
UC Berkeley
Earlier Faculty Research

Title
Duopoly Prices Under Congested Access

Permalink
https://escholarship.org/uc/item/7xw8c3fn

Author
Van Dender, Kurt

Publication Date
2005-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xw8c3fn
https://escholarship.org
http://www.cdlib.org/


DUOPOLY PRICES UNDER CONGESTED ACCESS 

Kurt Van Dender  

Department of Economics 
University of California, Irvine 
Irvine, CA 92697-5100 
Tel. + 1 949 8249698 
Fax + 1 949 8242182 
kvandend@uci.edu 
 

forthcoming in Journal of Regional Science 

Abstract 

Consider two firms, at different locations, supplying a homogenous good at constant marginal 

production cost. Consumers incur travel costs to the firm for each unit purchased, and the travel 

costs increase with the amount of travel to each firm (congestion).  When all traffic and all 

congestion are generated by travel to a duopolist, both the Nash-Bertrand equilibrium prices and 

the Nash-Cournot equilibrium prices exceed the sum of the marginal production cost and the 

marginal external travel cost.  However, when the road is shared by travelers to the duopolists’ 

facilities and travelers in competitive markets, the Nash-Bertrand duopoly price equals the 

competitive price and the Nash-Cournot price contains a markup. 

JEL:  D43, D62, L13, R10, R41 
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1. INTRODUCTION 

This paper analyzes how duopolistic providers of perfect substitutes set prices when 

access to each duopolist’s facility is subject to congestion and the costs of access are 

borne by consumers departing from a common location.  The pricing rules are derived for 

both Nash-Bertrand and Nash-Cournot behavior.  The model has a natural spatial 

interpretation: consumers may travel to suppliers at several locations to obtain an 

identical good; they incur the time and money costs of travel, and travel is subject to road 

congestion.    I distinguish between the case where all congestion is related to access to 

the duopolists’ facilities and the case of mixed traffic.  Under mixed traffic, the road is 

simultaneously used by travelers in the duopoly markets and by travelers in a different 

market, which I assume to be competitive.  

Consider, for example, competition between airports in large metropolitan areas 

like the San Francisco Bay Area.  Passengers often can depart for the same destination at 

the same time, with the same airline and for the same fare1, from different airports (San 

Francisco, San Jose, or Oakland).  Access costs to the airport then co-determine the 

choice for a particular airport (Pels et al., 2000), especially on short haul flights (e.g. to 

Southern California) where access costs form a large share of the total trip cost.  For 

some origins in the Bay Area, one of these alternatives always dominates the others, but 

for others two of the three airports are a reasonable option, so that the problem can be 

analyzed as a duopoly.2  Clearly, access to the airport often takes place under congested 

conditions, certainly in peak-periods, and this affects the time costs of access.  Airport 

authorities may directly charge passengers for airport use, or the charges can be reflected 

in airfares.   
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How will profit-maximizing airport managers charge for access to the airport 

under the conditions just described? 3  This paper analyzes how access prices depend on 

congestion experienced in accessing each airport, abstracting from other features such as 

differences in distance.  As will be seen, the access charge depends on the type and the 

extent of competition with other airports, and on whether congestion experienced when 

accessing the airport is airport-specific (duopoly traffic only) or is subject to transport 

network congestion (mixed traffic).  Using a stylized model of pricing when access to 

spatially dispersed suppliers of an identical good is subject to congestion, I derive the 

pricing rules in case the market is a Nash-Bertrand duopoly (price competition) and a 

Nash-Cournot duopoly (quantity competition).  The locations of firms and consumers are 

given, and they are connected by congestible links in a simple network.   I find that 

duopoly-specific congestion generates market power both with price and quantity 

competition, and that the presence of general network congestion allows duopolists to 

charge markups with quantity competition, but not with price competition.  Other 

examples of congestion-prone facilities that may compete in an oligopolistic setting 

include national parks (Richardson, 2002), ports, swimming pools, museums, etc.   

The structure of the paper is as follows.  Section two reviews relevant literature, 

section three develops the model, section four discusses a numerical illustration, and 

section five concludes.   

2. LITERATURE 

The interaction between congestion and oligopoly pricing has been the subject of 

earlier studies.  Braid (1986) derives the Nash-Bertrand and the Nash-Cournot pricing 

rules for a congestion-prone symmetric duopoly.   Scotchmer (1985a,b) analyzes price 
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competition for congestible facilities, assuming fixed total demand, and considers the 

optimal number of facilities (whereas I keep the number of competitors fixed).  De Palma 

and Leruth (1989) consider a two-stage game in which two firms supplying a perfect 

substitute first choose capacity and then compete in prices, and find that congestion 

relaxes price competition.  The effect of the presence of non-duopoly traffic is neglected 

in all mentioned studies. 

In a broader sense, this paper relates to research that analyzes congestion 

externalities when distortions exist in the economy.  One part of that literature focuses on 

the impact of constraints on pricing instruments in the transportation sector; another 

studies the impact of tax distortions outside the transport sector on optimal transport 

pricing.    Imperfect competition is a further source of distortions, but has received 

relatively little attention in the analysis of congestion pricing.   I list some exceptions.   

First, several studies look at the implications of private ownership of road 

infrastructure under various types of market structure on tolling and investment decisions 

(e.g. de Palma and Lindsey, 2000; Edelson, 1971); they confirm the general insight that 

private owners will at least partly internalize the congestion externality if the market 

structure allows.  Second, a number of industrial organization analyses focus on the 

relation between congestion and market power in the airline industry (e.g. Brueckner, 

2002; Pels and Verhoef, 2004) and the electrical power industry (e.g. Borenstein, 2000).  

However, since in these networks firms or network operators decide on the network flows 

(but not final consumers), the nature of the interaction between congestion and market 

power is different from that in road transport networks (where consumers themselves 

distribute flows over the network), as considered here.  Third, some papers on spatial 
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economics focus on the relation between imperfect competition and location choice, 

usually abstracting from congestion externalities (cf. Gabszewicz and Thisse, 1996, and 

Fujita and Thisse, 2002, for overviews).  My paper keeps location fixed and assesses the 

relation between congestion and market power.  It could be seen as a short to medium 

term analysis, as compared to the more long run scope of the endogenous location 

models.  Lastly, my analysis focuses on ‘mill pricing’, that is: markets where consumers 

incur the access costs.  This assumption is motivated by the examples given above 

(airports, national parks, etc.), where consumers need to travel to the supplier to consume 

the good.  The case of delivered pricing entails different strategic interactions and 

different outcomes (cf. Dastidar, 1995, 1997, and Vives, 1999). 

3. THEORY 

The theoretical analysis in the following subsections considers a duopoly (with 

extensions to oligopoly), but the model also is interpretable as a duopsony (or 

oligopsony), which would fit the situation where consumers can travel to two or more 

employment locations.  So, the analysis captures the interaction between congested travel 

and access prices as well as the interaction between congested commuting and wages.  

The analysis focuses entirely on internal solutions.  The first subsection derives Nash-

Bertrand and Nash-Cournot pricing rules for the case where all traffic is duopoly-related; 

the second subsection adds interaction with traffic related to other (competitive) markets.  

The third subsection considers generalizations to oligopoly, discusses limiting cases, and 

deals with interactions between monopoly and duopoly markets. 
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Duopoly Traffic Only 

Consider a transport network consisting of two links that connect the single trip 

origin to two firms, A and B, as in Figure 1.  The duopolists supply a perfect substitute, so 

that consumer demand is the sum of both firms’ output.  Denote demand for perfect 

substitutes that are supplied by two suppliers at fixed locations by Dq .  There is strict 

complementarity between trips and purchases: buying one unit of the good or service 

requires one trip (the consequences of relaxing this assumption are discussed in the 

section on mixed traffic). 4    Denoting the duopoly market by superscript D and location 

by subscripts A and B, I have D D D
A Bq q q= + .  Each firms’ marginal production cost 

 is constant.  The duopolists’ prices are ,  ,  D
ic i A B= D

Ap  and D
Bp .  Travel to the firm is 

costly and paid for by the consumer.  As there is – for now – only duopoly traffic, and 

given the strict complementarity between demand and trips, the traffic volume on a link 

is the sum of all trips over the link.  Travel costs per person, ai, on each link increase with 

link volume qi, i=A,B: [ ] ,  ' i
i i

aq a ∂= ≡ 0,  ,i i
i

a a Aq =∂

' ,  i ia q B

i>

,i A=

B .5  Under the standard 

assumption that travelers neglect the increase in travel times that they cause to other road 

users, the congestion externality is given by .    

The generalized price, Dg , is the sum of time costs and prices.  In case consumers 

buy goods at both locations (interior solution), the generalized price is6:  

(1) D D D D D
A A A B B Bg a q p a q p   = + = +     
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Consumer demand declines with the generalized price: ,  0
D

D D D
D

qq q g g
∂ = <  ∂ .  The 

inverse demand function is denoted by DG q   , and its derivative ' 0D
G Gq

∂ ≡ <∂ 
 
  . 

 In the duopoly market, prices will depend on specific assumptions concerning 

market structure.  I subsequently discuss the cases of Nash-Bertrand (price) competition 

and Nash-Cournot (quantity) competition.  The pricing rules for these cases are obtained 

by combining the appropriate set of first-order conditions for the general problem 

formulated in (2).  The first term of the Lagrangian is the objective (profits).  The two 

constraints require that marginal willingness to pay equals the generalized price in the 

duopolistic market at both locations.  Since we assume an interior solution, this requires 

equality of generalized prices across locations, as in (1). 

(2)  
( )

{ } { }1 2

D D D
A A A A

D D D D D D D D
A B A A A A B B B B

p c q

G q q p a q G q q p a qλ λ

ℑ = −

      + + − − + + − −       

Price competition.  Assume first that the duopolists compete in prices, meaning 

that one firm takes the other firm’s price as fixed but recognizes that quantities adjust to 

maintain consumer equilibrium.  Hence, taking partial derivatives with respect to 

, ,D D D
A A Bp q q  leads to the first order conditions: 

(3)  1D
Aq λ=

(4)  ( )1 2' ' 'D D
A A Ap c G a Gλ λ− + − + = 0

0=

'

(5)  ( )1 2' ' 'BG G aλ λ+ −

Combining (3) and (4) leads to 

(6) ( ) 2' 'D D D
A A A Ap c q G a Gλ= − − −  

Substituting (3) into (5), solving for  and substituting the result into (6) gives: 2λ
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(7) '' '
' '

D D B
A A A A A

B

ap c a q q G
G a

= + +
−

  

Equation (7) implicitly defines the reaction function for the duopolist at A.  Since the 

marginal social cost consists of the constant marginal resource cost and the marginal 

external congestion cost (the first two terms on the right-hand side of (7)), and the third 

term on the right-hand side of (7) is positive, it follows that the Nash-Bertrand 

equilibrium price exceeds the marginal social cost.  The intuition for this result is as 

follows.  First, in contrast to the standard Nash-Bertrand model, undercutting a 

competitor does not allow capturing the entire market because access costs increase.  The 

demand curve facing the firm is continuous and is downward sloping rather than 

perfectly elastic, and this allows a markup.  Second, each duopolist internalizes the 

marginal external congestion cost of travel to its facility.  Third, each frim charges a 

markup above the marginal social cost that increases in the congestibility of access to the 

competing facility and decreases in the price-elasticity of demand. 

In other words, congestion generates market power because the decision of a 

consumer to switch from, e.g., facility A to facility B raises the generalized price at B and 

reduces that to A.  So, when firm A increases its price, the generalized price at A increases 

but so does the generalized price at B.  As congestion is an externality, consumers neglect 

the interaction between prices and generalized prices, and this generates market power.  

This contrasts with the purely competitive market, where the externality is not reflected 

in prices.  Note that, while Pigouvian tolls are required to internalize the externality in the 

purely competitive market, in the purely duopolistic caste the prices are too high, so that 

a subsidy would be required to attain Pareto-efficiency.7   
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Price competition limits market power in the Nash-Bertrand case with duopoly 

traffic only.  When the elasticity of demand decreases ( 'G → ∞

' 0G →

), the Nash-Bertrand 

mark-up rises; in a symmetric model, it does not exceed the total external congestion cost 

in the network.  When demand becomes very elastic ( ), the Nash-Bertrand mark-

up converges to the marginal external congestion cost on the link to each firm.  Perfectly 

elastic demand hence forces the firms to internalize the externality, that is, to charge the 

marginal social cost of producing and transporting the good.  In the absence of 

congestion, the standard Nash-Bertrand outcome of competitive pricing is obtained, 

clarifying the conclusion that congestion generates market power under Nash-Bertrand 

competition.   

Quantity competition.  Consider next duopolists who compete in quantities.   

Within my set-up, this means replacing the first-order condition (5) by the partial 

derivative of the Lagrangian in (2) with respect to D
Bp , as the duopolist at A now takes 

D
Bq  as fixed.  The other conditions do not change.  Hence, instead of (5) I get (8). 

(8)   2 0λ =

Using (8) in (6) leads to  

(9) ' 'D D D D
A A A A Ap c a q q G= + −   

As in the Nash-Bertrand case, the Nash-Cournot markup implied by (9) exceeds the 

marginal external congestion cost on the link to the own location.  In contrast to the 

Nash-Bertrand case, the dependence of the price at one location on congestion to the 

other is indirect, through the market shares and the local elasticity of demand.  

Comparing the Nash-Bertrand and the Nash-Cournot prices at equal demand levels, it can 
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be seen that the Nash-Cournot markup is always larger than the Nash-Bertrand markup, 

because the Nash-Cournot markup does not directly depend on the slope of the travel cost 

function to the other location. 

When 'G → ∞  (decreasing elasticity of demand), also ; in contrast to 

the case of price competition, the network interaction does not limit markups under 

quantity competition.  With an increasing demand elasticity ( ), the price 

converges to the marginal social cost (

D
Ap → ∞

' 0→G

'D D
A A A

D
Ap c a q→ + ) under quantity competition, as 

under price competition. 

 

Mixed Traffic 

In the previous section, all traffic is generated by the duopolists, so that all congestion is 

specific to the duopoly market.  In this section, consumers at a single location still can 

travel to facilities in two locations, A and B, but now at each location two goods are 

supplied, C and D; cf. Figure 2.  Good C is supplied under competitive conditions, so that 

the price is equal to the (constant) marginal resource cost.  The motivation for choosing a 

competitive market structure for the non-duopolistic market is that when more than one 

supplier of a particular good is present at each location, the competitive outcome results 

in the model of the previous subsection.  The market for good D is duopolistic, with a 

single supplier at each location.   

Access to each location is subject to congestion: travel times (ai, i=A,B) increase 

with traffic volumes.  There is strict complementarity between travel volumes and 

demand volumes in both markets, so that traffic volumes on each link are the sum of 

demand in both markets served by that link.  In contrast to the previous subsection, I 
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assume that the constant marginal resource costs are independent of the location in each 

market. 

The resource cost in the duopolistic market is Dc ; the marginal resource cost in 

the competitive market equals the market price Cp .  Let the (downward sloping) demand 

functions in both markets be C C Cq q g =   and q qD D Dg =  

,ia i

 where gC and gD indicate 

the generalized price, defined as the sum of link time costs  and store prices ,A B=

, ,  and ,j
ip i A B j C D= =

CH H q≡ 

.  This formulation assumes that demand for the goods is 

independent, except for the interaction through congestion.8  The inverse demand 

functions are  and 
DG G q ≡   , where q q  and C C

A= C
Bq+ D D

Aq q q= + D
B

}

.  The 

derivatives are denoted H’ and G’.  I shall consider an interior solution, with sales of both 

goods at both locations.  The duopolist at location A then solves the following problem. 

(10) 

( )
{ }
{
{ }
{ }

1

2

3

4

D D D
A A A

D D D C D
A B A A A A

D D D C D
A B B B B B

C C C C D
A B A A A A

C C C C D
A B B B B B

p c q

G q q p a q q

G q q p a q q

H q q p a q q

H q q p a q q

λ

λ

λ

λ

ℑ = −

  + + − − +    

  + + − − +    

  + + − − +    

  + + − − +    

  

The first term and the first two constraints are the same as in (2), except that travel times 

now depend on travel associated with both markets.  The last two constraints require that 

there is consumer equilibrium in the competitive market. 
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Price competition.  Assume first that the duopolists compete in prices.  Taking 

partial derivatives of (10) with respect to , , , ,D D D C C
A A B A Bp q q q q  leads to the first-order 

conditions: 

(11)   1D
Aq λ=

(12)   ( )1 2 3' ' ' 'D D
A Ap c G a G aλ λ λ− + − + − = 0A

0=

0

0B

A

(13)   ( )1 2 4' ' ' 'B BG G a aλ λ λ+ − −

(14)   ( )1 3 4' ' ' 'A Aa H a Hλ λ λ− + − + =

(15)   ( )2 3 4' ' ' 'Ba H H aλ λ λ− + + − =

 

Combining (11) and (12) leads to 

(16) ( ) 2 3' ' ' 'D D D
A A Ap c q G a G aλ λ= − − − + .  

Adding (13) and (14), and using (11), produces 

(17) .  ( ) ( ) ( ) ( )2 3 4' ' ' ' ' ' ' 'D
A A B A Bq G a G a H a H aλ λ λ− + − + − + − = 0

0

Observe that the left-hand side of (15), which equals zero, appears in (17).  The 

remainder of (17) then also equals zero, cf. (18). 

(18) .  ( ) 2 3' ' ' 'D
A A Aq G a G aλ λ− + − =

Finally, since (18) appears on the right-hand side of (16), I conclude that: 

(19) D D
Ap c= .  

Equation (19) says that the duopolist at location A charges the marginal resource cost.  Of 

course, a similar result holds for location B.  Therefore, in the interior solution, the 

presence of a competitive market forces the price-competing duopolists to charge 
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competitive prices.  Intuitively, the arbitrage taking place through the competitive market 

effectively makes the access cost exogenous to the duopolist, so that the demand curve 

facing each duopolist becomes perfectly elastic.  Since congestion can no longer be 

manipulated strategically, the model reverts to the standard Nash-Bertrand result of 

competitive pricing. 

 Note that, as in the standard Nash-Bertrand model, the distribution of demand 

between both duopolists (and between both competitive locations) is indeterminate, so 

that a sharing rule is required to determine the final outcome.  In other words, whereas 

the consumer equilibrium constraint acted as a sharing rule in the model with only 

duopoly traffic, this is not so with mixed traffic. 

 

Quantity competition.  Consider next duopolists competing in quantities.   As in 

the previous subsection this requires replacing the first-order condition with respect to 
D
Bq  by the first-order condition with respect to D

Bp , as the duopolist at A now takes D
Bq  as 

fixed.  The other conditions do not change.  Hence, instead of (13) I have: 

(20)   2 0λ =

Using (11) and (20) in (12) leads to  

(21) ( ) 3' ' 'D D D
A A A Ap c q G a aλ= − − +   

Using (11) and (20) in (14) and in (15) produces (22) and (23): 

(22)   ( )3 4' ' 'D
A A Aa q H a Hλ λ− + − + ' 0=

0=(23)   ( )3 4' ' 'BH H aλ λ+ −

Solving (23) for , substituting in (22), solving for , and substituting in (21) gives 

the pricing rule: 

4λ 3λ
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(24) ( ) '' ' ' '' ' '
' '

D D D D A
A A A A A

A
B

ap c a G q a q HH a H
H a

 
 
= + − +
 − − − 

   

The price under quantity competition clearly differs from the competitive price despite 

the presence of competitive traffic.  In particular, the first two terms on the right-hand 

side of (24) are the same as in the case of duopoly traffic only, cf. (9), and the last term is 

negative.  Consequently, the Nash-Cournot markup is smaller under mixed traffic than in 

the case where there is only duopoly traffic.  This difference in markups is smaller as 

access to the facility at A is more congestion-prone and as H’ is smaller, that is, 

competitive demand is more price-elastic. 

As long as the solution is an interior one, the presence of a competitive market 

with identical resource costs at both locations forces access costs to be equal across 

locations.  In contrast to the case where all traffic is duopoly traffic, this forces the 

duopolists’ prices to be equal, also when congestion conditions differ between both 

facilities.  As differences in access conditions do not matter (only overall network 

congestion does), the duopolists will not take them into account when deciding on the 

quantities, and therefore they will equally split the market.  The quantities in the 

competitive market will differ across locations, allowing overall equilibrium to be 

reached. 

When the elasticity of demand goes to infinity in the duopoly market ( ) 

and to zero in the competitive market (

' 0G →

'H → ∞

'G

), then the Nash-Cournot duopoly price 

converges to the marginal social cost.  With  and , the bracketed 

expression on the right-hand side of (24) converges to -1.  Consequently, the duopoly 

0 0→ 'H →
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price approaches the competitive price.  This says that, when demand is very elastic in 

both markets, market power is completely eroded due to the interaction of competitive 

and duopoly-related traffic on the network.  As in the case of pure duopoly traffic, the 

price approaches infinity as the elasticity of demand in the duopoly market decreases. 

 

Relaxing strict complementarity.   Up to now, purchasing a unit of the good 

required a trip to either duopolist (strict complementarity).  This assumption simplifies 

the analysis, but it is extreme.  Some insight on how results change if the 

complementarity assumption is relaxed, can be obtained from a reinterpretation of the 

mixed market analysis.  Assume that all traffic is duopoly traffic, but that consumers can 

choose between two modes to travel to a firm.  One mode is congestible (‘cars’) but the 

other is not (‘subway’), so that the generalized access cost using subway is fixed (i.e. not 

dependent on traffic volumes).  In that case, if the consumer is only interested in 

accessing a duopolist as cheaply as possible, then the equilibrium access cost is equal to 

the generalized price of the subway (which I assume to be equal across destinations), as 

long as both modes are used.  This is a strong relaxation of the complementarity between 

access and the creation of congestion: if an uncongested mode is available, access will 

not increase congestion, even if all access requires a trip.  The consequence is that the 

pricing rules of the mixed traffic case are reproduced: with price competition there will 

be no mark-up, but with quantity competition there will. 

However, it is not realistic to assume that an uncongested mode is available, 

especially during peak hours in metropolitan areas.  Public transport modes get 

congested, because they share use of the road network, or because demand approaches 
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capacity.  Therefore, in as far as access to the duopolists contributes to increasing 

congestion of the urban transport system, the connection between congestion and prices 

remains intact, but is likely to be quantitatively less strong than in the ‘cars only’ setting. 

 

Oligopoly 

When, instead of two firms, there are N oligopolists and each of them is 

connected to the consumers’ location by a separate congestible link, the price rules are 

found by simple extensions of the approach used above.  When all traffic is oligopoly 

traffic, the Lagrangian for the case with N firms is as follows: 

 ( ) (
1

N
D D D D D

A A A A i i
i

)ip c q G p aλ
=

ℑ = − + − −∑   

For the case of price competition, the first-order conditions with respect to 

, , ,D D D
A A jp q q j A≠  are: 

 D D
Aq λ= A   

 
1

' '
N

D D
A A A i

i
p a Gλ

=

= − Dλ∑   

   
1

' ' 0,
N

D D
i j j

i
G aλ λ

=

− = ∀ ≠∑ j A

I restrict attention to the symmetric model where D D
i c=c  and .  

Solving for the Nash-Bertrand pricing rule for firm A then produces: 

' ', 1,...,ia a i= = N

 ' ''
' ( 1) '

D D D
A A

a NGp c a q
a N G

 −= +  − − 
 .  

As N becomes very large, the bracketed expression approaches one, and the duopoly 

price approaches the marginal social cost.  In this symmetric equilibrium, prices and 

quantities are equal at all locations ( D D
ip p=  and ). , 1,...,D D

iq q i= = N
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When there is only duopoly traffic and the firms are Nash-Cournot competitors, 

the conditions with respect to  are replaced by those with respect to ,D
jq j A≠ ,D

jp j A≠ : 

   0,D
j j Aλ = ∀ ≠

The resulting price rule takes the same form as the one for the duopoly case: 

 ( ' 'D D D
A A A A )p c q G a= − −   

When there is mixed traffic, the oligopolist at location A determines the critical 

points for profit maximization from: 

 ( ) ( ) (( )
1

N
D D D D D C C

A A A A i i i i i i
i

)p c q G p a H p aλ λ
=

ℑ = − + − − + − −∑   

When the oligopolists compete in prices, it is intuitively clear that the price rule is the 

same as before: all firms charge marginal costs. 

 D D
Ap c=   

For the case of quantity competition for mixed traffic, the price rule is implied by the 

first-order conditions with respect to , , ,  and , 1,...,D D D C
A A j kp q p j A q k N∀ ≠ = : 

 D D
Aq λ= A

'A A

  

 ( )
1

'
N

D D D D C
A i A

i
p c G aλ λ λ

=

= − + +∑   

   0,D
j j Aλ = ∀ ≠

   ( )
1

' ' 0, 1,...,
N

C D C
i k k k

i
H a kλ λ λ

=

− + = =∑ N

'A

Restricting attention to a fully symmetric model, the first three of these conditions lead to 

the same expression as for the duopoly case: 

 ( )' 'D D D C
A Ap c a G q aλ= + − +   
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A solution for  can be found from the fourth set of conditions.  In the symmetric 

model, it is clear that 

C
Aλ

,j A j Aλ λ= ∀ ≠ .  Some algebra then allows writing the price rule as 

follows: 

( ) '' ' ' ' '( 1)' '
' ( 1) '

D
D D D A
A A

a qp c q G a a H H Na H
a N H

= − − − −− −
− −

. 

As in (24) the presence of traffic in competitive markets reduces oligopolists’ ability to 

charge markups.  The larger N, the more market power is eroded, and the markup 

converges to the marginal external congestion cost as G .  Note that also in this 

symmetric equilibrium prices and quantities are equal at all locations (

' → 0

D D
ip p=  and 

). , 1,...,D D
iq q i= = N

Note that for a given demand curve, increasing the number of spatially separated 

oligopolists means that trips become spread thin over the available links, so that 

congestion converges to zero as well.  The pure Nash-Bertrand model then converges to a 

competitive outcome, and the markup in the Nash-Cournot model depends on the 

elasticity of demand alone, irrespective of N. 

Lastly, I have assumed up to now that all consumers can choose between the two 

(or N) facilities.  How are the results affected when some consumers can choose to buy or 

not buy at one facility, but the other one is never chosen?  Obviously, when the 

duopolists can price-discriminate between consumers that do and do not have a choice 

between facilities, the price rules derived above continue to hold for consumers that do 

have a choice, and a monopoly price is charged to consumers that do not have a choice 

between facilities.  The monopoly price charged facility at A to consumers that will never 
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choose B is: ( 'M
A M A )'p q a G= − .  When the duopolists cannot price discriminate between 

consumer types but do know the demand functions for both types, they will charge a 

weighted average of the duopoly price and the monopoly price, as long as all traffic is 

duopoly-related.  When there is mixed traffic and the duopolists are Nash-Bertrand 

competitors, the competitive price will be charged in all markets (including the one where 

there is a monopoly). 

 

4. NUMERICAL ILLUSTRATION 

This section clarifies the intuition and the relative importance of the various parameters 

that determine the results derived in section 3.  To this end I use a numerical example 

that, while not referring to any specific real-world situation, uses reasonable orders of 

magnitude for the demand and access cost functions.  After briefly discussing the 

construction of the example, I present results for a central (symmetric) scenario, a 

scenario where access cost functions differ between locations, and a scenario that varies 

the relative importance of the duopolistic and the competitive market.   

 The example is a linear version of the models depicted in Figures 1 and 2.  

Table 1 summarizes the parameterizations for the central scenario, which is fully 

symmetric.  The demand functions in the pure duopoly case and mixed markets case are 

constructed such that, for intercepts that are equal in both markets, the slopes lead to 

equal traffic volumes for the competitive benchmark solution.  The intercept and the 

slope of the access cost functions is chosen so that the marginal external congestion cost 

is nearly as large as the marginal private access cost.  Access costs are a large share of the 

generalized price in all equilibria (between 25% and 100%).  In the competitive solution 
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3,119 trips are made to each location. The competitive prices equal the marginal resource 

costs, which are set at zero, and the access cost is 39.9  In the case of mixed traffic the 

trips are equally distributed over the competitive and the duopolistic market.   

Table 2 shows that, in case all traffic is duopoly-related, total demand is highest in 

the competitive solution (column III), followed by the efficient solution (where prices 

equal the marginal social cost in the equilibrium; IV), the Nash-Bertrand equilibrium (I) 

and the Nash-Cournot equilibrium (II).  Both the Nash-Bertrand and the Nash-Cournot 

price exceed the marginal external cost of congestion (which in the example equals the 

marginal social cost).  The markup allows positive profits. 

Next, the efficient traffic volumes are the same when there is only duopoly traffic 

(IV) and when there is mixed traffic (VIII), by construction.  When there is mixed traffic, 

the Nash-Bertrand equilibrium (V) is identical to the competitive outcome (VII).  The 

Nash-Cournot price still exceeds the marginal social cost, so that demand in the duopoly 

market (VI) is less than socially optimal.  Demand in the competitive market, however, is 

larger than the socially optimal level.  In this example, total traffic happens to be slightly 

larger than the socially optimal level.   

Table 3 illustrates the consequences of introducing asymmetrical access cost 

functions in the model.  The intercepts (interpretable as free flow travel costs) and the 

slope of the function leading to B are unchanged, but the slope of the function for the link 

leading to location A is varied.  This amounts to changing the travel cost conditions of 

the entire network, while demand functions do not change.  When all traffic is duopoly-

related, the main effect of the asymmetry is to increase the profits of the facility that is 

less congestion-prone, and decrease the profits of the relatively more congestion-prone 
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facility.  This holds for both the Nash-Bertrand and the Nash-Cournot model.  But the 

decrease of profits for the more congestion-prone facility is larger under Nash-Bertrand 

competition, whereas the increase of profits for the less congestion-prone facility is larger 

under Nash-Cournot competition.10   

Note that when all traffic is generated by the duopoly, the prices at both locations 

differ with asymmetric congestion functions.  The more congestion-prone facility is in a 

weaker competitive position, so is forced to reduce prices; the opposite holds for the less 

congestible facility.  Of course, the generalized prices still are equal at both locations as 

the equilibrium is an interior one. 

When traffic is mixed, the effects of the asymmetry differ.  First, in interior 

solutions the Nash-Bertrand model reduces to the competitive model, also under 

asymmetry.  The equilibrium conditions only determine the distribution of aggregate 

traffic flows over the network, but not the demand in each of the four markets.  I assume 

equal sharing of the market between the Nash-Bertrand competitors, but this is a random 

assumption for the mixed traffic Nash-Bertrand model.  Next, under Nash-Cournot 

competition, the presence of a competitive market with equal marginal resource costs 

requires the Nash-Cournot prices to be equal at both locations.  It then is the best mutual 

response for the Nash-Cournot competitors to supply equal quantities.  Consequently, 

total demand in the competitive market is asymmetrically distributed over both locations 

when the access cost functions differ.  In particular, when accessing location A becomes 

relatively cheap, a larger share of total competitive demand is served at location A.  As a 

consequence of this interaction between the competitive market and the Nash-Cournot 

duopoly, the Nash-Cournot profits are equal at both locations (given equal marginal 
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resource costs), irrespective of how congestion-prone access to the facility is.  Also, if the 

Nash-Cournot quantity decision is interpreted as a capacity decision, then differences in 

accessibility that are caused by congestion do not affect the capacity choice if there is 

competitive traffic. 

Lastly, Table 4 shows what happens to the Nash-Bertrand and the Nash-Cournot 

outcomes when the inverse demand curve in the competitive market is shifted downwards 

and the inverse demand curve in the duopolistic market is simultaneously shifted 

upwards, keeping the traffic flow and the marginal external congestion cost the same as 

in the central scenario.  The competitive and the efficient outcomes are not reported, as 

they are not affected by this experiment.  As is clear from the theoretical result, the type 

of asymmetry considered has no impact on the Nash-Bertrand equilibrium.  For the Nash-

Cournot case, increasing the intercept of the duopoly demand function has the effect of 

increasing the equilibrium duopoly price.  In other words, the Nash-Cournot markup 

increases as duopoly traffic is a larger share of total traffic, keeping the equilibrium 

traffic flow constant. 

5. CONCLUSION 

Congested access to oligopolistic suppliers of perfect substitutes is a source of 

markups.  When all traffic is generated by demand in the oligopolistic market, the 

equilibrium prices exceed marginal social costs, both under Nash-Bertrand and under 

Nash-Cournot competition.  When the road network is shared by trips for competitive 

markets and for the oligopolistic market, the Nash-Bertrand markups disappear and the 

Nash-Cournot markups are reduced. 
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The analysis has focused on the effect of congested access on duopoly prices.  Of course, 

in realistic settings many other factors will determine access charges, for example at 

airports.  Some relevant extensions include the representation of consumer heterogeneity 

and product differentiation, the introduction of distance as a determinant of travel costs, 

an explicit consideration of multi-modal access, adding capacity choices, and explicit 

analysis of the conditions for interior solutions (which could interact with pricing and 

capacity decisions).  Nevertheless, the interactions identified in this paper will matter in 

those more general contexts, and as traffic network congestion is substantial, taking them 

into account is not of mere theoretical interest. 

 

 23



 

TABLE 1: Demand and Cost Functions for the Central Scenario 
 Duopoly traffic only Mixed traffic 
 Competitive 

market 
Duopolistic 

market 
Competitive 

market 
Duopolistic 

market 
Intercept inverse demand function - 195 195 195 
Slope inverse demand function - -0.025 -0.05 -0.05 
Intercept access cost function 1.617 1.617 
Slope access cost function 0.012 0.012 
Marginal resource costs 0 0 0 0 
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TABLE 2: Central Scenario: Symmetric Equilibria 
  I        II III IV V VI VII VII
  Duopoly traffic only Mixed traffic 

Bertrand Cournot Competition Efficient Bertrand Cournot Competition Efficient
Demand at A, B Duopoly 2,355.2 1,953.4 3,119.1 2,613.3 1,559.5 1039.7 1,559.5 1306.6 

 Competitive         - - - - 1,559.5 1615.2 1,559.5 1306.6
Traffic flow to A, B  2,355.2 1,953.4 3,119.1 2,613.3 3,119.1 2654.9 3,119.1 2613.3 
Generalized Price A, B  Duopoly         77.2 97.3 39.0 64.3 69.0 91.0 69.0 64.3
 Competitive         - - - - 39.0 33.5 39.0 64.3
Price A, B            Duopoly 47.4 72.3 0 31.4 0 57.6 0 31.4
 Competitive         - - - - 0 0 0 31.4
Time cost A, B           Duopoly 29.9 25.1 39.0 33.0 39.0 33.5 39.0 33.0
MECCa A, B  28.3 23.4 37.4 31.4     37.4 31.9 37.4 31.4
Profits A, B Duopoly 111,541.0 141,178.0 0 81,591.0b    0 59,839.0 0 40,975.5b 
 Competitive -        - - - 0 0 0 0

   

a Marginal external congestion cost 
b I randomly assign the proceeds from the markup to profits, as profits and consumer surplus have equal weights when the social objective is to be efficient. 
 
TABLE 3: Asymmetrical Access Cost Functions 
  Asym.: slope A=0.006, slope B=0.012 Central (Sym.: slope A=slope B=0.012) Asym.: slope A=0.024, slope B=0.012 

Pure Mixed Pure Mixed Pure Mixed
Bert. Cournot Bert. Cournot Bert. Cournot Bert. Cournot Bert. Cournot Bert. Cournot

Demand A              Duop. 3,092.2 2,391.1 2,778.5 1,111.4 2,355.2 1,953.4 1,559.5 1,039.7 1,614.1 1,429.9 488.3 976.7
 Comp.      - - 1,667.1 2,648.1 - - 1,559.5 1,615.2 - - 1,465.0 696.0
Demand B              Duop. 2,156.0 1,805.5 555.7 1,111.4 2,355.2 1,953.4 1,559.5 1,039.7 2,498.7 2,130.2 2,441.7 976.7
 Comp. -       - 1,667.1 768.4 - - 1,559.5 1,615.2 - - 1,465.0 2,368.7
Gen. Price               Duop. 63.8 90.1 28.3 83.9 77.2 97.3 39.0 91.0 92.2 106.0 48.5 97.3
 Comp. -          - 28.3 24.2 - - 39.0 33.5 - - 48.5 41.8
Price A               Duop. 43.6 74.1 0 59.7 47.4 72.3 0 57.6 51.8 70.1 0 55.6
 Comp.             - - 0 0 - - 0 0 - - 0 0
Price B               Duop. 36.3 66.8 0 59.7 47.4 72.3 0 57.6 60.6 78.8 0 55.6
 Comp.             - - 0 0 - - 0 0 - - 0 0
Time cst A  20.2 16.0 28.3          24.2 29.9 25.1 39.0 33.5 40.4 35.9 48.5 41.8
Time cst B  27.5 23.3 28.3 24.2 29.9 25.1       39.0 33.5 31.6 27.2 48.5 41.8
Profits A Duop.          134,895 177,232 0 66,335 111,541 141,178 0 59,839 83,651 100,182 0 54,274
Profits B              Duop. 78,275 120,613 0 66,335 111,541 141,178 0 59,839 151,369 167,900 0 54,274
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TABLE 4: Demand and Cost Functions for the Central Scenario 
  Central Asymmetric intercepts 
  Bertrand Cournot Bertrand Cournot 
Intercept demand func. Duopoly 195 195 292.5 346.5 
 Competitive 195 195 97.5 97.5 
Demand at A, B Duopoly 1,559.5 1,039.7 2534.5 2014.8 

 Competitive 1,559.5 1,615.2 584.5 640.1 
Traffic flow to A, B  3119 2654.9 3119 2654.9 
Generalized Price A, B Duopoly 39.0 91.0 39.0 145.0 
 Competitive 39.0 33.5 39.0 33.5 
Price A, B Duopoly 0 57.6 0 111.5 
 Competitive 0 0 0 0 
Time cost A, B  39.0 33.5 39.0 33.5 
MECC* A, B  37.4 31.8 37.4 31.8 
Profits A, B Duopoly 0 59,839 0 224,750 
 Competitive 0 0 0 0 
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FIGURE 1: Model Structure with Only Duopoly Traffic 
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FIGURE 2: Model Structure with Mixed Traffic 
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1 Casual inspection of published fares suggests that this is a reasonable assumption.  However, published 

fares and actual fares may differ because of quantity restrictions pertaining to the published fares. 

2 In a survey of passengers departing from the Bay Area in 1995 (MTC, 1996), some 70% of respondents at 

Oakland Airport and San Jose Airport state that they have a choice between airports; the share for San 

Francisco Airport (45%) is lower because of the higher share of intercontinental flights.  Usually two of the 

three airports are substitutes (SFO and OAK, or SFO and SJO), but not all three.     

3 Direct passenger charges are less ubiquitous in the US than elsewhere (Pels et al., 2000).  However, in a 

deregulated environment direct passenger charges may be expected to play a more prominent role. 

4 As each consumer makes one trip to either firm for each unit purchased, the demand curve can be viewed 

as the aggregation over consumers with a different willingness to pay for the good, but with equal and 

constant marginal values of time.  If each consumer buys one or zero units, this is consistent with the 

standard Hotelling approach to recovering a continuous aggregate demand function from discrete 

individual demands.  Note that, with a single consumer, there is no congestion externality.  More in 

general, I assume N consumers, and normalize N to 1.   

5 Distance could be included as an argument of the travel cost function.  Doing so is important in an applied 

analysis of the interactions described in the theory, as such an applied analysis will need to take explicit 

account of corner solutions, and the occurrence of such corner solutions is affected by differences in 

distance.  The present paper focuses on the interaction between congestion and market power; simplifying 

the analysis by using assumptions guaranteeing that such an interaction exists and is the only issue of 

concern.      

6 In case goods are purchased at one location only, the price at that location cannot be larger than the price 

at the other. 

7 Van Dender (2002) discusses the optimal toll expressions in some detail. 

8 The results presented below for the Nash-Bertrand case continue to hold when the goods are substitutes or 

complements, but the Nash-Cournot results are affected. 

9 All costs and prices can be rescaled without affecting the results presented here, so I do not specify units. 
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10 This is hard to infer from Table 3, but is confirmed in simulations with more extreme asymmetries.  The 

results of these are available on request. 
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