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Abstract

Does receiving a medical education outside the United States impact a surgeon’s perfor-
mance? We study this question by matching operations performed by internationally-trained
surgeons to those performed by US-trained surgeons in reanalysis of a large health outcomes
study. An effective matched design must achieve several goals, including balancing covariate
distributions marginally, ensuring units within individual pairs have similar values on key co-
variates, and using a sufficiently large sample from the raw data. Yet in our study, optimizing
some of these goals forces less desirable results on others. We address such tradeoffs from a
multi-objective optimization perspective by creating matched designs that are Pareto optimal
with respect to two goals. We provide general tools for generating representative subsets of
Pareto optimal solution sets and articulate how they can be used to improve decision-making
in observational study design. In the motivating surgical outcomes study, formulating a multi-
objective version of the problem helps us balance an important variable without sacrificing two
other design goals, average closeness of matched pairs on a multivariate distance and size of
the final matched sample. Keywords: matching; Pareto optimality; fine balance; network flow
optimization; multi-objective optimization.
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1 Introduction: best choices when design goals conflict

1.1 Comparing US-trained and internationally-trained surgeons

Roughly 15% of the surgeons practicing in the United States received medical training outside the

US. Does the variable content and quality of international medical training, compared to standard-

ized US medical education, cause internationally-trained surgeons to perform worse in the operating

room? A randomized trial in which operations are randomly assigned to be performed by either an

international medical graduate (IMG) or a US medical graduate (USMG) could answer this, but

would not likely be performed. Zaheer et al. (2017) instead compared the performance of IMGs

to USMGs in an observational study, using a large database of electronic health records. The

observational study, while feasible, faces challenges that the randomized trial avoids. IMGs tend

to practice in different settings than USMGs, with different mixes of patients. The randomized

trial ensures IMGs and USMGs see similar patient populations on average, but in the observa-

tional study the groups may differ on important covariates before treatment. Matching can often

eliminate such differences on observed covariates by selecting new comparison groups from the raw

data (Rosenbaum and Rubin 1985; Stuart 2010). In this study, operations conducted by IMGs, our

treated units, can be matched to similar operations conducted by USMGs, which serve as controls.

Matched samples are constructed using only covariates (including attributes of patients, surgeons,

and procedures known prior to the surgery itself) and not outcomes, to ensure valid causal inference

(Rubin 2007).

1.2 Design goals in matching surgical operations

A matching design in this study must accomplish several different goals to permit causal inference

about the effect of surgical training. One important goal is achieving balance on pre-treatment

covariates. Balance is achieved if the distribution of an observed covariate in the group of selected

USMG operations after matching is made similar to the distribution of the same covariate in

the group of IMG operations after matching, ignoring which operations are matched to each other.

Balanced matches more closely resemble the randomized study, in which IMG and USMG operations
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have identical covariate distributions on both observed and unobserved covariates.

Another goal is close or exact matching in pairs, which requires that the operation performed by

the IMG and the operation performed by the USMG in each individual pair have similar or identical

values on key covariates. Matching closely on important prognostic variables — those that are

highly predictive of adverse outcomes — helps reduce within-pair heterogeneity in outcomes, which

can make inference less sensitive to biases from unobserved confounding variables (Rosenbaum

2005). Exact matching is also an important step in detecting effect modification (Hsu et al. 2015),

and closely-matched pairs can sometimes be used for in-depth qualitative analyses that help improve

the larger study (Rosenbaum and Silber 2001). Matching exactly on a variable in every case

produces balance on this variable as a byproduct; however, exact matching on many covariates at

once is not generally possible for more than a small fraction of the data. A multivariate distance,

such as the Mahalanobis distance (Rubin 1980), may be used to summarize closeness on many

variables between paired units.

A third important goal is maximizing the number of observations included in the final matched

design. Comparing matched designs that adjust equally well for observed covariates in settings with

a uniform treatment effect, tests based on the larger matched study will have greater power than

those based on the smaller study. In addition, retaining the large majority of the IMG operations

is important in our study for purposes of external validity. To the degree that the IMG operations

in the initial data are an approximately representative sample of IMG operations in the United

States as a whole, retaining the large majority of these IMG patients help ensure that the results

we obtain generalize to the national level.

1.3 Surgical experience and conflict among design goals

Sometimes improvements to one design goal may come at a cost to another. Consider one impor-

tant covariate in our study, surgical experience. It is natural to expect that surgeons who have been

practicing for many years may conduct surgeries differently from those relatively new to the field

and experience different rates of success. Hence to isolate effects of differences in surgeon training

background, we wish for a matched design with balanced distributions of surgical experience be-
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tween the sample of IMG operations and the sample of USMG operations. This variable is highly

imbalanced in the raw data — IMGs tend to have more experience than USMGs — so it must be

emphasized when constructing matched pairs.

Unfortunately, placing greater emphasis on balance for surgical experience generally involves

accepting diminished success in other design goals. For instance, consider eliminating the matched

pair with the largest imbalance in surgical experience from our matched study. The study’s overall

imbalance on experience improves, but this gain is achieved by reducing the size of the matched

sample. For further discussion of such tradeoffs between match quality and sample size, see Resa

and Zubizarreta (2016). As another example, the pairings of study subjects that best improve

balance on surgical experience may not be the same as the pairings that best emphasize closeness

on other important covariates. In all cases operations are matched exactly on hospital ID, so

IMG operations can only be paired to USMG operations in the same hospital. Since the pool of

operations available for matching in each hospital is small, a choice may be necessary between

low-distance pairings and pairings that attain balance on experience.

A constructed example illustrating this situation is given in Figure 1. In hospital 1, an operation

by an experienced IMG surgeon has 2 potential matches. One available USMG operation has a

low pair distance ∆1, but is performed by an inexperienced surgeon. The other pairing maintains

balance on surgeon experience, but accepts a pair distance higher by ε1. The situation is repeated

in Hospital 2, with distances ∆2 and ∆2 + ε2. In each hospital, a conflict arises between optimizing

pair distances and optimizing balance on surgical experience.

The two matches shown in Figure 1 represent the choices of common matching algorithms.

Multivariate distance matching, targeting the distances alone without reference to marginal balance,

will choose the pairing with smaller distance in both hospitals (Rosenbaum and Rubin 1985), while

matching with fine balance, which instead prioritizes balance strictly over pairwise distances, will

select the experienced USMG operation in both hospitals (Rosenbaum et al. 2007). However, if ε1

is very small and ε2 is very large, the cost of prioritizing balance over pairwise closeness in Hospital

1 is negligible, while in Hospital 2 it is is very high. Here a match that chooses the second pairing

in Hospital 1, and the first pairing in Hospital 2 is clearly superior to either of the matches in the
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figure; it avoids paying the high cost ε2, but is able to partly balance the surgical procedure variable

at negligible cost. The most desirable design turns out to be not an extreme solution produced by

strictly prioritizing one goal as in standard methods, but an intermediate solution that properly

weighs the relative cost of the two goals. The example deals with a few individual patients. In the

IMG-USMG example, many similar situations aggregate to cause a conflict at a large scale.

1.4 Dealing with tradeoffs in the IMG-USMG study

To apply standard matching methods in the IMG-USMG study, we would begin by defining an

objective function and selecting a match that achieves the optimal value of that objective function.

However, multiple design goals, each associated with its own distinct objective function, are present.

If we somehow knew in advance which weighted combination of the different objective functions

will produce the most globally attractive match, we could define that combination as our objective

function. In the absence of such knowledge, it is instead necessary to compute and examine multiple

matches that vary the relative importance of, or the tradeoff between, the different design goals,

selecting a best option from this set. Note that selecting among many matches computed from the

data does not introduce bias as long as outcome analysis is postponed until after the selection of a

final match (Rubin 2007). For examples of selection among matched designs in the literature, see

Hansen (2004) and Zubizarreta et al. (2013).

In a multi-objective setting, the goal of optimal matching is no longer to produce a single match

that optimizes a single objective function, but to produce an “admissible” class of matches that

vary the tradeoff between multiple goals across the full range of relative weightings between the

different goals. A natural tool for defining this class of solutions is Pareto optimality. A solution

to a multi-objective optimization problem is Pareto optimal if there exists no other solution with

equally good performance on all objective functions and strictly better performance on at least one.

Computing and examining the Pareto optimal set gives a full description of the tradeoff between

the goals and allows an investigator to make an informed judgment about how to resolve it. For

example, by looking at all matches Pareto optimal for balance on experience and exact matching

on important covariates, we might recognize an opportunity to improve the rate of exact matching
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by a large amount by accepting a very minor decrease in balance.

Given two quantitative design goals, such as those in our IMG-USMG study, we characterize the

set of Pareto optimal solutions as solutions to a parametric family of single-objective combinatorial

optimization problems. In general these single-objective problems belong to an NP-hard class and

are not computationally tractable; however, we show that many of their solutions can be recovered

via a different parametric family of problems for which solutions can be obtained in polynomial

time. Using structural features of the Pareto optimal solution set, we describe how to create a

global summary of the kinds of matches available in the IMG-USMG study based on a small subset

of Pareto-optimal points, and we use this framework to select a match that strikes a harmonious

balance between the different design goals in the IMG-USMG study.

The match produced by this method allows a fully-design-based comparison of IMG and USMG

patient outcomes. In the original study, Zaheer et al. (2017) used matching to address imbalances

in characteristics of patients and type of surgery performed, but did not match directly on surgical

experience. This potentially important variable remained imbalanced after matching, and concerns

about its impact were addressed by fitting generalized linear models to the data after matching.

By using our new methods for tradeoff analysis in the design stage, we eliminate the need for a

secondary model-based analysis. We replicate a portion of the original study and provide stronger

confirmation of the original results, demonstrating equivalent performance, as measured by patient

mortality, between IMGs and USMGs.

1.5 Outline

Section 2 introduces a formal optimization representation for matching problems, defines Pareto

optimality, and describes two single-objective optimization problems that play a key role in the

solution to the tradeoffs problem for the IMG-USMG study. Section 3 describes the design stage

of the IMG-USMG study, including a strategy for efficiently exploring the family of Pareto optimal

solutions and the use of this strategy to strike appropriate tradeoffs between imbalances in surgical

experience, close pairings on other covariates, and sample size. Section 4 uses the resulting match

to evaluate the relative performance of IMGs and USMGs, addressing the possibility of unmeasured

6



confounding via sensitivity analysis. Section 5 concludes and suggests other contexts in which this

approach is useful.

2 Formal framework and tools for exploring tradeoffs

2.1 Matching as a network flow optimization problem

We view matching has as a special case of the minimum-cost network flow optimization problem,

in which a graph consisting of nodes and directed edges is given. Each node may supply or demand

units of “flow,” and flow may be sent across directed edges, obeying capacity constraints associated

with the edges and paying edge-specific costs per unit flow. The task is to route all flow from

supply nodes to demand nodes, paying the minimum total cost over all possible routings; see

for example Ford and Fulkerson (1962). A simple matching problem may be represented as a

network flow optimization across a modified bipartite graph between the treated units and controls,

and more complex matching problems with diverse design goals can also be encoded as network

flow problems using expanded network representations. For example, network flow problems can

incorporate calipers on propensity scores (Rosenbaum 1989), fine and near-fine balance constraints

(Yang et al. 2012, online appendix), refined balance constraints (Pimentel et al. 2015), and full

matching (Hansen and Klopfer 2006).

We will consider network flow problems in a generalized way, using N and E to represent

the node and edge sets of the network, x to represent a vector of real-valued decision variables

corresponding to the flows chosen across the different edges in E , a linear function f(x) =
∑

e∈E cexe

to represent the objective function implied by the costs in the network, and a set of decision vectors

F to represent the collection of solutions allowed under the constraints that flow is conserved at

each node and edge flow capacities are respected (Bertsekas 1998). We can then state the network

flow problem as follows:

Problem 1. Minimum-cost Network Flow Optimization

min
∑
e∈E

cexe s.t. x ∈ F .
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For a more detailed description of the minimum-cost network flow problem and its relation to

matching, see Section A of the online supplement. Many polynomial-time algorithms for solving

network flow problems exist, including the RELAX algorithm (Bertsekas et al. 1994) which is

efficient in practice, implemented in FORTRAN, and available in R for academic use via the

optmatch package (Hansen and Klopfer 2006).

A special feature of network flow problems is that when edge capacities and node supplies are

integral, some optimal solution will always be integral and will be recovered by a certain class

of solving algorithms, even without an explicit integer constraint on the decision variables (for

details see Papadimitriou and Steiglitz 1982, sec. 13.2). Note, however, that when additional side

constraints are imposed beyond constraint set F this guarantee no longer holds in general. For

example, suppose that in the IMG-USMG study we wished to put an upper limit a on the number of

IMG operations that could be matched to USMG operations involving a different surgical procedure.

This constraint can be represented mathematically as a linear constraint requiring the sum of flow

over certain edges (those pairing treated units to controls with a different surgical procedure) to be

less than or equal to a. However, there is no known rule for constructing a network flow problem

that incorporates this requirement into the standard constraint set F . In order to produce relevant

answers in matching problems in these settings, an explicit integer constraint on the decision

variables must be added. Generally this makes the problem much more computationally difficult.

In fact, the class of network flow problems with linear objective functions, general linear side

constraints and 0-1 integer constraints on flow values is NP-complete, meaning that no polynomial-

time solution algorithm or network-flow formulation is known to exist (Bertsekas 1998, §8.4).

2.2 Pareto optimal solutions for two quantitative goals

Suppose now that in a matching problem in the form of Problem 1, we have two linear objective

functions of the optimization variables x instead of one:

f1(x) =
∑
e∈E

ψexe and f2(x) =
∑
e∈E

γexe (1)
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Denote the bivariate function (f1(x), f2(x)) by f(x). In the IMG-USMG example, we will use

functions f1 and f2 at different points to represent measures of imbalance on surgical experience,

close pairing on a multivariate covariate distance, and sample size. For examples of other design

goals and their representations, see Section 5. We now define Pareto optimality in terms of f ; for

similar definitions see Zeleny (1974) and Miettinen (1999).

Definition 1. A solution x to Problem 1 is Pareto optimal for function f(x) = (f1(x), f2(x)) if

there exists no dominating x′, i.e. a solution x′ such that

fi(x
′) ≤ fi(x) for all i and fi(x

′) < fi(x) for some i ∈ {1, 2}.

A Pareto optimal point (f1(x), f2(x)) ∈ R2 is the image of a Pareto optimal solution x under

f . Let f and f be the Pareto optimal points associated with the smallest possible value of f1 and

smallest value of f2, respectively, in the Pareto optimal set. These endpoints must exist since the

original network flow problem has a finite feasible region, and by the definition of Pareto optimality

they are also unique. Our goal is to explore the full set of Pareto optimal points and their associated

solutions (that is, at least one solution per distinct point).

2.3 Two optimization problems for finding Pareto optimal points

To determine Pareto optimal points and their solutions, we rely on two optimization problems, each

with a single objective function and a tuning parameter. The first problem minimizes f1 under a

linear constraint on f2; we define it as follows for some nonnegative integer a.

Problem 2 (Directly Constrained Problem).

min f1(x) s.t. x ∈ F , f2(x) ≤ a, x ∈ Z|E|

Call this problem Q(a) and represent its objective value at x by Q(x, a). The optimal objective

value for Problem Q(a) is a decreasing step function over feasible values of a (since the set of all

feasible solutions to the original network problem is finite). Optimality for this problem is closely

linked to Pareto optimality for f , as shown by the following result. All proofs are deferred to Section

F of the online supplement.
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Theorem 1. Any Pareto optimal solution x for f must also be optimal for Q (f2(x)), and all

optimal solutions of Q (f2(x)) are also Pareto optimal with identical values of f .

Theorem 1 tells us that if we solved Q(a) for all possible values of a, we would obtain the full

set of Pareto optimal points and see the complete tradeoff relationship between our design goals.

However, the directly constrained problem lacks a guaranteed polynomial-time solution algorithm

and is not easily solvable in practice. As such we introduce the second problem, which incorporates

f2 into the objective function using a penalty parameter ρ > 0.

Problem 3 (Penalized Problem).

min f1(x) + ρf2(x) s.t. x ∈ F (2)

Represent Problem 3 by P(ρ). In addition, P (x, ρ) will represent the value of the objective function

evaluated for particular values of x (assuming x ∈ F) and ρ. The optimal objective value for this

problem is a nondecreasing piecewise linear function, since P (x, ρ) is linear for fixed x and the set

of integer solutions in F is finite. The interpretation of parameter ρ is less straightforward than for

parameter a in Problem Q, which is a constraint on an interpretable objective function. However,

Problem P(ρ) is a standard network flow problem — we have not introduced additional constraints,

only changed the edge costs — so it is computationally feasible with an integral optimal solution.

In addition, Theorem 2 shows that solving the penalized problem P(ρ) also produces an optimal

solution to the directly constrained problem Q(a) for some a.

Theorem 2. Suppose x∗ is an integer-valued optimal solution for the penalized problem P(ρ). Then

x∗ is Pareto optimal as long as ρ > 0, and x∗ is also optimal for the directly constrained problem

Q(a∗) where

a∗ = f2(x
∗)

Remark : Notice that this theorem only makes a claim in one direction; any solution to the

penalized problem is also a solution to a directly constrained problem, but it may not be the case

that all solutions to the directly constrained problem also solve a penalized problem. See Section

C in the online supplement for further discussion. Also, the lack of guaranteed Pareto optimality
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when ρ = 0 is not a major concern, since the most extreme Pareto points can always be recovered

for some ρ > 0 (see Theorem C2 in the online supplement).

Theorem 2 shows that solving the penalized problem P(ρ) also produces an optimal solution to

the directly constrained problem Q(a) for some a. By solving P(ρ) repeatedly for various values of

ρ we may obtain a range of solutions to Q(a) for different a-values and observe the tradeoff between

f1 and f2.

2.4 A small example

We now return to the illustrative example in Figure 1. In Table 1, we provide specific values for

the parameters ∆1, ∆2, ε1, and ε2 defining the matching distances and solve Problems 2 and 3

repeatedly to identify a spectrum of possible matches that trade off our goals of matching closely

within pairs (as measured by the within-pair distances) and of balancing surgical experience (IXP

vs. XP) marginally. Here we define f1 as the sum of pairwise covariate distances in the selected

match, and we define f2 as the total number of excess USMG operations across surgical experience

categories (computed by taking the difference in the IMG and USMG counts for operations at each

experience level and adding up the positive differences). Quantity f2 is a rescaling of the total

variation distance between the distribution of surgical experience in the two groups (Pimentel et al.

2015) and will be equal to 0 exactly when counts in both experience bins are equal across groups.

Representing this problem in network form produces a bipartite graph with directed edges from

each treated unit to all controls in the same hospital, each of maximum capacity one and of cost

given by the distance matrix. We define f1 as the total cost incurred over these edges. Additional

nodes and edges are added to the network for each category of surgical experience using a simple

version of the network structure detailed in Pimentel et al. (2015). A specific edge carries the excess

number of controls among matched operations by experienced surgeons, and another edge does the

same for matched operations by inexperienced surgeons. f2 is defined as the sum of flow across

these two edges. To directly constrain f2, we solve an integer program that limits the flow over the

set of these two edges, and to penalize it instead, we assign a cost ρ to these edges.

Table 2 shows a tradeoff curve obtained by solving the penalized problem for different penalty
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values ρ, and also solutions obtained by solving the directly constrained problem directly for several

values of a (possible in this context since the problem is small). Here there exist exactly three

distinct solutions, each of which can be recovered by either Q(a) or P(ρ) for the right parameter

choice. Examining the tradeoff curve, we see that moving from Match 3 to Match 2 allows a huge

decrease in overall covariate distance – much larger than the total covariate distance in Matches

1 or 2 – while accepting only a single additional mismatch on the binary covariate. In addition,

Match 2 is much more desirable than Match 1, which accepts twice as large an imbalance on the

marginal variable for an infinitesimal improvement in covariate distance. However, Match 2 cannot

be produced by strictly prioritizing one of our goals over the other.

3 Matching US-trained and foreign-trained surgeons

3.1 Context and Design Goals

Zaheer et al. (2017) conducted a study comparing outcomes of general surgery patients treated

by international medical graduates (IMGs) to those of patients treated by US medical graduates

(USMGs). Their analysis used a dataset containing all general surgery operations listed in inpatient

hospital discharge records in the states of New York and Florida during the period 2008-2011, a

total of over 970,000 unique operations (New York State Department of Health 2008-2011; Florida

Agency for Health Care Administration 2008-2011); the data was joined to an American Medical

Association database of physician information to identify IMG and USMG surgeons (American

Medical Association 2013). We re-analyze a subset of this data, operations performed in the Orlando

metropolitan area (Orange, Lake, Osceola, Seminole, Volusia, Flagler, and Sumter counties), by

matching IMG patients to USMG patients and comparing mortality rates in the matched sample.

The selected dataset includes 20,024 operations received by IMG patients and 58,270 operations

received by USMG patients. The operations differ systematically in several important pre-treatment

attributes; for example, 59% of IMG operations were conducted on emergency room admissions,

compared to only 51% of USMG operations. For a descriptive table containing information about

the selected data, see Section B of the online supplement.
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A first step in designing an effective matched design for this study is determining criteria under

which matches will not be allowed at all. It is well established that variation across hospitals in

practice and quality of care is closely related to the quality of surigcal outcomes, and since the

proportion of operations performed by IMGs varies substantially across hospitals in our dataset,

matches are only allowed between operations in the same hospital. In addition, matches are only

allowed between operations whose estimated propensity scores, fitted using standard logistic re-

gression on surgical procedure, coarsened Elixhauser comorbidity index (Elixhauser et al. 1998),

patient age, emergency status, sex, race, and median income of patient’s ZIP code, differed by

less than 0.25 standard deviations. Homogeneity of propensity scores within pairs is especially

important since we conduct inference by permuting treatment assignments within pairs, relying

heavily on similarity of propensity for treatment within pairs (Rosenbaum 2002b, Ch. 3). We

do not include hospital indicators in the propensity score fit; the best way to incorporate such a

blocking variable when estimating a propensity score for caliper matching remains an interesting

open question. Under these requirements, 94% of the IMG operations are able to be matched to

USMG operations without replacement. Imposing these restrictions leads to both statistical and

computational benefits, ensuring that the matching problem is sparse in the sense of Pimentel et al.

(2015).

A key goal of the matched study was to achieve balance on surgical experience, measured in

years of practice. In the raw data, IMG operations tend to be performed by surgeons with much

more experience than USMG operations; for example, 25% of IMG operations were performed by

surgeons with over 30 years of experience, while only 4% of USMG operations were. Unless the

distribution of surgical experience can be made to look similar within the final matched samples,

it will be difficult to determine whether any observed differences in mortality are actually due to

differences in performance between USMGs and IMGs, or to differences in surgeons’ experience

levels. This goal is challenging, however, because of the extreme dissimilarity of the initial groups’

experience distributions. To quantify imbalance in a way conducive to representation in a network

flow problem, we create a categorical variable with a different category for each decile of surgical

experience in the dataset as a whole and measure the total variation distance between the empirical
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distributions of this covariate in the matched IMG and the matched USMG operations.

Several variables besides surgical experience are scientifically important: surgical procedure re-

ceived, a coarsened measure of the Elixhauser comorbidity index (describing the patient’s overall

health at the time of surgery), an indicator of emergency room admission, and patient age and

sex. Paired operations should be similar on these variables whenever possible, in order to reduce

heterogeneity in matched pair differences and thus reduce sensitivity to unmeasured bias (Rosen-

baum 2005). Accordingly, we compute a robust Mahalanobis distance (Rosenbaum 2010, §8.3) for

each possible IMG-USMG pair, measuring the similarity of the operations with respect to these

five variables, and seek to choose pairs with small values of this distance.

Finally, it will be desirable to retain as many IMG-USMG pairs as possible in the final matched

design. Since some hospitals do not contain sufficient USMG operations to provide partners for all

available IMG operations, at least a few IMG operations must be excluded. However, as discussed

in Section 1.2, retaining a large proportion of IMG operations will help maintain a degree of external

validity for our study, and may lead to greater power as well.

For details on how exact matching constraints, caliper constraints, and each of these objective

functions may be represented in a network flow problem, see Section A of the online supplement.

3.2 Exploring the family of Pareto optimal matches

Given our three objective functions, how are we to explore the space of possible attractive matching

designs? Consider first the tradeoff between any two of the three objective functions, labeled f1 and

f2.The tools of Section 2.2 allow us to produce several individual Pareto optimal solution efficiently

by choosing some penalty values ρ and optimizing f1(x)+ρf2(x) for each. This collection of points

is only a small subset of the full Pareto optimal set. However, because the set of Pareto optimal sets

is highly structured, relatively small subsets of Pareto optimal points can actually place informative

bounds on the locations of the points not yet computed. This leads to an effective approach for

exploring the Pareto optimal set.

The intuition behind our solution is that additional Pareto optimal points of interest must lie

“between” those already computed. To be more explicit, first consider any collection of distinct
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Pareto optimal points and their associated matches (we distinguish here between distinct Pareto

optimal solutions, which can share identical objective values, and distinct Pareto optimal points,

which by definition do not). If we arrange the points so that their objective values for f1 are strictly

increasing, then their objective values for f2 must necessarily be decreasing. To be concrete, if f1

represents the average pair distance and f2 represents the average imbalance, arranging Pareto

optimal matches in order of increasing pair distance is the same as arranging them by decreasing

imbalance.

The following result builds on this idea by describing how additional Pareto optimal points not

yet computed must fit into such an ordering.

Theorem 3. Let z(1), z(2), . . . , z(m) be a sequence of Pareto optimal points ordered to be increasing

in f1, with z(1) = f and z(m) = f . Then any additional Pareto optimal point z = (z1, z2) satisfies

z
(i)
1 < z1 < z

(i+1)
2 and z

(i+1)
2 < z2 < z

(i)
2 for some i ∈ {1, . . . ,m− 1}.

The proof follows directly from the definitions of Pareto optimality and of “endpoints” f and f

given in Section 2.2. Theorem 3 suggests that if one could obtain a collection of Pareto optimal

points, including f and f , such that any one member of the collection was near another, one could

conclude with confidence that any additional Pareto points would also be fairly similar to some

already in the set.

This principle suggests that it should not be necessary to compute all Pareto optimal points in

any problem of substantial size — identifying a sufficiently dispersed subset of the Pareto optimal

set gives a detailed picture of the full spectrum of possible tradeoffs. We suggest a simple approach

for exploring the Pareto optimal tradeoff curve: solve for a large value of ρ and a small value of ρ.

If the two matches differ substantially on either imbalance or average pair distance, then solve for a

grid of a few intermediate ρ-values, producing a collection of solutions from an increasing sequence

of ρ-values ρ1, . . . , ρm. Then, for any pair of neighboring ρ-values (ρi, ρi+1) whose matches differ

substantially, solve for a new grid of ρ-values between these ones. This process can be repeated

several times to identify a sequence of distinct Pareto points. If each point is close to its neighbors

on both objective functions, we can be confident that any additional Pareto optimal point will be

similar to one already computed. Notice that since P(ρ) is a standard network flow problem for
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any relevant value of ρ, computation simply involves repeated use of efficient standard network

flow solvers. For additional remarks and technical results concerning this iterative approach to

exploring the Pareto optimal set, see Section C of the online supplement.

Theorem 3 assumes that the initial collection of Pareto optimal points includes the endpoints

f and f . These solutions are guaranteed to be recovered by choosing sufficiently large and small

values of ρ as shown in Section C of the online supplement. For any ad hoc value of ρ > 0, it

is also easy to test if a solution is an endpoint, since at endpoint f (f), the objective value f1

(f2) must agree with the objective value achieved by optimizing that function alone and ignoring

the other objective completely. For example, in the tradeoff between balance and close pairing in

the IMG-USMG study, we chose an initial value of ρ small enough that the average pair distance

achieved was identical to that in a simple Mahalanobis distance match without balance constraints.

In other cases it is easy to tell when an endpoint has been reached by the nature of the objective

function; for example, imbalance on surgical experience cannot decrease below zero.

All the procedures discussed so far focus on varying the relative emphasis on two objective

functions, holding other aspects of the optimization problem fixed. Why not consider all three of

our objective functions — imbalance on surgical experience, average within-pair covariate distance,

and sample size — at once? Although the theory of Pareto optimality extends naturally to prob-

lems with three or even K objective functions, efficient exploration of the Pareto optimal set in this

setting is much more difficult. In particular, it is no longer generally possible to establish a simple

ordering among Pareto optimal solutions that holds for all the objective functions at once. Ac-

cordingly, we focus on varying two objective functions at a time, holding the other fixed. For more

discussion of the possibilities and challenges of problems with more than two objective functions,

see Section D of the online supplement.

3.3 Balance vs. close pairing tradeoff

We now put this strategy into practice to examine specific tradeoffs in the IMG-USMG study. Our

starting point is a standard off-the-shelf matching design, in which we seek to minimize the average

Mahalanobis distance in a matched pair, while retaining as many IMG operations as possible,
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without explicit attention to marginal balance. This match achieves very good rates of close or

exact matching on important prognostic variables: in 92% of pairs the IMG and USMG performed

the same procedure, and in 96% of pairs the IMG and USMG patients had identical coarsened

Elixhauser indices. However, surgical experience remains highly imbalanced. We first consider

whether it is possible to address the large imbalance on surgical experience by relaxing emphasis

on close pairing while maintaining as many IMGs in the match as possible; retaining almost all of

the IMG operations helps ensure distributional similarity between the operations in our matched

design and the overall distribution of IMG operations in our data, which will ensure a degree of

external validity.

Let f1 be the sum of the Mahalanobis distances for the IMG-USMG operation pairs used in

the network flow solutions. Let f2 be the total variation distance between the matched IMG and

USMG distributions across deciles of surgical experience. The directly-constrained problem Q(a)

corresponds to setting a maximal level of total variation imbalance a and finding the minimal total

of within-pair edge costs under this constraint; the penalized problem P(ρ) instead sets a cost

of ρ on each unit imbalance. We solve the penalized problem for a shrinking grid of ρ-values as

described in Section 3.2.

To ensure IMG operations are retained where possible, retaining maximal sample size, we assign

a high cost to portions of the network that are used to remove treated units from the match (for

details see Section A of the online supplement). This cost remains fixed as ρ is varied, these costs

can be considered to be part of f1, so that f1 is actually a linear combination of the total pair

distances and the number of excluded units. However, since the number of excluded operations

remained fixed across the matches computed, the specific costs do not actually play a role in the

tradeoff, and we ignore their costs when reporting values for f1.

Table 3 and Figures 2(a) and 2(b) summarize the matches, each containing 18,888 matched

pairs. In the table, each column gives the match produced under a different ρ-value. Reading from

left to right shows how various design metrics change with increasing ρ, or (equivalently) as greater

emphasis is placed on balance relative to close pairing. Match E gives a match with strict priority

on balance over close pairing, the solution that would have been produced by matching under a
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near fine balance constraint as in Yang et al. (2012); Match A approximates the solution that

would be produced by a minimal-distance optimal match, without any accounting for balance. The

intermediate matches, however, do not correspond to matches produced by any standard method.

Figures 2(a) and 2(b) include points representing additional matches not included in the table for

a more complete picture of the tradeoff.

Theorem 2 allows us to interpret each solution without reference to ρ. For example, Match

C achieves a total variation imbalance of 3820 operations; therefore this match is optimal for the

directly constrained problem Q(3280), which allows at most an imbalance of 3280 on experience

deciles. This imbalance is equivalent to a scaled total variation distance of 0.20; Pareto optimality is

preserved whether we consider the scaled or the raw imbalance as the objective function of interest.

As ρ is increased, values of f2 in the optimal solutions decrease while values of f1 increase; from the

perspective of the directly-constrained problem, this shows how the optimal choice of f1 increases

as f2 is constrained below lower and lower thresholds a.

There are likely hundreds more distinct Pareto-optimal solutions for these two objective func-

tions besides the points shown in Table 3 or Figures 2(a) and 2(b). However, Theorem 3 tells us

that points not yet computed must lie in a constrained region between two adjacent points we have

already computed. Since the points we have computed are dispersed broadly across the range of the

tradeoff between matches A and E with relatively small gaps between them, not much additional

information about the relative costs of balance and close pairing in this data will be gained by

computing additional points. For example, the point for match B and the point just to its right in

Figure 2(a) are sufficiently close that we know that any additional point will be relatively similar

to one we have already computed.

In accordance with the increasing emphasis on balance, the magnitude of standardized differ-

ences on both experience overall and individual deciles of experience decrease as the value of ρ is

increased from left to right in Table 3. However, the standardized difference on experience never

drops below 0.22, so balance remains quite poor even in Match E. In addition, the increasing em-

phasis on balance at the expense of close pairing appears to have very little effect on the rate at

which individuals are matchzd exactly on the variables composing the Mahalanobis distance. In
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the bottom part of the table, there is almost no change in the proportion of exact matching on any

variable of interest.

While there is a mathematical tradeoff between balance on experience and close matching on

other variables, the minimal impact of that tradeoff on close pairing means that we can safely select

Match E and get improved balance on experience “for free,” without appreciable negative impact on

close pairing. However, the balance on experience remains poor even when it is strictly prioritized

over close pairing. Further modifications must be made to the match before it is acceptable for

analysis.

3.4 Balance vs. sample size tradeoff

Balance cannot be improved sufficiently in this match merely by focusing less on close pairing;

however, substantial gains may still be possible if we are willing to reduce the size of the matched

sample. Accordingly, we now turn to a different tradeoff using the same network flow problem. We

define a new objective function f1 as a linear combination of the goals in the previous tradeoff,

given by the sum of the Mahalanobis distances for the pair edges used in the network flow solutions

and a constant M multiplied by the the total variation imbalance in surgical experience. Guided

by Match E in Table 3, we choose M to be 449.86 to specify a strict priority of balance over close

pairing, although we could choose any larger value of M ; the purpose of weighting imbalances by

M is simply to enforce a strict priority, specifying that among individuals we keep in the match,

their balance on surgical experience is overridingly more important than their proximity on a

multivariate distance. This is similar to the use of a large fixed penalty for excluding units in the

the balance-versus-pairing tradeoff just considered.

Next, we define f2 to be the number of IMG operations excluded from the match. Minimizing f2

now corresponds to maximizing sample size, and the directly constrained problem Q(a) now gives

the match with minimal deviations from balance of size at least a. The penalized problem P(ρ)

corresponds to setting the cost (on the associated edge in the network flow problem) of excluding

an IMG from the match uniformly to ρ.

We again solve P(ρ) for a grid of ρ-values, giving results in Table 4 and Figures 2(c) and 2(d).
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Now the penalty ρ describes the importance of retaining each individual IMG operation rather than

avoiding imbalances, and it decreases from left to right in Table 4 to show increasing attention to

balance (relative to sample size). Note that Match F is almost identical to Match E, since both

matches use a strict prioritization of the three design goals (sample size, balance, and finally close

pairing), so that Table 4 essentially picks up where Table 3 left off. In addition, many of the values

of ρ illustrating the tradeoff are similar in value to the fixed imbalance penalty M , suggesting

that much of the tradeoff relationship can be understood by considering cases when the exclusion

penalty is either just larger or just smaller than the imbalance penalty.

As in the tradeoff explored in Section 3.3, we see the values of the two objective functions change

in opposite directions as attention to balance increases, but this time the magnitude of the changes

are consequential for both balance and sample size. Standardized differences on experience are

reduced from unacceptably high values to zero across the spectrum of matches, while the percentage

of IMG operations excluded ranges from 6% to 65%. In addition, as plots 2(c) and 2(d) highlight,

there is a desirable intermediate region of the spectrum where imbalance on experience has been

reduced almost to zero but the large majority of IMG operations are retained in the match. Matches

I-L all fall into this category, each reducing the standardized difference on experience almost to zero

while retaining close to 80% of the IMG operations. These matches are similar enough that there

is not a strong reason to prefer one of them over the others; however, Match K (achieved by setting

ρ = 448.74) achieves the minimal value for the standardized difference on surgical experience among

this group of matches and we use it for our outcome analysis in Section 4.2.

Note that Match F and Match N correspond to matches that could have been produced by

standard technologies. Match F (ρ = 500) is equivalent to matching under a near fine balance

constraint, and Match N (which was not produced using the tradeoff algorithm) is a strict exact

match on experience decile. Without the tradeoff algorithm, users might choose in practice between

one of these two matches, each of which performs poorly with respect to one of the two important

design goals. The tradeoff algorithm allows exploration of the desirable intermediate region and

discovery of Match K.
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3.5 Computation time

All of the matches described in Section 4.3 and 4.4 were run on a desktop computer in sequence over

a period of several days. While several of the individual matches took multiple hours to complete,

prohibiting a real-time interactive study of the Pareto optimal point set, computational demands

were reasonable in practice. For a more in-depth analysis of the runtime of the individual matches

in this problem and a discussion of potential improvements in efficiency, see Section E of the online

supplement.

4 Outcome analysis: comparing surgeon performance

4.1 Review: sensitivity of matched comparisons to unmeasured bias

Suppose our matching design succeeds in pairing operations whose probabilities of being performed

by an IMG are identical, and consider all permutations of IMG-assignment such that exactly one

operation in each matched pair is assigned to an IMG. Because no operation in a pair is more likely

than the other to be treated by an IMG, all such permutations are equally likely. Under a sharp

null hypothesis that each patient’s outcome would remain identical had its IMG/USMG assignment

been reversed, we can calculate the value of a given test statistic for every possible permutation,

which provides a distribution for randomization inference (Fisher 1935). When comparison groups

in an observational study differ on an unobserved covariate, however, probabilities of treatment

assignment may not be equal within matched pairs, and randomization inference as described

above will be biased. Sensitivity analyses probe studies to find the degree of unmeasured bias

needed to overturn the results (Rosenbaum 2010). Formally, in a matched analysis with I pairs,

let πij be the probability of treatment by an IMG for individual j ∈ {1, 2} in pair i, and suppose

Γ−1 ≤ πi1/(1− πi1)
πi2/(1− πi2)

≤ Γ

for some value Γ. If Γ = 1 the original randomization test is valid, but if Γ > 1 it may not be.

For any fixed Γ > 1, any of a collection of possible permutation distributions may be the true
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randomization distribution, but procedures exist to find the worst-case p-value over this collection.

In a sensitivity analysis, worst-case p-values are computed for larger and larger values of Γ until the

study’s results cease to be significant. This threshold Γ is referred to as the sensitivity of a study

to unmeasured bias. In testing scenarios where a null hypothesis of zero effect is initially rejected,

a sensitivity analysis describes the degree of confounding necessary to explain the observed results

when no effect is present. In equivalence testing, on the other hand, the null hypothesis states that

an effect exceeds a certain threshold size; if such a hypothesis is initially rejected (indicating only

small effects are consistent with the data), a sensitivity analysis describes the degree of confounding

necessary to mask a true effect at least as large as the threshold. In practice sensitivity analysis for

an equivalence test is performed by conducting separate sensitivity analyses for two one-sided tests

and combining the results, as described in Rosenbaum and Silber (2009b). For more discussion of

sensitivity analysis, see Gilbert et al. (2003), Egleston et al. (2009), Hsu and Small (2013), and

Fogarty and Small (2016).

4.2 Results for IMG-USMG match

We focus on in-hospital mortality as an outcome measure. In the matched sample produced by

Match K in 4, the patient mortality rate for IMG operations is 1.5% while the mortality rate for

USMG operations is 1.7%. We first test the sharp null hypothesis of no effect of treatment by an

IMG using McNemar’s test, which gives a p-value of 0.14. Since no difference significant at the

0.05 level is detected, we next perform a test of equivalence using the two-one-sided test procedure,

attempting to reject null hypotheses that the effect is larger in magnitude in either direction than a

given effect threshold. As a measure of effect size we use the attributable effect (Rosenbaum 2002a),

and as an effect threshold we use one fourth of the age-75 mortality rate in 2008 as in Pimentel et al.

(2015), which corresponds to a difference of approximately 162 total deaths between the matched

IMG and USMG samples. Note that the familywise error rate is controlled even though we perform

both one-sided tests without multiple testing correction (Goeman et al. 2010). The equivalence test

p-value is below 1 · 10−10, so we reject the hypothesis that the true effect size exceeds 162 deaths.

Might bias due to unmeasured confounding variables be masking a true differential effect on
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mortality? We address this concern via a sensitivity analysis as described in Section 4.1 for the test

of equivalence. The sensitivity analysis shows that the equivalence result remains significant at the

0.05 level for a Γ-value of 1.7, but ceases to hold when Γ = 1.8. An unmeasured bias of Γ = 1.7

could be produced a binary confounding variable perfectly correlated with patient mortality that

also raised odds of treatment by an IMG by a factor of 1.7; such a bias could also be produced by a

binary confounding variable that, when present, multiplies the odds of in-hospital mortality by eight

while doubling the odds of treatment by an IMG (for more details on this calculation see Rosenbaum

and Silber 2009a). Thus our overall finding is that IMGs and USMGs perform equivalently with

respect to in-hospital patient mortality, and that the result is robust to a moderate degree of

unmeasured confounding.

These results are broadly consistent with the findings of the original study (Zaheer et al. 2017).

They go beyond them in at least two important ways. First, the original study accounted for the role

of surgical experience only post hoc via adjustment by a parametric linear model, while our approach

explicitly balances this potentially important confounder as part of the match itself. Second, we

conduct a test of equivalence and an associated sensitivity analysis. Rather than declaring a failure

to detect any positive effect that is robust to unmeasured confounding, we are able to positively

establish the absence of an effect of a certain standard size under minor to moderate unobserved

confounding.

5 Discussion

Understanding the impact of surgical training on performance is an important step in determining

the key medical and institutional factors driving quality of care for surgical patients. The findings

presented here help establish equivalence on key performance metrics between surgeons trained

outside the United States and those trained domestically. These results are consistent with previous

findings in studies that compared patient outcomes for internationally- and domestically-trained

physicians (Ozuah et al. 2001; Norcini et al. 2010; Zaheer et al. 2017). Our work stands out among

this literature in its handling of observed confounding variables entirely through a carefully-chosen

matching design, in obviating the need to fit and interpret parametric regression models, and in
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its sophisticated handling of unobserved bias via a sensitivity analysis for an equivalence test. We

hope that our contributions will help dispel stigma that internationally-trained surgeons have been

shown to face (Moore and Rhodenbaugh 2002).

On the methodological side, the connection between the directly-constrained problem and the

penalized problem illustrated by Theorem 2 provides valuable insight into the common practice

of using penalties in matched designs. Penalties are most often added to covariate distances to

discourage individual matches that violate some design goal, as in Silber et al. (2001), Haviland

et al. (2007), Rosenbaum et al. (2007), and Rosenbaum (2010, §8.4), but they may also be used to

encourage compliance with more general design goals, as in Zubizarreta (2012) and Pimentel et al.

(2015). Most of these works choose penalties to be very large to strictly enforce the goal in question

with priority over other design elements. The results in Sections 2.2-2.3 generalizes the notion of

enforcing a constraint via penalization both by allowing for a wide range of possible design goals

and by giving clear interpretations for designs in which the penalties are not so large as to enforce

strict priorities. A notable exception to the penalization literature’s focus on strict priorities is

Rosenbaum (2012); the Pareto optimality result proved there for a specific tradeoff setting is a

special case of Theorem 2.

Section 3 describes the exploration of two specific tradeoffs in the IMG-USMG study using the

penalized problem. What other tradeoffs in matching might merit study in this manner? In studies

of hospital processes, one might wish to match exactly on a group of process-related variables such

as emergency room status and surgical procedure but might be content with marginal balance of

comorbidities. Tradeoffs between a pairwise distance based on the process-related variables and

balance on each of several individual comorbidities, much like the tradeoff in Section 3.3, could be

considered. More generally, one might study the tradeoff between minimizing average matched-

pair covariate distances and matching exactly on a nominal variable. Exact matching rate could be

quantified using the flow over network edges that connect inexact matches on the nominal variable.

The penalized problem would set the cost of these edges to the penalty ρ, and intermediate solutions

would give the minimal average-distance matches among designs that match exactly at at least the

achieved rate. In a similar vein, one could use the algorithm to evaluate the implications of using
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one pairwise similarity metric, such as the difference in propensity scores, versus another, such as

the Mahalanobis distance.

The tradeoff framework may also be employed in instrumental variable studies to understand

tradeoffs between sample size and instrument strength (Keele and Morgan 2016). Consider a study

with a continuous instrument in which subjects are first divided into a high-dose group and a

low-dose group (perhaps discarding some subjects with mid-range doses), and the goal is to form

high-dose-low-dose pairs that maximize the difference in dose, subject to other constraints; for

an example of such a study see Yang et al. (2014). Here matching distances for potential high-

dose-low-dose pairs could be defined by inverses of the actual dose difference, so that similar doses

would be associated with large distances and vice versa. The sum of these distances (describing

instrument strength) forms one dimension of the tradeoff, while the number of individuals excluded

forms the other. Theorem 2 tells us that the individual matches produced by solving the penalized

problem will have optimal separation on the instrument (as defined by the distance) among matches

of equal or greater cardinality. This approach to managing the IV strength/sample size tradeoff

is similar in some respects to repeated near-far matching with varying numbers of sinks (Baiocchi

et al. 2010, 2012); however, it works with predefined low-dose and high-dose groups rather than

forming nonbipartite matches, and unlike near-far matching it can support balance constraints.

Yet another potential tradeoff concerns the maximal sized of matched sets in variable-ratio

matching (Ming and Rosenbaum 2000). Suppose one wishes to form matched sets of potentially

varying sizes so that most or all controls belong to some set. Two standard options are fixed-

ratio matching and unconstrained variable-ratio matching. The former approach may force poor

matches and introduce bias, while the latter may use data inefficiently (Hansen 2004). The tradeoff

algorithm can help explore options between these extremes using the network of Rosenbaum (1989)

for unconstrained variable-ratio matching, which is based around a familiar bipartite graph of

treated nodes and control nodes, but includes an additional source-like node called the overflow

node that sends extra flow through treated units matching to many controls. The edges connecting

the overflow node to each treated unit govern the maximum allowed control:treated matching ratio,

or matching ratio cap, via their capacities. Split each of these edges into an edge of small capacity
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with no cost and an edge of high capacity, and consider the tradeoff between the sum of flow across

these latter edges against the sum of matched pair distances. Solving P(ρ) with extreme values

of ρ should recover fixed-ratio and unconstrained variable-ratio matches. Intermediate matches

can be interpreted, via Theorem 2, as minimum-bias matches with no more than a fixed number

of controls matched in excess of a matching ratio cap. In large problems, this may allow more

fine-grained control of the tradeoff than can be achieved by varying the ratio cap.
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Table 1: Matching matrix for the example in Figure 1 with specific values given for the distance
parameters ∆i and εi. Each row corresponds to an IMG operation and each column corresponds
to a USMG operation, and each operationis given a name containing a hospital index (a number 1
through 2) and a letter indexing operations within the same hospital. The font of the row/column
labels indicates the experience level of the surgeon performing the operation; labels in regular font
refer to operations by experienced surgeons (XP) while those of inexperienced surgeons (IXP) have
labels in italics.

1Y 1Z 2Y 2Z
1A ∆1 = 6 ∆1 + ε1 = 7 - -
2A - - ∆2 = 3 ∆2 + ε2 = 83

Table 2: Solutions to the matching problem described in Table 1 for several different tradeoffs
between the two design goals. The first column of the table shows the matched pairs for Hospitals
1 and 2 in each match. The two central columns of the table show measures of success on the
two design goals, close pairing and balance on a binary indicator of surgical experience (measured
by the number of total excess USMG operations in each category). The plot shows the tradeoff
between these objectives graphically. The final two columns of the table indicate whether and how
the match in each row may be produced by solving Q(a) and P(ρ).

Optimal Optimal
for Q(a) for P(ρ)

Matches f1 f2 with a ∈ with ρ ∈
1 (1A, 1Y ), 9 2 [2,∞) [0, 1]
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Figure 1: Illustration of a hypothetical tradeoff between close pairing on a covariate distance and covariate
balance in the IMG-USMG match. XP stands for treatment by an experienced surgeon and IXP for treatment
by an inexperienced surgeon. Matches are restricted to occur within hospitals. Optimal balance is achieved
when the IMG operations in Hospitals 1 and 2 are matched to the USMG operations with XP; however,
optimal closeness in pairs is achieved instead when the IMG operations are matched to the USMG operations
with IXP.
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Attention to balance (vs. close pairing)
Very low ←− −→ Very high

Imbalance penalty ρ 0.01 1 5 8 449.86
Match label A B C D E

Avg. pairwise Mahalanobis distance 1.02 1.03 1.11 1.18 1.23
f1 (Sum of pairwise distances) 19241.24 19412.02 20960.35 22205.27 23241.56

f2 (Total variation imbalance on exp. deciles) 4926 3784 3280 3075 2982
Scaled TV imbalance 0.26 0.20 0.17 0.16 0.16

Standardized differences
Experience 0.47 0.32 0.26 0.23 0.22

Experience <5 yrs -0.11 -0.06 -0.03 -0.02 -0.02
Experience 5-7 yrs -0.03 0.00 0.00 0.00 0.00

Experience 8-10 yrs -0.05 -0.00 -0.00 0.00 -0.00
Experience 11-12 yrs -0.08 -0.01 -0.00 0.00 0.00
Experience 13-14 yrs -0.17 -0.16 -0.15 -0.14 -0.13
Experience 15-17 yrs -0.32 -0.34 -0.30 -0.29 -0.30
Experience 18-20 yrs -0.17 -0.16 -0.16 -0.15 -0.15
Experience 21-24 yrs -0.02 0.00 0.00 0.00 0.00
Experience 25-30 yrs 0.07 0.00 0.00 0.00 0.00

Experience 31+ yrs 0.58 0.47 0.39 0.36 0.35
Experience missing 0.28 0.26 0.25 0.25 0.25

Elixhauser index 0.01 0.01 0.01 0.01 0.01
Emergency admission -0.01 -0.01 -0.02 -0.02 -0.02

Sex 0.02 0.02 0.02 0.02 0.03
Age 0.01 0.02 0.02 0.02 0.02

Largest over 32 procedure types -0.06 -0.06 -0.06 -0.06 -0.06
Proportion matched exactly

Procedure type 0.92 0.92 0.91 0.91 0.90
Coarsened Elixhauser index 0.96 0.96 0.95 0.95 0.95

Emergency admission 0.98 0.98 0.98 0.98 0.98
Sex 0.96 0.96 0.95 0.95 0.95

Age quintile 0.75 0.74 0.73 0.72 0.72
Experience decile 0.08 0.08 0.08 0.08 0.08

Table 3: Summary of matches. The five central columns show different matches that vary the
tradeoff between achieving balance on deciles of surgical experience and minimizing the sum of
matched-pair differences. Match A (ρ = 0.01) approximates a pure distance-based match that
ignores balance on experience deciles completely, while Match E (ρ = 449.86) prioritizes balance on
experience over forming close pairs. The second and third rows of the table show the values of the
objective functions f1 and f2, corresponding to the sum of pairwise distances and the imbalance
on experience deciles, respectively; the first and fourth rows give f1 (ignoring the cost of excluded
units) and f2, respectively normalized by the number of matched samples (18,888). The next 17
rows of the table describe marginal balance on various covariates in the data, especially surgical
experience and its deciles, using standardized differences. The final six rows give the proportion
of pairs matched (out of 18,888 total pairs) exactly on individual discrete variables. Note that the
coarsened Elixhauser index differs from the Elixhauser index only in that it combines all individuals
with 3 or more comorbidities into one large category.
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Attention to balance (vs. sample size)
Very low ←− −→ Very high Exact

Exclusion penalty ρ 500 454.36 449.86 449.3 449.02 448.74 350 0.01 match
Match label F G H I J K L M N

Prop. IMG operations dropped 0.06 0.09 0.15 0.17 0.18 0.18 0.21 0.65 0.62
f2 (IMG operations dropped) 1136 1824 3061 3496 3564 3605 4118 13000 12450

f1 (linear combination) 1.36E6 1.05E6 4.93E5 2.97E5 2.66E5 2.48E5 1.89E4 13.5 2.18E4
TV imbalance, exp. deciles 2982 2294 1057 622 554 513 0 0 0

Scaled TV imbalance 0.16 0.13 0.06 0.04 0.03 0.03 0.00 0.00 0.00
Standardized differences

Experience 0.23 0.16 0.05 0.01 0.00 0.00 -0.01 -0.00 0.02
Experience <5 yrs -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Experience 5-7 yrs 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00

Experience 8-10 yrs -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00
Experience 11-12 yrs -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00
Experience 13-14 yrs -0.12 -0.09 -0.03 -0.00 -0.00 0.00 -0.00 0.00 0.00
Experience 15-17 yrs -0.28 -0.26 -0.16 -0.12 -0.11 -0.11 0.00 0.00 0.00
Experience 18-20 yrs -0.15 -0.11 -0.04 -0.01 -0.01 -0.00 -0.00 0.00 0.00
Experience 21-24 yrs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Experience 25-30 yrs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Experience 31+ yrs 0.35 0.26 0.09 0.03 0.02 0.02 0.00 0.00 0.00
Experience missing 0.25 0.23 0.18 0.16 0.16 0.15 0.00 0.00 0.00

Elixhauser index 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Emergency admission -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 0.00 -0.00

Sex 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.00 -0.00
Age 0.02 0.02 0.02 0.02 0.02 0.02 0.02 -0.00 0.04

Largest of 32 proc. types -0.06 0.03 0.04 0.04 0.04 0.04 0.04 0.00 -0.05
Proportion matched exactly

Procedure type 0.90 0.93 0.92 0.92 0.92 0.92 0.91 1.00 0.78
Coarsened Elixhauser index 0.95 0.96 0.96 0.95 0.95 0.95 0.95 1.00 0.87

Emergency admission 0.98 0.98 0.98 0.98 0.98 0.98 0.97 1.00 0.93
Sex 0.95 0.95 0.96 0.96 0.96 0.96 0.95 1.00 0.89

Age quintile 0.72 0.73 0.74 0.73 0.73 0.73 0.72 0.97 0.54
Experience decile 0.08 0.08 0.09 0.10 0.10 0.10 0.10 0.10 1.00

Table 4: Summary of matches. The eight central columns show different matches that vary the
tradeoff between achieving balance on deciles of surgical experience and maximizing the size of the
matched sample. Match F (ρ = 500) strictly prioritizes retaining all IMG operations possible, while
Match M (ρ = 0.01) freely sacrifices sample size to achieve improved balance on experience. Match
N, computed using a different method (strict exact matching on deciles of experience), is provided
for comparison. The second and third rows of the table show the values of the objective functions
f2 and f1, corresponding to the number of IMG operations excluded and a linear combination of the
sum of matched distances in pairs and the total variation imbalance on experience deciles scaled
by 449.86, respectively. The first row gives f2 as a proportion of the total number of available
IMG operations (20,024) while the fourth and fifth rows give the raw and scaled (by the number
of matched samples) total variation imbalance. The remainder of the table is analogous to Table 3
and is described in its caption.
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Figure 2: Plots showing tradeoffs in the matched comparison between balance on experience decile
and either the sum of matched pairwise distances (subplots (a) and (b)) or the number of IMG
operations excluded (subplots (c) and (d)). Each dot represents a different match, and the dark-
colored dots are described in Tables 3 and 4. Plots (a) and (c) use total variation imbalance on
deciles of surgical experience (a value ranging from 0 to the number of matched samples) on the
y-axis; this is one of the objective functions being optimized directly. In contrast plots (b) and (d)
use the absolute standardized difference, a different balance measure, for their y-axes.
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Abstract

This supplement contains several components. Section A gives a detailed specification of

the mapping between the matching problems in the main manuscript and their representation

as network flow algorithms. Section B gives a richer description of the variables in the surgical

outcomes dataset. Section C provides supporting results and additional context for the iterative

approach to exploring the Pareto optimal solution set in the main mansucript. Section D

generalizes results in the main paper specific to two-objective tradeoffs to settings with more than

two objective functions, and discusses challenges in applying these results in practice. Section

E gives an in-depth analysis of runtime for the matches conducted in the main manuscript.

Finally, Section F contains proofs for technical results throughout the main manuscript and the

supplement.

A Network flow problems

In this section we describe in detail the connection between matching and minimum-cost network

flow algorithms, and give a detailed description of the networks used to conduct the tradeoff analysis

in the main manuscript.

∗Samuel D. Pimentel is Assistant Professor of Statistics, University of California, Berkeley, Berkeley, CA 94720
(spi@berkeley.edu) and Rachel R. Kelz is Associate Professor of Surgery, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA 19104 (rapaporr@uphs.upenn.edu).
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A.1 Detailed characterization of matching as minimum-cost network flow

To characterize network algorithms formally, we adopt the setting of Bertsekas (1998). Consider a

set of nodes N and a set of directed edges E . The edge connecting node n1 ∈ N to distinct node

n2 ∈ N is given by e = (n1, n2) (only one such edge exists for each i, j combination). Each edge

e ∈ E has a lower capacity of zero and a nonnegative integer upper capacity of de, and a nonnegative

cost ce. Finally, each node i has an integer supply bi ∈ Z. The decision variables x ∈ R|E|, which

describe flow across each edge in E , are constrained so that the total flow into a node must be equal

to the total flow out of that node (minus any supply), and so that no edge carries negative flow or

more flow than its upper capacity de. Formally, we may represent this constraint set F as follows:

F =

x :
∑

k:(i,k)∈E

x(i,k) −
∑

j:(j,i)∈E

x(j,i) = bi ∀i ∈ N , 0 ≤ xe ≤ de ∀e ∈ E


To represent matching as a network flow problem, define a network with one node for each of T

treated units τ1, τ2, . . . , τT with a supply of 1, and one node for each of C control units κ1, κ2, . . . , κC

with a supply of 0. Connect each τi to each κj (forming a bipartite graph) by an edge with cost

cij , where cij ≥ 0 for all i = 1, . . . , T, j = 1, . . . , C is a distance describing the desirability of the

pairing (τi, κj). Add an additional “sink” node ω with a supply of −T (i.e. a demand for T units of

flow) and connect each κj to ω by an edge with cost zero. All edges in the network have an upper

capacity of one.

To see how matches are obtained from a solution to the network flow problem, suppose first

that all xe values were restricted to be integers. Now solutions to this network flow problem must

send one unit of flow from each treated unit τi to one κj , and no κj can be matched to multiple τi

since at most one unit of flow can pass on from each κj to the sink ω. Since the only edges with

nonzero costs are the treatment-control edges with associated matching distances cij , the optimal

flow solution will minimize the total cost of treatment-control pairings. The optimal set of treated-

control pairs will be identified by the T edges of form e = (τi, κj) for which the associated xe

variable is set equal to 1. In fact the problem does not include a constraint forcing the xe variables

to take on integer values; however, as discussed in Section 2.1 of the main manuscript, some optimal
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solution will always be integral and will be recovered by a certain class of solving algorithms.

The network just described implements a simple matching problem for pairing every treated

unit to a control unit without replacement, allowing any treated unit to match to any control.

By modifying the network, other constraints or objective functions can be built into the problem.

For instance, suppose we wish to impose constraints which permit matches only between treated

and control units sharing identical values of a nominal variable (exact matching) or only between

treated and control units with values of a continuous variable that differ by no more than a fixed

amount (caliper matching). These constraints can be represented by removing from the network

any edges (τi, κj) associated with pairings that would violate the constraint. Sections A.2 and

A.3 discuss more involved modifications to the network used to constrain or optimize marginal

imbalances and sample size, respectively. Networks with these modifications are used to conduct

the tradeoff analyses in Sections 3.3 and 3.4 of the main manuscript.

A.2 Optimizing marginal balance in a network flow algorithm

Yang et al. (2012, online appendix) and Pimentel et al. (2015) extend the basic network flow

algorithm described in Section A.1 to allow constraints on marginal balance of one or more nom-

inal covariates. Here we review the algorithm of Pimentel et al. (2015), which we build upon to

implement the tradeoff analyses in the main manuscript.

Consider a series of nested refined balance covariates ν1, . . . , νK each mapping each treated

or control unit to a category in the set {λk1, . . . , λkLk
}. We would like our algorithm to pay

attention to marginal balance on each of these variables, measured by total variation distance. As

before, the network contains treated nodes T = {τ1, . . . , τT } with supply one each, control nodes

C = {κ1, . . . , κC} with supply zero, and a sink node ω with demand T . We include edges (τi, κj)

with associated distances cij and upper capacity one; all possible treated-control edges may be

included as in the network of Section A.1, or some strictly smaller set, perhaps defined by some

combination of exact matching or caliper constraints. In addition, the network includes three nodes

(λk`, λ
′
k`, λ

′′
k`) for each category ` = 1, . . . , Lk of each balance level k = 1, . . . ,K, all with supply 0,

and edges connecting these three nodes into a “triangle” for each category: (λk`, λ
′
k`) with infinite
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capacity and cost ΥK−k+1 (where Υ is a network-wide penalty parameter), (λ′k`, λ
′′
k`) with infinite

capacity and cost zero, and (λk`, λ
′′
k`) with capacity dk` = |{τi ∈ T : νk(τt) = λk`}| and cost zero.

The fine balance “triangles” with k > 1 and ` ∈ 1, . . . , Lk are connected to each other via edges

(λ′′k`, λ(k−1)`′) (with infinite capacity and zero cost) where λ(k−1)`′ is the potentially coarser category

in level k − 1 in which the category λk` nests. Finally, each control node κc is connected to the

level-K balance node λK` such that νK(κj) = λK` by edges of zero cost and capacity one, and each

level-1 balance node λ′′1` is connected to the sink ω by edges of zero cost and infinite capacity.

As demonstrated in Pimentel et al. (2015), whenever Υ > 0, an optimal flow through the net-

work just described measures the total variation distance between the treated and control samples

selected for the kth nominal variables via the sum of flows across the (λk`, λ
′
k`) edges, which we de-

note as the imbalance edges, for all `. Intuitively, as much flow as possible is routed over the costless

(λk`, λ
′′
k`) edges, so that all that remains in the penalized edges is the discrepancy of units for cate-

gory k`, discrepancies which sum to the total variation distance. Pimentel et al. (2015) recommend

setting Υ to a very large value in order to constrain the algorithm to produce optimal balance in a

hierarchical manner across the nominal variables. In Sections 3.3 of the main manuscript, we use a

similar network structure with K = 1 nominal variables, but instead of using the imbalance edges

to enforce a constraint we use the flow across these edges as our second objective function f2.

A.3 Excluding treated units in a network flow algorithm

The network used for tradeoffs in Sections 3.3 and 3.4 of the main manuscript differs somewhat

from the original network proposed in Pimentel et al. (2015), which requires all treated units in the

problem to be matched. We modify this network to allow exclusion of treated units. It is important

to note that although the network algorithm in Pimentel et al. (2015) supports 1:k matching for

integers k > 1, the modifications described here only apply to one-to-one matching problems (where

k = 1).

For ease of exposition, assume first that no balance constraint is present, so that λ-nodes are

absent from the network completely and control nodes κc are all connected directly to the sink ω

by edges of capacity one. For each treated unit t, we add an edge of capacity one between treated
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node τt and the sink ω. Now for any treated unit t, a feasible flow exists in which the flow produced

at τt travels directly to the sink via this new bypass edge, and none of the edges (τt, κc) for any

c carry any flow. If no cost is assigned to the bypass edges, the empty match that excludes all

treated individuals is optimal, so in general some penalty is placed on the bypass edges.

Finally, we consider the case where balance constraints are also present. If we add bypass edges

connecting treated nodes directly to the sink as in the previous paragraph, the balance constraints

will no longer work properly when treated individuals are excluded, because the capacities of the

(λk`, λ
′′
k`) edges have been set with reference to the prevalence of category k` in the full treated

sample. When treated individuals are excluded, the empirical distribution of covariate νk in the

matched treated group also changes and this must be accounted for when calculating imbalances

between matched groups. This problem is easily addressed by changing the bypass edges to connect

treated nodes τt to the category of covariate νK associated with τt. Routing flow from excluded

treated units through the nodes corresponding to those units’ covariate values effectively subtracts

out the excluded individuals from the capacity constraints and ensures that balance is being cal-

culated and penalized correctly for the reduced sample.

In Section 3.3 of the main manuscript, a very high fixed penalty is placed on the bypass edges

to ensure treated units are excluded from the match only when it is otherwise impossible to match

them. In Section 3.4, the total flow across the bypass edges, equal to the number of treated units

excluded, is used as one of the objective functions.

B Summary table for surgery outcomes dataset

Table B1 contains average values and standard differences for variables deemed scientifically im-

portant in the surgical outcomes dataset used in Section 3 of the main manuscript. As described

in greater detail in the main manuscript, the dataset is a subset of the larger pool of records used

in Zaheer et al. (2017) and contains only operations performed in the Orlando metropolitan area.

To see the impact of various matched designs on the comparability of the IMG and the USMG

samples, it is productive to compare this table to Tables 3 and 4 in the main manuscript.
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USMG operation average IMG operation average Standardized difference

(n = 58,270) (n = 20,024)

Experience 14.4 19.6 0.536

Experience <5 yrs 0.112 0.092 -0.066

Experience 5-7 yrs 0.101 0.084 -0.061

Experience 8-10 yrs 0.135 0.082 -0.173

Experience 11-12 yrs 0.097 0.069 -0.102

Experience 13-14 yrs 0.094 0.043 -0.203

Experience 15-17 yrs 0.123 0.052 -0.254

Experience 18-20 yrs 0.099 0.048 -0.194

Experience 21-24 yrs 0.118 0.123 0.017

Experience 25-30 yrs 0.069 0.122 0.182

Experience 31+ yrs 0.039 0.235 0.593

Experience missing 0.012 0.050 0.218

Elixhauser index 2.00 1.90 -0.054

Emergency admission 0.506 0.588 0.166

Male sex 0.413 0.427 0.027

Age 56.2 54.9 -0.071

Table B1: Summary information for the surgical outcomes dataset used in Section 4 of the main
text, consisting of all 2008-2011 Orlando-area operations in the data of Zaheer et al. (2017). The
first two columns give average variable values for operations by USMGs and IMGs respectively,
or proportions when the variable in question is binary. The third column gives the difference
between the averages standardized by the pooled estimate of the standard deviation of the variable
in question.



C Searching iteratively for Pareto optimal solutions

Section 3.2 of the main manuscript describes an iterative procedure for computing a broad range

of Pareto optimal solutions for objective functions f1 and f2., involving repeatedly solving the

penalized problem P(ρ) (Problem 3 in the main manuscript). In this section we provide additional

comments and technical results relating to this procedure.

First, suppose one solves P (ρ) for a certain value ρ. Intuitively, solving again with a larger value

ρ should place more priority on function f2, which counts the flow through the penalized edges,

and less on f1. Conversely, decreasing ρ should emphasize f1 at the expense of f2. The iterative

procedure implicitly relies on this fact. The following result confirms it formally.

Theorem C1. Let x(1) be a solution to P(ρ1), and let x(2) be a solution to P(ρ2) where ρ1 < ρ2.

Then either

f(x(1)) = f(x(2)), or f1(x
(2)) > f1(x

(1)) and f2(x
(2)) < f2(x

(1))

Second, the bounding relationship described by Theorem 3 of the main manuscript depends on

knowledge of the extreme Pareto points f and f . The following result shows that points f and f

can be found by solving the penalized problem with sufficiently large and small penalties.

Theorem C2. There exist numbers ρ, ρ ∈ (0,∞) with ρ < ρ such that

f(x) = f if x solves P(ρ) for any ρ ≤ ρ and f(x) = f if x solves P(ρ) for any ρ ≥ ρ

Finally, Theorem 2 of the main manuscript does not rule out the possibility that certain solutions

to Q(a) may not be solutions to P(ρ) for any choice of ρ. These solutions will not be recovered

by the iterative procedure, which relies entirely on solving problem P. However, the inability to

recover all solutions to the directly constrained problem from the penalized problem is generally

a minor concern. Practically speaking, in larger matching problems the bounds of Theorem 3 of

the main manuscript often rule out the existence of Pareto optimal solutions materially different

than those obtained by solving penalized problems. If desired, stronger bounds on the location of

additional Pareto optimal points can be proved using linear relaxations of the directly constrained
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problem.

D Generalization of key results to K-dimensional tradeoffs

In this section we discuss generalization of tradeoff analysis to the case where more than two

objective functions are present.

D.1 Pareto optimal solutions for K quantitative goals

Suppose that in a matching problem we have K design goals instead of two, and that we can

represent each of these goals by an objective function fk:

fk(x) =
∑
e∈E

ψ(k)
e xe for each k = 1, . . . ,K (5)

As before, denote the K-variate function (f1(x), f2(x), . . . , fK(x)) by f(x). Our previous definition

of Pareto optimality requires only minor modification to apply to the K-goal case.

Definition D1. A solution x to a network flow problem (as given in Problem 1 of the main paper)

is Pareto optimal for function f(x) = (f1(x), f2(x), . . . , fK(x)) if there exists no dominating x′, i.e.

a solution x′ such that

fk(x
′) ≤ fk(x) for all k ∈ {1, . . . ,K} and fk(x

′) < fk(x) for some k ∈ {1, . . . ,K}.

Next we consider the multidimensional extensions of the directly constrained and penalized

problems. Consider the following optimization problem, for some vector a ∈ ZK−1 with nonnegative

elements.

Problem D1 (Directly Constrained Problem, K goals).

min f1(x) s.t. x ∈ F , {fk(x) ≤ ak−1}Kk=2 , x ∈ Z|E| (6)
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Extending our previous notation, call this problem Q(a) and represent its objective value at x by

Q(x,a) and its optimal solution for a given integer vector a as Q∗(a). Note that this problem is

a special case of the “ε-constraint” method for producing Pareto optimal solutions described by

Miettinen (2008) for more general settings.

Theorem D3. Any Pareto optimal solution x for f must also be optimal for Q (f2(x), . . . , fK(x)),

and all optimal solutions of Q (f2(x), . . . , fK(x)) are also Pareto optimal with identical values of f .

As in the K = 2 case, Theorem D3 tells us that if we solved Q(a) for all possible values of a,

we would obtain the full set of Pareto optimal points and see the complete tradeoff relationship

between our design goals. Next we consider the generalized version of the penalized problem, for

some vector ρ = (ρ1, . . . , ρK−1) with ρ ≥ 0 (i.e. all vector elements ρi are nonnegative).

Problem D2 (Penalized Problem, K goals).

min f1(x) +
K∑
k=2

ρk−1fk(x) s.t. x ∈ F (7)

Extending previous notation, represent Problem D2 by P(ρ). In addition, P (x,ρ) will represent

the value of the objective function evaluated for particular values of x (assuming x ∈ F) and ρ,

and P ∗(ρ) will represent the optimal objective value for a given fixed ρ. Problem P(ρ) remains a

standard network flow problem. This solution approach is a special case of the “weighting method”

described by Miettinen (2008) for more general multiobjective optimization settings.

Theorem D4. Suppose x∗ is an integer-valued optimal solution for the penalized problem P(ρ).

Then x∗ is Pareto optimal whenever ρ > 0, and x∗ is also optimal for the directly constrained

problem Q(a∗) where

a∗ = (f2(x
∗), . . . , fK(x∗))

D.2 Results helpful in exploring Pareto set

Unfortunately other aspects of the set of Pareto optimal points do not generalize so conveniently

to the multidimensional case. For instance, points in Pareto-optimal sets for K > 2 objectives no
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longer have a strong ordering in multiple goals at once; ordering points according to the objective

value achieved on f1 will no longer necessarily order them by objectives achieved on any other

single goal fk.

Theorem 3 in the main manuscript and Theorems C1 - C2 also fail to generalize in an attractive

way when K > 2. As in the K = 2 case, each additional Pareto-optimal point imposes bounds

on the locations of additional Pareto points, but the bounds are far less restrictive for large K; in

particular, a point in K-space can only be ruled out as a Pareto point if it strictly dominates or

is strictly dominated by some Pareto point, i.e. if it lies in 2 of the 2K quadrants obtained when

viewing a particular Pareto point as the origin. Even when we take the union over many such

forbidden sets, the set of possible Pareto points may remain quite large. Extreme high and low

values for each individual objective k still exist, and it is possible to prove that these values will be

achieved by setting the associated penalty ρk−1 sufficiently large or small relative to an arbitrary

fixed value for the other ρjs. However, these values may no longer be achieved at unique Pareto

points. In addition, if we increase (decrease) a single penalty ρk−1 we can show that the value of

objective fk in the new optimal solution is either identical or strictly larger (smaller) than in the

previous solution, and that the linear combination of the other goals, with weights given by the

other ρj−1s, will also remain identical or change in the opposite direction; however, we have no

guarantee for the direction in which any other objective fj will change.

Different approaches to exploring Pareto optimal solutions for K > 2 goals in general settings

are discussed in the multiobjective optimization literature, and may be adaptable to the case of

matching in observational studies. In particular, this literature considers strategies for finding

all extreme points of the Pareto optimal set and for using sampling techniques to compute an

informative range of intermediate solutions (Ringuest 1992, ch. 9 and 11). Further work is needed

to consider these methods in the specific context of matching and to evaluate their computational

cost and practical value.
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E Runtime analysis for matches in surgical data

Figure E1 describes the amount of time required to run each of the 14 matches based on surgical

data that are described in Tables 3 and 4 of the main manuscript. Each match is computed

by solving an appropriate version of the penalized problem (Problem 3 in the main manuscript).

The results clearly indicate that for problems of this size and complexity, tradeoff analysis cannot

be done interactively in a single sitting, and generating a subsample of the full Pareto-optimal

curve by sequentially solving the penalized problem on a single machine requires substantially

more computation time than would have been needed to compute any individual match. These

requirements are not disqualifying factors for the method’s relevance in practice, however. While

many of the matches demand hours of computation time, they do not individually demand days

or weeks, and since each match may be computed independently of others, they may be run

simultaneously in parallel. In addition, the design stage of an observational study usually involves

computing and comparing several different matches anyway; the machinery developed here makes it

natural to group repeated matches into batches, which may ultimately increase workflow efficiency.

It is also clear from Figure E1 that not all matches are equal in their computational demands.

In particular, most of the matches computed for the close pairing vs. balance tradeoff required

6-9 hours of computation time, while those computed for the balance vs. sample size tradeoff

generally required 1.0-1.5 hours. The contrast between runtimes for match E and match F is

particularly striking, since the matches produced by the two specifications are almost identical.

This difference is not explained by the number of observations in the raw dataset, which is constant

across all these matches. Instead, we hypothesize that the difference is driven by the maximum

edge cost in the network. This number plays an important role in worst-case performance bounds

for many minimum-cost network flow algorithms (Schrijver 2003, section 12.5), and in this problem

it appears to have practical importance as well. As described in Section 4.3 of the main manuscript,

the largest edge costs for the problems studying the close pairing vs. balance tradeoff are those

for the exclusion edges and are equal to 2000. In contrast, as described in Section 4.4, the largest

edge costs for the problems studying the balance vs. sample size tradeoff are the maximum of

449.86 and ρ, a number that is just below 450 for most of the matches F-N. In further support of
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the connection between maximum edge cost and runtime, we note that when we ran the penalized

problem for the balance vs. sample size tradeoff is run with a ρ-value and maximum edge cost an

order of magnitude larger (ρ = 4498.6) it requires about 15 hours of computation time.

A detailed study of the role of maximum edge costs in explaining computational burden is

beyond the scope of the current work. However, the potential for such a connection has practical

implications for end users of the tradeoffs algorithm. For instance, in solving the penalized problem,

it may be more efficient to start with small values of ρ and work one’s way up into a region of

interest rather than starting with large ρ-values.

While the size and general structure of the network flow problem representing the matching

task remained fairly constant across the versions considered in this work, these aspects of the

problem certainly influence computational costs. The work of Pimentel et al. (2015) suggests that

major computational gains may arise from increasing the sparsity of the network problem, or in

other words reducing the number of edges in the network relative to the number of nodes. For

example, in the current design an IMG operation may be matched to any USMG operation in

the same hospital whose propensity score obeys the caliper restriction; sparsity could be increased

and computation accelerated by additionally requiring calipers on other continuous variables or

permitting matches only between certain categories of operations.

F Proofs

Proof of Theorem 1. If the first claim fails, there is some solution x′ such that

f2(x
′) ≤ f2(x) and f1(x

′) < f1(x)

which contradicts the Pareto optimality of x. For the second claim, note that all optimal solutions

x′′ 6= x for Q(f2(x)) satisfy f1(x
′′) = f1(x), or either x or x′′ would not be optimal. Also f2(x

′′) ≤

f2(x), by feasibility for Q(f2(x)), and f2(x
′′) ≥ f2(x), by Pareto optimality of x. Thus f(x′′) = f(x)

and x′′ is also Pareto optimal.

Proof of Theorem 2. First prove Pareto optimality. Suppose that ρ > 0 and that x′ dominates x∗

with respect to objective functions f1 and f2. Then P (x′, ρ′) < P (x∗, ρ′) for any ρ′ > 0 (since
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Figure E1: Runtimes (in hours) for matches displayed in Tables 3 and 4 of the main manuscript,
measured on an iMac Pro with a 3.2 GHz Intel Xeon Wu processor and 32 GB of RAM. Each match
was produced by solving a version of the penalized problem (Problem 3 in the main manuscript):
matches A-E were computed as part of the close pairing vs. balance tradeoff analysis described
in Section 4.3, while matches F-N were computed as part of the balance vs. sample size tradeoff
described in Section 4.4.



the objective function P (x, ρ) is a linear combination of the two objectives with nonzero weights),

a contradiction since x∗ is optimal for P (ρ). Therefore no dominating solution exists and x∗ is

Pareto optimal.

For the second claim, since x∗ is feasible for P(ρ) with f2(x
∗) = a∗, it is also feasible for Q(a∗).

Choose any x′ 6= x∗ such that x′ is feasible for Q(a∗). Solution x′ is feasible for P(ρ) (since it

necessarily satisfies x′ ∈ F). By optimality of x∗ for P(ρ), P (x∗, ρ) ≤ P (x′, ρ), i.e.

f1(x
∗) + ρf2(x

∗) ≤ f1(x′) + ρf2(x
′)

By feasibility of x′, f2(x
′) ≤ a∗ = f2(x

∗), f1(x
∗) ≤ f1(x′). Since f1 is the objective function for

Q(a∗) and x′ is freely chosen from its feasible region, x∗ is optimal for Q(a∗).

Proof of Theorem C1. Since x(1) is optimal for P(ρ1) and x(2) is optimal for P(ρ2), we know

P (x(2), ρ2) ≤ P (x(1), ρ2) and P (x(1), ρ1) ≤ P (x(2), ρ1). These facts in turn imply

P (x(2), ρ2)− P (x(2), ρ1) ≤ P (x(1), ρ2)− P (x(1), ρ1)

By canceling f1(x) terms and dividing both sides by (ρ2 − ρ1), this implies f2(x
(2)) ≤ f2(x

(1)).

In addition, by expanding both sides of the inequality P (x(1), ρ1) ≤ P (x(2), ρ1) and collecting ρ1

terms we can show the following:

ρ1

[
f2

(
x(1)

)
− f2

(
x(2)

)]
≤ f1

(
x(2)

)
− f1

(
x(1)

)
The left-hand side is nonnegative since f2(x

(2)) ≤ f2(x(1)), which means f1(x
(1)) ≤ f2(x(1)) also. If

the former inequality is strict, the latter must be also, while if f2(x
(2)) = f2(x

(1)), then f1(x
(1)) =

f2(x
(1)) also, or P (x(1), ρ2) < P (x(2), ρ2) which contradicts an earlier fact.

Proof of Theorem C2. Throughout we use the notation of Section A.1. For some ordering e1, . . . , e|E|

of the edges in E , define V ⊂ Z|E| by V = {−de1 ,−de1 + 1, . . . , de1 − 1, de1} × {−de2 , . . . , de2} ×

. . . ,×{−de|E| , . . . , de|E|} and represent the cost coefficients in f1 and f2 by vectorsψ = (ψe1 , . . . , ψe|E|)

and γ = (γe1 , . . . , γe|E|). Let ρ = (minv∈V,vTψ>0 vTψ − ε)/
(∑

e∈E γede
)

for some ε > 0 such

that ρ is positive (since V is a finite set some such ε always exists). Let x be the solution to

P(ρ). If a distinct network flow solution x 6= x satisfies f1(x) < f1(x), then P (ρ,x) < P (ρ,x)

since f1(x) − f1(x) ≥ minv∈V,vTψ>0 vTψ > ρ
∑

e∈E γede ≥ ρ(f2(x) − f2x)), but this is a con-
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tradiction, so f(x) = f (with Pareto optimality following from Theorem 2). Similarly, let ρ =(∑
e∈E ψede

)
/
(
minv∈V,vT γ>0 vTγ

)
+ ε and let x be the solution to P(ρ). If x 6= x satisfies

f2(x) < f2(x), then P (ρ,x) < P (ρ,x) since ρ(f2(x) − f2(x)) >
∑

e∈E ψede ≥ f1(x) − f1(x).

This is a contradiction so by Theorem 2, f(x) = f .

Proof of Theorem D3. If the first claim fails, there is some solution x′ such that

f1(x
′) < f1(x) and fk(x

′) ≤ fk(x) for all k = 2, . . . ,K

which contradicts the Pareto optimality of x. For the second claim, note that all optimal solutions

x′′ 6= x for Q(f2(x), . . . , fK(x)) satisfy f1(x
′′) = f1(x), or either x or x′′ would not be optimal. Also

fk(x
′′) ≤ fk(x) for all k ∈ {2, . . . ,K}, by feasibility for Q(f2(x), . . . , fK(x)), and fk(x

′′) ≥ fl(x) for

all k ∈ {2, . . . ,K}, by Pareto optimality of x. Thus f(x′′) = f(x) and x′′ is also Pareto optimal.

Proof of Theorem D4. First prove Pareto optimality. Suppose that ρ > 0 and that x′ dominates

x∗ with respect to the objective functions in (5). Then P (x′,ρ′) < P (x∗,ρ′) for any ρ′ > 0 (since

the objective function P (x,ρ′) is a linear combination of the K objectives with nonzero weights),

a contradiction since x∗ is optimal for P (ρ). Therefore no dominating solution exists and x∗ is

Pareto optimal.

For the second claim, since x∗ is feasible for P(ρ) with (f2(x
∗), . . . , fK(x∗)) = a∗, it is also

feasible for Q(a∗). Choose any x′ 6= x∗ such that x′ is feasible for Q(a∗). Solution x′ is feasible for

P(ρ) (since it necessarily satisfies x′ ∈ F). By optimality of x∗ for P(ρ), P (x∗,ρ) ≤ P (x′,ρ), i.e.

f1(x
∗) +

K∑
k=2

ρk−1fk(x
∗) ≤ f1(x

′) +
K∑
k=2

ρk=1fk(x
′) (8)

By feasibility of x′, fk(x
′) ≤ a∗k = fk(x

∗). This in turn implies

K∑
k=2

ρk−1fk(x
′) ≤

K∑
k=2

ρk−1fk(x
∗)

In order for this statement and statement (8) to hold simultaneously, it must also be true that

f1(x
∗) ≤ f1(x′). Since f1 is the objective function for Q(a∗) and x′ is freely chosen from its feasible

region, x∗ is optimal for Q(a∗).
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