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Abstract

Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and
predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode
of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene
expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined
the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these
carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an
impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and
without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no
similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA
degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in
dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and
Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell
survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in
S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our
findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of
diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.
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Introduction

Cancer is a multifactorial disease in which both environmental

and genetic factors play a role. Thus far, the cancer risk associated

with exposure to industrial pollutants has been mainly assessed

through epidemiological follow-up, animal studies, mutagenicity

and genotoxicity assays. Exposure-related cancers are difficult to

detect in epidemiological studies given that the induced cancer risk

is small compared to the natural occurrence of cancer [1,2,3,4,5]

and latencies can be protracted. Despite the possibility of

measuring genotoxic effects in humans, e.g. DNA breaks and

micronuclei, which can lead to the development of a cancer, the

interpretation of positive findings in relation to exposure and

cancer risk assessment remains a major challenge [6]. With the

development of new tests, it is hoped that more effective bioassay

surrogates will produce clinical tools for monitoring and risk

assessment [7,8,9,10,11].

Collaborative efforts have been taken to deal with the health

effects of large number of chemicals released in the environment

and to develop cost-effective high-throughput approaches to assess

environmental chemical toxicity [12]. In recent years, ‘omic’

technologies have been employed to get a deeper understanding of

toxicological mechanisms and to predict toxicological outcome,

such as carcinogenicity, by profiling genomic perturbations (e.g.,

mRNA expression profile) [13,14,15]. Several promising studies

have been reported in mechanistic [16,17] and predictive

toxicology [18,19,20] using toxicogenomics. Toxicogenomic tools

have also been utilized to discriminate between classes of

carcinogens based on global expression profiling [19,21]. This

suggests that for compounds with insufficient toxicological

information, associated gene signatures could be used to charac-

terize their toxicological properties based on comparison with

signatures associated with previously characterized compounds.

Studies have reported positive findings regarding the toxicoge-

nomic strategy of compound categorization based on the mode of

action (e.g., gene expression alterations) [22] but data is still too

preliminary to support the conclusion that similar gene expression

signatures are observed among families of structurally similar

compound(s) and/or compounds with similar mode of action

[23,24].

Human toxicogenomic studies typically are small, examine high

dose exposures, have confounding issues (such as age, genotype,

and diet) and use various methodologies, all of which make it
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difficult to compare the effects of exposure to different chemicals

or classes of chemicals among studies. In contrast, in vitro

toxicogenomic studies can be designed to examine the effect of

multiple exposures in parallel with greatly reduced confounding. In

vitro gene expression profiling has the potential to discriminate

carcinogens with distinct mechanisms of action [25]. Several in

vitro studies have shown that genotoxic agents alter genes involved

in immune, inflammatory and stress responses and apoptosis,

rather than genes with a role in DNA repair or metabolism, as

might have been expected [26,27,28,29,30,31]. These studies

examined genotoxins that operate through various mechanisms, in

human and mouse cell lines using different microarray platforms.

In the current study, we characterized the gene expression

alterations in TK6 cells induced by by genotoxic carcinogens with

diverse modes of action e.g., adduct forming and cross-linking. We

also examined the dose-responsive changes in gene expression and

altered biochemical pathways. We hypothesized that the gene

expression signatures are perturbed in response to exposure in a

carcinogen, and a dose specific manner. The carcinogens

comprised 13 chemicals currently and frequently used in

European industries, including occupational and environmental

agents, as well as 2 control chemicals (Table 1). These genotoxic

agents react with/alter DNA and/or proteins directly or indirectly

(through their bioactivation) [32].

Human thymidine kinase 6 human lymphoblastoid cells (TK6

cells) were exposed for 24 hours and global gene expression

profiling was performed. In order to assess the applicability of gene

expression profiles to biomonitoring of human populations

exposed to carcinogens, we also examined dose-dependent

changes in gene expression. We applied a long exposure period

(24 h) rather than a pulse treatment (4–6 h), since humans (e.g.

workers) are typically chronically exposed and in in vitro studies, 18

to 24 h exposure period is commonly used for investigation of

genotoxicity [33,34]. Moreover, it has been shown that more

changes in gene expression with alteration of more genes, occurs

after approximately 24 h than after 4, 48, or 72 h

[27,28,29,30,35].

Results

After 24 h of exposure, cells were harvested and analyzed for

viability. All samples included in this study showed viability above

90% and were further processed for RNA extraction. The RNA

from each exposure condition was hybridized to the Sentrix

HumanRef-8 v33 Expression BeadChips (Illumina, Inc., San

Diego, CA).

Assessment of experimental variation
We applied a linear mixed model to assess the proportion of

total variation that is due to exposure (chemical, S9, dose) and

experimental variation (treatment experiment, hybridization, label

and chip). The distribution by gene of the IntraClass Correlation

Coefficients for 3 of the potential experimental confounding

factors (experiment, label, and hybridization) and residual showed

that residual variation was greatest (Figure 1). This means that

exposure, i.e. chemical agent, S9 and dose had the strongest effect

on variation in gene expression. We adjusted the inference for

correlation due to labeling and hybridization, which had lesser

effects on variation than exposure.

Effect of S9 treatment on gene expression
In order to determine the effectiveness of S9 activation in our

treatment experiments, we compared the differential gene

expression profiles of cells treated with Styrene, which requires

metabolic activation, in the presence of S9, with the profiles

associated with its major metabolite, Styrene 7,8-oxide, in the

absence of S9. Styrene and Styrene 7,8-oxide had 297 genes (q-

value,0.15) in common at high dose treatment, and no genes in

common at low and medium doses (Figure 2). The high-dose

result, suggested that S9 affected the metabolism of Styrene to

Table 1. Overview of agents used for the treatment of TK6 cell cultures.

Agents IARC Category Concentration (mM)

High Medium Low

Formaldehyde*,1,2 1 Aldehyde 100 10 1

Styrene**,1 2B Aromatic hydrocarbon 5000 500 50

Styrene 7,8-oxide*,1 2A Aromatic hydrocarbon 500 50 5

Benzene**,1 1 Aromatic hydrocarbon 100 10 1

Hydroquinone*,1 3 Aromatic hydrocarbon 0.5 0.05 0.005

Mitomycin C*,2 2B Cytostaticum 0.5 0.05 0.005

Ethylenedibromide**,1,2 2A Organobromide 1000 100 10

Epichlorohydrin*,1 2A Organochloride 500 50 5

Acrylamide**,1 2A Amide 500 50 5

Trichloroethylene**,1 2A Chlorinated hydrocarbon 5000 500 50

Carbontetrachloride**,1 2B Chlorinated hydrocarbon 1000 100 10

Cyclophosphamide**,1 1 Cytostaticum 50 5 0.5

Benzo[a]fluoranthene**,1 2B Poly aromatic hydrocarbon 500 50 5

Benzo[a]pyrene**,1 1 Poly aromatic hydrocarbon 500 50 5

Benz[a]anthracene**,1 2B Poly aromatic hydrocarbon 500 50 5

*Direct acting agent; **Indirect acting agent,
1: DNA adduct forming agent; 2: DNA Cross linking agent.
doi:10.1371/journal.pone.0039205.t001

Gene Expression Profiles in Human TK6 Cells
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Styrene 7,8-oxide. However, the degree of overlap was small

suggesting that metabolism by S9 was incomplete, or that Styrene

alters gene expression independently of its metabolism or via other

metabolites, or that S9 treatment was causing ‘‘non-target’’ effects

on genes expression. Comparison of the gene expression patterns

of S9-treated (S9+) with S9-untreated (S9-) control samples showed

that 885 genes (supplementary Table S1) were significantly altered

(q-value,0.01), of which 375 genes were down regulated. This

confirmed that ‘‘non-target’’ effects of S9 treatment occurred.

Given these non-target S9 effects on gene expression, we analyzed

the gene expression data from cells cultures incubated without S9

metabolic mix independently from those incubated with S9

metabolic mix.

GO categories and genes significantly impacted by
individual carcinogens vs controls

We examined the genes modulated by each agent at each

concentration. After multiple test correction (False Discovery Rate

(FDR) q-value ,0.15), many exposure-induced gene expression

modifications remained significant. At low-dose exposure, Form-

aldehyde significantly altered the expression of 3 genes (FLJ44653

and SFRS11 were upregulated, CTBP1 was downregulated);

Mitomycin C exposure significantly altered the expression of 21

genes of which 3 were downregulated; and, Acrylamide signifi-

cantly altered the expression of 61 genes. Low-dose exposure to

Benz[a]anthracene, Benzo[a]pyrene, Carbontetrachloride, Cyclo-

phosphamide, Hydroquinone, Trichloroethylene and Styrene also

affected gene expression. At the medium dose level, various

numbers of genes were significantly altered (q-value ,0.15):

Cyclophosphamide (134 genes), Carbontetrachloride (353 genes),

Benz[a]anthracene (397 genes), Trichloroethylene (385 genes),

Epichlorohydrin (826 genes) and Benzene (.1000 genes). Simi-

larly, at the high-dose level, various numbers of genes were

significantly altered (q-value ,0.15): Styrene (7 genes), Acrylamide

(81 genes), Benzene (254 genes), Hydroquinone (332 genes),

Ethylenedibromide (748 genes) and Styrene 7,8-oxide (.1000

genes), Trichloroethylene (.1000 genes), Benz[a]anthracene

(.1000 genes) and Epichlorohydrin (.1000 genes) (q-value

,0.15).

The biological processes impacted by each chemical (S9-) at

each dose level were determined by GO analysis and are

summarized in supplementary Table S2. GO categories which

were affected by at least 4 chemicals per dose level are shown in

Table 2 (low dose), Table 3 (medium dose) and Table 4 (high

Figure 1. Sources of methodological and biological variation within the microarray expression data. Figure represents the distribution
of the intraclass correlation coefficients (the proportion of variability estimated to come from each source on a probe-by-probe basis) calculated by
variance components analysis based on a mixed-effects model allowing assessment of independent contributions of variability from experiment,
label, hybridization, and residual variability. IC: intra-class correlation coefficients; x-axis represent the scale of IC (0–1) and y-axis represent the
frequency of IC.
doi:10.1371/journal.pone.0039205.g001

Gene Expression Profiles in Human TK6 Cells
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dose). A number of GO processes including antigen processing

and presentation of endogenous peptide antigen via MHC class I,

peptide antigen stabilization, DNA damage response, and signal

transduction by p53 class mediator resulting in cell cycle arrest,

were affected at the low dose by most chemicals. Regulation of

translational fidelity, positive regulation of epithelial cell differen-

tiation, antigen processing, and presentation of endogenous

peptide antigen via MHC class I were significantly affected at

the medium and high doses. At the high dose multiple chemicals

were associated with perturbation of regulation of cell redox

homeostasis, cell cycle arrest, inhibition of CREB transcription

factor, and mRNA transcription from RNA polymerase I.

Additional GO processes of interest, impacted at medium and

high levels of exposure, were positive regulation of tumor necrosis

factor receptor, T cell proliferation, selection and costimulation

and negative regulation of type IV hypersensitivity, positive

regulation of DNA repair, nucleotide-excision repair, single strand

break repair, double-strand break repair via homologous recom-

bination, DNA double-strand break processing apoptosis, cell

cycle arrest, programmed cell death and apoptotic nuclear change

(supplementary Table S2). In the supplementary Table S3, we

also provide the GO categories impacted by each chemical (S9+)

at each dose level.

Hierarchical clustering, with heatmap presentation to visualize

the pathways that behave similarly and/or differently within each

chemical-dose combination (S9-), is shown in Figure 3. Signifi-

cantly impacted genes from the respective biological replicates per

chemical were pooled in the hierarchical clustering. Specific

pathways associated with cell cycle alterations, DNA repair i.e.,

mismatch repair, nucleotide excision repair, spliceosome, protea-

Figure 2. Genes in common between Styrene (S9+) and Styrene 7,8-oxide (S9-). Venn diagram indicating the number of genes common
between styrene (S9+) and styrene 7,8-oxide (S9-) at low, medium and high dose (q-value,0.15) exposed TK6 cells. The number of overlapping genes
at each of the dose levels were not significant (q-value,0.15) by Fisher’s exact test.
doi:10.1371/journal.pone.0039205.g002

Table 2. Functional classification of affected genes at low dose.

GO ID GO Processes Carcinogens*

AA BA BP CCL CP FA HQ MMC ST TCE

GO:0009440 Cyanate catabolic process ü ü O O O O O ü ü O

GO:0019885 Antigen processing and presentation of
endogenous peptide antigen via MHC class I

ü O O ü O ü ü O ü ü

GO:0000085 G2 phase of mitotic cell cycle O ü O ü ü ü ü ü O ü

GO:0006977 DNA damage response, signal transduction by
p53 class mediator resulting in cell cycle arrest

O ü O ü ü O O O O ü

GO:0050823 Peptide antigen stabilization O O ü ü O ü ü O ü ü

GO:0001833 Inner cell mass cell proliferation O O O O ü ü ü O ü O

Functional classification of significantly affected genes by exposure to carcinogens at low dose into Gene Ontology (GO) categories was performed. GO categories that
were affected by 4 or more carcinogens per chemical dose are listed. A list of all GO categories affected per chemical per dose is given in the supplementary Table S2.
*Carcinogens [AA:Acrylamide; BA:Benz[a]anthracene; BP:Benzo[a]pyrene; CCL:Carbontetrachloride; CP:Cyclophosphamide; FA:Formaldehyde; HQ:Hydroquinone;
MMC:Mitomycin C; ST; Styrene; TCE:Trichloroethylene].
doi:10.1371/journal.pone.0039205.t002

Gene Expression Profiles in Human TK6 Cells
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some, ribosome, RNA degradation, and others are enriched within

sets of chemical-dose combinations as shown in Figure 3.

Interestingly, the Ribosome pathway was affected by all chemi-

cal-dose combinations used in this study. In general, we did not

observe pathways that have similar expression among all direct or

indirect- acting carcinogens.

Dose-dependent changes in gene expression induced by
individual carcinogens

Trend analysis of genes impacted by chemicals with S9-

treatment revealed dose-dependent changes in gene expression

for Benzene (20 genes), Hydroquinone (34 genes), Benz[a]anthra-

cene (8 genes), Trichloroethylene (1000 genes) and Epichlorohy-

drin (1000 genes) at q-value ,0.15. We performed GO analysis for

the significantly affected genes and the altered GO categories are

given in supplementary Table S4. Some of the significantly

affected genes (S9-) were involved in DNA repair (e.g.

GO:0033683: nucleotide-excision repair, GO:0006283: transcrip-

tion-coupled nucleotide-excision repair), regulation of cell cycle

(e.g. GO:0000075: cell cycle checkpoint, GO:0007050: cell cycle

arrest), regulation of apoptosis (e.g. GO:0008624: induction of

apoptosis by extracellular signals, GO:0042981: regulation of

apoptosis), regulation of immune response (e.g. GO:0001808

negative regulation of type IV hypersensitivity, GO:0042113: B

cell activation), regulation of translation (e.g. GO:0006412:

translation, GO:0006446: regulation of translational initiation)

and GO:0042535: positive regulation of tumor necrosis factor

biosynthetic process.

A closer look at the genes involved in regulation of tumor

necrosis factors receptors revealed that TNFRSF9 (CD137) and

TNFRSF10B (CD262), both members of the tumor necrosis factor

receptor family, were upregulated with increasing Epichlorohydrin

dose. Interestingly the TNFRSF9 gene was also upregulated at

exposure to high doses of e.g. Styrene 7,8-oxide and Hydroqui-

none. In contrast, TNFRSF10A was downregulated with increas-

ing Epichlorohydrin dose.

Discussion

The current study was set up to detect gene signatures and

biological pathways altered by exposure to occupational and

environmental carcinogens with diverse modes of action (MOA),

using global gene expression analysis. S9 was included for agents

requiring metabolic activation. S9 was found to have an impact on

some of the same pathways as the carcinogens, making it difficult

Table 3. Functional classification of affected genes at medium dose.

GO ID Go Processes Carcinogens*

BA BZ CCL CP EPI TCE

GO:0019885 Antigen processing and presentation of endogenous peptide antigen
via MHC class I

P P O P P P

GO:0001711 Endodermal cell fate commitment P O P O P P

GO:0006450 Regulation of translational fidelity P P P O P P

GO:0030858 Positive regulation of epithelial cell differentiation P O P O P P

Functional classification of significantly affected genes by exposure to carcinogens at medium dose into Gene Ontology (GO) categories was performed. GO categories
that were affected by 4 or more carcinogens per chemical dose are listed. A list of all GO categories affected per chemical per dose is given in the supplementary
Table S2.
*Carcinogens [BA:Benz[a]anthracene; BZ:Benzene; CCL:Carbontetrachloride; CP:Cyclophosphamide; EPI:Epichlorohydrin; TCE:Trichloroethylene].
doi:10.1371/journal.pone.0039205.t003

Table 4. Functional classification of affected genes at high dose.

GO ID GO Processes Carcinogens*

AA BA BZ EDB EPI HQ SO ST TCE

GO:0030503 Regulation of cell redox homeostasis P P O P O O O P O

GO:0042789 mRNA transcription from RNA polymerase I P O P P P P O O O

GO:0007050 Cell cycle arrest P O P O P P O P O

GO:0032792 Inhibition of CREB transcription factor P O O P O P O P O

GO:0043065 Positive regulation of apoptosis P O P O P O O P O

GO:0001975 Response to amphetamine P O P O O P O P O

GO:0001711 Endodermal cell fate commitment O P O O P P O O P

GO:0006450 Regulation of translational fidelity O P O O P P O O P

GO:0015855 Pyrimidine transport O P O O P O P O P

GO:0030858 Positive regulation of epithelial cell differentiation O P O O P P O O P

Functional classification of significantly affected genes by exposure to carcinogens at high dose into Gene Ontology (GO) categories was performed. GO categories that
were affected by 4 or more carcinogens per chemical dose are listed. A list of all GO categories affected per chemical per dose is given in the supplementary Table S2.
*Carcinogens [AA:Acrylamide; BA:Benz[a]anthracene; BZ:Benzene; EDB:Ethylenedibromide; EPI:Epichlorohydrin; HQ:Hydroquinone; SO:Styrene 7,8-oxide; ST:Styrene;
TCE:Trichloroethylene].
doi:10.1371/journal.pone.0039205.t004

Gene Expression Profiles in Human TK6 Cells

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e39205



Gene Expression Profiles in Human TK6 Cells

PLoS ONE | www.plosone.org 6 June 2012 | Volume 7 | Issue 6 | e39205



to distinguish carcinogenic-specific effects. As a consequence, gene

expression data of experiments with S9 were considered indepen-

dently and are given in the supplementary files. Our findings

suggest that experimental exposure conditions should be consid-

ered carefully when carrying out all in vitro gene expression

experiments to classify indirect acting carcinogens using S9

metabolic mix.

Comparison with previous in vitro studies of global gene
expression induced by exposure to mutagenic
compounds

Our data confirm the results of Islaih et al. (2005), who found

few robust changes in global gene expression induced by exposure

to mutagenic compounds [36]. In contrast to Hu et al. (2004), who

measured the response to cytostatic agents and found 17 genes

downregulated and 26 genes upregulated in a dose-responsive

manner, no common, robust, dose-responsive gene expression

changes were found for all agents in our study [27]. However, with

increasing concentration, increased numbers of genes were

affected, indicating dose-responsiveness. Further, clear dose-

dependent gene expression changes could be detected for

Benzene, Hydroquinone, Benz[a]anthracene, Trichloroethylene

and Epichlorohydrin. The genes identified by Hu et al. (2004)

encoded products involved in (anti-)apoptosis and in pathways

involved in maintaining cell survival [27]. In our study, some of

the genes that were significantly altered were also involved in the

regulation of (anti-)apoptosis and maintenance of cell survival

(DNA repair, regulation of cell cycle). In addition, genes from

pathways involved in the regulation of immune response and

translation regulation were also altered in our study. These results

are in agreement with studies describing gene alterations in cell

cycle arrest, tumor necrosis factor-related pathways, immune and

stress response and DNA repair after exposure to cigarette smoke,

reactive oxygen species and other genotoxic agents [30,36,37].

Previous studies examining gene expression profiles induced by

genotoxic agents were carried out in several cell types (human

peripheral blood mononuclear cells, HepG2, L5178Y mouse

lymphoma cells, TK6 cells) and show a large variation in the

differential expression level of individual genes

[26,27,30,31,36,37]. The two studies previously carried out in

TK6 cells assessed effects of anti-cancer drugs and showed effects

on the same pathways as in our study [31,36]. Differences in the

expression levels of individual genes between the studies may

partially be explained by different treatment schedules and times

at which gene expression measurements were made. The statistical

approach used in the present study differs from the approaches of

previous studies, in which genes were selected based on fold

expression changes, and could also explain some of the different

outcomes compared to other studies [27,29,31].

In this study we could not find similar pathways among all direct

or indirect- acting carcingoens or pathways, which could

discriminate between direct- and indirect- acting agents. We

found that specific KEGG pathways exhibit similar expression for

certain chemical-dose combinations. The identified KEGG

pathways are mainly involved in cell cycle control, DNA repair

mechanisms, apoptosis, immune response, p53 signaling pathway

and intracellular signaling pathways. Activation of DNA repair

related pathways suggests that carcinogenic exposure elicits a

DNA damage response. Activation of ubiquitin mediated prote-

olysis pathway also suggests the induction of apoptosis [38]. In

general, cellular processes identified by GO analysis and KEGG

pathway analysis were similar. As shown in the heatmap,

upregulation of ribosomal pathways by exposure to many

chemical-dose combinations was significant. This may reflect the

prevention of shutdown of the translational machinery after

carcinogenic exposure and an inherent defense system to restore

the cellular homeostasis through activation of cellular translation.

Effects of individual agents and comparison with
previous studies

We examined the gene expression alterations induced by

individual agents. Altered expression of a set of genes involved

in the regulation of tumor necrosis factor receptors at all levels of

exposure to several agents was striking. The gene product of

TNFRSF9 (CD137), which was upregulated with increasing dose in

our study, enhances immune activity to eliminate tumors.

TNFRSF10B (CD262), which was upregulated, and TNFRSF10A,

which was downregulated, in our study with increasing dose, both

encode receptors that can be activated by tumor necrosis factor-

related apoptosis inducing ligand to transduce an apoptosis signal

and induce cell apoptosis. The effects on tumor necrosis factor-

related target genes and impact on both induction of and

protection from apoptosis was reported previously [36].

Mitomycin C exposure modified the expression of 21 genes of

which 3 were downregulated. The number of genes affected is

within the range of another study [36] examining TK6 cells

exposed to Mitomycin C. In contrast to that study, however, with

mitomycin C exposure we did not find an effect on genes involved

in the upregulation of apoptosis (e.g. MYC). Some of the pathways

e.g., cell cycle, DNA repair affected by the formaldehyde exposure

in our study are in agreement with another in vivo study performed

on rat nasal epithelium exposed to Formaldehyde [39]. GO

categories altered by exposure to Benzene and its metabolites,

mainly Hydroquinone, were also in agreement with previous

studies [40,41]. A study of Carbontertracholoride-induced toxicity

to rat liver demonstrated the induction of cellular damage followed

by the activation of DNA repair genes [14]. Many of the

Carbontetrachloride-induced gene expression alterations profiled

in the current study were also involved in regulating the immune

response, cellular toxicity, DNA damage response and apoptosis.

In general, more genes were affected at high concentrations of

some/several carcinogens, but also the numbers of genes playing a

role in apoptosis and control of cell cycle, specifically.

Relevance to biomarker development
In this study we also looked into the genes and biochemical

pathways that represent potential biomarkers of exposure/effect of

carcinogens in human cells in vitro. The relevance of these genes

and pathways to in vivo biomarkers is uncertain. Peripheral blood

mononuclear cells (PBMC) are easily accessible in human

biomonitoring studies. A similar transcriptomic response in the

PBMC of exposed individuals as in the in vitro studies could suggest

its applicability as a biomarker. Comparing the gene expression

data of Benzene and Hydroquinone in TK6 cells from the present

Figure 3. Heatmap generated by hierarchical clustering of chemical-dose arrays. Heatmap representation of the hierarchical trees of
pathways and differentially expressed genes in each chemicals-dose combination generated using hierarchical clustering with the Euclidean distance
metric and average linkage method. The columns in the Heatmap correspond to each chemical-dose combination and rows correspond to different
KEGG human pathways. Significantly impacted genes from the respective biological replicates per chemical were pooled in the hierarchical
clustering.
doi:10.1371/journal.pone.0039205.g003

Gene Expression Profiles in Human TK6 Cells
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study, with changes in the PBMC transcriptome associated with

occupational benzene exposure, reveals that similar pathways (e.g.

apoptosis, immune response), but not genes, are affected [42,43].

A number of differences potentially underlie the differential effects

on TK6 and human PBMC, such as the fact that TK6 cells are

lymphoblastoid while PBMC comprises a number of different cell

types at various stages of development; the Benzene in our in vitro is

unmetabolized; and, Hydroquinone is only one active metabolite

of Benzene. As well as differences in cell type, in vitro and in vivo

responses to chemical exposure are likely influenced by many

different factors. Comparison of the genes and pathways identified

in the present study with effects induced in vitro in PBMC from

normal human donors should be performed.

Conclusion
In conclusion, we identified perturbed gene expression and

pathways induced in TK6 cells by a group of genotoxic

carcinogens with diverse MOAs, as well as dose-dependent

changes in gene expression and pathways. Many of the pathways

play roles in the survival of the cell. A number of genes

significantly impacted are involved in cell division, e.g., cell cycle

arrest, tumor necrosis related pathways and anti(apoptosis), halt

the cell division until the accumulated mutations, and the DNA

damage is effectively repaired. Future research will involve

confirmation of these effects in human PBMC exposed to these

and additional carcinogens in vitro, to determine their applicability

in human biomonitoring studies. Collaborative efforts similar to

ToxCastTM, Tox21 projects will be required to investigate the in

vitro and in vivo effects of chemicals on a large scale, to develop cost-

effective assays for chemical categorization, for their toxicity

assessment, and to explore chemical toxicity pathways [44].

Materials and Methods

Cell culture
In this in vitro study we assessed gene expression in TK6 cells

exposed to 15 carcinogens. Human TK6 cells were chosen

because they express wild-type p53, grow rapidly in suspension

(population doubling time of 12–14 h), and are frequently

employed in standard genetic toxicology studies [36,45,46]. While

TK6 cells are not necessarily equivalent to the target cells for

carcinogenicity, evidence suggests that they can act as surrogate

target cells [36,47]. TK6 cells, purchased from the European

Collection of Cell Cultures (ECACC, Wiltshire, UK), were

cultured in RPMI 1640 medium containing 10% heat-inactivated

horse serum, 100 U/ml penicillin, 100 mg/ml streptomycin and

2 mM l-glutamine. The cultures were maintained between 105–

106 cells/ml, at 5% CO2 and 37uC. The cells, at a density of

106cells/ml, were divided into 15 treatment groups and 1 control

group and were exposed for 24 h to the carcinogens.

Because most compounds first pass the lung and only after

absorption enter the blood and go through the liver, human liver

S9 mix (1% v/v) was added to parallel cultures within each

treatment and control group [37,48]. Thus for each agent an

experiment (in duplicate) was done with and without S9. Liver S9

fractions were obtained from Celsis (Neuss, Germany) and

contained drug-metabolizing enzymes including the cytochromes

P450, flavinmonooxygenases, and UDP glucuronyltransferases.

An exogenous NADPH-regenerating system (1.3 mM NADP+,

3.3 mM glucose-6-phosphate, 0.4 U/ml glucose-6-phosphate de-

hydrogenase, and 3.3 mM magnesium chloride; BD Biosciences,

Erembodegem, Belgium) required by liver S9 for phase I oxidation

was included in the experiments.

Chemicals, viability assays and selection of concentration
The selected agents have well-described clastogenic, genotoxic

and mutagenic characteristics [49,50]. Agents included in the

current study are capable of forming adducts with DNA either

directly or indirectly through the metabolic formation of reactive

metabolites. Table 1 gives an overview of the agents, classification,

and administered dose. In this project, we focused on carcinogens

used in occupational settings. First, we selected adduct forming

and cross-linking chemicals from International Agency for

Research on Cancers 2007 group 1 (agents carcinogenic to

humans) and 2 (agents probably/possibly carcinogenic to

humans). Secondly, we classified the agents per chemical class

and chose chemicals currently and frequently used in European

industries and hospitals [51]. All compounds were purchased from

Sigma Aldrich and dissolved and diluted in dimethylsulfoxide

(DMSO).

Preliminary viability assays were performed to select three

concentrations per agent, i.e. high concentration (cellular viability

of 90%), medium concentration (1/10 of high concentration) and

low concentration (1/100 of high concentration). We used the 3-

[4,5-dimethylthiazol–2-yl]-2,5-diphenyl tetrazolium bromide

(MTT) viability assay [52] and also counted the proportions of

living and dead cells using a CountessTM Automated Cell Counter

(Invitrogen, Carlsbad, CA).

RNA extraction, labeling, hybridization and quality
control

After 24 h of treatment, cells were immediately processed for

RNA isolation. RNA was extracted using TrizolH Reagent with

the PureLinkTM Micro-to-Midi SystemH according to the

manufacturer’s protocol (Invitrogen, Carlsbad, CA). An on-

column DNase I treatment was carried out during RNA

purification (DNase I, Amplification Grade; Invitrogen, Carlsbad,

CA). The quantity of RNA was measured by NanoDrop

Spectrophotometry and quality (integrity) testing of RNA was

done with an Agilent 2100 bioanalyzer. The RNA 260/280 ratios

of all samples were above 1.84 with an RNA integrity number of at

least 8.5. After isolation, RNA was stored at 280uC until analysis.

The IlluminaH TotalPrepTM-96 RNA Amplification Kit was

used for generating biotinylated, amplified cRNA for hybridiza-

tion following the manufacturer’s directions. The concentration of

cRNA was determined by measuring its absorbance at 260 nm

using a NanoDrop Spectrophotometer and by RiboGreen

fluorescence-based assay (Invitrogen). The size distribution of

cRNA was evaluated by conventional denaturing agarose gel

analysis. Hybridization to the Sentrix HumanRef-8 v33 Expres-

sion BeadChips (Illumina, Inc., San Diego, CA), which contain

.23,000 probes/array targeting genes and known alternative

splice variants from the RefSeq database release, washing and

scanning were performed according to the IlluminaBeadChip

manual (11286340 Rev A). Each BeadChip contained 8 micro-

arrays allowing for the parallel processing of 8 samples for greater

throughput. In order to estimate the technical variation caused by

microarray sample preparation and measurement, we randomized

the experiments at each level i.e., labeling, hybridization reactions

and chips. We used two biological replicates per exposure

condition, six biological replicates for control S9- and four

biological replicates for control S9+ experiments. Quality control

metrics of the microarray raw data including noise, background,

% probe sets present/absent, and 39/59 ratios for internal control

genes were satisfactory and consistent. To allow comparisons, all

chips were scaled to a target intensity of 500 based on all probe sets

on each chip.

Gene Expression Profiles in Human TK6 Cells

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39205



Statistical analysis
Statistical analyses were performed as described in McHale

et al. (2010) [43]. Briefly, we conducted variance components

analysis using a linear mixed model [53] to assess the proportion of

total variation due to variation between subjects, hybridizations,

labels, and chips, both before and after the normalization [quantile

normalization in the affy package [54] in R [55]. For each probe,

we estimated the association between exposure level and

expression level using a mixed-effects model with random

intercepts that accounted for clustering by treatment, hybridiza-

tion, and label. The individual dose-dependent treatment effects

were modeled as fixed effects. We fitted the mixed-effects model in

R with the lmer function in the lme4 package [56]. The

distribution (across all the probes on the microarray) of the

contribution of variance from each of the sources (treatment,

labeling, hybridization and chips) is plotted. We performed

standard differential expression analysis on a probe-by-probe basis

using a modified T-statistic based on the empirical Bayes Limma

(Linear models for microarray data) approach [57,58]. Trend

analysis was performed using Limma where the doses were

numerically coded as 0 (for control), 1 (for the low dose), 2 (for the

medium dose) and 3 (for the high dose). After deriving the raw p-

values on a probe by probe basis, the differentially expressed genes

(probes) were selected via ranking by p-value and using a false

discovery rate cut-off (FDR q-value,0.15) [59].The raw data

discussed here have been deposited in the European Bioinfor-

matics Institute ArrayExpress [60]and is publically accessible

through the accession number E-TABM-1223.

Pathway enrichment
We used a method known as structurally enhanced pathway

enrichment analysis (SEPEA_NT3) [61], which incorporates the

associated network information of KEGG (Kyoto Encyclopedia of

Genes and Genomes) biochemical pathways [62,63,64]. SEPEA

differs from other pathway enrichment methods in that it takes

into account the network structure of the various pathways in the

analyses – pathways where perturbed genes (as a result of

treatment) are closely related to each other in a graph/network

sense are assigned more significance. The gene-wise statistic

chosen to be used by SEPEA_NT3 was the t-statistic correspond-

ing to the treatment effect as reported by the empirical bayes

Limma approach [57]. The null hypothesis tested by SE-

PEA_NT3 states that the distribution of the observed t-statistics

among the probes corresponding to genes in a given pathway is

the same as the distribution among all the probes on the

microarray platform. 104 permutations in the SEPEA_NT3

method were chosen in order to evaluate the significance of

association of the treatment with a particular pathway.

Gene Ontology (GO) analysis
The GO project [65] provides an ontology of defined terms

representing gene product properties in the domains, cellular

components, molecular functions, and biological processes. GO

has a hierarchical structure that forms a directed acyclic graph in

which each term has defined relationships to one or more other

terms in the same domain, which can be described as parent-child

relationships. Every GO term is represented by a node in this

graph, and the nodes are annotated with a set of genes. We used

TopGO (topology-based GO scoring; [66]) to calculate the

significance of biological terms from gene expression data taking

the GO structure into account [67] using the elim algorithm. The

elim score is the p-value returned by Fisher’s exact test, and a node

is marked as significant if the p-value is smaller than a previously

defined threshold [67]. Typically this threshold is set to be 0.01

divided by the number of nodes in the GO graph with at least one

annotated gene. This corresponds to a Bonferroni adjustment of

the p-values. The most highly significant nodes thus derived are

denoted as key nodes.

Generation of heatmap
Average linkage represents the criteria of assigning a new

member (chemical or pathway) to a cluster if the average distance

between the new member and the existing members of the cluster

is small. The heat map of negative log10-transformed p-values

representing the enrichment of the 216 pathways across the

chemical treatments, was generated using hierarchical clustering

with the Euclidean distance metric and average linkage to

generate the hierarchical trees of pathways and chemicals using

the Cluster and Tree view programs [68].
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