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Abstract

As more complex predictive models are used for gamma-ray spectral analysis, methods are

needed to probe and understand their predictions and behavior. Recent work has begun to

bring the latest techniques from the field of Explainable Artificial Intelligence (XAI) into the

applications of gamma-ray spectroscopy, including the introduction of gradient-based meth-

ods like saliency mapping and Gradient-weighted Class Activation Mapping (Grad-CAM),

and black box methods like Local Interpretable Model-agnostic Explanations (LIME) and

SHapley Additive exPlanations (SHAP). In addition, new sources of synthetic radiological

data are becoming available, and these new data sets present opportunities to train models

using more data than ever before. In this work, we use a neural network model trained on

synthetic NaI(Tl) urban search data to compare some of these explanation methods and

identify modifications that need to be applied to adapt the methods to gamma-ray spectral

data. We find that the black box methods LIME and SHAP are especially accurate in their

results, and recommend SHAP since it requires little hyperparameter tuning. We also pro-

pose and demonstrate a technique for generating counterfactual explanations using orthog-

onal projections of LIME and SHAP explanations.

Introduction

The analysis of gamma-ray spectra is an important task in the realm of radiological and

nuclear security [1, 2]. Gamma-ray spectra can be complex, due to the many possible sources

of natural and artificial backgrounds, the large variety of radioactive isotopes and special

nuclear material (SNM) that may be relevant to a particular problem, and the possibility of

instrumental effects such as calibration drift. To deal with these complexities, machine-learn-

ing methods, especially artificial neural networks (ANNs), have been used in gamma-ray spec-

troscopy for over three decades [3–8].

Recently there has been an increase in the use of machine learning to analyze an entire

gamma-ray spectrum, often to determine the presence of certain isotopes and quantify their

relative strengths [9–24]. As more complex approaches are used for the detection and quantifi-

cation of isotopes using gamma-ray spectroscopy, and especially as those approaches are
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potentially encountered in high-stakes security applications, it will become increasingly neces-

sary for researchers and end-users to understand how algorithms are reaching their conclu-

sions [25]. Such considerations in the wider artificial intelligence community have led to the

burgeoning field of explainable artificial intelligence (XAI) [26, 27], which addresses the need

to increase transparency and user trust in machine-learning algorithms. Explanations in the

gamma-ray spectral domain will enable end users to not only have trust in the results, but also

to more efficiently understand and adjudicate alarms during field operations.

Some researchers have taken note and made the first attempts to apply XAI techniques to

the outputs of these new machine-learning approaches [18–20]. In reference [18] the authors

apply saliency mapping [28], which gives a clear result for the activations of 137Cs, namely that

the 662 keV region is most important in identifying the presence of that isotope. However,

they found that saliency sometimes failed to provide a useful explanation, such as when it was

applied to an 241Am spectrum, where saliency showed no activation with respect to the strong

60 keV line from the isotope. In reference [19], SHapley Additive exPlanations (SHAP) [29]

was used to examine the results of models that determine uranium enrichment levels from

high purity germanium (HPGe) detector spectra. SHAP was able to indicate the correct peak

regions corresponding to the different uranium isotopes and the strength and direction of

their influence on the enrichment result, although they were not clear about the details of how

SHAP was calculated for their data, such as what type of scheme was used to mask out or dis-

able spectral features. Reference [20] implemented and compared several explanation methods

for use with low resolution plastic scintillator spectra. The gradient-based methods of Gradi-

ent-weighted Class Activation Mapping (Grad-CAM) [30], Integrated Gradients (IG) [31],

and Layer-wise Relevance Propagation (LRP) [32, 33] are compared to the black-box methods

Local Interpretable Model-agnostic Explanations (LIME) [34] and SHAP [29]. Their conclu-

sion was that Grad-CAM and LIME give unusable results, IG and LRP are possibly useful, and

SHAP gives results that seem highly relevant and intuitive. However, since LIME and SHAP

are closely related methods, it is unlikely that their performance would be so different. With

few details about the implementations used for LIME and SHAP, it is difficult to infer the

cause of this discrepancy. Taken together, the conclusions so far are that some approaches

appear to yield better and more intuitive results than others, and that the best methods indicate

that the models generally use the isotope-specific photopeak regions (or Compton-edge

regions in the case of the plastic scintillator detectors in reference [20]) to determine the

model outputs. However, there is also a need for a deeper understanding and articulation of

the application of these methods to spectral data, particularly in cases where the gamma-ray

spectra are more complex as is the case for most nuclear material.

In this work we focus on the problem of spectral detection and identification in urban

search using simulated NaI(Tl) detectors, which are considered to have moderate energy reso-

lution. We implement some of the explanation methods that have been explored by others and

find that in some cases modifications are needed to more fully adapt those methods for

gamma-ray spectral data (Explanation methods). These modifications have not been noted in

other work and may account for the mixed results seen across the methods. We also propose a

method for producing counterfactual explanations, i.e., why the model predicted one class

over another. To demonstrate these methods, we use an ANN model that is consistent with

recent literature and trained on the latest in synthetic data for urban search (Data and model).

Finally, we show the results of using these explanation methods (Results) and discuss their

implications (Discussion), specifically that black box explanation tools are preferred, and Ker-

nel SHAP has an advantage over LIME of requiring little to no hyperparameter optimization.

We also note that the gradient-based methods appear to be useful but can have unpredictable

outcomes for low energy sources, possibly because the spectra contain orders of magnitude
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more counts at the low end than at other portions of the spectrum. In addition, we demon-

strate the utility of counterfactual explanations with a specific example.

Explanation methods

The common notation we will use for the explanation methods is that we have a model f that

takes a spectrum x 2 RN
�0

with N bins as input, and outputs C class scores y 2 RC. These scores

are assumed to be the output logits before the softmax function that is typically used to nor-

malize the outputs of models. The specific data point at issue (rather than the generic input) is

x0, and bolding will be dropped when indexing individual vector elements.

Explanations will be denoted as � 2 RM
, where M� N is the dimension of the explanation

space. If M< N then � will be expanded proportionally to cover all N input dimensions, and

this is done in all figures showing explanations.

Saliency mapping

Saliency mapping [28] was first proposed in 2013 as a means of interpreting the output of the

latest generation of deep neural networks with high achievement on the ImageNet problem

[35]. This method gave researchers some of their first insights into the overall operation of

deep and complex ANNs. Saliency mapping was first used for gamma-ray spectra in reference

[18].

A saliency map is the gradient of the output (e.g., the class score yc for class c, before the

final softmax) with respect to the input data x, evaluated on the original input data x0:

ð�
c
saliencyÞi /

@yc

@xi

�
�
�
�
�
x0

: ð1Þ

Typically, the absolute value of �
c
sal is taken and scaled to the range [0, 1], but we will exam-

ine the raw gradient here.

Saliency, of course, requires that the model be differentiable. Since our models are imple-

mented in Tensorflow library [36], this gradient can be calculated automatically.

Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) was introduced as a way of visual-

izing which regions of an image contribute most strongly to a particular class score [30]. Grad-

CAM requires that at least one layer of the model is convolutional, and it weights the gradients

of the class score with respect to the final convolutional layer by the activations of that layer

itself. Assuming Aij(x0) is the activation of filter j (out of a total of J) at index i (out of a total of

M) for the last convolutional layer in the model, then the Grad-CAM explanation is defined to

be

ð�
c
Grad� CAMÞ

∗
i / ReLU

XJ� 1

j¼0

XM� 1

i0¼0

@yc

@Ai0j

�
�
�
�
�
x0

0

@

1

A � Aijðx0Þ

2

4

3

5: ð2Þ

However, this formula led to unusual outputs with our model and data. The culprit seemed

to be the wide dynamic range of a single spectrum—by averaging the gradient over the spectral

dimension (i0) first, large gradients, especially near the low energy portion of the spectrum

where there may be orders of magnitude more counts than higher energy regions, were overly

influencing the resulting mean gradients. We observed that if those gradients were not
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averaged but were instead first multiplied by the activations, then the activations would serve

to suppress the spurious high gradients, resulting in more understandable outputs.

In other words, the modification to Grad-CAM that was suitable for our spectra was to

remove the gradient averaging and leave only the sum over the filter dimension,

ð�
c
Grad� CAMÞi / ReLU

XJ� 1

j¼0

@yc

@Aij

�
�
�
�
�
x0

� Aijðx0Þ

2

4

3

5: ð3Þ

The need to modify Grad-CAM serves to underline how methods developed for image

data, which in general have lower dynamic ranges than gamma-ray spectra, may not necessar-

ily give sensible results when used without modification, and care must be taken to ensure they

are working as expected in the new context.

LIME

LIME was proposed in 2016 as a way of making more robust explanations by creating local lin-

ear (and thus interpretable) versions of the model [34]. The basic principle is to repeatedly per-

turb the input data randomly and evaluate the model on those perturbations, and then to build

a low-dimensional linear model that, at least in the neighborhood around the input data, closely

approximates the original model. By examining the intrinsically more interpretable linear

model, one can identify the main features of the input data that influenced the model’s output.

Open source code for LIME is available [37], but we wrote our own version. To implement

LIME, one needs three main ingredients: a scheme for masking the input data, a kernel for

measuring the “distance” between different inputs, and a method for determining the optimal

number of linearized features.

Masking is performed by selecting a number M� N simplified input dimensions, with the

choice of M chosen generally to speed up computation. Each mask is represented by a simpli-

fied input z 2 {0, 1}M, and z is converted to a masked version of x0 using the mapping function

hx0
ðzÞ : f0; 1g

M
7!RN

�0
: ð4Þ

This mapping function is shared by SHAP and will be described in Method for masking

spectral regions for LIME and SHAP.

The kernel for LIME is

px0
ðzÞ ¼ expð� D2ðx0; hx0

ðzÞÞ=s2Þ; ð5Þ

where D(x1, x2) is a distance metric between two spectra, and σ is a distance scale parameter.

For spectral data, which contain integer counts, we chose a statistically motivated distance

metric based on Poisson statistics, the Poisson deviance [38],

D2ðx1; x2Þ � 2
XN� 1

i¼0

ðx2Þi � ðx1Þi þ ðx1Þilog
ðx1Þi
ðx2Þi

� �� �

; ð6Þ

which has the constraint that x2 cannot have any elements that are zero unless the same ele-

ment in x1 is also zero, in which case the logarithm term becomes zero. In the limit of large

counts in all bins of x1 and x2, the Poisson deviance becomes the chi-squared statistic. Also,

when the gross counts of x1 and x2 are equal, the Poisson deviance simplifies to be proportional

to the Kullback-Leibler divergence [39] between the normalized spectra.

Under the masking scheme, one of the largest distances achieved by any spectrum will be

when the elements of z are all zero. Therefore, we chose to use this distance as a scale in the
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kernel, so

s � ~s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðx0; hx0

ð0MÞÞ
q

; ð7Þ

where 0M is a mask of all zeros and ~s is a scale parameter that is less dependent on the charac-

teristics of x0. We chose a default value of ~s ¼ 1:0.

Finally, LIME finds an explainable model g that locally approximates the behavior of the

class score yc around x0 by minimizing the following objective function

Lðyc; g; px0
Þ ¼

X

z2Z

px0
ðzÞ½ycðhx0

ðzÞÞ � gðzÞ�2 þ OðgÞ; ð8Þ

where Z is a random sample of masks from the space {0, 1}M, g(z) is a linear model that takes

the simplified inputs as its arguments,

gðzÞ ¼ �0 þ �
c
LIME � z; ð9Þ

and O(g) is a penalty on the number of nonzero coefficients of g.

There are multiple ways presented to optimize the number of nonzero coefficients of g,

denoted K. We chose one of the methods in the LIME open source repository [37], that of solv-

ing Eq 8 using O(g) = 0 and ridge regression, finding the dimensions with the largest coeffi-

cients by absolute value, and then solving for a second time using ridge regression with only

those dimensions. In all of the results presented later, LIME was performed by choosing

K = 10, a ridge regression parameter α = 1 × 10−2, and generating 1,000 random masks.

SHAP (Kernel SHAP)

SHAP is a method that connects the LIME approach with a more general game-theoretic inter-

pretation, namely that the input data features are viewed as “players” in a cooperative game for

which there is an average payoff for each feature’s participation [29]. The name for these pay-

offs are Shapley values, and in SHAP they take the place of the LIME coefficients.

Open source code is available [40], but, as was the case with LIME, we wrote our own code

that used the masking scheme described in Method for masking spectral regions for LIME and

SHAP.

To be calculated exactly, SHAP requires evaluating the class score for all possible masks

except the mask of all zeros and the mask of all ones (i.e., 2M−2 masks in total). Fortunately,

the Shapley values can be approximated using only a random subset of all possible masks. This

approximation is called Kernel SHAP [29] and is found by recasting LIME through the follow-

ing definitions:

px0
ðzÞ ¼

M � 1

M
k z k0

� �

k z k0ðM� k z k0Þ

; z=2f0M;1Mg
ð10Þ

gðzÞ ¼ �0 þ �
c
SHAP � z ð11Þ

OðgÞ ¼ 0; ð12Þ

where kzk0 is the metric that counts the nonzero elements of z, and 0M and 1M are masks of all

zeros and ones, respectively. Solving Eq 8 leads to the explanation ϕ.

The resulting approximate Shapley coefficients end up in our experience to be similar in

size and magnitude to the results of LIME, despite having virtually no hyperparameters to
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define—the only hyperparameters are the number of simplified inputs, M, and the number of

random mask samples in the sum in Eq 8.

Method for masking spectral regions for LIME and SHAP

As has been described, to implement LIME and SHAP, a scheme to mask portions of the origi-

nal input data is needed. The mapping from mask to spectrum is summarized by the mapping

function hx0
ðzÞ. For the equivalent of image superpixels, so that computation efficiency of

LIME and SHAP can be increased, the user is allowed to choose M contiguous spectral regions,

such that M is less than or equal to the number of spectral bins N. The regions then consist of

M sets of�N/M adjacent bins (with rounding to the nearest integer). For a given mask z 2 {0,

1}M, the spectral regions to be masked out are indicated by where the values of z are zero.

For image data, both LIME and SHAP replace masked image superpixels with a representa-

tive mean color. In LIME, the choice is to mask using the mean of each color channel over the

entire image, typically leading to a shade of gray. In SHAP, numerous options are used, includ-

ing in-filling with the average color of neighboring regions. (These choices are not explained

in the original papers [29, 34], but have been implemented in the corresponding open source

codes [37, 40].) The purpose of “graying out” superpixels is to convert the original image

regions into regions that do not have any features that result in any significant class activations,

thus allowing the method to effectively disable the effects from the masked superpixels.

For gamma-ray spectra, since spectral bin values can vary over orders of magnitude in a sin-

gle spectrum, inserting the mean value of the spectrum into a masked region would be a poor

choice, since doing so could lead to the injection of highly unusual spectral features with

unpredictable class activations. Inserting the mean value of neighboring spectral bins would be

more suitable and lead to more natural-looking spectra. Other options we considered are to

linearly interpolate between the values on the boundary of the masked region, or to linearly

interpolate in the logarithm of the values. In reference [19], which used SHAP, and reference

[20], which used LIME in addition to SHAP, it is not clear in either case what type of scheme

was used to disable spectral features.

We found an additional way of masking gamma-ray spectra that resulted in the most stable

class activations. The basic idea is to insert appropriately scaled portions of the mean back-

ground spectral shape, making the masked regions locally resemble the mean background and

thus be unlikely to activate any non-background classes. The mean background spectral shape

�x is calculated from all the spectra labeled as background in the training set, by taking the sim-

ple mean of all of the spectral bins. For a measured spectrum x 2 RN
�0

, each contiguous masked

region was replaced by the same region of the mean spectrum, scaled to the gross counts of x

within that region. In other words, if the simplified inputs z indicate a spectral region from i0
to i1 (inclusive) is to be masked, then the ith element of the masked spectrum, assuming i is

within that region, is

ðhxðzÞÞi ¼
Pi1

i¼i0
xi

Pi1
i¼i0

�xi

 !

�xi: ð13Þ

Among the implications here are that when all elements of z are zero, this method results in

the entire mean background spectrum scaled by the gross counts of x:

hxð0MÞ ¼

PN� 1

i¼0
xi

PN� 1

i¼0
�xi

 !

�x: ð14Þ

PLOS ONE Explaining machine-learning models for gamma-ray detection and identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0286829 June 20, 2023 6 / 21

https://doi.org/10.1371/journal.pone.0286829


An analogous process would not be suitable for most image datasets, since the visual field

usually changes a much greater amount than the mean spectral shape of gamma-ray data.

An example of applying these different masking methods to a spectrum is shown in Fig 1.

In that example, the region including the 131I photopeak at 364 keV is masked out, so one can

compare how the different methods handle that region.

To see not just what the different masking methods look like, but how they may affect an

algorithm, the class scores for the model described in Model for detection and identification

were observed for multiple spectra. For a spectrum that was labeled background, the method

that resulted in the most narrow and symmetric distribution of scores around the original

score was the mean background method. An example of one such class score is shown in the

top plot in Fig 2). In addition, a spectrum that contained 131I was examined with masking (in

fact, the same spectrum shown in Fig 1). For that spectrum, because it contained a source, all

of the score distributions were more variable than in the background case. However, the pre-

ferred masking method still results in the tightest distributions, as can be observed in the bot-

tom of Fig 2.

Counterfactual explanations

When a model gives significant confidence levels for multiple sources, a technique to explain

why one class was chosen over the others may provide significant value. An explanation need

not be calculated only for the best class score; indeed any class score can be used, so in these

cases multiple explanations can be generated, one for each of the most likely sources. However,

since sources that could be easily confused by the model tend to have features in the same

region(s) of the spectrum, the multiple explanations on their own may not be helpful to a user

when adjudicating the results. Instead, one may want to generate a counterfactual explanation

for why one class was deemed more likely than the other, and such an explanation may reveal

the features that most strongly distinguish between the two classes [41].

To examine the contrast between two explanations �1 and �2, we considered them each as

two real-valued vectors in a Euclidean space (e.g., RM
in the case of LIME and Kernel SHAP).

Fig 1. Spectrum masking methods. Example of masking a gamma-ray spectrum (black) using different approaches

mentioned in the text. The spectrum contains an 131I anomaly, whose main photopeak can be seen at 364 keV.

https://doi.org/10.1371/journal.pone.0286829.g001
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Fig 2. The effect of the masking methods on model class scores. Examples of the distribution of the model’s class scores for 131I

using different masking methods. At top are the class scores for 131I for a background spectrum, and the bottom shows the same

quantities, but for the spectrum shown in Fig 1, which contains 131I. Each histogram contains the results of 20,000 random

masks.

https://doi.org/10.1371/journal.pone.0286829.g002
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Since the classes are both likely, the two explanations may be largely colinear, so the largest

contrast between the explanations is in how they are orthogonal. In particular, assuming �1 to

be the higher confidence explanation and �2 the weaker one, we propose using the negative of

the orthogonal projection of ϕ2 onto ϕ1 as a technique for explaining why class 1 should be

chosen over class 2, i.e.,

�1?2 �
�2 � �1

�1 � �1

� �

�1 � �2: ð15Þ

An example of such a counterfactual explanation will be shown in Results.

For the explanation methods that use random masking (LIME and Kernel SHAP), we

found the counterfactual explanations most clear when ϕ1 and ϕ2 were calculated using the

same set of random masks, by, e.g., supplying both methods with the same random seed.

Data and model

Here we will describe the data set used to train machine-learning models for spectral anomaly

detection and identification, and the optimized model and its performance. This model and

these data will be used in Explanation methods to demonstrate the explanation methods.

The dataset and its preparation

The data used were derived from the RADAI dataset [42–44]. The RADAI dataset is the result

of modeling an urban area to generate realistic radiological backgrounds, including 40K, 238U,

and 232Th series emission from buildings, road materials, and soil; 214Pb and 214Bi emission

from horizontal surfaces during rain events; cosmic-induced gamma-ray backgrounds; scatter-

ing and attenuation from people and vehicle clutter; and other effects.

In addition to backgrounds, 24 sources of various kinds were present in many encoun-

ters throughout the dataset. These sources emerged from point-like sources and comprised

a number of types—naturally occurring radioactive material (NORM) anomalies, medical

sources, industrial sources, and nuclear material—and contained various levels of shield-

ing. The 24 source anomaly types (non-background) used in this study are listed in

Table 1.

For each isotope, the dataset contained at least 30 “runs” of 3–5-minutes in duration that

consisted of encounters with the source in different physical locations of the city blocks. The

runs were divided into training runs and validation runs, with 60% of the runs used for train-

ing, 20% for validation and 20% used for testing. The list-mode data from each run were inte-

grated into one-second long spectra, and source- and background-tagged events were binned

separately.

The spectra were binned into 256 nonlinear bins, spaced from 15 to 3000 keV. In order to

approximate the energy resolution as a function of energy, a square-root binning scheme was

Table 1. Anomaly types in the RADAI dataset.

Category Isotopes

NORM 40K, 232Th series, 226Ra series

Medical 57Co, 18F, 99mTc, 131I, 201Tl, 67Cu, 90Sr, 177Lu, 133Xe

Industrial 60Co, 137Cs, 133Ba, 192Ir

Nuclear Depleted U, Natural U, Refined U, Low Enriched U, Highly Enriched U, Fuel-Grade Pu, Weapons-

Grade Pu, 241Am

https://doi.org/10.1371/journal.pone.0286829.t001
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used, i.e., the j-th bin edge (j = 0. . .256 inclusive) was

Ej ¼
ffiffiffiffiffi
15
p

þ

ffiffiffiffiffiffiffiffiffiffi
3000
p

�
ffiffiffiffiffi
15
p

256
j

� �2

keV: ð16Þ

This scheme is similar to the nonlinear scheme used in reference [22]. The intention behind

this nonlinear binning scheme here and in that reference is to reduce the dimensionality of the

spectral data without losing information, since no natural spectral features can appear that are

at a higher resolution than the detector energy resolution.

Training, validation, and testing data were augmented in the following way. Binomial

downsampling was applied to the background list-mode events using a probability randomly

selected between 0.5 and 1.0. Binomial downsampling was applied to the source list-mode

events with a probability randomly chosen logarithmically between 1 × 10−6 and 1 × 100. Aug-

mented spectra were retained so long as the number of source events to total events in the

downsampled spectrum was above 1% (unless background spectra were being generated, in

which case all spectra were accepted). In this way 20,000 spectra for each source type (includ-

ing background) were created for the training set, and 5,000 spectra of each kind for the valida-

tion and testing sets. The tools for data generation and augmentation that were used are in the

open source radai repository [45].

Model for detection and identification

For demonstration purposes in this paper, we will use a simple ANN and apply it to the classi-

fication problem for spectra, i.e., determining whether a spectrum is background or whether it

contains any of the 24 kinds of anomalies, and if so, which one. The models used were inspired

by the architectures used by [12, 18, 19], and consisted of two 1-D convolutional layers, each

followed by a max pooling layer, followed by two fully connected layers each followed by drop-

out, and a finally fully connected layer activated by a softmax to the final 25 outputs. As used

in references [11, 12], the input spectra were first preprocessed by dividing by the maximum

bin value to scale all of the bin values to be between 0 and 1, i.e., x! x/max(x). Unlike refer-

ence [12], the outputs were not fractional abundances but categorical probabilities, so the

training was done with one-hot representations of the labels. The models were optimized by

minimizing sparse cross entropy, and the Adam optimizer [46] was used, with a batch size of

1024, a learning rate of 1 × 10−4, and early stopping after 20 epochs if the validation-set loss

has not decreased. The model was implemented in Keras [47] and Tensorflow [36] versions

2.11.0.

The best model was found by a random search over the parameter set given in Table 2, and

the full details of the model architecture are listed in Table 3. The architecture results in a

model with a total of 674,315 trainable weights.

Table 2. Model hyperparameter search.

Hyperparameter Search space Best value

1-D Conv. no. of filters [10, 20, 30, 40, 50] 30

1-D Conv. kernel width odd numbers from 9–25 21

Max pool size [No pool, 2, 3, 4] 2

Max pool stride [1, 2, 4] 1

Dropout rate [0.3, 0.5, 0.7] 0.5

Fully connected nodes [100, 200, 300, 500] 100

https://doi.org/10.1371/journal.pone.0286829.t002
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Model performance

The model was used to assign a predicted class to each of the spectra in the testing set by taking

the arg max of the predicted categorical probabilities. The overall accuracy of the model in

identifying the 25 categories was 30.9%. The identification performance can be seen in the

confusion matrix in Fig 3, which shows the predicted class label for each of the true class labels.

The dataset was meant to be challenging to the algorithm, so a large number of spectra are

identified as background. Some anomaly classes are more easily distinguished from back-

ground than others, such as 133Xe, which has strong emission at the lowest part of the spec-

trum. Other low energy sources, such as 241Am and 201Tl, also have better detection

performance than other source types. Aside from detection performance, some anomaly types

have poor identification performance, especially refined uranium (RefinedU), fuel-grade plu-

tonium (FGPu), and weapons-grade plutonium (WGPu). For example, FGPu can be seen to

have strong cross-talk with both 241Am and WGPu, which explains where the wrong identifi-

cations are primarily being made. Though not shown here, the confusion between these three

classes persists even at high SNR values. Other notable features in the confusion matrix are the

significant crosstalk groups formed by the different forms of uranium (depleted uranium

(DU), refined uranium, low enriched uranium (LEU)) and the different plutonium-related

anomalies (241Am, FGPu, and WGPu).

Results

To examine the different explanation methods, we applied them to spectra from the testing set.

We began by examining spectra where the algorithm both correctly detected a non-back-

ground class and correctly identified the source. One of the most straightforward cases is
137Cs, which consists of a single photopeak at 662 keV with an associated continuum of down-

scattered events. Fig 4 shows the four explanation methods applied to a spectrum that truly

contained 137Cs and that the model identified as 137Cs with 98.7% confidence. For convenience

and to highlight the most obvious non-background features, the mean background scaled to

Table 3. Model architecture.

Layer type Output dimensions Parameters

Input (256,) —

1-D Convolution (236, 30) filters = 30, kernel width = 21, stride = 1

Activation (236, 30) ReLU

Max pool (235, 30) pool size = 2, stride = 1

1-D Convolution (215, 30) filters = 30, kernel width = 21, stride = 1

Activation (215, 30) ReLU

Max pool (214, 30) pool size = 2, stride = 1

Flatten (6420,) —

Dropout (6420,) dropout rate = 0.5

Fully connected (100,) —

Activation (100,) ReLU

Dropout (100,) dropout rate = 0.5

Fully connected (100,) —

Activation (100,) ReLU

Dropout (100,) dropout rate = 0.5

Fully connected (25,) —

Activation (25,) Softmax

https://doi.org/10.1371/journal.pone.0286829.t003
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match the gross counts of the spectrum is overlaid on each plot, and the deviance residuals

from this scaled mean background (i.e., signed square root of the individual terms in the sum

in Eq 6, which are approximately the standardized residuals for Poisson data) from this simple

fit are plotted beneath. In addition, the spectrum of only those events known to be from the

source (because each event is tagged by its origin in the RADAI dataset) is also plotted to quali-

tatively verify whether the explanations are able to identify the actual regions of highest impor-

tance. In the case of 137Cs, the four methods do indeed identify the region around the 662 keV

photopeak as the most important, which can be seen as also being the region with the highest

signal-to-background and where there is a distinct positive residual from the mean back-

ground shape. Of note are that LIME and Kernel SHAP return nearly identical results both in

distribution and magnitude. (Here and in what follows, LIME and Kernel SHAP use a simpli-

fied input size of M = 64, or “superpixels” consisting of groups of every four spectral bins, and

LIME is calculated using K = 10.).

The low energy source 201Tl was also used to compare the four methods (Fig 5). In this case,

the results diverged significantly between the methods. The two gradient-based methods failed

Fig 3. Confusion matrix of the model. The confusion matrix for the 25 spectrum categories obtained by evaluating the model on the testing

set.

https://doi.org/10.1371/journal.pone.0286829.g003
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to correctly identify the region where the source was the strongest, with the saliency map hav-

ing large gradients throughout the spectrum and not just in the region 40–80 keV, where most

of the source events are. In addition, Grad-CAM highlighted only the first several bins, below

40 keV. These problems may be due to how non-uniform the data in each spectrum can be—

here the nonzero elements of the spectrum vary over more than two orders of magnitude, with

the highest counts at the low end of the spectrum. It may be that the gradients in the low

energy region can dominate in unpredictable ways because of this. Indeed, issues with the uni-

formity of the gradient had to be dealt with earlier in modifying Grad-CAM (Grad-CAM),

since its original outputs were often nonsensical when tested with spectral data. Some initial

testing with models trained using logarithmic normalization of the data (as was done in [18])

seems to mitigate some of these effects, at least for saliency mapping.

Meanwhile, LIME and Kernel SHAP again produced outcomes in close agreement with

each other, and both highlight the 60–80 keV region, which is at the higher end of the region

with the most source counts. This emphasis on the 60–80 keV region may be because of other

source types (e.g., 241Am and the types of plutonium) that have strong features at 60 keV and

below, giving that region higher specificity to this particular isotope.

Fig 4. Comparison of explanation methods for a spectrum with 137Cs. A comparison of the four explanation methods considered here for a spectrum containing a

medium energy source, 137Cs. For each spectrum, the scaled mean background spectrum is shown for reference, and the deviance residual from the scaled mean

background is shown beneath.

https://doi.org/10.1371/journal.pone.0286829.g004
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To demonstrate the usefulness of the explanation methods in a more complex situation, we

examined sources that can take on significantly different spectral shapes due to different

amounts of shielding. One of the clearest and most important examples is weapons-grade plu-

tonium (WGPu), which, when unshielded has a dominant 60 keV line from 241Am, but when

shielded the signature is primarily characterized by a complex of lines around 350–400 keV.

Fig 6 shows the results of saliency mapping and Kernel SHAP for two such spectra. In both

cases, the methods generally highlight the correct regions, but saliency mapping has more

extraneous nonzero values throughout the rest of the spectrum, even in areas where there are

few to no source counts, showing that saliency mapping could potentially cause confusion for

the end user.

As a final demonstration of the usefulness of the methods, we considered counterfactual

explanations for when the model gives significant confidence levels for multiple sources, as

described in Counterfactual explanations. Fig 7 shows one such comparison, where a spec-

trum containing 131I was assigned a confidence of 88.5%, and 133Ba was given a 9.0% confi-

dence. The explanations for the two isotopes using Kernel SHAP reveal qualitatively similar

distributions, though with slightly different overall scales. For both isotopes, the region

Fig 5. Comparison of explanation methods for a spectrum with 201Tl. A comparison of the four explanation methods considered here for a spectrum with a low energy

source, 201Tl. For clarity, the spectrum is shown only up to 1000 keV.

https://doi.org/10.1371/journal.pone.0286829.g005
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around 330–420 keV is found to be important, which comports with the intuition that the

strongest photopeaks of the two isotopes are their most distinguishing features (364 keV for
131I and 356 keV for 133Ba). However, the energy resolution is too large to distinguish those

two photopeaks from each other, so it would be useful for adjudication purposes to find out

how the model has been able to find other means of contrast between the two isotopes. The

bottom plot of Fig 7 shows the counterfactual explanation � �ðI� 131Þ ? ðBa� 133Þ, i.e., the most

important features for choosing 131I over 133Ba. This explanation is illustrative, since it

reveals a moderate importance of the region of approximately 600–650 keV, which is where
131I has a significant photopeak (637 keV) but 133Ba does not. Additionally, the slight excess

of events in the region 250–300 keV are assigned negative values, indicating that their exis-

tence provides support for the presence of 133Ba. This result makes sense because 133Ba has

two significant lines in that region (276 keV with 7% branching and 303 keV with 18%

branching), while 131I has fewer relevant photopeaks there (284 keV with 6% branching)

[48].

A second example of a counterfactual explanation is shown in Fig 8, where the model

incorrectly identifies the isotope. The spectrum actually contains 133Xe, but it has been

Fig 6. Explanations for shielded and unshielded versions of the same source. A comparison of saliency (top) and Kernel SHAP (bottom) for unshielded (left) and

shielded (right) weapons-grade plutonium sources (WGPu). For clarity, the spectrum is shown only up to 1000 keV.

https://doi.org/10.1371/journal.pone.0286829.g006
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assigned a confidence of only 15.6%, while 201Tl has been assigned 84.3%. In the range 50–

100 keV, which the explanations indicate are the most important region for both isotopes,
133Xe has only one prominent line at 81.0 keV (36.9%), while 201Tl has several, ranging

from 68.9 to 82.5 keV (90.7% total among them) [48]. Thus 133Xe’s emission should be gen-

erally higher than that from 201Tl, however the true source-only spectrum indicates that the

actual anomalous emission is peaked around 50–60 keV, likely due to shielding of the

source.

The counterfactual explanation � �ðTl� 201Þ ? ðXe� 133Þ, shown in the bottom of Fig 8, gives the

most important features in reaching the incorrect determination of 201Tl instead of the correct

one. The counterfactual explanation is strongly negative in the region approximately 90-100

keV, indicating that the model saw less emission in that region than expected for 133Xe, and

that is why the confidence is lower for it. Examining a case like this may indicate to a

researcher that more development is needed to correctly distinguish between these two iso-

topes when there is shielding, potentially guiding the collection of more training data or the

pursuit of other model architectures.

Fig 7. Example of a counterfactual explanation. Kernel SHAP used for explanations of the class score for 131I (top left), which is the true anomaly contained by the

spectrum, and an explanation of the class score for 133Ba, to which the model also gave significant confidence. The bottom middle is a plot of Kernel SHAP used to

generate a counterfactual explanation for why 131I was correctly selected over 133Ba.

https://doi.org/10.1371/journal.pone.0286829.g007

PLOS ONE Explaining machine-learning models for gamma-ray detection and identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0286829 June 20, 2023 16 / 21

https://doi.org/10.1371/journal.pone.0286829.g007
https://doi.org/10.1371/journal.pone.0286829


Discussion

Methods to explain the outputs of machine-learning models provide context that the model’s

predictions on their own do not. In gamma-ray spectroscopy, and in the particular application

of anomaly detection and identification in urban search, these explanations can provide

insights into which regions of the spectrum are most important. As others have noted, these

regions tend to be those where there are important features such as isotope-specific photo-

peaks [18–20].

However, there are additional complexities in applying explanation tools to spectral data.

The first is that the gradient-based methods we explored (saliency mapping and Grad-CAM)

seem to become distorted at the lower energies. We suspect that the gradients become domi-

nated by their values at low energies, which are orders of magnitude higher than other regions

of the spectrum, and that if these tools are to be useful going forward then some adequate regu-

larization must be found. To deal with the low energy effects, we had to modify Grad-CAM to

suppress the effects of low-energy gradients, although the result was not entirely successful.

These problems with gradients at the lowest energies may be behind the unusual result seen in

Fig 8. Example of a counterfactual explanation when incorrect class was identified. Kernel SHAP used for explanations of the class score for 133Xe (top left), which is

the true source present, but the model incorrectly assigned a higher confidence to 201Tl (top right). The bottom middle is a plot of the counterfactual explanation for why

the incorrect 201Tl was selected instead of the correct 133Xe.

https://doi.org/10.1371/journal.pone.0286829.g008
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the saliency map for 241Am in reference [18], where the clearly visible 60 keV line was not

highlighted by the method, while the higher energy photopeak regions of 137Cs and 60Co were

correctly found. The 241Am result was especially surprising given that the model’s performance

on 241Am is nearly 100% perfect according to the confusion matrix.

An additional lesson is that some explanation tools require masking of the input data fea-

tures in a way that is appropriate for the data. The default masking behavior implemented in

open source versions of the black box methods like LIME and SHAP may work well for images

and other data but not for spectra. For example, inserting the mean value of the data into the

masked regions might work for images, but creates highly distorted gamma-ray spectra. Line-

arly interpolating masked regions leads to more stable class scores for randomly masked spec-

tra, and we found that inserting scaled regions of the mean background shape worked even

better. The existing applications of LIME [20] and SHAP [19, 20] in the literature do not

clearly specify how masking was done, although their results support the usefulness of SHAP.

Another result of this paper is that LIME and Kernel SHAP are found to give comparable

and nearly identical results. This coincidence is not surprising given that SHAP is a generaliza-

tion of LIME [29]. These results are at odds with reference [20], where LIME is found to return

different (and useless) results compared to SHAP. However, in that paper, in addition to the

masking scheme, the hyperparameters used for LIME were not stated, such as which method

was used for determining the optimal number of nonzero linear coefficients K, and which

parameters were used when performing any relevant Lasso or ridge regressions. Without

knowing these choices, one cannot conclude whether LIME was truly useless for those data, or

whether it had not been properly tuned.

The necessity for tuning LIME, including specifying a distance metric, a masking scheme,

and a method for finding K, gives it more drawbacks than Kernel SHAP. Kernel SHAP shares

with LIME a need for a masking scheme, a method for dividing a spectrum into a desired

number (M) of “superpixels,” and an adequate number of random masks to generate. (Care

should be taken to use the Kernel SHAP approach and not the full Shapley value calculation,

which requires evaluating the model for all possible masks.) Therefore, of all the methods we

examined, based on the findings of this work we recommend the general adoption of Kernel

SHAP over the other methods.

Lastly, we found that a user of complex spectral models could benefit not just from explana-

tions, but also from explanations of contrast between other likely outcomes. We propose the

orthogonal projection of Kernel SHAP explanations as a simple and effective way to derive

such an explanation. Second-order analytical tools, like these explanations of class contrast,

have not been explored in this application space but are a natural extension of them.
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6. Vigneron V, Morel J, Lépy MC, Martinez JM. Statistical modelling of neural networks in γ-spectrometry.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-

tors and Associated Equipment. 1996; 369(2):642–647. https://doi.org/10.1016/S0168-9002(96)80068-

4

7. Pilato V, Tola F, Martinez JM, Huver M. Application of neural networks to quantitative spectrometry

analysis. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-

ters, Detectors and Associated Equipment. 1999; 422(1):423–427. https://doi.org/10.1016/S0168-9002

(98)01110-3

8. Yoshida E, Shizuma K, Endo S, Oka T. Application of neural networks for the analysis of gamma-ray

spectra measured with a Ge spectrometer. Nuclear Instruments and Methods in Physics Research Sec-

tion A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2002; 484(1):557–563.

https://doi.org/10.1016/S0168-9002(01)01962-3

9. Kim J, Lim KT, Kim J, Kim Cj, Jeon B, Park K, et al. Quantitative analysis of NaI(Tl) gamma-ray spec-

trometry using an artificial neural network. Nuclear Instruments and Methods in Physics Research Sec-

tion A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019; 944:162549. https://

doi.org/10.1016/j.nima.2019.162549

10. Liang D, Gong P, Tang X, Wang P, Gao L, Wang Z, et al. Rapid nuclide identification algorithm based

on convolutional neural network. Annals of Nuclear Energy. 2019; 133:483–490. https://doi.org/10.

1016/j.anucene.2019.05.051

11. Kamuda M, Sullivan CJ. An automated isotope identification and quantification algorithm for isotope

mixtures in low-resolution gamma-ray spectra. Radiation Physics and Chemistry. 2019; 155:281–286.

https://doi.org/10.1016/j.radphyschem.2018.06.017

12. Kamuda M, Zhao J, Huff K. A comparison of machine learning methods for automated gamma-ray

spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec-

trometers, Detectors and Associated Equipment. 2020; 954:161385. https://doi.org/10.1016/j.nima.

2018.10.063

13. Moore ET, Ford WP, Hague EJ, Turk J. An application of CNNs to time sequenced one dimensional

data in radiation detection. In: Algorithms, Technologies, and Applications for Multispectral and Hyper-

spectral Imagery XXV. vol. 10986. International Society for Optics and Photonics; 2019. p. 109861C.

Available from: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10986/109861C/An-

application-of-CNNs-to-time-sequenced-one-dimensional-data/10.1117/12.2519037.short.

14. Zhang C, Hu G, Luo F, Xiang Y, Ding G, Chu C, et al. Identification of SNM based on low-resolution

gamma-ray characteristics and neural network. Nuclear Instruments and Methods in Physics Research

PLOS ONE Explaining machine-learning models for gamma-ray detection and identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0286829 June 20, 2023 19 / 21

https://doi.org/10.1511/2005.55.422
https://doi.org/10.1511/2005.55.422
https://doi.org/10.1063/1.3207769
https://doi.org/10.1109/23.83860
https://doi.org/10.1109/23.83860
https://doi.org/10.1016/0168-9002(92)90148-W
https://doi.org/10.1016/0168-9002(92)90148-W
https://doi.org/10.1016/S0168-9002(96)80068-4
https://doi.org/10.1016/S0168-9002(96)80068-4
https://doi.org/10.1016/S0168-9002(98)01110-3
https://doi.org/10.1016/S0168-9002(98)01110-3
https://doi.org/10.1016/S0168-9002(01)01962-3
https://doi.org/10.1016/j.nima.2019.162549
https://doi.org/10.1016/j.nima.2019.162549
https://doi.org/10.1016/j.anucene.2019.05.051
https://doi.org/10.1016/j.anucene.2019.05.051
https://doi.org/10.1016/j.radphyschem.2018.06.017
https://doi.org/10.1016/j.nima.2018.10.063
https://doi.org/10.1016/j.nima.2018.10.063
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10986/109861C/An-application-of-CNNs-to-time-sequenced-one-dimensional-data/10.1117/12.2519037.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10986/109861C/An-application-of-CNNs-to-time-sequenced-one-dimensional-data/10.1117/12.2519037.short
https://doi.org/10.1371/journal.pone.0286829


Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019; 927:155–160.

https://doi.org/10.1016/j.nima.2019.02.023

15. Daniel G, Ceraudo F, Limousin O, Maier D, Meuris A. Automatic and Real-Time Identification of Radio-

nuclides in Gamma-Ray Spectra: A New Method Based on Convolutional Neural Network Trained With

Synthetic Data Set. IEEE Transactions on Nuclear Science. 2020; 67(4):644–653. https://doi.org/10.

1109/TNS.2020.2969703

16. Bilton KJ, Joshi THY, Bandstra MS, Curtis JC, Hellfeld D, Vetter K. Neural Network Approaches for

Mobile Spectroscopic Gamma-Ray Source Detection. Journal of Nuclear Engineering. 2021; 2(2):190–

206. https://doi.org/10.3390/jne2020018

17. Galib SM, Bhowmik PK, Avachat AV, Lee HK. A comparative study of machine learning methods for

automated identification of radioisotopes using NaI gamma-ray spectra. Nuclear Engineering and Tech-

nology. 2021; 53(12):4072–4079. https://doi.org/10.1016/j.net.2021.06.020

18. Gomez-Fernandez M, Wong WK, Tokuhiro A, Welter K, Alhawsawi AM, Yang H, et al. Isotope identifi-

cation using deep learning: An explanation. Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021; 988:164925.

https://doi.org/10.1016/j.nima.2020.164925

19. Ryu J, Park C, Park J, Cho N, Park J, Cho G. Development of Neural Network Model With Explainable

AI for Measuring Uranium Enrichment. IEEE Transactions on Nuclear Science. 2021; 68(11):2670–

2681. https://doi.org/10.1109/TNS.2021.3116090

20. Jeon B, Lim S, Lee E, Hwang YS, Chung KJ, Moon M. Deep Learning-Based Pulse Height Estimation

for Separation of Pile-Up Pulses From NaI(Tl) Detector. IEEE Transactions on Nuclear Science. 2022;

69(6):1344–1351. https://doi.org/10.1109/TNS.2021.3140050

21. Li C, Liu S, Wang C, Jiang X, Sun X, Li M, et al. A New Radionuclide Identification Method for Low-

Count Energy Spectra with Multiple Radionuclides. Applied Radiation and Isotopes. 2022; 185:110219.

https://doi.org/10.1016/j.apradiso.2022.110219 PMID: 35413589

22. Ghawaly JM, Nicholson AD, Archer DE, Willis MJ, Garishvili I, Longmire B, et al. Characterization of the

Autoencoder Radiation Anomaly Detection (ARAD) Model. Engineering Applications of Artificial Intelli-

gence. 2022; 111:104761. https://doi.org/10.1016/j.engappai.2022.104761

23. Ghawaly J, Young A, Archer D, Prins N, Witherspoon B, Schuman C. A Neuromorphic Algorithm for

Radiation Anomaly Detection. In: Proceedings of the International Conference on Neuromorphic Sys-

tems 2022. ICONS’22. Association for Computing Machinery; 2022. p. 1–6. Available from: https://doi.

org/10.1145/3546790.3546815.

24. Chaouai Z, Daniel G, Martinez JM, Limousin O, Benoit-Lévy A. Application of Adversarial Learning for
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