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Key Points: 24	
  

• Histosol carbon gas fluxes were measured under a wide range of oxygen concentrations 25	
  

• The response of carbon gas fluxes to oxygen concentration was non-linear 26	
  

• Data indicate high sensitivity of Histosol carbon gas flux to low oxygen (< 2%) 27	
  

concentrations 28	
  

 29	
  

Abstract: 30	
  

Organic-rich wetland soils in the Histosol soil order represent the largest soil carbon (C) pool 31	
  

globally. Carbon accumulation in these ecosystems is largely due to oxygen (O2) limitation of 32	
  

decomposition. Increased O2 availability from wetland drainage and climate change may 33	
  

stimulate C decomposition overall and affect the balance of carbon dioxide (CO2) and methane 34	
  

(CH4) greenhouse gas release. Characterizing relationships, including non-linearity, between soil 35	
  

O2 and C gas emissions is therefore critical to predict the partitioning and rate of C release from 36	
  

Histosols under greater O2 availability. We varied gas-phase O2 concentration from 0.03 to 20 % 37	
  

in incubations of a sapric Histosol and measured resulting CO2 and CH4 emissions.  Efflux of 38	
  

CO2 increased and CH4 emissions decreased at higher O2 concentrations, and rates were best 39	
  

described by log-linear model fits. The non-linear response of CO2 and CH4 emissions to O2 40	
  

concentration indicates that moist, C rich Histosols may be highly sensitive to increases in O2 41	
  

availability, even below concentration thresholds typically classified as anoxic. 42	
  

 43	
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Main Text: (2544 words) 47	
  

Carbon-rich Histosols found in peatlands and other wetland ecosystems contain as much as one-48	
  

third of Earth’s soil carbon (C) pool (Limpens et al. 2008). Globally many Histosols have been 49	
  

drained for agriculture leading to large C losses and altered patterns of greenhouse gas 50	
  

emissions. Increased soil organic C oxidation and associated carbon dioxide (CO2) emissions 51	
  

following drainage or natural drying of the soil have been documented in temperate (Schothorst 52	
  

1977; Moore and Knowles 1989; Deverel and Rojstaczer 1996; Kasimir-Klemedtsson et al. 53	
  

1997; Nieveen et al. 2005; Teh et al. 2011; Hatala et al. 2012), high-latitude (Jungkunst and 54	
  

Fiedler 2007; Silvola et al. 2009; Sulman et al. 2009), and tropical (Moore et al. 2013) peatland 55	
  

Histosols. Soil drying and water table drawdown in some regions under predicted climatic 56	
  

changes may have similar effects on Histosol C stocks and fluxes (Laiho 2006; Limpens et al. 57	
  

2008). 58	
  

 59	
  

The availability of oxygen (O2) is a critical control on rates of Histosol C loss as it activates key 60	
  

oxidative enzymes necessary for extracellular breakdown of inhibitory phenolic compounds and 61	
  

permits energetically favorable aerobic respiration (Clymo 1984; Freeman et al. 2001; Freeman 62	
  

et al. 2004; Laiho 2006; Teh et al. 2011; Philben et al. 2014). Drainage of wetlands exposes 63	
  

Histosols to elevated O2
 (Laiho 2006), which can increase short-term rates of CO2 emissions by 64	
  

two-fold or more compared to anaerobic conditions (Moore and Dalva 1993; Silvola et al. 1996; 65	
  

Blodau and Moore 2003; Chimner and Cooper 2003; Glatzel et al. 2004; McNicol and Silver 66	
  

2014). Drainage also dramatically decreases Histosol emissions of methane (CH4), a greenhouse 67	
  

gas 34 times more potent than CO2 over a 100-year timescale (Myhre et al. 2013), by facilitating 68	
  

aerobic microbial methanotrophy in drained soil layers (Sundh et al. 1994; Hanson and Hanson 69	
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1996; Whalen 2005). Though vegetation composition, nutrient availability, substrate quality, and 70	
  

temperature also regulate rates of soil C emissions across distinct wetland Histosols (Bridgham 71	
  

et al. 2006), O2 is a direct mechanistic control on both CO2 and CH4 emissions. 72	
  

 73	
  

Over short timescales the release of CO2 and CH4 from Histosols is strongly influenced by rates 74	
  

of aerobic microbial respiration and CH4 consumption (methanotrophy), which are by definition 75	
  

dependent on available O2. However, to our knowledge, no studies have explicitly characterized 76	
  

the kinetic response of these aerobic processes at aggregate-to-pedon scale to the wide range of 77	
  

gas-phase O2 concentration possible in situ (0-21 %). Oxygen is likely to occur at very low 78	
  

concentrations in soil air under conditions of high biological O2 demand and a tortuous gas-phase 79	
  

diffusion environment (Grable and Siemer 1968; Silver et al. 1999; Teh et al. 2005; Hall et al. 80	
  

2012), such as soils at depth in peatlands. With the exception of microaerophilic methanotrophs 81	
  

(Hanson and Hanson 1996), we have surprisingly little understanding of how processes 82	
  

important to Histosol C gas exchange are affected by low soil O2 concentrations (< 1 %) that are 83	
  

functionally equated with anoxic conditions in geochemical redox classifications (Berner 1981; 84	
  

Scott and Morgan 1990; Chapelle et al. 1995). Most soil microcosm studies that manipulate O2 85	
  

concentration have imposed coarse (Teh et al. 2005) or narrow (Greenwood 1961) ranges, which 86	
  

are aptly suited for mechanistic investigations, but cannot characterize a kinetic response 87	
  

relevant to the wide range of potential in situ O2 concentrations. Extant studies that contrast oxic 88	
  

and anoxic conditions function as useful end-members, but are insufficient to investigate non-89	
  

linearity. Non-linear relationships, common in biophysical systems, and are important to identify 90	
  

and characterize to accurately predict responses to environmental variance (Ruel and Ayres 91	
  

1999). In the case of Histosols, non-linear effects of O2 must be represented to accurately model 92	
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C biogeochemical processes. Indeed recent modeling work shows that improved representation 93	
  

of soil O2 availability better predicts C fluxes from peatland Histosols (Fan et al. 2014). 94	
  

 95	
  

There are both intrinsic and extrinsic factors that could lead to non-linearity between soil O2 96	
  

availability and emission of CO2 and CH4. Standard Michaelis-Menten enzyme kinetics that 97	
  

govern the intrinsic reaction rates of microbially mediated soil processes would predict a non-98	
  

linear response of aerobic respiration or CH4 consumption to O2 concentration. Extrinsic factors, 99	
  

such as substrate availability (labile C or CH4) or slow diffusive gas transport, could also lead to 100	
  

asymptotic relationships between O2 consuming processes and O2 concentration (Davidson and 101	
  

Janssens 2006). In this study, we test the hypothesis that the aerobic processes underlying CO2 102	
  

and CH4 emissions from peatland soils are highly sensitive to O2, resulting in asymptotic, non-103	
  

linear relationships between C gas fluxes and O2 concentrations. To test this hypothesis we 104	
  

measured the short-term responses of CO2 and CH4 emissions in incubations of a drained 105	
  

peatland Histosol to a wide range of gas-phase O2 concentrations. 106	
  

 107	
  

We collected approximately 6 kg of soil from the vadose zone-water table interface in a drained 108	
  

peatland pasture located on Sherman Island, in the Sacramento San-Joaquin Delta, CA. Similar 109	
  

to other Delta regions globally, the Sacramento Delta has experienced extensive land reclamation 110	
  

over the last 150 years (Deverel and Rojstaczer 1996). The contemporary soil profile consists of 111	
  

a 25 to 92 cm oxidized layer overlying a thick sapric peat horizon (Table 1) (Drexler et al. 2009). 112	
  

We used peat soil from 80-100 cm depth that straddles the water table and therefore has only 113	
  

undergone slight oxidation and is classified as a sapric Histosol (mucky peat). Soils at this depth 114	
  

were wet, but not saturated at the time of collection (Table 1); moisture increases seasonally to 115	
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saturation in summer-time due to managed water table increases. Soil CN concentration and bulk 116	
  

density by depth are reported in Table 1 (unpublished data). Steep, persistent O2 concentration 117	
  

gradients with depth have been observed at the site (Figure 1). Data are averages of hourly gas-118	
  

phase O2 measurements collected in March 2012 (n = 744) using calibrated galvanic cell sensors 119	
  

(Apogee Instruments, Logan, Utah) installed at 10, 20, and 30 cm in watertight PVC cylinders 120	
  

with a Gore-Tex seal at one end that permitted soil-chamber gas exchange (Liptzin et al. 2010). 121	
  

The soil exhibits a consistent structure composed of fine (~mm) spherical aggregates with low 122	
  

bulk density (Table 1), thus only gentle mixing by hand was required to homogenize slight 123	
  

moisture differences within the sampled soil. Any stones and green plant material introduced 124	
  

during soil collection were removed in the laboratory before approximately 200 g samples were 125	
  

transferred to either 1 L (946 cm3) (higher O2 treatments) or 4 L (3,786 cm3) sized Mason jars 126	
  

(lower O2 treatments). Larger jars were used for low O2 treatments to minimize the effect of O2 127	
  

consumption and sample removal on headspace O2 concentrations during the incubation. The jar 128	
  

headspace was made anaerobic using a 2 hr pre-incubation in a glovebox and purging the 129	
  

headspace with Ultra-High Purity (UHP) N2 (Praxair, Richmond, CA) at 10 PSI. Flow rates and 130	
  

timing required for removing O2 below detectable limits were determined a priori using a 131	
  

galvanic cell sensor (Apogee Instruments, Logan, Utah). Jars were then fitted with gas-tight lids 132	
  

and incubated in the dark (i.e. in boxes) to prevent phototrophic CO2 consumption.  133	
  

 134	
  

Seven O2 treatment levels (0.03, 0.1, 0.3, 1, 3, 10, 20 %; n = 4) were achieved by quantitative 135	
  

additions of either Ultra-Zero Air (19.5-23.5 % O2, balance N2), or UHP O2 (99.993 % O2; 136	
  

Praxair, Richmond, CA). Treatment O2 concentrations below 0.03 % were not attempted because 137	
  

the precision with which the residual O2 concentration in jars after N2 flushing was known at the 138	
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same order-of-magnitude as the lowest O2 treatment (± 0.01 % O2). Headspaces were mixed 10 139	
  

times with a 10 ml syringe after O2 additions and 20 ml headspace subsamples were taken 140	
  

immediately after mixing, and after 2, 4, and 6 h of incubation. Incubations were conducted at 141	
  

room temperature (21 °C) and significant pressure changes were avoided by replacing headspace 142	
  

after sample removal with either UHP N2 (low O2 treatments), 10 % O2 in N2 (10 % treatment), 143	
  

or Ultra-Zero Air (20 % treatment). Gas (CO2 and CH4) concentrations were determined on a 144	
  

Shimadzu GC-14A gas chromatograph (Shimadzu Scientific Inc., Columbia, Maryland, USA) 145	
  

equipped with TCD and FID detectors and calibrated with standard gas containing 997 ppm(v) 146	
  

CO2 and 9.91 ppm(v) CH4.  147	
  

 148	
  

Fluxes were computed from the linear term of a second-order polynomial fit (CO2 flux) or linear 149	
  

fit (CH4) and accepted if fit R2 ≥ 0.99 (12.5 % fluxes rejected). Flux data were plotted against O2 150	
  

concentration with both linear and log-linear regressions, and fits were compared using the 151	
  

coefficient of determination (R2) and the distribution of residuals as performance metrics. Direct 152	
  

comparison of the R2 is a fair metric for significant relationships (P < 0.001) in this case because 153	
  

only one parameter is being estimated in both linear and log-linear fits, for [O2] and log10[O2], 154	
  

respectively.  Quasi-Michaelis-Menten (qMM) parameters (maximum reaction velocity (qVmax) 155	
  

and half saturation constants (qkMO2)) were estimated by normalizing fluxes to the mean flux 156	
  

observed at the lowest O2 concentration treatment (0.03 %) that forced model fits through the 157	
  

origin. We qualify the parameters as qMM as they are not strict measures of single-enzyme 158	
  

reaction rates. Simultaneous effects of O2 on both aerobic and anaerobic processes (e.g. CH4 159	
  

oxidation and production) and other limiting factors, such as rates of diffusive gas transport 160	
  

across the soil air-water boundary or C substrate availability, mean the qMM parameters should 161	
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be interpreted without mechanistic specificity. All data analysis was performed in open-source 162	
  

statistical software package, R (v. 2.15.2, Vienna, Austria). 163	
  

 164	
  

Mean soil CO2 emissions significantly increased (P < 0.001) with increasing O2 concentration 165	
  

(Figure 2a,b; Table 2) from 180 ± 5 µg C g-1 d-1 at 0.03 % O2 to 227 ± 16 µg C g-1 d-1 at 20 % O2. 166	
  

A log-linear fit outperformed a linear model fit to all data by both metrics: log-linear R2 was 0.49 167	
  

in contrast to 0.38 for the linear model (Table 2), and the residuals more closely approximated a 168	
  

normal distribution (Supp. Mat. Figure 1a,b) with less skewing at lower fitted values. Crucially, 169	
  

the modeled y-intercept (background anaerobic respiration rate) was much lower with the log-170	
  

linear fit (126 µg C g-1 d-1) than the linear fit (186 µg C g-1 d-1), thus the total modeled effect of 171	
  

oxic conditions (~20 % O2) on respiration was thus much larger with the log-linear fit (75 % 172	
  

increase) compared to the linear fit (24 % increase). After normalizing data by lowest O2 173	
  

treatment we extracted a qVmax for aerobic respiration of 47.3 µg C g-1 d-1 and qkMO2 of 2.2 % 174	
  

O2. 175	
  

 176	
  

Mean soil CH4 emissions decreased (P < 0.001) with increasing O2 concentration (Figure 2c, d) 177	
  

from 303 ± 32 ng C g-1 d-1 at 0.03 % to 77 ± 11 ng C g-1 d-1 at 20 % O2. A log-linear model 178	
  

greatly outperformed a linear model fit by both metrics: log-linear R2 was 0.70 compared to 0.40 179	
  

for the linear fit (Table 2), and the residuals vs. fitted value distribution improved with the log-180	
  

linear fit (Supp. Mat. Figure 1c, d). The modeled y-intercept (background CH4 production rate) 181	
  

was twice as large (0.42 µg C g-1 d-1) for the log-linear fit, than for the linear fit (0.21 µg C g-1 d-182	
  

1), and the modeled effect of 20 % O2 was thus proportionally larger (-383 % for log-linear vs. -183	
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257 % for linear). After normalization we extracted a qVmax for aerobic methanotrophy of -0.18 184	
  

µg C g-1 d-1 and a qkMO2 of 0.2 %.  185	
  

 186	
  

We found that heterotrophic respiration rates increased with greater available gas-phase O2 as 187	
  

would be anticipated given the favorable conditions for aerobic decomposition: namely moist, C-188	
  

-rich soil, not yet at steady-state with the oxidizing atmosphere (Clymo 1984; Laiho 2006; 189	
  

Philben et al. 2014). Importantly, we found that a log-linear model better described the 190	
  

relationship than a linear model and the approximated qkMO2 indicated a high sensitivity of 191	
  

aerobic respiration rates to available O2 with 50 % of stimulated respiration occurring below 2.2 192	
  

% O2. This stands in contrast to geochemical characterizations of soil redox that often refer to 193	
  

soils as functionally anoxic below a 1 % gas-phase O2 concentration (Berner 1981; Scott and 194	
  

Morgan 1990; Chapelle et al. 1995). Other soils, however, may display varying degrees of O2 195	
  

sensitivity where other extrinsic factors become rate limiting, such as soluble C substrate supply, 196	
  

or where constraints imposed by the gas-phase diffusion environment restrict O2 transport 197	
  

(Davidson and Janssens 2006). For example, we have previously observed a similarly large 198	
  

effect of headspace O2 removal on heterotrophic respiration rates in a peatland Histosol, whereas 199	
  

no immediate effect was observed in a tropical Ultisol collected from the Luquillo Experimental 200	
  

Forest, Puerto Rico (McNicol and Silver 2014). Notably, the predicted y-intercept, which reflects 201	
  

the estimated rate of background anaerobic respiration, was much lower in the log-linear model 202	
  

(126 µg C g-1 d-1) than the linear model (186 µg C g-1 d-1). This highlights the potential for errors 203	
  

arising from incorrect kinetic characterization of the impact of low O2 concentrations – such as 204	
  

those found at depth in drained peatlands – on process models that incorporate microbial 205	
  

function. Regardless of fit, absolute rates of predicted anaerobic respiration are higher than 206	
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would be expected in C accumulating Histosols. We suggest this is due to high alternative 207	
  

electron acceptor availability, the sapric quality of the peat, and the low water-table position. In 208	
  

particular, the drained deltaic Histosol used in this study has a large acid-extractable Fe pool (>1 209	
  

mg Fe g-1; McNicol and Silver, unpublished data) that is ~40% Fe(III) at the water-table 210	
  

interface (McNicol and Silver, 2014). The CO2 emission data suggest that substantial stimulation 211	
  

of CO2 production may be possible in moist, C-rich Histosols at low O2 concentrations.  212	
  

 213	
  

Histosol CH4 emissions were greatly attenuated at higher O2 concentrations and this was likely 214	
  

due to a shift toward more aerobic, and fewer anaerobic, soil microsites favoring greater CH4 215	
  

consumption, and less CH4 production overall (Silver et al. 1999; von Fischer and Hedin 2007). 216	
  

Improvements by fitting a log-linear model were particularly apparent for CH4 emissions and the 217	
  

approximated qkMO2 of 0.2 % indicates a very strong O2 sensitivity. Although we did not 218	
  

experimentally isolate CH4 consumption, this strong sensitivity to O2 is consistent with a micro-219	
  

aerophilic community of methanotrophs (Hanson and Hanson 1996) and observed maxima in 220	
  

gross CH4 consumption rates immediately above the water table in peatland Histosols where O2 221	
  

availability is well below atmospheric concentrations (Sundh et al. 1994; Limpens et al. 2008). 222	
  

Further work is needed to evaluate the short-term O2 sensitivity of gross CH4 production and 223	
  

oxidation separately, but these data demonstrate that even very low (< 1%) gas-phase 224	
  

concentrations of O2 are sufficient to strongly attenuate CH4 fluxes in wetland soils.  225	
  

 226	
  

Soil O2 is increasingly being measured in situ (Silver et al. 1999, 2013; Teh et al. 2005; Burgin 227	
  

and Groffman 2012; Hall et al. 2012; Philben et al. 2014). Though O2 is only one component of 228	
  

the soil redox environment, it is a highly favored oxidant with direct effects on microbial 229	
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respiration and methanotrophy, and thus may be a useful measurement for linking redox 230	
  

biogeochemistry, microbial ecology, and soil-atmosphere exchange of greenhouse gases 231	
  

(Faulkner et al. 1989; Conrad 1996). In particular the large C pool contained globally in peatland 232	
  

Histosols is maintained by the low availability of O2 (Freeman et al. 2001; Freeman et al. 2004). 233	
  

Recent modeling efforts show it is necessary to consider the response of aerobic and anaerobic C 234	
  

cycling to the wide range of possible O2 concentrations in drained soil layers of peatland 235	
  

Histosols (Fan et al. 2014), yet surprisingly few data sets address biogeochemical sensitivity to 236	
  

O2. We varied O2 concentration across several orders of magnitude in laboratory incubations of a 237	
  

drained peatland Histosol to investigate the sensitivity of C gas emissions, and in particular the 238	
  

occurrence and importance of non-linearity. We found a log-linear fit best explained the response 239	
  

of CO2 and CH4 emissions to O2 concentration. The results indicate non-linear O2 effects may be 240	
  

important to consider in soil C biogeochemical models because they predict different background 241	
  

(anaerobic) rates of C emission when compared to linear models, and can capture asymptotic 242	
  

effects of increasing O2 availability. In summary, the study used a novel O2 manipulation to 243	
  

identify non-linear relationships between O2 and Histosol C emissions, and demonstrated the 244	
  

sensitivity of emissions to low O2 conditions that are often functionally equated with anoxia. 245	
  

 246	
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Tables: 380	
  

 381	
  

Soil 
Classification 

Site  
Location 

C/N  
(%) 

Moisture 
(%) 

Bulk Density 
(g cm-3) 

Porosity* 
 

Typic 
Haplosaprists 

Sherman 
Island, CA 

23.7 ± 3.0/ 
1.1 ± 0.1 62 ± 1 0.25 0.84 

 382	
  

Table 1 Soil classification and characteristics at 80 cm depth in profile (mean ± SE).  383	
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*Porosity estimated using assumed sapric peat particle density of 1.6 g cm-3 (Oleszczuk and 384	
  

Truba, 2013) 385	
  

 386	
  

Gas Fit p-value R2 Y-intercept 
(µg C g-1 d-1) 

O2 Effect 
(%) 

qVmax 
(µg C g-1 d-1) 

qkMO2 
(%) 

CO2 Linear < 0.001 0.38 186 +24 - - 
 Log < 0.001 0.49 126 +75 - - 
 MM - - - - 47.3 2.2 

CH4 Linear < 0.001 0.40 0.21 -257 - - 
 Log < 0.001 0.70 0.42 -383 - - 
 MM - - - - -0.18 0.2 

 387	
  

Table 2 Coefficients and fits of linear, log-linear (Log), and Michaelis-Menten (MM) models 388	
  

 389	
  

Captions 390	
  

Fig. 1. Average O2 concentrations (mean ± 1 SD) with depth (10, 20, 30 cm) in drained peatland 391	
  

pasture Sherman Island, CA, collected hourly (n = 744) in March 2012  392	
  

 393	
  

Fig. 2. CO2 flux (a, b; µg C g-1 d-1) and CH4 flux (c, d; ng C g-1 d-1) versus O2 concentration ([O2] 394	
  

(ppm(v))) on untransformed x-axis (a, c) and log10 transformed (b, d) x-axis. Dashed line, 395	
  

coefficients, R2 and p-values are for log-linear model fit 396	
  




