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Non-Adiabatic Berry's Phase For A Spin Particle 

In A Rotating Magnetic Field 

Shun-Jin Wang 

Nuclear Science Division, .Lawrence Berkeley Laboratory 

University of California, Berkeley, CA 94720 USA 

and 

Center of Theoretical Physics, CCAST( World Lab.) Beijin and 

Department of Modern Physics, Lanzhou University, Lanzhou 730001, PR China 

Abstract: The time-dependent Schrodinger equation for a spin particle in a 

rotating magnetic field is solved analytically by the cranking method and the 

exact solutions are employed to study non-adiabatic Berry's phase. A new 

expression for Berry's phase is given, which shows that Berry's phase is related 

to the expectation value of spin along the rotating axis and gives Berry's phase 

a physical explanation besides its gauge geometric interpretation. The new ex-

pression also presents a simple algorithm for calculating non-adiabatic Berry's 

phase for Hamiltonians which are non-linear functions of the SU(2) generators. 

It is shown that non-adiabaticity alters the time evolution ray and in turn 

changes its Berry's phase. For SU(2) dynamical group, non-adiabatic effect on 

Berry's phase manifests itself as spin~alignment ( a phenomenon in nuclear 

physics ) and spin-alignment quantization( observed recently in high spin 

nuclear physics ) is related to Berry's phase quantization. 
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Berry's phase 1 is a striking discovery in both theoretical and experimental 

physics in recent years. A great amount of interest has been generated by 

Berry's profound work. Soon after Berry's discovery, Simon 2 gave it a simple 

geometrical interpretation and related Berry's phas~ to the homological problem 

in the theory of fibre bundle. Berry's phase also finds its application in 

gauge theories3. In the meanwhile, a number of experiments have been reported, 

including observations on photons 4- , neutrons 5 
, electrons 6 , nuclear quadru­

pole resonances 1 , laser interferometry 8 and molecular energy levels 9 

The naive definition of Berry's phase is based on the quantum adiabatic theo­

rem10 Aharonov and Anandan 11 generalized Berry's results by dropping the adiaba-

tic condition and identifying the time integral of expectation value of the Ha­

miltonian as the dynamical phase. Samuel and Bhandariu further extended Berry's 

phase to the cases of non-unitary and non-cyclic evolution by employing Pancha­

ratnam's13 idea of comparing phases of two arbitrary polarized light beams based 

on interference. The main conclusion of the above authors is that Berry's phase 

is a geometrical object in projective Hilbert space( so called ray space ) : it 

depends only on the path traced by the evolution ray in the projective Hilbert 

space and its value is determined by the curvature of the ray space and the 

traced path. The above development is important and includes non-adiabatic 

aspects of Berry's phase in principle. However, it is too general and formal to 

provide a deeper insight into and a tractable algorithm for calculating non-

adiabatic Berry's phase. 

On the other hand, up to now, most of experiments performed is designed to 

measure adiabatic Berry's phase, most of theoretical articles on Berry's phase 

addresses its geometrical aspects. It is true that Berry's phase in general 

conditions depends only on the path traced by the time evolution ray and the cur 

vature of the ray space. To decribe a ray could be a geometrical problem, while 

to generate a ray and its time evolution is definitely a physical problem. As 

a time-evolution ray has been generated, its geometric properties in ray space 

is also specified and the Berry's phase can be calculated by pure geometric 

method, while the relevant dynamics which generated the ray could be forgotten. 

.. • 
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However, as a whole physical problem, when the dynamics of a system generates 

a time-dependent physical state, it generates a special geometric object(a ray 

at the same time. As the dynamical group is fixed, the geometry dictated by 

which is also specified. The dynamics, i.e., the Hamiltonian (which is a func-

tion of the dynamical group generators can not change the geometry. However 

it can change a geometric object and its geometric properties ( for example, 

\ one can't change Euclidean geometry. But one can change a circle into a triangle 
\J 

with different geometric properties ) . In such a sense, dynamics determines 

Berry's phase through determining the ray itself and its path. How dynamics 

effects a ray, its path and its Berry's phase, is a dynamical problem and non-

adiabatic aspects of Berry's phase. The objective of this note is to address 

this subject. 

In what follows we shall employ a soluble model to explore the subject. 

A particle with spin-j in a rotating magnetic field is an elegant model which 

is both of practical and theoretical interest. Its analytical solution can be 

obtained and the theoretical predictions can be tested by experiments.Berry has 

obtained the adiabatic solution of this model. In this note, we shall present a 

a systematic cranking method to solve the problem and the resulting exact solu-

tions are used to study the non-adiabatic effect on Berry's phase. 

The Hamiltonian of the model is 

.... .... 
B j ( 1 ) 

where the spin operator is 

-" 
j ( 2 ) 

-;. 
and J, are (2j+l) ~ (2j+l) matrices. The magnetic field is 

.... 
B ..... ':!... ( Sin & , 0 , Cos e ) , ..n. B}'t ( 3 ) 

The precession of the magrietic field can be realized through cranking the Hamil-

tonian by a unitary transformation, 

1\ 

H(t) 1\ .... " exp{-iji wt} Ho exp{ij!w t} 
..... ...... 
B (t) · j ( 4 ) 

where the rotating magnetic field is 



4 

~ 

B{t) ...n.. {Sine coswt, Sine Sinwt, Cosa ). 

It is evident that 

.... " H { 0) H{T) 
A 
Ho T 21t /c.v 

{ 5 ) 

{ 6 

The equation of motiom for a spin-j particle in a rotating magnetic field is 

1\ 
H{t)'\j){t). { 7 ) 

Let 

l.j.J{t) = exp{-ij2 w t} yt {t). { 8 ) 

Then the equation of motion for ~ {t) is 

i oYlc.!2 = H{w) Yl(t) < 9 > 
-ot.. "l ' 

A 

where the body-fixed Hamiltomian { Routhian ) H{w) is 

" H { w) 
_... .... 

= B • j { 10 ) 

__,. 
and the renormalized magnetic field B is 

....... 
B = Ji Sin B , 0 , Cos e ) , lla 

llb ) 

with 

Sine Sin e I [ 1-2 ;_Cos 9 + <jf>l. ]~ llc 

Cos 9 < cosa - w/..Jl. )/[ 1-2_tcos8 + <Ji->2 ]~. { lld ) 

The solutions of { 7) and { 9) are 

A 

Y[ {t) exp{-iH(w)t} 1 (0)' 12a 

'/'<t) " U{t)1.Jl(0), { 12b ) 

with 

" exp{-ij1 w t} 
/\ 

U{t) exp{ -iH {w) t}, { 12c ) 



Consider the evolution operator after one period T 

" U(T) 
A A 

exp{-i27t j~} exp{-iH(w)T}. ( 13 ) 

" Since H(w) possesses the symmetry 

" "' " exp{-i2'1t j 1 } H(..>) exp{i2?t j~} " H (w), ( 14 ) 

U(T) and H(~) commute 

" 1\ U(T), H(w) 0, ( 15 ) 

and both have common eigen-states, 

exp {- i 4'171 } Yl;,.,.. ( 16a 

( 16b ) 

For n periods, the solution is 

1..jJ (nT) 
A 1\ 

exp{-i2n7t j~} exp{-inH(w)T } "f<O). ( 17 ) 

As pointed out in a previous paperf+, there are two kinds of solutions: 

i) Cyclic or recurrent solutions require that ~ (0) be an eigen-state of O(T) 

" or H(w) ), 

1.¥<0) ( 18 ) 

This leads to 

'\.J)(nT) = exp{ -in~ } iJ (0), ( 19 ) 

where the total phase <Ptn will be given later. 

ii) Non-cyclic or non-recurrent solutions require 

'\f ( 0 ) ~ Tfjm , ( 20 ) 

and lead to 

'\f'(nT) ~ c 'lf (0). ( 21 ) 

In this note we concentrate on cyclic solutions which are related to Berry's 
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phase. 

We proceed to solve the eigen equation (16). Suppose Jjm) 9l,;m and Y/jm 

A A A , 
are eigen-states of j~ , Ho , and H(w) respect1vely, 

~ 
Je I jm) m J jm) 22 ) 

( 23 

( 24 ) 

Since 

A A " "' Ho .Jl.exp{-i6j1 } jl-exp{i&jy} ( 25 

A _/\ A A 

H(w) Jl. exp{-i e jy} j~exp{i9 j>'} , ( 26 ) 

we have 

Jim= 
A 

~ Dj e exp {- i 6 j)' } I jm) = ( 0, , 0 ) l jm) , 
In' 

m'm ( 27 ) 

7jm= 
-A r:: D 1 e ) I jm) exp{-i e j>'} )jm) 

m'm 
( 0, , 0 

)11' 

( 28 ) 

and 

Em m.f.l. ( 29 ) 

Em= mll. ( 30 ) 

We begin by calculating Berry's phase for the cyclic solution 

A A ~ 

'lf:n(t) = exp{ -ij~ w t} exp{ -iH (w) t} 'lim= exp{ -iEm t} exp{ -ij:t w t} 7;111 

exp { - iE m t } 2:_ :i 
Din' m ( o, e 0 ) exp {-im' c.V t} J jm') 

tn' 

J where Dm•m is ~he Wigner function with rank j. After one period, 

'\.)>,...(T) = exp{-iEm T -i2m7c} 1./J (0) , 

and the total phase is 

o/m = E m T + 2m 'lt . 

A 
To calculate dynamical phase 1 we need the expectation value of H(t), 

31 ) 

( 32 ) 

( 33 ) 
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£m(t) = <'tfm(t)J H(t)J-YJm(t.)> =(q;,IH(w)l~:im) + Q('(;.,.\3=ti11;M) 

E rv~ + t-V j~ ( 34 ) 

where the spin alignment jr is 

-" " _;..., 
= <jm I exp{ie jy} j~exp{-i o jy} I jm) 

=<jml [-Sin& j.x + Cose m Cos e ( 35 ) 

Thus the dynamical phase is 

-r 
S Em (t) dt Em T + 2m 7f. Cos $ ( 36 ) 
0 

and Berry's phase is 

<t>! = - ( <Prt\ - cp; ) = -2m 7t ( 1 - Cos 9 ( 37a ) 

-2m 7t ( 1 - jf I m ) ( 37b ) 

-2m7t { 1- (cos& - wi.J>.. ) I [1-2::1r-Cosa + (:Jt)4 ]~ }. ( 37c) 

Eqs. (37) indicate that Berry's phase is related to the spin expectation value 

along the rotating axis (i.e., spin alignment) and give Berry's phase a physical 

explanation besides its gauge geometric interpretation. The new expression for 

Berry's phase is useful in the calculation of non-adiabatic Berry's phase, since 

the calculation of spin alignment is a standard algorithm and therefore 

IS 
straightforward in a code of the cranking model, even though the Hamiltonian is 

a non-linear function of the dynamical group generators. In the adiabatic limit 

,hl'flb ~~0 'tr _.;::.;::.__~.., -2m 7t ( 1 - Cos 6 ) , ( 38 ) 

which recovers Berry's results. 

It is interesting to exploit the relationship between spin alignment quanti­

zation and Berry's phase quantization. As spin alignment is 'quantized, i.e., 

m' ' m' integer or half-integer, ( 39 ) 

the corresponding Berry's phase assumes the value of 2N~ 



- 21'r: ( m - m' ) - 2N1t , N m - m', ( 40 

i.e., Berry's phase is also quantized. Eqs. (39) and (40) imply a fundamental 

fact that for the SU(2) dynamical group, spin alignment quantization is related 

to Berry's phase quantization. This result is important in nuclear high spin 

physics. As a result of a non-central collision between two nuclei, a fast rota-

tion of the compound system about an axis perpendicular to the deformation axis 

may result. Due to the non-adiabatic effect, the spins of individual nucleons 

moving in the rotating deformed mean field will align along the rotation axis 

and a corresponding Berry's phase will be generated. If the Berry's phase is 

quantized (this is required by the stationary condition), the related spin 

alignment is also quantized. The consequence of Berry's phase quantization is 

as follows. Since exp{-2N~ i } = 1, the quantized Berry's phase has no effect 

on the time-dependent solutions. Yet such periodic solutions only possess 

dynamical phase. This property is essential for a solution to be stationary, 

since a stationary solution has only dynamical phase, no Berry's phase. We are 

thus led to the conclusion that as a quantum system responds to a rotating 

deformed mean field, the only way to keep its state stationary is to make 

its spin alignment quantized. This phenomenon was observed recently in high 

spin physics in superdeformed rotational bands and is surprising ' 6 . 

Now we consider spin alignment quantization of individual particles. For 

a particle to realize spin alignment quantization, a critical frequency is need-

ed. To calculate it, let us consider the spin-1/2 particle and assume 9 =~/2. 

This model can simulate a nucleon in a deformed mean field. The axial symme-

trically deformed potential plays the role of a magnetic field. The question is 

at what frequency the nucleon's spin alignment starts to be quantized. Suppose 

initially the nucleon spin is aligned along the deformed axis ( x-axis ), i.e., 

'\jJ(O) Sin if /2 7+-i + Cos e /2 Yf~t_ ( 41 ) 

then it is not difficult to show that 

iJ<t> " exp{-ij~ w t} Sine /2 exp{-ir.t}7tt + Cos 012 exp{-iF_t}'l-·i_}, ( 42 ) 

and 



<1\f<t)Jj~ll\f (t·>) =1/2 {(w/.Sl. )/[l+(w/..Jl. )
2 

]} [1-Cosli.t 4 0. ( 43 ) 

Since 

max (1-Cos Ji t 2, ( 44 ) 

the spin alignment quantization, i.e., 

( 4 5 ) 

leads to 

< w!Jl. )!(l+(w/.Jl. >
2 J 1/2 , 46 

which has the solutions 

w=Jl ( 4 7 ) 

Thus the critical frequency i.e., the minimum solution is 

We.= min w = Jl 48 

·· •.Eq.:( 43) indicates that a nucleon initially with spin z-component zero, i.e., 

~~(O)j jei~<O>) = 0, after having been put in a rotating deformed mean field, 

will acquire a non-zero z-component of spin. This phenomenon, called spin ,align'"" 

ment, indicates that non-adiabatic effect on Berry's phase manifests itself as 

spin alignment. Yet, since two nuclei's collision is a short time non-stationary 

process, the collision will cause quantum transitions. According to quantum 

mechanics, quantum transition caused by short time perturtion always happens 

from one stationary state to another stationary state. As indicated above, to 

generate a stationay state, the corresponding Berry's has to be quantized. 

And this in turn leads to spin alignment quantization. In a mean field picture, 

for the whole deformed nucleus, each nucleon feeling the rotating deformed 

field will contribute an amount of spin alignment, which may and may not be 

0 quantized. But the total contribution must be quantized to populate a station-

ary rotational state. If a particular nucleon couples to the deformed poten-

tial rather weakly and the rotation frequency reaches a critical value to 

break the coupling, this nucleon's spin alignment will be quantized and the 

spin alignment quantized nucleon does'nt contribute to the collective rotation 



10 

and the moment of inertia. The above statement is proved to be true within the 

framework of the cranking shell model 
17 

We conclude with a summary of the information contained in this note. The 

.time-dependent Schrodinger equation for a spin particle in a rotating magnetic 

field is solved analytically by the cranking method developed in nuclear phy­

sics and the exact solutions are employed to study non-adiabatic Berry's phase. 

A new expression for non-adiabatic Berry's phase is given, which shows that 

Berry's phase is related to the expectation value of spin along the rotating 

axis and gives Berry's phase a physical explanation besides its gauge geometric 

interpretation. The new expression also presents a simple algorithm for calcu­

lating non-adiabatic Berry'S phase for Hamiltonians which are non-linear func­

tions of the SU(2) generators. For the SU(2) dynamical group, the non-adiabatic 

effect on Berry's phase manifests itself as spin-alignment ( a phenomenon in 

nuclear physics ) and spin-alignment quantization ( observed recently in high 

spin nuclear physics ) is related to Berry's phase quantization. For a spin-1/2 

particle the critical frequency of spin alignment quantization has been calcula­

ted which can be used in the description of a nucleonic spin coupled to a rota­

ting deformed mean field. 

The author expresses his thanks to Professor W.J.Swiatecki for illuminating 

discussions. This work was supported in part by the Director, Office of Energy 

Research, Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract No.DE-AC03-76SF00098 

and by the Natural Science Foundation of China. 
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