U3

h(e) + c(W3)

≥
∑

e∈E+(u,v)

h(e) +
∑
e∈U3

h(e) + mincut(N1 − U3, d)

≥
∑

e∈E+(u,v)

h(e) +
∑
e∈U1

h(e) + mincut(N1 − U1, d)

= c(E2)

Thus, we have proved that c(E2) = mincut(u, v,N ). This completes the proof. �

The following theorem can be seen as a generalized version of the Max-Flow and Min-cut

Theorem.

Theorem E.1. Given a function g : S → R≥0, there exists a S − d flow f over N such that

val(f, v) = g(v) for v ∈ S if and only if the following conditions are satisfied:

∑
v∈U

g(v) ≤ mincut(U, d,N ) ∀U ⊆ S, U 6= ∅

Proof. First, we prove the “if” part. Assume g satisfies the following condition:

∑
v∈U

g(v) ≤ mincut(U, d,N ) ∀U ⊆ S, U 6= ∅

We add a node s′ and connect it to each node v in U via an directed edge (s′, v) with

capacity g(v). Let N̄ denote this network. Clearly, Out(s′) forms a s′ − d cut-set and
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c(Out(s′)) =
∑

v∈S g(v). According to Lemma E.1, the following equation holds:

mincut(s′, d, N̄ ) = min
U⊆S

{∑
v∈U

g(v) + mincut(S − U, d, N̄ )

}

= min
U⊆S

{∑
v∈U

g(v) + mincut(S − U, d,N )

}

For U ⊆ S, we have

∑
v∈U

g(v) + mincut(S − U, d,N )

≥
∑
v∈U

g(v) +
∑

v∈S−U

g(v) =
∑
v∈S

g(v) = c(Out(s′))

This indicates that c(Out(s′)) = mincut(s′, d, N̄ ). According to the Max-flow and Min-cut

Theorem, there is a s′ − d flow f1 over N̄ such that val(f1, s
′) = c(Out(s′)) =

∑
v∈U g(v).

Clearly, f1(s′, v) = g(v) for each v ∈ S. We then construct a S − d flow f over N simply by

setting f(e) = f1(e) for each e ∈ E. Apparently, val(f, v) = g(v) for each v ∈ S.

We next prove the “only if” part. Assume there is a S − d flow f such that val(f, v) = g(v)

for v ∈ S. Thus there exists a U − d flow f1 such that val(f1, v) = val(f, v) = g(v) for v ∈ U

and val(f1, v) = 0 for v ∈ S − U . We then introduce a new node s′′ and connect it to each

node of U via a directed edge with infinite capacity. Let N ′ = (V ′, E ′, h′) denote this new

network. We then define a s′′ − d flow f2 over N ′ as follows:

f2(e) =


val(f1, head(e)) if head(e) ∈ U ;

f1(e) otherwise.
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Due to the Max-flow and Min-cut Theorem, this suggests that

∑
v∈U

g(v) =
∑
v∈U

val(f1, v) = val(f2, s
′′)

≤mincut(s′′, d,N ′) = mincut(U, d,N )

This completes the proof. �

E.3 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1. 1 ⇒ 2: Assume R = (Rl, · · · , R|Ω|) can be achieved by an MPC

with respect to (G,H). Hence, for any ε > 0, there exists an MPC of length t with respect to

(G,H) such that |Xl|
t
≥ Rl − ε for 1 ≤ l ≤ |Ω|. Consider a subset of unicast sessions Ωi ∈ G

over the sub-capacitated network Ni. Let U be an arbitrary non-empty subset of S(Ωi). We

add a super-sender s and link it to each sj ∈ U via an edge ej of infinite capacity, which

transmits a vector Yej = Xj. Let N̄i denote this newly constructed network. Clearly, the

encoding matrices and decoding matrices in the MPC for Ωi also serve as a linear network

coding scheme for the single unicast session (s, dj) (sj ∈ U) over the network N̄i. This

unicast session achieves a rate
∑

sl∈U
|Xl|
t

. Thus, we have:

∑
sl∈U

(Rl − ε) ≤
∑
sl∈U

|Xl|
t
≤ mincut(s, dj, N̄i) = mincut(U, dj,Ni)

Let ε → 0, we then get
∑

sj∈U Rj ≤ mincut(U, dj,Ni). According to Theorem E.1, this

implies that there exists a S(Ωi)−dj flow fij overNi such that val(fij, sl) = Rl for sl ∈ S(Ωi).

2⇒ 3: This directly follows from Theorem E.1.

3 ⇒ 1: Consider a subset of unicast sessions Ωi ∈ G over the sub-capacitated network Ni.

Assume that for any non-empty subset U ∈ S(Ωi),
∑

sl∈U Rl ≤ mincut(U, dj,Ni). According
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to Theorem 8 of [6], there is a linear network coding scheme for the multicast-scenario

Γi = {(sj, D(Ωi)) : sj ∈ S(Ωi)}. Combining these linear network coding schemes, we then

get an MPC for Ω with respect to (G,H). Hence R is achievable by the MPC. �

F Proofs for Routing-Optimal Networks

F.1 Useful Tools

In this section, we present some useful tools to be used in the sequel.

Proposition F.1. The following equations hold:

1. H(X|Y ) = H(X|Y, f(Y )).

2. I(X;Y |Z) = I(X;Y |Z, f(Z)).

3. H(X|f(Y )) ≥ H(X|Y ).

4. I(X;Y |Z,W ) ≥ I(X; f(Y, Z)|Z,W ).

Proof. 1) The following equation holds:

H(X, Y, f(Y )) =H(Y ) +H(X|Y ) +H(f(Y )|X, Y ) = H(Y ) +H(X|Y ) (F.13)

Meanwhile, we have:

H(X, Y, f(Y )) =H(Y ) +H(f(Y )|Y ) +H(X|Y, f(Y ))

=H(Y ) +H(X|Y, f(Y ))

(F.14)

Combining Eq. (F.13) and Eq. (F.14), we have H(X|Y ) = H(X|Y, f(Y )).
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2) Due to 1), we can derive:

I(X;Y |Z, f(Z)) =H(X|Z, f(Z))−H(X|Y, Z, f(Z))

=H(X|Z)−H(X|Y, Z) = I(X;Y |Z)

3) First, the following equalities hold:

H(X, Y, f(Y )) = H(f(Y )) +H(X|f(Y )) +H(Y |X, f(Y )) (F.15)

Combining Eq. (F.13) and Eq. (F.15), we then have:

H(X|f(Y )) =H(X|Y ) +H(Y )−H(f(Y ))−H(Y |X, f(Y ))

(a)
=H(X|Y ) +H(Y |f(Y ))−H(Y |X, f(Y ))

=H(X|Y ) + I(X;Y |f(Y )) ≥ H(X|Y )

where (a) follows from the equation: H(Y ) = H(Y, f(Y )) = H(f(Y )) +H(Y |f(Y )).

4) We have the following equations:

I(X;Y |Z,W )− I(X; f(Y, Z)|Z,W )

=H(X|Z,W )−H(X|Y, Z,W )− [H(X|Z,W )−H(X|f(Y, Z), Z,W )]

=H(X|f(Y, Z), Z,W )−H(X|Y, Z,W ) ≥ 0

where the last inequality is due to 3) and the fact that (f(Y, Z), Z,W ) is a function of

(Y, Z,W ). �

Proposition F.2. If Y → (X,W )→ Z, then I(X;Y |W ) ≥ I(X;Y |W,Z) and I(X;Y |W ) ≥

I(Z;Y |W ). As a special case, we have I(X;Y |W ) ≥ I(X;Y |W, f(X,W )) and I(X;Y |W ) ≥

I(f(X,W );Y |W ).
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Proof. We have the following equations:

I(X,Z;Y |W ) = I(Z;Y |W ) + I(X;Y |W,Z)

=I(X;Y |W ) + I(Z;Y |X,W ) = I(X;Y |W )

Thus, it must be that I(X;Y |W ) ≥ I(X;Y |W,Z) and I(X;Y |W ) ≥ I(Z;Y |W ). Since the

following chain: Y → (X,W )→ f(X,W ) holds, we must have I(X;Y |W ) ≥ I(X;Y |W, f(X,W ))

and I(X;Y |W ) ≥ I(f(X,W );Y |W ). �

F.2 Proofs for Information-Distributive Networks

Proof of Lemma 4.4.1. Let S ′i denote the set consisting of the outgoing edges of s1, · · · , si−1.

Since each path from sj (i ≤ j < K) to di must pass through an edge in Ci, S
′
i ∪Ci forms a

cut-set between {s1, · · · , sK} and di. Thus UIn(di) is a function of US′i , UCi . Meanwhile, YS′i is

a function of Y1:i−1. Thus, UIn(di) is a function of Y1:i−1, UCi . According to Proposition F.2,

(4.24) holds. �

Proof of Lemma 4.4.2. Let T be the permutation sequence as defined in Definition 4.4.2.

Consider an arbitrary edge e ∈
⋃K
i=1Ci. Without loss of generality, letW(e) = {Cn1 , · · · , Cnk},

where 1 ≤ n1 < · · · < nk ≤ K. Then we have:

∑
1≤i≤K,e∈Ci

I(Yi;Ue|Y1:i−1, UTi(e)) =
k∑
i=1

I(Yi;Ue|Y1:ni−1, UTni (e))

For k = 1, the following equation holds
∑k

i=1 I(Yi;Ue|Y1:ni−1, UTni (e)) = I(Yi : Ue| Y1:n1−1, UTn1 (e)) ≤

H(Ue). Hence, (4.28) holds for k = 1. We now consider the case k > 1. We will prove the
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following inequality holds for 1 ≤ p ≤ k:

k∑
i=p

I(Yi;Ue|Y1:ni−1, UTni (e)) ≤ I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)) (F.16)

Clearly, (F.16) holds trivially for p = k. Assume it holds for p > 1. We will prove it also

holds for p− 1.

k∑
i=p−1

I(Yi;Ue|Y1:ni−1, UTni (e))

(a)

≤I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)) + I(Ynp−1 ;Ue|Y1:np−1−1, UTnp−1 (e))

(b)
=I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)∩Tnp−1 (e), UTnp (e)−Tnp−1 (e))

+ I(Ynp−1 ;Ue|Y1:np−1−1, UTnp (e)∩Tnp−1 (e), UTnp−1 (e)−Tnp (e))

(c)

≤I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)∩Tnp−1 (e))+

I(Ynp−1 ;Ue|Y1:np−1−1, UTnp (e)∩Tnp−1 (e), UTnp−1 (e)−Tnp (e))

(d)
=I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)∩Tnp−1 (e), UTnp−1 (e)−Tnp (e))

+ I(Ynp−1 ;Ue|Y1:np−1−1, UTnp (e)∩Tnp−1 (e), UTnp−1 (e)−Tnp (e))

(e)
=I(Ynp:nk ;Ue|Y1:np−1, UTnp−1 (e)) + I(Ynp−1 ;Ue|Y1:np−1−1, UTnp−1 (e))

≤I(Ynp:nk ;Ue|Y1:np−1, UTnp−1 (e)) + I(Ynp−1:np−1;Ue|Y1:np−1−1, UTnp−1 (e))

(f)
=I(Ynp−1:nk ;Ue|Y1:np−1−1, UTnp−1 (e))

where (a) is due to our assumption that (F.16) holds for p; (b) is due to the equalities,

Tnp(e) = (Tnp(e)∩Tnp−1(e))∪(Tnp(e)−Tnp−1(e)) and Tnp−1(e) = (Tnp(e)∩Tnp−1(e))∪(Tnp−1(e)−

Tnp(e)); (c) is due to our premise that W is distributive: for each e′ ∈ Tnp(e) − Tnp−1(e),

α(e′) ≤ nk, and thus Ue′ is a function of Y1:nk ; therefore, according to Proposition F.2, we
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have:

I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)∩Tnp−1 (e), UTnp (e)−Tnp−1 (e))

≤ I(Ynp:nk ;Ue|Y1:np−1, UTnp (e)−Tnp−1 (e))

(d) is also due to our premise that W is distributive: for each e′ ∈ Tnp−1(e) − Tnp(e),

α(e′) ≤ np − 1, and thus Ue′ is a function of Y1:np−1; therefore, the following equality holds

according to Proposition F.1:

I(Ynp−1 ;Ue|Y1:np−1−1, UTnp (e)∩Tnp−1 (e), UTnp−1 (e)−Tnp (e))

= I(Ynp−1 ;Ue|Y1:np−1−1, UTnp (e)∩Tnp−1 (e))

(e) is again due to Tnp−1(e) = (Tnp(e) ∩ Tnp−1(e)) ∪ (Tnp−1(e) − Tnp(e)); (f) is due to chain

rule of mutual information. Thus, (F.16) holds for p− 1. This means that (F.16) must hold

for all 1 ≤ p ≤ k. Letting p = 1 in (F.16), we have:

k∑
i=1

I(Yi;Ue|Y1:ni−1, UTni (e)) ≤ I(Yn1:nk ;Ue|Y1:n1−1, UTn1 (e)) ≤ H(Ue)

Thus, the lemma holds. �

Let e be an edge that is passed through by at least one path in an extendable path-set

sequence K. According to the above definition, all the paths in K that pass through e must

pass through a single edge in W . We use µe to denote this edge, and refer to it as the

representative of e in W .

Proof of Theorem 4.4.1. LetW = {Ci : 1 ≤ i ≤ K} be a cumulative and distributive cut-set

sequence, T a permutation sequence for W that satisfies the conditions of Definition 4.4.2,

and K = {Pi : 1 ≤ i ≤ K} an extendable path-set sequence forW . Let R = (R′i : 1 ≤ i ≤ K)
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be an arbitrary rate vector in Rnc. Therefore, for ε = 1
k
> 0 (k ∈ Z>0), there exists a network

code which satisfies (4.3)-(4.5). In the rest of this proof, all the random variables are defined

in this network code.

We then define the following routing scheme: for 1 ≤ i ≤ K,

fn,ki (P ) =


1
n
I(Yi;Ue|Y1:i−1, UTi(e)) if P ∈ Pi, e ∈ P ∩ Ci;

0 otherwise.

Since W is cumulative, the following equation holds:

∑
P∈Psidi

fn,ki (P ) =
∑
P∈Pi

fn,ki (P )

=
1

n

∑
e∈Ci

I(Yi;Ue|Y1:i−1, UTi(e))

(a)
=

1

n
I(Yi;UCi |Y1:i−1)

(b)

≥ 1

n
I(Yi;UIn(di)|Y1:i−1)

(F.17)

where (a) is due to (4.25), and (b) is due to (4.24). Define δ′i = Pr(Yi cannot be decoded

from UIn(di), Y1:i−1). Clearly, δ′i ≤ δi ≤ 1
k
. Then, we can derive the following equation:

1

n
I(Yi;UIn(di)|Y1:i−1) =

1

n
(H(Yi|Y1:i−1)−H(Yi|UIn(di), Y1:i−1))

(c)
=

1

n
(H(Yi)−H(Yi|UIn(di), Y1:i−1))

(d)

≥ 1

n
(H(Yi)− 1− δ′i log |Yi|)

=(1− δ′i)
1

n
H(Yi)−

1

n

(e)

≥
(

1− 1

k

)(
R′i −

1

k

)
− 1

n

where (c) is due to the fact that Yi is independent from Y1:i−1; (d) is due to Fano Inequality;

(e) is due to (4.7). Combining the above equation with (F.17), the following inequality holds:

∑
P∈Psidi

fn,ki (P ) ≥
(

1− 1

k

)(
R′i −

1

k

)
− 1

n
(F.18)
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Let e be an edge that is passed through by at least one path in K. Since K is extendable,

the paths in K that pass through e must pass through e’s representative µe in W . Hence,

the following equation holds:

K∑
i=1

∑
P∈Psidi ,e∈P

fn,ki (P ) =
K∑
i=1

∑
P∈Pi,e∈P

fn,ki (P )

≤
K∑
i=1

∑
P∈Pi,µe∈P

fn,ki (P ) =
1

n

∑
1≤i≤K,µe∈Ci

I(Yi;Uµe|Y1:i−1, UTi(µe))

(f)

≤ 1

n
H(Uµe)

(g)

≤ 1 +
1

k

(F.19)

where (f) is due to (4.28); (g) is due to (4.6).

Since each fn,ki (P ) has an upper bound, there exists a sequence (nl, kl)
∞
l=1 such that for

1 ≤ i ≤ K, the sequence (fnl,kli (P ))∞l=1 approaches a finite limit. Define the following routing

scheme:

fi(P ) =


liml→∞ f

nl,kl
i (P ) if P ∈ Pi

0 otherwise.

Due to (F.18) and (F.19), fi(P ) satisfies (4.1) and (4.2). Hence, R ∈ Rr. This implies that

Rnc ⊆ Rr, and the network is routing-optimal. �

F.3 Proofs for Examples

Proof of Theorem 4.5.1. Assume W is cumulative. Hence, G1 is information-distributive

According to Theorem 4.4.1, G1 is routing-optimal. Since routing can achieve a common

rate of at most 1
K

, lmin = mK.

Now assume lmin = mK. We consider a side-information graph G′ = (V ′, E ′) [66], where
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V ′ = {1, · · · , K}, and E ′ = {(j, i) : Xi ∈ Hj, 1 ≤ i, j ≤ K}. It has been shown that

if lmin = mK, then G′ is acyclic [66]. We will show that W is information-distributive.

Since G′ is acyclic, we can re-index the nodes in G′, such that if (j, i) ∈ E ′, j < i. Let

1 ≤ i < j ≤ K. Consider a path P from sj to di. Since (j, i) /∈ E ′, Xj /∈ Hi. Thus, there

is no directed edge from sj to di in G1, and P must pass through (u, v) ∈ Ci. Hence, W is

cumulative, and G1 is information-distributive. �

Proof of Lemma 4.5.1. Let 0 ≤ i < j ≤ K. Assume there is a directed path P from sj to di.

Let P1 be the part of P after s[j]. Clearly, P ′ = {(si, s[i]), (s[i], s[i+1]), · · · , (s[j−1], s[j])}∪

P1 is a directed path from si to di. Since C[i] is a cut-set between s[i] and d[i], P ′ must pass

through an edge e[k] ∈ C[i]. Thus, e[k] ∈ P . This means that W is cumulative. �

Since the duration between e[t] and s[α(e[t])] is δ(e), we have:

α(e[t]) = t− δ(e) (F.20)

Lemma F.1. If C[0] is distributive, W is distributive.

Proof. Let T [t] = (ei[ti + t])ki=1, and define a permutation sequence T = (T [t])Kt=0 forW . We

will prove that if C[0] is distributive, T satisfies (4.26) and (4.27).

Consider an edge ep[tp] ∈ C[0]. Let(ep[tni ])
k
i=1 be the recurrent sequence in C[0], in which

all the edges are time-shifted versions of ep. Without loss of generality, let nj = p. Next,

consider ep[tp + k] ∈ C[k]. Let W(ep[tp + k]) = {C[t] : ep[tp + k] ∈ C[t], 0 ≤ t ≤ K} denote

the subset of cut-sets which contain ep[tp+k]. Clearly, C[k−tnj+1
+tnj ] and C[k+tnj− tnj−1

]

are the cut-sets inW(ep[tp+k]) that lies immediately before and after C[k] respectively, and

C[k + tnj − tn1 ] is the last cut-set in W(ep[tp + k]).

Consider an edge eq[tq + k] ∈ C[k] be an edge that lies before ep[tp + k] in T [k], but doesn’t
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appear before ep[tp + k] in T [k − tnj+1
+ tnj ]. This means that eq[tq + tnj+1

− tnj ] /∈ C[0].

Thus, the following equation holds:

α(eq[tq + k]) = k + tq − δ(eq)
(a)

≤ k + tnj − tn1 .

where (a) is due to the premise that C[0] is distributive. Hence, (4.26) is satisfied.

Now assume that eq[tq + k] ∈ C[k] lies before ep[tp + k] in T [k], but doesn’t appear before

ep[tp+k] in T [k− tnj + tnj−1
]. This implies that eq[tq− tnj + tnj−1

] /∈ C[0]. Thus, the following

equation holds:

α(eq[tq + k]) = k + tq − δ(eq)
(b)

≤ k + tnj − tnj−1
− 1

where (b) is again due to the premise that C[0] is distributive. Hence, (4.27) is satisfied. W

is distributive. �

Lemma F.2. If P is extendable, K is extendable.

Proof. Consider two paths Pi, Pj ∈ P . Assume Pi[k1] overlaps with Pj[k2] at e[t]. Thus,

e[t− k1] ∈ Pi and e[t− k2] ∈ Pj. Since P is extendable, this means that ei = ej and

ti − tj = t− k1 − (t− k2) = k2 − k1

Note that ei[ti + k1] is the edge in W that is passed through by Pi[k1]. We have:

ei[ti + k1] = ej[tj + k2] ∈ Pj[k2] ∩ C[k2].

Thus, Pi[k1] and Pj[k2] pass through the same edge ei[ti + k1] inW . Hence, K is extendable.

�
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Proof of Theorem 4.5.2. Due to Lemmas F.2, 4.5.1 and F.1, the theorem holds. �
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