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Theoretical Overview on Recent Developments in
Transverse Spin Physics

Feng Yuan

RIKEN/BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA1

Abstract. Transverse-spin physics has been very active and rapidly developing in the last few years.
In this talk, I will briefly summarize recent theoretical developments, focusing on the associated
QCD dynamics in transverse spin physics.

Keywords: Single transverse-spin asymmetries
PACS: 12.38.Bx, 12.39.St, 13.85.Qk

There have been strong experimental interests on transverse spin physics around the
world, from the deep inelastic scattering experiments suchas the HERMES collabora-
tion at DESY, SMC at CERN, and Hall A and CLAS at JLab, the proton-proton collider
experiment from RHIC at Brookhaven, and the very relevante+e− annihilation exper-
iment from BELLE at KEK. One of the major goals in transverse spin physics is to
study the quark transversity distribution, the last unknown leading-twist quark distribu-
tion in nucleon. Besides the quark transversity distribution, the transverse spin physics
also opened a new window to explore the partonic structure ofnucleon, the so-called
transverse momentum dependent (TMD) parton distributions. TMD parton distribution
is an extension to the usual Feynman parton distributions. These distributions allow us
to study the three-dimension picture of partons inside the nucleon, and they are also
closely related to the generalized parton distributions and the parton orbital angular
momenta. Especially, the single transverse spin asymmetry(SSA) phenomena in high
energy hadronic processes have attracted many theoreticaland experimental investiga-
tions. The SSA is defined as the asymmetry when one of the hadrons’ transverse spin
is flipped,AN ∼ (dσ(S⊥)−dσ(−S⊥))/(dσ(S⊥)−dσ(−S⊥)). It has been a great theo-
retical challenge in the understanding of these phenomena.This is because the leading
partonic contribution to the SSA vanish in the leading order, whereas the experimental
observation show that these SSAs are in tens of percentage inthe forward scattering of
the polarized nucleon.

Recent theoretical developments have made great progress in the exploration of the
underlying physics for the single spin phenomena. It is impossible to cover all these
exciting physics in this short talk. Rather, I would like to focus on one important subject,
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i.e., the nontrivial QCD dynamics associated with transverse spin physics: the QCD
factorization, the universality of the parton distributions and fragmentation functions,
and their scale evolutions.

Among those TMD parton distributions and fragmentation functions, two functions
have been mostly discussed: the Sivers quark distribution and the Collins fragmentation
function. The Sivers quark distribution represents a distribution of unpolarized quarks
in a transversely polarized nucleon, through a correlationbetween the quark’s trans-
verse momentum and the nucleon polarization vector. The Collins function represents
a correlation between the transverse spin of the fragmenting quark and the transverse
momentum of the hadron relative to the “jet axis” in the fragmentation process. Al-
though they both belong to the so-called “naive-time-reversal-odd" functions, they do
have different universality properties. For the quark Sivers function, because of the ini-
tial/final state interaction difference, they differ by signs for the SIDIS and Drell-Yan
processes [1, 2, 3, 4]. On the other hand, there have been several studies showing that
the Collins function is universal between different processes, primarily in the SIDIS and
e+e− annihilation [5, 6, 7, 8], and recently inpp collisions [9]. In the following, I will
take the example of the Collins contribution to the azimuthal asymmetric distribution of
hadrons inside a high energy jet in the transversely polarizedpp collision to demonstrate
this universality property,

p(PA,S⊥)+ p(PB) → jet(PJ)+X → H(Ph)+X , (1)

where a transversely polarized proton with momentumPA scatters on another proton
with momentumPB, and produces a jet with momentumPJ. The three momenta ofPA,
PB and PJ form the so-called reaction plane. Inside the produced jet,the hadrons are
distributed around the jet axis, where we define transverse momentumPhT relative to
the jet axis. The correlation betweenPhT and the polarization vectorS⊥ introduces the
Collins contribution to the single spin asymmetry in this process.

We need to generate a phase from the scattering amplitudes tohave a non-vanishing
SSA. If the phase comes from the vertex associated with the fragmenting quark and
the final state hadron, or from the dressed quark propagator,it is easy to argue the
universality of the Collins function between this process and the SIDIS/e+e− process,
because they are the same. The main issue of the universalitydiscussion concerns the
extra gluon exchange contribution between the spectator ofthe fragmentation process
and hard partonic part. In Fig. 2, we have shown all these interactions for a particular
partonic channelqq′ → qq′ contribution, including the gluon attachments to the incident
quarks (a,c), and final state balancing quark (d) and the internal gluon propagator (b).
The contributing phases of the diagrams in Fig. 2 come from the cuts through the internal
propagators in the partonic scattering amplitudes. In Fig.2, we labeled these cut-poles by
short bars in the diagrams. From the calculations, we will find that all these poles come
from a cut through the exchanged gluon and the fragmenting quark in each diagram, and
all other contributions either vanish or cancel out each other. For example, in Fig. 2(d),
we show two additional cuts, which contribute however opposite to each other and cancel
out completely. Therefore, by using the Ward identity at this particular order, the final
results for all these diagrams will sum up together into a factorized form, where the cross
section is written as the hard partonic cross section forq(S⊥)q′ → q(s⊥)q′ subprocess
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FIGURE 1. Gluon exchange diagrams contributions to the Collins asymmetry in pp collisions. The
short bars indicate the pole contributions to the phase needed for a non-vanishing SSA. The additional
two cuts in (d) cancel out each other.

multiplied by a Collins fragmentation function. The exchanged gluon in Fig. 2 is now
attaching to a gauge link from the fragmentation function definition. Similar calculations
can be performed for the other two processes SIDIS ande+e− annihilation, and the same
Collins function will be observed. This argument can also beextended to two-gluon
exchange diagrams [9].

The key steps in the above derivation are the eikonal approximation and the Ward
identity. The eikonal approximation is valid when we calculate the leading power con-
tributions in the limit ofPhT ≪ PJ. The Ward identity ensure that when we sum up the
diagrams with all possible gluon attachments we shall get the eikonal propagator from
the gauge link in the definition of the fragmentation function. The most important point
to apply the Ward identity in the above analysis is that the eikonal propagator does not
contribute to the phase needed to generate a nonzero SSA.

This observation is very different from the SSAs associatedwith the parton distri-
butions, where the eikonal propagators from the gauge link in the parton distribution
definition play very important role [1, 2, 3, 4]. It is the poleof these eikonal propagators
that contribute to the phase needed for a nonzero SSA associated with the naive-time-
reversal-odd parton distributions, which also predicts a sign difference for the quark
Sivers function between the SIDIS and Drell-Yan processes.More complicated results
have been found for the SSAs in the hadronic dijet-correlation [10, 11], where a normal
TMD factorization breaks down [12]. The reason is that the eikonal propagators from the
initial and final state interactions in dijet-correlation process do contribute poles in the
cross section [11, 12]. Because of this, the Ward identity isnot applicable, and the stan-
dard TMD factorization breaks down, although a modified factorization may be valid
if we modify the definition of the TMD parton distributions totake into account all the
initial and final state interaction effects [10].



In particular, there is a sign change between the SSAs in SIDIS and Drell-Yan
processes [1, 2],

Sivers SSA|DY = −Sivers SSA|DIS . (2)

This nontrivial result of the opposite signs between the above two processes will still
hold when gluon radiation contributions are taken into account, where the large trans-
verse momentum Sivers function is generated from the twist-three quark-gluon correla-
tion function [13]. It is of crucial to test this nontrivial QCD predictions by comparing
the SSAs in these two processes. The Sivers single spin asymmetry in SIDIS process has
been observed by the HERMES collaboration, and the planned Drell-Yan measurement
at RHIC and other facility will test this prediction.

Another interesting probe for the initial/final state interaction effects is the SSA in
heavy quark and antiquark production in hadronic process. Because the heavy quark
and antiquark can be detected by their decay products, theirSSAs can be measured sep-
arately. The heavy quark and antiquark produced in short distance partonic processes
will experience different final state interactions with thenucleon spectator due to their
different color charges, and therefore the SSAs for heavy quark and antiquark will be
different. Detailed calculations show that the differencecould be as large as a factor
of 3 if the quark-antiquark channel contribution dominates[14]. Certainly, heavy quark
production in high energy hadronic process is dominated by gluon-gluon fusion contri-
butions. Therefore, the single spin asymmetry from gluonicsector will be important at
RHIC energy. This part of contribution has recently been studied in the twist-three ap-
proach [15]. The twist-three three-gluon correlation functions contain two independent
functions because of different color factors: one withfabc and one withdabc wherea,b,c
are the color indices for the three gluons [16]. Both correlations and the quark-gluon cor-
relation function mentioned above will contribute to heavyquark single spin asymmetry
in pp collisions. However, at RHIC energy kinematics, the quark-gluon correlation func-
tions alone generate only a very small asymmetry for open charm production. Therefore,
the observation of any significant single-spin asymmetry would be a clear indication of
the presence of three-gluon correlations inside a polarized proton [15].

Most recently, there has been very exciting progress in studying the scale evolution
equations for the quark-gluon and three-gluon correlationfunctions and their implica-
tions to the energy dependence of the relevant SSA observables [17, 18, 19]. General
structure of the evolution equations for the twist-three quark-gluon correlation functions
has been known in the literature [20]. However, the correlation functions responsible
to the single transverse spin asymmetries are special projections of the general twist-
three quark-gluon correlations, and their evolutions are not directly available from the
already known results [20]. Earlier attempts [21] have beenmade to derive the evolu-
tion equations for the correlation functions, but were not complete. On the other hand,
from the large transverse momentum quark Sivers function calculated in [13], we would
already obtain the evolution equation forTF(x) (which is the transverse momentum mo-
ment of the quark Sivers function), since the collinear divergence in that calculation will
lead to the splitting function ofTF(x). This splitting function was confirmed by a com-
plete calculation of next-to-leading order QCD correctionto the transverse-momentum
weighted spin asymmetry in Drell-Yan lepton pair production [17] and the derivations
of the scale evolution equations directly [18, 19]. In particular, the scale evolution for



the quark-gluon correlation functionTF(x) is found to be,

∂
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2π
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wherez = xB/x.
Furthermore, the NLO perturbative-QCD correction to the transverse momentum

weighted single spin asymmetry in Drell-Yan lepton pair production in hadronic colli-
sions has engaged the transverse spin physics to a more solidtheoretical ground [17]. It
has been shown that the collinear divergences can be absorbed into the NLO twist-three
quark-gluon correlation function of the transversely polarized nucleon and the unpolar-
ized quark distribution of the unpolarized nucleon. This calculation suggests that a gen-
eral factorization formula exists for the transverse momentum weighted spin-dependent
cross section in the Drell-Yan process, in extension of the general factorization argu-
ments given in [22].

One important feature of this result is its behavior near “partonic threshold”, that is in
the large-z limit of the integrand, corresponding to ˆs ∼ Q2, when the initial partons have
“just enough” energy to produce the virtual photon. Settingthe scaleµ = Q, we have
the following structure of the NLO correction in this case:

d〈q⊥∆σ(S⊥)〉

dQ2 = σ0
αs

2π
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dx′

x′
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)

+

]

,

(4)

where we only keep the “double-logarithmic” term which dominates near threshold in
theMS scheme. The structure of this expression is identical to that for the spin-averaged
q⊥-integrated NLO cross section near threshold,

dσ
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)

+

]

. (5)

This means that the soft gluon contribution is spin-independent. It contributes in the
same way to the spin-averaged and single-spin-dependent cross sections, and will lead
to the same soft-gluon threshold resummation effects to these cross sections, at least at
the leading double logarithmic level. This observation is very similar to that made for
the transverse momentum resummation in the Drell-Yan process [23]. This will likely
have the phenomenological consequence that the single-spin asymmetry for the Drell-
Yan process will be quite stable under NLO corrections, in particular whenτ = Q2/s is
large.

In summary, transverse spin physics has attracted much attention and has been rapidly
developed in the last few years. In this overview, I could notcover all these important
developments, rather I emphasized a few examples, including the universality of the
parton distribution and fragmentation functions, and QCD evolution and next-to-leading
order corrections to the relevant observables. Fortunately, there are many talks on the



transverse spin physics in this conference, and I believe that they will present more
comprehensive reviews on these exciting developments in this physics. This has shown
that the transverse spin physics is playing a very importantrole in the strong interaction
physics for hadronic spin physics. We will learn more about QCD dynamics and nucleon
structure from these studies.
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