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Abstract 
 

Application of Causal Inference Methods to Estimate Single Pollutant and Multi-Pollutant 
Health Effects in Asthmatic Children in Fresno, California 

 
by 
 

Jonathan Maclean Snowden 
 

Doctor of Philosophy in Epidemiology 
 

University of California, Berkeley 
 

Professor Ira B. Tager, Chair 
 
 

The methodological challenges associated with conducting research on air pollution 
mixtures are well-known: correlated co-pollutants result in unstable effect estimates and large 
standard errors, hindering the assignment of causality to any one exposure. There is still 
relatively little research in the growing multi-pollutant literature that is focused on the mixture 
itself as the unit of analysis. In this dissertation, I implement a statistical method from the causal 
inference literature to estimate the effects of ambient air pollution, as single pollutants and in a 
two-pollutant mixture.  

I analyze the effects of single-pollutant and multi-pollutant summertime ambient air 
pollution exposures on pulmonary function in a cohort of children with asthma living in Fresno, 
California. I employ a technique from the causal inference literature, the Population Intervention 
Model (PIM), to describe the health effects that would result from several hypothetical 
interventions that involve lowering concentrations of ambient air pollution. By describing the 
health effects of the ambient air pollutants in these terms, this approach estimates results that are 
relevant to real-world policy questions. Furthermore, this analytical approach permits the 
calculation of air pollution health effects that correspond to multiple pollutants dynamically 
changing within a mixture, as ambient air pollution is actually experienced by people. I interpret 
each of these health effects according to whether it reflects a realistic, or even a possible, 
exposure scenario during the study period and in the region where data were collected. I achieve 
this through an examination of the individual and joint distributions of the pollutants under 
study. 

This dissertation contains several analyses, corresponding to single- and multi-pollutant 
exposure regimens. In the first analysis, I analyze the effects of ambient summertime NO2 on 
FEF25-75 in a single-pollutant approach that demonstrates the methodological approach. All 
analyses use central-site exposure data, assigning all subjects on a given study day the same air 
pollution exposure values. Ambient PM10-2.5 is analyzed throughout as a summertime pollutant of 
secondary interest, both in a single-pollutant PM10-2.5 analysis, and in a mixture analysis. For the 
multi-pollutant mixture analysis, I extend the Population Intervention Model framework 
demonstrated in the single-pollutant analyses to a two-pollutant summer analysis of ambient NO2 
and PM10-2.5, estimating health effects associated with an intervention that dynamically alters 
levels of one or both pollutants. In this two-pollutant analysis, I estimate the effects of lowering 
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levels of one co-pollutant while “controlling for” the other (i.e., holding it at observed levels), as 
well as the effects of a joint intervention that decreases levels of both pollutants.  
 The Background chapter presents a brief history of air pollution epidemiology and policy, 
and reviews the epidemiologic and statistical research upon which this dissertation builds. The 
Methods chapter describes the data collection protocol of the Fresno Asthmatic Children’s 
Environment Study (FACES), the theoretical basis for the chosen methodological approach, and 
the details of the statistical methods employed in these analyses. In the Results section, I describe 
the characteristics of the FACES study sample, provide tabular and graphical descriptions of the 
distribution of ambient air pollution in the study, and present the results of the single- and multi-
pollutant PIM analyses. In the Discussion section, I provide interpretation of the effects 
estimated in these various analyses, and refer back to the single- and multi-pollutant exposure 
distributions to situate the various health effects in appropriate context, and to speculate on 
potential sources of bias. 

All health effects calculated in these analyses were estimated relatively imprecisely; 
however, comparison of the magnitude and direction of the risk differences across analyses 
demonstrates patterns and provides information about the respiratory effects of the pollutants 
analyzed in this study. Furthermore, consideration of the individual and joint distributions of the 
two exposures yields key insight that guides the interpretation of these findings, especially as 
relates to parameter identifiability.  In this analysis, there is ample evidence that the types of air 
pollution profiles described by two interventions are not realistic given the observed data, and 
furthermore that there is not support in the data to estimate health effects for these interventions. 
These parameters were defined to be comparable to standard practice in the multi-pollutant 
literature. The finding that they were not identifiable in the FACES data argues against giving 
weight to these specific findings, and also raises broader questions about parameters of this type: 
large, isolated single-pollutant concentration changes in a multi-pollutant exposure regimen. The 
work presented here emphasizes that such parameters should be scrutinized for positivity and 
data support before commencing analysis, regardless of the analytical approach chosen.  
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I. Background 
 
 Introduction 
 In this dissertation, I analyze the health effects of single-pollutant and multi-pollutant 
summertime ambient air pollution exposures on pulmonary function in a cohort of children with 
asthma living in Fresno, California. I employ a technique from the causal inference literature, the 
Population Intervention Model (PIM), to describe the health effects that would result from 
several hypothetical interventions that involve lowering concentrations of ambient air pollution. 
By describing the health effects of ambient air pollution in these terms, I aim to make the results 
of this study relevant to real-world policy questions. Toward the same end, I estimate the health 
effects associated with a multi-pollutant exposure regimen. This analytical approach permits the 
calculation of air pollution health effects that correspond to multiple pollutants dynamically 
changing within a mixture—as ambient air pollution is actually experienced by people—rather 
than a single pollutant. I subsequently interpret each of these health effects according to whether 
it reflects a realistic, or even a possible, exposure scenario during the study period and in the 
region where data were collected. I achieve this through an examination of the individual and 
joint distributions of the pollutants under study. 
 This Background chapter presents a brief history of air pollution epidemiology and 
policy, and reviews the epidemiologic and statistical research upon which this dissertation builds. 
I discuss asthma epidemiology, research on air pollution mixtures, and causal inference. I 
conclude by posing the specific aims set up by this background material. The Methods chapter 
describes the data collection protocol of the Fresno Asthmatic Children’s Environment Study 
(FACES), the theoretical basis for the chosen methodological approach, and the details of the 
statistical methods employed in these analyses. In the Results section, I describe the 
characteristics of the FACES sample, both the overall sample and the sub-sample whose 
summertime data are analyzed in this dissertation. I provide tabular and graphical descriptions of 
the distribution of ambient air pollution in the study, both the observed air pollution 
concentrations and the air pollution concentrations under the hypothetical interventions whose 
effects I am estimating. I also present the results of the single- and multi-pollutant PIM analyses. 
In the Discussion section, I provide interpretation of the effects estimated in these various 
analyses, and refer back to the single- and multi-pollutant exposure distributions to situate the 
various health effects in appropriate context, and to speculate on potential sources of bias. I 
conclude by discussing the contributions and limitations of the present work, and then pose 
research questions for future analyses to build on the present study. 
 
Historical perspective on ambient air pollution science 
 Ambient air pollution was recognized to be a problem in antiquity and became a more 
grave threat to human health with the rise of populous cities and the advent of 
industrialization[1]. The rise of fossil fuel-based economies and increasing urbanization 
exacerbated the problem. By the turn of the twentieth century, there was a broad awareness of air 
pollution’s ill effects, but there was little scientific evidence of causal mechanisms to explain the 
phenomenon. In the mid-twentieth century, a series of concentrated urban air pollution episodes 
(including ones in Belgium in 1930, Pennsylvania in 1948, and London in 1952) resulted in 
increased morbidity and mortality, dramatically demonstrating the acute effects of outdoor air 
pollution[2]. These episodes spurred scientific interest in ambient air pollution, resulting in 
studies that laid the groundwork for modern air pollution science[2-7]. The second half of the 



 
2 

twentieth century saw the rapid growth in laboratory, clinical, and epidemiologic research on 
ambient air pollution. 
 In the 1970s, the first large-scale studies of ambient air pollution health effects were 
initiated in the United States. The landmark CHESS (Community Health and Surveillance 
System) study was initiated by the United States Environmental Protection Agency[8], and the 
Six Cities Study was initiated by researchers at the Harvard School of Public Health[9]. With the 
continuing growth of air pollution epidemiology, researchers implemented an array of study 
designs and analyzed multiple health outcomes. Ecologic studies comparing group-level 
outcome measures across various geographic regions, or over time in a single region, were 
conducted, sometimes using routinely collected exposure and health data[10, 11]. A time-series 
re-analysis of the 1952 London Smog by Schwartz et al. demonstrated another analytical 
technique to estimate air pollution health effects from ecological data[12]; time-series analyses 
subsequently appeared in the literature with increasing frequency[13-15].  

Additional individual-level studies investigating a variety of health outcomes followed 
the landmark Harvard Six Cities study. The same researchers analyzed respiratory outcomes in 
the 24 Cities Study[16]; epidemiologists examined air pollution health effects in the large 
American Cancer Society cohort[17]; and cardiovascular outcomes were the focus of the Multi-
Ethnic Study of Atherosclerosis (MESA-Air)[18, 19]. Research has focused on a variety of 
exposure time-frames, both acute and long-term[20, 21]. Beginning in the 1960’s, a study design 
that was prominently used to analyze acute effects was the panel design, wherein a group of 
individuals (often susceptible people) were followed intensively, usually for a short time[22, 23]. 
In this dissertation I analyze data from the Fresno Asthmatic Children’s Environment Study 
(FACES), a prospective cohort study initiated in 2000 that incorporates the panel design to 
collect detailed data on individual participants. The studies mentioned above, including FACES, 
seek to advance our scientific knowledge of air pollutions health effects, to guide clinical 
practice, and to inform policy. 
 
Air pollution epidemiology and policy 
 The environmental contamination that resulted from urbanization and industrialization 
also ushered in the contemporary era of air pollution regulation[1]. The concentrated air 
pollution episodes of the mid-twentieth century helped motivate a coordinated, government-led 
drive to abate air pollution in the United States. These events, and the overall high background 
levels of air pollution in US cities in the first half of the twentieth century[24], motivated the 
passage of the Clean Air Act (CAA) in 1963, and the subsequent creation of the Environmental 
Protection Agency (EPA) in 1970. The1970 amendments to the CAA designated several “criteria 
pollutants” that had been demonstrated to be harmful to human health, and which were to be 
monitored and regulated by the states. The CAA further mandated the formulation of National 
Ambient Air Quality Standards (NAAQS) to set the levels of these criteria pollutants allowable 
to protect the public health within an adequate margin of safety. This iteration of the CAA 
created the framework that has evolved into the regulatory structure that exists in the present 
day[24]. Throughout this dissertation I make reference to these standards; Results Table 6 
presents the current NAAQS levels for pollutants of interest in FACES. 
 Air pollution research gained additional significance with the amendments to the CAA: 
the NAAQS were to be created and periodically revised to protect public health based on the 
latest scientific data. Consequently, in addition to the scientific and public health motivations for 
conducting air pollution health research, there is an audience of policy-makers that use the 
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findings of research to inform regulation. The methodological approach employed in this 
dissertation focuses on health effects associated with hypothetical environmental interventions 
that would lower air pollution levels, facilitating the translation of epidemiologic findings into 
policy. In considering what constitutes an adequate margin of safety, the CAA required that 
policy-makers to consider sensitive groups defined to include children, the elderly, and people 
suffering from chronic respiratory diseases, all of whom are especially susceptible to air 
pollution health effects. Thus, the regulatory mandate for science-based air quality criteria 
motivates air pollution epidemiology that focuses on both the general population and sensitive 
populations[25]. Children with asthma are one such sensitive population and make up the study 
sample for FACES. Subsequent sections will discuss clinical and epidemiologic features of 
childhood asthma. 
 As environmental science and policy have advanced in the decades since the passage of 
the CAA, focus has turned to defining the exposure and characterizing its effects with increasing 
sophistication. One manner in which both scientists and policymakers are moving forward with 
characterizing the environment with more complexity is the consideration of air pollution 
mixtures. While the science and the regulation of ambient air pollution have historically focused 
on single pollutants in isolation[26], in the last decade, scientists and policy-makers have been 
moving toward a more multi-pollutant framework. Amid calls for novel analytical approaches to 
the study of air pollution mixtures[26], the EPA has made multi-pollutant research a major 
component of its agenda[27, 28]. In this dissertation, I implement a technique that has heretofore 
not been applied to study air pollution mixtures, and address some of the methodological 
challenges associated with multi-pollutant analysis.  
 
Studies of mixtures in air pollution epidemiology 

The methodological challenges associated with conducting research on air pollution 
mixtures are well-known: correlated co-pollutants result in unstable effect estimates and large 
standard errors, hindering the assignment of causality to any one exposure[29]. Differential 
measurement errors between co-pollutants also introduce complexity; research has shown that a 
better-measured benign pollutant can absorb some the effects of a correlated deleterious co-
pollutant that is poorly measured[30]. In light of these challenges, it is not surprising that most 
air pollution epidemiology and policy has historically dealt with single pollutants. In the last 
decade, researchers have increasingly attempted to overcome these challenges to estimate health 
effects for single pollutants adjusted for co-pollutants, or for multiple pollutants simultaneously 
in a mixture. Here I summarize the work to date on these topics, which I refer to broadly as 
“mixtures,” despite the differences in target parameters. 

Up to this point, researchers have employed one of several techniques to analyze air 
pollution mixtures. The most common approach has been multi-pollutant modeling in a 
generalized linear model framework, in which investigators include multiple pollutants in a 
single statistical model as independent variables[31]. Under this approach, co-pollutants are 
frequently considered potential confounders of the single main pollutant’s effect, rather than 
separate exposures of interest[32, 33]. The aim of this approach is often to determine the causal 
agent by estimating the effects of one pollutant, controlling for another. The level of inference 
for research questions of this type is the individual pollutant (e.g., ozone[33] or particulate 
matter[32]) rather than the mixture itself.  Researchers have employed various techniques to 
estimate health effects of an index pollutant conditional on levels of one or more co-pollutants, 
including hierarchical models[32] and matching in a case-crossover design[34]. This analytical 
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approach—estimating health effects for a change in one pollutant while controlling for a 
correlated co-pollutant—is a reference that I return to throughout the Results and Discussion 
sections, for the purpose of comparison to standard practice. 

Another established method to the study of mixtures is source apportionment. In this 
approach, investigators use factor analysis or similar techniques to generate composite variables 
that combine observed environmental variables[35, 36]. These factors are then assigned sources 
based on factor loadings (e.g., crustal materials factor, coal combustion factor), and health effects 
are regressed on the factors as exposures, in order to estimate health effects corresponding to the 
putative underlying source. This source-based framework is concerned with identifying pollution 
from various emissions categories and estimating health effects that correspond to the various 
categories. Thus, in contrast with the multi-pollutant modeling approach, the level of inference in 
this approach is the source rather than the single pollutant.  

These disparate approaches reflect not only different methodologies, but also different 
research questions and levels of inquiry. Some research, including most multi-pollutant 
modeling, focuses on the effects of individual pollutants in the context of co-pollutants, while 
source apportionment characterizes the health effects of emissions sources.  There is still 
relatively little research in this emerging literature that is focused on the mixture itself as the unit 
of analysis. In this dissertation, I implement a statistical method from the causal inference 
literature to estimate the effects of ambient air pollution, as single pollutants and in a two-
pollutant mixture. This approach enables the estimation of effects that correspond to the mixture 
itself, allowing multiple pollutants to vary in the mixture, rather than holding one constant. I also 
analyze the joint distribution of the co-pollutants in order to evaluate the validity of the health 
effects estimated in each model, and the extent to which they correspond to real-world effects of 
interest.  
 
Epidemiology and clinical features of childhood asthma 
 As a sensitive subgroup, children with asthma are of particular interest to researchers and 
regulators when studying the health effects of air pollution. Health effects among this subgroup 
have become increasingly important at the population level as childhood asthma has reached an 
unprecedented prevalence in developed societies in recent decades. The prevalence increased 
dramatically in the United States in the 1980s, reaching a plateau in the late 1990s[37, 38], with 
similar trends in much of the developed world[39]. Asthma is now the most common chronic 
health problem affecting American children, with an estimated prevalence of 9.1%[40, 41]. 
Symptoms and management of asthma impede a child’s performance in school, engagement in 
physical activity, and ability to sleep. Asthma is also the most prevalent cause of childhood 
disability in the US, and exacts a high social and economic toll in terms of restricted activity, 
school days missed, physician visits, and hospitalizations[42].  

The contemporary clinical definition of asthma is characterized by reversible airflow 
obstruction, airway inflammation, and increased bronchial reactivity[43]. The classical 
presentation of asthma involves recurrent exacerbations characterized by chest tightness, 
wheezing, and coughing in response to a variety of stimuli[43]. Although these symptoms make 
up the basis of the diagnostic description of asthma, the phenotypes of the disease vary 
considerably with regard to age at onset, symptoms, triggers of exacerbation, and severity [44, 
45]. The clinical characteristics of asthma are further complicated by the fact that asthma may 
develop at various stages of childhood or adulthood, and may worsen or attenuate over the 
lifetime of the patient[46, 47]. 
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 Asthma’s large toll on population health has motivated an increased focus on the 
disease’s etiology. Epidemiologic research on asthma etiology focuses on both 1) identifying 
factors that cause the onset of asthma among healthy people, and 2) identifying factors that affect 
prognosis (e.g., precipitate exacerbations or worsen symptoms) among subjects that already have 
asthma[39]. FACES focuses on research questions in the latter category, investigating the factors 
that affect respiratory health among children with asthma. Studies of disease progression and 
prognosis among asthmatics can analyze various outcomes: asthma-related healthcare utilization, 
symptoms (e.g., wheeze, cough) and pulmonary function as measured by spirometry. 
 Exacerbations and symptoms are often elicited by triggers, and an asthmatic child’s 
response to triggers depends on factors such as age, use of controller and rescue medications, and 
atopy (the tendency to mount IgE-type responses to environmental allergens, commonly assayed 
through skin-prick testing[48]). Known triggers for asthma exacerbation include allergens, viral 
infections, exercise, tobacco smoke, and air pollution[49]. As a ubiquitous and involuntary 
exposure with great potential population health impact[50], ambient air pollution receives much 
scientific attention in asthma epidemiology. In this dissertation I examine this topic, analyzing 
the effects of ambient air pollution in children with asthma using an approach that estimates 
policy-relevant effects. 
 
Air pollution health effects among children with asthma: Study designs and methodological 
issues 
 There is broad evidence that ambient air pollution aggravates symptoms and worsens 
pulmonary function in people with asthma[51]. One study design that has provided evidence of 
this effect is the ecological study, frequently coupled with time-series analysis. Investigators 
using this approach have analyzed how ambient levels of air pollution affect an ecologic 
outcome (e.g., asthma-related emergency room visits) over time. Several of the early time-series 
studies on children with asthma focused on the criteria pollutant ozone, a secondary pollutant 
generated by photochemical reactions. These studies analyzed hospitalization data from the U.S. 
and Mexico in the 1980s and 1990s and found that increased ozone concentration predicted 
higher respiratory hospitalization rates[52-54]. In addition to ozone, time series research among 
children with asthma has found evidence for ill health effects of PM10 (particulate matter with 
diameter less than 10 μm)[54] and SO2[53]. The coefficient for a single unit change in air 
pollution concentration (e.g., 1 part per billion [ppb] or 1 µg/m3) does not generally have an 
intuitive interpretation, and it varies according to the scale and distribution of each pollutant. 
Accordingly, the authors in these and other studies present effect estimates associated with some 
meaningful change in pollution concentration, for example 20 ppb [54] and 50 ppb of ozone[53]. 

Panel studies are another design to analyze health effects among children with asthma, 
that while more expensive than many ecologic analyses, permit more nuanced analysis of a 
variety of respiratory outcomes. In this design, subjects with asthma are monitored intensively, 
often answering symptom questions and performing spirometric forced expiratory maneuvers on 
a daily basis. The demanding data collection protocol required of participants and study staff 
cause panel studies to be shorter in duration, but the fine-grained health data generated by these 
studies enable analysis of pulmonary function and symptom outcomes that do not rise to the 
level of healthcare utilization[23]. FACES, which provides the data that I analyze in this 
dissertation, incorporates elements of panel studies into its longitudinal design.  

The earliest panel studies of subjects with asthma from the 1960s yielded mixed results; 
these studies largely relied on simple correlation analyses that did not control for potential 
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confounders[22, 55]. The 1970s brought additional panel studies with more advanced methods, 
including multivariable regression, and found more consistent effects of ambient air pollution. 
Many of these studies focused on particulate matter (PM) and sulfur oxides (SOx), which are 
regulated by the NAAQS. Cohen et al. studied a panel of asthmatics residing in close proximity 
to a coal-fired power plant and found an increased asthma attack rate associated with PM and 
SOX, even after controlling for various weather variables[56]. Data from the same time period in 
Los Angeles indicated that days of high particulate and oxidant air pollution predicted asthma 
attacks; the authors of this study used Poisson regression to control for day of the week, previous 
asthma attack, and several meteorological variables[21]. These early studies analyzed respiratory 
outcomes collected on individuals and ambient exposure data collected from central monitors, 
assigning the same air pollution exposure to all subjects on a given day. This mixed-level 
analysis, called a semi-individual study[57], exploits temporal but not spatial variability in 
exposure and is still in use today. The present study uses this approach. 
 In subsequent decades, panel studies have examined pulmonary function and symptom 
outcomes other than asthma attacks. Ostro et al. enrolled a panel in Los Angeles made up of 
African-American children (a group with an increased prevalence of asthma), and analyzed 
respiratory symptom outcomes such as wheeze, cough, and shortness of breath during the 
summer[58]. Using multiple analytical approaches, the authors consistently found that PM10 and 
ozone, separately analyzed, predicted shortness of breath. Peters et al. analyzed the effects of 
wintertime PM and SO2 on peak expiratory flow in a panel of asthmatic children in Eastern 
Europe, finding significant effects for both pollutants[59]. In a panel study following children 
with asthma in Mexico City, Romieu and colleagues found associations between ambient ozone 
and outcomes including cough, phlegm, and peak flow[60]. Numerous panel studies on the acute 
health effects of ambient air pollution in children with asthma have been conducted since this 
time; they have been reviewed in meta-analyses by Ward and Ayres[23] and Weinmayr and 
colleagues[61]. Subsequent sections will describe more studies in detail, focusing on those that 
studied the pollutants analyzed in this dissertation.  
 Most ambient air pollution studies are characterized by complex periodicity and trends in 
the exposure variables, and in the case of multiple pollutant exposures, correlation between co-
pollutants. Ambient air pollution variables are often collinear, which complicates assignment of 
air pollution health effects to a single pollutant[62, 63]. The periodicity in exposures may operate 
at multiple levels, including the season and day of the week. Investigators often deal with these 
time-related issues by using time-series methods[64, 65], by including time-related variables in 
statistical models[53, 66, 67], through restriction (e.g., season-restricted analyses[58, 59, 68]), or 
some combination of these approaches. In addition to these exposure-related issues that affect 
analysis of most ambient air pollution data, the use of the panel design introduces additional 
methodological complexity through the collection of repeated measures on study participants. 
This data structure requires that the investigator account for autocorrelation in the outcome data 
during the analysis phase, which is often accomplished through the use of generalized estimated 
equations[67, 69, 70] or mixed models[66, 71, 72]. The analytical approach employed in this 
dissertation incorporates various elements of these approaches, including season-restriction and 
consideration of temporal candidates, to account for the methodological challenges posed by 
temporal issues and repeated measurements. 
 
 Review of acute effects of ambient NO2 on childhood asthma outcomes 
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 Nitrogen dioxide (NO2) is another of the criteria pollutants that has been studied as a 
health threat to children with asthma. Ambient NO2 is largely a secondary pollutant arising from 
oxidation of NO, which is emitted during combustion. Outdoor NO2 in urban areas arises mainly 
from automobile tailpipe emissions, and is considered a good marker for traffic[61, 73]. Much 
epidemiologic research has been conducted on the acute effects of this pollutant among 
asthmatic children in Europe, North America, and Australia. The analyses in this dissertation will 
estimate NO2 effects in the FACES data, analyzing the pollutant’s health effects both 
independently and in a mixture. 
 The research on NO2 effects in children with asthma has analyzed general respiratory 
symptoms[72, 74], as well as specific symptoms such as wheeze[65] and cough[75]. The 
pulmonary function parameters analyzed as outcomes for NO2 include peak expiratory flow 
(PEF or peak flow) [67, 72], forced expiratory volume in 1 second (FEV1)[71], and most recently 
forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75)[76]. These 
studies have yielded mixed results, finding that NO2 significantly increases symptoms among 
children with asthma, but has no significant effect on pulmonary function as measured by peak 
flow, in contrast to ozone and PM[67, 72, 74, 75]. Weinmayr et al. conducted a meta-analysis 
summarizing short-term NO2 effects on symptoms and PEF among children with asthma, 
standardizing the NO2 effects across all studies as a 10 µg/m3 change[61]. They calculated a 
significant effect for asthma symptoms overall, but not for cough or peak flow. Interpretation of 
these findings were complicated by a large number of null results from a single European multi-
center study[77], and in a sensitivity analysis the authors found that significant pooled effects for 
cough but not PEF when these studies were excluded. 
 Few studies to date have examined the acute effects of ambient NO2 on pulmonary 
function outcomes other than PEF. Delfino et al. found a borderline significant association 
between an interquartile increase in outdoor NO2 and FEV1, an association which became null 
when an individual measurement of PM was included in the model[71]. More recently, Liu and 
colleagues analyzed the outcome FEF25-75 in addition to FEV1 and found a significant association 
between NO2 and FEF25-75, but not FEV1. 
 
Review of acute effects of ambient PM10-2.5 and PM10 on childhood asthma outcomes 
 Air pollution science delineates particulate matter by the aerodynamic diameter of the 
particle, in categories corresponding to different health effects and combustion categories[78]. 
PM10– a physiologically based category approximating thoracic particles, those that penetrate to 
the thorax—is defined as the fraction of particulate air pollution that has aerodynamic diameter 
less than 10 µm, and for which particles with aerodynamic diameter equal to 10 µm are collected 
with 50% efficiency. PM2.5 has an analogous definition, and corresponds to particles from 
combustion sources (and is similar to the respirable fraction). PM10-2.5, commonly referred to as 
the “coarse fraction,” is made up of the large-diameter particles of PM10 minus the mass from 
PM2.5, or fine fraction. 
 The health effects of ambient PM10 on children with asthma have been well 
documented[79]. In a meta-analysis of PM health effects among children with asthma, Ward and 
Ayres found small but significant pooled effect estimates for ambient PM10 on peak flow, 
respiratory symptoms, and cough, though there was evidence of publication bias[23]. The results 
of a meta-analysis by Weinmayr et al. found similar results for PM10: a 10 µg/m3 increase in 
PM10 significantly increased respiratory symptoms, and was associated with PEF and cough at 
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borderline significance[61]. The authors noted that PM10 effects were greater in areas with higher 
NO2 concentrations.  
 In contrast to the well-documented health effects of PM10 and PM2.5, health effects of 
ambient PM10-2.5 have received less attention in epidemiologic research until recently. PM10-2.5, 
which is dominated by crustal materials, particles generated from mechanical processes, and 
metals[80], has been demonstrated to have a significant association with respiratory 
hospitalizations in a number of studies. In some cases the association with was stronger for 
ambient PM10-2.5 than for PM2.5[81, 82], and in some cases the two were of similar magnitude[83, 
84]. To date, ambient PM10-2.5 has not been the focus of panel studies studying symptoms and 
pulmonary function among asthmatic children. This probably owes to the increasing appreciation 
of the distinction between PM10 and PM10-2.5, and the relatively recent scientific focus on 
measuring and analyzing the coarse fraction separate from fine particles[85]. 
 
Causal inference methods in epidemiology 
 Epidemiologists and other non-laboratory scientists have long strived to implement 
analytical techniques that estimate causal effects from observational data, rather than 
associations that are of less scientific interest. In the 1970s, Rubin et al. introduced a causal 
framework for analysis of observational data, wherein such observational study designs are 
considered randomized controlled trials with “broken randomization.”[86] Building upon this 
concept, a body of statistical techniques that focus on causal effect estimation has been 
introduced into the epidemiology literature in the last decade. This literature often makes 
reference to the “ideal experiment,” a hypothetical study design that would enable unbiased 
causal inference[87]. The requirements of this ideal experiment are more stringent than any 
randomized controlled trial that a scientist could empirically conduct, requiring each participant 
to be observed under the same conditions, at the same time, under the various experimental 
conditions that are of interest. 

These statistical approaches for causal effect estimation, henceforth called “causal 
inference methods,” build on the concept of the ideal experiment by encouraging the investigator 
to define the specific ideal experiment underlying any given research question. The causal 
inference literature provides several approaches to estimate effects that are more causal in nature 
from observational data. The causal interpretation of parameter estimates relies on several 
assumptions relating to causality, which will be discussed in detail the Methods section. One 
assumption in particular—the positivity assumption—is a crucial concept that will inform the 
present analyses and therefore is elaborated on in a subsequent section.  

The framework for causal inference methods in epidemiology is laid out in Robins’ 2000 
paper on Marginal Structural Models (MSMs), which focuses on the Inverse Probability of 
Treatment Weighting (IPTW) estimator[88]. Subsequent work has introduced additional causal 
inference estimators to the epidemiology literature, including g-computation (first described by 
Robins[89], and subsequently elaborated on in the epidemiology literature[90, 91]). This paper 
will employ g-computation to estimate the parameters of a Population Intervention Model in a 
way that is intervention-relevant, as demonstrated by Ahern and colleagues[91].  

The last decade has seen epidemiologists implement causal inference methods with 
increasing frequency across a variety of subject matter domains.  Causal inference methods are 
characterized by a focus on marginal effect estimation, wherein the effects of exposures are 
measured across an entire sample, not conditional on covariates. By using methods from the 
causal inference literature, a researcher is able to estimate population-level effect parameters that 
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correspond to hypothetical interventions[91], which is particularly relevant to policy-related 
fields such as air pollution. The use of causal inference methods, along with Directed Acyclic 
Graphs[92, 93], has brought to epidemiology new tools to explicitly define research questions, to 
focus on estimating parameters of a priori interest, and to justify analytical decisions by referring 
to long-standing epidemiologic concepts such as confounding and selection bias. Another 
convention in the causal inference literature is to explicitly state assumptions and evaluate the 
extent to which they are met or violated in a given analysis (though not all of the causal 
assumptions are distinct from the assumptions of standard epidemiologic analysis). 
 
The positivity assumption and parameter identifiability 
 One assumption for causal inference is the positivity assumption[94], also referred to as 
the Experimental Treatment Assignment assumption[95]. In a simple binary exposure setting, 
this assumption requires that there be both exposed and unexposed subjects in every stratum of 
the data, with strata defined conditional on the confounders. Intuitively, the estimation of 
exposure effects requires the comparison of exposed and exposed subjects; the positivity 
assumption formalizes this precept across the data space. Violations of the positivity assumption 
(referred to as nonpositivity) can be categorized as deterministic or random[96]. Nonpositivity is 
deterministic if some subgroup of the data is structurally prevented from ever receiving one level 
of the exposure; for example women will never be exposed to prostate cancer screening so this 
exposure’s effect can never be estimated in this stratum even at an infinitely large sample size. 
Random nonpositivity occurs when some level of exposure is unobserved in a stratum of the data 
by chance rather than by design, and often results from sparse data due to small sample size, a 
large set of confounders, or the continuous coding of confounders. Random nonpositivity may 
pose less of a challenge to valid estimation if this nonpositivity is “surrounded” by regions of 
positivity and requires interpolation rather than extrapolation beyond the observed data[96].  
 The discussion of the positivity assumption in epidemiology has become widespread only 
recently, in comparison with assumptions of model specification and confounder control, and 
investigators have proposed multiple approaches to diagnosing and addressing nonpositivity[95-
97]. The unifying message that emerges is the importance of examining exposure distribution 
across levels of confounders in the data. Violations in the positivity assumption compromise the 
identifiability of parameters and can bias estimation[97]. Identifiability, a concept defined 
decades ago in the social sciences[98, 99] and epidemiology[100], describes the extent to which 
parameters can be estimated given a particular dataset. In addition to nonpositivity, effects may 
be non-identified or poorly identified due to insufficient confounder control[97], or extrapolation 
beyond the observed data[99]. The latter problem, wherein statistical estimation is based upon 
cells with no data, is another example of data sparsity that hinders valid estimation of effects due 
to non-identifiable parameters. Another term to describe this sparsity is a lack of “support” in the 
data, or the parameter being “off-support” in the dataset[101, 102]. The analyses in this 
dissertation will focus on the positivity of single pollutants across levels of the confounders and 
co-pollutants (in the case of the multi-pollutant model), in order to evaluate the extent to which 
various parameters are identified in the observed data. 
 
Specific aims and rationale 

In this dissertation, I apply causal inference techniques to estimate marginal effects 
associated with hypothetical population interventions that involve lowering levels of ambient air 
pollution. In the first analysis, I analyze the effects of ambient summertime NO2 on FEF25-75 in a 
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single-pollutant approach that demonstrates the methodological approach (the Population 
Intervention Model), and also enables comparison to standard practice. NO2 is the focus because 
though there is evidence for its health effects among children with asthma, the evidence is mixed 
and is relatively scant for pulmonary function outcomes other than FEV1. I selected FEF25-75 as 
the outcome because it has not been as widely studied as FEV1, and there is evidence that it is a 
better proxy for function in small airways, which are affected in asthma[103]. Throughout these 
analyses I use central-site exposure data, assigning all subjects on a given study day the same 
values of NO2 and co-pollutant. 

Ambient PM10-2.5 is analyzed throughout as a summertime pollutant of secondary interest, 
both in a single-pollutant PM10-2.5 analysis, and in a mixture analysis. The health effects of PM10-

2.5 among children with asthma are still not well characterized. For the multi-pollutant mixture 
analysis, I extend the Population Intervention Model framework demonstrated in the single-
pollutant analyses to a two-pollutant summer analysis of ambient NO2 and PM10-2.5, estimating 
health effects associated with an intervention that dynamically alters levels of one or both 
pollutants. In this two-pollutant analysis, I estimate the effects of lowering levels of one co-
pollutant while “controlling for” the other (i.e., holding it at observed levels), as well as the 
effects of a joint intervention that decreases levels of both pollutants. Both ambient NO2 and 
PM10-2.5 are analyzed as 24-hour average concentrations with lag 0 (i.e., the exposure period the 
day before outcome measurement), in order to examine individual and joint acute affects over 
the same time period. This dissertation contributes to both subject matter knowledge and applied 
methodology, but the goal is not to perform an exhaustive examination of the lag structure and 
exposure timing. 

The analysis is restricted to the summer months to allow for the likely scenario that the 
nature of the correlation between the pollutants, and possibly their effects, varies by season. In 
addition to estimating health effects for these single- and multi-pollutant exposure regimens, a 
major focus of this dissertation is the evaluation of all treatment regimens with regard to 
concerns of parameter identifiability and positivity.
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II. Methods 
 
 I begin by reviewing the methodological foundation of the causal inference approach to 
effect estimation, then focus specifically on the g-computation estimator and the Population 
Intervention Model. After an explanation of the study population and data collection methods, I 
introduce the mechanics of this methodological approach with the single-pollutant NO2 analysis. 
I subsequently extend this description to the single-pollutant PM10-2.5 analysis, and into the multi-
pollutant setting for the estimation of NO2/PM10-2.5 mixture effects. I describe the details of 
confounder selection, model fitting, parameter estimation, and statistical inference for each 
exposure regimen analyzed.  
 
The counterfactual framework and statistical techniques for causal inference from observational 
data 

Causal inference methods can be understood and implemented through the use of the 
counterfactual framework. Introduced in the mid-twentieth century[1, 2], the counterfactual 
framework posits the existence of unobserved outcomes corresponding to theoretical unobserved 
exposures, in addition to the observed data that are collected in any given dataset. These 
unobserved outcomes are called “counterfactual” because they describe the outcome that would 
have occurred if, contrary to fact, a person had experienced some exposure that she did not. 
Because it is impossible to observe each study participant under all possible treatment or 
exposure regimens (words that I use interchangeably), the data that would have occurred under 
alternate exposure scenarios can be considered missing data, whose absence prevents the 
straightforward estimation of unbiased causal effects. The data that an investigator collects and 
analyzes are thus considered the “observed data,” while the entire set of counterfactual exposures 
and outcomes (some observed and some unobserved) that would enable causal effect estimation 
is called the “full data.” Methods for causal inference can use the existence of counterfactuals 
(i.e., the entire set of possible outcomes) to enable unbiased estimation of marginal causal 
effects. 

The notation commonly used in the causal inference literature describes the different 
variables of the dataset and delineates observed exposures and outcomes from counterfactual 
exposures and outcomes, both observed and unobserved. In this discussion, Y denotes the 
random variable for outcome and A denotes the random variable for exposure (multiple exposure 
variables can be indexed as A1, A2, etc.). W denotes the vector of confounding variables for 
estimating the effect of A on Y; individual confounders may also be indexed as W1, W2, etc. In 
contrast to the actual outcome Y which is in the observed data, Ya denotes the counterfactual 
outcome when exposure is set to the level a (or A = a). Thus, in the instance of a binary 
treatment variable (A = {0, 1}), the set of potential counterfactual outcomes is described as Ya = 
{Y0, Y1}, corresponding to untreated and treated, respectively. Throughout this discussion, I use a 
simplified subject matter example from the present analysis to anchor the notation and concepts 
in a real-world data setting. For this heuristic, I use NO2 as the example of exposure (A; binary, 
dichotomized at the median level) and FEF25-75 as the example of outcome (Y; continuous, units 
of liters/second). Not all of the parameters that I describe in this theoretical discussion will 
actually be estimated in the analysis; most are presented for didactic purposes only. There is one 
example confounder, age at asthma diagnosis (W; coded as binary, >2 years old or ≤2 years old). 
In order to simplify the demonstration, I will assume that a very simple model specification is a 
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good fit to this hypothetical research question and dataset, leaving aside all of the model-fitting 
concerns that should be considered with actual data: 

 
 WAWAYE **),|( 210 ααα ++=   (1) 
 

The counterfactual framework defines causal effects for both individual- and population-
level parameters[3]. The individual causal effect on the absolute scale is defined as: 

 
 Y1 – Y0 (2) 
 
This parameter corresponds to the individual-level ideal experiment discussed in the Background 
chapter, and cannot be estimated from observed data due to missing data: one of the 
counterfactual outcomes will be necessarily be unobserved. More concretely, each individual can 
be exposed only to either NO2 above the median (corresponding to the outcome Y1) or NO2 
below the median (corresponding to the outcome Y0) in a given time period; therefore the 
individual causal effect (Y1 – Y0) cannot be estimated.  

In contrast, the population-level causal effect on the absolute scale is defined as:  
 

 ][][ 01 YEYE −  (3) 
 
This parameter corresponds to the difference between the mean counterfactual outcome when the 
entire population is exposed versus unexposed. Using the simple subject matter example, this is 
defined as the difference between the mean FEF25-75 level when the entire sample is exposed to 
NO2 above and below the median. Most conventional statistical techniques estimate the 
association between exposure and outcome by calculating: 
 
 E[Y | A=1] – E[Y | A=0] (4) 
 
This approach estimates a conditional association, comparing the mean outcome among the 
exposed to the mean outcome among the unexposed. Such an approach assumes that the two 
groups are exchangeable. This contrasts with the marginal effect estimate ][][ 01 YEYE − , which 
does not compare outcome levels among subgroups of the observed data, but rather uses the 
hypothetical full data to estimate an effect across the entire sample. 

The discussion of causal effects in the previous paragraph assumed that the effect of A on 
Y was not confounded; such a situation is uncommon in observational data. When considering 
the role of confounding variables in effect estimation, the contrast between marginal and 
conditional effects becomes more pronounced. A traditional statistical approach conditions on 
the confounding variables W, often by including them as independent variables in a multivariable 
regression model that estimates the exposure/outcome association. The associations estimated 
through this approach are conditional on W in addition to A:  

 
 E[Y | A=1, W=w] – E[Y | A=0, W=w] (5) 
 
In the simple subject matter example, this parameter compares the mean FEF25-75 level among 
subjects exposed to NO2 above and below the median, within strata of the confounder age at 
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asthma diagnosis. Thus, the NO2/FEF25-75 association is conditional on levels of the exposure and 
the confounder.  

In addition to estimating the treatment/outcome association within strata of the 
confounders, under this approach the regression model estimates the effect of confounding 
variables whose effects are not of interest. In the subject matter example, the investigator’s 
model will have estimated the effects of age at asthma diagnosis (represented by the coefficient 
α2 in model 1 above) in addition to the effects of NO2 (α1 in model 1 above). In reality, only the 
NO2 effect is a parameter of interest; the effect of age at asthma diagnosis can be referred to as a 
nuisance parameter. In the causal inference framework, confounders are considered to be 
nuisance variables, and their confounding effects are controlled at different stages in the analysis. 
These nuisance variables are modeled in nuisance models that precede the final model that 
estimates the effect of treatment A. The specific nuisance models employed in this study will be 
discussed in a subsequent section. This approach to confounder control and marginal effect 
estimation estimates the following observed-data parameter, averaged across strata of the 
confounders W:  

 
 EW[E(Y | A=1, W=w) – E(Y | A=0, W=w)] (6) 
 
By making explicit references to causal assumptions, this parameter of the observed data 
estimates the total effect parameter of the full data, defined in equation 2: ][][ 01 YEYE − .[4] 
When the researcher is concerned with effect modification, conditional effects may also be 
estimated within sub-groups of interest[5].  

The causal inference framework relies on assumptions regarding the data structure and 
the nature of associations between variables. These causal assumptions are formally encoded in 
the causal inference framework, but most of them correspond to assumptions and considerations 
from traditional statistical and epidemiological analysis. Causal inference relies on the positivity 
of experimental treatment assignment assumption, discussed at length in the Background 
chapter. Briefly, the positivity assumption requires that there be a non-zero probability of each 
treatment regimen within all subgroups for which the effect of treatment is being assessed[6, 7]. 
This is analogous to the caution against extrapolating beyond the observed data in a traditional 
regression framework, and is related to the concepts of data support and parameter 
identifiability[8-10]. Positivity is of particular concern when the set of confounders or co-
exposures is high-dimensional (for example, containing a large number of variables or 
continuous variables)[7, 11], as is often the case with air pollution mixtures.  

The causal inference framework assumes no unmeasured confounding for unbiased 
estimation, which is also a tenet of standard epidemiological analysis[12].Time-ordering of 
certain variables (e.g., A occurs before Y) is also required, as is correct model specification. In 
causal inference approaches, the investigator assumes that the nuisance model(s) are correctly 
specified, in addition to the effect model if a parametric approach is used to estimate the 
treatment effect (in contrast with approaches that calculate effects from the full data without an 
additional model, e.g., a simple risk difference). The causal inference framework further assumes 
the existence of counterfactuals and the consistency of counterfactuals[13]. The consistency 
assumption, which has traditionally received less attention in epidemiology, states that the 
observed outcome is equal to the counterfactual outcome that would have occurred given the 
observed treatment, regardless of the route of treatment administration[14]. In this air pollution 



 
20 

subject matter, one practical assumption implied by the consistency assumption is that the effect 
of lowering a pollutant concentration is the same regardless of the mechanism used to lower it.  
 
The g-computation estimator 
 Among the estimators for causal inference, the Inverse Probability of Treatment 
Weighting (IPTW) estimator is the most common in published analyses in the epidemiology 
literature[15-17], and its properties have been more widely discussed in epidemiology[6, 18, 19]. 
IPTW is an inverse-weighted regression approach that estimates marginal effects from the full 
data through knowledge of subject’s probability of being exposed (Pr(A=1 | W)). While this 
technique has appealing properties in dealing with time-dependent confounding for longitudinal 
treatment regimens (see [17, 20, 21]), the g-computation estimator has been proposed as a 
technique for estimating population-level effects corresponding to hypothetical 
interventions[22], and is being implemented with increasing frequency in epidemiology[23-25]. 
The use of g-computation here enabled the analysis of pollutants as continuous variables, and 
also enabled parameter estimation for a dynamic treatment regimen (explained in a subsequent 
section). 

The first step of g-computation is to fit a regression of the outcome on the exposure and 
relevant covariates, using the observed dataset. This regression model is called the “Q-model” in 
the context of g-computation. The Q-model is not conceptually different from a traditional 
regression of Y on A and W. In a traditional regression approach such as maximum likelihood 
estimation, this model would be the final step of the estimation process, and the coefficient for A 
would be presented as the exposure/outcome association. The Q-model differs from a traditional 
regression model in that the Q-model is a nuisance model that estimates nuisance parameters in 
addition to parameters of interest. In contrast with a traditional regression framework, fitting this 
model is not the last step of effect estimation; the Q-model is applied to estimate effects in a later 
stage of analysis.  

For g-computation to estimate an unbiased exposure effect, the Q-model must be 
correctly specified. Once the investigator fits the model, the Q-model is used to predict 
counterfactual outcomes for each observation under each exposure regimen that corresponds to 
the research question. For example, in order to calculate the marginal total effects parameter 

][][ 01 YEYE − , the investigator plugs in both a=1 and a=0 into the Q-model to obtain a predicted 
outcome under these two settings. The investigator computes Y1 and Y0 for all subjects in the 
observed dataset, generating the hypothetical full dataset that is free of confounding. Thus, the 
investigator has resolved the missing data problem and, assuming that the causal assumptions 
hold, can estimate marginal causal effects. To illustrate this process using the simple subject 
matter example, the investigator plugs in both exposures—NO2 exposure below the median level 
and NO2 exposure above the median level (a=0 and a=1, respectively)— into the Q-model 
described in equation 1 ( WAWAYE **),|( 210 ααα ++= ). This generates two counterfactual 
FEF25-75 values for each subject, corresponding to high and low NO2 exposures (Y1 and Y0, 
respectively), regardless of the actual exposure he received. Though the exposure is toggled 
between both exposures for each subject, the level of the confounder remains at its observed 
level (W=w). 

Having generated the full data with g-computation, the investigator may estimate the 
marginal effect of treatment using a number of approaches including the non-parametric 
calculation of a risk difference, or alternatively the implementation of an MSM. The MSM is a 
common approach to causal effect estimation in epidemiology[15, 16, 26], yielding marginal 
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effect estimates. These analyses are most readily implemented with binary exposure variables, 
and the effect estimate is interpreted as the marginal effect comparing the outcome when the 
entire population is exposed versus unexposed.  
 
Population intervention parameters and policy implications 
 In addition to the total effects parameter discussed above, another type of parameter from 
the causal inference literature is the Population Intervention Parameter (PIP), which is estimated 
by the Population Intervention Model (PIM)[27]. The Population Intervention Parameter is 
analogous to a causal population attributable risk[4], describing the population-level effect of a 
hypothetical intervention that the investigator specifies in the research question. By focusing on 
relevant exposures and interventions, this approach can yield insight into the relative impact 
associated with modifiable exposures in a population. In contrast with a traditional population 
attributable risk, the PIP incorporates the causal assumptions described above and reflects a 
marginal effect estimate, averaged across strata of the population. 

In contrast with the total effects parameter that compares the mean outcome when the 
population is exposed versus unexposed ( ][][ 01 YEYE − ), a PIP compares the mean outcome 
under some hypothetical “intervention” exposure scenario to the mean outcome under the 
observed exposure scenario. The investigator selects an intervention exposure regimen, for 
example one that corresponds to a minimum realistic exposure level, or some other health-
optimizing exposure setting; the PIP is interpreted as the population-level health impact of this 
hypothetical intervention. Letting Ya denote the counterfactual outcome under this intervention 
exposure scenario, this parameter can be represented as:  

 
 ][][ aYEYE −  (7) 
 
The lowercase notation indicates that the random variable for exposure (A) is intervened upon 
and set to a level specified by the investigator’s choice of intervention (a). G-computation, 
IPTW, or other causal estimators can be used to estimate PIPs[4]. 
 Making reference to the simple subject matter example, the total effects parameter 

][][ 01 YEYE −  compares the mean outcome when everyone in the sample is exposed to NO2 
above the median level, versus when everyone in the sample is exposed to NO2 below the 
median. This corresponds to the ideal experiment (each person exposed and then unexposed), but 
in some circumstances an investigator may decide that a population attributable risk is of more 
interest. For example, in a regulatory setting, the Population Intervention Parameter 
( ][][ aYEYE − ) likely describes an effect of greater interest. One appealing characteristic of a PIP 
in this setting is that the investigator uses the observed outcome distribution in the sample as the 
baseline against which to describe a potential effect. This is an especially logical approach for 
estimating effects corresponding to a hypothetical policy, because the effects of a real-world 
intervention would depend on the baseline level of exposure in the population. I demonstrate this 
point making reference to the simple subject matter example and the National Ambient Air 
Quality Standards (NAAQS).  

An example of a parameter of regulatory interest that can be defined using a PIP is the 
effect of bringing all days with NO2 concentrations above the NAAQS level of 100 parts per 
billion (ppb; 1-hour average) into compliance with the regulation. In such a situation, the 
intervention would be defined as 100 ppb, with E[Y] defined as the observed FEF25-75 
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distribution in the dataset, and E[Ya] defined as the counterfactual FEF25-75 distribution if all days 
were brought into regulatory compliance. In a manner comparable to the Population Attributable 
Risk, the magnitude of the PIP will vary according to the prevalence of exposure. Specifically, if 
few days are above the standard level (i.e., few are observed A = 1), then the effect of a 
population intervention would be attenuated, as compared to a study period with many days out 
of compliance (i.e., observed A = 1 is more common), or as compared with the total effects 
parameter.  Other example interventions include lowering NO2 levels to the 25th percentile or the 
10th percentile of observed concentrations; the investigator determines what hypothetical 
intervention is of greatest interest (and also indentifiable in the data), and defines the Population 
Intervention Parameter accordingly. 
 
Fresno Asthmatic Children’s Environment Study 
 This project analyzes data collected in the Fresno Asthmatic Children’s Environment 
Study (FACES), a prospective longitudinal cohort study[28, 29]. FACES was designed to 
examine the acute and long-term effects of ambient air pollution on respiratory health in children 
with asthma. Fresno and neighboring city Clovis are located in California’s San Joaquin Valley, 
surrounded by major agricultural production and transportation corridors. Being a largely flat air 
basin surrounded by mountains, the topography of the region causes air pollution to be trapped in 
the San Joaquin Valley. The region is one of the most polluted air basins in the United States, 
and is characterized by high levels of ambient air pollution and regular non-attainment of 
regulatory standards[30-32].  
 Between 2000 and 2005, 315 children with asthma were recruited in Fresno and Clovis 
through school nurses, doctor’s offices, radio and print advertisements. Some asthmatic siblings 
of study participants were recruited into the study after the first year (n = 27). Eligibility 
requirements for the study were as follows: children needed to 1) be between 6 and 11 years of 
age upon recruitment, 2) have physician-diagnosed asthma that was characterized as “active” 
through the current use of medications or recent asthma symptoms or healthcare utilization, 3) 
speak English, 4) reside within 20 kilometers of the California Air Resources Board (CARB) 
monitor in Downtown Fresno for at least three months, 5) spend at least four nights a week in the 
same residence. For their children to be eligible, parents needed to 1) speak either English or 
Spanish and 2) plan to reside within the study area for at least one year. Study participants were 
followed through 2008.The Committee for the Protection of Human Subjects at the University of 
California, Berkeley approved the study protocol; written informed consent was obtained from 
parents/legal guardians for all procedures. 
 At baseline, each child and parent/legal guardian completed a field office visit and 
interview, where extensive background data were collected on medical history, residence, and 
socio-demographic factors. During this visit study personnel administered skin-prick tests on the 
children, testing them for sensitivity to several local antigens (test: MultiTest, donated by 
Lincoln Labs, Decatur, IL; antigens: Hollister-Stier, Spokane, WA). Experienced field study staff 
also trained children and parents in the use of the EasyOne portable spirometer (ndd Medical 
Technologies Inc., Zurich, Switzerland), including how to perform the forced expiratory 
maneuver and how to answer questions on symptoms and medication use that were programmed 
into the device’s interface. The EasyOne portable spirometer has been demonstrated to have 
good agreement with the gold standard for lung-function assessment, laboratory-based 
spirometry[33]. Study staff who conducted this baseline visit and instructed participants in the 
use of spirometers had been trained by pediatric pulmonologists on the proper operation of the 
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equipment. As part of the study’s compensation system, participating families were given gift 
packages upon completion of the baselines visit. These packages contained coupons worth $50 
that could be redeemed at local vendors and food establishments.  

After the initial baseline visit, participating families were followed up through periodic 
clinic visits (annual or semiannual) and semiannual phone calls. The in-person clinic visits 
allowed collection of up-to-date socio-demographic, medical, and anthropometric data on the 
children and families throughout the study period. During the clinic visits, trained study stuff 
measured standing height (in stocking feet) using a wall-mounted stadiometer. During the 
follow-up telephone calls, study personnel queried parents about potential changes in household 
or medical characteristics (e.g., changes in medication or pet ownership since the previous 
contact). 
 The pulmonary function outcome data used in this analysis come from periodic panel 
sessions during which participants performed home-based spirometry. Participating children 
completed two or three panel sessions per year, across different seasons. We based our season 
definitions upon local meteorological and air quality profile; the seasons were spring (February - 
May), summer (June - September), and winter (October - January). After study personnel 
installed new batteries and checked calibration on each portable spirometer, they dropped the 
device off at the participant’s home, along with photographic instructions on the device’s use. In 
each of these 14-day panel sessions, children performed spirometry maneuvers and answered 
questions programmed into the EasyOne spirometers about recent symptoms and medication use. 
Participants provided data twice daily during their panel sessions, the first time at 7:00 – 9:00AM 
after waking up, and again at 7:00 – 10:00PM, before going to bed. The study compensation 
program included an incentive system by which children accumulated points for performing 
these daily measurements; points could subsequently be redeemed for prizes at in-person clinic 
visits. At the beginning of the study, children were assigned to eight separate groups that 
completed panels during the same time period; therefore the periods of intensive data collection 
do not overlap between all children. These panel sessions give rise to the repeated panel structure 
of the data. 
 Pulmonary function and symptom data collected by the portable spirometers during the 
panel sessions were date- and time-stamped. After completion of panel sessions, study personnel 
picked up the devices from participants’ homes and downloaded the data stored in the devices 
into a database. In addition to a Quality Assurance (QA) algorithm programmed into the 
EasyOne spirometers, panel data were subject to rigorous QA protocols by FACES study 
personnel. Each time- and flow-volume curve was individually reviewed for acceptability, for all 
test sessions on every participant during the 14-day data-collection periods. The staff member 
reviewing the curves was trained and overseen by a pulmonologist. 
 Hourly ambient exposure and meteorological data were collected at the Fresno Supersite 
monitor in downtown Fresno. Quality-assured exposure data from the study time period were 
obtained from CARB, and daily ambient exposure levels were assigned to individual children 
from these central-site measurements. For all ambient pollution and meteorological variables, the 
same value (as measured at the central site) was assigned to all children on a given day. Once 
obtained from CARB, the ambient air pollution data underwent additional quality assurance 
checks, including comparison with nearby monitoring sites, range checks, and checks for 
consistency with historical diurnal and temporal patterns. 

NO2 concentration in parts per billion (ppb) was calculated as a 24-hour average, as was 
PM10-2.5 concentration in μg/m3. PM10-2.5 mass was calculated as the difference between PM10 
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mass and PM2.5 mass measurements (Beta–Attenuation Mass Monitors; Met One Instruments, 
Grants Pass, OR). Among the other pollutants examined in these analyses, concentrations of fine 
particles (PM2.5), elemental carbon, and aerosol nitrate (NO3) were calculated as 24-hour 
averages, while ozone was calculated as an 8-hour daily maximum concentration. Elemental 
carbon concentrations were estimated from Black Carbon[34], which was determined by 
aethalometer measurements (model AE42; Magee Scientific, Berkeley, CA) of the optical 
absorption of PM2.5 ambient aerosol at 880 nm. The NO3 content in PM2.5 was measured by the 
Rupprecht and Patashnick 8400 Continuous Nitrate Analyzer (Rupprecht and Patashnick, 
Albany, NY); measurements were adjusted for equivalency with collocated filter-based 
measurements of PM2.5 NO3 from Harvard impactors and backup filters.  
 
Single-pollutant PIM analysis of acute effects of ambient summer NO2 on pulmonary function 
Framing the research question 
 I explain the analytical approach employed in this dissertation using the single-pollutant 
NO2 analysis as an example, because the method is more clearly demonstrated with a single-
pollutant exposure regimen, and because ambient NO2 is the exposure of principal interest. This 
single-pollutant NO2 analysis focused on the acute effects of ambient NO2 on pulmonary 
function in this cohort of children with asthma during the summer months (June – September). I 
chose to focus on the spirometric parameter forced expiratory flow between 25% and 75% of 
forced vital capacity (FEF25-75). FEF25-75, measured in liters/second, has been demonstrated to be 
a more sensitive measure of obstruction in the small airways, relative to other commonly 
analyzed outcomes like FEV1, and is considered a more sensitive measure of impaired 
pulmonary function in people with asthma[35, 36]. Morning FEF25-75 was chosen over the 
evening FEF25-75 as the outcome variable to minimize the heterogeneity in activities and 
exposure that children experienced in the period immediately preceding the forced expiratory 
maneuver. Children would be expected to be sleeping prior to the morning measurement, while 
the range of activities preceding the evening measurement is more variable, including various 
activities that could increase or decrease exposure or pulmonary function. Furthermore, the 
morning measure would be more sensitive to detecting impaired pulmonary function given that 
spirometric measures are at their lowest upon awakening[37, 38].  

Acute NO2 effects were estimated using the lag 0 exposure window: the 24 hours 
preceding the morning outcome measurement (8:00AM the previous day – 8:00AM on the index 
day). Studies of acute NO2 effects often examine multiple lags and moving averages, and prior 
studies have found significant results using various exposure time-frames[39, 40]. The studies 
examining associations between ambient NO2 and respiratory symptoms have most consistently 
found associations at medium-length moving averages (two- to three-day windows), though in 
the study that specifically examine FEF25-75, Liu et al. found significant associations between 
NO2 and the outcome at shorter time-frames[41].  

The analysis was restricted to summer months, as some studies of acute health effects 
have done in the past[42-44], in light of the variations in air pollution profile, meteorology, and 
underlying respiratory health by season. This cross-season heterogeneity might pose a challenge 
the valid estimation of single-pollutant health effects, and the challenge is compounded by the 
analysis of a more complex multi-pollutant exposure regimen. 
 
Confounder selection and model-fitting 
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 To identify and control for confounding bias present in the data, I considered several 
categories of variables that might be expected to be associated with both exposure and outcome. 
Information on the measurement and variability of the exposure and outcome variables analyzed 
in this dissertation (i.e., ambient air pollution as measured at a central monitor and individual 
pulmonary function) informs the discussion of the potential sources of confounding that follows.  

There were three levels of confounding that were possibly present in this analysis; each is 
represented by a separate causal diagram. First, individual-level covariates were considered as 
potential confounders (Figure 1). Factors such as race/ethnicity and age at asthma diagnosis are 
likely to be associated with pulmonary function, but their possible association with exposure in 
this study is less obvious. In these analyses, I used central-site measurements of ambient 
pollutants as the exposure metric, variables that are characterized by temporal but not between-
person variability. Although such population-level exposure measurements would not typically 
be associated with individual characteristics, the repeated panel data structure of the FACES data 
resulted in different groups of children being observed on different study days. This data 
structure created the possibility that the central-site air pollution measurements could be 
associated with individual traits, therefore warranting their consideration as potential 
confounders (see Mann et al. for a discussion of this topic[28]).  

The second class of potential confounders were the environmental factors frequently 
considered in epidemiologic studies on the effects of ambient air pollution (Figure 2)[40, 45, 46]. 
Ecologic-level variables such as temperature and day of week (a surrogate for commuting 
patterns) may be associated with both ambient NO2 and FEF25-75, warranting their consideration 
as potential confounders.  

Calendar time, age, and other factors associated with long-term time trends were the third 
class of potential confounders considered (Figure 3). The study was conducted over the course of 
many years during which physiologic parameters of children are certain to change with age, 
including height, which a strong predictor of pulmonary function. During the nine-year study 
period air pollution levels could also reasonably be expected to change. Preliminary review of 
the data confirmed these hypothesized associations, demonstrating both a decrease in pollutants 
(our exposure of interest; arrow A in Figure 3) over the course of the study, and in an unrelated 
way, an increase in the children’s height due to the many years of follow-up (arrows B and C, 
Figure 3). Since height strongly predicts pulmonary function (our outcome of interest; arrow D 
in Figure 3), this imposed a confounding structure on the data that was difficult to model. 
Therefore, early in the analysis, I decided to do age-stratified analyses to diminish or remove the 
link between the natural growth of the children (and their pulmonary function) and any possible 
effect of changing air pollutant levels. By conditioning on child’s age, I aimed to block the 
backdoor path in the causal diagram (Figure 3, blocking the path between arrows B and C). 
 Another factor motivating the age-stratified analyses was the desire to study the effects of 
air pollution on pulmonary function in sub-samples of children that were more homogeneous 
with regard to age, stage of development, and height. Based on this subject-matter consideration 
and the age/height-related confounding, children were divided between 6 to 9 year olds, 10 – 12 
year olds, and 13 – 17 year olds for these acute effects analyses. Each stratum contained 
observations from children within a narrower age range than the entire study, which included 
children observed at ages between 6 and 17. Childhood asthma has a complicated natural history 
with age-based differences in presentation and symptoms[47-49], and this stratified analysis 
enabled estimation of more age-specific effects. The specific cut-points were chosen based on 
the distribution of the data (i.e., to ensure a large number of observations in each age group) and 
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based on subject matter considerations (i.e., splitting the pre-pubertal years from the pubertal 
years, and sub-dividing the pubertal years, which are characterized by hormonal changes that 
affect asthma prognosis[50, 51]). 
 Within each of the three age strata, I conducted parallel processes of confounder selection 
and model-fitting. All analyses were conducted using R (version 2.10.0; R Foundation for 
Statistical Computing, Vienna Austria). Based on knowledge of the subject matter and prior 
studies, the covariates considered as potential individual-level confounders were: race/ethnicity 
(African-American, white, Hispanic), asthma diagnosis at less than two years old, skin-prick test 
sensitization (positive to at least one allergen on the skin-test panel or reported history of severe 
reaction to prior allergy skin test), GINA classification of asthma severity[52] (mild-intermittent, 
mild-persistent, moderate, severe), and income (categorized in 4 groups). The potential 
environmental confounders were apparent temperature and day of week. Apparent temperature is 
a composite meteorological variable describing the perceived temperature accounting for relative 
humidity; see Basu et al. for details[53]. Use of this composite variable enabled adjustment for 
potential confounding by temperature and relative humidity collectively. I selected height-cubed 
as the proxy variable to control for potential residual confounding by calendar time that remained 
within age strata. Height-cubed was considered because any residual confounding by calendar 
time would be expected to be associated with the outcome through height (Figure 3, arrows B, C 
and D), and because height is strongly predictive of lung-function parameters[54] and also 
increases monotonically with time among this age group. I analyzed the cube of height because 
prior research has demonstrated this power of height to be most strongly predictive of 
spirometric outcomes, due to the volumetric shape of the lung[54-56]. 

The first step of model-fitting was to reduce this list of candidate covariates to a list of 
potential confounders for each age group-specific analysis. For each age group, FEF25-75 and 
NO2 were separately regressed on each of the individual candidate covariates to assess bivariate 
associations. I used the Candidate Reduction routine in the Deletion/Substitution/Addition 
package in R (version 3.1.3[57]) to fit Generalized Estimating Equations for each exposure-
covariate pair and each outcome-covariate pair, assuming independent working correlation 
structure[58]. Using the robust standard errors as a guide, those covariates that were associated 
with both exposure and outcome at the P<0.2 level were selected as confounders of the effect of 
NO2 and FEF25-75 in each age group. These confounders were considered in the fitting of the Q-
model.  

After selecting the confounding variables from the list of candidate covariates, I fit Q-
models for the effects of NO2 on FEF25-75 in each of the three age groups. While subject matter 
knowledge and empirical associations informed the selection of candidate covariates and 
confounders, there was no guidance on which model specification would be optimal for this 
research question and specific dataset[4]. In light of this, I used a flexible model-fitting 
algorithm, Deletion/Substitution/Addition, to select the optimal Q-model for each age group. The 
DSA algorithm searches the model space, considering various parameterizations including 
interaction terms and higher-order polynomials, according to the user’s specifications. The 
algorithm employs cross-validation to select the most predictive model, using the criterion of 
minimized loss function[57]. Each DSA run forced in the exposure variable and considered the 
confounders selected by dimension reduction, considering models with up to 2-way interactions 
and quadratic terms. The cross-validation was specified to run with 10 5-fold splits of the data. In 
order to ensure that the DSA algorithm was consistently selecting the same model for each age 
group, the DSA model-fitting procedure was run in 10 repetitions for each of the three age 
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groups. If the algorithm converged on the same model in at least 8 of 10 runs, then that model 
was selected as the Q-model. If the DSA algorithm did not select the same model in at least 8 of 
10 runs, then I increased the number of data splits used in cross validation by 10 until 
convergence. The model specification selected during this step served as the Q-model for the g-
computation procedure. 
 

),|( WAYE

Parameter estimation 
 For each age group, I fitted a Q-model, using linear regression to model the outcome as a 
function of the exposure and confounders ( ), with the confounders and specification 
selected by the DSA algorithm. In order to ensure that each child contributed equally to the 
regression in the presence of repeated measures (with unequal number of measurements per 
child), I ran a weighted regression. Every observation from a given child was weighted by the 
inverse number of observations contributed by the child, so that the children were weighted 
equally in the model.  

This Q-model was then used to predict the unobserved outcomes that provided the full 
data for this analysis: the counterfactual outcome under the intervention pollution profile. I 
mechanically implemented the prediction of unobserved counterfactual outcomes by generating a 
dataset in which no NO2 level exceeded the intervention level. The “intervention level” here 
refers to a hypothetical maximum NO2 cutoff that I selected in order to determine the population 
effects of reduced air pollution on pulmonary function. The selection of the NO2 intervention 
level was informed by the observed distribution of NO2 in the study sample and considerations 
of parameter identifiability. I chose the 25th percentile of NO2 across study days within each age 
group, which corresponded to 9.9 ppb for the younger age group, 9.7 ppb for the middle age 
group, and 9.1 ppb for the older age group. This intervention level was selected as one that was 
reasonable (as opposed to lowering NO2 concentration to its minimum level), and also to ensure 
that there would be support in the data to estimate health effects at the chosen level. Details of 
the single-pollutant NO2 intervention and the distribution of NO2 concentrations are provided in 
the Results section. 

In the intervention dataset, which was used to generate the Ya counterfactual outcomes, 
NO2 levels above the intervention cutoff level were reduced to the intervention level, while NO2 
levels at or below the intervention level were unchanged. For a hypothetical intervention 
designed to examine the effects of decreasing air pollution exposure, the possibility of raising 
NO2 levels for some people did not serve the question of interest, hence the NO2 measurements 
below the intervention level were unaffected. In the causal inference literature, this type of 
hypothetical treatment regimen, in which the assignment of the hypothetical exposure depends 
on the observed exposure characteristics, can be considered a dynamic treatment regimen[59]. 
The Ya intervention outcomes were predicted for each age group, using the Q-model with the 
intervention dataset, which held all covariates constant but lowered exposure levels for some 
observations. The outcome under the observed exposure distribution (E[Y]) was calculated from 
the empirically observed FEF25-75 values. 
 After generating the full data set, composed of the Y and Ya outcomes for each 
observation, I calculated a risk difference comparing the mean outcome under observed exposure 
and the mean outcome when NO2 levels were reduced to the 25th percentile: the Population 
Intervention Parameter ][][ aYEYE −  (expression 7). Weighting was also used at this stage of the 
estimation to ensure that each child was weighted equally in the calculation of the risk 
difference. Again, observations within a child were inverse-weighted by the number of 
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observations contributed per child to calculate weighted averages (both observed and 
unobserved), and a weighted risk difference.  

To generate standard errors for the effect estimates, I conducted a bootstrap of the 
weighted Q-model regression, the g-computation procedure, and the weighted risk difference 
calculation. The bootstrap procedure was conducted using resampling with replacement by child 
rather than by observation. In each bootstrap repetition, the same absolute NO2 levels (9.9 ppb, 
9.7 ppb, and 9.1 ppb) were implemented as the population intervention, rather than the 25th 
percentile of NO2 in the bootstrap-resampled population. The bootstrap was conducted with 
1,000 repetitions, and the standard errors were calculated from these repeated point estimates.  
 
Single-pollutant PM10-2.5 PIM analysis 

I applied the same approach described above to calculate a single-pollutant Population 
Intervention Parameter for the effects of ambient summer PM10-2.5 on FEF25-75. This analysis 
mirrored the single-pollutant NO2 analysis, employing the same season restriction, lag structure, 
age stratification, candidate covariates, confounder selection, Q-model fitting, weighted 
parameter estimation, and bootstrapping. The PIP can be represented in the same manner as the 
NO2 single-pollutant parameter ( ][][ aYEYE − ), but the A in this case is coarse fraction. For 
reasons that I elaborate on in the next section, the hypothetical intervention that is estimated by 
the PIP represents lowering PM10-2.5 concentrations  to approximately the 20th percentile of the 
observed distribution of coarse fraction concentrations (specifically, 16.5, 16.3 and 15.9 µg/m3 
for the younger, middle, and older age groups, respectively). Again, this corresponds to a 
parameter that is realistic and identifiable given the single-pollutant distribution of ambient 
coarse fraction. Further details of the distribution of PM10-2.5 concentrations, and the single-
pollutant PM10-2.5 intervention, are provided in the Results section. This hypothetical exposure 
scenario was plugged into the age group-specific Q-models to predict Ya for each observation 
given the single-pollutant PM10-2.5 intervention. The counterfactual outcomes and the observed 
FEF25-75 were used to calculate weighted averages (E[Ya] and E[Y], respectively), weighting each 
child equally. These averages were subsequently used to calculate the Population Intervention 
Parameter for the single-pollutant PM10-2.5 effect in each age group.   
 
PIM analysis of NO2 and PM10-2.5 mixture effects 

In order to estimate the effects of a summertime mixture of ambient NO2 and ambient 
PM10-2.5 on pulmonary function, I extended this dynamic treatment PIM procedure described 
above to a two-pollutant framework. The outcome was the same, morning FEF25-75, and I used 
the same lag structure as for the single-pollutant analyses, lag 0. The data were age-stratified into 
the same categories to estimate age-specific mixture effects, and to control for confounding by 
height/calendar time. 
 The approach to confounder control and model-fitting paralleled the process in the single-
pollutant analyses. Using the same candidate covariate list as described above, bivariate PM10-

2.5/covariate associations, NO2/covariate associations, and FEF25-75/covariate associations were 
calculated using the Candidate Reduction routine in the DSA package. Any covariate that was 
associated with the outcome and with either exposure at the P<0.2 level was considered a 
potential confounder, and was submitted as a potential predictor to the DSA algorithm. I 
implemented the DSA algorithm to determine the model specification for the two-pollutant 
mixture, forcing in both exposures as linear terms. The details of the implementation of DSA 
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were the same: 10 5-fold splits of the data, permitting up to two-way interactions and quadratic 
polynomial terms, run in sequence 10 times until at least 8 runs converged on the same model. 
 Once the confounders and model specification were selected for each age group, I fitted 
the age-specific 2-pollutant Q-models using inverse-weighted linear regression, using the same 
approach as for the single-pollutant analyses. For each age group, I then used the same Q-model 
to estimate the population-level effects of three distinct interventions on a 2-pollutant exposure 
regimen composed of NO2 and PM10-2.5. I begin by describing these three population 
interventions conceptually, and then explain the details of each. One population intervention, 
which I designate intervention A, involved lowering NO2 while holding the co-pollutant at 
observed levels. This enabled comparison to the single-pollutant NO2 PIP, in which NO2 was the 
only pollutant modeled in the exposure regimen.  Conversely, intervention B lowered PM10-2.5 
concentrations while holding NO2 concentrations at their observed levels, enabling comparison 
to the single-pollutant PM10-2.5 PIP. Both of these population interventions are analogous to the 
multi-pollutant modeling approaches common in the literature, in which multiple pollutants are 
modeled as independent variables and one pollutant coefficient is multiplied by a large exposure 
interval, while holding the co-pollutants in the model constant[40, 41, 60-62]. 
 In contrast with this approach of intervening on only one pollutant in the 2-pollutant 
exposure regimen, intervention C was to lower concentrations of both NO2 and PM10-2.5 
simultaneously. Table 1 summarizes the three 2-pollutant population interventions, and both 
single-pollutant interventions alongside each other, highlighting which pollutant(s) were 
included in the exposure regimen for each intervention, and which pollutant(s) were lowered in 
each. The specific levels that NO2 and PM10-2.5 concentrations were lowered to in the 2-pollutant 
population interventions were the same as the cutoff concentrations employed in the respective 
single-pollutant interventions. Specifically, in 2-pollutant interventions A and C, NO2 was 
lowered to 9.9 ppb, 9.7 ppb, and 9.1 ppb for the younger, middle, and older age groups 
(respectively). These are the age-group specific 25th percentile of NO2 concentrations. As in the 
single-pollutant PM10-2.5 intervention, the 2-pollutant interventions B and C involved lowering 
PM10-2.5 to 16.5, 16.3 and 15.9 µg/m3 for the younger, middle, and older age groups, respectively. 
These values correspond to approximately the 20th percentile, and were chosen for reasons of 
parameter identifiability. Toward the end of estimating two-pollutant mixture effects for which 
there was support in the data, I considered the joint exposure distribution of the two co-pollutants 
to inform the selection of PM10-2.5 intervention levels. Specifically, these PM10-2.5 intervention 
concentration cutoffs represent the median PM10-2.5 concentration on the observed 25% of study 
days that had NO2 concentrations at or below the NO2 intervention cutoff level. These same 
PM10-2.5 intervention cutoffs were used in all analyses that involved decreasing the concentration 
of coarse fraction, namely the single-pollutant PM10-2.5 intervention and 2-pollutant interventions 
B and C. In the Results section I return to these 2-pollutant parameters, explaining them in detail 
and elaborating on the issues of positivity and parameter identifiability. 
 Defining NO2 as exposure A1 and PM10-2.5 as exposure A2, the Population Intervention 
Parameter estimated by 2-pollutant intervention A can be represented as: 
 

 (8) 
 

The baseline outcome against which the intervention’s effects are being compared is still the 
weighted mean of the observed FEF25-75 outcome (E[Y]). The counterfactual outcome predicted 
by intervention A is ][

21, AaYE , which describes the mean counterfactual outcome when exposure 

][][
21, AaYEYE −
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A1 is intervened upon and lowered to intervention levels (as indicated by the lowercase a1), while 
co-pollutant A2 is held at its empirically observed levels (as indicated by the uppercase notation). 
 Conversely, the PIP estimated by 2-pollutant intervention B is: 
 

 (9) 
 

Exposure A1 is held at empirically observed levels while exposure A2 is intervened on and 
(represented by the lowercase a2). When both exposures are simultaneously intervened on and 
lowered to intervention levels under intervention C, the PIP is defined as: 
 

 (10) 
 

While the PIPs estimated by interventions A and B enabled comparison to the single-
pollutant population interventions (and to standard practice in multi-pollutant modeling), 2-
pollutant intervention C presents an approach to estimating cumulative effects for multiple 
pollutants changing simultaneously in a mixture. Interventions A and B are in the spirit of 
“controlling for” co-pollutants as confounders, i.e. estimating the effects of a single exposure 
while adjusting for a potential confounder. This is often the stated goal of multi-pollutant 
modeling in the literature[60-62]. In contrast, Intervention C treats the co-pollutants as a joint 
exposure regimen composed of two co-exposures that vary simultaneously. The exposure 
characteristics and data support will for each of these three 2-polltant interventions will be 
examined in detail in the Results section. 
 
Heuristic demonstration of exposure manipulation under the 2-pollutant intervention C 

In order to give concrete examples of how exposure is manipulated under a mixture 
intervention, Figure 4 presents a heuristic diagram explaining how intervention C would change 
NO2 and PM10-2.5 concentrations on several days depending on the observed pollution profile. 
There is a representative day to demonstrate each possibility. To simplify the demonstration, the 
figure uses NO2 and PM10-2.5 intervention cutoff levels corresponding to the entire sample of 
study days, rather than any one of the age-stratified analyses (which have similar but slightly 
varying intervention cutoff concentrations).  
 Day α represents August 2, 2003, a day with a high ambient NO2 concentration above the 
intervention cutoff level and a PM10-2.5 concentration below the cutoff level. Therefore, as Table 
2 demonstrates, intervention C decreases the NO2 concentration on day α to the cutoff level 
while leaving the PM10-2.5 concentration unaffected. Conversely, day β (June 10, 2002) is 
characterized by an ambient PM10-2.5 concentration above the intervention cutoff and a NO2 
concentration below the cutoff. Thus, intervention C decreases the PM10-2.5 concentration on day 
β while leaving the NO2 concentration unaffected. Day γ (June 14, 2001) is characterized by high 
ambient concentrations of both pollutants. Both NO2 and PM10-2.5 concentrations are above their 
respective intervention cutoff levels, so both are decreased under intervention C. The levels of 
ambient NO2 and PM10-2.5 observed on day δ (June 9, 2004) are both below their respective 
intervention cutoff levels, therefore neither concentration is altered by intervention C. 

][][
21, aaYEYE −

][][
21, aAYEYE −
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TABLES AND FIGURES. 
Table 1. Description of all analyses and exposure regimens conducted in this project. 
 

Name of analysis 
Exposure regimen Description of Intervention* 

NO2 
exposure? 

PM10-2.5 
exposure? 

NO2 lowered? PM10-2.5 lowered? 

Single-pollutant NO2     

Single-pollutant PM10-2.5     

2-pollutant intervention A    – 

2-pollutant intervention B   –  

2-pollutant intervention C     

 
*Shading indicates that the pollutant was not included in the exposure regimen; a dash indicates 
that the pollutant was included in the exposure regimen and was held at its observed levels in the 
population intervention.
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Figure 1. Causal diagram demonstrating potential confounding by individual-level factors.  
 

 
 
The casual effect of interest is the heavy arrow between ambient NO2 and pulmonary function. 
This causal diagram shows that individual level factors such as race are likely to be associated 
with the outcome (solid arrow), and may be associated with ambient NO2 due to the repeated 
panel structure of the data (dashed line). The presence of this association would bias the effect 
estimate by introducing empirical confounding. 
 
 
 
Figure 2. Causal diagram demonstrating potential confounding by environmental factors. 
 

 
 
The casual effect of interest is again the heavy arrow between ambient NO2 and pulmonary 
function. Environmental factors such as temperature are likely to be associated with ambient 
NO2 (solid arrow), and if they also predict pulmonary function (dashed arrow), then the 
exposure-outcome association will be biased due to confounding. 
 



 
33 

Figure 3. Causal diagram demonstrating potential confounding by calendar time. 
 

 
 
The casual effect of interest is again the heavy arrow between ambient NO2 and pulmonary 
function. Calendar time may introduce confounding bias into that association because pollutant 
levels changed over time, and pulmonary function also increased with time, as children aged and 
grew taller.  
 

A 

B 

C 

D 
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Figure 4. Heuristic demonstration of how pollutant concentrations change for four unique days 
given 2-pollutant population intervention C (lowering levels of both NO2 and PM10-2.5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Guide to interpreting this figure: 

• Each red dot/black circle pair represents a unique study day.  
• Open black circles represent empirically observed NO2 and PM10-2.5 concentrations on the 

study day. 
• Red dots represent the pollutant concentrations for each day under the 2-pollutant 

intervention C; the red arrows represent the change between observed and intervention 
concentrations (when applicable). 

• Hashed red lines represent the cutoff concentrations of NO2 and PM10-2.5 under 
intervention C. 

α 

 β 

γ 

δ 



 
35 

• The following table explains which pollutant concentrations change on each of the four 
example study days, given intervention C. 

 
Table 2. Explanation of which pollutant concentrations were changed* on the four example 
study days, given 2-pollutant intervention C (Figure 4). 
 
 Day α Day β Day γ Day δ 

Intervention C NO2  Observed  Observed 
PM10-2.5 Observed   Observed 

 
* A check indicates that the value of the pollutant concentration was re-assigned under 
intervention C; “observed” indicates that the pollutant concentrations remained at their observed 
levels under intervention C. 
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III. Results 
 
Characteristics of the entire sample 
 Of the 315 children recruited into the FACES study, 16 participated in baseline clinic 
visits but did not provide any panel data. As the present study examined pulmonary function data 
gathered during these panel observations, these children were not considered for analysis. Of the 
299 children who contributed any panel data, an additional 42 children did not contribute any 
panel data during the summer months (June – September) which were the focus of these 
analyses, so their pulmonary function data were not analyzed. Table 1 provides descriptive 
statistics of demographic and health characteristics at baseline for both the entire sample of 299 
children who contributed any panel data and the subset of 257 children that contributed panel 
data during summer months, whose pulmonary function data were analyzed in this study. The 
subset of 257 children analyzed in this study did not significantly differ from the entire sample of 
299 children by any of these factors (P>0.2 for all chi-square/Fisher’s Exact tests).  

Like the overall sample, the subset of 257 children was over half male, predominately 
Hispanic and white with a sizable minority of African-American children, and had a median age 
of 8 years old at enrollment. Almost a fifth of the children came from households with an annual 
income of less than $15,000, with approximately half having incomes between $15,000 - 
$50,000. Using the Global Initiative of Asthma to classify asthma severity[1], approximately 
three quarters of the children had mild-intermittent or mild-persistent cases of asthma, with the 
latter being the more common designation. The proportion of children with moderate or severe 
asthma was nearly one fourth. Just over half of the children tested positive to at least one allergen 
on the skin-test panel or had a reported history of severe reaction to prior skin tests. Over a third 
of children had been diagnosed with asthma before the age of two years old; age at asthma 
diagnosis acts as a surrogate for severity and decreased pulmonary function because most cases 
of chronic, persistent asthma begin in the first years of life[2]. 
 
Characteristics of the age-stratified sub-samples 
 I stratified the sample of 257 children by age in order to allow for the possibility of effect 
heterogeneity by age and to control for the confounding related to calendar time and height, as 
described in the Methods section. The data were divided into observations from children aged 6 
– 9 years old, children aged 10 – 12 years old, and children aged 13 – 17 years old. Stratification 
was conducted on the basis of child-days rather than children, so the same child could and did 
contribute data to multiple age categories. Table 2 enumerates the number of age categories that 
each child was observed in, and the frequency of each specific age group combination. 99 
children contributed to only one age group, with almost all of these children being observed in 
only the 6 – 9 or 10 – 12 years-old age categories. 125 children contributed to a total of two age 
categories; unsurprisingly all but two of these children were observed in two consecutive age 
categories (i.e., 6 – 9 and 10 – 12 year old, and 10 – 12 and 13 – 17 years old). 33 children were 
observed in all three age groups. 
 Table 3 presents descriptive statistics of the sub-sample of children that were observed in 
each age category. There were a total of 151 children observed as 6 – 9 year olds, 196 children as 
10 – 12 year olds, and 101 children between the ages of 13 and 17. The total number of 
observation-days contributed by children in each age group mirrored the pattern of the number of 
unique children, with the middle age group (10 – 12 years old) having the most panel-days, and 
the older age group (13 – 17) having the least. Most demographic and health characteristics did 
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not differ significantly between the three age groups (P>0.2 on chi square tests), except for skin-
test positivity and asthma diagnosis at age 2 or younger. For both of these variables, the chi 
square test statistic indicated that there were significant differences between the three groups 
(P=0.06 and P=0.05, respectively). Children observed in the older age category tended to be 
more atopic, as indicated by a higher proportion testing positive on the skin-test panel, and had a 
lower proportion diagnosed with asthma at or before age 2. The younger age group was 
characterized by younger age at asthma diagnosis and less atopy. 
 Anthropometric and pulmonary parameters of each age group are summarized in Table 4. 
Because FEF25-75 and standing height both varied within children over time and the participants 
contributed different numbers of panels and observations, Table 4 summarizes child-specific 
mean values of each variable. The mean and median values of the average height increase across 
the age groups. The same pattern is observed in mean and median values of FEF25-75, which is 
strongly predicted by height. Because age is determined by calendar year, a similar trend of 
increasing height and FEF25-75 is observed across calendar time (data not shown). Taken 
together, these data demonstrate that the outcome, FEF25-75, is associated with calendar time 
transitively through height (see also the causal diagram in the Methods section, Figure 3). 
 
Distribution of ambient air pollution concentrations during summer months 
 Table 5 presents the distribution of ambient air pollution and meteorological variables 
during summer months (June – September), as measured at the U.S. EPA Supersite monitor in 
Fresno, California. In addition to the pollutants whose health effects are being studied in these 
analyses, pollutant distributions are presented for other pollutants in order to more fully describe 
the summertime ambient air pollution mixture in Fresno during the FACES study period. 
Although the FACES study was conducted from 2000 – 2008, the first panel data were collected 
after the end of summer in 2000; therefore all descriptions of summer-specific data, including 
Table 5, apply to the years 2001 – 2008. The exposure data tables present distributions of 
environmental variables on unique study days rather than child-days (which have repeat 
exposure measurements from children observed on the same day). There were 648 unique 
summer study days on which FACES participants contributed panel data. For the purposes of 
comparison to observed pollution concentrations, Table 6 presents the regulatory standard levels 
for the relevant pollutants, as codified by the U.S. EPA’s National Ambient Air Quality 
Standards (NAAQS; primary standards are presented and discussed)[3]. 
 The median 24-hour average concentration of ambient NO2 was 12.9 ppb, with an 
interquartile range (IQR) of 7.9 ppb. Because I employed an averaging time of 24 hours and 
NAAQS regulate NO2 levels with annual and 1-hour averaging times, it is not possible to 
compare these observed concentration to regulatory standards. The ambient summer PM10-2.5 
concentration, also measured with a 24-hour averaging time, had a median of 22.0 μg/m3, with 
an IQR of 12.1 μg/m3. There is no NAAQS standard that regulates PM10-2.5.  

Ozone and PM2.5 are also part of the summertime air pollution mixture in Fresno to 
varying degrees. The median ambient ozone concentrations (maximum 8-hour average) was 72.4 
ppb, with an IQR of 21.0 ppb. Given that the 2008 NAAQS ozone standard is 75 ppb, a large 
number of summer days in Fresno exceeded the regulatory standard during the FACES study 
period. Ambient fine particulate matter with an aerodynamic diameter equal to or less than 2.5 
μm (PM2.5) had a median concentration of 10.5 μg/m3 (24-hour averaging period). While the 
maximum ambient summer PM2.5 concentration observed did exceed the NAAQS 24-hour 
standard of 35 μg/m3, the majority of days were well below the regulatory standard (75th 
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percentile concentration of PM2.5 = 13.8 μg/m3). Table 5 also presents the distributions of 
Elemental Carbon (EC) and NO3, along with apparent temperature (calculated as described by 
Basu et al.[4]). 
 
Trends and patterns in ambient air pollution concentrations 
 Tables 7 and 8 and Figures 1 – 3 present temporal trends in ambient air pollution and 
meteorological variables in Fresno during the FACES study period. Despite fluctuations from 
year to year, Table 7 demonstrates a downward trend in ambient summer concentrations of both 
NO2 and PM10-2.5 between 2001 and 2008. The correlation between ambient summer NO2 
concentration and study year was -0.21; for PM10-2.5 the correlation was -0.20. The number of 
unique study days in the same table demonstrates that FACES participants were observed on a 
greater number of summer days in the early years of the study (2002 – 2004). When comparing 
summer concentrations of ambient pollution variables across age groups (Table 8), the 
concentrations of both NO2 and PM10-2.5 are slightly lower on the study days in which the older 
group was observed (13 – 17 year-olds). These concentrations also correspond to the smallest 
number of unique summer days of any age group (329, versus 563 for the younger age group and 
607 for the middle age group), and do not include many of the high-pollution days that occurred 
early in the study period when the sample of children was younger. In contrast with the air 
pollution variables, the apparent temperature distribution did not vary between the age groups. 
 Correlations between pairs of ambient summertime pollutants are presented in Table 9. 
The exposure variables of NO2 and PM10-2.5 are moderately positively correlated during summer 
months, with a Pearson’s correlation coefficient of 0.67. Both NO2 and PM10-2.5 are only slightly 
positively correlated with ozone and PM2.5 (correlation coefficients between 0.29 and 0.36). 

The temporal and seasonal trends in ambient NO2 and PM10-2.5 concentrations are 
graphically presented in Figures 1 – 3. These figures are Kernel smoothes of each pollutant 
throughout the FACES study period, separately and with the two overlaid, with summer months 
demarcated by shading. I implemented the Nadaraya-Watson Kernel smoother[5, 6] with 
bandwidth of 20 days. The decrease in summertime pollution over the study period is visually 
evident in the case of ambient NO2 (Figure 1). These figures also demonstrate that the 
seasonality of NO2 differs from that of PM10-2.5. The early summer season captures the low point 
of the NO2 cycle in Fresno, after which concentrations begin to approach their winter peak late in 
the summer months. In contrast, PM10-2.5 is lowest between winter and spring with the 
concentration approaching its peak in later summer, as demonstrated in Figure 2. Figure 3 
visually demonstrates the positive correlation between the two pollutants during summer months. 
The magnitude and direction of their correlation is different outside the summer months, further 
making the case for conducting a season-specific multi-pollutant analysis. 
 
Description of population interventions 
 In the Methods section I conceptually described the population interventions whose 
health effects I am estimating; Tables 10a – 10c and Figures 4 – 10 elaborate on the details and 
mechanics of the interventions. Figure 4 is a scatter plot of the ambient NO2 concentrations 
against ambient PM10-2.5 concentrations in Fresno during all summer study days, graphically 
demonstrating the positive correlation between the two pollutants. This figure and the ones that 
follow (Figures 5 – 10) heuristically demonstrate the research approach on the full set of unique 
summer days, across all ages. Tables 10a – 10c contain the distributional details of the 
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population interventions as they are applied within each of the three age groups, including the 
specific concentration cutoff for each pollutant in each age group.  
 For the population interventions that involved decreasing NO2 concentrations, I selected 
the 25th percentile of NO2 concentrations in each age group as the cutoff level that no day would 
exceed under intervention. The specific cutoff values were 9.9 ppb, 9.7 ppb, and 9.1 ppb for the 
analyses on the younger, middle, and older age groups, respectively. Days at or below the 
intervention cutoff concentrations were not affected by the population intervention; that is, the 
observed values were retained. These population interventions were applied when NO2 was the 
only pollutant in the model (Table 10a), as well as when NO2 was modeled in a mixture with 
PM10-2.5 (Table 10c, Interventions A and C). The NO2 threshold concentration was defined in 
relation to the age-specific ambient NO2 distribution in the same manner for each age group: the 
25th percentile. Therefore, the percentile of the observed NO2 distribution that the population 
intervention corresponds to is by definition equal for NO2 interventions (namely, the single-
pollutant NO2 intervention and 2-pollutant interventions A and C; right column in Tables 10a 
and second column in 10c). This contrasts with the PM10-2.5 population intervention. 
 Because PM10-2.5 was analyzed secondarily to NO2 (the primary exposure of interest), the 
PM10-2.5 intervention was determined with respect to the distribution of NO2. To define an 
identifiable parameter of interest for a 2-pollutant exposure regimen, I considered the joint 
distribution of the two co-pollutants to inform the PM10-2.5 intervention. Table 11 presents the 
age-group-specific distribution of ambient NO2 and PM10-2.5 on the 25% of observed study days 
that had NO2 concentrations below the age-group-specific NO2 intervention level. As would be 
expected based on the correlation between the two pollutants, the PM10-2.5 concentration on these 
days of low NO2 concentration is also low, relative to the overall PM10-2.5 concentration (lower 
half of Table 11). For each age group, the median concentration of PM10-2.5 across all study days 
is greater than the 75th percentile of PM10-2.5 on observed low-NO2 days. I selected the median 
PM10-2.5 concentration on observed study days with NO2 concentrations at or below the 25th NO2 
percentile as the PM10-2.5 intervention levels: 16.5, 16.3, and 15.9 μg/m3 for the younger, middle, 
and older age groups, respectively. Tables 10b and 10c present the percentile of age-group-
specific PM10-2.5 distributions to which these cutoff levels correspond, between the 19th and 22nd 
percentile of PM10-2.5. The PM10-2.5 intervention cutoff concentrations differ by age group 
because of how the PM10-2.5 population intervention was defined (i.e., in relation to the observed 
age-specific NO2 distributions rather than as a fixed percentile). This contrasts with the NO2 
intervention cutoff levels, which were by definition all equal to the 25th percentile of observed 
NO2 concentrations. This PM10-2.5 population intervention was applied when PM10-2.5 was the 
only pollutant in the model (Table 10b) and in some cases, when PM10-2.5 was modeled as a part 
of a 2-pollutant exposure regimen (Table 10c, Interventions B and C). Days with observed 
ambient PM10-2.5 concentration at or below these concentrations were unaffected by the 
intervention. 
 In order to consider how realistic and identifiable each 2-pollutant health effect is, Tables 
11 – 13 present the distributions of NO2 and PM10-2.5 concentrations on observed study days that 
meet the requirements of each intervention, in comparison with the counterfactual distribution of 
the pollutant when the population intervention is applied. Table 11 applies to the 2-pollutant 
population intervention A, wherein NO2 levels are lowered and PM10-2.5 levels are held at their 
observed values. Because the NO2 intervention level was defined as the 25th percentile of the 
observed NO2 distribution, the number of observed study days with NO2 below the intervention 
level is approximately equal to one quarter the total number of unique days for each age group. 
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The same ratio applies to the number of days described by the PM10-2.5 concentrations given 
intervention A (bottom half of Table 11). For conciseness in discussing Tables 11 - 13, the 
pollutant distribution on observed study days that conform to the population intervention will 
hereafter be called “the observed pollutant distribution,” and the counterfactual pollutant 
distribution when the population intervention is applied will be termed “the intervention 
pollutant distribution.” It is important to note that the “intervention pollutant distribution” will in 
some cases be the same as the observed pollutant distribution on all study days, when the 
intervention does not change levels of the pollutant in question (as with the “intervention” PM10-

2.5 distribution under intervention A). 
In Table 11, the age-group-specific maximum NO2 concentrations are equal between the 

observed distributions and the intervention distributions given intervention A; this is an artifact 
of how the intervention was defined. Because the intervention was defined as lowering all 
concentrations above a certain threshold down to the threshold value, both the observed and the 
intervention concentration distributions are explicitly defined as having the same maximum 
(threshold) concentration. While the intervention NO2 distributions are skewed more toward 
these maximum values (by virtue of 75% of study days being equal to the distribution 
maximum), the two distributions overlap entirely. In contrast, the observed PM10-2.5 distribution 
and the intervention PM10-2.5 intervention (here, equal to the observed distribution of PM10-2.5 on 
all study days) have strikingly different distributions in intervention A, with the observed PM10-

2.5 being much lower than the intervention distribution. The maximum concentration in the 
intervention PM10-2.5 distribution is more than 75% greater than the maximum concentration in 
the observed PM10-2.5 distribution for all age groups. Put differently, the median concentration in 
the intervention PM10-2.5 distribution is above the 75th percentile of the observed PM10-2.5 
distribution for all age groups. Figures 5 and 6 graphically demonstrate the health effect being 
calculated by the PIM with intervention A. Figure 5 presents the joint distribution of the ambient 
NO2 and PM10-2.5 exposure regimen given intervention A, while Figure 6 shows this hypothetical 
distribution laid over the empirically observed joint distribution of the two pollutants. Lowering 
only NO2 levels in this dataset results in a large density of red dots (representing concentrations 
on intervention days) being moved to a part of the graph where the black dots (observed days) 
are sparsely distributed. (For simplicity in graphical presentation, Figures 5 – 6 as well as 
Figures 7 – 10 depict all summertime study days, rather than age-group-specific subsets of 
summer study days. The intervention cutoff levels in each graphic were also calculated based on 
the entire sample of study days, in the same manner as the age-group-specific values.)  

Table 12 and Figures 7 and 8 demonstrate the converse situation as applies to 
intervention B. In Table 12, the observed PM10-2.5 distribution and the intervention PM10-2.5 
overlap entirely. In contrast, the range of the intervention NO2 distribution far exceeds the range 
of the observed NO2 distribution, with the distribution of intervention NO2 concentrations greater 
than the concentrations observed on low PM10-2.5 days. Within each age group, more than half of 
intervention days have NO2 concentrations exceeding the 75th percentile of the observed NO2 
distribution on low PM10-2.5 days; almost a quarter of intervention days have NO2 concentrations 
that exceed the maximum NO2 concentration on low PM10-2.5 days. As with intervention A, the 
concentrations of the index pollutant (here, PM10-2.5) exhibit complete overlap between 
intervention and observed distributions. However, the concentration distribution of the pollutant 
that it not intervened upon (here, NO2) differs between the intervention and observed 
distributions, with the intervention distribution exceeding the observed distribution in terms of 
range and concentration values. Figure 7 presents a scatter plot of the hypothetical air pollution 



45 
 

profile when intervention B is applied and Figure 8 shows the intervention B air pollution profile 
laid over a scatter plot of the empirically observed distribution of NO2 and PM10-2.5. As with 
intervention A, there is a clustering of red dots (intervention days) in a part of the graph where 
there are no black dots (observed days). This region of the graph corresponds to days with high 
NO2 and low PM10-2.5—a type of day that exists in intervention B, but which was not empirically 
observed in Fresno during the study period. 

Intervention C is likewise demonstrated in Table 13 and Figures 9 and 10. On the small 
number of observed days that conform to the air pollution profile described by intervention C, 
the empirically observed distribution of ambient NO2 and PM10-2.5 is not dissimilar from the 
distribution of NO2 and PM10-2.5 given the intervention. In contrast with interventions A and B, 
the observed distributions and the intervention distributions overlap for both NO2 and PM10-2.5 
(Table 13). A similar point is made in Figures 9 and 10, in which the red dots representing the 
pollution profile when intervention C is applied (Figure 9) lie entirely within the joint co-
pollutant distribution of the observed days, represented by empty black dots (Figure 10). Unlike 
interventions A and B, estimation of health effects corresponding to intervention C does not 
require shifting the joint air pollution distribution in a way that moves days beyond the extent of 
the observed data. 

Tables 14 and 15 present the distribution of changes in NO2 and PM10-2.5 concentrations 
in their respective interventions. The age-group-specific median change in NO2 under 
interventions A and C is between -3.3 and -2.4 ppb, with maximum changes between -28.5 and -
27.7 ppb. For PM10-2.5 concentration changes under interventions B and C, the median change is 
between -6.3 and -4.8 μg/m3, with a maximum change ranging from -65.1 to -64.5 μg/m3. These 
distributions indicate that for both pollutant concentrations, the majority of days are lowered by 
relatively small amounts (relative to the observed distribution of concentrations) under the 
population interventions. At the tail end of the distribution, a small number of days see greatly 
reduced concentrations. 
 
Results of confounder selection and model-fitting 
 The covariates that were considered as potential confounders are presented in Table 16. 
Each covariate is described in terms of the source of potential confounding: environmental, 
calendar time-related, or individual (as explained in the causal diagrams in the Methods section). 
The table also enumerates the types of variation that each covariate exhibits, the variable’s 
coding, and information on how it was collected. Ambient apparent temperature and weekend 
were the environmental covariates considered; these variables are characterized by temporal but 
not spatial variability. Height3 was the variable considered as the marker of calendar time, and 
varied both over time and between children. The individual-level covariates that were considered 
as potential confounders, exhibiting inter-person but not temporal variability, included gender, 
race/ethnicity, baseline income, and baseline asthma severity. The latter two covariates are 
examples of variables that could possibly vary over time, but were collected only once in this 
study (at baseline). 
 Table 17 lists the covariates that were selected by candidate reduction for inclusion in the 
Deletion/Substitution/Addition (DSA) model-fitting routine for each age group and exposure 
regimen (NO2, PM10-2.5, and NO2/PM10-2.5 mixture). Details of DSA procedure are presented in 
the Methods section. The basis for submission to the DSA as an independent variable was a 
bivariate association with the outcome and exposure at the P<0.2 level; for the NO2/PM10-2.5 
mixture analysis, variables that were associated with the outcome and either exposure were 
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submitted to the DSA algorithm. For the younger age group analysis, asthma diagnosis at less 
than 2 years old and an income indicator were included in the NO2 model-fitting routine, and 
African-American and Hispanic race/ethnicity were included in the PM10-2.5 model-fitting. All 
four variables were included in the 2-pollutant mixture model-fitting. Height3 was submitted to 
the DSA algorithm for all of the middle age group analyses, and male gender was submitted for 
the middle age group analysis for PM10-2.5 and the 2-pollutant exposure regimens. Hispanic 
ethnicity and weekend were submitted for the older age group analysis in each exposure 
regimen. 
 Table 18 presents the models that were fitted as Q-models for each analysis. For each 
exposure regimen and age group, I fit a crude model (containing only the exposure variable(s) as 
predictor variables), and the adjusted models as selected by DSA. For the analysis of 6 – 9 year-
olds, the adjusted Q-model included asthma diagnosis at less than 2 years old as a confounder for 
the single-pollutant NO2 analysis and the 2-pollutant mixture analysis. For the single-pollutant 
PM10-2.5 analysis on 6 – 9 year-olds, the crude model was selected by the DSA algorithm, so only 
one Q-model was fit. For all three exposure regimens, the middle age group’s adjusted Q-model 
included a squared term for height3. Pulmonary research indicates that a cubed term is the 
optimal polynomial to describe height’s prediction of pulmonary function[7, 8], but in this case 
height was a marker for the confounding effects of calendar time, a relation whose functional 
form is unknown. For the analysis of the older age group, the DSA algorithm selected a model 
with no confounders for all three exposure regimens; therefore the crude Q-model was the only 
one fit in each case.  
 To diagnose the extent to which the adjusted analyses met the positivity assumption with 
respect to confounders, I examined the distribution of air pollution within levels of the 
confounding variables. Diagnosing positivity is difficult with continuous exposures[9], a 
challenge that is compounded by the presence of a multi-variable exposure regimen and a very 
large number of actual exposure “categories.” The continuous confounder height3 was 
categorized in quartiles for this exploration, an approach that has been employed in previous 
studies with continuous covariates[10, 11]. Figures 11 and 12 present box plots of the single-
pollutant exposure distribution in different strata of the confounders for each exposure regimen. 
Figures 11a and 11b focus on confounders of NO2 effects, demonstrating that while not identical, 
the NO2 distributions substantially overlap across strata of both age at asthma diagnosis and 
height3. Figures 12a and 12b make the same point about distribution of PM10-2.5: exposure 
overlaps across strata of the confounders, indicating that the confounding variables do not 
deterministically assign exposure in regions of the PM10-2.5 distribution (which would indicate 
nonpositivity). While these figures apply to all study days rather than age-specific analyses, they 
provide evidence that the positivity assumption is not violated in this dataset. 
 
Effects of Population Interventions  
 The results of the Population Intervention Model analyses are presented in Tables 19 – 21 
and Figures 13 – 14. Results are presented for crude and adjusted models, as absolute point 
estimates and 95% confidence intervals (in liters/second [L/sec], the unit of FEF25-75), and in 
relative terms as a percentage of the age-specific mean outcome (weighted mean FEF25-75). The 
effect estimates correspond to parameters of the form ][][ aYEYE −  (single-pollutant analyses) 
and ][][

21, aaYEYE −  (2-pollutant analysis, intervention C). Thus, a positive risk difference 
indicates that the intervention decreased pulmonary function, and a negative point estimate 
indicates increased FEF25-75 under the intervention. The standard errors and 95% Confidence 
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Intervals (CIs) were calculated using the bootstrap procedure with replacement by child rather 
than observation, using 1,000 repetitions. These findings were generated by fitting and applying 
the Q-models presented in Table 18. Coefficients for crude and adjusted Q-models, for all age 
groups and exposure regimens, are presented in Supplementary Tables S1 – S3. Because the 
pollution coefficients on their own are difficult to interpret (corresponding as they do to a 1-ppb 
or a 1-μg/m3 change in exposure), and because the confounder coefficients were estimated only 
as nuisance parameters, results and discussion will focus on the PIM parameters (Tables 19 – 21) 
rather than these supplementary tables. 
 The single-pollutant NO2 intervention effects shown in Table 19 demonstrate a 
consistent, small, negative association between NO2 and FEF25-75, though none of the estimates 
are significant at the P<0.05 level. The absolute magnitude of the crude risk difference ranged 
from -0.048 L/sec (middle age group, 95% CI: -0.119, 0.023 L/sec) to -0.015 L/sec (younger age 
group, 95% CI: -0.061, 0.031), with the older age group’s crude risk difference being -0.021 
L/sec (95% CI: -0.087, 0.045). The adjusted risk difference changed the point estimates slightly 
for the younger age group (adjusted risk difference = -0.023 L/sec, 95% CI: -0.068, 0.023) and 
the middle age group (-0.045 L/sec, 95% CI: -0.113, 0.023). Expressed in relative terms, the 
older age group’s parameter estimate had the smallest magnitude, -0.8% (95% CI: -3.4, 1.7). The 
adjusted relative effect estimates for the younger and middle age groups were -1.7% (95% CI: -
5.1, 1.7) and -2.5% (95% CI: -6.4, 1.3), respectively. The relative effect estimates have different 
denominators, as the three age group have different weighted mean FEF25-75 values (Table 4). 
The average FEF25-75 increases with age, so similar absolute risk difference can translate to 
relative risk differences of different magnitudes (as between the younger and older age groups 
here).  
 Table 20 presents the PIM effects for the single-pollutant PM10-2.5 analysis. As with NO2, 
no associations were significant at the P<0.05 level. The effects of the PM10-2.5 single pollutant 
intervention were small and positive in the younger age group, with an absolute magnitude of 
0.015 L/sec (95% CI: -0.031, 0.060) and a relative magnitude of 1.1% (95% CI: -2.3, 4.5). No 
confounders were selected for the corresponding Q-model, so these crude effect estimates are the 
final estimate for this age group. For the middle and older age groups, the PM10-2.5 parameter 
estimates were small and negative. The middle age group had an adjusted absolute effect size of 
-0.025 L/sec (95% CI: -0.085, 0.035), which translates to a relative effect size of -1.4% (95% CI: 
-4.9, 2.0). For the older age group, the relative effect size was the same (-1.4%, 95% CI: -5.5, 
2.7), while the absolute effect size was of a larger magnitude (-0.037, 95% CI: -0.143, 0.069). 
 The results of the two-pollutant NO2/PM10-2.5 mixture analysis are presented in Table 21. 
The intervention A results describe the effects of lowing NO2 while holding PM10-2.5 at observed 
levels. As with the single-pollutant NO2 analysis, all associations are small, negative, and non-
significant. The older age group exhibited the smallest absolute and relative effect for 
intervention A: -0.011 L/sec (95% CI: -0.088, 0.065) and -0.4% (95% CI: -3.4, 2.5), respectively. 
The adjusted absolute risk difference for the younger and middle age groups were of a similar 
magnitude: -0.046 L sec (95% CI: -0.099, 0.007) for the younger age group and -0.056 (95% CI: 
-0.141, 0.028) for the middle age group. Relative parameter estimates were also of a similar 
magnitude for the younger and middle age groups. This contrasted with the single-pollutant NO2 
analysis, in which the absolute effect was twice as large for the middle group, and the relative 
effect estimate was 50% greater. 
 For intervention B in the 2-pollutant analysis, associations were small and non-
significant, but the magnitude of the parameter estimates was positive for the younger and 
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middle age groups. The adjusted absolute risk difference for the younger age group was 0.039 
(95% CI: -0.013, 0.090), for a relative effect of 2.9% (95% CI: -1.0, 6.7). For the middle age 
group, the adjusted effects were positive but smaller, on both an absolute scale (0.014 L/sec, 
95% CI: -0.056, 0.085) and a relative scale (0.8%, 95% CI: -3.2, 4.8). The effect of intervention 
B in the older group was negative and non-significant.  
 Intervention C, in which both pollutants were lowered, resulted in adjusted effect 
estimates that were consistently small in magnitude, negative in direction, and non-significant. 
The magnitude of the association was smallest in the younger age group, with an adjusted 
absolute effect of -0.007 L/sec (95% CI: -0.061, 0.046) and a relative effect of -0.6 (95% CI, -
4.5, 3.4). The absolute magnitude of intervention C effect was similar between the middle age 
group (-0.042 L/sec, 95% CI: -0.114, 0.029) and the older age group (-0.044 L/sec, 95% CI: -
0.142, 0.054), but the magnitude of the relative effect was greater in the middle group (-2.4%, 
95% CI: -6.4, 1.7) as compared to the older age group (-1.7%, 95% CI: -5.5, 2.1). 
 Figures 13 and 14 graphically demonstrate the results (point estimates and 95% 
confidence intervals) for all exposure regimens and interventions, across all age groups. Figure 
13 presents absolute results in units of L/sec, and Figure 14 presents relative results, expressed as 
a percentage of the weighted age-specific mean FEF25-75. The figures demonstrate that the 95% 
confidence intervals cross the null values of zero for all estimates. The figures also visually 
confirm that there was a trend of small negative estimates for most analyses, except for the PM10-

2.5-related analyses, namely the single-pollutant PM10-2.5 intervention and the 2-pollutant 
intervention B.
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TABLES 
 
Table 1. Descriptive statistics of the sample at baseline, for children included in the summertime 
analysis and for all children who contributed panel data (overall sample). 
 

 
Summertime 

analysis (n=257) 
Overall sample 

(n=299) 
Continuous variable Median IQR Median IQR 
Age 8 6 - 9 8 7 - 9 
     
Categorical/binary variables Number % Number % 
Male 146 56.8 170 56.9 
Race/ethnicity     
 African-American 33 12.8 48 16.0 
 Asian-American 1 0.4 2 0.7 
 Hispanic 103 40.1 118 39.5 
 White (non-Hispanic) 113 44.0 124 41.5 
 Missing 7 2.7 7 2.3 
Income     
 < $15,000  46 17.9 58 19.4 
 $15,000 - $30,000 63 24.5 73 24.4 
 $30,000- $50,000 60 23.3 72 24.1 
 > $50,000 80 31.1 86 28.8 
 Missing 8 3.1 10 3.3 
Asthma severity*     
 Mild intermittent 73 28.4 87 29.1 
 Mild persistent 125 48.6 139 46.5 
 Moderate or severe 59 23.0 73 24.4 
Skin-test positive** 142 55.3 165 55.2 
Asthma diagnosis ≤ 2 y.o. 92 35.8 118 39.5 
 
* Based on the Global Initiative for Asthma severity guidelines[1]. 
** Positive to at least one allergen on skin-test panel or reported history of severe reaction to 
prior allergy skin test. 
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Table 2. Number of distinct age groups to which each child contributed data, and the frequency 
of each age group pattern. 
 

 
 
 
 
 

 6 – 9 
years old 

10 – 12 
years old 

13 – 17 
years old 

Number of 
children  

    55 
1 age group    40 
    4 
   Sum of children in 1 age group: 99 
    61 
2 age groups    2 
    62 
   Sum of children in 2 age groups: 125 
3 age groups    33 
   Sum of children in 3 age groups: 33 
Sum of children in 
each age group: 151 196 101  
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Table 4. Distribution of child-specific mean height and FEF25-75 measurements within each age 
group. 
 
 Mean Median IQR 
Mean FEF25-75 (L/sec)    
 6 – 9 year-olds 1.35 1.31 0.94 - 1.66 
 10 – 12 year-olds 1.77 1.71 1.22 - 2.27 
 13 – 17 year-olds 2.59 2.60 1.8 - 3.32 
Mean Standing Height (cm)    
 6 – 9 year-olds 131.1 131.3 124.1 - 137.9 
 10 – 12 year-olds 147.8 147.6 141.2 - 153.9 
 13 – 17 year-olds 163.3 164.1 157.1 - 168.7 
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Table 6. The Primary Standards (level and averaging time) for the criteria pollutants measured in 
the FACES study, as codified by the National Ambient Air Quality Standards. 
 
 Primary Standards 
Pollutant Level Averaging Time 

NO2 
53 ppb Annual (arithmetic average) 
100 ppb 1-hour 

PM10 150 μg/m3 24-hour 

PM2.5 
15 μg/m3 Annual (arithmetic average) 
35 μg/m3 24-hour 

Ozone 
75 ppb 8-hour (2008 standard) 
80 ppb 8-hour (1997 standard) 
120 ppb 1-hour 

 
Table adapted from the NAAQS[3], http://epa.gov/air/criteria.html, accessed March 23, 2011.

http://epa.gov/air/criteria.html�
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Table 7. Annual distribution of ambient environmental variables* measured at the central site 
during summer months (June – September), in Fresno, California. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Both variables are lag 0.  
NO2 and PM10-2.5 concentrations are 24-hour averages. 
 

  25th 
percentile 

Median 75th 
percentile 

Unique study 
days 

NO2 (ppb)     
 2001 10.6 14.2 18.2 66 
 2002 11.1 14.7 20.1 122 
 2003 10.5 14.8 18.2 122 
 2004 9.8 12.6 16.2 122 
 2005 7.6 10.8 14.5 72 
 2006 9.8 12.8 18.0 51 
 2007 8.1 9.2 12.0 44 
 2008 9.3 11.5 16.0 40 
      
PM10-2.5 (μg/m3)     
 2001 17.9 23.1 31.4 58 
 2002 21.2 26.1 35.1 122 
 2003 18.3 24.4 30.9 113 
 2004 18.0 21.5 29.5 114 
 2005 14.5 18.5 21.6 74 
 2006 16.8 20.2 26.5 50 
 2007 15.8 19.1 22.1 44 
 2008 17.0 21.3 32.3 43 
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Table 8. Age-group-specific distributions of ambient environmental and meteorological 
variables* measured at the central site during summer months (June – September), from 2001 to 
2008 in Fresno, California. 
 

 25th 
percentile 

Median 75th 
percentile 

IQR Unique 
days 

Days 
missing 

NO2 (ppb) 
 6 – 9 year-olds 9.9 13.0 17.7 7.8 563 6 
 10 – 12 year-olds 9.7 12.9 17.6 7.9 607 9 
 13 – 17 year-olds 9.1 11.5 15.9 6.8 329 8 
PM10-2.5(µg/m3) 
 6 – 9 year-olds 18.0 22.7 30.1 12.1 563 29 
 10 – 12 year-olds 17.8 22.1 30.0 12.2 607 22 
 13 – 17 year-olds 16.4 20.6 27.1 10.7 329 12 
Apparent Temperature (°C)† 
 6 – 9 year-olds 23.4 26.1 28.5 5.1 563 2 
 10 – 12 year-olds 23.3 26.0 28.5 5.2 607 2 
 13 – 17 year-olds 23.2 25.9 28.3 5.1 329 2 
 
*Both variables are lag 0.  
NO2 and PM10-2.5 concentrations are 24-hour averages. 
† Apparent temperature as described by Basu et al.[4] 
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Table 9. Correlation coefficients* for each pair of pollutants** during summer months (June – 
September) in Fresno, California (648 unique study days). 
 
 NO2 PM10-2.5 Ozone PM2.5 EC NO3 
NO2 1 0.67 0.36 0.36 0.68 0.56 
PM10-2.5  1 0.32 0.29 0.55 0.41 
Ozone   1 0.57 0.57 0.35 
PM2.5    1 0.69 0.63 
EC     1 0.58 
NO3      1 
 
* All coefficients are Pearson’s correlation. 
** All variables are lag 0. 
NO2, PM10-2.5, PM2.5, EC, andNO3 concentrations are 24-hour averages. 
Ozone concentration is the maximum 8-hour average. 
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Tables 10a-c. Summary of the population interventions. 
 
Table 10a. Summary of the NO2 single-pollutant population intervention. 
 

Age group 

NO2 concentration (ppb) 
assigned to values above 
intervention cutoff level 

Percentile of 
observed NO2 
distribution 

 6 – 9 year-olds 9.94 25 
 10 – 12 year-olds 9.68 25 
 13 – 17 year-olds 9.12 25 
 
 
Table 10b. Summary of the PM10-2.5 single-pollutant population intervention. 
 

Age group 

PM10-2.5 concentration (μg/m3) 
assigned to values above 
intervention cutoff level 

Percentile of 
observed PM10-2.5 

distribution 
 6 – 9 year-olds 16.47 19 
 10 – 12 year-olds 16.33 20 
 13 – 17 year-olds 15.85 22 
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Table 17. Potential confounders considered for age- and pollutant-specific model-fitting using 
the DSA algorithm, based upon bivariate associations with both exposure and outcome at the 
P<0.2 level. 
 
Analysis Potential confounders 
NO2  
 6 – 9 year-olds Asthma diagnosis less than 2 years-old 

Income category: $15,000 - $30,000 
 10 – 12 year-olds Height3 
 13 – 17 year-olds Hispanic 

Weekend 
PM10-2.5  
 6 – 9 year-olds African-American 

Hispanic 
 10 – 12 year-olds Height3 

Male 
 13 – 17 year-olds Hispanic 

Weekend 
2-pollutant mixture (NO2and PM10-2.5)  
 6 – 9 year-olds African-American 

Asthma diagnosis less than 2 years-old 
Hispanic  
Income category: $15,000 - $30,000 

 10 – 12 year-olds Height3 
Male 

 13 – 17 year-olds Hispanic 
Weekend 
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Figure 4. Scatter plot of observed NO2 and PM10-2.5 concentrations* during summer months 
(June – September) between 2001 and 2008 in Fresno, California (ambient measurements taken 
at central site monitor; n = 648 unique study days). 

 
* Based on lag 0 and 24-hour average for both pollutants 
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Figure 5. Intervention A: Scatter plot of summertime NO2 and PM10-2.5 concentrations* under a 
hypothetical 2-pollutant intervention keeping PM10-2.5 at observed concentration and lowering 
NO2 to the 25th percentile of the observed concentration distribution (9.7 ppb). 
 

 
* N = 648 unique study days, based on lag 0 and 24-hour average for both pollutants 
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Figure 6. Intervention A overlay: Distribution of summertime NO2 and PM10-2.5 under 
hypothetical 2-pollutant intervention A (lowering only NO2), laid over the observed summertime 
distribution of ambient NO2 and PM10-2.5 between 2001 and 2008 in Fresno, California. 
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Figure 7. Intervention B: Scatter plot of summertime NO2 and PM10-2.5 concentrations* under a 
hypothetical 2-pollutant intervention keeping NO2 at observed concentration and lowering PM10-

2.5 to the 20th percentile of the observed concentration distribution (16.3 µg/m3). 
 

 
* N = 648 unique study days, based on lag 0 and 24-hour average for both pollutants  
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Figure 8. Intervention B overlay: Distribution of summertime NO2 and PM10-2.5 under 
hypothetical 2-pollutant intervention B (lowering only PM10-2.5), laid over the observed 
summertime distribution of ambient NO2 and PM10-2.5 between 2001 and 2008 in Fresno, 
California. 
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Figure 9. Intervention C: Scatter plot of summertime NO2 and PM10-2.5 concentrations* under a 
hypothetical 2-pollutant intervention lowering NO2 to the 25th percentile of the observed 
concentration distribution and lowering PM10-2.5 to the 20th percentile of the observed 
concentration distribution (9.7 ppb and 16.3 µg/m3, respectively). 

 
* N = 648 unique study days, based on lag 0 and 24-hour average for both pollutants   
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Figure 10. Intervention C overlay: Distribution of summertime NO2 and PM10-2.5 under 
hypothetical 2-pollutant intervention C (lowering both pollutants), laid over the observed 
summertime distribution of NO2 and PM10-2.5 between 2001 and 2008 in Fresno, California. 
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Figures 11a & 11b. NO2 confounder positivity diagnostics: box plots of the distribution of 
ambient NO2 across levels of the age-specific confounders of NO2 effects. 
Figure 11a. Distribution of ambient NO2 across asthma diagnosis at less than 2 years old, a 
confounder in the younger age group analysis.   

 
 
Figure 11b. Distribution of ambient NO2 across quartiles of height3, a confounder in the middle 
age group analysis.   
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Figures 12a & 12b. PM10-2.5 confounder positivity diagnostics: box plots of the distribution of 
ambient PM10-2.5 across levels of the age-specific confounders of PM10-2.5 effects. 
Figure 12a. Distribution of ambient PM10-2.5 across asthma diagnosis at less than 2 years old, a 
confounder in the 2-pollutant analysis among the younger group.   

   
 
Figure 12b. Distribution of ambient PM10-2.5 across quartiles of height3, a confounder in the 
middle age group analysis.   
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Figure 13. Summary graph of the absolute PIM effect estimates and 95% confidence intervals, 
across analyses and interventions. 
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Figure 14. Summary graph of the relative PIM effect estimates and 95% confidence intervals, 
across analyses and interventions. 
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SUPPLEMENTARY MATERIALS 
 
Table S1. Coefficient values for the Q-models for the NO2 single-pollutant analysis, crude and 
adjusted models. 
 
NO2 analysis Crude model Adjusted model, selected 

by DSA† 
Model 
term 

Coefficient 
value (L/sec) 

Model 
term 

Coefficient 
value (L/sec) 

 6 – 9 year-olds Intercept 1.39 Intercept 1.51 
  NO2 -2.67 E-03 NO2 -3.91 E-03 
    AsthLe2‡ -0.23 
 10 – 12 year-olds Intercept 1.89 Intercept 1.12 
  NO2 -9.29 E-03 NO2 -8.61 E-03 
    (Height3)2 7.03 E-14 
 13 – 17 year-olds Intercept 2.63 – – 
  NO2 -4.61 E-03 – – 
† Dashes indicate that the DSA algorithm did not select any confounders, and therefore the 
adjusted model is identical to the crude model. 
‡ AsthLe2: Asthma diagnosis less than 2 years old 
 
 
Table S2. Coefficient values for the Q-models for the PM10-2.5 single-pollutant analysis, crude 
and adjusted models. 
 
PM10-2.5 analysis Crude model Adjusted model, selected 

by DSA† 
Model 
term 

Coefficient 
value (L/sec) 

Model 
term 

Coefficient 
value (L/sec) 

 6 – 9 year-olds Intercept 1.31 – – 
  PM10-2.5 1.42 E-03 – – 
 10 – 12 year-olds Intercept 1.86 Intercept 1.06 
  PM10-2.5 -4.06 E-03 PM10-2.5 -2.89 E-03 
    (Height3)2 7.03 E-14 
 13 – 17 year-olds Intercept 2.69 – – 
  PM10-2.5 -4.28 E-03 – – 
† Dashes indicate that the DSA algorithm did not select any confounders, and therefore the 
adjusted model is identical to the crude model. 
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Table S3. Coefficient values for the Q-models for the 2-pollutant NO2 and PM10-2.5 analysis, 
crude and adjusted models. 
 
2-pollutant mixture 
 (NO2and PM10-2.5) 

Crude model Adjusted model, selected 
by DSA† 

Model 
term 

Coefficient 
value (L/sec) 

Model 
term 

Coefficient 
value (L/sec) 

 6 – 9 year-olds Intercept 1.35 Intercept 1.48 
  NO2 -6.97 E-03 NO2 -7.89 E-03 
  PM10-2.5 4.11 E-03 PM10-2.5 3.76 E-03 
    AsthLe2‡ -0.23 
 10 – 12 year-olds Intercept 1.91 Intercept 1.11 
  NO2 -9.90 E-03 NO2 -1.06 E-02 
  PM10-2.5 -1.27 E-04 PM10-2.5 1.65 E-03 
    (Height3)2 7.05 E-14 
 13 – 17 year-olds Intercept 2.71 – – 
  NO2 -2.41 E-03 – – 
  PM10-2.5 -3.82 E-03 – – 
† Dashes indicate that the DSA algorithm did not select any confounders, and therefore the 
adjusted model is identical to the crude model. 
‡ AsthLe2: Asthma diagnosis less than 2 years old 
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IV. Discussion 
 
Interpretation of findings from PIM analyses 
Statistical inference, exposure distributions, and scientific inference  
 Despite the relative imprecision of the statistical inference around the effect estimates, 
comparison of the magnitude and direction of the risk differences (RDs) across analyses 
demonstrates patterns and provides information about the respiratory effects of the pollutants 
analyzed in this study. Furthermore, consideration of the individual and joint distributions of the 
two exposures yields key insight that guides the interpretation of these findings, especially as 
relates to parameter identifiability. Taken together, the analysis of exposure distributions and the 
results from the Population Intervention Models have implications for evaluating the various 
analytical approaches implemented in this project. These implications also apply more broadly to 
estimation of multi-pollutant health effects. 
 

][][ aYEYE −

Comparing overall NO2 findings to overall PM10-2.5 findings 
 In both of the single-pollutant analyses and the 2-pollutant analysis, the risk differences 
tended to be small in magnitude. To interpret the meaning of each intervention, recall that the 
parameter of interest was defined as the effect on FEF25-75 resulting from an intervention that 
decreased pollution concentrations:  (single pollutant analysis). Therefore, if a 
decrease in ambient pollution improves pulmonary function as measured by FEF25-75, the higher 
value of E[Ya] relative to E[Y] would result in a risk difference with a negative sign.  

When NO2 was decreased as part of the intervention (single-pollutant NO2 intervention 
and 2-pollutant interventions A and C), the direction of the association was the same across all 
age groups: decreasing the NO2 concentration resulted in an increased in FEF25-75, indicating 
improved respiratory function (as evidenced by a negative sign on the risk difference). In these 
NO2 analyses, the magnitude of the risk difference was greatest is the middle age group, 
observations from 10 – 12 year-olds.  

In the single-pollutant PM10-2.5 analysis and the 2-pollutant intervention B (lowering 
PM10-2.5 while holding NO2 at observed levels), there were some risk differences with a positive 
sign, indicating that increased PM10-2.5 concentrations actually increased pulmonary function. In 
the single-pollutant PM10-2.5 analysis, this unexpected finding was only seen in the younger age 
group (6 – 9 year-olds). In the 2-pollutant intervention B, the sign of the risk differences was 
counterintuitive in both the younger and the middle age groups. In the case of intervention B, the 
joint exposure distribution of the two co-pollutants indicates that the parameter was not 
identifiable in the observed data, discrediting these findings. I expanded upon this point below. 

The nature of the exposure-outcome association was more consistent across analyses for 
NO2 exposure, as compared to the analyses in which PM10-2.5 concentration was decreased. The 
NO2/FEF25-75 association estimated was a small, inverse association across all analyses 
(indicating increased FEF25-75 with decreased NO2), as compared to the mixed directions of the 
PM10-2.5 analyses, in which some age groups and exposure regimens saw decreased pulmonary 
function with decreased pollution. These findings collectively provide stronger evidence for a 
deleterious effect of NO2 on FEF25-75 than for an effect of any direction for PM10-2.5.  
 

Three analyses involved lowering NO2 concentrations: the single-pollutant NO2 analysis 
and 2-pollutant interventions A and C. It is informative to compare Intervention A to single-

Single-pollutant NO2 findings as compared to multi-pollutant NO2 findings across age groups 
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pollutant NO2 intervention, because both involve decreasing the concentration of only ambient 
NO2. The key difference between these two parameter estimates is that the Population 
Intervention Parameter for intervention A is conditioned on the co-pollutant PM10-2.5 (which is 
held at the observed values in intervention A). The pattern of parameter estimates is 
approximately the same between the two interventions. In both analyses, all risk differences have 
a negative sign, indicating improved FEF25-75 resulting from decreased NO2. Both approaches 
estimate the largest absolute effect in the middle age group; the magnitude is larger for 
intervention A. In these approaches, as in the others, the relative magnitude attenuates moving up 
the age groups, due to the increase in the denominator (average FEF25-75, which increases with 
age).  
 
Single-pollutant PM10-2.5 findings as compared to multi-pollutant PM10-2.5 findings across age 
groups 

Analogous to the comparison of the single-pollutant NO2 PIP and the intervention A PIP, 
it is instructive to compare the single-pollutant PM10-2.5 results to the results from 2-pollutant 
intervention B. Both approaches model the effects of lowering only PM10-2.5, although the 
intervention B effect is different in that it is conditioned on holding ambient NO2 concentration 
at observed levels. These two analyses are the ones that estimated risk differences of both signs, 
indicating that in some age groups, decreasing ambient air pollution decreased lung function (the 
RDs with the positive sign). In the single-pollutant PM10-2.5 analysis, this unexpected finding (a 
RD with positive sign) only found in the younger age group (6 – 9 year-olds), and like all risk 
differences in this analysis, was of a small magnitude (<1.5% in absolute value). However, in the 
case of intervention B, the risk difference in the younger group that indicated decreased FEF25-75 
resulting from decreased PM10-2.5 was among the larger relative effects estimated in any analysis: 
2.9%. While not estimated with a high level of precision, this PIP estimate stands out as unique 
among the other findings, which are uniformly in the other (expected) direction, except for one 
risk difference of small magnitude. This finding that under 2-pollutant intervention B, lowering 
ambient PM10-2.5 decreased pulmonary function in one age group (at an equal relative magnitude 
to the findings in the other direction), is based on a parameter that is not identifiable, i.e., is not 
supported by actual data. This finding, and the underlying approach used to calculate it, will be 
discussed in further detail in order to shed light on this finding. 
 

Of the three 2-pollutant interventions for which health effects were estimated, 
interventions A and B differ most greatly. The risk differences calculated for intervention A 
present a trend of small, imprecisely estimated increases in FEF25-75 resulting from decreasing 
only NO2 in a 2-pollutant exposure regimen. The picture for intervention B is more mixed, with 
at least one age group exhibiting diminished FEF25-75 resulting from decreased PM10-2.5. This 
finding, in the unexpected direction, was equal in magnitude to the largest risk differences 
calculated in any analysis here. Strikingly, the adjusted risk differences of intervention A and 
intervention B in the younger age group were among the largest relative associations estimated in 
any analysis, and were in opposite directions. As with intervention B, the parameter that 
intervention A defines was not identifiable in the observed data; both interventions A and B were 
based on areas of no data support. Thus, the results corresponding to intervention A should also 
not be considered credible, given that they were based on extrapolations beyond the observed 

Results compared across the various 2-pollutant interventions 
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data and are likely biased. Given the validity concerns with the health effects estimated by 
interventions A and B, the conflicting results described above do not merit logical interpretation.   

In contrast, the results for intervention C are comparable to the patterns from the single-
pollutant analyses: small, imprecisely estimated associations with the same sign (indicating 
improved FEF25-75 with decreased air pollution), with the largest relative magnitude in the middle 
age group. In contrast with interventions A and B, the results from intervention C are not 
compromised by nonpositivity across levels of the co-pollutants. Therefore, these results, along 
with the single-pollutant results, should be given the most scientific weight. For each age group, 
the intervention C risk difference is equal to the sum of the risk differences for interventions A 
and B. This results from the fact that intervention C incorporates the changes in exposure 
concentration from both interventions A and B, and the fact that the Q-model was specified 
without an interaction term. 
 

Consideration of parameter identifiability is more complex with multi-pollutant exposure 
regimens. It is still important to consider the single-pollutant exposure distribution of each 
individual exposure in the regimen, which is simplified here because the intervention cutoff 
concentrations applied to NO2 and to PM10-2.5 in the 2-pollutant analyses were the same as the 
intervention cutoffs employed in the single-pollutant analyses. Therefore, both intervention 
cutoffs were known to be within the observed single-pollutant distribution of the respective 

Comparing these findings to results from the literature 
A comparison between these results and findings from the literature is hampered by the 

difference in estimation approaches. Studies on ambient NO2 health effects on pulmonary 
function in children with asthma have presented results corresponding to IQR changes in 
concentration[1, 2]. Still, the studies that have examined this association have found inverse 
associations between NO2 and pulmonary function parameters (including FEV1[1] and FEF25-

75[2]) on magnitude of 1 – 3% per IQR. Another difference to bear in mind while considering 
these prior studies in that the NO2 concentrations in these settings was higher than in the present 
study. For example, in the studies by Liu et al. and Delfino et al., median/mean ambient NO2 
concentrations were 50% higher than in the present study[1, 2]. If the exposure-response curve is 
not linear across a broad range of pollutant concentrations, then the findings from this study 
would be further incomparable with these prior studies. 
 
Issues of positivity and parameter identifiability 
 Interpretation of these risk differences must be informed by the nature of the 
interventions whose health effects are being estimated. The health effects estimated by single-
pollutant models in this study were “on-support”; that is, the interventions were within the range 
of observed air pollution concentrations for the respective exposure. The single-pollutant 
interventions were explicitly defined to be within the observed distribution; this is demonstrated 
in the Results, Tables 10a and 10b. In other words, estimating the effects of each hypothetical 
single-pollutant intervention did not require extrapolation beyond the observed exposure data. 
This ensured that the parameters were identifiable in the observed data. Parameter identifiability 
also requires positivity, or variation of exposure within confounder strata. This issue of positivity 
within strata of the confounders was also addressed in Figures 11 and 12, demonstrating 
evidence for experimentation (i.e., a range of exposure values) within each stratum of age-
specific confounders.  
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exposure. Table 10c demonstrates that both intervention cutoff concentrations lie within the 
respective observed single-pollutant distribution. 

When estimating the effects of a multi-pollutant exposure regimen, examining single-
pollutant distributions for issues of identifiability and positivity is necessary but insufficient. The 
investigator must also consider the joint distribution of the co-pollutants. When an outcome is 
modeled as a function of multiple pollutants, the independent effect of each pollutant is 
conditioned on the co-pollutant in the model, along with confounding variables included in the 
model as independent variables. In other words, the effect of each pollutant is estimated within 
strata of the co-pollutants; indeed, co-pollutants are sometimes termed confounders rather than 
exposures[3-5]. Therefore, when using a multi-pollutant model to infer about health effects of a 
single pollutant, one must consider positivity not just with regard to the confounders, but also as 
relates to the co-pollutants. Failure to do so may result in estimation of effects that are not 
identifiable, or effects that are “off support” (i.e., not based on any real data that were 
collected)[6, 7]. These considerations greatly affect the interpretation of the parameter estimate.  

Simply using the model coefficients to infer about the effect of a one-unit change in 
pollution (here, ppb or μg/m3) while holding the co-pollutant constant may generally correspond 
to an identifiable parameter, if there is variability in the index pollutant across the range of the 
co-pollutant. However, epidemiologists and policymakers are seldom interested in the effects of 
one-unit pollutant changes, and frequently estimate the effects of larger pollution changes by 
multiplying the coefficient by an IQR or some other interval, such as 10 ppb[1, 8-10]. The 
appropriateness of this practice should be examined in all analyses, including single-pollutant 
analyses. Effects of this sort may not be appropriate, as when the concentration interval extends 
beyond the range of pollution concentrations observed in the sample (for example, [11]), or when 
the interval is larger than the daily concentration difference that the sample experiences. (See 
Mann et al. for a discussion of this phenomenon[12].) In the former case, the parameter can be 
described as off-support in the sample, because the range of the data collected do not permit 
inference across the range of values that the investigator is studying[6]. In the latter case, there 
may be support in the data, but the effect size is not realistic to examine daily variation in the 
pollutant. 

These issues of support and identifiability are compounded when the effects of multiple 
pollutants are modeled simultaneously in the same model. It is also standard practice to estimate 
a single-pollutant effect “adjusted for” a co-pollutant by multiplying the coefficient of one 
pollutant in a multi-pollutant model by an IQR or an increment of 10 units, holding the co-
pollutant(s) constant[1-4]. This approach may fail to take into account the correlation between 
co-pollutants that is common in practice[13, 14]; Dominici et al. and others have remarked on 
the potential consequences of modeling correlated co-pollutants in a multivariable regression[4, 
14]. In addition to the issue of unstable estimates, this practice may also introduce additional, 
fundamental issues of parameter non-identifiability.  

In some circumstances, it may be unrealistic to significantly alter the concentration of one 
pollutant while holding constant the co-pollutants. The distribution of co-pollutant 
concentrations might also be affected by a large change in the index pollutant. This correlation 
may also pose a challenge to the assignment of specific health effects to one pollutant in a single-
pollutant analysis (such as the ones conducted in this study). This type of problem relates to the 
logical interpretation of the results. It raises questions of the sort, “is this estimated health effect 
a result of the pollutant under study, or might the pollutant be acting as a surrogate for the true 
causal factor?”. Investigators commonly raise questions of this type in air pollution 
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epidemiology[4, 15], but rarely provide answers. Tolbert et al. provide a useful framework for 
assessing questions of this type, and conclude that in many cases using a multi-pollutant model 
to answer the question may introduce bias (as when there is differential measurement error). 

Multi-pollutant analyses present other fundamental methodological challenges in addition 
to this problem of assigning health effects to specific pollutants. When statistically modeling the 
health effects of multiple pollutants, one must consider what parameters, and therefore what 
study questions, the joint exposure distribution provides support for. If it is possible to raise one 
pollutant by a large amount without substantially changing the distribution of the co-pollutant—
i.e., if the observed data contain days when the index pollutant has high concentration and the 
co-pollutant(s) have average concentration—then there may be support in the data to ask such a 
question. In practice, the correlation observed between co-pollutants should caution investigators 
against estimating these types of parameters (large changes in one pollutant while holding co-
pollutants constant), without first examining the joint distribution of the co-pollutants for 
positivity concerns. 

In this analysis, there is ample evidence that the types of air pollution changes described 
by interventions A and B are not realistic given the observed data, and furthermore that there is 
not support in the data to estimate health effects for these interventions. Evidence for this 
conclusion is provided by Tables 11 – 12 and Figures 5 – 8 in the Results section. Table 11 
demonstrates that in Fresno during the study period, days with low NO2 concentrations had a 
limited range of PM10-2.5 concentrations relative to the overall distribution of PM10-2.5 
concentrations. Specifically, the concentrations of PM10-2.5 were lower on days of low NO2. At 
the higher end of the PM10-2.5 distribution, intervention A defines some hypothetical days the 
likes of which were never observed. Therefore, calculation of health effects corresponding to 
these days relies on extrapolation where there are no data. To relate this situation to the issue of 
positivity, across the strata of the co-pollutant (e.g., high PM10-2.5 concentrations), there is not a 
positive probability of receiving the treatment of interest (i.e., low NO2 concentrations). Figure 6 
demonstrates this, with the scarcity of observed data in the lower right quadrant of the graph, 
where there is a large density of intervention days. The single-pollutant NO2 distribution defined 
by intervention A is realistic given the observed data, as is the single-pollutant PM10-2.5 
distribution. What is unrealistic, and indeed unobserved in the FACES data, is the joint 
distribution of the two pollutants. The 2-dimensional Cartesian space defined by the black dots in 
Figure 6 represents the extent of the joint two-pollutant distribution observed in Fresno between 
summers of 2001 and 2008. Referring again to Figure 6, lowering NO2 levels as described by 
intervention A without a corresponding change in PM10-2.5 concentrations moves many of the red 
dots (hypothetical intervention A days) into regions of the graph where there is very sparse to no 
observations. These observations raise critical questions about the identifiability of this 
parameter, and parameters of this type in multi-pollutant analyses with correlated exposures. 

Table 12 and Figures 7 – 8 raise conversely analogous issues for intervention B. By 
lowering PM10-2.5 concentrations without changing NO2 concentrations, a large density of study 
days are intervened on in ways that extrapolate beyond the observed data. Intervention C, 
described in Table 12 and Figures 9 – 10, stands in contrast to interventions A and B in this 
regard. Because both NO2 and PM10-2.5 concentrations are lowered through intervention, and 
PM10-2.5 is lowered in a manner that is based upon the observed distribution of PM10-2.5 on low-
NO2 days, the resulting parameter is identifiable from the data observed in the present study. 
This is demonstrated by the overlap between the observed and intervention distributions of each 
pollutant in Table 12, and the fact that the pollution profile of the hypothetical intervention days 
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(represented by red dots in Figure 10) falls entirely within the range of the joint 2-pollutant 
exposure distribution of observed days (black circles). 

As there is support in the data to estimate a parameter corresponding to both single-
pollutant analyses and intervention C, these results should be given more weight than the results 
for 2-pollutant interventions A and B. Non-positivity results in biased parameter estimation[16, 
17], so the conflicting results from interventions A and B can be dismissed. More importantly, 
research questions of the form of interventions A and B—large, isolated single-pollutant 
concentration changes in a multi-pollutant exposure regimen—should be scrutinized for 
positivity and data support before commencing analysis. 
 
Relating this approach to non-PIM approaches 
 The g-computation-PIM approach has not been applied to air pollution research as of yet, 
but it is related to the existing approaches. Moreover, the positivity issues raised in this study are 
not unique to the PIM approach. In fact, using a g-computation estimator in a dataset without 
repeated measures, in a model without interaction terms and with a continuous outcome, the 
single-pollutant PIM effect estimate is equal to model-derived the pollutant coefficient 
multiplied by the mean pollutant concentration change under intervention (as presented in the 
Results section, Tables 13 and 14). Under these same circumstances, the 2-pollutant effect 
estimates could be calculated by multiplying each pollutant coefficients by the mean pollutant 
concentration change, and summing the resulting risk differences.   

As I stated in the Methods section, the Q-model is not mechanically different from a 
traditional regression model used to estimate air pollution health effects; it differs in its 
implementation for parameter estimation. Whether an investigator uses a model in a traditional 
regression approach or a Q-model for g-computation, the issues of positivity and parameter 
identifiability remain important. The causal inference literature has brought increased attention to 
the issue of positivity to epidemiologic analysis[18-20], but the concern is not unique to analyses 
employing these methods. Other fields of epidemiology are focusing more attention of the issues 
of positivity and parameter identifiability (e.g., social epidemiology[21-23]), and bringing this 
focus to environmental epidemiology can improve the inference that we draw from our data, and 
the relevance and validity of our work to inform policy. Especially as calls for renewed focus on 
air pollution mixtures motivate investigators to analyze increasingly complex exposure regimens, 
the need to consider issues of positivity and parameter identifiability is compounded. 
 
Contributions of this study 
 This study contributes to air pollution epidemiology by studying two pollutants whose 
effects on FEF25-75 in children with asthma are still not fully understood, and for which prior 
results has proven inconclusive, at best. Additionally, by analyzing FEF25-75, the present study 
contributes to the small body of air pollution epidemiology examining this outcome that may be 
a better marker for health effects in people with asthma[24, 25] but is not yet widely studied. 
Though statistical inference does not support a strong conclusion that ambient NO2 and PM10-2.5 
are inversely associated with FEF25-75, either independently or jointly, the analyses that estimated 
identifiable parameters did find internally consistent findings: small, imprecisely estimated 
increases in FEF25-75 associated with decreasing pollution levels.   
 This study also contributes to the literature by implementing a methodological approach 
that is not widely used in environmental epidemiology, but which is relevant for air pollution 
epidemiology. The causal inference framework generally, and the Population Intervention Model 
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specifically, are well equipped to estimate parameters associated with potential interventions[26, 
27] which are often of interest in air pollution policy and therefore air pollution science. The 
health effects associated with an intervention explicitly defined with reference to the observed 
pollutant concentrations offers an alternative method to quantify air pollution health effects, in 
addition to the existing methods based on an IQR or 10-unit increase in pollution concentration 
(methods which do not always correspond to realistic[12] or identifiable[11] parameters). By 
demonstrating the implementation of this method on air pollution data, I have attempted to 
answer a question of scientific and policy relevance, but also to demonstrate the applicability of 
these methods to the subject matter of air pollution. 
 The methodological approach employed here is most relevant for its implications for 
multi-pollutant air pollution research. There is a well-known need for new approaches to 
estimate health effects of mixtures[14, 28], and the method employed here is a promising 
candidate approach. By estimating the overall health effects of multiple, simultaneously 
changing pollutants, the Population Intervention Model enabled analysis of multi-pollutant 
health effects at the mixture level, rather than the level of the independent co-pollutant. This 
approach may represent a more realistic framework for considering health effects of mixtures, 
especially in the presence of correlated co-pollutants.  
 This study also provided in-depth analysis of co-pollutants in a multi-pollutant model, 
focusing on concepts of positivity and parameter identifiability as they related to the data 
collected for the FACES study. This examination yielded important conclusions about the nature 
of multi-pollutant research questions that can be validly estimated in the FACES data. Although 
they could be and were calculated, the examination of the joint exposure distribution suggested 
that some of the health parameters estimated here (namely, interventions A and B) were based on 
extrapolation in regions of the joint exposure space where there were no observed data. On this 
basis, these parameters were deemed off-support for this dataset, and the corresponding results 
were given less weight than those which were supported by actual data.  

This finding does not imply that questions encoded in interventions A and B are not 
identifiable for all datasets collected in all geographical regions. In areas where the two 
pollutants are less correlated, and where there are observed days of high NO2 and low PM10-2.5 
(and vice versa)—in other words, where there is a positive probability of one pollutant having a 
high concentration in the presence of a low-concentration of the co-pollutant—such questions 
may be asked. However, in Fresno during the summers of 2001 – 2008, the research questions 
that interventions A and B encode are not answerable, because they require the estimation of 
non-identifiable parameters. This examination applies to other multi-pollutant analyses, and 
points to the broad importance of considering the identifiability of multi-pollutant health effects. 
 
Limitations of this study 
 One byproduct of the use of an uncommon method is that the results of this study are not 
readily compared to the results from prior research. This prevents assessing the extent to which 
the results are coherent and consistent with the existing literature on this topic. 
 The lack of statistical precision with which these results were estimated prevents 
rejection of the null hypothesis for any of the research questions posed. With all 95% confidence 
intervals crossing this null value here, it is difficult to decisively conclude whether the patterns 
observed in the findings indicate genuine health effects or are a result of chance. 
 The analysis of repeated measures data, with unequal number of repeat observations per 
participant, complicated the analyses conducted in this study. Data from each child were equally 
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weighted in the calculation of health effects, both in the regression model and in the calculation 
of the risk difference. Still, there may be auto-correlation between the repeated measurements 
from with a child that introduce bias into the results (point estimates and/or standard errors). The 
correlation structure for this dataset was sufficiently complicated (with repeated measures within 
a panel and repeated panels within a child, sometimes years apart) to call into question the 
appropriateness of many of the common auto-correlation structures used in approaches that 
explicitly account for auto-correlation, such as Generalized Estimating Equations. Still, future 
work should examine the effects of using various approaches to account for the repeated 
measures in the FACES data. 
 Missingness of observations within panels is another important issue that this study did 
not address. Basic statistical tests indicated that the overall sample of children contributing panel 
data did not differ from the subset of children who contributed summer panel data on the basis of 
individual variables. Still, the missingness of FEF25-75 measurements from single days within 
observed panels may be an important source of censoring. If this censoring is informative (i.e., 
associated with the exposure or other important covariates), then it could introduce bias into 
these findings. Future research should explore the issue of missingness. 
 Relatively simple models were fitted to estimate the health effects of the pollutants 
studied here. In fact, four of the nine final age- and regimen-specific models were the crude 
model and contained no confounders. These unadjusted models were selected by the DSA 
algorithm, even though potential confounders were submitted to the algorithm in all cases, 
having been chosen by candidate reduction. From one perspective, the models’ relative 
simplicity is unsurprising, given that ambient pollutant concentrations were analyzed as the 
exposure, and these are unlikely to be associated with many individual-level covariates. Still, as 
in any analysis there is the possibility that uncontrolled confounding introduced bias into the 
effect estimates shown here. A concrete example is potential residual confounding by calendar 
time even after age stratification. The testing of all candidate covariates for bivariate associations 
with both exposure and outcome diminished the probability of this scenario, as regards measured 
confounders. 
 A final limitation is the use of central-site data for exposure assignment. While the 
research question of the present study does focus on ambient pollution, the concentration of 
pollutants at a central monitor does not measure an individual’s personal exposure to ambient 
pollution. In the case of particulate matter, various methods have been proposed to model 
personal exposure to ambient pollution[29-31], though implementation of these techniques in 
applied epidemiology remains rare[32]. The use of ambient exposure assignment in the present 
study doubtless introduces measurement error, which poses a more serious threat to validity if it 
is differential with regard to outcome.  
 
Directions for future research 
 Future research should explore the methodological issues highlighted in the limitations 
section, including auto-correlation of outcome, missingness of panel days, and exposure 
measurement. There are also a number of next steps that this methodological approach can be 
applied to. 
 In the area of summertime air pollution mixtures, future research should estimate the 
health effects of different pollutant combinations. Ozone is an important component of the 
summertime air pollution profile in Fresno, and is also related to NO2 through chemical 
pathways that cause their correlation to be different from that observed between NO2 and PM10-
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2.5 in this analysis[33]. Future analyses using ozone, or any other summertime pollutant, should 
consider the joint exposure distribution of the co-pollutants and proceed with the estimation of 
identifiable parameters.  
 Another area of interest is the health effects of season-specific mixtures in different 
geographic locations, or in Fresno during seasons other than summer. The exposure plots in the 
Results section demonstrated that NO2 is at its peak early in the winter season, making winter 
another season of interest in this dataset. Different seasonal combustion sources and 
meteorological factors ensure that the air pollution mixture is different across seasons, and each 
represents an interesting future application of this methodological approach. Another way of 
extending analyses from this study would be to apply the approach to estimate mixture health 
effects in other regions that have different air pollution profiles: sources, pollutants, seasonal 
patterns, and correlation structures. Conducting analyses in different geographical regions may 
provide data that support the estimation of parameters that are non-identifiable in the current 
dataset, enabling investigators to ask and validly answer different types of questions. 
 On the topic of identifiability, future research should examine how the estimation of 
health effects that are off-support for a given dataset affects parameter estimation and scientific 
inference. The work on the statistical effects of positivity violations[16] could be extended into 
air pollution subject matter, so that we can more fully appreciate the effects of random and 
deterministic violations of this crucial assumption. 
 Future research should also examine the analytical issues involved in multi-pollutant 
modeling with more than two exposure variables. Several of the analytical steps and 
methodological considerations discussed in the present study would be greatly complicated in the 
presence of three or more co-pollutants. Even examining the joint distribution between the co-
pollutants, while certainly achievable with current statistical tools, would nonetheless be more 
complicated than the two-pollutant example discussed here. Examining the issues of positivity 
and parameter as they relate to a three- or more-pollutant exposure regimen would be the first 
stop enabling the estimation of effects corresponding to increasingly complex air pollution 
mixtures.
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