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Abstract

A Fast and Portable High-Order Temporal Solver for Computational Fluid

Dynamics

by

Youngjun Lee

The recent advent of high-performance computing hardware enables large-scale,

multi-physics simulation that provides accurate physical pictures in various fields

of study. In order to utilize the high-performance computing system more effi-

ciently, the high-order numerical approximations have become one of the central

themes in computational fluid dynamics (CFD) due to their potential in achieving

highly accurate predictions in a limited memory capacity.

The single-stage or single-step high-order temporal discretizations have shown

great promise in delivering high-order temporal accuracy in fast performance.

Fundamentally, the single-stage time integrators are based on a Taylor series in

the time domain. Although its high performance, the single-stage time integrators

are less attractive and less flexible compared to the multi-stage methods due to the

complexities in calculating the coefficient of time-Taylor expansion, which usually

demands the flux Jacobians and Hessians.

This dissertation develops a new single-stage high-order temporal integrator

under finite difference discretization. The proposed high-order temporal method

is based on the Lax-Wendroff type time discretization, with an algorithmic exten-

sion that provides the system independence property. The new approach, called

system-free (SF) method, furnishes ease of implementation as well as portability

and flexibility of the single-stage time integration method while maintaining the

accuracy and stability of the numerical solution.
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Chapter 1

Introduction

In past decades, the rapid evolution of the high-performance computing (HPC)

systems offers growing computational capacity for the numerical simulations of

various scientific fields, where conducting a direct experiment is extremely ex-

pensive or notoriously complicated. As the computing power of HPC systems

gradually increases, scientists can compute more complex and computationally

intensive physical models such as visualizing black holes [45, 1], simulating nu-

clear fusions [42, 34], studying laser-plasma interactions [58, 89], to name a few.

In order to simulate these physical phenomena, it demands meticulously de-

signed numerical algorithms for solving nonlinear, multidimensional, and multi-

physics equations judiciously. Generally speaking, numerical algorithms require

more computational power for better solution accuracy, i.e., using high-resolution

grid configuration.

However, the recent hardware development trend – the progression of the mem-

ory capacity per compute core has become gradually saturated [4] – is compelling

the HPC community to find more efficient ways that can best exercise computing

resources in pursuing computer simulations. As reported in 2014 [29], decreas-

ing memory density per compute core will be the primary limiting factor to the
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scalability of scientific simulation codes.

To meet this end, modern practitioners have relentlessly delved into advancing

high-arithmetic-intensity models that can increase numerical accuracy per degree

of freedom while operating with reduced memory requirements and data trans-

fers in HPC architectures. For example, in the computational fluid dynamics

(CFD) community, one such computing paradigm is to promote high-order meth-

ods in which high arithmetic intensity is achieved by using an increasing number of

higher-order terms. Due to its high availability in increasing the quality of numer-

ical solutions with fewer grid points, high-order discrete methods for hyperbolic

conservation laws have become primary themes in the CFD community.

Under the dual computational need for accuracy and stability, the CFD com-

munity has developed high-order reconstruction and interpolation strategies that

can achieve spatially high-order approximation. [91, 23, 56, 46, 14, 17, 59, 7]

For example, in the Piecewise Parabolic Method (PPM) [91], the given data

is considered a profile with piecewise quadratic polynomials, ensuring third-order

spatial accuracy of the PPM reconstruction/interpolation. The PPM uses Total

Variable Diminishing (TVD) slope limiters to piecewise profiles to enhance the

numerical stability in the sharp gradient regions. The robustness and compactness

of PPM attract scientists in the CFD community, and it is considered a central

“high-order” strategy even today.

On the other hand, the Weighted Essentially Non-Oscillatory (WENO) method

proposed in [46], the improved version of the ENO method [43], takes a dif-

ferent route to strengthen the polynomial-based profile’s stability. The WENO

method divides the given stencil into smaller sub-stencils and considers lower-

order polynomials in each sub-stencil. Then, by taking a convex combination of

each sub-polynomials with nonlinear weighting factors, the WENO method con-

2



structs high-order, shock-capturing profiles in each stencil. The nonlinear weights

are designed in a way that converges to the linear weights in a smooth region (i.e.,

the convex combination in a smooth region is equivalent to the high-order, linear

polynomial in a whole stencil). Therefore, the WENO method can be interpreted

as a piecewise profile consists of varying degrees of polynomials depending on the

local smoothness of the given data.

A recent study from Reyes et al. [68, 69] introduced a new high-order re-

construction/interpolation strategy without considering the polynomial functions.

This new design concept utilizes Gaussian Process (GP) to estimate the data at

an arbitrary point in high-order accuracy instead of constructing polynomial func-

tions. The GP method can be combined with the WENO weighting scheme to

bringing the non-oscillatory feature of the WENO method. The WENO-weighted

GP method, called the GP-WENO method, employs the marginal likelihood func-

tion of GP to measure the smoothness of the given data instead of considering

spatial derivatives in the conventional WENO method. The GP-WENO method

demonstrated a high-order spatial accuracy and stability with a compact structure

in the conventional finite volume discretization and the primitive-variable-based

finite difference method, the FD-Primitive [25, 26, 19] method.

In order to achieve highly accurate numerical solutions, the high-order tem-

poral method must be considered alongside the spatial method since the solution

lies in a spatiotemporal plane. Generally speaking, two different cases can be

considered to determining the order of accuracy: the leading error term from

the p-th order spatial method is dominant over the q-th order temporal error,

O(∆sp) > O(∆tq) or vice versa, O(∆sp) < O(∆tq). Practically, many research

articles about the high-order spatial methods for solving CFD simulation use the

mediocre low-order temporal methods combined with the high-order spatial meth-
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Figure 1.1: The numerical test results for measuring errors from different orders
of temporal methods combined with the fifth-order spatial method. A numerical
experiment of WENO5 with RK3 exhibits a convergence rate degradation from
a higher rate of 4.5 following initially the fifth-order spatial accuracy of WENO5
to a lower third-order accuracy of RK3 later on. In WENO5+RK4, the solution
continues to converge at 4.5th order without a sudden drop of convergence rate.
The situation is even worse for WENO5+RK2 that the solution over the entire
range of grid resolutions is bounded to be second-order.

ods. These combinations showed a reasonable convergence rate between p and q,

meaning that the spatial error is dominant over the temporal error even with a

lower order of temporal accuracy, q < p.

However, as reported in [54], this occurrence is flipped to the other end, i.e.,

temporal errors are dominant over spatial errors, particularly in a fine grid con-

figuration. As shown in Fig. 1.1, a critical grid delta ∆scrit exists so that the error

associated with a q-th order temporal method is comparable to and becoming

dominant over the error of a p-th order spatial solver with q < p. This creates
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a computational dilemma of not making further enhancements in solution accu-

racy, particularly when computational grids are progressively refined locally to

put more grid resolutions for improved solution quality, such as in an adaptive

mesh refinement (AMR) configuration.

Here lies the dire need for an efficient and accurate temporal scheme in pre-

dictive science territories of CFD to acquire highly accurate numerical solutions

with steadfast fidelity. Although a method bearing high-order accuracy conveys

the nexus of mathematical significance on its right, the performance of such a

high-order method should also be accompanied by computational efficiency.

For decades, multi-stage time integrators have been considered as the stan-

dard temporal integration strategy for an extensive range of high-order numerical

schemes for partial differential equation (PDE) solvers. Specifically, the Strong

Stability Preserving Runge-Kutta (SSP-RK) method [39, 40, 38] is the most pop-

ular high-order time integration scheme in the CFD community. The SSP-RK

method is based on the well-known ordinary differential equation (ODE) solver,

the Runge-Kutta (RK) method, enforcing TVD property in each sub-stage of the

RK method. The SSP-RK methods have proven high fidelity and robustness in

acquiring high-order accuracy and numerical stability in compact, straightforward

numerical structures.

The number of sub-stages determines the order of accuracy of the RK method

in general, i.e., q multiple sub-stages for the q-th order RK method. For ex-

ample, the third-order RK method integrates the solution over three sub-stages.

The optimal third-order SSP-RK method also has three sub-stages with different

coefficients, which ensure the TVD property. However, higher than third-order

SSP-RK schemes require more sub-stages to achieve the TVD limitation. It is

reported in [39], the four-stage, fourth-order SSP-RK method cannot be formu-

5



lated with positive coefficients, meaning that the classical four-stage, fourth-order

RK4 is not SSP. Other authors have demonstrated that SSP-RK4 with posi-

tive coefficients could be constructed with increasing sub-stages from five up to

eight [80, 81], requiring more computational costs.

Even though its portability and compactness for achieving high-order temporal

accuracy, the multi-stage time integrators are less attractive in a perspective of ef-

ficiency due to their increasing computational costs with the order of accuracy. For

instance, the high-order spatial method and boundary conditions should be ap-

plied at each sub-stage of the SSP-RK scheme, which makes the overall procedure

of SSP-RK computationally expensive. In parallel simulations, these operations

also increase the footprint of data movements between node communications as

the number of sub-stages grows. This very nature of SSP-RK makes it less ef-

ficient for massively parallel simulations, particularly when the level of adaptive

mesh refinement (AMR) progressively builds up around interesting features in

simulations.

To circumvent the said issues in SSP-RK, practitioners have taken a different

route of providing a high-order temporal updating strategy for solving numeri-

cal PDEs. The core design principle lies in formulating a conservative temporal

integrator that works for nonlinear PDEs in multiple spatial dimensions with

the equivalent high-order accuracy as in SSP-RK, but, this time, in a single-

stage, single-step update. One famous strategy is to modifying the Lax-Wendroff

scheme [51], which uses a time-Taylor expansion of the conservative variables to

achieve high-order temporal accuracy.

The effort in this direction has resulted in the Arbitrary high order DERivative

(ADER) method, which was first introduced in [87] for linear equations. Since

then, ADER schemes have gone through several generations of a breakthrough by
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numerous authors with the common goal of meeting the high-order requirement

in a compact single-step update.

The original ADER method proposed by Toro and his collaborators [87, 83, 85]

achieve high-order temporal accuracy by solving a series of generalized Riemann

problems (GRPs) for temporal derivatives of the conservative variables at cell

interfaces. The temporal derivatives are obtained by applying the so-called Lax-

Wendroff or Cauchy-Kowalewski (LW/CK) procedure similar to the original Lax-

Wendroff method. The primary purpose of the LW/CK procedure is to convert

time derivatives to spatial derivatives, which are coupled through Jacobians and

Hessians.

The ADER formulation has been further taken to a more modern direction.

Balsara et al. [9] presented a new compact ADER framework that replaced the

usual Cauchy-Kowalewski procedure in the original ADER formalism with a local

continuous space-time Galerkin formulation up to fourth-order and called the new

approach ADER-CG (CG for continuous Galerkin). The ADER-CG schemes are

shown to be approximately twice faster than the SSP-RK methods at the same

order of accuracy [8].

The Picard integral formulation (PIF) method, proposed by Christlieb et

al. [22], is another single-stage time integration strategy based on the Lax-Wendroff

time discretization method under the finite difference formulation. The conven-

tional finite difference method takes the pointwise representation of data; however,

the PIF method takes time-averaged quantities to achieve high-order temporal ac-

curacy. The time-averaged data is constructed through a time-Taylor expansion,

and the LW/CK procedure is used to obtain coefficients of the Taylor series.

Christlieb and his collaborators demonstrated that LW/CK procedures could suc-

cessfully be utilized for obtaining high-order terms of the numerical fluxes for
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a single-stage update as in many Lax-Wendroff type works of literature. Other

studies also have shown that single-step temporal updates are more efficient in

terms of CPU time to a solution when compared to multi-stage/multi-step meth-

ods [8, 52, 53].

Nonetheless, single-stage time integrators are still less popular choices in the

CFD community. Designing a single-stage method generally brings more com-

plicated and sophisticated mathematical structures than the SSP-RK method,

requiring more implementation efforts. A recent study from Montecinos [61] pro-

posed a simplification of the LW/CK procedures in the context of the implicit

Taylor series. The idea is to generalize the recursive LW/CK procedure by con-

sidering the Jacobian matrix as a function of space and time. The ADER-Taylor

method [67, 65, 66] is another way to reduce the number of LW/CK calculations

by adopting the Differential Transform (DT) method for high-order derivatives.

The flux Jacobians and Hessians are another implementation hurdle/bottleneck

for the Lax-Wendroff type schemes. Performing LW/CK procedures to convert

the time derivatives to spatial derivatives requires explicit forms of the Jacobians

(∂UF), Hessians (∂2
UF), and higher derivatives of the flux functions (∂kUF) on

high-order schemes. Finding analytical derivations of Jacobian-like terms is a no-

toriously cumbersome process, specifically for nonlinear systems. For example, in

the Euler equations, the flux Jacobians are 5× 5 matrices in three spatial dimen-

sions, and the flux Hessians are 5 × 5 × 5 rank three tensors. For constructing

higher than third-order temporal accuracy through the LW/CK procedure, it is

required to have analytic forms of the third-order derivatives of the flux func-

tions with respect to the conservative variables, e.g., ∂3
UF. These terms are then

5×5×5×5 rank four tensors, which makes the LW/CK procedure less appealing

in fourth- or fifth-order temporal methods.
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Another limitation on Jacobian-like terms is the dependency on the system of

equations. Since the Jacobian-like terms are based on the flux functions of the

governing equations of the system, the hard-coded Jacobian-like terms should be

re-derived and re-implemented whenever to change the system of equations. For

example, the high-order scheme solving Euler equations that uses Jacobian-like

terms needs to be modified to solve other systems, such as magnetohydrodynamics

(MHD) equations.

In this regard, this dissertation develops a single-stage, high-order time inte-

gration scheme for hyperbolic PDEs under finite difference formulation. The core

design concept is to achieve high-order accuracy within a single step to reduce

computational costs and data communications between parallel nodes. Alongside

the computational efficiency, the newly developed high-order temporal scheme is

sufficiently accurate to maintain the order of accuracy of the spatial methods,

even for the fine grid configurations. Another important objective for designing a

high-order time integrator in this dissertation is to increase its portability. By de-

signing a time integrator independent of the system of equations, one can provide

increased flexibility and ease of code implementation.

Consequently, a newly developed time integrator showed more than two times

faster performance gain than the conventional multi-stage methods. Also, it can

readily replace only the temporal part of any existing simulation code independent

of system of equations.
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Chapter 2

Discretization Methods

This dissertation interests in solving the general conservation laws of hyper-

bolic PDEs, predicting numerical solutions with high-order accuracy. This chap-

ter introduces two general ways to discretize the Euler equations, which will be

of particular interest in this dissertation.

2.1 The Euler equations

In three dimensions, the conservation laws may be written as,

∂tU +∇ · F(U) = ∂tU + ∂xF(U) + ∂yG(U) + ∂zH(U) = 0, (2.1)

where U is a vector of conserved variables and F = (F(U),G(U),H(U))T is the

flux function in the x, y, and z directions. The conservation law is considered

hyperbolic if the flux Jacobian has only real eigenvalues and is diagonalizable.

Thus,

A = ∂UF = RΛL, (2.2)
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where A is the flux Jacobian in x-direction, Λ is a diagonal matrix with real

eigenvalues, and L and R are corresponding left and right eigenvectors.

This dissertation focuses on solving Euler equations, which govern compress-

ible, adiabatic inviscid flow. In the Euler equations, the conserved variables and

the flux functions are defined as,

U =



ρ

ρu

ρv

ρw

E


, F(U) =



ρu

ρu2 + p

ρuv

ρuw

u (E + p)


, G(U) =



ρv

ρuv

ρv2 + p

ρvw

v (E + p)


, H(U) =



ρw

ρuw

ρvw

ρw2 + p

w (E + p)


.

(2.3)

In the above equations, ρ is the density, u = (u, v, w)T is the velocity, E is the

total energy, and p is the pressure of the fluid. E, the total energy of the fluid

represents the sum of internal and kinetic energy,

E = ε+ 1
2ρu

2, (2.4)

where the internal energy of the fluid, ε, obeys the equation of state. (EOS) This

dissertation uses the ideal gas law:

ε = p

γ − 1 , (2.5)

where γ is the specific heat ratio.

In the following, this dissertation uses the Euler equation as an example of

the conserved hyperbolic system. However, numerical methods presented in this

dissertation are valid for any system of the form of Eq. (2.1). Magnetohydro-

dynamics (MHD) equations, for example, the general numerical strategies will
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be nearly identical to the Euler equations except for the solenoidal constraint of

the magnetic field. (∇ · B = 0) Thus, the high-order methods presented in this

dissertation can be applied to the MHD simulation code easily.

2.2 Finite volume method

The popular way to consider discretized variables for the conserved system

is to cast volume integrals to the governing equations, called the finite volume

method. (FVM) Consider Eq. (2.1) discretized on a uniform grid containing cells

with equal spacing (∆x,∆y,∆z) in the three spatial dimensions. Then, each cell’s

center can be indexed by (i, j, k) at (xi, yj, zk) and the cell’s face centers at each

interface by (i ± 1
2 , j, k), (i, j ± 1

2 , k), (i, j, k ± 1
2). Taking the volume average of

each computational cell ( 1
Vijk

∫
Vijk
· dV) to Eq. (2.1) and applying the divergence

theorem, we have,

1
Vijk

∫
Vijk

∂tU dV + 1
Vijk

∮
Sijk

F(U) · n dS = 0, (2.6)

where Vijk is the volume of the cell at i, j, k, and Sijk is the surrounding surfaces

of the cell at i, j, k.

The semi-discretized form of FVM representation of the conserved system is

obtained by substituting the dimensionally split flux functions (F(U),G(U),H(U)):

∂tUi,j,k =− 1
∆x

(
F̃i+ 1

2 ,j,k
− F̃i− 1

2 ,j,k

)
− 1

∆y
(
G̃i,j+ 1

2 ,k
− G̃i,j− 1

2 ,k

)
− 1

∆z
(
H̃i,j,k+ 1

2
− H̃i,j,k− 1

2

)
.

(2.7)

In the above equation, the overline indicates a volume-averaged quantity, while
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the tilde indicates a surface average at half-indexed cell face. Note that the above

semi-discretized form of FVM scheme is a purely analytical result without any

numerical approximation. The numerical methods are used to estimate surface-

averaged fluxes at each cell’s interfaces and update the volume-averaged conserved

variables to the next time step.

The most common way to approximate interfacial fluxes for FVM solver for

Euler equations is to solve the Riemann problem at cell interfaces following the

Godunov method [37]. The Riemann problem is composed of a conservation

equation with a single discontinuity in its initial condition. As firstly introduced

by Godunov in [37], the Riemann solver (RS) gives a numerical flux across the

discontinuity in the Riemann problem. For example, the numerical flux across the

discontinuity at xi+ 1
2 ,j,k

can be calculated as,

f̂i+ 1
2 ,j,k

= RS(UL
i+ 1

2 ,j,k
, UR

i+ 1
2 ,j,k

). (2.8)

The precedent task for solving the Riemann problem is to determining Rie-

mann states at interfaces. Note that the inputs of the Riemann solver are re-

garded as pointwise values, (UL
i+ 1

2 ,j,k
, UR

i+ 1
2 ,j,k

) while the fundamental data type

of FVM is the volume-averaged values. (Ui,j,k) To specify the pointwise Rie-

mann states at interfaces with given volume-averaged conserved variables, they

must be reconstructed from the neighboring volume-averaged quantities. For

example, a one-dimensional stencil with radius=r, the left Riemann states at

i+ 1
2 can be reconstructed from cell-centered volume-averaged conserved variables

(Ui−r,j,k, . . . ,Ui,j,k, . . . ,Ui+r,j,k), using p-th order accurate reconstruction opera-

tor R(·):

UL
i+ 1

2 ,j,k
= R(Ui−r,j,k, . . . ,Ui+r,j,k) +O(∆xp). (2.9)
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The spatial order of accuracy, p, of the FVM solver is thereby determined by

choice of the reconstruction operator, R(·) which will be discussed in Section 3.1.

It is important to note that the numerical flux resulting from the Riemann

solver is also a pointwise representation, while the surface-averaged fluxes (F̃i± 1
2 ,j,k

,

G̃i,j± 1
2 ,k

, and H̃i,j,k± 1
2
) are needed for FVM formulation as presented in Eq. (2.7).

This should be addressed thoroughly, as a naive approximation of the pointwise

flux to the surface-averaged flux is bounded by second-order accuracy no matter

the accuracy of the Riemann states:

F̃i+ 1
2 ,j,k

= 1
∆y∆z

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+ 1

2

z
k− 1

2

F(xi+ 1
2
, y, z) dz dy

= Fi+ 1
2 ,j,k

+O(∆y2,∆z2).
(2.10)

The conventional way to achieve higher than second-order accuracy in FVM solver

is to solve the Riemann problem at multiple quadrature points on each face. [84, 57,

93] More recent studies proposed ways to avoid multiple calls of Riemann solver,

reconstructing surface-averaged fluxes from pointwise Riemann fluxes, [16, 33]

using linear combinations of Riemann fluxes, [31, 30] to name a few.

2.3 Finite difference method

As it firstly proposed in [77], the finite difference method (FDM) seeks a dis-

cretization of the spatial derivatives of the fluxes in pointwise representation.

Assuming that there exist numerical fluxes satisfy the conservative form as,

∂tUi,j,k =− 1
∆x

(
f̂i+ 1

2 ,j,k
− f̂i− 1

2 ,j,k

)
− 1

∆y
(
ĝi,j+ 1

2 ,k
− ĝi,j− 1

2 ,k

)
− 1

∆z
(
ĥi,j,k+ 1

2
− ĥi,j,k− 1

2

)
,

(2.11)
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where f̂i± 1
2 ,j,k

, ĝi,j± 1
2 ,k
, ĥi,j,k± 1

2
are the pointwise numerical fluxes in each direction

at half-indexed cell-face centers. The remaining task is to identify the numerical

fluxes in desired order of accuracy, p, which satisfy,

∂xF|x=xijk
= 1

∆x
(
f̂i+ 1

2 ,j,k
− f̂i− 1

2 ,j,k

)
+O(∆xp), xijk = (xi, yj, zk), (2.12)

and similarly in y and z fluxes.

In order to specify the numerical fluxes for FDM, consider the pointwise x-flux

F(x, yj, zk) as a one-dimensional cell average of an auxiliary function F̂,

F(x, yj, zk) = 1
∆x

∫ x+ ∆x
2

x−∆x
2

F̂(ξ, yj, zk) dξ . (2.13)

Then the analytic derivative of Eq. (2.13) at x = xi in x-direction becomes

∂xF|x=xi
= 1

∆x
(
F̂(xi+ 1

2
, yj, zk)− F̂(xi− 1

2
, yj, zk)

)
. (2.14)

Comparing Eq. (2.12) and Eq. (2.14), the numerical fluxes in FDM are obtained

with desired order of accuracy, p, if they can be defined with the following rela-

tionship with F̂,

f̂i+ 1
2 ,j,k

= F̂(xi+ 1
2
, yj, zk) +O(∆xp). (2.15)

Mathematically speaking, the inverse problem of Eq. (2.15) is exactly the same

as the conventional 1D reconstruction problem in FVM, the operation of which is

specifically designed to find the primitive function value F̂ at a certain location

(mostly, xi± 1
2
) in the i-th cell, given the integral-averaged (or volume-averaged)

values F at nearby stencil points as input. Namely, this can be written as

F̂(ξ, yj, zk) = R (Fi−r,j,k, . . . ,Fi+r,j,k) +O(∆xp), ξ ∈ [xi− 1
2
, xi− 1

2
], (2.16)
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where R(·) is a p-th order accurate reconstruction operator that used for FVM

formulation in Section 2.2, and will be discussed in Section 3.1.

Contrary to FVM, the conservative FDM uses only the pointwise values for

constructing numerical strategies, not requiring the data conversion between point-

wise and volume-averaged quantities. In addition, the high-order reconstruction

schemes used for constructing Riemann states in FVM can be used for construct-

ing numerical fluxes in FDM without intense changes in the simulation code – only

a simple change in the input variables for the reconstruction operator. This sim-

plicity in numerical strategy attracts researchers in the CFD community, leading

various adoptions in high-order solvers [46, 75, 59, 22, 72].

Compared to FVM, the major difference of FDM is obtaining high-order nu-

merical fluxes directly from the reconstruction operator. Although it simplifies

the numerical schemes, the direct formulation of the numerical fluxes hinders its

further modifications while keeping a high-order convergence rate.

For example, the adaptive mesh refinement (AMR) grid configuration [11,

12] requires numerical fluxes splitting between the coarse grid to the fine grid

in a conservative manner. Conventionally, this is ensured by an additional flux

correction step in FVM formulation. [12] However, in FDM, a different approach

should be taken because modifying the high-order numerical fluxes may spoil the

order of accuracy. One possible way to maintain conservation across coarse to

the fine grid points is to apply nonlinear interpolation on the conserved variables,

imply them as boundary conditions, and distribute the calculated errors among

coarse grid points. [73]

Another limitation on the direct formulation of numerical fluxes in FDM is the

lack of the option to include substructure in the wave model, which Riemann solver

typically does in FVM to resolve certain features better. Del Zanna proposed one
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alternative way of FDM [25, 26], which views numerical fluxes as the Riemann

fluxes with the series of high-order correction terms. This approach can achieve

a high-order convergence rate with Riemann fluxes like in FVM, without the

additional data type conversions required of conventional FVM. [69]

2.4 Conclusion

Two major discretization strategies for conservative systems have been pre-

sented. Both the finite difference and finite volume methods are able to achieve

high-order spatial accuracy by reconstructing volume-averaged quantities to point-

wise values.

The finite difference method

• evolves the pointwise conserved variables,

• provides a straightforward framework without data type conversions,

• requires high-order numerical fluxes constructed from the pointwise, cell-

centered physical fluxes directly from the high-order reconstruction methods,

and

• may be delicate with the additional modifications on the numerical fluxes.

The finite volume method

• evolves the volume-averaged conserved variables,

• requires rigorous data type conversions to maintain high-order accuracy,

• requires high-order reconstruction of the Riemann states from the cell-centered

conserved variables, and
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• guarantees the conservation laws over the whole spatiotemporal domain by

design.
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Chapter 3

High-Order Methods for FDM

As mentioned in Chapter 1, the high-order numerical schemes are ideal for

maximizing the solution accuracy on a given grid resolution; thus, they can pro-

duce more accurate solutions on a limited memory capacity.

The discretization strategies for conservative PDEs presented in Chapter 2

can achieve high-order solution accuracy both in spatial and temporal dimensions.

Typically, the spatial accuracy is determined by the accuracy of the reconstruction

scheme used for estimating Riemann states (FVM) or numerical fluxes (FDM) at

cells interfaces. On the other hand, the numerical time integration strategy for the

semi-discretized form of the conservative PDEs (Eqs. (2.7) and (2.11)) will settle

the temporal accuracy. Since the solution lies on the spatiotemporal plane, both

the temporal and spatial errors should be contemplated in a controlled manner to

analyze the numerical solutions properly.

The fundamental mission of the numerical scheme is to estimate the values on

unknown points with given available data in an accurate fashion. One straight-

forward way is to interpolate/reconstruct the data to form piecewise polynomials

and estimate the desired points using the polynomials. In this way, the order of

accuracy will be determined by the degree of polynomials; the number of data
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points used to interpolate/reconstruct the data in each stencil.

However, nonlinear systems like Euler equations, the main interest in this

dissertation, require more sophisticated care in designing high-order numerical

methods because the system can form and evolve discontinuity profiles even with

smooth initial conditions. Generally speaking, an artless high-degree piecewise

polynomial function can not handle the discontinuous profiles and introduces spu-

rious oscillations caused by over- and under-shooted profiles of the underlying

function. Therefore, the stability of the numerical method must be taken into

account for solving hyperbolic PDEs in high-order accuracy.

One way to ensure the stability of the numerical scheme is to limit the total

variation (TV) of the solution, called the total variation diminishing (TVD) prop-

erty. The total variation of the solution in one-dimensional discrete solution un

at time t = tn is defined as,

TV (un) :=
∑
i

∣∣∣uni+1 − uni
∣∣∣ , (3.1)

and it should be bounded by the total variation of the initial conditions to ensure

stability as,

TV (un+1) ≤ TV (un). (3.2)

Van Leer introduced TVD flux limiters to provide TVD property on the piecewise

linear functions [90] by limiting the slope of the second-degree polynomial. A

simple choice of the TVD slope limiter for the second-degree profile is the minmod

slope limiter,

minmod(a, b) =



a, if |a| < |b| and ab > 0

b, if |a| > |b| and ab > 0

0, if ab < 0,

(3.3)
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where a = ui+1−ui

∆x and b = ui−ui−1
∆x are the forward and backward slope at the

cell Ii centered at x = xi. The TVD slope limiters are also used for the popular

third-order scheme, the piecewise parabolic method (PPM) by Woodward and

Colella [23], for enforcing the TVD property on the quadratic polynomial.

The TVD property is also crucial in designing high-order temporal integration

schemes. In the method of lines approximations, the semi-discretized form of

PDEs (Eqs. (2.7) and (2.11)) can be viewed as an ordinary differential equation

(ODE) system in the temporal axis, which an ODE solver can discretize. Thus,

the well-known ODE solver, Runge-Kutta (RK) method, can be used as the time

integration method in the method of lines schemes; however, the TVD property

must be enforced to preserve the numerical stability. Shu and Osher designed

TVD limited Runge-Kutta methods [76, 74] for solving hyperbolic conservation

laws. Subsequently, Gottlieb and her collaborators [39, 40, 38] further developed

this idea to the strong stability preserving Runge-Kutta (SSP-RK) method, which

is by far the most popular high-order time integration method used in the CFD

community.

This chapter will introduce general schemes for achieving high-order accuracy

both in spatial and temporal dimensions in the finite difference method, which

is the main interest in this dissertation. The high-order reconstruction schemes

in Section 3.1 predict FDM numerical fluxes at cell interfaces, and they are iden-

tical to the reconstruction methods used to predict interfacial Riemann states

in FVM. The Runge-Kutta methods and the Lax-Wendroff type methods will

be introduced in Section 3.2 for achieving high-order in time accuracy for FDM

formulation.
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3.1 High-Order reconstruction schemes

The high-order reconstruction schemes play a pivotal role in reducing numer-

ical errors on the spatial axis for solving discrete PDEs under FVM and FDM

formulations. The reconstruction schemes furnish a pointwise representation of

the given volume-averaged data; thus, they are suitable for estimating pointwise

values with given volume-averaged conserved variables (FVM) or volume-averaged

auxiliary functions (FDM). Modern practitioners in the CFD community have fo-

cused on designing high-order reconstruction schemes that can generate highly

accurate solutions while maintaining numerical stability at discontinuous regions.

Examples include the early success of the piecewise parabolic method (PPM) by

Colella and Woodward [23], which has been still actively adopted as a shock-

capturing partial differential equation (PDE) solver by many CFD users after

about four decades since its introduction.

In the finite difference method, the numerical fluxes can be estimated through

reconstruction schemes by inputting the pointwise physical fluxes at the cell cen-

ters. Assuming that a p-th order reconstruction scheme, R(·), taking the 2r length

of stencil centered at cell Ii, and generating estimated pointwise value at x = xi+ 1
2
,

then the FDM numerical flux f̂i+ 1
2
at x = xi+ 1

2
can be found by,

f̂i+ 1
2

= R(Fi−r, . . . ,Fi+r) +O(∆xp). (3.4)

However, one additional numerical step should be needed for the robustness of

the solution. It is well-known that the upwind numerical fluxes can provide more

robust solutions in the CFD community. In FVM, this is achieved by solving

the Riemann problem, but for FDM, one separated routine should be considered

to provide upwind property in the numerical flux. The flux splitting method
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is the general way to yield upwinding numerical flux in FDM by splitting the

pointwise fluxes into two components moving towards and away from the interface

of interest. For example, one can split the flux function into two parts:

Fi = F+
i + F−i , F±i = 1

2
(
Fi ± αkUi

)
, (3.5)

where αk is the global maximum characteristic speed of k-th characteristic field,

i.e., the maximum absolute value of k-th eigenvalue of flux Jacobian ∂UF over the

whole domain. This procedure is called the global Lax–Friedrichs flux splitting [46]

since we take global maximum for each αk. The reconstruction method is applied

to the positive and negative parts of the fluxes F±i to construct numerical fluxes,

and then they are collected at each interface:

f̂i+ 1
2

= f̂+
i+ 1

2
+ f̂−

i+ 1
2
, f̂+

i+ 1
2

= R(F+
s ), f̂−

i+ 1
2

= R(F−s′), (3.6)

where the sub-index s represents the stencil ranging from i− r, . . . , i+ r, while at

the same time, s′ = 2i− s+ 1.

Although the global Lax–Friedrichs flux splitting provides improved stability

and robustness of the numerical scheme, it also introduces numerical dissipation

into the solution. One possible way to minimize the numerical dissipation of the

flux splitting is to project the fluxes into the characteristic field, so-called Ru-

sanov Lax–Friedrichs flux splitting. [24, 59] The Rusanov Lax-Friedrichs splitting

projects pointwise physical fluxes to the left- and the right-going parts according

to the characteristic decomposition of the Jacobian matrix,

∂UF|U
i+ 1

2
= Ri+ 1

2
Λi+ 1

2
Li+ 1

2
, Ui+ 1

2
= Ui + Ui+1

2 , (3.7)
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where R and L are the matrices of right and left eigenvectors, and Λ is the diag-

onal matrix whose diagonal entries are corresponding eigenvalues. The projection

proceeds to construct s different left-going (−) and right-going (+) characteristic

states of the pointwise fluxes, denoted as Vk,±
(i+ 1

2 ):s to the cell interface i+ 1
2 as

Vk,+
(i+ 1

2 ):s = 1
2Lk

i+ 1
2
·
(
Fs + αkUs

)
,

Vk,−
(i+ 1

2 ):s = 1
2Lk

i+ 1
2
·
(
Fs′ − αkUs′

)
.

(3.8)

Again, s and s′ are representing the stencil s = i − r, . . . , i + r, s′ = 2i − s + 1,

and the superscript k represents each characteristic field. The coefficient αk is

chosen to be the maximum absolute value of the k-th characteristic speed over

the entire computational domain, resulting in the so-called global Lax-Friedrichs

flux splitting. The projected fluxes will be taken into the reconstruction scheme

and projected back to the numerical fluxes:

f̂i+ 1
2

=
∑
k

(
V̂k,+
i+ 1

2
+ V̂k,−

i+ 1
2

)
Rk
i+ 1

2
, V̂k,±

i+ 1
2

= R
(
Vk,±

(i+ 1
2 ):s

)
. (3.9)

3.1.1 Weighted Essentially Non-Oscillatory Methods

Generally speaking, the high-order reconstruction schemes based on the poly-

nomial approach assuming that there exists a unique polynomial φ(x) satisfies

volume-averaging conditions:

1
∆x

∫
Ik

φ(x) dx = qk, Ik ∈ S (3.10)

where k is the index of cell within a stencil S and qk is a volume-averaged quantity

at k. However, when S contains a strong gradient of the volume-averaged data qk,

then it suffers from spurious oscillations since the polynomial φ(x) is assumed to
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be smooth over the stencil. Handling discontinuous profiles is essential in solving

Euler equations, as it can form discontinuous profiles even with smooth initial

conditions.

In 1987, Harten et al. [43] proposed an essentially non-oscillatory (ENO)

scheme that chooses the appropriate stencil adaptively to avoid containing any

discontinuities in the stencil. In ENO methods, the non-oscillatory stencil is

chosen by considering all possible stencils of the required size and measure the

smoothness on each of them. Liu et al. [56] improved this idea by introducing

the weighted essentially non-oscillatory (WENO) scheme, which takes a convex

combination of all possible stencils, reducing the number of logical calculations

needed for the original ENO scheme. The WENO scheme was further improved by

Jiang and Shu [46] and became one of the most popular high-order reconstruction

and interpolation methods for solving shock-dominant CFD simulation.

Conventionally, WENO method with m sub-stencils uses 2m − 1 data points

and ensures 2m − 1 order of accuracy in a smooth region. As an example, the

popular five-points, fifth-order WENO-JS [46] method is presented below.

Consider three sub-stencils,

Sm = {Ii−3+m, Ii−2+m, Ii−1+m} , m = 1, 2, 3, (3.11)

then the second degree polynomials pm(x) can be constructed on each Sm as,

∫
Ik

pm(x) dx = qk, Ik ∈ Sm. (3.12)

The reconstructed profiles are depicted in Fig. 3.1. With three sub-polynomials,

the reconstructed pointwise values at the cell interfaces qi± 1
2
can be represented
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xi 2 xi 1 xi xi + 1 xi + 2

p1(x)
p2(x)
p3(x)

Figure 3.1: The reconstructed profiles in three sub-stencils of the fifth-order
WENO-JS scheme. The black dots and horizontal dotted lines represent the
volume-averaged quantities. Note that there is a sharp discontinuity at x =
xi− 1

2
, resulting three different reconstructed pointwise values at x = xi± 1

2
of each

polynomial, marked as stars. In ENO perspective, p3(x) is an appropriate choice,
as S3 = {Ii, Ii+1, II+2} does not include the discontinuous point.

as a convex combination with nonlinear weights ωm:

qi± 1
2

=
3∑

m=1
ωmpm(xi± 1

2
). (3.13)

The core design principle of WENO is to construct nonlinear weights ωm that

adaptively select smooth stencils and converges into the linear reconstruction

scheme when all stencils are smooth. Mathematically speaking, the nonlinear
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weights should be converged into the linear weights γm, m = 1, 2, 3,

φ(x) =
3∑

m=1
γmpm(x), (3.14)

where φ(x) is the reconstructed polynomial within the whole stencil S = ⋃3
m=1 Sm,

1
∆x

∫
Ik

φ(x) dx = qk, Ik ∈
3⋃

m=1
Sm. (3.15)

As the φ(x) is the quartic polynomial, it ensures fifth-order convergence rate of

the estimations for pointwise values,

qi± 1
2

= φ(xi± 1
2
) +O(∆x5). (3.16)

Jiang and Shu [46] proposed a functional form of the nonlinear weights by,

ωm = ω̃m∑
s ω̃s

, ω̃m = γm
(ε+ βm)p , (3.17)

where ε is the small number (e.g., 1.0× 10−36) to prevent division by zero, βm is

the smoothness indicator which measures the smoothness of the data in the given

stencil Sm. The parameter p is an amplification factor for the difference of scales

when a discontinuity is present on one of the candidate stencils.

The remaining step for WENO-JS is to construct the smoothness indicator,

which has large values when the stencil data is not smooth and becomes arbitrary

small in a smooth stencil; thus, it converges to the linear weight. Jiang and Shu

proposed a way to measure the smoothness of the profile based on its second

derivatives. In the fifth-order WENO-JS method, the smoothness indicators βm
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xi 2 xi 1 xi xi + 1 xi + 2

1 = 5.87696E 04

2 = 8.34052E 03

3 = 9.99965E 01

+
1 = 6.53016E 05

+
2 = 2.78026E 03

+
3 = 9.99996E 01

p1(x)
p2(x)
p3(x)

Figure 3.2: The reconstructed fifth-order WENO profiles of the same data stencil
in Fig. 3.1, combined with WENO-JS nonlinear weights. (Eq. (3.17)) The opacity
of each line measures the nonlinear weights on that sub-stencil, and calculated
nonlinear weights are noted in the figure. Note that the nonlinear weights of
S3 are dominant over other stencils, S1 and S2, resulting in ENO-style stencil
selection.

are given by,

βm =
2∑

n=1

∆x2n−1
∫
Ii

[
dnpm(x)
dxn

]2

dx

 . (3.18)

Fig. 3.2 shows the effects of the nonlinear weights on the WENO profiles. The

nonlinear weights are calculated through Eq. (3.17), with p = 2, ε = 1.0× 10−36.

As illustrated in the figure, the nonlinear weights successfully detect the sharp

gradient at x = xi− 1
2
and weighting on p3(x) dominantly to avoid reconstruction

on the discontinuity.
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3.1.2 Gaussian Process reconstruction

Over decades, the high-order data reconstruction/interpolation methods for

solving hyperbolic PDEs are based on the polynomial approach. Like the WENO

method discussed in the previous section, the idea starts by assuming a unique

polynomial represents the stencil data. The polynomial-based approaches are the

most successful and popular reconstruction/interpolation methods in the CFD

community [90, 23, 46, 52] because of their mathematical simplicity.

However, the polynomial-based reconstruction/interpolation schemes have some

downsides. Firstly, since the polynomials are not able to represent the discon-

tinuous data, it is notoriously prone to lead numerical oscillations. There are

several ways to avoid the oscillations, like the WENO method in 3.1.1, but it

usually brings complexity and computational expenses. Another issue for the

polynomial-based approach is that the method must be carried out on a fixed size

data stencil, which means changing in stencil size – thus it changes the order of

accuracy – requires a complete redesign of the code.

Recently, practitioners have designed non-polynomial (or polynomial-free) re-

construction/interpolation methods [63, 64, 41, 13]. Reyes et al. [68, 69] proposed

a novel way to use the Gaussian process (GP) to estimate the data at any ar-

bitrary point in high-order accuracy. Based on the probabilistic conditioning

property by Bayes’ Theorem to the joint Gaussian distribution on observed data,

GP reconstruction/interpolation methods are able to predict the data on desired

points (usually at cell interfaces) without considering any polynomials; therefore,

the code is readily extended to a higher order by simply changing the size of the

stencil. In the language of GP, this process can be interpreted in the way that a

probability distribution for the unknown function values f(x∗) (pointwise values

at arbitrary points x∗) can be trained by the known data qi (volume-averaged
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quantities at cell centers), with posterior mean and uncertainty that are compat-

ible with the known observations.

A GP is fully defined by two functions:

• a mean function µf (x) = E [f(x)] over RN , and

• a covariance kernel function, which is symmetric and positive-definite inte-

gral kernel K(x,y) = E [(f(x)− µf (x)) (f(y)− µf (y))] over RN × RN ,

The function f is then said to belong to the GP with mean and covariance function,

written as f ∼ GP (µf (x), K(x,y)).

Suppose that there are N sample points for the unknown function f , namely,

f = [f(x1), . . . , f(xN)] that are known, then the likelihood L, the probability of f

given the prior GP model, of the input data f , is given by,

L = P (f) ≡ (2π)−
N
2 det |K|−

1
2 exp

[
−1

2 (f − µf )T K (f − µf )
]
, (3.19)

where K = [Kij]i,j=1,...,N with Kij = K(xi,xj).

The goal of GP is to make a probabilistic statement about the value of f∗ =

f(x∗) of unknown function f ∼ GP (µf , K) with given function samples. By

utilizing the conditioning property of GP from the theory of Bayesian inference,

the updated posterior mean function can be obtained as,

f̃∗ ≡ µf (x∗) + kT∗K−1 (f − µf ) , (3.20)

where k∗ = [k∗,i]i=1,...,N with k∗,i = K(x∗,xi). The detailed derivations of Eq. (3.20)

can be found in the Appendix of [68]. It is common practice to take the zero mean

everywhere, then Eq. (3.20) becomes

f̃∗ = kT∗K−1f , (3.21)
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reveals GP prediction with known function samples f , which is the pointwise

representation.

However, in the reconstruction scheme, the known function samples should be

given as volume-averaged quantities, not as pointwise values. Therefore, the GP

prediction has to be modified to adapt to the data type changes.

Favorably, the volume averaging operator constitutes a linear operation (e.g.,

Eq. (3.10)). The linear operations on Gaussian random variables result in new

Gaussian random variables with linearly transformed mean and covariance; thus,

the GP interpolation scheme (Eq. (3.21)) can be transformed into the GP recon-

struction scheme with proper linear functionals that represent volume-averaging.

Consider a measure dgk(x) on the function f(x) over the cell Ik = ∏
d=x,y,z I

(d)
k

with 1D cells I(d)
k =

[
x

(d)
k − ∆(d)

2 , x
(d)
k + ∆(d)

2

]
, where d = x, y, z represent the

direction of the spatial dimension. This defines the linear functionals

Gk ≡
∫
f(x) dgk(x), (3.22)

which represent the volume integral operations on f(x). The measure dgk(x) are

taken to be the cell volume-average measures as,

dgk(x) =


d3x · ∏

d=x,y,z

1
∆(d) if x ∈ Ik

0 otherwise,
(3.23)

where ∆(d) is the grid spacing in the d-direction. Then, the vector G [G1, . . . , GN ]T

is normally distributed with mean E(G) = µG = [µG1 , . . . , µGN
]T and covariance

matrix C = [Ckh]k,h=1,...,N , where

µGk
= E[Gk] =

∫
E [f(x)] dgk(x) =

∫
µf (x) dgk(x), (3.24)
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and

Ckh = E [(Gk − µGk
) (Gh − µGh

)]

=
∫ ∫

E [(f(x)− µf (x)) (f(y)− µf (y))] dgk(x) dgh(y)

=
∫ ∫

K(x,y) dgk(x) dgh(y) .

(3.25)

Thus, the GP distribution on the function f ∼ GP (µ,K) conducts a multivariate

Gaussian distribution on N -dimensional vector G of linear functionals of f .

In order to generalize Eq. (3.21) for reconstruction, the remaining task is to

define the prediction vector T∗ = [T∗,k]k=1,...,N at any arbitrary point of interest

x∗ as,

T∗,k = E [(f(x∗)− µf (x∗)) (Gk − µGk
)]

=
∫
K(x∗,x) dgk(x) .

(3.26)

Finally, the pointwise estimation of f(x∗) at the point of x∗, reconstructed from

the volume-averaged data G is given by,

f̃∗ = TT
∗C−1G, (3.27)

with zero mean values. Eq. (3.27) shows the explicit form of GP reconstruction

with known volume-averaged data points, G. The terms C and T are determined

by the choice of the covariance kernel function, K(x,y), which measures the re-

lationship between pairs of data. In this dissertation, the “Squared Exponential”

(SE) kernel used for GP reconstruction.

KSE(x,y) = Σ2 exp
[
−(x− y)2

2`2

]
. (3.28)

32



The SE kernel has two hyperparameters Σ and `, but the hyperparameter Σ has no

effect on the posterior mean function, so this dissertation set Σ = 1 for simplicity.

On the other hand, the hyperparameter ` expresses the correlation length scale

of the model, so it should be chosen meticulously corresponding to the physical

length scale of the grid configuration.

For 1D reconstructions, T∗,k and Ckh for SE kernel becomes,

T∗,k =
√
π

2
`

∆

{
erf

[
∆k∗ + 1/2√

2`/∆

]
− erf

[
∆k∗ − 1/2√

2`/∆

]}
, (3.29)

and

Ckh =
√
π

(
`

∆

)2 {(∆kh + 1√
2`/∆

erf
[

∆kh + 1√
2`/∆

]
+ ∆kh − 1√

2`/∆
erf

[
∆kh − 1√

2`/∆

])

+ 1√
π

(
exp

[
−(∆kh + 1)2

2 (`/∆)2

]
+ exp

[
−(∆kh − 1)2

2 (`/∆)2

])

−2
(

∆kh√
2`/∆

erf
[

∆kh√
2`/∆

]
+ 1√

π
exp

[
− ∆2

kh

2 (`/∆)2

])}
,

(3.30)

where ∆kh = (xk − xh)/∆ and ∆ is the grid spacing along the 1D direction.

Note that the analytic derivations of T∗,k and Ckh above only depend on the grid

spacing and the length between the prediction point x∗ and the locations of known

training data. With uniform grid configuration, those values are established at

the initial step. Since the prediction points are the cell interfaces xi± 1
2
for the

conventional FDM constructions, one can save,

zi± 1
2

:= TT
i± 1

2
C−1, (3.31)

as the weighting factor for the reconstruction can be expressed as,

qi± 1
2

= zTi± 1
2
G, (3.32)
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xi 2 xi 1 xi xi + 1 xi + 2

/ = 1.0
/ = 1.5
/ = 2.0

Figure 3.3: GP reconstructed profiles with the same data as Figs. 3.1 and 3.2
with different hyperparameters `/∆ = 1.0, 1.5, 2.0. The radius of GP stencil is
r = 2. Note that all the reconstructed profiles produce a new local minimum
near x = xi+ 1

2
, which violates the monotonic-preserving condition and leads to

numerical oscillations. The shaded areas represent 95% confidence regions from
the posterior variance.

for computational efficiency.

However, the GP reconstruction also needs special handling for the discontin-

uous profiles, like the nonlinear weightings in the WENO method in Section 3.1.1.

Fig. 3.3 shows the GP reconstructions with the same data as Figs. 3.1 and 3.2,

with ` = 1, 1.5, 3. The initial profile has a strong gradient at x = xi− 1
2
; hence, the

GP reconstructed profiles have undershot values at x = xi+ 1
2
.

Reyes et al. [69] proposed a WENO-like approach to the GP reconstruc-

tion/interpolations by considering the GP marginal likelihood of the local stencil

data for measuring the smoothness of the stencil, and use them to construct non-
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linear weights as like in the standard WENO method.

For five points, fifth-order GP reconstruction, suppose three sub-stencils as

like fifth-order WENO method. (Eq. (3.11)) Then there are three reconstructed

pointwise values for each of the candidate stencils Sm,

qi± 1
2 ,m

= zTi± 1
2 ,m

Gm. (3.33)

The final reconstructed value is taken as the combinations of three candidate GP

approximations with nonlinear weights,

qi± 1
2

=
3∑

m=1
ωmqi± 1

2 ,m
. (3.34)

As in the conventional WENO method, the nonlinear weights ωm must be

reduced to the optimal (linear) weights γm in a smooth region, so the weighted

combination Eq. (3.34) converges to the GP approximation over the whole stencil

S = ⋃
m Sm. The optimal weights γm must satisfy,

zTi± 1
2
G = qi± 1

2
=

3∑
m=1

γmqi± 1
2 ,m

=
3∑

m=1
γmzTi± 1

2 ,m
Gm, (3.35)

or explicitly,

γ1



z±1,1
z±2,1
z±3,1
0

0



 zi± 1
2 ,1

+ γ2



0

z±1,2
z±2,2
z±3,2
0



 zi± 1
2 ,2

+ γ3



0

0

z±1,3
z±2,3
z±3,3


 zi± 1

2 ,3

=



z±1
z±2
z±3
z±4
z±5




zi± 1

2
.

(3.36)
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The Eq. (3.36) can be rewritten in the matrix form of overdetermined system as,



z±1,1 0 0

z±2,1 z±1,2 0

z±3,1 z±2,2 z±1,3
0 z±3,2 z±2,3
0 0 z±3,3




γ1

γ2

γ3

 =



z±1
z±2
z±3
z±4
z±5


. (3.37)

Thus, the optimal weights γm,m = 1, 2, 3 are obtained by solving the overde-

termined system, Eq. (3.37). It should be noted that the optimal weights are

entirely determined by the choice of kernel function and the stencil size, so they

are computed and stored before the simulation begins.

For constructing WENO nonlinear weights Eq. (3.17), the only remaining

task is to determine the smoothness indicator, βm, which measures the degree

of smoothness of a given stencil of data. Unlike the conventional WENO method,

which measures the smoothness of the data by calculating L2 norms of all the

derivatives of the reconstructed polynomials, the GP reconstruction method should

take a different approach to specify the smoothness indicator because there is no

polynomial defined in GP. One successful practice is to use the marginal likeli-

hood of the data. The likelihood function is well-furnished to gauge the deviations

from smoothness given a sufficiently smooth covariance kernel function, SE kernel,

for example. Thus, the GP predictions have smaller likelihoods to non-smooth

function by its design.

Suppose the negative log of the GP marginal likelihood as

− logL = N

2 log [2π] + 1
2 log |det Km|+

1
2 (fm − µf )T K−1

m (fm − µf ) , (3.38)

then the three terms on the right-hand side of Eq. (3.38) are revealed as a normal-
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ization, a complexity penalty, and a data fit term, respectively. The normalization

term and the complexity penalty have no effects on defining smoothness indicators

in a uniform grid configuration; only the data fit term along with the choice of

zero mean is used for constructing smoothness indicators in GP,

βm = fTm
(
K−1
m

)
fm. (3.39)

A second hyperparameter, σ, should be introduced to calculate the kernel matrix

Km in Eq. (3.39) to handle the discontinuity accurately. Using different hyperpa-

rameters in the GP-WENO reconstruction can be interpreted as different purposes

of viewing angles to the given data: `, to smoothing the data (Eq. (3.32)), and σ,

to discriminating discontinuities (Eq. (3.39)). By utilizing two different hyperpa-

rameters ` and σ, the GP-WENO method have one additional degree of freedom

to control the scale of the shock-detecting feature.

Like GP reconstruction weights Eq. (3.32), the calculations of GP smooth-

ness indicators βm can be expressed in a more computationally efficient form.

Considering the eigensystem K−1
m = ∑

i vmi (vmi )T /λmi ,

βm =
3∑
i=1

fTm

(
vmi (vmi )T

λi

)
fm, (3.40)

in the five-point, three-stencil GP-WENO method. Again, the observed (training)

data is in the volume-averaged form; thus, the data-type conversion should be

examined:

fm = ZT
mGm, (3.41)

where each column vector of Zm is given by the GP reconstructing weight, z,

(see Eq. (3.31)) for each elements of fm.

Lastly, the calculation of the smoothness indicator beta can be expressed in
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the compact form as,

βm =
3∑
i=1

(
(vmi )T ZT

mGm√
λmi

)2

=
3∑
i=1

(Pm
i Gm)2 ,

(3.42)

where Pm
i := (vm

i )T
ZT

m√
λm

i

, which can be established before the simulation start, in

uniform grid configuration.

Now, the nonlinear weights for GP-WENO reconstruction are fully determined

with Eq. (3.17). In the stepwise representation, the GP-WENO reconstruction

scheme for FDM formulation in the unifrom grid can be summarized as below:

1. Before the simulation starts, calculate the following values and store them

for later reconstructions:

(a) Reconstruction weights, zm (Eq. (3.33)) for each candidate stencil, m.

(b) Linear weights, γm, by the solving overdetermined system, Eq. (3.37),

using the least square method.

(c) Pm
i (Eq. (3.42)) for calculating smoothness indicator βm in later.

2. During the simulation, at each reconstruction step of cell Ii:

(a) Calculate nonlinear weights, ωm, following the conventional WENO

method. (Eq. (3.17))

(b) Computem-number of reconstructed candidate data, qi± 1
2 ,m

. (Eq. (3.33))

(c) Taking weighted combinations of qi± 1
2 ,m

, with nonlinear weights, ωm,

and finalize the reconstruction step at xi = xi± 1
2
. (Eq. (3.34))
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xi 2 xi 1 xi xi + 1 xi + 2

1 = 1.15795E 03

2 = 1.99675E 03

3 = 9.99997E 01

+
1 = 1.673376E 04

+
2 = 7.590607E 04

+
3 = 9.999997E 01

GP1

GP2

GP3

Figure 3.4: GP-WENO reconstructed profiles with nonlinear weights with the
same data as Fig. 3.3. Hyperparameters ` = 2∆ and σ = 2∆ are used. 95%
confidence regions are shaded with the correspoinding colors, and the opacity of
each prediction measures the nonlinear weights on that sub-stencil.
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3.2 High-Order time integration schemes

A high-order temporal discretization scheme ought to be considered alongside

the high-order spatial data interpolation/reconstruction to acquire highly accu-

rate numerical solutions in FDM formulation. The numerical errors arise from

both spatial and temporal discretizations since the solution of the conservative

PDEs lies on the spatio-temporal plane. The overall order of solution accuracy

will be determined by the highest order term of the truncation errors both from

the spatial and temporal discretization, i.e., O(∆sp,∆tq). For example, if the

leading error term from the temporal discretization is significantly larger than the

leading error term from the spatial discretizations, O(∆tq) > O(∆sp), then the

solution accuracy will be degraded by order of temporal accuracy, q, no matter the

order of spatial accuracy is used. Therefore, a high-order FDM scheme requires a

meticulously designed temporal discretization method that ensures the solution’s

accuracy and stability.

3.2.1 Strong Stability Preserving Runge-Kutta methods

The Runge-Kutta (RK) method is the most popular way to integrate the semi-

discretized form of FDM (Eq. (2.11)) over the time axis. The key idea is to treat

the Eq. (2.11) as an ordinary differential equation (ODE) at each lattice point on

the computational mesh as,

∂tUi = Li(U), (3.43)

where the right-hand side operator Li is given by the spatial discretization method

at cell Ii. The RK approach can be viewed as a strategy to integrate PDEs by

solving several ODE problems at each discretized time domain. In general, m-

stage RK method which integrate Eq. (3.43) from t = tn to t = tn + ∆t = tn+1 is
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given by,

U(0) = Un,

U(l) =
l−1∑
k=0

(
αl,kU(k) + ∆tβl,kL(U(k))

)
, αl,k ≥ 0, l = 1, . . . ,m

Un+1 = U(m),

(3.44)

where the spatial discretization index, i, is omitted for simplicity. Therefore, the

coefficients αl,k and βl,k fully determine the numerical accuracy and stability of

the RK scheme.

Like the spatial discretization method, it is crucial to consider the TVD

property of the temporal discretization scheme. Gottlieb and her collabora-

tors [39, 40, 38] developed the so-called strong stability preserving Runge-Kutta

(SSP-RK) method, which ensures TVD property by sequentially applying con-

vex combinations of the first-order forward Euler method as a building-block at

each sub-stage. In this way, the desired TVD property is achieved if each of the

sub-stage is TVD.

SSP-RK method uses that the forward Euler discretization method for build-

ing each sub-stages. Since the forward Euler method is strongly stable under

the Courant–Friedrichs–Lewy (CFL) condition; thus, if all sub-stages of the RK

method can be described as a form of the forward Euler method, then the TVD

property is fulfilled by virtue of the forward Euler method. It is easy to see

in Eq. (3.44) that the sub-stages of the RK method, U(l) can be described as

the forward Euler method if all the βl,k are nonnegative βl,k ≥ 0 by replacing ∆t

by βl,k

αl,k
∆t. For example, in [39], Gottlieb found the optimal third-order SSP-RK
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method given by,

U(1) = Un + ∆tL(Un),

U(2) = 3
4Un + 1

4U(1) + 1
4∆tL(U(1)),

Un+1 = 1
3Un + 2

3U(2) + 2
3∆tL(U(2)),

(3.45)

which requires three sub-stages for integrating from t = tn to t = tn+1.

The above third-order, three-stages SSP-RK method Eq. (3.45) is by far the

most famous high-order time integrator used in most high-order method researches

in the CFD community. In practice, spatial accuracy is often considered to carry

more weight than temporal accuracy in designing higher accurate spatial mod-

els [10, 59], so combining the high-order spatial method (generally, fifth-order or

higher) with a relatively low-order temporal scheme (third-order SSP-RK) could

be justifiable. However, as it is shown in [54], the order of convergence rate of the

solution can be degraded by the order of temporal method (e.g., third-order) in

high-resolution computational grids, so using a higher than third-order temporal

scheme is required for maintaining desired spatial accuracy in a high-resolution

grid.

In contrast to the third-order SSP-RK3 method, devising a fourth-order SSP-

RK4 is more involved to meet the favorable SSP property, which is ensured by pos-

itive coefficients. Several theoretical studies have shown that a fourth-order SSP-

RK4 cannot be formulated with just four sub-stages and positive coefficients [39],

meaning that the classical four-stage, fourth-order RK is not SSP. For example,
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by far the most optimal fourth-order, fourth-stage SSP-RK method is:

U(1) = Un + 1
2∆tL(Un),

U(2) = 649
1600U(0) − 10890423

25193600∆tL̃(Un) + 951
1600U(1) + 5000

7873∆tL(U(1)),

U(3) = 53989
2500000Un − 102261

5000000∆tL̃(Un) + 4806213
20000000U(1)

− 5121
20000∆tL̃(U(1)) + 23619

32000U(2) + 7873
10000∆tL(U(2)),

U(4) = 1
5Un + 1

10∆tL(Un) + 6127
30000U(1) + 1

6∆tL(U(1)) + 7873
30000U(2)

+ 1
3U(3) + 1

6∆tL(U(3)).

(3.46)

Note that the above four-stage, fourth-order SSP-RK method uses the adjoint

spatial operator, L̃, to bear the negative coefficients, e.g., −10890423
25193600 and − 102261

5000000 .

Numerically speaking, the only difference between L and L̃ is the direction of

the upwind limiting. Although the computational cost of calculating L(U) and

L̃(U) are identical, but it demands separated codes, and leads implementation

complexity.

Spiteri and Ruuth [80] proposed a five-stage, fourth-order SSP-RK4 method

that does not require to use adjoint operator:

U(1) = Un + 0.391752226571890∆tL(Un),

U(2) = 0.444370493651235Un + 0.555629506348765U(1) + 0.368410593050371∆tL(U(1)),

U(3) = 0.620101851488403Un + 0.379898148511597U(2) + 0.251891774271694∆tL(U(2)),

U(4) = 0.178079954393132Un + 0.821920045606868U(3) + 0.544974750228521∆tL(U(3)),

Un+1 = 0.517231671970585U(2) + 0.096059710526147U(3) + 0.063692468666290∆tL(U(3))

+ 0.386708617503268U(4) + 0.226007483236906∆tL(U(4)).
(3.47)

In this dissertation, the fourth-order SSP-RK4 method refers the Spiteri and Ru-

uth method, Eq. (3.47).
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In many studies about high-order CFD solvers [39, 40, 38, 59, 25, 26, 68, 69],

the SSP-RK schemes have proven high fidelity and portability, guaranteeing high-

order accuracy and numerical stability with TVD property. However, the very

nature of the SSP-RK method – being a multi-stage approach – increases com-

putational costs in CFD simulations. In SSP-RK methods, the data reconstruc-

tion/interpolation (i.e., L(·)) and the boundary condition should be applied in

each sub-stage, which increases the computational resources and the footprint of

data communications in the parallel computational architecture. It makes the

simulations using the adaptive mesh refinement (AMR) method less attractive,

which progressively refines the grid resolutions and increases data communications

around the simulations’ interesting features.

3.2.2 Lax–Wendroff type methods

The Lax-Wendroff method [51] rely on the Taylor expansion in time to achieve

high-order in time accuracy:

Un+1 = Un + ∆t ∂tU|n + ∆t2
2! ∂2

t U
∣∣∣n +O(∆t3). (3.48)

The temporal derivatives can be transformed into spatial derivatives by applying

the Lax-Wendroff or Cauchy-Kowalewski procedure (LW/CK hereafter). In one-

dimensional conservative PDEs, for example,

∂tU = −∂xF,

∂2
t U = ∂t (−∂xF)

= −∂x (∂UF · ∂tU)

= ∂x (∂UF · ∂xF) ,

(3.49)
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where ∂UF is a flux Jacobian matrix. In the original Lax-Wendroff method [51]

used an approximation of ∂x (∂UF · ∂xF) ≈ 1
∆x

(
∂UF|i+ 1

2
· ∂xF− ∂UF|i− 1

2
· ∂xF

)
,

but it is possible to get an explicit form as,

∂2
t U = ∂x (∂UF · ∂xF) = ∂2

UF · ∂xU · ∂xF + ∂UF · ∂2
xF, (3.50)

with flux Hessian tensor, ∂2
UF.

The primary advantage of the Lax-Wendroff method is that it can achieve

a high order in time accuracy within a single step of the calculation. The idea

to construct the time-Taylor series by harnessing the tight coupling of temporal

and spatial derivatives through LW/CK procedures inspires many practitioners

to develop single-step, high-order methods based on the Lax-Wendroff method.

In 2001, Toro et al. [87] extended this idea by combining it with the general-

ized Riemann problems (GRPs) and introduced the Arbitrary high order deriva-

tive Riemann problem (ADER) method. Toro and his collaborators constructed

Riemann problems for each spatial derivative at cell interface, xi+ 1
2
:

∂tU(k)
x + ∂UF|i+ 1

2
∂xU(k)

x = 0, where ∂UF|i+ 1
2

= ∂UF(Ui+ 1
2
, 0+),

U(k)
x (x, 0) =


∂k

∂xk Ui+ 1
2 ,L
, x < xi+ 1

2
,

∂k

∂xk Ui+ 1
2 ,R
, x > xi+ 1

2
,

(3.51)

where U(k)
x = ∂kU

∂xk , and Ui+ 1
2 ,LR

represent left and right Riemann states at cell

interface, xi+ 1
2
. Reconstructed profiles can find the Riemann states of the spatial

derivatives. The resulting solutions of the above Riemann problems are then

applied for LW/CK procedures to get the temporal derivatives, ∂kU
∂tk

∣∣∣
i+ 1

2
, and they

are used to construct the time-Taylor series of the conservative variables at cell
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interfaces:

U(xi+ 1
2
, τ) = U(xi+ 1

2
, 0+) +

r−1∑
k=1

[
∂k

∂tk
U(x, t)(xi+ 1

2
, 0+)

]
τ k

k! . (3.52)

ADER methods were further developed in [87, 83, 85], and it has grown its pop-

ularity over decades, leading to various further modifications. ADER-DG [32, 92]

and ADER-CG [9, 8, 6] in the context of discontinuous and continuous Galerkin

schemes; other efforts of employing an implicit GRP solver to solve scalar equa-

tions with stiff source terms [60], its extensions to second-order schemes for nonlin-

ear systems [62] and to general hyperbolic systems [88]. The use of an implicit time

Taylor series expansion for GRP was further simplified in the study by Montecinos

and Balsara [61]. Along the line of simplifying the standard ADER approach, the

Differential Transform Method (DTM) [18] was also adopted to alleviate the cost

of the ADER scheme, coined as ADER-DT (or ADER-Taylor) in [67, 65, 66].

In general, Lax-Wendroff type methods are able to update the solution in

single-step with high-order temporal accuracy. The fundamental advantage of be-

ing a single-stage method is the enhanced performance. This becomes hugely at-

tractive in massively parallel computing, minimizing the computational frequency

of data transfers between processors each time step, which would need to be re-

peated for each intermediate RK stage. On the other hand, the dependence of the

strong coupling on analytic derivatives of the governing PDEs makes the LW/CK

approach less flexible and less broadly applicable to all systems of PDEs.

3.3 Conclusion

The high-order discretization methods promote better solution accuracy in the

given grid resolutions. In order to achieve high-order accuracy of the conservative
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system, high-arithmetic-intensity numerical models should be accomplished both

in spatial and temporal axes.

Under the finite difference formulation, the high-order reconstruction methods

play a role in discretizing the spatial axis with better solution accuracy by esti-

mating the pointwise data with given volume-averaged quantities. The high-order

reconstruction schemes for CFD solvers are also required to have TVD property

to reduce the numerical oscillations near the discontinuous profiles. The general

strategy is to reduce the order of accuracy locally where the given profile is discon-

tinuous. The conventional WENO method constructs the piecewise polynomials

by taking the convex combinations of sub-polynomials with nonlinear weightings.

The WENO method

• achieves high-order accuracy by constructing the piecewise polynomials, and

• measures the smoothness of the given data by calculating spatial derivatives

of the reconstructed profiles.

GP-WENO method is another class of non-polynomial-based reconstruction

strategy utilizing the Gaussian Process. The GP reconstruction is based on the

conventional GP regression scheme, with modifications of the kernel function to

adopt the data type conversion from volume-averaged to pointwise. The GP

method provides a more compact mathematical framework compared to the piece-

wise polynomial-based reconstruction methods. A similar non-oscillatory strategy

is taken from the conventional WENO method, but in this case, the smoothness

indicator should be accomplished without the reconstructed polynomials.

The GP-WENO method

• estimates the data at the point of interest by utilizing the stochastic process,

GP regression, and
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• measures the smoothness of given data by evaluating the marginal likelihood

function.

On the other hand, the high-order temporal schemes for the finite difference

method advance the solution to the next timestep in a highly accurate manner.

The most famous temporal solver in the CFD community is the strong stability

preserving Runge-Kutta (SSP-RK) method. The SSP-RK method is based on the

conventional RK scheme, with different coefficients to ensure TVD property in

each sub-stage.

The SSP-RK method

• achieves high-order temporal accuracy by integrating the solution in multi-

stages,

• has a compact and portable mathematical structure, but

• needs to perform the high-order reconstruction method in each sub-stage

which requires a substantial amount of computational costs.

The Lax-Wendroff type scheme is another way to achieve high-order temporal

accuracy in discretizing conservative system. The Lax-Wendroff type methods

construct a Taylor series of the solution in the temporal axis and utilize the

LW/CK procedure to obtain the explicit form of temporal derivatives. By building

an explicit form of the time-Taylor series, the Lax-Wendroff type method is able

to update the solution in a single step while maintaining high-order temporal

accuracy.

The Lax-Wendroff type scheme is

• able to update the solution in a highly accurate manner within a single step,

but

48



• less attractive and less flexible due to the need for the high-order derivatives

of the flux Jacobian, which are highly dependent on the system of equations.
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Chapter 4

System-Free Picard Integral

Formulation

Unlike the broad usage of SSP-RK in various discrete PDE solvers, the devel-

opments of ADER mentioned above have been exclusively applied to FV and DG

methods, but FD methods. This is mainly because the fundamental principle of

obtaining high-order accuracy in the original ADER scheme relies on solving gen-

eralized (or high-order) Riemann problems, which are the characteristic building

blocks of FV and DG methods.

Recently, Christlieb et al. introduced a new high-order temporal scheme for

FDM, the so-called Picard integral formulation (PIF) method. [22, 72] The PIF

discretization is based on the constructions of high-order approximation to the

time-averaged fluxes over [tn, tn+1], allowing high-order temporal accuracy in a

single-step update. Firstly introduced in [22], the PIF method demonstrated

third-order temporally accurate numerical fluxes by computing the coefficients of

the time-Taylor expansion of the averaged fluxes via LW/CK procedure which

converts the high-order temporal derivatives terms into the spatial derivatives.

However, like many Lax-Wendroff type methods, the PIF method requires
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finding analytic derivations for flux Jacobians and Hessians. Although the Jaco-

bian and the Hessian calculations can be easily obtained with the aid of symbolic

manipulators such as SymPy, Mathematica, or Maple, it still demands complicated

coding/debugging efforts and ample memory consumption. Furthermore, as the

Jacobian/Hessian calculations highly depend on the type of the governing system

under consideration, it is required to re-derive the Jacobian/Hessian terms ana-

lytically every time we need to solve a new system, e.g., shallow water equations

or magnetohydrodynamics (MHD) equations, to name a few. In addition, the

calculation complexities of the Jacobian-like terms are drastically increasing with

the number of spatial dimensions and the order of accuracy.

4.1 Picard Integral Formulation

Applying the Picard integral formulation (PIF), the governing equations of the

conservative system Eq. (2.1) can be discretized by taking a time average within

a single time step ∆t over an interval [tn, tn+1],

Un+1 = Un −∆t (∂xFavg + ∂yGavg + ∂zHavg) , (4.1)

where Favg,Gavg, and Havg are the time-averaged fluxes in each direction,

Favg(x) = 1
∆t

∫ tn+1

tn
F(U(x, t)) dt,

Gavg(x) = 1
∆t

∫ tn+1

tn
G(U(x, t)) dt,

Havg(x) = 1
∆t

∫ tn+1

tn
H(U(x, t)) dt,

(4.2)

for x = (x, y, z) ∈ R3.

The goal is to express the spatial derivatives of the time-averaged fluxes
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in Eq. (4.1) using highly approximated numerical fluxes f̂ , ĝ, and ĥ at cell in-

terfaces:

∂xFavg|x=xijk
= 1

∆x
(
f̂i+ 1

2 ,j,k
− f̂i− 1

2 ,j,k

)
+O(∆xp + ∆tq),

∂yGavg|x=xijk
= 1

∆y
(
ĝi,j+ 1

2 ,k
− ĝi,j− 1

2 ,k

)
+O(∆yp + ∆tq),

∂zHavg|x=xijk
= 1

∆z
(
ĥi,j,k+ 1

2
− ĥi,j,k− 1

2

)
+O(∆zp + ∆tq),

(4.3)

where xijk = (xi, yj, zk) is the discretization indices.

The above equation is almost analog to Eq. (2.12), which is the conventional

way to construct numerical fluxes for FDM through the high-order reconstruc-

tion schemes (Eq. (2.16)). The only difference is to take time-averaged fluxes,

Favg,Gavg, and Havg as an input of the reconstruction scheme rather than tak-

ing pointwise fluxes. Thus Eq. (4.3) states that with highly approximated time-

averaged fluxes, the resulting numerical fluxes from the conventional reconstruc-

tion schemes will be high-order in time and space.

With PIF-numerical fluxes, the governing equation can be expressed in a fully

discretized form as,

Un+1
i,j,k = Un

i,j,k −
∆t
∆x

(
f̂i+ 1

2 ,j,k
− f̂i− 1

2 ,j,k

)
− ∆t

∆y
(
ĝi,j+ 1

2 ,k
− ĝi,j− 1

2 ,k

)
− ∆t

∆z
(
ĥi,j,k+ 1

2
− ĥi,j,k− 1

2

)
,

(4.4)

which requires only a single update while attaining high-order accuracy both in

time and space.

It is worth remarking that the derived governing form in Eq. (4.4) for PIF is

something in between those of FVM and FDM. It is different from that of FVM

in that it does not carry any spatial average but the temporal average. It is also
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different from that of FDM in that it does involve the temporal average in the

fluxes in Eq. (4.2), to which the numerical fluxes f̂ , ĝ, and ĥ approximate.

The time-averaged fluxes are obtained through the Taylor expansion of the

pointwise flux around tn. In the qth-order PIF method, the time-averaged x-

directional flux Favg is approximated as,

Favg(x) = 1
∆t

∫ tn+1

tn
F(x, t) dt

= F(x, tn) + ∆t
2! ∂

(1)
t F(x, t)

∣∣∣∣∣
t=tn

+ ∆t2
3! ∂

(2)
t F(x, t)

∣∣∣∣∣
t=tn

+ · · ·

=
q−1∑
i=0

∆ti
(i+ 1)!∂

(i)
t F(x, t)

∣∣∣∣∣
t=tn

+O(∆tq)

= Fappx,q(x, tn) +O(∆tq).

(4.5)

The temporally qth-order approximated fluxes Fappx,q will be used as the inputs of

the pth-order reconstruction scheme R(·) that is combined with a characteristic

flux splitting method FS(·) to apply the pth-order spatial approximation to the

numerical flux f̂ at cell interfaces,

f̂i+ 1
2 ,j,k

= R
(
FS

(
Fappx,q
i−r,j , . . . ,F

appx,q
i+r+1,j

))
+O(∆xp), (4.6)

where r represents the stencil radius required for the pth-order reconstruction

method, R(·). The details of the high-order reconstruction methods, R(·), and

the flux-splitting methods, FS(·) are described in Chapter 3.

Therefore, the primary objective of the PIF method is to approximate the

time-averaged fluxes in the desired order q, i.e., obtaining Fappx,q. For instance,

the fourth-order PIF method is characterized by the fourth-order approximated

time-averaged flux in the x-direction, Fappx,4, from the Taylor expansion of the

pointwise flux around tn. As expressed in Eq. (4.5), the fourth-order PIF method
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requires

Fappx,4(x) = F(x, tn) + ∆t
2! ∂

(1)
t F(x, t)

∣∣∣∣∣
t=tn

+ ∆t2
3! ∂

(2)
t F(x, t)

∣∣∣∣∣
t=tn

+ ∆t3
4! ∂

(3)
t F(x, t)

∣∣∣∣∣
t=tn

.

(4.7)

The other y- and z-directional approximated fluxes, Gappx,4 and Happx,4, are de-

fined in similarly. The only remaining task for the fouth-order PIF method (PIF4)

is transforming all the time derivatives in Eq. (4.7) to the corresponding spatial

derivatives via LW/CK procedures; thereby we could express Eq. (4.7) in a fully

explicit form.

For simplicity, the compact subscript notation of partial derivatives is adopted

in the following discussions. The subscripts represent the partial derivatives, and

the temporal expression of t = tn is omitted. In the compact notation, Eq. (2.1)

can be rewritten as,

Ut +∇ · F(U) = Ut + Fx + Gy + Hz = 0. (4.8)

By applying the chain rule to Ft, the evolution equation of the x-flux, F can

be obtained as,

Ft = FUUt, (4.9)

where FU is the x-directional flux Jacobian matrix. The above equation can be

combined with Eq. (4.8), resulting the explicit expression for Ft as,

Ft = −FU∇f , where ∇f = Fx + Gy + Hz (4.10)

The higher-order time derivatives could be achieved by taking partial derivatives
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to Eq. (4.10) recursively. As an example, the second-order term is written as

Ftt = FUU · ∇f · ∇f − FU · ∇f
t , (4.11)

where

∇f
t =− FUU ·Ux · ∇f − FU · ∇f

x

−GUU ·Uy · ∇f −GU · ∇f
y

−HUU ·Uz · ∇f −HU · ∇f
z ,

(4.12)

and FUU is the x-directional flux Hessian tensor. In Euler equations, the flux Hes-

sians, FUU,GUU, and HUU are the symmetric, rank-3 tensors, so a dot product

between the Hessian tensor and a vector is to be understood as a tensor contrac-

tion. Thus a double dot product between the Hessian tensor and two vectors, i.e.,

FUU · ( ) · ( ) yields a vector of the same dimension with U.

Following the same procedure, an explicit form of the third-order time deriva-

tive of the flux can be obtained as,

Fttt = −FUUU · ∇f · ∇f · ∇f + 3FUU · ∇f · ∇f
t − FU · ∇f

tt, (4.13)

where

∇f
tt = FUUU · ∇f ·Ux · ∇f + 2FUU · ∇f · ∇f

x − FUU ·Ux · ∇f
t − FU · ∇f

tx

+GUUU · ∇f ·Uy · ∇f + 2GUU · ∇f · ∇f
y −GUU ·Uy · ∇f

t −GU · ∇f
ty

+HUUU · ∇f ·Uz · ∇f + 2HUU · ∇f · ∇f
z −HUU ·Uz · ∇f

t −HU · ∇f
tz,

(4.14)
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and

∇f
tx = FUUU ·Ux · ∇f ·Ux − FUU ·Uxx · ∇f − 2FUU · ∇f

x ·Ux − FU · ∇f
xx

−GUUU ·Ux · ∇f ·Uy −GUU ·Uxy · ∇f −GUU · ∇f
x ·Uy

−GUU ·Ux · ∇f
y −GU · ∇f

xy

−HUUU ·Ux · ∇f ·Uz −HUU ·Uxz · ∇f −HUU · ∇f
x ·Uz

−HUU ·Ux · ∇f
z −HU · ∇f

xz,

(4.15)

and similarly for ∇f
ty and ∇f

tz.

Collecting Eqs. (4.10) to (4.15) the fourth-order approximation of the time-

averaged x-flux, Fappx,4 can be expressed in the explicit form, as the spatial

derivatives are readily approximated through the conventional central differenc-

ing schemes. In this dissertation, the conventional five-point central differencing

formulae are used:

Fx|x=xijk
= Fi−2 − 8Fi−1 + 8Fi+1 − Fi+2

12∆x +O(∆x4), (4.16)

Fxx|x=xijk
= −Fi−2 + 16Fi−1 − 30Fi + 16Fi+1 − Fi+2

12∆x2 +O(∆x4). (4.17)

For the cross derivatives,

Fxy|x=xijk
= Fi+1,j+1 − Fi−1,j+1 − Fi+1,j−1 + Fi−1j−1

4∆x∆y +O(∆x2,∆y2). (4.18)

The above five-points central differencing formulae can produce sufficiently

accurate predictions of spatial derivatives for the PIF method. However, these

conventional approaches cannot capture the shock discontinuities, leading to un-

foreseen spurious oscillations at strong shock profiles. (e.g., Sod shock problem)
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One solution to this issue is to introduce WENO nonlinear weights in Eq. (3.17)

to the central differencing formula. Alike the fifth-order WENO reconstruction

scheme, consider the three central differencing schemes approximating the first-

order derivatives at x = xi, in each sub-stencil as,

d1 = 1
2∆x (Fi−2 − 4Fi−1 + 3Fi) ,

d2 = 1
2∆x (−Fi−1 + Fi+1) ,

d3 = 1
2∆x (−3Fi + 4Fi+1 − Fi+2) .

(4.19)

Then the goal is to make a convex combination with the nonlinear weights ωm

describing the first-order derivatives at x = xi:

Fx|x=xi
≈ ω1d1 + ω2d2 + ω3d3. (4.20)

In a smooth region, following the original context of WENO, the nonlinear weights

ωm are anticipated to be reduced to the linear weights γm so that the convex

combination represents the approximation of Fx in a whole five-point stencil.

That is to say, the convex combination with the linear weights should be equal

to Eq. (4.16),

γ1d1 + γ2d2 + γ3d3 = 1
12∆x (Fi−2 − 8Fi−1 + 8Fi+1 − Fi+2) . (4.21)

Explicitly, the linear weights for the five-point WENO-like central differencing are

given by,

γ1 = 1
6 γ2 = 4

6 γ3 = 1
6 . (4.22)

The nonlinear weights ωm are calculated in the same way as the classical WENO-

JS reconstruction method in Eq. (3.17), with the same choice of the smoothness
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indicators, βm in Eq. (3.18).

Although the fourth-order PIF method requires the second-order derivatives,

Eq. (4.17), and cross derivatives, Eq. (4.18); however, using the WENO-like cen-

tral differencing formula above only for the first-order derivative effectively reduces

the oscillations of the PIF method. Needless to say, the WENO-like central dif-

ferencing Eq. (4.20) increases the overall computational loads of the PIF method.

In practical code implementation, it is worth to noting that reusing the flux

divergence ∇f for calculating high-order spatial derivatives is more efficient than

calculating them directly. For example, ∇f
x can be calculated as dx(∇f ), with

the numerical spatial derivative function dx(·), rather than calculating as ∇f
x =

Fxx + Gyx + Hzx. This approach requires an additional guard cell layer (resulting

in two more guard cells for the five-points derivatives). However, the overall code

performance is better than evaluating high-order derivatives in each direction

without affecting the accuracy of the scheme.

The PIF method is a very efficient numerical strategy to update the solution in

FDM formulation. Once the high-order time-averaged fluxes are determined, the

solution can be updated through a single step by following the exact same process

for the conventional FDM spatial reconstruction. Using the conventional spatial

strategy of the FDM formulation, the PIF method can be “swapped” readily

with the SSP-RK scheme in the existing simulation code for improving the code

performance.

However, the direct analytic derivations for flux Jacobians, Hessians (and

more) remain as the implementation hurdle for the PIF method. Unlike SSP-

RK methods, the PIF method requires different code implementation for a differ-

ent system of equations only because of the Jacobian-like terms. (e.g., FU, FUU,

FUUU, . . .) This dissertation aims to tackle this problem, making a different strat-
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egy to use the LW/CK procedure, which does not require analytical derivations

of Jacobian-like terms.

4.2 System-Free approach

This section aims to provide a new alternate formulation of computing the

multiplications of Jacobian-vector and Hessian-vector-vector terms in Eqs. (4.10)

to (4.15). The new approach will replace the necessity for analytical derivations

of the Jacobian-like terms in the original PIF method that is system-dependent,

with a new system-independent formulation, based on the so-called “Jacobian-

free” method, which is widely used for Newton-Krylov-type iterative schemes [36,

15, 49, 50].

Suppose the Taylor expansion for the flux vector F at a small displacement

from U,

F(U + εV) = F(U) + εFU ·V + 1
2ε

2FUU ·V ·V +O(ε3), (4.23a)

F(U− εV) = F(U)− εFU ·V + 1
2ε

2FUU ·V ·V +O(ε3), (4.23b)

where V is an arbitrary vector that has the same number of components as U,

and ε is a small scalar perturbation. By subtracting Eq. (4.23b) from Eq. (4.23a),

we get an expression of a central differencing that is of second-order in ε,

FU ·V = 1
2ε

[
F(U + εV)− F(U− εV)

]
+O(ε2). (4.24)

Alternatively, the first-order forward differencing or the backward differencing

can be used here. However, the above second-order central differencing is used for

this dissertation, so that the order of accuracy of the entire system-free approach
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consistently scales with O(ε2), given that the Hessian approximation described

in the following is to be bounded by O(ε2). With the system-free approximation

of Jacobian, all the Jacobian-vector products in Eqs. (4.10) to (4.15) are to be

replaced with the central differencing in Eq. (4.24).

For the approximation for Hessians, it is imperative to classify the types of the

Hessian tensor contraction. The first type is the Hessian tensor contracts with the

same vector twice, e.g., FUU ·V ·V, and the second type is the tensor contracts

with two different vectors, e.g., FUU ·V ·W.

For the first type, we use a Taylor expansion analogous to Eq. (4.23) to ap-

proximate the Hessian-vector-vector product with a central differencing of order

O(ε2),

FUU ·V ·V = 1
ε2

[
F(U + εV)− 2F(U)− F(U− εV)

]
+O(ε2). (4.25)

Using a simple vector calculus, the second type can be derived from the first type

in Eq. (4.25) by exploring a symmetric property of the Hessians,

FUU ·V ·W = 1
2

[
FUU · (V + W) · (V + W)− (FUU ·V ·V + FUU ·W ·W)

]
.

(4.26)

The Hessian approximations derived here are now ready to be substituted in

Eqs. (4.11) to (4.15).

Theoretically speaking, the system-free procedure in the above can be applied

to any arbitrary order of derivatives of the flux function F with respect to the

conservative variable U. For instance, the fourth-order PIF method Eq. (4.7)

requires the third-order derivative of F, i.e., FUUU. Following the same math-

ematical basis of Eqs. (4.24) and (4.25), the tensor contractions with the same
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vectors can be approximated as,

FUUU ·V ·V ·V = 1
2ε3

[
− F(U− 2εV) + 2F(U− εV)

− 2F(U + εV) + F(U + 2εV)
]

+O(ε2).
(4.27)

We can further extend the procedure to compute the contraction with three dif-

ferent vectors, V,W, and X,

FUUU ·V ·W ·X = 1
6

[
FUUU · (V + W + X) · (V + W + X) · (V + W + X)

− FUUU · (V + W) · (V + W) · (V + W)

− FUUU · (V + X) · (V + X) · (V + X)

− FUUU · (W + X) · (W + X) · (W + X)

+ FUUU ·V ·V ·V

+ FUUU ·W ·W ·W

+ FUUU ·X ·X ·X
]
,

(4.28)

and only to see that the number of terms to be computed rapidly increases in

high-order tensor contraction terms.

4.2.1 The proper choices of ε

In the above system-free approximations, the choice of ε has to be consid-

ered carefully as it affects the solution accuracy and stability. On one hand, ε

is needed to be minimized to improve the approximated solution accuracy, the

quality of which will scale as the truncation error of O(ε2). On the other hand, if

it is too small the solution would be contaminated by the floating-point roundoff
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error which is bounded by the machine accuracy εmach [49]. Therefore, ε is to be

determined judiciously to provide a good balance between the two types of error.

A recent study by An et al. [3] presents an effective analysis of choosing ε in

the context of the Jacobian-free Newton-Krylov iterative framework. The authors

have shown how to compute an ideal value of ε which minimizes the error of the

central differencing in the Jacobian-vector approximation.

The main idea in [3] is to find a good balance between the truncation error

O(ε2) of each Jacobian-free approximation in Eq. (4.24) and Hessian-free ap-

proximation in Eq. (4.25), and the intrinsic floating-point roundoff error δF(U)

when calculating the target exact function value F(U) with an approximate value

F(U) + δF(U). The perturbation δF(U) may include any errors characterized in

computer arithmetic such as roundoff errors, and is assumed to be bounded by

the machine accuracy.

Let F(U) be an exact function value of F at U, and let F∗(U) = F(U)+δF(U)

be an approximation to F(U), where δF(U) is a perturbation of F(U) that is

potentially due from roundoff errors and truncation errors and is assumed to be

bounded by the machine accuracy, i.e., ||δF(U)|| ≤ εmach. The main idea is to

choose an optimal ε value for the Jacobian-free approximation Eq. (4.24), εopjac,

in such a way that the error is minimized when approximating FU ·V using the

central differencing approximation of F∗(U) in Eq. (4.24), i.e.,

FU ·V ≈
1

2σ
[
F∗(U + σV)− F∗(U− σV)

]
= 1

2σ
[
F(U + σV) + δF(U + σV)− F(U− σV)− δF(U− σV)

]
.

(4.29)

For the sake of this analysis, we assume that the function F : Rn → Rn is defined

to be continuously differentiable sufficiently everywhere, F ∈ Ck(Rn). We now
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define the error E by the difference between the central differencing approximation

in Eq. (4.29) and FU ·V,

E = 1
2σ
[
F∗(U + σV)− F∗(U− σV)

]
− FU ·V

= 1
2σ
[
F(U + σV)− F(U− σV)

]
+ 1

2σ
[
δF(U + σV)− δF(U− σV)

]
− FU ·V

= 1
2σ

[
2σFU ·V + σ3

∫ 1

0
(1− t)2 F(3)(U + tσV) ·V3 dt

]
+ 1

2σ
[
δF(U + σV)− δF(U− σV)

]
− FU ·V

= O
(
σ2

2 + εmach

2σ

)
,

(4.30)

where the Taylor series expansion around U is used for each term in which the

remainders after the third power are given as the integral form as below,

F(U + σV) = F(U) + σFU ·V + σ2

2 ∂
2
UF ·V ·V

+ σ3

2

∫ 1

0
(1− t)2 F(3)(U + tσV) ·V3 dt,

F(U− σV) = F(U)− σFU ·V + σ2

2 ∂
2
UF ·V ·V

− σ3

2

∫ 1

0
(1− t)2 F(3)(U + tσV) ·V3 dt .

(4.31)

The optimal choice of εopjac is to be obtained by considering the minimization prob-

lem of the leading error term in the last line in Eq. (4.30),

εopjac = arg min
σ>0

(
σ2

2 + εmach

2σ

)
=
(
εmach

2

) 1
3
≈ 4.8062× 10−6, (4.32)

where εmach ∼ 2.2204× 10−16 is used assuming a double-precision in a typical

64-bit machine.

Following the similar procedures, the optimal epsilon value for the Hessian-free
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approximation Eq. (4.25), εophes can be found as,

εophes = arg min
σ>0

(
σ2

3 + εmach

σ2

)
= (3εmach)

1
4 ≈ 1.6065× 10−4. (4.33)

However, direct use of εop as the displacement step size in the central differenc-

ing schemes in Eq. (4.24) and Eq. (4.25) is not a good idea for stability reasons.

Usually, the vector V in Eq. (4.24) and Eq. (4.25) could have an enormous value

in a strong shock region, so it is safer to use a smaller step size to preserve

the needed stability. To meet this, the ideal value, εop should be normalized by

the magnitude of the vector V. There are several prescriptions available in the

Jacobian-free Newton–Krylov literatures [49, 15] to help finalize the decision of

choosing a proper value of ε as a function of εop. Nonetheless, as reported in [53],

a simple approach of taking a square root of εop with a simple normalization is

sufficient to attain the desired accuracy and stability, which is given as,

ε =
√
εop

‖V‖2
. (4.34)

Lastly, the ε estimation can be finalized by taking the minimum value between

ε and ∆t,

ε = min (ε, ∆t) , (4.35)

to prevent the division by zero case.

4.3 Recursive System-Free approach

The original system-free (SF) approach presented in the previous section pro-

vides good approximations of tensor contractions between Jacobian-like terms and

vectors. However, the original SF method becomes less attractive for any PIF
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method higher than third-order accuracy, as it demands increasing complexity in

code implementation, which results in a significant loss in the overall performance

of the code. For example, Eq. (4.28) requires 28 times flux function calls for just

getting a single tensor contraction, FUUU ·V ·W ·X. It is worth noting that the

major bottleneck of the original SF method stems from Eq. (4.26) and Eq. (4.28)

that require to perform the Jacobian-like approximations multiple times.

To avoid the additional modifications for the case of the tensor contractions

with different vectors, the improved version of the SF method was proposed in [54].

This new, improved SF method, apply the Jacobian-free method recursively to

construct the high-order Jacobian-like terms.

The recursive SF method starts from defining a functional Du that represents

the Jacobian-free method denoted in Eq. (4.24):

FU ·V ≈ Du(F ; V) := 1
2εv

[
F(U + εvV)− F(U− εvV)

]
, (4.36)

where εv is the appropriately calculated ε corresponding to the vector V by fol-

lowing the original system-free method Eq. (4.34),

εv = min (ε̄v, ∆t) , where ε̄v =
√
εop

‖V‖2
. (4.37)

The recursive SF method uses εop = 4.8062× 10−6 that is the optimal ε value for

the second-order Jacobian-free approximation in the 64-bit machine as it shown

in Eq. (4.32). This choice is also justifiable for the recursive scheme considered

below, where the functional Du itself is defined as the Jacobian-free method fun-

damentally.

By applying Du in the following successive fashion, the tensor contractions

between higher order derivatives for the flux function F and arbitrary vectors.
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For instance, the Hessian approximation becomes,

FUU ·V ·W ≈ Du
(
Du(F ; V) ; W

)
= 1

4εvεw

[
F(U + εvV + εwW)− F(U− εvV + εwW)

−F(U + εvV− εwW) + F(U− εvV− εwW)
]
.

(4.38)

Again, following Eq. (4.37), εv and εw are the optimal ε values normalized by its

corresponding vectors V and W, respectively.

Note that the improved version of the Hessian-free method in Eq. (4.38) is

applicable regardless the tensor contraction is with two identical vectors (e.g.,

FUU ·V ·V) or with two distinct vectors (e.g., FUU ·V ·W), hence it does not

require separate formulations as in Eqs. (4.26) and (4.28).

The simplicity gain from the improved version of the system-free method is

further rewarded when considering the higher-order derivatives of F. Following the

equivalent strategy, the tensor contraction of the third-order derivative of the flux

function, FUUU with three distinct vectors, V,W, and X is written compactly

as,

FUUU ·V ·W ·X ≈ Du

Du(Du(F ; V) ; W
)

; X


= 1

8εvεwεx

[
F(U + εvV + εwW + εxX)− F(U− εvV + εwW + εxX)

−F(U + εvV− εwW + εxX) + F(U− εvV− εwW + εxX)

−F(U + εvV + εwW− εxX) + F(U− εvV + εwW− εxX)

+F(U + εvV− εwW− εxX)− F(U− εvV− εwW− εxX)
]
.

(4.39)
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Here, the performance between the recursive SF method and the original SF

method can be compared by the number of flux function calls. For instance,

considering the case of approximating FUUU · V ·W · X term, the original SF

method requires 28 function calls. On the other hand, the recursive SF method

needs only eight evaluations. This is a huge improvement in both performance

and compactness.

By utilizing Eqs. (4.36) to (4.39), all the tensor contractions needed in the

fourth-order PIF method in Eqs. (4.10) to (4.15) can be approximated without

the analytical calculations of the Jacobian-like terms. Combining the recursive

SF method, the PIF method can be implemented more efficiently, allowing the

system independence of the high-order scheme. It should be noted that the re-

cursive modifications of the SF method presented in this section do not affect the

solution’s accuracy and stability compared to the original SF method.

The fourth-order SF-PIF4 method can be summarized as the following step-

wise fashion. The discretization indices i, j, k and n are omitted for simplic-

ity in representing the conservative variables Un
ijk and the corresponding fluxes

Fnijk = (Fn
ijk,Gn

ijk,Hn
ijk).

Step 1: Calculate ∇f = Fx + Gy + Hz via the standard fourth-order ac-

curate, five-point central differencing scheme on every grid point and save

them. These saved flux divergences will be used as inputs for the cen-

tral differencing formulae in the following steps to get higher-order spatial

derivatives.

Step 2: Apply the Jacobian approximation in Eq. (4.36) in preparation for

Ft as expressed in Eq. (4.10), and construct the second-order temporally

averaged flux Fappx,2 = F + ∆tFt/2. Apply the similar procedures to y−

and z−directional fluxes to obtain Gappx,2 and Happx,2. This finalizes the
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second-order temporal approximations of pointwise fluxes in all directions.

Step 3: Given the pointwise conservative variables U and the divergence

of fluxes ∇f from Step 1, calculate Ux,Uy,Uz,∇f
x,∇f

y , and ∇f
z via the

same five-point central differencing operator in Step 1. They will be used

as building blocks for constructing Ftt,Gtt and Htt in the following steps.

Step 4: Apply the Jacobian and Hessian approximations in Eqs. (4.36)

and (4.38) to the spatially approximated derivative quantities in Step 3 in

order to compute ∇f
t by following the explicit expression in Eq. (4.12).

Step 5: Apply the Jacobian approximation in (4.36) to∇f
t from Step 4 and

the Hessian approximation in (4.38) to ∇f from Step 1 in order to get Ftt

using Eq. (4.11); add the computed Ftt to the results of Step 2 to update

the second-order temporal fluxes in Step 2 to the third-order temporally

averaged flux, Fappx,3 = Fappx,2 + ∆t2Ftt/6. Perform the similar procedures

in y− and z−directions to obtain Gappx,3 and Happx,3. This finalizes the

third-order temporal approximations of pointwise fluxes in all directions.

Step 6: Using the five-point central differencing, compute the fourth-

order accurate approximations of the second derivatives and the mixed-

derivatives of the conservative variables and the divergence of fluxes to ob-

tain Uxx,Uxy,Uyy, . . . etc. and ∇f
xx,∇f

xy,∇f
yy, . . . etc.

Step 7: Apply the tensor contractions of the first, second, and third-order

flux derivatives in Eqs. (4.36), (4.38) and (4.39) to the quantities computed

and stored from the previous steps in order to calculate ∇f
tt and ∇f

tx by

following the explicit relations in Eqs. (4.14) and (4.15) respectively. Also

calculate ∇f
ty and ∇f

tz similarly.
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Step 8: Next, perform the last set of tensor contractions in Eqs. (4.36),

(4.38) and (4.39) to construct Fttt as expressed in Eq. (4.13). Add the

resulting Fttt to the result of Step 5 to obtain the fourth-order temporally

averaged flux, Fappx,4 = Fappx,3+∆t3Fttt/24. Perform the similar procedures

in y− and z−directions to obtain Gappx,4 and Happx,4. This finalizes the

fourth-order temporal approximations of pointwise fluxes in all directions.

Step 9: Proceed with the conventional FDM procedures for high-order spa-

tial accuracy, viz., apply a high-order reconstruction method with a char-

acteristic flux-splitting strategy in Eq. (4.6) to the results, Fappx,4, Gappx,4,

and Happx,4, from Step 8. For example, taking WENO-JS (Section 3.1.1)

as a reconstruction method using Fappx,4 ensures a temporally fourth-order

and spatially fifth-order accurate approximation to the numerical flux, f̂ =

WENO-JS (Fappx,4) +O(∆x5,∆t4). Perform the similar procedures in y− and

z−directions to obtain ĝ and ĥ.

Step 10: Lastly, update the solution following Eq. (4.4).

4.4 System-Free PIF method with source term

Since the PIF method depends on the LW/CK procedure, the PIF method

must be modified accordingly when the governing equation has changed. For

instance, the non-homogeneous system of equations with a source term S(U),

the solution updating strategy for the original PIF method Eq. (4.1) should be

modified with appropriately time-averaged source term. Consider a conservative

equations with a source term S(U),

Ut +∇ · F(U) = S(U). (4.40)
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Taking time-averaging,

Un+1 = Un −∆t (∂xFavg + ∂yGavg + ∂zHavg) + ∆tSavg, (4.41)

where

Savg(x) = 1
∆t

∫ tn+1

tn
S(x, t) dt

=
q−1∑
i=0

∆ti
(i+ 1)!∂

(i)
t S(x, t)

∣∣∣∣∣
t=tn

+O(∆tq)

= Sappx,q(x, tn) +O(∆tq).

(4.42)

For the fourth-order PIF method, the fourth-order approximation of the time-

averaged source term is needed,

Sappx,4(x) = S(x, tn) + ∆t
2! ∂

(1)
t S(x, t)

∣∣∣∣∣
t=tn

+ ∆t2
3! ∂

(2)
t S(x, t)

∣∣∣∣∣
t=tn

+ ∆t3
4! ∂

(3)
t S(x, t)

∣∣∣∣∣
t=tn

.

(4.43)

In order to modify the conventional PIF procedures in a way that maintains

the general mathematical structures in Section 4.1, a modified version of the flux

divergence ∇̃f can be considered as,

∇̃f := ∇f − S. (4.44)

Then, the time derivatives of the source term have similar expressions as the

time derivatives of the flux function, e.g., Ft,Ftt, and Fttt in Eqs. (4.10), (4.11)

and (4.13), through the LW/CK procedures:

St = −SU∇̃f , (4.45)
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Stt = SUU · ∇̃f · ∇̃f − SU · ∇̃f
t , (4.46)

Sttt = −SUUU · ∇̃f · ∇̃f · ∇̃f + 3SUU · ∇̃f · ∇̃f
t − SU · ∇̃f

tt. (4.47)

The equation independence property of the system-free method is rewarded in

calculations of the source Jacobian SU and Hessian SUU, since the only required

job is to change the flux function F(·) in Eqs. (4.36) and (4.38) to the source

function, S(·).

The time derivatives of the modified flux divergence, ∇̃f
t and ∇̃f

tt, can be

defined as linear combinations with the time derivatives of the conventional flux

divergence terms as,

∇̃f
t = ∇f

t − St

= ∇f
t + SU · ∇̃f ,

(4.48)

and

∇̃f
tt = ∇f

tt +
(
SU · ∇̃f

)
t

= ∇f
tt − SUU · ∇̃f · ∇̃f + SU · ∇̃f

t ,
(4.49)

where ∇f
t and ∇f

tt are defined in Eqs. (4.12) and (4.14), respectively.

With a new governing equation, Eq. (4.40), the high-order time derivatives

of the flux functions, e.g., Ft,Ftt, and Fttt in Eq. (4.7) should be adjusted with

the modified flux divergence, ∇̃f . The governing equation Eq. (4.40) leads the

adjusted first-order time derivative of the flux as,

Ft = −FU∇̃f . (4.50)

Using the modified flux divergence, ∇̃f , the adjusted time derivatives of the
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flux functions maintain the similar mathematical structures in Eqs. (4.10), (4.11)

and (4.13) as,

Ftt = FUU · ∇̃f · ∇̃f − FU · ∇̃f
t , (4.51)

and

Fttt = −FUUU · ∇̃f · ∇̃f · ∇̃f + 3FUU · ∇̃f · ∇̃f
t − FU · ∇̃f

tt, (4.52)

where ∇̃f
t and ∇̃f

tt are defined as in Eqs. (4.48) and (4.49) respectively.

4.5 Conclusion

The Picard integral formulation (PIF) method is one of the Lax-Wendroff

class high-order in temporal integration strategies for FDM discretization. By

virtue of a single-stage time integrator, the PIF method can perform faster than

the traditional multi-stage method. Also, the PIF method does not depend on

the spatial reconstruction scheme; thus, it can be combined with any high-order

spatial method in general.

However, as like other Lax-Wendroff type schemes, the PIF method highly

depends on the system of equations, requiring analytical derivations for Jacobian-

like terms. Although the symbolic manipulation tools can aid these calculations,

Jacobian-like terms remain as a major implementation hurdle due to their per-

plexing structures.

The (original, non-recursive) system-free (SF) approach provides capability to

Lax-Wendroff type scheme to bypass all the analytical derivations of Jacobian-

like terms, approximating tensor contractions between Jacobian-like terms and

arbitrary vectors. The major advantage of SF method lies in ease of its code im-

plementation for practical use. By combining with PIF method, SF-PIF method

can be applied to any system of equations to furnish high-order in temporal accu-
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racy in a single-step. However, the increasing number of calculations needed for

higher order derivatives of the flux function F with respect to the conservative

variables U makes the SF method less attractive for higher than third-order PIF

method.

The improved version, recursive SF approach is then introduced to mini-

mize the number of calculation needed for approximating the tensor contractions.

The recursive SF method introduced a functional representing the Jacobian-free

method, then the higher order derivative terms can be obtained by applying the

functional recursively. This feature allows to extend SF-PIF method to the fourth-

order accuracy efficiently.

It is important to note that the SF method is neither designed particularly

for the PIF method nor any specific numerical methods in CFD. Instead, it is

solely intended for approximating the Jacobian-like tensor contractions, so the SF

approach is applicable in otehr numerical algorithms to enhance the calculation

speed and implementation efficiency.
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Chapter 5

Results

This chapter will provide various numerical test results of SF-PIF methods. In

order to examine the numerical capabilities of the SF method, several well-known

numerical benchmark problems are conducted, and the traditional SSP-RK meth-

ods’ results will be provided with the same initial conditions as counterparts of

SF-PIF methods for comparisons. SF-PIF3 and SF-PIF4 will refer to the recur-

sive SF method in Section 4.3 with third-order and fourth-order PIF methods,

respectively, and RK3 and RK4 will refer to the three-stage, third-order SSP-RK

method Eq. (3.45), five-stage, fourth-order SSP-RK method Eq. (3.47), respec-

tively. The original, non-recursive SF approach (Section 4.2) with the PIF method

is denoted by oSF-PIF. The conventional five-point central differencing formu-

lae Eqs. (4.16) to (4.18) are used for SF-PIF and PIF methods otherwise specified.

5.1 Performance of SF-PIF method

The main advantage of the PIF method is the performance gain compared to

the SSP-RK methods. This section will compare the performance of PIF methods

(with or without the SF approach) and the SSP-RK method. The main purpose of
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this section is to check if the SF-PIF methods provide improved performance while

maintaining the same accuracy as SSP-RK methods. Theoretically speaking, the

SF and oSF approach should not affect the solution’s accuracy and stability, so

the original PIF method’s results are presented for comparisons.

All test results in this section use the standard fifth-order WENO-JS method

(Section 3.1.1) for the spatially high-order reconstruction scheme. Therefore, the

expected truncation error is O(∆s5,∆tq), where q is the order of the temporal

scheme. In this section, Ccfl = 0.7 is used for all 1D simulation results, and

Ccfl = 0.4 is used for 2D simulation runs.

5.1.1 Sine wave advection

The first choice of the benchmark problem is the sine wave advection to test

if the desired solution accuracy is retrieved in smooth flows. The initial condition

follows the setup in [52], where the density profile is initialized with a sinusoidal

wave, ρ(x) = 1.5−0.5 sin(2πx). The x-velocity and the pressure are set as constant

values of u = 1 and p = 1/γ with the specific heat ratio, γ = 5/3. Albeit solved

using the nonlinear Euler equations, the problem is solved in a linear regime, viz.,

the velocity and pressure remain constant for all t ≥ 0 so that the initial sinusoidal

density profile is purely advected by the constant velocity u = 1 without any

nonlinear dynamics such as a formation of shocks and rarefactions.

The simulation domain is defined on a one-dimensional box of [0, 1] with the

periodic boundary condition on both ends. The density profile will propagate one

period through the computational domain and will return to its initial position

at t = 1. In return, any shape deformation of the density profile from the initial

density profile can be considered as a numerical error associated with phase errors

or numerical diffusions. The accuracy of the numerical solutions is measured
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Figure 5.1: Convergence test for the 1D sine wave advection problem. The
errors are calculated in L1 sense against the initial density profile resolved on
the computational grids refined from 32 to 1024 by a factor of 2. All numerical
solutions follow the theoretical third-order convergence rate (the black-dotted line)
when using the timesteps computed from the Courant condition. Also plotted are
the solutions of using reduced timesteps, which follows the fifth-order convergence
rate represented in the pink-dotted line.
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by computing L1 error between the initial and the final density profiles. The

numerical experiment results from the sine wave advection test on different number

of grid points, Nx = 32, 64, 128, 256, 512, and 1024 are depicted in Fig. 5.1 for three

different temporal methods, Rk3, PIF3, and oSF-PIF3.

There are two types of convergence rates demonstrated in Fig. 5.1. In the first

type, the numerical solutions of three different temporal methods advanced with

timesteps computed from the Courant condition with Ccfl = 0.7. Interestingly,

the numerical solutions from all three different temporal methods show a third-

order convergence rate, indicating that the leading error term from third-order

temporal methods dominates the spatial error from the fifth-order WENO-JS

method. These results are different from Fig. 1.1, calculating L1 error from the 2D

nonlinear vortex advection case, where the solution accuracy follows the spatial

order at low-resolution regions until the leading error of the solution is caught

up by the temporal error as computational grids get further refined to higher

resolutions. However, in this test case, the third-order temporal accuracy quickly

takes control throughout the entire range of the grid resolutions tested herein.

This solution behavior strongly supports the importance of integrating spatially

reconstructed solutions with a temporal scheme whose accuracy is sufficiently high

enough to be well comparable to that of the spatial solver.

In the second type of the convergence rate, on the other hand, the timesteps are

restricted in order to match up the lower third-order temporal accuracy with the

higher fifth-order spatial accuracy. Following the usual trick of timestep reduction

in [59], the timestep ∆tN is manually adjusted on a grid size of N to satisfy the

equal rate of change between the spatial and temporal variations. The restricted

timestep is defined by,

∆tN = ∆t0
(∆xN

∆x0

) 5
3
, (5.1)
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where the sub-indices “0” and N refer to the time and grid scales on a nominal

coarse and fine resolution, respectively. In the current configuration, ∆x0 is the

grid-scale of Nx = 32, and ∆t0 is the corresponding timestep subject to the

Courant condition with Ccfl = 0.7. With the timestep reduction, the overall

leading error from the spatial and temporal methods are matched with the fifth-

order spatial accuracy of WENO5, and the numerical solution of PIF3 and oSF-

PIF3 follows the fifth-order convergence rate as expected. In all test cases for linear

advection problems, the oSF-PIF3 solutions behave almost equally well with the

solutions of the original PIF3 and RK3 both quantitatively and qualitatively.

5.1.2 Nonlinear isentropic vortex advection

The isentropic vortex advection problem [75] is one of the most popular bench-

mark tests to measure the numerical method’s accuracy and performance in the

nonlinear case. Although the problem is fully nonlinear, the exact solution always

exists in the form of its initial condition, from which an isentropic vortex is ad-

vected through periodic boundaries in a 2D computational box. The accuracy of

a numerical method on a nonlinear problem can be evaluated by comparing the

final density profile with the initial condition.

The initial condition consists of a constant background mean flow with ρ = 1,

(u, v) = (1, 1) and p = 1 on the 2D computaional domain with periodic boundary

conditions. The isentropic vortex is given by the velocity perturbations (δu, δv),

and the temperature perturbation δT . The perturbation terms are designed to set

the constant entropy S everywhere in the simulation domain, i.e., δS = 0. The

perturbations are given as,

(δu, δv) = ε

2πe
− 1

2(1−r2)(−y, x), δT = −(γ − 1) ε2
8γπ2 e1−r2

, (5.2)

78



Table 5.1: The L1 errors, the rates of convergence, and the relative computation
times for the vortex advection test. Here, the comparison between RK3 and
oSF-PIF is only displayed, since the difference between oSF-PIF3 and PIF3 is
indistinguishable. All the performance results (measured in seconds) are averaged
over 10 simulation runs which are conducted on a Coffee Lake quad-core i7 Intel
CPU with a clock speed of 2.7GHz, Turbo Boost up to 4.5GHz, utilizing four
parallel threads.

Nx = Ny
RK3 oSF-PIF3

L1 error L1 order CPU Time Speedup L1 error L1 order CPU Time Speedup
50 7.22× 10−1 – 3.73 s 1.0 6.95× 10−1 – 1.41 s 0.38
100 5.76× 10−2 3.65 27.51 s 1.0 5.58× 10−2 3.64 10.82 s 0.39
200 2.94× 10−3 4.29 214.44 s 1.0 2.89× 10−3 4.27 83.21 s 0.39
400 1.22× 10−4 4.59 1727.71 s 1.0 1.26× 10−4 4.52 652.18 s 0.38

where ε = 5 is the vortex strength and r2 = x2 +y2. The vortex is initially located

at the domain center, and it advects to the diagonal directions, then returns to

its original position after one cycle. The simulation domain size is doubled-up as

[0, 20] × [0, 20] compared to the original setup in [75], to prevent vortex-vortex

couplings near the periodic boundaries as reported in [79].

The results of the convergence test are depicted on the left panel in Fig. 5.2.

Three different temporal schemes, RK3, PIF3, and oSF-PIF3, show an excellent

comparable match in magnitudes and slopes of the L1 errors with varying grid

resolution, Nx = Ny = 50, 100, 200, and 400. One important finding in this figure

is that there is no significant distinction between PIF3 and oSF-PIF3 in accuracy

and performance. These results demonstrate that the original SF method does

not affect the solution accuracy and performance of the PIF method.

The performance results of three different temporal schemes are presented

on the right panel of Fig. 5.2 and summarized in Table 5.1. Both the PIF3

and oSF-PIF3 methods perform more than two times faster than the multi-stage

method, RK3. It is worth noting that the original SF-PIF method, oSF-PIF, can

be readily swappable with an RK integrator in an existing code without too much
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Figure 5.2: The L1 errors of the isentropic vortex advection test problem on
different grid resolutions, Nx = Ny = 50, 100, 200, and 400. The three different
third-order temporal schemes are used combined with WENO5 spatial method.
The L1 errors with respect to the grid resolutions (top); with respect to the
computation time (bottom).
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effort, leaving any existing spatial implementations intact. Moreover, such a code

transformation with oSF-PIF is more advantageous in simplicity than the original

PIF method because oSF-PIF replaces the analytic derivations of the Jacobian

and Hessian terms with the system-free approximations, which have shown to be

highly commensurate with the analytical counterparts of the original PIF scheme.

Unlike the 1D linear sine advection test in Section 5.1.1, the overall solution

accuracy is not completely dominated by the third-order temporal discretizations,

which could reduce the overall convergence rate down to third-order as observed

in the sine advection case. Concurrently, the solution does not converge at full

fifth-order either, the rate due to the use of WENO5. This can be explained as a

nonlinear effect in which the lower third-order time integration schemes slightly

compromise the overall leading error term of the fifth-order spatial discretization.

However, the third-order temporal schemes gradually degrade the overall so-

lution accuracy on the fine grid resolutions. Fig. 5.3 illustrates the same con-

vergence test results, but in this case, containing more higher grid resolutions,

Nx = Ny = 120, 200, 400, 800, 1600, and 3200. Notice that the recursive SF-

PIF method, SF-PIF3, and SF-PIF4 are used instead of the original SF-PIF

method. As expected, all temporal methods follow the convergence line of or-

der ∼ O(∆x4.5), which is nearly the same as WENO’s fifth-order spatial accuracy,

equivalently in Fig. 5.2. However, at the critical grid resolution, Nx = Ny = 1600,

the third-order temporal schemes of RK3 and SF-PIF3 start to compromise the

overall solution accuracy. This behavior can be explained that the spatial errors

from the fifth-order WENO method are dominant on the grid resolutions up to

Nx = Ny = 1600, after which the truncation errors associated with the third-

order temporal methods become dominant over the error of the fifth-order spatial

solver, WENO5. This result emphasizes the importance of high-order temporal
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by third- and fourth-order temporal schemes combined with WENO5 spatial
method. The L1 errors with respect to the grid resolutions (top); with respect to
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Table 5.2: The L1 errors, the rates of convergence, and the computation times for
the vortex advection test solved using RK3 and SF-PIF3 methods (top); using
RK4 and SF-PIF4 methods (bottom). All simulation runs are equipped with
WENO5 spatial method, performed on the four 20-cores Cascade Lake Intel Xeon
processors, utilized 64 parallel threads. CPU times are measured in seconds,
averaged over 10 individual runs.

Nx = Ny
RK3 SF-PIF3

L1 error L1 order CPU Time Speedup L1 error L1 order CPU Time Speedup
120 6.31× 10−2 – 1.50 s 1.0 6.16× 10−2 – 0.71 s 0.48
200 8.20× 10−3 4.00 6.17 s 1.0 7.96× 10−3 4.00 2.77 s 0.45
400 4.02× 10−4 4.35 45.44 s 1.0 3.86× 10−4 4.37 19.89 s 0.44
800 1.57× 10−5 4.68 372.47 s 1.0 1.51× 10−5 4.68 153.92 s 0.41
1600 7.18× 10−7 4.45 2957.26 s 1.0 6.95× 10−7 4.44 1203.10 s 0.41
3200 5.72× 10−8 3.65 23 274.37 s 1.0 5.60× 10−8 3.63 9494.65 s 0.41

Nx = Ny
RK4 SF-PIF4

L1 error L1 order CPU Time Speedup L1 error L1 order CPU Time Speedup
120 6.30× 10−2 – 2.50 s 1.0 6.14× 10−2 – 1.47 s 0.59
200 8.15× 10−3 4.00 10.42 s 1.0 7.91× 10−3 4.01 5.33 s 0.51
400 4.01× 10−4 4.35 78.47 s 1.0 3.85× 10−4 4.36 35.89 s 0.46
800 1.51× 10−5 4.73 641.50 s 1.0 1.46× 10−5 4.72 270.94 s 0.42
1600 5.33× 10−7 4.82 5115.47 s 1.0 5.21× 10−7 4.81 2091.20 s 0.41
3200 2.17× 10−8 4.62 40 195.034 s 1.0 2.15× 10−8 4.60 16 377.73 s 0.41

methods in fine grid resolution: a high-order spatial method does require a compa-

rably high-order temporal method to maintain the overall quality of the solutions,

mainly when adding more grid resolutions to resolve finer scales more accurately.

Otherwise, lower-order accuracy from the temporal solver can potentially degrade

the solution accuracy, contradicting the intended motivation.

The performance results of recursive SF-PIF methods can be found on the

right panel of Fig. 5.3 and Table 5.2. As shown in the right panel of Fig. 5.3,

the SF-PIF3 method is the fastest method in reaching any given target L1 error

threshold until Nx = 1600. However, on any grid resolutions finer than the critical

resolution, Nx = 1600, SF-PIF3’s L1 error drops to the third-order convergence

rate, which ultimately crosses the straight convergence line of SF-PIF4. SF-PIF3’s

error will remain larger than the errors from the fourth-order temporal methods

as long as the convergence rate follows the pattern at the high-resolution trail.
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On the other hand, it is distinctively superior to see that SF-PIF4’s solution

reaches any fixed target error in a faster CPU time than the third-order RK3’s

solution while keeping the numerical errors as low as RK4 results at all grid

resolution tested herein. Remark that Table 5.2 shows quantitatively that the

SF-PIF4 method performs faster than the RK3 method, producing more accurate

solutions at any grid resolution.

5.1.3 Sod shock tube problem

The Sod’s shock tube problem [78] is the one of the most famous 1D hy-

drodynamics test problems for testing a numerical scheme’s capability to handle

discontinuities and shocks. The initial condition is given as,

(ρ, u, p) =


(1, 0, 1) for x ≤ 0.5,

(0.125, 0, 0.1) for x > 0.5,
(5.3)

in a simulation box of [0, 1], with outflow boundary conditions on both ends at

x = 0 and x = 1. This benchmark problem is an excellent practice to test if the

PIF and oSF-PIF methods can be capture the shock discontinuities appropriately.

The numerical solutions with the grid size of Nx = 256 at t = 0.2 are plot-

ted as symbols in each panel of Fig. 5.4. The solid lines on each panel repre-

sent the reference solution resolved on a more finer grid size, Nx = 1024, by

using WENO5+RK3. The results resolved with recursive SF-PIF3 methods are

omitted in this figure, since the differences between SF-PIF3 and oSF-PIF3 are

indistinguishable.

As illustrated in Fig. 5.4b and Fig. 5.4c, oSF-PIF3 method produce almost

identical results of PIF3, agreeing with the reference solutions and RK3’s solu-

tions in Fig. 5.4a. However, both in PIF3 and oSF-PIF3 methods, there is a slight
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Figure 5.4: Sod’s shock tube problem at t = 0.2. The reference solutions are
over-plotted as solid lines in each panel, which are resolved on a grid resolution of
Nx = 1024 with RK3. The symbols in each panel represent the solution resolved
onNx = 256 grid cells with (a) RK3, (b) PIF3, and (c) oSF-PIF3. (d), the solution
is resolved with oSF-PIF3 method combining with a new WENO-like numerical
differentiate operator, described as in Eqs. (4.19) to (4.22).
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oscillation in the x-velocity immediately behind the shock front. This small oscil-

lation is originated from the use of the conventional central differencing formulae

in Eq. (4.16) for both oSF-PIF3 and PIF3.

The WENO-like differencing strategy in Eqs. (4.19) to (4.22) can resolve

this oscillation. As displayed in Fig. 5.4d, the interchanging central differenc-

ing to WENO-differencing helps to improve the performance of oSF-PIF3 at the

shock, suppressing the post-shock oscillations observed in Fig. 5.4b and Fig. 5.4c.

With this small fix, the oSF-PIF3 results are almost identical to the RK3 results

in Fig. 5.4a. Computationally, the WENO-like differencing adds extra floating-

point operations, which consequently slows down oSF-PIF’s and SF-PIF’s overall

performance. For this reason, the WENO-like discretization was employed only

on the Sod’s shock-tube test as a guide, while it was opt-out on the rest of the

test problems in this dissertation where any unphysical has not been observed

shock/discontinuity oscillations.

5.1.4 Implosion test

The next problem to consider is the implosion test problem introduced by Hui

et al. [44]. An unsteady flow configuration is given as an initial condition which

launches a converging shock wave towards the domain center. Following a more

straightforward version by Liska and Wendroff [55], the only right upper quadrant

of the original setup in [44] is taken as the simulation domain. In this setup, the

simulation is initialized on a region of a 2D square box, [0, 0.3]× [0, 0.3], enclosed

with reflecting walls, in which case a converging shock wave is launched toward

the lower-left corner at (x, y) = (0, 0). The initial shock wave bounces at the

reflecting walls and produces a double Mach reflection along two edges of x = 0

and y = 0. Consequently, two jets are formed along the edges, moving toward
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the origin (x, y) = (0, 0) and collide with each other. This two-jet collision then

ejects a newly-formed jet into the diagonal direction x = y. Reflecting shocks

continuously interact with the diagonal jet, turning it into a long and narrow

shape over time. The observed structures of filaments and fingers along with the

diagonal jet and at its base are progressively intensified by the Ritchmyer-Meshkov

instability, a level of which depends sensitively on numerical dissipation.

The shape of the jet is the key view point of the implosion test since it is a good

indicator of a numerical method’s symmetric property and numerical dissipation.

If the numerical scheme fails to maintain a high level of symmetry, the jet will

eventually be derailed off-diagonally and deformed over time. Besides, an excess

amount of numerical dissipation will turn the jet into a less narrow and less

elongated shape along the diagonal.

The density maps of the implosion test performed on 400×400 grid resolution

at t = 2.5 are displayed in Fig. 5.5. The result with oSF-PIF3 is on the left panel

in Fig. 5.5 and RK3 on the right. These results can also be directly compared

with Fig. 4.7 in [55] and Fig. 17 in [82]. The results of oSF-PIF3 (as well as

RK3) present the well-maintained symmetric jet along the diagonal direction at

a sufficient level. At the same time, the shape of the diagonal jet using oSF-PIF3

matches well with the shape using RK3, and hence is sufficient to demonstrate

that the numerical dissipation in oSF-PIF3 is well-managed compared with RK3.

5.1.5 Shallow water equations

One of the essential features of the SF-PIF methods is that the SF-PIF meth-

ods can be applicable to any other system without changing the high-order parts

of the simulation codes. As an example of the system independence feature, the

simulation result by changing the system of equations to the 2D shallow water
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Figure 5.5: The density profile of the implosion test with oSF-PIF3 (top) and
with RK3 (bottom) resolved on 400× 400 grid resolution. The color map ranges
from 0.3 to 1.2, and 40 evenly-spaced contour lines are over-plotted with the same
range.
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equations (SWE) without a source term is presented in this section. In SWE, the

conservative variables and the flux functions are defined by,

U =


h

hu

hv

 , F(U) =


hu

hu2 + 1
2gh

2

huv

 , G(U) =


hv

huv

hv2 + 1
2gh

2

 . (5.4)

Here, h is the vertical depth of the fluid, v = (u, v) is a vector of vertically-averaged

velocity components in x- and y-directions. Denoted as g is a gravitational accel-

eration in the negative vertical z-direction, which is averaged out in the derivation

of the shallow water equations.

The sole purpose of presenting the new system of equations above is to demon-

strate the flexibility of SF-PIF schemes, in that the system-free approach allows

an easy code implementation without the need for other analytical derivations of

new Jacobian-like terms of the new governing system. By virtue of the system-

independent property of the SF-PIF methods, the process of changing from the

2D Euler code to the 2D SWE code is no more than switching the governing equa-

tions without touching anything on the high-order numerical parts. This process

is much simpler than other Lax-Wendroff type schemes (PIF, for example), where

each governing system should re-calculate the Jacobian-like terms.

The well-known circular dam-breaking problem [2, 86, 27] is conducted to

validate the numerical capability of the SF-PIF method in SWE. Initially, a

volume of still water is confined in the virtual (i.e., invisible) cylindrical wall with a

radius of 11 meters (m), located at the center of simulation domain, [50 m× 50 m]

resolved on a 100×100 grid resolution. The depth of the water inside of the wall is

10 m and 1 m outside. This configuration would be considered as an SWE version
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of 2D Riemann problem. Explicitly, the initial condition is given as,

(h, u, v) =


(10 m, 0, 0) for r ≤ 11 m,

(1 m, 0, 0) for r > 11 m,
(5.5)

where r is the distance from the center of domain, r =
√

(x− 25 m)2 + (y − 25 m)2.

The outflow boundary condition is applied for both directions, and the gravi-

tational acceleration is g = 9.81 m s−2. Again, the Courant number is set to

Ccfl = 0.4.

The results of the simulation with the oSF-PIF3 method are presented in Fig. 5.6.

The figure represents well-comparable numerical solutions with the results using

the same configuration reported in [2, 86, 27]. As shown in Fig. 5.6, the overall

spherical symmetry and the sharp profile at the wavefront are well-maintained in

each snapshot at four different times, t = 0.345, 0.69, 1.035, and 1.38.

5.2 SF-PIF method with WENO-JS

The previous section demonstrates that the original SF-PIF and recursive SF-

PIF methods, combined with the traditional WENO method, generate the highly

accurate and stable solution in faster computational time compared to the SSP-RK

methods. This section provides numerical test results from additional benchmark

problems, both in 2D and 3D, with the presence of strong shock. All simulations

are performed with third-order and fourth-order recursive SF-PIF methods cou-

pled with the traditional fifth-order WENO method described in Section 3.1.1.

2D simulations are carried out on high grid resolutions to emphasize the numer-

ical effects of the temporal solver, as discussed in Section 5.1.2. The Courant

condition with Ccfl = 0.4 is used for all 2D simulations otherwise specified.
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Figure 5.6: Snapshots of the circular dam breaking simulation at four different
times, t = 0.345, 0.69, 1.035, and 1.38 seconds. A volume of water in rest is initially
confined in a cylindrical dam of a radius r = 11 m and a height h = 10 m. The
simulation starts with an instantaneous removal of the cylindrical wall located at
the center of the domain [50 m× 50 m] resolved on a grid resolution of 100× 100.
The gravitational force is exerted on the steady water, which triggers the onset
of the gravitational collapse of the entire volume of water, making the circular
splash in the outer rim as well as the ripple effects in the central region that move
radially outward in time.
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5.2.1 The Shu-Osher problem (rotated 45°)

The Shu-Osher problem [77] is a well-known benchmark problem that describes

the interactions between a Mach 3 shock and a smooth density profile. Initially, a

Mach 3 shock wave travels to the right through a sinusoidally perturbed density

profile. As the shock wave propagates along the perturbed region, the profile gets

compressed, resulting in a frequency-doubled region behind the shock. As the

shock wave moves further to the right, the doubled-frequency region returns to its

original frequency, at which point it becomes a sequence of sharp profile instead

of smooth sine wave due to the shock-steepening.

In this section, the Shu-Osher problem is performed in 2D by inclining the

shock wave direction by an angle of θ = 45°, adopting the idea of Kawai [47],

where the initial conditions are repeated multiple times along the direction of the

wave propagation so that the problem may be executed with periodic boundary

conditions. Explicitly, the initial condition is given as,

U(x‖, t = 0) =


UL for x‖ ≤ 1, 11 < x‖ ≤ 21, 31 < x‖ ≤ 40,

UR for 1 < x‖ ≤ 11, 21 < x‖ ≤ 31,

where UL =



ρ = 3.857143

u = 2.629369 cos(π/4)

v = 2.629369 sin(π/4)

p = 10.33333


, UR =



ρ = 1 + 0.2 sin(5x‖)

u = 0

v = 0

p = 1


.

(5.6)

x‖ = x cos θ + y sin θ is the direction parallel to the wave propagation and

the simulation domain is a periodic box of [0, 20/ cos θ] × [0, 20/ sin θ]. With

this configuration, the 1D test problem, Shu-Osher test, can be performed on

the diagonal direction of 2D periodic box. The same 1D solution is expected by
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Figure 5.7: 2D density maps of inclined 2D Shu-Osher test problem at t = 0 and
t = 1.8. The test was performed on a 2D simulation box of 1024×1024 resolution
with the SF-PIF4 method. The solid black line represents the shock propagating
direction, x‖, and square markers divide the line in each quartile.

following the diagonal direction, x‖, and taking only the bottom-left quarter of the

diagonal axis. Therefore, the number of data points of this result profiles would

be a quarter of the 2D grid resolution, i.e., N‖ = Nx/4 = Ny/4. The 2D density

map of the initial and final conditions are plotted in Fig. 5.7.

The density profiles of the bottom-left quarter of the diagonal axis x‖ are given

in Fig. 5.8. All tests are performed on a box of resolution Nx = Ny = 1024, so the

effective resolution of each profile is N‖ = 256, except for the reference solution,

which performed on a finer grid, N‖ = 1024. The four different temporal methods,

RK3, RK4, SF-PIF3, and SF-PIF4 produce reasonably acceptable solution pro-

files capturing the high-frequency amplitudes fairly well in the frequency-doubled

region. Generally, RK methods capture the amplitudes marginally better, but

in the left-most part of the double-frequency region, x ≈ 5.8, SF-PIF methods

capture the highest peak of the amplitude better than the RK methods near the

transition between the frequency doubling and the shock steepened perturbations.
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Figure 5.8: One dimensional density profiles along the x‖ direction of the inclined
Shu-Osher problem at t = 1.8. The solid line represents the reference solution,
solved by RK4 with 1024 data points in the diagonal axis, i.e., N‖ = 1024. All
other solutions, represented by the symbols, are resolved on an N‖ = 256 grid
resolution in the diagonal axis. The detailed view of the high-frequency region is
shown on the right panel.
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5.2.2 2D Riemann problem: Configuration 3

The two-dimensional Riemann problem is a widespread benchmark problem

to test the methods’ ability to capture the complex fluid structures in 2D. This

specific setup and other types of configurations have been extensively studied

in [94, 70, 71] and have been adopted as prevalent benchmark test problems. This

dissertation follows the initial condition of Configuration 3 described in [28, 52,

53, 54].

The simulation domain is set on 1600×1600 grid resolution, which is generally

considered as a very high resolution in 2D simulation. This grid resolution choice is

made based on the observation in Section 5.1.2 to ensure that the temporal errors

are comparable to or dominant over the spatial errors; thereby, the temporal error

dominant results are anticipated that allows to see the different behaviors of four

different temporal solvers.

The results at t = 0.8 are shown in Fig. 5.9. The pseudo-colors represent the

density map ranging between [0.1, 1.8], and 40 contour lines within the same range

are over-plotted as solid black lines.

As illustrated in the figures, all four different temporal schemes produce well-

known, acceptable results, keeping the assumed diagonal symmetry exceptionally

well on this high resolution. This problem is highly nonlinear, involving forma-

tions of the upward-moving jet, the downward-moving mushroom-jet, secondary

Kelvin-Helmholtz instabilities exhibited as the small-scale vortical rollups along

the slip lines and along the stems of the two jets. Therefore, it is a non-trivial

task to address if a method under consideration is better or worse based on the

number of such rollups in the simulations without a systemic comparison analysis

requiring extensive, careful validation and verification tests that are beyond the

scope of this dissertation. At best, such quantification can only provide proof of
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Figure 5.9: The density maps of Configuration 3 at t = 0.8. Left column: The
solutions using RK3 (top) and SF-PIF3 (bottom). Right column: The solutions
using RK4 (top) and SF-PIF4 (bottom). Forty levels of black contour lines are
over-plotted in each figure with the same range of the color map. All simulations
are performed on a 1600× 1600 grid resolution.
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intrinsic information about the amount of numerical dissipation of each method.

From this perspective, one concludes that the two SF-PIF solutions produce the

equivalent amount of vortical rollups compared with the corresponding RK solu-

tions, although their different shapes on the downward jets, confirming the validity

of the recursive SF-PIF methods on the presence of the shocks in 2D simulations.

5.2.3 Double Mach reflection

The double Mach reflection (DMR) test problem was firstly introduced by

Woodward and colella [91]. At initial, a planar shock is located at the left side of

the domain with a 30° to the reflecting bottom surface. As the shock propagates

to the right, the bottom wall continuously bounces off the shock wave and creates

a round reflected shock. The initial condition is the same as the original setup

in [91], except for the doubled the y-domain size following [48] to prevent numerical

artifacts from the top boundary interaction with the secondary shock wave and

the slip line.

As the solution evolves, two contact discontinuities and two Mach stems are

formed, as well as a jet along the bottom surface. The formation of the jet is

similar to the formation of the two jets in implosion test (Section 5.1.4), the

collision of which led to the upward moving diagonal jet. The solution density

profiles resolved with the SF-PIF4 method is portrayed in Fig. 5.10.

Fig. 5.11 shows the zoomed-in views of the main point of interest in the DMR

problem, the vicinity of the jet and the primary triple point, resolved with four

different temporal solvers. Again, the results from the third- and fourth-order

SF-PIF methods produce well-acceptable results compared to the corresponding

RK methods. There are minor differences in the shape of Kelvin-Helmholtz insta-

bilities along the primary slip line and the bottom jet, but the overall dynamics of
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Figure 5.10: The solution density profile of Double Mach reflection test solved
with SF-PIF4 method on a 4096 × 2048 grid resolution. The solid black curves
represent the forty levels of contour lines ranging within the same range of the
colormap. The white-dotted rectangle is the main point of interest in this simu-
lation, where the jet and the primary triple point are formed. More detailed view
of the rectangle region with different temporal solvers are plotted in Fig. 5.11.

the two SF-PIF solutions match well with the RK solutions, validating the fidelity

of the proposed SF-PIF methods in the presence of a strong shock.

5.2.4 3D Riemann problem

The 3D Riemann problem is the 3D extension of the 2D Riemann problem

described in Section 5.2.2, introduced by Balsara [5]. Initially, each octant of the

computational domain, [−1, 1]× [−1, 1]× [−1, 1], has constant initial conditions,

each of which will carry out 2D Riemann problem including the diagonal plane of

the 3D computational cubic.

The results of 3D Riemann problem solved with RK4 and SF-PIF4 are illus-

trated in Fig. 5.12. The solutions were resolved on a 256×256×256 grid resolution.

The pseudo-color map ranges between [0.5, 2.65], and 40 levels of contour lines are
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Figure 5.11: The density map of the double Mach reflection test at t = 0.25
zoomed-in near the jet. Forty levels of contour lines are over-plotted in solid black
curves with the same range of the color map. All simulation results are performed
on a 4096 × 2048 grid resolution. Left column: The solutions using RK3 (top)
and SF-PIF3 (bottom). Right column: The solutions using RK4 (top) and
SF-PIF4 (bottom).
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Figure 5.12: The density maps of the 3D Riemann problem test at t = 0.53.
Forty contour lines are over-plotted. The left panels show each face’s geometrical
views, while the right panels show the detailed picture of the diagonal planes. All
simulations are performed on a 256× 256× 256 grid resolution, solved with RK4
(top) and SF-PIF4 (bottom) solvers. The Courant condition, Ccfl = 0.3 is used
for calculating the timestep.
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Table 5.3: Performance results for the 3DRP test problem. All performance
results (measured in seconds) are averaged over five simulation runs conducted on
16 nodes.Each node has 2 × 20-core Intel Xeon Gold 6248 (Cascade Lake) CPUs,
and the simulation utilized 512 parallel threads for each run.

Grid Resolution RK3 SF-PIF3 RK4 SF-PIF4
CPU Time Speedup CPU Time Speedup CPU Time Speedup CPU Time Speedup

64× 64× 64 1.79 s 1.0 1.09 s 0.61 2.95 s 1.64 2.67 s 1.49
128× 128× 128 15.62 s 1.0 7.63 s 0.49 25.88 s 1.66 18.97 s 1.21
256× 256× 256 191.00 s 1.0 82.02 s 0.43 321.34 s 1.68 201.40 s 1.05
512× 512× 512 2679.85 s 1.0 1173.54 s 0.44 4507.88 s 1.68 2817.78 s 1.05

over-plotted using the same range. As depicted in Fig. 5.12, each surface of 3D

computational domain evolves different 2D Riemann problems, including the di-

agonal plane which is separately plotted on the left panel. The recursive SF-PIF4

method is able to capture all the important features as much as the RK4 re-

sult, confirming the validity of the SF-PIF4 method in 3D simulation with strong

shocks.

Table 5.3 shows the performance results for the 3D Riemann problem test on

four grid resolutions. As shown in the table, the SF-PIF4 method demonstrates

nearly the same performance as the third-order RK method, especially in high-

resolution cases. It is important to note that the performance gains from the

SF-PIF methods are more compensated on the high-resolution grids, which are

indispensable for high fidelity physical simulation studies.

5.3 SF-PIF method with GP-WENO

As mentioned in Chapter 4, the SF-PIF method is an entirely independent

temporal solver, which does not require any modification in the spatial high-order

part of the simulation codes alike RK methods. For the purpose of demonstrat-

ing the portability of the SF-PIF method, this section will conduct several test

problems using GP-WENO (instead of the conventional WENO as in the previous
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sections) described in Section 3.1.2 as a spatial high-order reconstruction method

combining with SF-PIF methods for time integration strategy.

5.3.1 Hyperparameters

Unlike the polynomial-based reconstruction schemes, the GP method lacks any

analytical considerations of the behavior of numerical errors with respect to the

grid resolutions. This is further complicated by the use of nonlinear weighting

in the GP-WENO method, which is necessary to capture the discontinuities ap-

propriately. Consequently, direct numerical experiments should be conducted to

predict the numerical errors from the GP-WENO method.

The GP-WENO method has two hyperparameters that need to be tuned, the

length hyperparameter ` and the shock-capturing hyperparameter σ. The numer-

ical errors from the 2D vortex advection problem with varying hyperparameters

are illustrated in Fig. 5.13. The simulations are conducted on 400 × 400 grid

resolutions, resolved with SF-PIF3 temporal solver with the same setup in Sec-

tion 5.1.2. As dotted white lines represent, the minimum error has been found

with ` = σ = 1 for this systematic test.

Fig. 5.14 shows the slice plots by following the dotted lines in Fig. 5.13, show-

ing the L1 errors with the best choice of ` and σ. Surprisingly, the shock-capturing

hyperparameter σ affects the solution accuracy, even though the solution is en-

tirely smooth. Theoretically speaking, the vortex advection test is a nonlinear

smooth problem, and σ only plays a role in the presence of a shock discontinuity;

thus, it has to have the same errors across all sigma values. The different errors

with varying sigma in the smooth problem are the indication of numerical errors

in calculating nonlinear weights of GP-WENO. This could be arisen from cal-

culating the linear weights, (i.e., solving the overdetermined system Eq. (3.37))
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Figure 5.13: The L1 errors of vortex advection problem in Section 5.1.2 solved
by GP-WENO and SF-PIF3 on a 400 × 400 grid resolution. The radius of GP-
WENO stencil is r = 2, which is the same stencil size of the fifth-order WENO
method. Using other temporal solvers produces the same pattern, and omitted in
this study. The white dotted-lines are represent the hyperparameters of minimum
error.
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Figure 5.14: The slices of Fig. 5.13 at the minimum error. The horizontal dotted
line is the target error obtained from WENO method with same configurations.
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Table 5.4: The L1 errors, the rates of convergence, and the computation times for
the vortex advection test solved using GP-WENO method with radius of r = 2.
The hyperparameters, ` = 1 and σ = 0.3 are used for all simulation based on
the results of Fig. 5.15. The “Speedup” columns represent the relative speed-ups
compared to the WENO5 method with corresponding SF-PIF temporal solvers.
All simulation runs are performed on the four 20-cores Cascade Lake Intel Xeon
processors, utilized 64 parallel threads. CPU times are measured in seconds,
averaged over 10 individual runs.

Nx = Ny
GP-WENO + SF-PIF3 GP-WENO + SF-PIF4

L1 error L1 order CPU Time Speedup L1 error L1 order CPU Time Speedup
120 2.68× 10−2 – 0.67 s 0.95 2.67× 10−2 – 1.36 s 0.92
200 4.16× 10−3 3.65 2.43 s 0.88 4.17× 10−3 3.66 4.97 s 0.93
400 1.91× 10−4 4.44 16.86 s 0.85 1.94× 10−4 4.42 33.39 s 0.93
800 7.12× 10−5 4.75 133.79 s 0.87 7.07× 10−6 4.78 252.08 s 0.93
1600 4.05× 10−7 4.14 1061.26 s 0.88 2.28× 10−7 4.95 1944.68 s 0.93
3200 4.71× 10−8 3.10 8375.05 s 0.89 7.48× 10−9 4.93 15 514.25 s 0.95

or calculating smoothness indicators in Eq. (3.39), which requires further stud-

ies. Nonetheless, since the numerical solvers are involved in calculating both the

linear weights and smoothness indicators, e.g., the least square method and QR

algorithm, numerical errors are inevitable in GP-WENO nonlinear weights.

Notwithstanding the fact that the GP-WENO method with σ = 1 has the

smallest amount of L1 errors from the previous tests, however, another numerical

tests argue that the large σ values degrade the solution accuracy in high-resolution

simulation.

Fig. 5.15 shows that the GP-WENO method’s hyperparameter σ affects the

convergence rate significantly. As shown in the left panel of Fig. 5.15, the GP-

WENO method with the choice of σ = 1 can not retain the expected order of con-

vergence rate in high-resolution regimes both with SF-PIF3 and SF-PIF4 methods.

On the other hand, the choice of σ = 0.3 on the right panel of Fig. 5.15 shows

similar performance results as in the discussions of Section 5.1.2, although the

absolute magnitudes of L1 errors are slightly larger than the case of σ = 1.

The detailed numerics of the GP-WENO’s convergence tests are summarized
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Figure 5.15: The convergence rate of GP-WENOmethod with r = 2 obtained by
solving 2D isentropic vortex advection problem on varying grid resolutions. Two
temporal methods, SF-PIF3 and SF-PIF4 are used for integrating the solution,
and the behavior of third-order and fourth-order temporal schemes is identical to
the results from Section 5.1.2. The GP length hyperparameters, ` = 1 is used for
both tests, and the shock-capturing hyperparameter top: σ = 1, and bottom:
σ = 0.3 are used. The tests with σ = 1 on the top panel have smaller absolute L1
error, but failed to maintaining the convergence rate on high-resolution grids. On
the other hand, tests with σ = 0.3 demonstrate consistent convergence rate on all
grid configurations.
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in Table 5.4. The all simulation runs are performed with the same configurations

of WENO5 tests in Table 5.2; thus, the “Speedup” columns portray the relative

speed-ups of GP-WENO method compared to the conventional fifth-order WENO

method. The GP-WENO method with appropriately selected hyperparameters

produces less L1 errors and better convergence rate with the high-order temporal

method, SF-PIF4. On the other hand, the GP-WENO method coupled with the

relatively low-order temporal solver, SF-PIF3, experiences the convergence rate

degradation more faster than the WENO5.

5.3.2 Strong shock vortex interaction

In order to test GP-WENO’s numerical capability to capturing a complex flow

patterns with both smooth regions and discontinuous shock waves, the strong

shock vortex interaction test [20, 35] is considered. Initially, a Mach 1.5 sta-

tionary shock is present at x = 0.5, and the vortex is located at the center of

(xc, yc) = (0.25, 0.5). As the simulation evolves, the vortex moves with the back-

ground flow, which is traveling toward to a stationary shock. Consequently, the

vortex penetrates the stationary shock, evolving complex fluid structures of the

“squeezed” vortex. The computational domain is a 2D rectangle box of [0, 2]×[0, 1]

with an inflow boundary on the left and an outflow boundary on the right. Bottom

and top boundaries are reflected walls.

The results of the simulation of the GP-WENO method with varying σ are

presented in Fig. 5.16. The SF-PIF3 method is used as a temporal method on a

[1024×512] grid resolution. The obtained solutions with GP-WENO and SF-PIF3

methods are well-comparable with the reference solution presented in [20, 35]. The

GP hyperparameters are normalized with the grid scale ∆, as suggested in [68, 69].

The length-scale hyperparameters, `/∆ = 20 is taken based on the results of the
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Figure 5.16: The density colormaps of the strong shock vortex interaction prob-
lem. The GP-WENO (r = 2) + SF-PIF3 method are used for all simulation runs
on [1024 × 512] grid resolution with varying hyperparameter, σ/∆. The pseudo-
colors represent the density map ranging between [0.75, 2.2], and 200 contour lines
within the same range are over-plotted as solid black lines.
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previous section (e.g., `/∆ = 20 is equivalent to ` = 1 with the vortex problem of

400 × 400 resolution grid) and various shock-capturing hyperparameters, σ/∆ =

5, 10, and 20 are tested.

As shown in Fig. 5.16, the larger values of σ/∆ is better to capture the small-

scale fluid structures, especially on the trailing waves of the vortex around 0.5 ≤

x ≤ 1. However, as discussed in Section 5.2.2 before, identifying the numerical

artifacts in the small-scale fluids is not feasible without extensive numerical tests.

The only rational discussion is that the larger σ values can produce less dissipative

solutions or generate numerical oscillations. Extensive research about the effect

of σ is required to identifying the proper way to tune the hyperparameters, which

remained a further study to this dissertation.
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Chapter 6

Conclusion

A new high-order numerical method solving the conservative system of the

partial differential equation has been developed under the finite difference for-

mulation. The proposed high-order discretization strategy, the SF-PIF method,

has been tested with several benchmark problems and demonstrated high-order

accuracy and fast performance. The SF-PIF method provides an efficient way to

update the solution in high-order accuracy without significant efforts to implement

it into the existing code.

The third-order in temporal PIF method was originally proposed in [72], and it

furnishes an efficient single-stage time integration strategy in the finite difference

discretization. Based on the Lax-Wendroff/Cauchy-Kowalevski procedures, the

PIF method converts the time derivatives into spatial derivatives, ensuring the

explicit form of the time-Taylor series. However, the tight coupling between the

spatial and temporal derivatives requires the flux Jacobian and Hessian tensors.

The flux Jacobians’ high-order derivatives are highly dependent on the system

of equations; hence extending the PIF method to higher than fourth-order or

implementing it to other systems is less attractive and requires effort compared

to the traditional multi-stage Runge-Kutta methods.
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The system-free approach can resolve this issue. The system-free approach

provides a numerical strategy to approximating the tensor contractions between

high-order derivatives of Jacobian tensors and arbitrary vectors instead of deriving

the analytical form of Jacobian-like terms. This new design concept is combined

with the original PIF method offering better portability and extensibility. The

system-free PIF method, SF-PIF method, demonstrated that the numerical ap-

proximation of the tensor contractions does not affect the solution’s accuracy and

stability. In the various numerical test results presented in Section 5.1, the original

SF-PIF method produces nearly identical solutions from the PIF method, main-

taining the overall quality of numerical solutions. As a result, the original SF-PIF

method provides an alternative way to achieve high-order temporal accuracy in

the finite difference method, guaranteeing the same numerical characteristics as

the PIF method.

The main concept of designing the system-free approach is to make a numer-

ical method independent of the system of equations. As described by its name,

the system-free method is entirely independent of the system of equations; thus,

it can be implemented to any other system without a hassle. The system in-

dependence feature of the system-free method is a unique characteristic among

the conventional Lax-Wendroff type schemes that generally require modifying the

code to change the system of equations. In Section 5.1.5, the SF-PIF method

demonstrates that it can be applied to other simulation codes – from the Euler

equations solver to the Shallow Water equation solver – without changing the

numerical part of the code.

The system-independence feature can also fuel the extension of the PIF method

to the nonhomogeneous equation, e.g., the Euler equations with a nonlinear source

term. The initial effort in extending the mathematical form of the PIF method to
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the nonhomogeneous equation solver has been made in Section 4.4. In this sce-

nario, the new Jacobian-like terms of the source function are required to maintain

the overall temporal accuracy. Here, the system-free method can approximate

those terms as well, in the same mathematical strategy. Since the system-free

method can be identically applied to any source function, modifications of the

numerical structures would not be required in the different forms of source terms.

Testing numerical capabilities of the SF-PIF method with a source term is the

first prioritized further study for this dissertation.

However, the original system-free approach demands one additional step to

finalizing the approximation of the tensor contraction, which makes the system-

free approach less extensible to higher than third-order schemes. The modification

step is originated from the discrepancy between the numerical strategies to ap-

proximating tensor contractions of the same vectors and different vectors, and it

requires an exponentially increasing amount of computational costs in extending

to the higher-order scheme. In this regard, an improved numerical strategy for the

system-free approach is needed for the fourth-order extension of the PIF method.

The recursive version of the system-free method is then proposed in Section 4.3.

Instead of directly building approximations for high-order derivatives of the flux

Jacobians, the improved system-free method applies the Jacobian-vector contrac-

tion recursively, avoiding further modifications to handling different vector cases.

Theoretically speaking, the recursive system-free method can approximate rank-

4 tensor contractions more than three times faster than the original system-free

method. Moreover, the recursive system-free method has more compact code

structures as well. Needless to say, the recursive strategy does not degrade the

quality of numerical solutions.

The PIF method is a purely high-order temporal scheme, meaning any spa-
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tial high-order reconstruction/interpolation schemes can be combined. Initially,

the PIF method uses the conventional fifth-order WENO reconstruction method,

which is one of the most popular high-order reconstruction methods in the CFD

community. GP-WENO method, on the other hand, is another class of high-order

reconstruction scheme proposed recently. Unlike the conventional reconstruction

schemes based on the piecewise polynomials, the GP-WENO method utilizes the

Gaussian process (GP) to estimating the data at unknown points in a stochastic

way. GP-WENO method brings the nonlinear weighting idea from the conven-

tional WENO method in order to capture the shock discontinuities appropriately,

which is inevitable in nonlinear fluid simulations. GP-WENO was firstly intro-

duced under the finite volume method and the primitive-variable-based finite dif-

ference method, but the conventional finite difference formulation. In Section 5.3,

several numerical tests demonstrate that the GP-WENO method provides com-

parably accurate solutions in the finite difference discretization, maintaining the

fast performance of the SF-PIF methods. Adopting the GP-WENO into the

conventional finite difference formulation demands additional fine-tuning on the

hyperparameters, which it remained as a further study for this dissertation.

The system-free approach enables the fourth-order single-stage time integra-

tion schemes in a better efficient way. Many high-order research articles in the

CFD community designed a “high-order” method by combining mediocre lower-

order temporal solver with higher-order spatial solver, e.g., third-order in tem-

poral, fifth-order spatial in the original PIF method. It is widely known in the

CFD community that the developments of small-scale fluid features relevant to

grid scales depend much more sensitively on the choice of spatial solvers rather

than the temporal solver. However, as discussed in Section 5.1.2, the numerical

errors of the temporal solver dominate the spatial errors on the high-resolution
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grid configurations, leading to the degradations of the overall solution accuracy.

This phenomenon should be considered in performing the large-scale simulations

conducted on a high-resolution grid to capture small-scale physics.

The system-free approach is not explicitly designed for the PIF method nor

the CFD solvers. The sole purpose of the system-free method is to approximate

the tensor contractions for high-order derivatives of Jacobians; thus, it can be

applied to any other physics models which need derivations of Jacobians. Like

the SF-PIF methods presented in this dissertation, the system-free strategy could

provide better high-order numerical approximations in an efficient, flexible, and

portable way.
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