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Abstract

Cerebrospinal fluid (CSF) contains a tightly regulated immune system. Yet, little is known about 

how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single 

cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54–82 years old. 

We reveal upregulation of lipid transport genes in monocytes with age. We then compared this 

cohort to 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of 

lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 

T cells. Clonal CD8 T effector memory cells upregulated C-X-C Motif Chemokine Receptor 6 
(CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C Motif Chemokine Ligand 

16 (CXCL16), was elevated in CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 

signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these 

results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive 

impairment.

In brief

A single-cell transcriptomic resource exploring the cerebrospinal fluid immune system in healthy 

brain aging and disease uncovers the CXCL16-CXCR6 pathway as a mediator of CD8+ T cell 

trafficking to the CSF.

Graphical Abstract
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Neuroinflammation is a pathological hallmark of age-related neurodegenerative disease1. 

The brain is surrounded by the meninges, a membranous covering that contains the 

cerebrospinal fluid (CSF). The meningeal lymphatic system carries fluid and immune cells 

from the CSF to the deep cervical lymph nodes, enabling peripheral immune cells to respond 

to brain antigens under pathological conditions2,3. Adaptive immune T cells that initially 

encounter antigen in the periphery can enter the CSF via the systemic circulation and patrol 

the intrathecal space4–7. The choroid plexus, which produces the CSF, serves as an interface 

between the brain and circulation and is a site of age-related chronic neuroinflammation in 

mice8,9. Recent studies indicate the CSF provides molecular cues to immune cells of the 

skull bone marrow to alter CSF myeloid populations in mice10–12. Yet, the influence of age 

on the molecular mechanisms regulating CSF immunity in humans is not clear. Moreover, 

whether changes to the CSF immune system relate to behavioral changes such as cognitive 

impairment remains unknown.

Our recent studies indicate CSF immune changes reflect the pathobiological events of 

age-related neurodegenerative disorders such as Alzheimer’s disease (AD)13 and Lewy 

body dementia14. We thus hypothesized that comparing the CSF immune transcriptomes 

associated with healthy cognitive aging and cognitive impairment would provide insight 

into the pathophysiology of age-related neuroinflammation in neurodegenerative disease. 

Our results reveal age-related CSF immune perturbations in cognitively normal subjects, 

underscored by altered expression of lipid transport genes. Further, we detected upregulation 

of C-X-C Motif Chemokine Receptor 6 (CXCR6) in clonally expanded CD8+ T effector 

memory (TEM) cells of cognitively impaired subjects. The CXCR6 ligand, C-X-C Motif 

Chemokine Ligand 16 (CXCL16) is a pleiotropic protein that functions as a T cell 

chemoattractant and scavenger receptor for oxidized lipoprotein. CXCL16 was elevated 

in CSF of cognitively impaired subjects and was associated with neuroaxonal damage. 

We localized CXCR6+ T cells and CXCL16+ myeloid cells to amyloid plaques in AD 

post-mortem brains. Therefore, our single cell transcriptomics resource identified the 

CXCL16-CXCR6 signaling axis as a potential mechanism for T cell entry into brains 

with neurodegeneration. Finally, we uncover an unexpected level of significantly altered 

AD risk genes in CSF T cells of cognitively impaired subjects. Altogether, these findings 

highlight the utility of measuring CSF immune changes to identify disease-associated 

neuroinflammation in cognitively impaired individuals.

Results

Assessing CSF immunity with age in healthy brain aging and cognitive impairment by 
scRNAseq

We first established age-related CSF immune transcriptome changes that occur with healthy 

brain aging. Extant studies on CSF immunity have suffered from biases associated with 

small sample sizes and limitations of conventional methods such as flow cytometry15,16. 

To circumvent these issues, we utilized our established droplet-based single cell RNA 

sequencing (scRNAseq) method13,14,17 (Figure 1A). We generated CSF immune system 

profiles of 45 cognitively normal subjects ranging from 54–82 years old. We then compared 

CSF immune transcriptomes of this healthy cognitive aging group to 14 age- and sex-
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matched patients with clinical diagnoses of AD or prodromal mild cognitive impairment 

(MCI) (Figure 1B and Supplemental Figure 1A–B). Comparison of Montreal Cognitive 

Assessment (MoCA) scores confirmed reduced cognitive abilities in MCI and AD subjects 

(Figure 1C). We also measured CSF biomarkers, which revealed higher levels of tau 

phosphorylated at residue 181 (pTau181) in cognitively impaired subjects (Figure 1C). 

Demographics and CSF biomarker data for these subjects are presented in Table 1.

Overall, we analyzed 70,391 quality-controlled CSF immune cells. Importantly, we did 

not observe diagnostic differences by dimensionality reduction (Supplemental Figure 1C). 

Further, quality control metrics indicated limited amounts of mitochondrial reads and 

expected numbers of counts and features per group (Supplemental Figure 1C). We then 

removed limited amounts of ambient RNA contamination with SoupX18 (Supplemental 

Figure 1D–E). We resolved CSF immune cell types including CD4+ and CD8+ T cells, T 

regulatory cells (Tregs), natural killer (NK) cells, plasma cells, B cells, dendritic cells and 

three populations of classical, intermediate and non-classical monocytes distinguished by 

varying CD14 and CD16 expression and pseudotime analysis (Figure 1D and Supplemental 

Figure 1F). CSF immune clusters were annotated based on their expression of cardinal 

marker genes (Figure 1E). Number of counts and mitochondrial reads were also consistent 

per sample (Supplemental Figure 1G). We did not observe overt changes in cell type 

composition with age (Supplemental Figure 1H). Samples were processed on two separate 

days, but this did not introduce observable batch effects (Supplemental Figure 1I). We 

quantified cell type frequency, which revealed the majority of CSF immune cells as CD4+ 

and CD8+ T cells (Figure 1F). Finally, our full data set can be explored online using a data 

portal located at gatelabnu.shinyapps.io/csf_aging.

Linear CSF immune transcriptome changes associated with healthy brain aging

We began by assessing age-related transcriptomic changes to each cell type using linear 

regression. We noted that CD4+ and CD8+ T cells and non-classical monocytes had 

the most differentially expressed genes with age (Figure 1G and Supplemental Table 1). 

Plotting differentially expressed genes with age revealed increased expression of Cluster of 
Differentiation 74 (CD74) among CD4+ and CD8+ T cells (Figure 1H). CD74 encodes 

the human leukocyte antigen (HLA) class II histocompatibility antigen gamma chain, 

which is a marker of T cell activation19–22. CD4+ and CD8+ T cells also upregulated 

with age expression of genes encoding the granzyme family of serine proteases (Figure 

1H and Supplemental Table 1). Granzymes are released by cytotoxic T cells to induce 

apoptosis in the target cell23. Interestingly, non-classical monocytes exhibited a pronounced 

reduction in expression with age of cytokine genes such as C-C Motif Chemokine Ligand 
3 (CCL3), C-C Motif Chemokine Ligand 4 (CCL4), Tumor Necrosis Factor (TNF) and 

Interleukin 1 Beta (IL1B). This reduction in cytokine gene expression was accompanied 

by increased expression of genes involved in lipid transport, including Apolipoprotein E 
(APOE), Apolipoprotein C1 (APOC1) and Phospholipid Transfer Protein (PLTP) (Figure 

1H). Notably, mutations in APOE and APOC1 are associated risk factors for AD24–30. 

Further, the PLTP gene encodes a key determinant of lipoprotein metabolism involved 

in regulating inflammation, including by modulating adaptive immune functions through 

alternation of T cell polarization31. Thus, linear modeling revealed age-related changes 
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to the CSF immune system. These changes were underscored by altered expression of 

genes involved in lipoprotein metabolism that are also established genetic risk factors for 

age-related neurodegeneration.

Non-linear CSF immune transcriptome changes associated with healthy brain aging

When visualizing gene expression with age, we noted that CSF immune genes fluctuated in 

distinct, nonlinear patterns. We thus sought to visualize non-linear changes to CSF immune 

genes and to compare gene expression trajectories of CSF immune cells with age. Plotting 

expression of the 7,980 genes detected in nonclassical monocytes with age by locally 

estimated scatterplot smoothing (LOESS) revealed wave-like expression trajectories (Figure 

2A). We used hierarchical clustering to identify distinct patterns of gene expression changes 

with age (Figure 2B, Supplemental Figure S2 and Supplemental Table 1). To further validate 

gene expression changes with age, we divided healthy control subjects into middle (<70 

years) and advanced (≥70 years) age groups using the median age of 70 years old as a 

cut-off. We then performed differential expression by Model-based Analysis of Single Cell 

Transcriptomics (MAST)32 (Figure 2C, Supplemental Figure 3B, and Supplemental Table 

2). Importantly, we did not observe major effects of sex on the CSF immune transcriptome 

by MAST differential expression (Supplemental Figure 3A and Supplemental Table 2). Yet, 

differential expression of advanced and middle-aged groups also showed the highest level 

of immune dysregulation in non-classical monocytes (Figure 2C and Supplemental Table 2). 

We then plotted upregulated genes of non-classical monocytes by LOESS, which confirmed 

increased, non-linear expression of lipid transport genes APOE, APOC1 and PLTP with age 

(Figure 2D). Thus, our non-linear analysis uncovered changes to lipid processing genes of 

nonclassical monocytes that dovetailed with our linear analysis.

We next sought to measure the age at which most gene expression changes were occurring. 

To measure non-linear gene expression changes, we used the algorithm Differential 

Expression - Sliding Window ANalysis (DE-SWAN)33. We used DE-SWAN to analyze 

gene levels within a window of four years by comparing groups in parcels of two years 

(e.g. 60–62y compared with 62–64y), while sliding the window in increments of two years 

from youngest to oldest (Figure 2E). Using DE-SWAN, we detected a peak of differential 

expression for several CSF immune clusters at age 78 (Figure 2F and Supplemental Table 3). 

Comparing differentially expressed genes by DE-SWAN and linear modeling underscored 

the effects of advanced age on non-classical monocytes (Figure 2G). We then plotted 

genes of each cluster by the significance of their differential expression at age 78, which 

revealed a large set of changing genes of Tregs and non-classical monocytes (Figure 2H, 

Supplemental Figure 3C and Supplemental Table 3). Notably, we detected dysregulated 

Progranulin (GRN) expression in nonclassical monocytes at age 78 (Figure 2H). Mutations 

in GRN are associated with AD34 and frontotemporal dementia35–37. Intriguingly, GRN 
encodes a key regulator of lysosomal function38 and lipid accumulation in brain microglia39. 

Lipid processing genes were also altered in non-classical monocytes at age 78, including 

Apolipoprotein C2 and Apolipoprotein B Receptor (APOBR) (Figure 2H).
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Activated monocytes communicate with CD8+ T cells via CXCL16-CXCR6 in cognitively 
impaired CSF

Having established gene expression patterns of CSF immune cells in healthy aging, we 

next aimed to compare these changes to subjects with cognitive impairment. To our 

surprise, MAST differential expression of cognitively impaired vs. cognitively normal 

controls revealed the highest level of transcriptomic dysregulation in Tregs (Supplemental 

Figure 4A and Supplemental Table 4). Analysis of individual differentially expressed genes 

showed upregulated expression of Forkhead Box P3 (FOXP3) and Interleukin 32 (IL32) 

in Tregs (Supplemental Figure 4B and Supplemental Table 4). Populations of classical 

and non-classical monocytes were also highly dysregulated (Supplemental Figure 4A). 

Interestingly, we noted downregulated expression of APOC1 in non-classical monocytes 

(Supplemental Figure 4B). This prompted us to plot the expression of lipid processing 

genes of non-classical monocytes from cognitively impaired versus cognitively normal 

subjects with age. Plotting APOE, APOC1 and PLTP with age by LOESS demonstrated 

reduced expression of all three genes in cognitively impaired subjects at later ages 

(Figure 2I). We thus performed MAST differential expression on non-classical monocytes 

comparing advanced age cognitively impaired subjects to advanced age cognitively normal 

subjects (Supplemental Figure 3D–E). By this method, APOE and APOC1 were highly 

downregulated, verifying reduced expression of lipid processing genes in cognitively 

impaired subjects with age (Figure 2J and Supplemental Table 4).

We next aimed to determine whether reduced lipid processing gene expression among 

non-classical monocytes coincided with altered intercellular communication in the CSF. To 

infer cell-cell communication, we utilized CellChat. CellChat uses a signaling molecule 

interaction database of ligand-receptor interactions to analyze intercellular communications 

from scRNAseq data40. Within our scRNAseq data, cell-cell interactions of cognitively 

normal and cognitively impaired CSF appeared highly similar (Figure 3A). We detected the 

strongest incoming interactions among CD8+ T cells and the strongest outgoing interactions 

coming from non-classical monocytes (Figure 3B). We then probed the cell-cell interactions 

of cognitively impaired CSF, which indicated strong communication probabilities between 

non-classical monocytes and CD8+ T cells via human leukocyte antigen (HLA)-A, -B, -C 

and -E binding CD8A and CD8B (Figure 3C). In fact, most signaling pairs between non-

classical monocytes and CD8+ T cells that were increased in cognitively impaired CSF were 

also increased in cognitively normal CSF. Yet, signaling between C-X-C Motif Chemokine 

Ligand 16 (CXCL16) and C-X-C Motif Chemokine Receptor 6 (CXCR6) was unique to 

cognitively impaired CSF (Figure 3D). Notably, CXCR6 is a surface chemokine receptor 

that regulates T cell migration to various tissues41. We then plotted the cell-cell interactions 

of CXCL16-CXCR6 signaling in cognitively impaired CSF, which indicated non-classical 

monocytes as the primary source of CXCL16 for CXCR6 expressed on CD8+ T cells (Figure 

3E). We measured CXCL16 and CXCR6 among CSF cell types, which indicated expression 

of CXCL16 by myeloid cells and CXCR6 by T cells (Figure 3F–G). We next sequenced 

CSF T cell receptors (TCRs) from the same cells as above and noted an association of 

CXCR6 expression with clonal T cells (Figure 3H). Altogether, these results show that 

myeloid cells communicate with CD8+ T cells via CXCL16-CXCR6 in cognitively impaired 
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CSF. Interestingly, we also detected clonally expanded Tregs (Supplemental Figure S4C), 

but these cells were too sparse to perform differential expression.

Dysregulation of clonally expanded CSF T cells of cognitively impaired subjects

We previously showed that clonally expanded T cells patrol the CSF in AD14. However, 

the mechanism by which antigen-specific T cells enter the CSF remains poorly understood. 

We therefore assessed the transcriptomes of clonally expanded T cells between cognitively 

impaired vs. cognitively normal CSF immune systems. We then asked whether CSF TCRs 

from cognitively impaired subjects were similar in protein sequence to those of cognitively 

normal subjects of advanced age. We used our established TCR Levenshtein similarity 

networking method13,17,42 to compare TCRs of cognitively impaired patients to cognitively 

normal subjects of four equal sized age bins (early and late middle age and early and 

late advanced age). These results showed increased similarity of TCRs from cognitively 

impaired subjects with the two oldest age bins (early and late advanced age) (Figure 

4A and Supplemental Table 4). Conversely, no similarities were detected between TCRs 

from cognitively impaired subjects with the two youngest age bins (Figure 4A–B and 

Supplemental Table 4).

We next sought to determine whether clonally expanded, antigen-specific T cells were 

transcriptionally distinct in cognitively impaired vs. cognitively normal CSF immune 

systems. We thus performed differential expression on clonally expanded CD4+ and CD8+ 

T cells of cognitively impaired vs. cognitively normal CSF. MAST differential expression 

of non-clonal and clonal CD4+ and CD8+ T cells revealed T cell clonal expansion as 

a driver of transcriptional dysregulation in cognitively impaired vs. cognitively normal 

CSF (Figure 4C). We noted a shift from CXCR4 to CXCR6 chemokine receptor gene 

expression in clonally expanded CD4+ and CD8+ T cells (Supplemental Figure 5A–B). 

Notably, clonally expanded CD8+ T cells upregulated CXCR6 in cognitively impaired vs. 

cognitively normal CSF (Figure 4D and Supplemental Table 4). We further confirmed 

increased CXCR6 expression by CD8+ T cells in cognitively impaired subjects on the 

pseudobulk level (Supplemental Figure 5C).

We next aimed to obtain finer resolution of the CD8+ T cell subtype associated with 

cognitive impairment. To do so, we utilized a Cellular Indexing of Transcriptomes and 

Epitopes by Sequencing (CITE-seq) reference dataset43 and supervised clustering to 

reannotate the same CSF cells (Supplemental Figure 5D–E). To our surprise, CD14+ 

monocytes were the most dysregulated cell type among reannotated clusters (Supplemental 

Figure 5F and Supplemental Table 5). Having finer resolution of CSF immunity, we then 

measured CXCR6 expression in T cell subsets, which distinguished CD8+ and CD4+ TEM 

cells as the primary expressors of CXCR6 (Figure 4F and Supplemental Figure 5G). We 

also observed increased CXCR6 expression in CD8+ TEM cells on the pseudobulk level 

(Supplemental Figure 5H). We then reassigned TCRs to these reannotated cells to identify 

clonal populations of CSF T cells (Figure 4G and Supplemental Figure 5I). We quantified 

single cell expression of CXCR6 on CD8 TEM cells which revealed higher levels of 

expression among cognitively impaired subjects (Figure 4H).
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Finally, we sought to measure levels of CSF CXCL16 protein in larger groups of subjects 

and to compare CXCL16 levels to neurodegenerative disease biomarkers. We first utilized 

a proximity extension assay (PEA), which detected higher levels of CXCL16 in CSF of 

cognitively impaired vs. cognitively normal subjects (Figure 4I and Supplemental Figure 

6A). Notably, levels of CXCL16 highly correlated with levels of neurofilament light (NEFL) 

in cognitively impaired and cognitively normal subjects (Figure 4J and Supplemental 

Table 6). NEFL is a biomarker for neuroaxonal damage which predicts neurodegeneration 

and clinical progression in presymptomatic AD44. CXCL16 also correlated with levels 

of CSF glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 

(UCHL1). Interestingly, CXCL16 did not correlate with either Aβ40 or Aβ42, but did 

correlate with pTau181 in subjects who were diagnosed with MCI and progressed to AD 

(Figure 4J). We confirmed our PEA results by detecting a positive correlation between 

CXCL16 and NEFL by slow off-rate modified aptamer (SOMAmer) assay (Figure 4K and 

Supplemental Table 6). However, although the SOMAmer assay detected increased levels of 

CXCL16 in cognitively impaired subjects, we did not observe significant group differences 

(Supplemental Figure 6B).

Interestingly, public datasets indicate that microglia/macrophages are the main expressors 

of CXCL16 in human brain (Supplemental Figure 6C)45. Further, microglia express higher 

levels of CXCL16 than monocytes (Supplemental Figure 6D)46. In AD brain, CXCL16 is 

more highly expressed in the temporal cortex of AD subjects than controls (Supplemental 

Figure 6E)47. Thus, we aimed to confirm protein expression of CXCL16 in AD brain 

myeloid cells. Indeed, we identified CXCL16+Iba1+ plaque-associated myeloid cells in AD 

brain (Supplemental Figure 6F). We confirmed intracellular expression of CXCL16 by Iba1+ 

cells by generating a z-stack through an Iba1+ myeloid cell body (Supplemental Figure 

6G). Finally, we identified CD3+ T cells expressing the CXCR6 receptor in close proximity 

to Iba1+ myeloid cells in two separate AD post-mortem brains (Supplemental Figure 6H). 

Cumulatively, these results indicate altered CXCR6-CXCL16 signaling as a mechanism for 

antigenexperienced T cell entry into the brains of subjects with neurodegeneration.

Our results uncover T cell transcriptomic changes associated with cognitive impairment. 

Historically, innate immunity has been studied in greater detail than adaptive immunity in 

AD. The identification of AD risk genes via genome wide association studies (GWAS)48,49 

further compelled AD researchers to interrogate brain innate immunity, since many AD risk 

genes are expressed by brain innate immune cells. Yet, when we probed AD risk genes for 

expression among CSF immune cells50, we identified CD4+ and CD8+ T cells as having 

the most significantly altered genes (Figure 5). Among supervised clusters, CD4+ TEM and 

CD8+ TEM cells had the most differentially expressed AD risk genes (Supplemental Figure 

6I). Altogether, these results uncover a potential, unexpected role of T cells in AD risk.

Discussion

Our CSF immune transcriptomic profiling provides insight into the influence of age on 

healthy brain aging and into the pathophysiology of cognitive impairment. In healthy brain 

aging, we identified a population of non-classical CSF monocytes with increased expression 

of genes encoding lipid processing proteins. Some of the genes associated with CSF 
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monocyte aging are genetic risk factors for AD, including APOE and APOC1. Increased 

expression of these genes by intrathecal monocytes highlights the critical role of lipid 

metabolism in innate immunity and immunoregulation51. Particularly intriguing was the 

concomitant downregulation of cytokine genes, suggestive of a metabolic and functional 

shift of non-classical monocytes with age. These changes might reflect parenchymal 

myeloid cell pathophysiology, such as the accumulation of lipid droplets in brain microglia 

with age39.

Our results also indicate disparate age-related CSF immune system perturbations in 

cognitively impaired subjects. These transcriptional changes may reflect alterations to CSF 

immunity during the neurodegenerative disease course. Among significantly altered CSF 

immune cells were non-classical monocytes, which show decreased expression of lipid 

transport genes concomitant with increased signaling to CD8+ T cells via CXCL16-CXCR6. 

Intriguingly, CXCL16 has a dual role as a scavenger receptor that mediates internalization of 

oxidized low-density lipoproteins52. Thus, increased CXCL16 in the CSF of cognitively 

impaired subjects may be compensatory to reduced lipid transport gene expression in 

non-classical monocytes. Additionally, CXCL16 is a receptor for phosphatidylserine-coated 

particles such as apoptotic bodies. Therefore, the correlation between CXLC16 and 

neuroaxonal damage may reflect the immune response to neuronal death.

Our results show that TCRs of cognitively impaired subjects more closely resemble those 

from advanced ages than younger age groups. This suggests that the TCR repertoire of 

cognitively impaired subjects resembles an “advanced aging” CSF adaptive immune system. 

Moreover, we identify an association of CXCR6 expression in clonally expanded T cells and 

cognitive impairment. Our results suggest that CXCR6 regulates homing of antigen-specific 

T cells from the peripheral circulation to the CSF via brain myeloid expression of CXCL16. 

This finding is particularly enlightening in conjunction with recent evidence that CXCR6/

CXCL16 signaling functions as a maintenance factor for brain resident T cells that drive 

synapse elimination during viral recovery in mice53.

Altogether, our results highlight the potential to utilize CSF immune transcriptome changes 

to identify disease-associated neuroinflammation in cognitively impaired individuals. As 

such, CSF immunophenotyping may be useful to gain further insight into T cell-antigen 

complexes involved in the pathophysiology of cognitive impairment. Here, we uncover 

CXCL16-CXCR6 signaling as a potential mechanism of antigen-specific T cell entry into 

the intrathecal space of patients with cognitive impairment. These findings could be used 

to improve anti-inflammatory therapeutics or to estimate levels of neuroinflammation in 

cognitively impaired patients.

Limitations of the Study

This study is comprised entirely of human data and our claims are based primarily on 

bioinformatic approaches that rely on underlying assumptions of algorithms. As such, there 

are limitations regarding functional or mechanistic evidence. Ideally, in vivo experiments in 

animals would further elucidate the necessity and sufficiency of CXCL16-CXCR6 signaling 

in T cell brain homing and its impact on cognition. We encourage animal researchers 

to interrogate this pathway. Additionally, females comprised most of the younger healthy 
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controls, while males comprised most of the older healthy controls in this study. Thus, we 

suggest further interrogation of potential sex differences in CSF immunity.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, David Gate (dgate@northwestern.edu).

Materials Availability—No new unique reagents were generated for this study.

Data and Code Availability

• All raw data used in this study can be found on GEO with accession number 

GEO200164. Raw count and log-normalized expression matrices are also 

available under the same accession number.

• All code used to generate the figures in this study can be found at https://

github.com/gatelabnw/csf_aging.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—For scRNAseq experiments, CSF samples were acquired through the 

Stanford Aging and Memory Study (SAMS), Stanford University Alzheimer’s Disease 

Research Center (ADRC), the University of California at San Francisco ADRC and the 

University of California at San Diego ADRC. Collection of CSF was approved by the 

Institutional Review Board of each university and written consent was obtained from all 

subjects. scRNAseq and scTCRseq were performed on CSF of 59 subjects of both sexes 

aged 47–82 years. Of these subjects, 45 were assessed as healthy controls while the 

remaining 14 were patients with cognitive impairment (MCI or dementia due to AD). 

Age and sex demographics are presented in Supplemental Figure 1A–B. SAMS eligibility 

included normal or corrected to-normal vision/hearing, native English speaking, no history 

of neurologic or psychiatric disease, a Clinical Dementia Rating (CDR) global score of 

zero, and performance within the normal range on a standardized neuropsychological 

test battery54,55. In the ADRCs, all healthy control participants had CDR scores of zero 

and were deemed cognitively unimpaired during a clinical consensus meeting consisting 

of neurologists, neuropsychologists, and research coordinators. All healthy control and 

cognitively impaired study subjects underwent neurological examinations, CDR ratings, and 

standardized neuropsychological assessments to determine cognitive and diagnostic status, 

including procedures of the National Alzheimer’s Coordinating Center. All cognitively 

impaired participants had a CDR score greater than zero. For histology experiments, de-

identified human dorsolateral prefrontal cortex samples from AD subjects of various ages 

were obtained through collaboration with the Stanford University ADRC.
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METHOD DETAILS

Sample Preparation—CSF was collected via lumbar puncture and cells were 

cryopreserved according to our established protocol17. All 59 CSF samples were processed 

and cryopreserved by the same technician over the course of two years. Cells were sorted 

by FACS for live singlets using Sytox blue live/dead dye before performing droplet-based 

scRNAseq and scTCRseq.

Protein biomarker measurements—We measured protein biomarkers in CSF with two 

separate methods. We used PEA technology (Olink Proteomics) to measure CXCL16 and 

NEFL as in Figure 4I–J. Protein levels are presented in Normalized Protein eXpression 

(NPX) units. NPX is Olink’s arbitrary unit, which is in Log2 scale. NPX is calculated from 

Ct values and data pre-processing (normalization) is performed to minimize both intra- and 

inter-assay variation. Separately, we used single molecule array (Simoa) ELISA technology 

(Quanterix) to measure NEFL, Aβ42 and Aβ40, as in Figure 4J. We also measured CXCL16 

and NEFL using SOMAmer technology (SomaLogic), as in Figure 4K.

Droplet-based scRNA and TCRseq—The 10x Genomics Chromium Next GEM Single 

Cell 5’ v2 with immune profiling kit was used for scRNA and TCRseq of CSF samples. 

Libraries were prepared according to 10x Genomics protocols. Libraries were sequenced by 

Novogene on an Illumina Novaseq 6000 instrument. Bases were called using the Illumina 

RTA3 method. RNA reads were aligned to the hg38 genome build and gene expression 

matrices were generated using Cell Ranger 6.0.0 software. TCR reads were also aligned to 

the hg38 genome build and clonotype/contig matrices were generated using Cell Ranger.

scRNA and TCRseq quality control—Empty droplets were removed via Cell Ranger 

6.0.0 using the EmptyDrops method per 10x Genomics’ protocol. Gene expression matrices 

were corrected for background contamination using R package SoupX 1.5.2. Known 

monocyte/dendritic markers (CD14, CD68, MS4A7, and CD16) were used to estimate the 

contamination fraction of each sample. Counts were adjusted using the SoupX subtraction 

method using the calculated contamination fraction on a per sample basis. Doublets were 

removed using R package DoubletFinder 2.0.356 using an approximate doublet formation 

rate of 1% which is consistent with the expected multiplet rate according to 10x Genomics 

Single Cell 5’ v2 kit protocol. Any cells with fewer than 200 mapped features were 

eliminated, as well as any features present in fewer than three cells. Any cells with greater 

than 10% mitochondrial reads were also eliminated. TCR clonotypes and contigs were also 

filtered for empty droplets using Cell Ranger 6.0.0. Only TCR sequences associated to cells 

annotated with a T cell identity by RNAseq were retained.

Cell type annotations—Corrected and filtered gene expression matrices were 

SCTransformed with Seurat 4.1.043 on a per sample basis and then integrated through 

harmonizing ‘anchors’ as recommended for cell type identification in Seurat documentation. 

Number of reads, number of features, and percent of mitochondrial reads were regressed out 

in the data scaling step of SCTransform, and the top 1000 most variable features were used. 

Principal component analysis (PCA) was then run on the integrated assay. The first fifteen 

principal components (PCs) were then used to generate a shared nearest neighbor graph 
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which was then clustered under the Louvain algorithm with a resolution of 0.3. Uniform 

manifold approximation and projection (UMAP) was then performed using the first 15 PCs 

and 30 nearest neighbors. Canonical cell type markers were used to identify expected cell 

types (markers used are shown in Fig.1D). Pan T cell and monocyte clusters were then 

isolated, and the clustering procedure was repeated to differentiate more specific cell types.

Differential expression by linear modelling—We first aimed to identify genes with 

linear expression changes across age. The following model was implemented:

Expression ∼ α + β1 age + β2 sex + ε

Log-normalized counts were used for expression values as recommended for differential 

expression analyses by the developers of Seurat. α represents the y-intercept, β values 

represent the associated slope with the variable of interest, and ε represents residual error. 

Sex was included as a covariate to account for variations in sex composition of the cohort 

across age. Only genes expressed in at least 10% of cells in the respective cell type were 

used for differential expression throughout the study. Linear models were generated using 

the R package stats function, lm. Type II sum of squares were calculated using the R 

package car function, Anova. P values were adjusted for multiple comparisons using the 

Benjamini-Hochberg procedure. Thresholds of 0.01 for adjusted p value and 0.005 for β 
were used to determine significant DEGs.

DE-SWAN analysis—DE-SWAN was implemented to identify more transient gene 

expression changes across age. The following model was used:

Expression ∼ α + β1Ik low/ℎigℎ + ε

Ik low/high represents the binarization of age binned above and below k centers. 10 centers 

with windows of ± 2 years from ages 62 to 82 were used. Number of cells per age bin 

per cell type differed dramatically from one center to the next. To mitigate the effect of 

cell number on number of DEGs, we randomly sampled 200 cells with replacement from 

each age for each cell type. Gene counts for every twenty cells were summed to generate 

a ‘pseudocell’ and then log-normalized. Type II sum of squares were calculated using the 

R package car function, Anova. P values were adjusted for multiple comparisons using the 

Benjamini-Hochberg procedure. Significant DEGs were identified with thresholds of 1e-4 

for adjusted p value and 1e-4 for β.

LOESS trajectory analysis—LOESS was employed to identify non-linear patterns 

of gene expression over age. We initially focused on healthy aging and thus selected 

cognitively normal samples only. To avoid variable cell number per sample skewing the 

analysis, we proceeded with pseudobulked expression values. Counts for each cell type per 

sample were summed and then log-normalized. Genes were filtered for expression by at 

least 10% of cells per cell type and expression values were scaled and centered. A LOESS 

regression of span 0.75 was fit to each gene using the loess function of the R stats package. 

The predicted expression trajectories over age were then subdivided into 6 and 12 groups by 
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hierarchal clustering via hclust function from the R stats package. LOESS curves of average 

expression per age point in each cluster are also reported with their associated standard 

errors.

Differential expression by MAST—The Seurat function FindMarkers was used to 

identify DEGs across age and diagnosis. MAST was chosen to test significance as it 

employs a hurdle model specifically tailored to bimodal expression distributions often 

observed in scRNAseq. Only genes expressed in at least 10% of cells were tested. Sex was 

included as a latent variable to account for sex composition changes in the cohort across age. 

P values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure. 

Genes with an adjusted p value less than 0.01 and average log-fold change magnitude 

greater than 0.25 were considered significantly differentially expressed.

CellChat analysis—The R package CellChat40 was used to quantitatively infer and 

analyze intercellular communication networks from our scRNAseq data. CellChat uses 

network analysis and pattern recognition approaches to predict major signaling inputs 

and outputs for cells and how those cells and signals coordinate for functions. CellChat 

classifies signaling pathways and delineates conserved and context-specific pathways 

through manifold learning and quantitative contrasts. CellChat calculates the communication 

probability of a ligand-receptor pair between two cell types using a law of mass 

action model which depends on ligand and receptor concentration, any known cofactor 

concentrations, and the number of cells in each cell type. Significance is determined by if 

this communication probability is statistically higher between these known cell types than 

between randomly permuted groups of cells.

Levenshtein similarity network—Clonotypes with unambiguous CDR3 regions on both 

α and β chains and a frequency of at least 2 were retained to assess TCR similarity. Both 

CDR3 regions were concatenated together for each cell and Levenshtein similarity (Lsim)42 

was calculated between every possible TCR pair within and between all samples. Lsim 

was calculated by first finding the minimum number of deletions, additions, or substitutions 

needed to change one string to another, this value being the Levenshtein distance. This 

distance was then divided by the maximum length of both strings and subtracted from 1 to 

generate the Lsim. Individuals were binned into four healthy, cognitively normal age groups 

of equal size and one cognitively impaired group. TCR pairs with an Lsim of at least 0.9 

were used for visualization on the network plot.

Clone expression scatterplot—We aimed to evaluate the heterogeneity of gene 

expression in cells of expanded or individual T cell clones in healthy versus cognitively 

impaired individuals. The top five most expanded clones in healthy and diseased individuals 

were selected. To create nonclonal bootstrap cells, fifty clones of frequency 1 were randomly 

selected from each diagnosis group. These 50 cells were sequestered into 5 groups and 

gene counts were summed then log-normalized. Average expression of all cells within an 

expanded clone as well as the percentage of cells in a clone/bootstrap expressing the gene of 

interest were calculated.
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Immunohistochemistry and confocal imaging—We stained 5μm paraffin embedded 

brain tissue sections using antibodies rat anti-CD3 (Abcam ab11089), rabbit anti-CXCR6 

(Abcam ab273116), mouse anti-CXCL16 (Thermo MA5–27845), rabbit anti-amyloid-β 
(Cell Signaling 8243) and goat anti-Iba1 (Abcam ab48004). Sections were deparaffinized, 

then antigen retrieval was performed using citrate buffer pH 6.0 for 30 min at 95°C. 

Sections were blocked in phosphate buffered saline containing 10% normal donkey serum 

and 0.1% triton-x. Sections were stained overnight in primary antibodies. The following 

morning, sections were incubated with highly cross-absorbed, species-appropriate secondary 

antibodies. Sections were imaged on a Nikon AXR confocal microscope with a 60x 

objective.

ShinyCell—ShinyCell is an R package developed to quickly generate interactive Shiny-

based web applications to visualize the core analysis of scRNAseq data. We have released 

a modified ShinyCell app allowing users to view metadata and gene expression on a 

UMAP, compare gene expression between various groups via violin/box plots, and other 

built-in analyses. Notably, we added an additional page allowing the user to view LOESS 

trajectories of any gene of interest between HC and CI patients in a selected cell type as well 

as download the associated pseudobulk data.

QUANTIFICATION AND STATISTICAL ANALYSIS

R 4.1.1 and Prism 9.2.0 were used for all statistical analyses. Statistical methods are 

described in the figure legends or main text as appropriate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Monocytes upregulate lipid processing genes with age in cognitively normal 

CSF

• Monocyte lipid processing genes are dysregulated in cognitively impaired 

CSF

• Monocytes signal to clonal CD8+ T cells via CXCL16-CXCR6 in cognitively 

impaired CSF

• CXCL16 is increased in cognitively impaired CSF and relates to 

neurodegeneration
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Figure 1. Study design and CSF immune cell gene expression changes by linear modeling.
A) Schematic depicting study design. CSF was isolated by lumbar puncture from living 

individuals. Single cells were loaded into droplets, then libraries were amplified for whole 

transcriptome or targeted TCR sequencing. B) Study demographics indicating age and sex of 

each individual. C) MoCA cognitive scores and pTau181 levels in control versus cognitively 

impaired subjects. Mean ± s.e.m.; Mann Whitney U test. D) UMAP plot showing clusters 

of CSF immune cells. E) Heatmap of marker genes utilized to annotate cell clusters. F) 

Donut plot indicating the distribution of CSF immune cell types. G) UpSet plot showing the 

number of DEGs per CSF immune cell cluster. H) Volcano plots depicting DEGs of the most 

altered clusters by linear modeling (LM). See also Figure S1 and Table S1.
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Figure 2. Upregulated lipid processing gene expression in activated CSF monocytes with age.
A) LOESS trajectories (upper) and a corresponding heat map (lower) demonstrating wave-

like expression patterns of activated monocytes with age. B) Sets of genes ordered by 

hierarchical clustering and displayed using LOESS trajectories display distinct wave-like 

patterns with age. C) Volcano plot from MAST differential expression analysis showing 

downregulation of cytokine genes and upregulation of lipid processing genes. D) LOESS 

trajectories of APOE, APOC1 and PLTP expression in activated CSF monocytes with age. 

E) Representative genes JUNB and RGCC displaying distinct non-linear changes with age. 
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DE-SWAN was used to measure the age at which most differential expression occurs. 

F) Results of DE-SWAN analysis indicating a consistent dysregulation of CSF immune 

cell types at age 78. G) UpSet plot comparing the number of DEGs for activated CSF 

monocytes from DE-SWAN and linear modeling. H) Manhattan plot indicating genes that 

were differentially expressed by each cluster at age 78. I) LOESS trajectories of lipid 

processing genes comparing healthy controls to cognitively impaired subjects. J) Volcano 

plot showing reduction of lipid processing genes APOE and APOC1 comparing only 

advanced aged subjects. See also Figure S2–3 and Table S2–5.
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Figure 3. Cell-cell communication algorithm indicates non-classical monocytes communicate 
with CD8+ T cells via CXCL16-CXCR6 signaling in cognitive impaired CSF.
A) Circle plots of signaling networks of healthy and cognitively impaired CSF immune 

systems. B) Cell-cell interaction strengths plotted for all cell types indicating incoming 

and outgoing interactions. C) Dot plot indicating signaling molecules between non-classical 

monocytes and T cells in cognitively impaired CSF. D) CXCL16-CXCR6 signaling between 

non-classical monocytes and CD8+ T cells is unique to cognitively impaired CSF. E) The 

signaling network for CXCL16-CXCL6 indicates activated monocytes as the primary source 

of CXCL16 for CXCR6 on CD8+ T cells. F) Violin plots indicating which cell types express 

CXCR6 and CXCL16 in the CSF. G) UMAP showing expression of CXCR6 by T cells and 

CXCL16 by myeloid cells. H) Distribution of clonal and nonclonal CSF T cells.
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Figure 4. Clonally expanded T cell disruption in CSF of patients with cognitive impairment.
A) TCR networking plot depicting Levenshtein similarities > 0.9 for all clonal CSF TCRs. 

Healthy, cognitively normal patients were binned into equal sized groups. B) Quantification 

of the proportion of TCRs for each age group that had Levenshtein similarity > 0.9. C) 

UpSet plot showing that clonally expanded CD4+ and CD8+ T cells have more DEGs that 

nonclonal T cells. D) Volcano plots showing DEGs of clonal vs. nonclonal CD8+ T cells 

between cognitively impaired and healthy CSF. E) Quantification of average single cell 

expression of clonal and nonclonal CD8+ T cells from cognitively impaired and healthy 
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CSF. P-values are from MAST differential expression. F) Single cell quantification of 

CXCR6 expression by CD8+ T cell subtypes showing increased expression among CD8+ 

TEM cells. G) UMAP showing distribution of T cell subtypes and clonality using supervised 

clustering. H) Single cell quantification of CXCR6 expression in clonal CD8+ TEM cells 

showing higher expression among cognitively impaired subjects. I) PEA assay measurement 

of CXCL16 protein showing higher levels in cognitively impaired subjects. J) Correlations 

of CXCL16 with CSF biomarkers. K) Correlations between CSF CXCL16 and NEFL using 

SOMAmer measurements. See also Figure S4–6 and Table S4–5.
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Figure 5. Differential expression of the top 45 AD GWAS genes across all major CSF immune 
cell types.
Asterisks denote the most highly altered genes by adjusted p-value. Note that T cells 

differentially express numerous AD risk genes in CI CSF. See also Figure S7.
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Table 1.

Demographics and biomarker data of study subjects.

HC CI P

Demographics

Cognitive Impairment, n (%) HC 45 (100.0%) 0 (0.0%) <0.001

MCI 0 (0.0%) 8 (57.1%)

AD 0 (0.0%) 6 (42.9%)

Sex, n (%) Female 27 (60.0%) 7 (50.0%) 0.725

Male 18 (40.0%) 7 (50.0%)

Age Median (IQR) 69.0 (65.0 to 73.0) 72.5 (64.0 to 76.8) 0.475

Race, n (%) Asian 3 (6.7%) 1 (7.1%) 0.565

Native Hawaiian or Other 
Pacific Islander

1 (2.2%)

White 35 (77.8%) 9 (64.3%)

N/A 6 (13.3%) 4 (28.6%)

APOE Genotype n = 38 n = 10

E3/E2 4 (10.5%) 1 (10.0%) 0.360

E3/E3 16 (42.1%) 2 (20.0%)

E3/E4 16 (42.1%) 5 (50.0%)

E4/E4 2 (5.3%) 2 (20.0%)

MoCA Score n = 22 n = 12

Median (IQR) 27.0 (26.0 to 28.0) 20.5 (15.0 to 24.2) <0.001

CDR n = 42 n = 11

Median (IQR) 0.0 (0.0 to 0.0) 1.0 (1.0 to 3.2) <0.001

CSF Biomarkers (pg/mL) n = 37 n = 10

pTau181 Median (IQR) 40.1 (32.9 to 61.2) 91.1 (67.2 to 141.8) 0.012

Total Tau Median (IQR) 302.0 (265.0 to 412.3) 604.6 (453.3 to 819.7) 0.006

Aβ42 Median (IQR) 1,000.0 (811.3 to 1,231.3) 870.1 (673.8 to 1,014.8) 0.311

Aβ40 Median (IQR) 10,565.0 (8,81,6.0 to 12,383.0) 12,061.5 (9,888.0 to 13,718.5) 0.203

CSF Biomarker Ratios n = 37 n = 10

Aβ42/ Aβ40 Median (IQR) 0.115 (0.078 to 0.126) 0.073 (0.063 to 0.115) 0.264

Aβ42/Total Tau Median (IQR) 3.900 (2.033 to 4.577) 1.247 (1.036 to 2.611) 0.015
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-CD3 Abcam ab11089

Rabbit monoclonal anti-CXCR6 Abcam ab273116

Mouse monoclonal anti-CXCL16 Thermo Fisher MA5–27845

Rabbit monoclonal anti-amyloid-β Cell Signalling 8243

Goat polyclonal anti-Iba1 Abcam ab48004

Biological samples

Adult CSF Stanford Aging and Memory Study 
(SAMS)

n/a

Adult CSF Stanford University Alzheimer’s 
Disease Research Center (ADRC)

n/a

Adult CSF University of California at San 
Francisco ADRC

n/a

Adult CSF University of California at San 
Diego ADRC

n/a

Critical commercial assays

10x Genomics Chromium Next GEM 
Single Cell 5’ v2 with immune profiling 
kit

10xGenomics PN-1000263

Deposited data

Raw and processed data This study GEO: GEO200164

Code for analysis This study Github: https://github.com/gatelabnw/csf_aging

ShinyCell app for interactive data 
analysis

This study ShinyApps:gatelabnu.shinyapps.io/csf_aging

Software and algorithms

Cellranger v6.0.0 10x Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-ranger

SoupX v1.5.2 Young and Behjati18 https://github.com/constantAmateur/SoupX

DoubletFinder v2.0.3 McGinnis et al.56 https://github.com/chris-mcginnis-ucsf/DoubletFinder

Seurat v4.1.0 Hao et al.42 https://satijalab.org/seurat/

DEswan v0.0.0.9001 Lehallier et al.33 https://github.com/lehallib/DEswan

CellChat v1.4.0 Jin et al.40 http://www.cellchat.org

RecordLinkage v0.4–12.3 Sariyar and Borg42 https://cran.r-project.org/web/packages/RecordLinkage/
index.html
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