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Abstract: We present a polarization-sensitive, transport-rigorous pertur-
bation Monte Carlo (pMC) method to model the impact of optical property
changes on reflectance measurements within a discrete particle scattering
model. The model consists of three log-normally distributed populations
of Mie scatterers that approximate biologically relevant cervical tissue
properties. Our method provides reflectance estimates for perturbations
across wavelength and/or scattering model parameters. We test our pMC
model performance by perturbing across number densities and mean
particle radii, and compare pMC reflectance estimates with those obtained
from conventional Monte Carlo simulations. These tests allow us to explore
different factors that control pMC performance and to evaluate the gains in
computational efficiency that our pMC method provides.

© 2016 Optical Society of America

OCIS codes: (170.0170) Medical optics and biotechnology; (170.3660) Light propagation
in tissues; (170.6510) Spectroscopy, tissue diagnostics; (170.6935) Tissue characterization;
(290.5855) Scattering, polarization.
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1. Introduction

The study of in vivo and in vitro cell and tissue microstructure, which yields information about
underlying cellular processes and responses, has been historically addressed by optical biopsy
techniques. Indeed, there appears to be growing interest in the use of polarization-sensitive
optical probes as a tool to non-invasively obtain information regarding subcellular microstruc-
ture. Mourant and co-workers have integrated polarized wavelength-dependent measurement
capabilities into reflectance based optical probes to increase sensitivity to scatterer size [1].
Backman and co-workers have employed polarization-gating techniques to characterize and
control the depth of the probed tissue volume [2]. Sokolov and co-workers have used a probe
with angled illumination collection geometry that detects light polarization to obtain depth-
specific information of scatterer size and size distribution [3]. These methods, however, all
represent instrumentation-based approaches to extract information about the underlying sub-
cellular structure. Here we propose a versatile and rigorous computational method to analyze
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polarized signals in order to provide insight into subcellular morphology.
The perturbation Monte Carlo (pMC) method is well-established and has been applied to a

wide range of biomedical optics problems including: determination of layered tissue optical
properties [4, 5], tissue image reconstruction [6], optical tomography [7], and time-resolved
functional imaging [8, 9]. Here we provide a novel extension to pMC that builds upon our
previous work [10] to characterize the utility of pMC in providing estimates of polarization-
sensitive reflectance measurements. Our exploration in this study also serves as a demonstration
of one of many applications that can benefit from the use of pMC and as a mechanism for
discovering the factors that affect pMC performance for a class of similar problems.

2. Model problem

2.1. Light scattering model

(a) (b) (c)

ωE E
E

x

y

z

x

z

x

y
x

Fig. 1. A conceptual diagram of the pMC application to the light scattering model used in
this study. (a) Depiction of the light scattering model composed of three distinct distribu-
tions of scatterers. The dotted blue and red plots represent perturbations in mean radius
and number density while solid green, blue and red plots represent “baseline” parameter
values. (b) A schematic diagram of the source-detector configuration. (c) The top-down
view of the probe. The yellow circle represents the source and the circles with numbers
inside represent the two detectors. See Section 2.2 for probe details.

We develop a pMC computational framework within a tissue representation that models op-
tical scattering using three log-normal distributions to represent the polydispersity of the scat-
tering medium [1, 11–13]. The pMC method introduced here can accommodate any number
(m) of scatterer groups with arbitrary distributions of scatterer size. The scattering coefficient
of the ith distribution, μs,i, is calculated using μs,i =

∫
Qscat(t)Na,i(t)Li(ri, t)dt where Qscat is

the scattering efficiency, Na,i is the product of number density and the scattering cross-section
of the particle, t is a particle radius, and Li is the ith log-normal distribution characterized by its
mean radius ri and standard deviation, σi: Li(ri, t) = exp

{−(ln t − lnri)
2/(2σ2

i )
}
/(tσi

√
2π).

The scattering coefficient of the medium μs can be calculated by summing the contribu-

tion of each distribution to the scattering coefficient μs =
m

∑
i=1

μs,i [14]. The phase function

of each scatterer population is calculated by integrating across radii values and using the
log-normal distribution to properly weight the phase functions that Mie Theory provides:
fi(θ) = 1/μs,i

∫
fMie(t,θ)Qscat(t)Na,i(t)dt where fi is the phase function of the ith distribu-
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tion of scatterers, fMie is the phase function of a mono-dispersed distribution of scatterers, and
θ is the scattering angle. We approximate these integrals for μs,i and fi using trapezoid rule
integration with uniform grid spacing with the width of the bin set at 0.001 µm for all three
distributions.

Table 1 provides scattering parameters that approximate the contributions of protein com-
plexes, organelles, and nuclei present in epithelial cervical tissues based on previous exper-
imental results [1, 11]. These parameter values serve as baseline values in the pMC results
presented this paper and are meant to model a class of problems (similar to the problem in [11])
in which pMC application could potentially benefit forward and inverse solutions.

Table 1. Distributions of scatter sizes in the tissue model

i Average Size, ri ± σ (µm) Number Density, Ns,i (cm−3) nmedium nscatterer

1 0.03 ± 0.4 4 ×1013 1.33 1.46
2 0.45 ± 0.3 5 × 1010 1.35 1.40
3 4.8 ± 0.1 5 × 107 1.37 1.49

2.2. Measurement geometry

In this study we consider a probe with two detectors placed equidistant from a central source
fiber which detect either unpolarized or polarized reflectance. A probe schematic is shown in
Fig. 1(c). All detector fibers are angled at ω =20◦ relative to the outward pointing surface
normal and towards the source fiber. The distance from the center of any detector fiber to the
center of the source fiber is 550 µm and all the fibers are 480 µm in diameter. All fibers have a
light cone detection half angle of 21.7◦. The close source-detector separation and the angling
of the detector fibers towards the source fibers promotes photon trajectories that interact with
scatterers located at shallow depths.

3. Theory

The radiative transport equation (RTE) is an integro-differential equation describing the trans-
port of photons in a turbid medium that can be transformed to an integral equation:

Ψ = K Ψ+Q (1)

where K Ψ(r,Ω) =
∫

S2
∫

R K(r′,Ω′ → r,Ω)Ψ(r′,Ω′)dr′dΩ′, Ψ is the radiance or transport solu-
tion, the function Q models some photon source, R is the set of all possible positions in space,
and S2 is the set of all solid angles. In this paper, K is an integral operator, K is the RTE kernel
that characterizes light transport from a location r′ and unit direction Ω′ to another location r
and unit direction Ω. To predict the detection of photonic signals, we are typically interested
in estimating one or more integrals I with the general form

I =
∫

S2

∫

R
g(r,Ω)Ψ(r,Ω)drdΩ (2)

where g is a characteristic detector function and I is some value of interest, often reflectance or
transmittance. A rigorous theory that exhibits the equivalence between an RTE-based analytic
model, as described by Eqs. (1) and (2), and a Monte Carlo-based stochastic model is treated in
detail in [10,15,16]. That equivalence produces the string of equations that relates the stochastic
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model with the physical model

E[ξ ] =
∫

B
ξ (b)dM(b) = lim

N→∞

1
N

∞

∑
n=1

ξ (bn) =
∫

S2

∫

R
g(r,Ω)Ψ(r,Ω)drdΩ (3)

where ξ : B → R is a random variable (estimator) on the sample space B of biographies and
M is a probability measure on B. Roughly speaking, the measure M describes a probability
density function defined on B that can be interpreted as a “likelihood function” for each b∈B.
This likelihood function is uniquely induced by the specific functions used to generate the
biographies in B (details can be found in [15]). In Eq. (3) E is the expected value of ξ with
respect to the measure induced on B by the random walk process used to generate biographies,
the second equality in Eq. (3) states that ξ is an unbiased estimator of E[ξ ], and the third
equality in Eq. (3) demonstrates the equivalence between the analytic model and the stochastic
model. This equivalence is necessary to support the derivation of the pMC model.

3.1. Perturbation as change of measure

Suppose that M and M̂ are two different probability measures that are induced on B by two
different methods of generating photon biographies b ∈ B. For example, M could represent
the baseline measure (which for us is generated by the continuous absorption weighting (CAW)
process [16]), and M̂ is a different measure representing any perturbation of M . If we denote
MCAW as the CAW-induced measure, the measure M̂CAW in our case would arise by replacing
the baseline optical properties by any perturbation of them. The Radon-Nikodym Derivative,
dM̂CAW
dMCAW

, may be used to estimate the reflectance obtained when M̂CAW replaces MCAW. The
existence of the Radon-Nikodym Derivative can be guaranteed only if certain technical con-
ditions are satisfied, namely, the sets of biographies that are “small” in the M̂CAW measure
are also small in the MCAW measure. A detected photon measure can also be expressed as
an expected value with respect to the modified measure M̂ of a modified random variable ξ̂ ,
where

ξ̂ = ξ
dM̂CAW

dMCAW
so that

∫
ξ̂ dMCAW =

∫
ξ

dM̂CAW

dMCAW
dMCAW =

∫
ξ dM̂CAW. (4)

We may interpret the application of the Radon-Nikodym derivative in the context of pMC as
re-weighting the baseline collected photon weights to account for the change in the density
functions used to generate the random walks.

3.2. Perturbation Monte Carlo

The pMC method is effective for estimating detected photon weights from small changes in
parameters that characterize the forward RTE. When using pMC, a set of Monte Carlo biogra-
phies is generated to produce a baseline dataset consisting of the location, weight and incoming
unit direction at every collision point for each collected photon. These biographies are then
post-processed using pMC equations to determine the effect of perturbations in tissue compo-
sition on the detected photon weights. The advantage of this method is that it requires only a
single set of Monte Carlo biographies, namely those in the baseline set, to perform simulations
for tissues with perturbed properties using only a post-processing module. The computational
expense of the post-processing module is 1-3 orders of magnitude smaller compared to that
needed to generate a complete set of independent MC biographies.

The CAW random walk process is employed in all MC simulations in this study. Using CAW
the photon is deweighted by the factor exp(−μas), where s is the pathlength between collisions
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and intercollision distances are sampled from μs exp(−μss). In addition to propagation and
absorption, a photon may scatter through a given scattering angle as specified by the phase
function. Our study uses a Distribution Selection Scattering Method (DSSM) where at each
scattering interaction a photon has a probability of μs,i/μs to interact with particles of the ith
scattering distribution. Our previous paper [10] uses the Composite Phase Function Scattering
Method (CPFSM). A proof of the equivalence between CPFSM and DSSM is provided in the
Appendix. Once the scattering distribution has been selected, the phase function corresponding
to that distribution, fi(θ), will be used to sample the scattering angle, θ . This results in the
following RTE kernel [16]:

K =
μs,i

μs
fi(Ω′ → Ω)exp(−μas)μs exp(−μss). (5)

In Eq. (5), μs,i/μs is the probability of interacting with the ith distribution through the DSSM,
fi(Ω′ → Ω) is the probability density that takes the photon from a direction of Ω′ to Ω for the
ith distribution of scatterers, and exp(−μas)μs exp(−μss) accounts for scattering probability
density and the absorption attenuation associated with a photon pathlength s. This equation
assumes a homogeneous absorption coefficient throughout the medium. Application of pMC
through the Radon-Nikodym derivative using the kernel in Eq. (5) produces the perturbed esti-
mator ξ̂ :

ξ̂ = ξ
(

μ̂s,1

μs,1

) j1(μ̂s,2

μs,2

) j2

. . .

(
μ̂s,m

μs,m

) jm

exp
[
−(μ̂s −μs)L

]
exp [−(μ̂a −μa)L]

j1

∏
l1=1

f̂ (θl1 ,φl1)

f (θl1 ,φl1)

j2

∏
l2=1

f̂ (θl2 ,φl2)

f (θl2 ,φl2)
. . .

jm

∏
lm=1

f̂ (θlm,φlm)

f (θlm,φlm)
(6)

where j1 is the total number of collisions experienced by the photon with respect to the first
scattering distribution, j2 is the total number of collisions experienced by the photon with re-
spect to the second scattering distribution, ..., jm is the total number of collisions experienced by
the photon with respect to the last (the mth) scattering distribution of the light scattering model,
L is the total pathlength traveled by the photon in the medium, and θl1 and φl1 are polar and
azimuthal scattering angles, respectively, of the lth collision that result from interacting with
the 1st distribution. The estimator ξ refers to the collected photon weight from the baseline
cMC simulation, which can be polarized parallel or perpendicular to the source. All unhatted
quantities refer to baseline parameter values for the quantity and hatted quantities refer to per-
turbed parameter values. μ̂s is the total scattering coefficient of the perturbed medium, μ̂a is the
absorption coefficient of the perturbed medium, and f̂i is the perturbed phase function of the ith
distribution. The sample mean of ξ̂ based on N photon biographies can be used as an estimator

for the reflectance and is denoted as ξ̂ N . The standard deviation of the sample mean is denoted

by σ
[

ξ̂ N

]

.

4. Methods

To test pMC performance, pMC reflectance estimates were compared to those obtained using
cMC. cMC reflectance estimates were obtained by launching 20 million photons in a tissue
representation characterized by a combination of the parameter values in Table 2 and parameter
baseline values in Table 1. The ranges in Table 2 were chosen with the intent of modeling the
length scales over which the index of refraction changes in epithelial cells. pMC estimates were
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obtained by launching 20 million photons in a single Monte Carlo simulation at the baseline
parameter values in Table 1 and calculating the sample averages of the estimator ξ̂ to obtain
perturbed reflectance values. Error bars shown on the plots represent the standard deviation
of the sample means. All photon biographies were obtained from a modified version of the
conventional Monte Carlo simulation code outlined in [17].

cMC and pMC calculations were performed on the High Performance Cluster at University
of California, Irvine and a single private computer, respectively. The cluster runs CentOS 6.6
and code on the cluster was compiled using gcc−4.8.2. The private computer has 2 × 1.33
GHz Quad-Core AMD processors and 8 GB 1333 MHz DDR2 RAM running Ubuntu 10.04.4
LTS and our code was compiled using gcc−4.1.3. Benchmark tests were performed to ensure
similar performance across the two settings.

Both polarized and unpolarized simulations were performed using the same optical proper-
ties and probe geometry. Each cMC unpolarized light simulation launching 20 million photons
took 22 – 45 minutes to run while the cMC simulations for polarized light transport took 6.7–
18.9 hours. The post-processing module generating pMC reflectance estimates requires only ∼7
seconds and ∼13 seconds for unpolarized and polarized cases, respectively. Table 2 provides
the perturbations used for the pMC tests we performed by applying perturbations in mean radii
r̂i and number densities N̂s,i. Our model has three distributions of scatterers and each distribu-
tion has an associated anisotropy factor. We refer to the anisotropy factor of the ith distribution
as gi and the ensemble anisotropy factor of the medium as g. Figure 2 shows how μs and g
change as these parameters are changed with the parameter perturbation.

Table 2. Range of parameters examined in pMC calculations. Baseline μs = 125 cm−1 and
g = 0.9534.

Baseline Value, α Perturbed Parameter, α̂ g ranges μ̂s ranges (cm−1)
λ = 620 nm 500 – 720 nm g = 0.952 – 0.953 94.5 – 183

Ns,1= 4.00 ×1013 cm−3 2.00 – 6.00 ×1013cm−3 g1 = 0.183 123 – 127
Ns,2= 5.00 ×1010 cm−3 2.5 – 7.5 ×1010cm−3 g2 = 0.958 93.9 – 156
Ns,3= 5.00 ×107 cm−3 2.5 – 7.5 ×107cm−3 g3 = 0.999 95.5 – 154

r1=0.030 µm 0.015–0.045 µm ĝ1 = 0.0502 – 0.345 121 – 152
r2=0.45µm 0.38 – 0.52 µm ĝ2 = 0.945 – 0.966 94.2 – 174
r3=4.8 µm 3.9 – 5.7 µm ĝ3 = 0.998 – 0.999 93.8 – 173

In both cMC and pMC simulations, we treat the source fiber center as the origin of our
coordinate system. The center of Detector 1 in Fig. 1(c) resides along the y-axis and the center of
Detector 2 resides along the x-axis of the coordinate system. Our pMC implementation requires
the biographies of detected photons generated by an initial baseline cMC simulation.

In the case of polarized light transport, polarization is tracked by rotating the Stokes vector as
outlined in [18]. All photons initially enter the medium linearly polarized and with polarization
parallel to the x-axis. Each scattering event is characterized by polar and azimuthal angles, θ
and φ , which are sampled from the phase function through a rejection sampling method used
by Bartel and Hielscher [19]. Once the photon exits the medium, the Stokes vector is used to
calculate the components of the photon weight that are, respectively, parallel and perpendicular
to the x-axis.
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Fig. 2. (a) Changes in the mean radii and how it relates to gi. (b) Changes in the ensemble
scattering coefficient for all perturbations.

5. Results

5.1. Scattering model parameter perturbations

First, we investigate the ability of our pMC method to predict changes in reflectance produced
by perturbations in the mean radii and/or number density of one of the three particle popula-
tions. Figure 3 shows a comparison between cMC and pMC reflectance estimates for Detector
1, which tallies photon weights with parallel or perpendicular polarization relative to the source.
Figures 3(a), 3(c), and 3(e) provide a comparison of pMC and cMC reflectance estimates result-
ing from perturbations in number density for each of the three scattering particle populations,
whereas Figs. 3(b), 3(d), and 3(f) compare pMC and cMC reflectance estimates for perturba-
tions in mean radii.

The agreement between pMC and cMC estimates in Fig. 3 is linked to the range in which
μ̂s is perturbed and the degree in which ĝi is perturbed. For perturbations of the scattering
model parameters, the two largest ranges in μ̂s occur when the second and third mean radii are
perturbed, as seen in Table 2. Although perturbations in the second and third mean radii produce
similar μ̂s ranges, the perturbations in the second mean radii coincides with a larger perturbation
in anisotropy factor which causes a more pronounced disagreement between pMC and cMC.
As shown in Table 2, we explored a perturbation range for mean radius that spans a larger
range of ensemble μ̂s values as compared to perturbations in the number density. For example,
perturbations we examined for number density of the first particle distribution N̂s,1 result in
a range of ensemble scattering coefficients μ̂s = 123–127 cm−1, whereas perturbations we
examined for first mean radius in the range r̂1 result in a broader range of μ̂s = 121–152 cm−1.
Similar observations can be made for the second and third populations. Because number density
perturbations do not result in perturbation of the phase function and because of the smaller
changes in μ̂s, these pMC reflectance estimates have smaller variance than when perturbing
mean radii. From this, we conclude that pMC performance is a function of the magnitude of μ̂s
changes as well as the changes in the phase function which can be characterized by the change
in g.
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Fig. 3. pMC and cMC estimates of reflectance of parallel and perpendicular polarization
in Detector 1 for perturbations in number density ((a), (c), and (e)) and mean radii ((b),
(d), and (f)). Solid lines display the trend for parallel reflectance estimates and dashed lines
display the trend for perpendicular reflectance estimates.
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Interestingly, Fig. 3 reveals that reflectance is highly sensitive to changes in the first dis-
tribution since the slopes of the plots in Figs. 3(a) and 3(b) are much greater than those in
Fig. 3(c)–(f). The sensitivity to the parameters of the first distribution can be explained by the
low anisotropy factor of the associated phase function, which heavily promotes backscattering
(See Table 2). This probe’s bias toward detecting photons that have undergone backscattering
is connected to the geometry of the probe which features angled detector fibers and a small
source-detector separation. Based on μs,i/μs ratios, we would expect that 3.0%, 49.8%, and
47.2% of all scattering interactions would be with the first, second, and third distributions,
respectively. However, analysis of the collected photons reveal that 4.7%, 48.8%, 46.4% of
the scattering interactions are with the particles from the first, second, and third distribution,
respectively. This represents a 54% increase in the number of interactions that the detected
photons have with particles from the first population over the expected number of interactions.
This is evidence that collected photons have enriched sensitivity toward changes to parameters
associated with the first particle distribution.

Another important observation from the results in Fig. 3 is that the polarization-sensitive
measurements provide sensitivity to parameters of the second particle distribution. This result
differs from findings in [10] where we saw sensitivity to only parameters of the first distribution
with unpolarized reflectance estimates. Changes in the first and second scattering populations,
which represent protein complexes and organelles, are associated with dysplasia [11] and sen-
sitivity to parameters of both first and second scattering populations may be helpful. Figure 4
provides a comparison between pMC reflectance estimates for perturbations in the second mean
radii for the cases of unpolarized and polarized light propagation and is intended to supplement
the results in Fig. 3(d). In Fig. 4(a) and Fig. 4(b), the change in reflectance across r̂2 values are
observable where as in Fig. 4(c), the changes in reflectance are not discernible from the noise
in pMC and cMC reflectance estimates.

Although pMC’s reflectance estimates are particularly poor for Detector 2 with perpendicular
polarization, pMC accurately captures the 6% change in reflectance at r̂2 = 0.41 – 0.47 µm for
Detector 2 with perpendicular polarization. The differences between pMC reflectance estimates
in the two detectors and polarizations will be further addressed in §5.2.

In Fig. 5, we explore the ability of pMC to reproduce spectral reflectance measurements. The
baseline wavelength is λ = 620 nm and the wavelength perturbations are performed in the range
of λ = 500–720 nm. Alteration of the wavelength requires modification of both the scattering
coefficients and phase functions for all three scatterer distributions. The spectral asymmetry in
Fig. 5 of pMC’s performance relative to the baseline wavelength can be explained by the more
rapid increase of the scattering coefficient as the wavelength decreases, as shown in Table 2. We
also see that larger wavelength perturbations away from the baseline value of λ = 620nm result
in larger standard deviations of the resulting pMC estimates. Perturbations from the baseline
wavelength result in perturbations in both the ensemble scattering coefficient and the anisotropy
factors, both of which drive increases in the variance of the estimator ξ̂ .
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Fig. 4. pMC estimates for perturbation in second mean radius in cases of (a) parallel polar-
ization (b) perpendicular polarization and (c) unpolarized detection.
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Fig. 5. pMC and cMC estimates of reflectance across wavelength perturbations for polar-
ized light propagation.
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To summarize, we find that pMC’s performance is negatively affected by: (1) increasing
perturbations in the scattering coefficient and (2) extreme changes in the phase function which
can be characterized by anisotropy factor perturbation. We have also demonstrated the utility
of our method by showing that turning on polarization can add sensitivity to some parameters
and by showing the accuracy of our method in the problem of perturbing across wavelength.

5.2. PMC performance and conventional Monte Carlo relative error

Second, we examine the relative performance of pMC reflectance estimates for parallel and
perpendicular polarization as shown in Figs. 3 – 5. The top part of Table 3 shows the parameter
ranges in which pMC estimates are within 5% of cMC reflectance estimates. The elements in
the top part of Table 3 have a lower bound followed by an upper bound for the parameter values.
These bounds are recorded as percentage changes from the baseline value for that parameter.
For example, in the column Detector 1, ‖ and in the row r1, the parameter range is listed as
−50%, +40%. This means that pMC reflectance estimates for Detector 1 with parallel polar-
ization were within 5% of cMC reflectance estimates for the range r1 = 0.015 – 0.042 µm since
the baseline value for r1 is 0.03 µm. In the bottom part of Table 3, we compare the relative
errors, which is defined as the standard deviation of the estimate divided by the mean, of pMC
estimates at baseline parameter values.

The parameter ranges for accurate pMC estimates are governed by (a) the inherent noise of
the baseline cMC simulation and (b) the size of the perturbation characterized by the changes
in μ̂s, ĝi, and μ̂s,i. The effect of the inherent noise of the baseline cMC simulation can be
determined through the comparison of the pMC reflectance estimates between Detector 1, ‖ and
Detector 1, ⊥. This is because reflectance estimates use the exact same photon biographies and
the differences between pMC performance can be attributed to the final weights. The fact that
Detector 1, ⊥ provides accurate pMC reflectance estimates over smaller parameter ranges than
Detector 1, ‖ can be explained by the larger relative error in the baseline cMC simulation for
Detector 1, ⊥. Similar arguments can be made for the range of accuracy of the pMC estimates
for Detector 2, ‖ and Detector 2, ⊥. The accuracy range reported for Ns,1 in Table 3 is the
full range of parameter values for Ns,1 in this study; the true limit of pMC’s performance lies
beyond the range listed for Ns,1.

Table 3. Relative error and parameter ranges for polarized pMC reflectance estimates that
are within 5% of cMC reflectance estimates for each detector.

Parameter Detector 1, ‖ Detector 1, ⊥ Detector 2, ‖ Detector 2, ⊥
λ −12.9%, +16.1% −6.4%, +12.9% −6.4%, +12.9% −6.4%, +6.4%
r1 −50%, +40% −30%, +30% −30%, +10% −20%, +10%
r2 −15.6%, +8.9% −15.6%, +8.9% −11.1%, +6.7% −13.3%, +6.7%
r3 −14.6%, +16.7% −6.25%, +4.2% −14.6%, +10.4% −8.3%, +8.3%

Ns,1 −50%, +50% −50%, +50% −50%, +50% −50%, +50%
Ns,2 −40%, +50% −30%, +40% −50%, +20% −50%, +30%
Ns,3 −50%, +50% −50%, +30% −40%, +40% −10%, +20%

Detector 1, ‖ Detector, 1 ⊥ Detector 2, ‖ Detector 2, ⊥
rel. err. 6.74×10−3 9.39×10−3 8.53×10−3 1.11×10−2

The observed disparity between the relative errors of reflectance estimates for Detectors 1 and
2 is consistent with prior experimental work [11, 20, 21] and is consistent with the underlying
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physics of our model problem, which causes Detector 1 to detect a larger reflectance polarized
parallel to the x-axis than Detector 2. This asymmetry in photon collection can be explained
by a simple model outlined in [21] for a similar optical probe geometry. This model uses three
assumptions: (1) photons undergo only 2 scattering interactions before entering a detector, (2)
photons that are collected by Detector 1 have scattering events in the Y-Z plane and photons that
are collected by Detector 2 have scattering events in the X-Z plane and (3) photons enter the
medium with a trajectory parallel to the z-axis. Figure 6 shows plots of |s1(θ)|2 and |s2(θ)|2,
where s1 and s2 are elements of the scattering amplitude matrix yielded by Mie Theory. The
plot of |s1(θ)|2 (blue) is the scattered irradiance per unit incident irradiance given that the
incident light is polarized perpendicular to the scattering plane and the plot of |s2(θ)|2 (red)
is the scattered irradiance per unit incident irradiance given that the incident light is polarized
parallel to the scattering plane [22]. Since each photon initially starts with polarization parallel
to the x-axis, |s1(θ)|2 can be interpreted as the phase function of scattering events in the Y-Z
plane and |s2(θ)|2 can be interpreted as the phase function of scattering events in the X-Z plane
in the context of this three assumption model. The greatest difference between |s1(θ)|2 and
|s2(θ)|2 occurs at a scattering angle of around 90◦. In the event that a photon scatters at two
90◦ angles before entering the detector, then the implication of Fig. 6 is that a photon will end
up in the Y-Z plane more frequently.

In this section, we have shown that there is a link between the noise of the baseline cMC
simulation and the subsequent pMC performance. This link is helpful in understanding the
difference in performance between the pMC reflectance estimates for parallel and perpendicular
polarizations. Furthermore, to ensure better pMC performance, it is critical to keep the relative
error of the baseline cMC simulation as low as possible.

θ
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p
(θ
)
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|s1(θ)|2
|s2(θ)|2

Fig. 6. A plot of the s1 and s2 components produced by the Mie Scattering Method.

5.3. PMC and cMC computational efficiency comparisons

To examine the computational advantage provided by pMC over cMC, we examine their relative
computational efficiencies, η , defined as

η =
R

2

σ2T
(7)

where R is the mean of the estimate, σ2 is the variance, and T is the time required for the
calculation [23]. This figure of merit allows for both characterization of the performance of the
estimator and the amount of computational resources used by combining the relative error of
the estimator and the computational time. Furthermore, this figure of merit is dimensionless
since relative error is proportional to 1/

√
N where N is the number of photons launched and
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T is proportional to N; this lack of dimensionality then allows for comparison across different
algorithms or estimators. Figs. 7(a) and 7(b) plots the computational efficiency for perturba-
tions in wavelength, mean radii, and number densities. Both plots feature a relatively constant
computational efficiency value for cMC estimates, while pMC estimates have the highest com-
putational efficiency when the change in the ensemble scattering coefficient is zero. The gain in
computational efficiency for pMC estimates degrades as the perturbation in the ensemble scatte-
ring coefficient increases, which results from an increase in standard deviation of the estimates.
In Fig. 7(a), plots of the computational efficiency are shown for perturbations in the mean radii
whereas in Fig. 7(b), plots of the computational efficiency are shown for perturbations in the
number density. A comparison of the pMC computational efficiency plots in Fig. 7(a) and 7(b),
reveals that changes in r̂1 degrade the computational efficiency even though the range in μ̂s is
much smaller than perturbations for r̂2 and r̂3. This degradation is the result of increases in the
size of the standard deviation of the estimate, which is caused by the perturbation in anisotropy
factor of the phase function of the first population.

Recall that pMC is a true perturbation method; that is it works best if the perturbations are
“small”. The pMC estimator is unbiased for ALL perturbations, but the larger the perturbation,
the larger the statistical error it incurs. (When we say that the pMC estimator is unbiased we
mean that on average the estimator will not tend to over-estimate or under-estimate the true
value of the parameter.) Thus, in the limit of very large perturbations, it is more efficient com-
putationally to examine independent Monte Carlo simulations of the baseline pMC and at the
perturbed values of parameters of interest. As the size of the perturbation shrinks to zero, the
advantage of pMC over independent conventional simulations tends to increase.

-30 -20 -10 0 10 20 30 40
% Change in ̂μs

10-2

100

102

104

η
(s

−
1
)

(a) cMC, ̂r1
cMC, ̂r2
cMC, ̂r3
pMC, ̂r1
pMC, ̂r2
pMC, ̂r3

-30 -20 -10 0 10 20 30 40
% Change in ̂μs

10-2

100

102

104

η
(s

−
1
)

(b) cMC, ̂Ns,1

cMC, ̂Ns,2

cMC, ̂Ns,3

pMC, ̂Ns,1

pMC, ̂Ns,2

pMC, ̂Ns,3

Fig. 7. A comparison of the computational efficiency of pMC and cMC estimates for (a)
perturbations in r̂i and (b) perturbations in N̂s,i. The pink and red symbols show the com-
putational efficiency of pMC estimates. The blue and light blue symbols in the plot above
are for the computational efficiencies of cMC estimates.

6. Summary and conclusion

We have developed a new pMC algorithm that provides estimates of linearly polarized re-
flectance resulting from linearly polarized incident light. Unlike most other pMC algorithms,
this algorithm takes into account phase function perturbations due to varying scatterer parame-
ters values or incident wavelength.

The performance of this implementation of the pMC method depends primarily on the mag-
nitude of the perturbation of the anisotropy factor and the ensemble scattering coefficient of
the medium. We have applied the algorithm to the problem of accurately solving a forward
problem for a scattering model that simulates realistic tissue optical properties and have shown
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that the pMC method is able to produce estimates that agree in a probabilistic sense with cMC
estimates for a limited range of μs and g perturbations.

The ability to model polarized light transport is important because polarized light transport
measurements can sometimes provide information not available from unpolarized measure-
ments. We have previously shown that ratios of measurements made by this type of probe can
differentiate changes in size from changes in concentration in monodisperse populations of
scatterers [17] using single wavelength measurements. The scattering media modeled in this
paper are more complex. We demonstrate that polarized measurements provide sensitivity to
specific morphological parameters (r2, Ns,2), which is not possible with unpolarized measure-
ments. The sensitivity provides the opportunities to resolve inverse problems that may be out
of reach when acquiring measurements of unpolarized light. Consequently, light transport pa-
rameters may be obtainable from more complicated systems.

7. Appendix

7.1. Scattering algorithms

Two distinct scattering algorithms were considered for this study: the Composite Phase Func-
tion Scattering Method and the Distribution Selection Scattering Method. We will briefly ex-
plain the algorithm behind each of these methods and show that these algorithms produce equiv-
alent distributions of scattering angles. We chose DSSM in this paper because the derivative of
the resulting estimator is computationally simple to obtain.

The Composite Phase Function Scattering Method used in [10] constructs a composite phase
function by calculating the weighted average of the phase functions of each distribution of
scatterers, where the weights are based on each distribution’s contribution to the scattering
coefficient

f =
m

∑
i=1

μs,i

μs
fi (8)

where f is the composite phase function, fi is the phase function of the ith distribution, μs,i

is ith scatterer distribution’s contribution to the scattering coefficient and μs is the scattering
coefficient of the entire medium and is the sum of the scattering coefficient contributions of all
distributions.

The Distribution Selection Scattering Method used in this study, calculates the probability
of interacting separately with each of the scatterer distributions. The probability of interact-
ing with the ith scattering distribution is proportional to that distribution’s contribution to the
scattering coefficient, i.e., P(Y = i) = μs,i/μs, where Y is a random variable that selects the
population for the scattering event. Given that the photon must interact with the ith scatte-
ring distribution, the phase function of the ith scattering distribution, fi, is then sampled for a
scattering angle. The composite scattering phase function is not constructed in this method.

7.2. Proof of scattering algorithm equivalence

We will demonstrate equivalence between the Composite Phase Function Scattering Method
and the Distribution Selection Scattering method by showing that both methods ultimately pro-
duce the same cumulative distribution function (CDF).

Consider a medium that has m groups of scatterers that each contribute to the medium’s
scattering coefficient. Recall that in the Distribution Selection Scattering Method, a distribution
is randomly selected according to the percentage of the population of that scatterer to the total
scatterer population. The variable Y is defined as a random discrete variable that selects the
population for some scattering event and can take on integer values between 1 and m. The CDF
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of Y is

FY (y) =

⎧
⎪⎨

⎪⎩

0, y < 1
f loor(y)

∑
k=1

μs,k
μs

, 1 ≤ y ≤ m
. (9)

Given that Y selects the ith distribution, its phase function will be used to select a polar scatte-
ring angle θ . The conditional CDF of θ , given some value of Y is the CDF of that distribution’s
phase function

FΘY (θ |Y = i) =
∫

fi sinθdθ . (10)

Since the events that Y = 1, Y = 2, ..., Y = m are disjoint, we can obtain the CDF for θ for
DSSM through an application of Bayes’ Theorem using the probabilities in Eq. (9) and the
conditional CDF in Eq. (10)

Fnew(θ) =
m

∑
i=1

FΘY (θ |Y = i)P(Y = i) =
m

∑
i=1

∫
fi sinθdθ

{
μs,i

μs

}

=
∫ m

∑
i=1

fi sinθdθ
{

μs,i

μs

}

. (11)

In the last step above, we reverse the order of the summation and the integral so that Eq. (11)
will more closely resemble Eq. (12). We invoke Tonelli’s theorem, which states that if fn(x)≥ 0
then ∑

∫
fn(x)dx =

∫
∑ fn(x)dx [24]. In our case, the expressions inside of the summation and

the integral in Eq. (11) involve a probability density function and the sine of the scattering
angle, both of which may take on values greater than or equal to zero, so reversal of integration
and summation operations are valid. In the Composite Phase Function Scattering Method, each
distribution’s phase function is calculated, and then the phase functions are weighted according
to that distribution’s scattering coefficient and a composite phase function is then created. This
was mentioned previously in Eq. (8). Next, a CDF is then constructed from the composite
phase function. Substituting in Eq. (8), yields:

F(θ) =
∫

f sinθdθ =
∫ m

∑
i=1

μs,i

μs
fi sinθdθ . (12)

This demonstrates that the Composite Phase Function Scattering Method and the Distribution
Selection Scattering Method both produce the same CDF since Eq. (11) and Eq. (12) are equal
to one another.
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