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Abstract

Controlling Small Fixed Wing UAVs to Optimize Image Quality from On-Board Cameras
by
Stephen Phillip Jackson
Doctor of Philosophy in Mechanical Engineering
University of California, Berkeley
Professor J. Karl Hedrick, Chair

Small UAVs have shown great promise as tools for collecting aerial imagery both quickly
and cheaply. Furthermore, using a team of small UAVs, as opposed to one large UAV, has
shown promise as being a cheaper, faster and more robust method for collecting image data
over a large area. Unfortunately, the autonomy of small UAVs has not yet reached the point
where they can be relied upon to collect good aerial imagery without human intervention,
or supervision. The work presented here intends to increase the level of autonomy of small
UAVs so that they can independently, and reliably collect quality aerial imagery.

The main contribution of this paper is a novel approach to controlling small fixed wing
UAVs that optimizes the quality of the images captured by cameras on board the aircraft.
This main contribution is built on three minor contributions: a kinodynamic motion model
for small fixed wing UAVs, an iterative Gaussian sampling strategy for rapidly exploring
random trees, and a receding horizon, nonlinear model predictive controller for controlling
a UAV’s sensor footprint.

The kinodynamic motion model is built on the traditional unicycle model of an aircraft.
In order to create dynamically feasible paths, the kinodynamic motion model augments
the kinetic unicycle model by adding a first order estimate of the aircraft’s roll dynamics.
Experimental data is presented that not only validates this novel kinodynamic motion model,
but also shows a 25% improvement over the traditional unicycle model.

A novel Gaussian biased sampling strategy is presented for building a rapidly exploring
random tree that quickly iterates to a near optimal path. This novel sampling strategy does
not require a method for calculating the nearest node to a point, which means that it runs
much faster than the traditional RRT algorithm, but it still results in a Gaussian distribution
of nodes. Furthermore, because it uses the kinodynamic motion model, the near optimal
path it generates is, by definition, dynamically feasible.

A nonlinear model predictive controller is presented to control the non-minimum phase
problem of tracking a target on the ground from a UAV with a fixed camera. It is shown
that this novel controller is probabilistically guaranteed to asymptotically converge to the



path that minimizes the cross-track error of the UAV’s sensor footprint. In addition, for a
minimum phased problem, it is shown that its tracking performance is on par with a sliding
mode controller, which at least theoretically, is capable of achieving perfect tracking.

Finally, all three of these contributions are experimental validated by performing a variety
of tracking tasks using the Berkeley Sig Rascal UAV.
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Chapter 1

Introduction

Small UAVs have shown great promise as tools for collecting aerial imagery both quickly
and cheaply. But their limited autonomy has made it difficult to capitalize on their potential
as a large sensor network made up of cheap individual agents. Without greater autonomy;,
the human supervision required to manage large networks of UAVs will grow linearly as
the number of agents increases. In particular, the amount of aerial imagery a team of
UAYV collects becomes unmanageable very quickly. The first step in solving that problem is
ensuring that the imagery a UAVs does collect is atleast on target, and of usable quality.

This work presents a novel approach to controlling the sensor footprint of a UAV such
that it optimizes the quality of the images the UAV collects. The approach is composed of
three innovations. Firstly, an innovation on the traditional unicycle model that improves it’s
accuracy by adding kinodynamic constraints. Secondly, a sampling strategy for a rapidly
exploring random tree that quickly converges to a near optimal path by creating a Gaussian
distribution of nodes around the ’best’ path. And lastly a receding horizon, nonlinear model
predictive controller that leverages the other two innovations to solve the non-minimum
phase problem of controlling a UAV’s sensor footprint.

These three innovations come together to create a tracking controller that is capable of
reliably putting any target path within a UAV’s sensor’s field of view.

1.1 Motivation

The prevalence of Unmanned Aerial Vehicles (UAVs) has increased dramatically in the
last decade [19]. Globaly, over $5bn was spent on UAVs in 2009, and it is expected that
another $70bn will be spent on UAVs in the next decade[12]. Although large UAVs like the
Predator and Global Hawk have received a lot of attention in the media, the majority of
UAVs are small enough to be hand launched, and carry little more than a simple camera
and video transmitter[1].

The plurality of small UAVs has lead to an explosion of research in recent years that
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aims to exploit the efficiency and scalability of these UAVs by creating large sensor networks
composed of intelligent autonomous agents[45][42]. Most of the work in this area assumes
that a UAV’s sensor footprint, the projection of a UAV’s sensor’s FOV onto the ground,
encompasses the ground within a given radius around the aircraft. That assumption im-
plicitly assumes that the cameras on the UAV are equipped with gimbals that can either
keep the camera pointed directly down as the UAV rolls, or can point the camera at any
location within that given radius. That assumption is often necessary because it significantly
reduces the complexity of the control problem. Either the UAV is only required to stay in
close proximity to its target, while the gimbal actually tracks it, or, the UAV is assumed to
have a camera always pointing perpendicular to the ground, effectively reducing the tracking
problem to two dimensions.

Unfortunately, these assumptions become less valid as the size of the UAV is reduced.
Small UAVs have very strict power and payload constraints. Small UAVs may simply not
have the payload capacity to carry a gimballed camera. If they do, the limited power available
would reduce both the speed and accuracy of the gimbal, both of which are necessary for
good tracking performance.

In reality, small UAVs generally have fixed cameras, which results in relatively poor
sensor on target tracking performance. Solutions so far have included, flying wings level over
a target, orbiting a target at a constant radius, and using cameras with a large field of view.
Predictably, these solutions do not work well unless the target is a static point or a straight
path. Likewise, because the sensor on the UAV has to have a larger field of view in order to
keep the target within the image, the resolution of the target is lower than it could be, and
is therefore significantly less useful.

In order for small UAVs to autonomously gather aerial imagery, the must be capable of
controlling their sensor footprint to reliably track arbitrary targets.

1.2 Previous Work

For several years, the Center for Collaborative Control of Unmanned Vehicles has been
working on the problem of using vision detection to track locally linear ground structures
using small fixed wing UAVs with fixed downward looking cameras. Initially, the strategy
was to use visual servoing to align a straight road vertically in the center of the field of
view of the camera [16][14]. The next approach was to plan a path from the aircraft to the
target path using a sline curve, and to apply backstepping to generate a control input[37][38].
That controller was used to track a straight path, and then a slightly curving canal. It was
assumed that the canal was locally linear since in any given image frame it appeared to be
straight. Again the goal of the controller was to position the plane directly over the canal so
that in stable flight, the plane would be relatively level and the canal would appear nearly
in the center of the image.

Fundamentally, the same controller was also used to track a naturally winding river.
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Though the controller tracked the relatively straight section of the river fairly well, it con-
sistently over shot the river around sharp bends. Moreover, even when the UAV tracked
the river exactly as intended around each bend, the camera would lose sight of the river
due to the necessarily large bank angle of the aircraft [36]. In particular, this experiment
showed the need for a controller that can minimized the cross-track error of a UAV’s sensor
footprint, and not just the cross-track error of the UAV. Unfortunately, finding a feasible
aircraft path that keeps an arbitrary target path within a UAV’s sensor’s field of view is an
NP hard problem.

A significant amount of work has been done to try and solve this type of NP-hard path
planning problem|[26][35][15]. Likewise, there has been significant work devoted to controlling
UAVs to follow desired aircraft trajectories[5][28]. Based on the literature, finding a feasible
path using a rapidly exploring random tree seemed like the most natural approach. Moreover,
solving the path planning problem fast enough and reliably enough to apply backstepping,
seemed like the best method for control.

1.3 Experimental Platforms

Experimental verification is an important part of developing any controller. Developing
real time controllers often requires the use of model reduction techniques that reduce the
number of states of the plant to a model and controller that can run in real time. Model
reduction makes the assumption that some states have such little impact on the output of
the plant, that they can be neglected from the model of the plant. Experimentation using
high fidelity models, or even better, the actual plant, is the only way to validate those
assumptions. The Center for the Collaborative Control of Unmanned Vehicles (C3UV) has
access to both high fidelity simulations, and a small fleet of UAVs.

Every UAV is composed of three main elements: an aircraft, an autopilot and a payload.
C3UV’s fleet is comprised of four types of aircraft two mid sized airplanes, the 110 Sig Rascal
and the MLB Bat IV, and two smaller flying wings, the Berkeley Wing and the Zagi-XS.

Each aircraft carries its own autopilot and a variety of payloads. The autopilot controls
the surfaces of the aircraft (e.g. throttle, ailerons) in order to maintain a target altitude,
airspeed, and bank angle. The payload consists of one or more sensors, and may include a
small computer and additional wireless transmitter’s and receivers. The payload may also
be adjusted to include addition power either in the form of more batteries, or more fuel.

Different degrees of autonomy obviously require more or less additional computing. Feed
forward flight paths require very little on board computation. Examples of this type of
behavior would include a mission to survey a plot of land. A flight path can be loaded into
the UAV before take off, and images from the plane could either be stored on the aircraft or
transmitted wirelessly to the ground. Sensing for motion can greatly increase the autonomy
of a UAV, but requires significantly more computing power, which in some cases must reside
on the aircraft.
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UAV’s may require on board computing for several reasons. If the computations are
required for feedback, the latency of a wireless connection to an off board computer could
cause the feedback loop to perform poorly, or possibly make it unstable. Similarly, the
amount of data being sent may exceed the bandwidth of the wireless channel. Lastly, wireless
connections are susceptible to greater noise than wired connections, which can increases
latency, decreases bandwidth, and corrupt data.

Computer vision requires both a lot of data and many computations. Since each UAV at
C3UV has a computer on board the aircraft, they are all capable of running fast vision-in-the-
loop control algorithms. As a result, C3UV’s fleet of UAVs operates with an unprecedented
level of autonomy by implementing sensing for motion algorithms at the tasking, searching
and tracking levels.

1.3.1 Piccolo Autopilot

The Piccolo is a commercial off the shelf autopilot produced by Cloud Cap Technologies|2].
It is approximately 24in3 and weights just over 7oz, see figure 1.1. It incorporates GPS, pitot
and static pressure sensors, and data from a three axis gyroscope and accelerometer. The
software is capable of stabilizing a variety of aircraft including both rotary and fixed wing
UAVs. The low level controllers are capable of tracking reference velocities, altitudes, yaw
angles and bank angles. The mid level controllers are capable of tracking paths in the air
defined by a series of waypoints. FEach waypoint is defined by a latitude, longitude and
altitude. In addition to it’s controllers, the piccolo also runs an observer, which estimates
the mean wind velocity.

Figure 1.1: The Piccolo autopilot.
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The Piccolo communicates with Cloud Cap’s ground station over a proprietary, spread
spectrum 900 MHz channel (see fig). The Cloud Cap ground station is capable of commu-
nicating with multiple Piccolo’s, but it can only facilitate manual control of one UAV at a
time. It can, however, connect to a computer running Cloud Cap’s Command Center soft-
ware, which gives the ground station operator control of every UAV at once. The Command
Center has access to every autopilot parameter on each Piccolo, and is the primary method
of communication with the Piccolo autopilot.

Figure 1.2: The Cloudcap groundstation.

In addition to the ground station, the computer on board the UAV is also capable of
communicating with the Piccolo autopilot via two serial port connections. Using an SDK
provided by Cloud Cap, the on board computer is able to access the same parameters as
the Command Center, which, in effect, gives the computer on board the aircraft absolute
control. For safety, the on board computer includes code that prevents it from writing to
the Piccolo whenever it is targeting waypoint 99. Waypoint 99 is therefore a terminal state
of the autonomous system. As a precaution, before each flight, a safe location is chosen for
the waypoint 99 so that in the event of total loss of communication, the UAV would go to a
safe location to loiter.

1.3.2 Arduino Autopilot

The Ardupilot is and open source autopilot being developed by the DIYdrones com-
munity, and it is very small, which figure 1.3 shows. At this point, the controllers on the
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Ardupilot are significantly less sophisticated than those on the Piccolo, but they are cable
of stabilizing most fixed wing aircraft. The Ardupilot is a fraction of the weight and size
of the Piccolo, and orders of magnitude less expensive, which makes it an ideal choice for
inexpensive, light weight UAVs|[3].

Figure 1.3: The Ardupilot open-source, open-hardware autopilot.

The Ardupilot hardware is a variation of the Arduino Mega micro controller, with a
shield that incorporates GPS,a 6 axis gyroscope and accelerometer, and the optional to add
a pitot and static pressure sensors, along with a 3 axis magnetometer. The Ardupilot also
has an available serial port, which can be used to relay data between the autopilot and an
on board computer.

QGroundControl is an open source UAV ground station project that is compatible with
several UAV autopilots including the Ardupilot. The Ardupilot uses an Xbee commercial off
the shelf radio to communicate with the ground. The Xbee radio can send and receive data
from a computer on the ground, but manual control of the aircraft is handled by a standard
R/C transmitter and receiver.

1.3.3 HIL Simulation

Hardware-in-the-loop (HIL) simulations are an important part of experimental flight
tests. HIL simulations use as much of the actual flight hardware as possible, and the highest
fidelity aircraft simulator available, which inputs the surface commands, and outputs fake
sensor telemetry. HIL simulation is the last step before any experimental flight, and ensures
that the experimental code will perform as expected on the actual hardware that is going to
be flown.
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Cloud Cap provides an extremely high fidelity simulator that uses a parametric model
to simulate any particular UAV in both steady and turbulence wind. The Ardupilot uses
a custom built interface to an open source flight simulator called FlightGear. FlightGear
provides a descent simulation of the mid level dynamics, but does not have enough fidelity
to simulate low level dynamics.

Vision-in-the-loop simulations can be done by using virtual graphics to simulating cam-
eras. This can be done with a variety of programs including FlightGear, and Google Earth.
The premise is the same in both cases. In order to simulate the image that would be gener-
ated by a camera on board the aircraft, the position and attitude data must be ported from
the aircraft simulator to the graphic simulator. That data can then be used to render an
image based on the UAV’s telemetry. That image can then be captured and ported to vision
processing component of the autopilot.

In many cases, HIL simulations can have high enough fidelity that there is little differ-
ence between the simulated and actual flight data. The differences are only apparent when
evaluating the results of low level controllers, which can vary drastically depending on the
amount of wind in real life.

1.3.4 Sig Rascal

The Sig Rascal is heavily modified R/C airframe with a 110in wingspan, and a 32cc,
two stroke engine gasoline engine, figure 1.4. It has a maximum gross weight of 27lbs
and a maximum flight time of 1.5 hours. It is constructed primarily of balsa wood with a
Monokote skin, but it’s mid section has been torn out and retrofitted with carbon fiber in
order to accommodate its payload.

Figure 1.4: The Sig Rascal Berkeley UAV.

Because of its single cylinder and oversize engine, a custom engine mount was built to
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isolate the engine’s vibrations, shown in figure 1.5. In principle, the mount attaches from
the aircraft to the back side of the engine along it’s center of gravity such that the vibrations
are mostly around the axis of the mount. The mount is also attached along the sides of the
engine to give resistance to the moments about the engine. The mounts on the side of the
engine have a relatively low spring constant, which isolates the aircraft from a significant
portion of the engine’s vibrations.

Figure 1.5: A custom vibration isolating engine mount.

The Sig Rascal Fleet is designed to have modular payloads. While the power train and
autopilot are permanently mounted to the airframe, the payload is mounted to a removable
tray which also serves as the belly of the aircraft. This payload tray is independent of the
aircraft such that a variety of payload can be loaded into any one aircraft, and so a given
payload could be load in to any one of the Sig Rascals.

Payload

The Sig Rascal’s payload is highly reconfigurable, but usually carries a PC104 form
factor computer and a variety of antenna’s and sensors, see figure 1.6. The PC104 computer
is powered by a dual Core Pentium processor, and has a 802.11g wireless modem. The
modem is connected through a 1 watt amplifier to an omni directional antenna mounted
to the bottom. The PC104, camera’s and gimbal are mounted to the aircraft and payload
tray with vibration isolating mounts. All of the electrical connections between the aircraft
(power, serial connections to the autopilot, video signal) are bundled together into a 32 pin
umbilical cable.
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Figure 1.6: The Sig Rascal experimental payload module.

1.3.5 MLB Bat IV

The Bat IV is a much larger airframe that was designed in conjunction with a commercial
UAV manufacturer, MLB. Figure 1.7 shows a picture of this UAV. The aircraft has nearly
a 4m wing span and a maximum gross weight of 70lb. The aircraft is propelled by a two
cylinder, pusher engine. The aircraft carries, nearly four gallons of fuel, and has a flight time
of 8 hours. The electronics are powered by an alternator attached to the engine, but the Bat
IV also carries an uninterruptible power supply that can be plugged into shore power while
it is on the ground.
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Figure 1.7: MLB’s BAT IV UAV.

The aircraft is divided into several compartments. There is a cavity in the nose of the
aircraft that can carry a gimbal. The forward part of the fuselage houses all of the aircraft
specific electronics, including the autopilot. the bottom length of the fuselage is removable
and exposes the payload compartment.

Payload

The payload compartment of the Bat IV was designed in succession to the Sig Rascal, and
was built to be even more reconfigurable. A metal frame hangs down from the main fuselage,
which allows any number of components to be easily added and removed. At the front of
the frame, there are ballast plates to stabilize the aircraft. Typically, the Bat IV carries two
PC104 computers, an amplifier and an antenna, and a wireless router that networks all of
the components, .

1.3.6 Berkeley Zagi

The Zagi is a six foot foam flying wing, which can be seen in figure 1.8. It was built by
C3UV as a light weight inexpensive alternative to the Sig Rascal and Bat IV. It is propelled
by a 300 watt electric, pusher motor, and has a flight time of about 30 minutes. The gross
weight is about 8 pounds, which includes a 2 pound payload.
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Figure 1.8: C3UV’s six foot zagi UAV.

Payload

The Zagi payload is consumed mostly by a small media pc. In addition to the computer,
it can also carry any light weight low power sensor, which would typically be a camera. The
computer on board the aircraft has a built in frame grabber, and an Ethernet port, which
allows the Zagi to carry both analogue and digital cameras.

1.4 Outline of Dissertation and Contributions

The work presented in each chapter build on contributions made in the previous chapter.
The first contribution, is a novel kinodynamic unicycle model. The chapter introducing that
model presents the theory behind modelling fixed wing aircraft as unicycles. It then goes on
to show why augmenting the unicycle model, with a first order approximation of the aircraft’s
roll dynamics, is the next logical step to increasing the accuracy of the model’s estimate of
the a UAV’s sensor footprint. Finally, it presents, experimental data that validates both
models, and shows the improvement of the kinodynamic unicycle model over the traditional
model.

The next chapter goes on to present a motion planner that uses the kinodynamic unicycle
model to create feasible paths that keeps targets paths within a UAV’s sensor’s field of view.
The chapter reviews a number of path planning approaches that haven been applied to
UAVs, and presents the original rapidly exploring random tree algorithm in detail. Then it
goes on to present a novel iterative Gaussian sampling strategy for an RRT algorithm that
rapidly converges to a nearly optimal path.
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The final theoretical chapter, presents to model predictive controller that uses both the
kinodynamic model, and the iterative Gaussian Sampling RRT inorder to solve the nonmin-
umim phase problem of tracking a target path with a UAV’s sensor footprint. The chapter
explains the theoretical challanges, and presents several controllers which have previously
been applied to try and approximate a solution to the problem. The performance of each of
those controllers is discussed and then compared to the novel NMPC controller.

Lastly, the contributions of this paper are validated by applying them to several real
world tracking problems. The final chapter discusses the performance of the NMPC tracking
controller based on the experimental data that was collected from tracking straight paths,
curved paths, disjoint paths, points and trajectories.
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Chapter 2
Fixed Wing UAV Dynamics

A great deal of research regarding small fixed wing UAVs has been built on the assumption
that a kinematic unicycle model approximates the dynamics of small fixed wing UAVs.
Despite the fact that the model is used so often, very little research has been published
to explicitly validate that model with flight results[4]. This is particularly interesting in
the situations when the kinematic unicycle model is used to plan paths for UAVs, which
by definition result in dynamically infeasible paths. In order to generate feasible paths
for a UAV, the UAV model must be based on the forces effecting the UAV, rather than
the simplified kinematic constraints. This chapter presents a novel kinodynamic motion
model for small fixed wing UAVs along with experimental flight data that validate both the
kinematic and kinodynamic unicycle models.

In any control system, it is important to choose an appropriate model that describes the
dynamics of plant being controlled. Since the state of a UAV’s sensor footprint is determined
by both its position and attitude, it is important to have a model of both. The kinematic
unicycle equations do not model the roll dynamics of the UAV at all, therefore it is an
inappropriate model for controlling a UAV’s sensor footprint. Augmenting the unicycle
model with first order roll dynamics creates a kinodynamic model of a UAV that can be
used to control the sensor footprint. And, in addition, the kinodynamic model can also be
used to generate feasible aircraft paths.

2.1 Fixed Wing Aircraft Dynamics

By convention, the body fixed coordinates of an aircraft are oriented such that the z-axis
runs parallel to the fuselage, the y-axis runs parallel to the right wing, and the z-axis points
down. As figure 2.1 shows, the attitude of the aircraft is parametrized by the angles (v, 6, ¢)
with respect the world coordinated frame: North, East, and Down.
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Figure 2.1: Conventional nomenclature for a fixed wing aircraft.

The velocity of the aircraft with respect to the body fixed coordinates is given by the
vector (u,v,w) and relates to the world reference frame by the following equations.

l"N u
g)E = TngT(p v (21)
ZD w

Where matrices Ty, Ty, and T}, are the rotation matrices of the aircraft angles v, 6, and
¢). Similarly, the body fixed angular rates, p, ¢, and r relate to the derivatives of the angle
Ty, Ty, and T}, be the following equations.

q;ﬁ cosf) sinfsing sinfcos¢ D
0 | = 0 cosfcos¢p —cosBsing q (2.2)
U 0 sin ¢ cos ¢ r

Given these conventions, then the dynamics of a fixed wing aircraft can be represented
as the following equations.

= m(u+qw—rv)+mgsinf +T

( )
= m(0+ ru — pw) — mgcosfsin ¢ (2.3)
= m(w+ pv — qu) — mg cos 6 cos ¢

= thp) + Loyt + (L — L)qr + Liqp

= Lg+ (I, — L)pr + L.(r* — p?) (2.4)

= [zr + Ixzp + (Iy - Ix)qp - [xzqr

SEEmanm
|
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Where, m is the mass of the vehicle, T" is the thrust of the engine, and F, F, and F, are
aerodynamic forces on the aircraft.

2.2 Modelling an Fixed Wing Aircraft as a Unicycle

For most mid to high level controllers, it is prudent to reduce the complexity of aircraft’s
dynamics, and is some cases, remove the dynamics all together. For research topics that are
only concerned with the position of the UAV, and only vaguely concerned about how the
aircraft gets from one position to another, the kinematically derived unicycle equations are
a good approximation of the UAV’s dynamics. Those equations are as follows.

x = Vcosy
y = Vsinyg (2.5)
Y o= u

The unicycle model assumes that the aircraft has nearly zero pitch and roll, |f] << 1 and
|¢| << 1. There for the horizontal velocity of the aircraft, V', which is normally described
as,

U cos 6
v | =V | sinfsing (2.6)
w sin @ cos ¢

becomes simply u = V.
Furthermore, simplifying 2.1 leads to the following equation.

TN costy —siny 0 Vv
yg | = | siny  cosy 0 0 (2.7)
Zp 0 0 1 0

Which, represents the first two equations in the unicycle model.

The final term of the unicycle model comes from the assumption that the dynamics of
the yaw rate are fast enough, that for the desire fidelity, they can be modelled as instant,
allowing the yaw rate to be set arbitrarily. In many situations, that is a valid assumption.
Controlling the position of a UAV’s sensor footprint, which is a function of the yaw rate
dynamics, requires a higher order order model.
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2.3 Augmenting the Unicycle Model to Include Roll
Dynamics

Conventional aircraft turn by banking, which tilts the lift force, F,, giving it a component
in the radial direction. In addition, most aircraft try to reduce Fj,. the lateral forces, to zero.
A coordinated turn is one that involves zero lateral forces. In other words, for a coordinated
turn, the radial component of the lift force is equal to the centripetal force causing the
aircraft to turn. Under normal circumstances, a fixed wing aircraft will almost always make
coordinated turns

Assuming that F,, = 0 and 6 << 1, then equation 2.3 becomes

mrV = mg cos 0 sin ¢ (2.8)

The yaw rate ¢ can be resolved into the body axes by the following equations

P . —sin6
g | =1 | cosfsing (2.9)
r cos 6 cos @

By substituting r from equation 2.9 into equation 2.8 and simplifying,

mV cos 0 cos ¢ = mg cos 0 sin ¢

tan ¢ = V—d) (2.10)
g

the equation becomes what is known as the coordinated turn assumption, which relates
yaw rate to bank angle.

Equation 2.10 shows how banking the aircraft rotates the the force vector F,, which
causes the aircraft to turn at the rate ¢. Likewise, achieving a desired turn-rate requires
the aircraft to have a specific bank angle. The kinematic unicycle model assumes that @
can be set arbitrarily, which in turn implies that the bank angle of the aircraft can be
set arbitrarily. Obviously, that is not true. The desired turn-rate of the aircraft can only
be achieved according to the settling time of the roll dynamics. Taking the derivative of
equation 2.10 shows that the dynamics of the turn-rate are a function of the roll rate.

_9
V cos? ¢

Approximating the roll dynamics of the UAV by a first order system with a time constant
7 results in the following equation.

) = ) (2.11)
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¢ = %(@ — ¢) (2.12)

Substituting equation 2.12 into equation 2.11 and assuming that ¢ << 1 results in the
following equation.

b= (04— 9) (2.13)

Substituting equation eq:coordinatedturn into equation 2.13 gives an equation the second
order turnrate dynamics of the UAV.

= <tan1 (%) — tan™! (%)) (2.14)

Recognizing that for small v, tan(v) ~ v, then turnrate dynamics symplify to the follow-
ing.

= %(u — ) (2.15)

Equation 2.15 describes the turn-rate dynamics of a UAV according to the forces that
are acting on the UAV. Incorporating those dynamics into the unicycle model leads to the
following augmented, or kinodynamic unicycle model.

r = Vcosy
y = Vsing (2.16)
§ = w1

Qualitatively, the kinodynamic unicycle equations approximate the rotational inertia of
the aircraft, which acts like a first order filter with respect to the commanded bank-angle, or
turn-rate. Figure 2.2 exemplifies the effect that the roll dynamics have on the UAV’s sensor
footprint.
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------- Kinematic Aircraft Path
---&-- Kinematic Sensor Path
Kinodynamic Aircraft Path
—#— Kinodynamic Sensor Path

Figure 2.2: A comparison of the sensor paths computed by the kinematic and kinodynamic
aircraft models.

Figure 2.2 shows the simulated aircraft and sensor path for a control sequence of alter-
nating left and right turns using both the kinematic and kinodynamic unicycle models.

2.4 Modelling Wind in the Unicycle Context

The unicycle and augmented unicycle equations are based on the aerodynamic forces
that effect the aircraft. For instance, the velocity of the aircraft, V' is not the velocity of
the aircraft with respect to the ground, it is the true airspeed, or rather, the velocity of the
aircraft with respect to the air-frame. A full discussion of UAV dynamics with respect the
airframe can be found here [7].

The air-frame moves with respect to the ground-frame according to the mean wind ve-
locity. Consider a stationary point in the wind frame, x,, = 0. That points position in the
ground frame will move with a velocity equal to the mean wind. Therefore that same point
in the ground frame is given by the following equation.

Xg = Xo + Wt (2.17)
Assuming x = 0, it follows that

x, — Wt = x,, (2.18)
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and that,

%, — W =%, (2.19)

In other words, the transformation between the wind-frame and the ground-frame is given
by the following equation.

Xy =Xy + W (2.20)

Though the dynamics of a fixed wing UAV are easier to derive in the wind-frame, it
is usually more useful to know the position of the UAV with respect to the ground frame.
Applying transformation 2.20 to the unicycle model gives the following model a UAV with
respect to the ground-frame.

z = Vecosyp+ W,
y = Vsiny + W,
¢ o= u
And similarly, the kinodynamic unicycle model with respect to the ground frame is given
by the following.

r = Vecost
= Vsiny

)

2.5 Model Validation Against Flight Results

The following section presents data from experimental flight connected at Camp Roberts,
CA, using the UC Berkeley Sig Rascal UAV[23]. The data is composed of several flights taken
over the course of a few weeks. The selection of flight paths attempts to explore several
different flight regimes, which includes straight lines, orbits, figure eights, and sinusoids.

2.5.1 Evaluating the Coordinated Turn Assumption

The assumption that the UAV makes coordinated turns is crucial to the controllers ability
to control the UAV’s sensor footprint by commanding different turn-rates. This assumption
is easily examined by applying the coordinated turn assuption from equation 2.10 to the
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flight data. The roll error in figure 2.3 is given by the following equation.

Vi)
Croy = ¢ —tan~ ' | —= (2.21)
g
Coordinated Turn Error vs Wind
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Figure 2.3: Flight data comparing the coordinated turn assumption versus wind.

The flight data shows that in low wind conditions it’s likely that the expected bank angle
will only vary a from degrees from aircraft’s actual bank angle. However, as the mean speed
of the wind increases, the deviation could be a significant source of error.

2.5.2 Evaluating the Zero Pitch assumption

Another simplification to the aircraft model, is that the pitch of the aircraft remains
nominally zero. Figure 2.4 shows an aggregation of flight data comparing the pitch of the
aircraft to the mean wind speed.



CHAPTER 2. FIXED WING UAV DYNAMICS 21

Pitch vs Wind
8 T T T T T T
6 -
4+ 2
e 2 .
=
=
At
n Of &
e _
Al o
5 1 ] ] ] ] 1
0 1 2 3 4 5 6 T
Mean Wind m/s

Figure 2.4: Flight data comparing the zero pitch assumption versus wind.

Again, the flight data shows that the pitch remains nominally zero in low wind conditions,
but deviates as the wind increases.

2.5.3 Evaluating the Unicycle Models

The results show that the augmented, kinodynamic unicycle model, reduces model error
by about 25% under nominal wind conditions. The model error is measured by the rate
of divergence of the predicted aircraft and sensor paths from the actual aircraft and sensor
paths. The rate of divergence was calculated by sampling the flight data at many points
along the path and then integrating over both unicycle models using the control inputs that
were recorded from the flight. Figure 2.5 shows an example of the sample paths generated
by integrating over the kinematic unicycle model.



CHAPTER 2. FIXED WING UAV DYNAMICS 22

Actual paths vs Kinematic Unicycle Model
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Figure 2.5: Modelling error of the aircraft (top) and sensor footprint (bottom) produced by
the kinematic unicycle model.

The top plot in figure 2.5 show the actual path of the aircraft along with a series of
simulated aircraft paths, which were generated by the unicycle model. The bottom plot
shows a similar set of simulated sensor paths, where the sensor path is represented by the
center of the UAVs sensor footprint. The divergence rate is calculated by dividing the cross-
track error by the simulation time. Figure 2.6 shows the same plot, but for the kinodynamic
unicycle model.
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Actual paths vs Kinodynamic Unicycle Maodel
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Figure 2.6: Modelling error of the aircraft (top) and sensor footprint (bottom) produced by
the kinodynamic unicycle model.

In this example, compared to the kinematic model, kinodynamic model reduces the rate
of divergence of the sensor path by nearly 30%, from 1.43m/s to 1.0lm/s. In either case,
both models seem to have high enough fidelity to be used as a model for a local controller.
The divergence rate can me normalized into a dimensionless parameter by dividing by the
velocity of the vehicle, which in both flights was about 22m/s. In which case, the error
associated with the kinodynamic controller would be about 5%. This error metric represents
the lateral error with respect to the longitudinal distance the UAV has travel. Though this
data seems to validate both unicycle models, it is important to recognize that this particular
data is from a flight with very little wind.

As the mean velocity of the wind increases, the improvement of the kinodynamic model
over the kinematic model decreases. Presumably, as the wind speed increases, the primary
source of error becomes the wind disturbance, which is not well modelled in either unicycle
models. Figure 2.7 shows how the improvement of kinodynamic model decreases as the wind
speed increases.
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Model Error Rate vs Wind
40 T T T T T T

0+ =

20 =

Aircrsft Error, %

40 T T T T T T

0+ =

20 =

Sensar Error, %

A0 l ] ! ] l l
0 1 2 3 4 5 6 7

Mean Wind m/s

Figure 2.7: The reduction in model error by the kinodynamic unicycle deceases as the mean
velocity of the wind increases.

The kinodynamic model performs well in low wind conditions, but the performance drops
off shortly after about 5bm/s, which, for reference, is about 25% of UAV’s true airspeed.
Figure 2.9 shows the divergence of the kinodynamic model with respect to the mean wind
speed.
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Model Error Rate vs Wind
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Figure 2.8: Divergence rate of the kinodynamic unicycle model with respect to the mean
wind speed.

Another important factor to consider, is that the unicycle models do not have access to
the actual wind’s velocity, they only have access to an estimate of wind’s mean velocity,
which is generated by the Piccolo autopilot. The Piccolo’s estimate of the wind’s mean
velocity changes through out each flight, and upon inspection is correlated to the attitude
and heading of the aircraft. Assuming that the actual mean velocity of the wind remains
constant during each flight, the average of the piccolo’s estimates may be closer to the actual
mean velocity. Figure 2.9 plots the rate of divergence of the kinodynamic model versus the
error of the wind estimates with respect to the average mean estimate.
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Model Error Rate vs Estimated Wind Error
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Figure 2.9: Divergence rate of the kinodynamic unicycle model with respect to the error of
the wind estimate.

Figure 2.9 shows that the kinodynamic unicycle model, and similarly the kinematic uni-
cycle model, are particularly sensitive to poor wind estimates. But, assuming that the wind
is less than 5m/s and reasonably well estimated, the data also shows that both unicycle mod-
els preformed reasonable well, though the kinodynamic unicycle model performed a little bit
better.

2.6 Conclusions

This chapter presented a novel kinodynamic unicycle model, and used actual flight data to
evaluated its accuracy. In addition, it showed that when there is minimal wind, augmenting
the unicycle model with roll dynamics improves the accuracy of the predicted sensor footprint
by about 25%. The experimental data also shows that in minimal wind conditions, both
unicycle models adequately reproduce the flight trajectory of an actual fixed wing aircraft.

In addition, this chapter also evaluated several assumption, which were made in order
to reduce the complexity of the fixed wing UAV dynamics. Both the coordinated turn
assumption, and zero pitch assumption, turned out to be accurate when the mean wind
speed was small, and both assumptions became less accurate as the wind increased. In fact,
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by every metric, the performance of both unicycle models degraded rapidly as the mean wind
speed increased, which motivates the need for a better model of the effect wind disturbances.

Future work may explore how the attitude of the aircraft correlates to disturbances caused
by the wind. The UAV’s profile with respect to the wind varies greatly depending on the
UAV’s heading and roll angle. A greater profile would result in greater drag on the aircraft,
which means that the wind would have a greater effect on the aircraft. Neither unicycle
model considers the aircraft’s drag profile when accounting for the wind. Improving the
wind model associated with these unicycle models is probably the best way to improve their
overall performance.
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Chapter 3

On-board Motion Planning for Small
UAVs

This chapter presents novel iterateive Guassian sampling stratagy for building a rapidly
exploring random tree that quicky converges to a near optimal path. Moreover, the sampling
strategy eliminates the need for a nearest neighbour method, which is usually the most
computationally expensive step of the RRT algorithm.

In addition to presenting the IGSRRT path planner, this chapter also describes several
other path planners which are commonly applied to UAV motion planning problems. Each
path planner is briefly described, and discussed with respect to its advantages and disadvan-
tages as a UAV motion planner.

3.1 Introduction to the Motion Planning Problem

The goal of a motion planner is to create a series of set points, or functions that define
a path for the vehicle or robot to follow[21]. If a path is also parametrized by time, then
it is a trajectory. For example, a roadway could be considered a path, while following a
vehicle along the runway would be a trajectory, since the location of the vehicle is defined
not only by the road, but by it’s position along the road, which is parametrized by time.
Figure 3.1 shows a typical vehicle motion planning problem. In this case, the small green
circle represents the starting location for the vehicle, and the larger orange circle represents
the desired end location, or goal configuration. The two red squares are obstacles in the
environment.
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Figure 3.1: World space for a typical vehicle motion planning problem.

In motion planning problems, world space refers to the physical world that makes up
the environment for the motion planning problem. The world space does not contain any
information about the vehicle or robot that needs to move with in it. The configuration
space (Cspace) on the other hand defines all of the possible positions and orientations a
vehicle could occupy in the world space. Consequentially, the Cspace usually has a larger
dimensionality than the world space. The number of parameters that are necessary to fully
define an objects position, orientations, and configuration is know as the degrees of freedom
(DOF) of the object. The dimensionality of the Cspace is equal to the vehicles DOF. In
the case of a point mass, the Cspace and the world space equivalent. Figure 3.2 shows
the configuration space for a dynamically unconstrained disk the size of the green starting
configuration. The dark grey area is not part of the vehicle’s Cspace, because it represents
the configurations that would cause a collision with the obstacles. The free space is every
part of the world space that is not occupied by obstacles.
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O

Figure 3.2: Configuration space for the previous environment, if the vehicle was a disk the
size of the green starting configuration, with no dynamic constraints.

A path that connects two points in the Cspace without colliding with any obstacles is
known as a feasible path. The complexity of finding a feasible path is a function of the number
of parameters necessary to define the obstacles in the environment, and the number of DOF
and the dynamic constraints of the vehicle. If the time required to solve the problem scales
as a polynomial with respect to those parameters, then it is said to be P-complex, which are
generally efficiently solvable. If the time required to verify a solution to the problem scales
as a polynomial with respect to those parameters then it is said to be NP-complex. Since
NP problems are only efficiently verified, solving an NP problem may require verifying many
potential solutions within a decision tree, which may take a very long time to compute. If
a problem can be shown to be as hard to solve as any NP problem, then it is said to be
NP-hard.

Motion planning algorithms are classified by their completeness. A complete algorithm
is one that always returns a solution if it exists, and terminates if no solution exists. To
be complete, it must satisfy both of those conditions such that it either finds a solution, or
proves that none exists. A path planning algorithm that only satisfies the first condition,
meaning it always returns a solution when one exists, but does not terminate when there
is no solution, is known as exact. Complete algorithms offer nice guarantees, but are often
slow, and even intractable for many problems. Heuristic algorithms, on the other hand, can
quickly return solutions that are close to the complete solution, but they are not guaranteed
to do so. Despite their lack of guarantees, heuristic algorithms are often used in robotics in
order to meet the time constraints imposed by dynamic constraints.

There are two weaker forms of completeness: resolution completeness and probabilistic
completeness. Both of these types of completeness deal with the limitations of numerical
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algorithms. Resolution completeness states that because of discretization of the Cspace, the
algorithm is not complete, but that algorithm asymptomatic approaches completeness as
the resolution of the discretization increases. Likewise, for algorithms that rely on random
sampling, probabilistic completeness states that as the number of samples increase, the chance
of finding a solution asymptomatic approaches one.

3.1.1 Typical Motion Planning Considerations

Motion planning comes in many forms, but in each case, the purpose is the same: to
provide an n-dimensional list of reference points or functions that can be referenced by
a lower level tracking controller. The performance of the combined motion planner and
tracking controller is highly dependent on the degree of coordination between them. Choosing
feasible set points reduces the transient effects that result as the tracking controller changes
from one reference to another. For example, a box pattern, like the green dashed path shown
in figure 3.3, is not a feasible path for an air plane because a plane cannot instantaneously
change its direction of travel at each corner. The outer blue path and inner red path, show
two prototypical transient behaviours.

Figure 3.3: Prototypical examples of a fixed wing aircraft tracking a box patter.

The outer blue path is the result of the aircraft tracking each line segment of the box
pattern to its full extent before switching to the next line segment. The inner red path is
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an example of a controller that begins tracking the next line segment before reaching the
end of the current line segment. In all cases, the dynamics of a fixed wing aircraft, prevent
the tracking controller from having zero cross-track error along the full length of each line
segment.

In some cases, the transient behaviour, like that shown in figure 3.3, can be inconsequen-
tial. For instance, if UAV sampling the air quality around a power plant followed the outer
blue path instead of the green box, it would have very little effect on the data it collected. On
the other hand, if a UAV was flying low around a city block and the green box represented
the center line of city streets, flying either the blue or red path could cause the UAV to crash
into a building.

Less sophisticated path planning algorithms may result in poorer tracking performance,
but they require less computing power, which means the UAV could carry a smaller payload,
and have a longer flight time.

3.1.2 Motion planning for Small UAVs

Motion planning algorithms are used in a variety of robotic applications and each case
has its own special considerations. Motion planning is used to plan paths for robotic end
effectors, which often operate in three dimensions, and may have several degrees of freedom
for each articulated joint. Likewise, ground vehicles are usually constrained to travel on a
two dimensional surface, which may be strictly passable or impassable at some points, or
have a gradient defining how passable the surface is at every point [11]. On the other hand,
other motion planning problems for ground vehicles are specifically about finding feasible
paths over extremely rough terrain [24].

It follows then that path planning for fixed wing UAVs would present its own unique
challanges. The most important constraint for any fixed wing aircraft is that it must maintain
a minimum airspeed. The minimum velocity constrain on fixed wing aircraft is a non-
holonomic constraint, which greatly increases the complexity of the motion planning problem.
In addition, it also imposes a constraint on the time it takes to solve the motion planning
problem. Since a fixed wing aircraft cannot stop, it must be able to find a feasible solution
quickly, before it runs into any of the constraints of the configuration space.

For small fixed wing UAVs, despite the fact that they are free to fly in three dimensions,
it is often desirable to find feasible paths within a single plane at constant altitude. Although
small UAVs are capable of changing their altitude, doing so is an inefficient use of fuel, and
cannot usually done with very high bandwidth.

For a UAV to maintain its airspeed and increase its altitude, it must increase its overall
energy, which is done by increasing the engine’s rpms. Engines and propellers for small
UAVs are usually selected to maximise flight time, which means that the two are selected
together such that they operate most efficiently at the aircraft aerodynamic cruising speed.
Increasing the rpms of the engine beyond its cruising means that the engine will not be
using its fuel as efficiently as possible, which means that the UAV will have a shorter flight
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duration. Although it is not necessary for a UAV to maintain a constant airspeed, the same
argument holds for any case when the desired airspeed is any value that does not maintain
the total energy of the aircraft.

For a UAV to maintain its airspeed and decrease its altitude, it must decrease its energy,
but since small UAVs do not have controllable air brakes, it must rely on passive forces, like
the aerodynamic drag on the airframe, to reduce its energy. Unfortunately, in every other
circumstance (ie. fuel efficiency, maximum airspeed, maneuverability) it is advantageous to
reduce, rather than increase, the drag forces on the aircraft. Similarly, the engine, which is
typically chosen for efficiency rather than power, can only add energy to the system so fast,
meaning that the aircraft can only gain altitude so quickly. Both of these saturation points
inherently limit the bandwidth of any altitude controller for small UAVs.

Efficiency and saturated energy controls limit small UAVs to flying at a nearly constant
altitude. Likewise, the same arguments can be made for maintaining a constant speed. The
arguments above are about controlling the total energy of the aircraft, whether it be potential
energy or kinetic energy, therefore it is also advantageous for small UAVs to maintain a
constant cruising speed.

3.2 Geometric Path Planning

Geometric path planning algorithms differentiate themselves from other motion planning
algorithms in that they do not account for the dynamic constraints of the vehicle. As it was
stated before, ignoring the vehicle’s dynamics will cause unwanted transient behaviour. If
the transient behaviour is unimportant, then a model of the vehicle’s environment, and the
parameters of the motion planning problem, can can be reduced to the set of parameters
that describes the physical geometry of the space surrounding the vehicle.

3.2.1 Skeleton Path Planning

Skeletal path planners reduce the configuration space of the vehicle to a network of one
dimensional paths, which reduces the motion planning problem to a simple graph search
problem. The skeletal motion planners are complete if they include every topologically
feasible path in the Cspace.

Visibility Graphs

Visibility graphs connect the distinct features of every obstacle to the distinct features
every other obstacle in the Cspace, and to the start and goal configurations. Connections
that would cause collisions are omitted. Figure 3.4 shows the visibility graph for a point
mass where the obstacles are represented as polytopes, and the vertices of each polytopes
are used as the features in the visibility graph.
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Figure 3.4: Visibility graph for a point mass. The dark, dashed line shows the shortest
feasible path.

Once the visibility graph has been generated, each edge of the graph can be given a weight,
and any number of graph search algorithms can be used to determine the best feasible path
through the Cspace. Assuming the features are chosen well, visibility graphs can be used to
find the shortest feasible euclidean path between the initial state and the goal state.

Visibility graphs will find the shortest path between two configurations, but it does
that by skirting the edge of any obstacle that impedes the direct path between the starting
configuration and the goal configuration. Because the path the visibility path generates does
not account for any dynamic constraints or the potential of any cross track error that may
exist while tracing the path, actually track the path generated by a visibility graph is likely
to cause a collision, but it does serve as a lower bound to any path planning problem. One
way to directly use the path generated by the visibility graph is to artificially increase the
size of the obstacles in the configuration space such that the resulting path leave a buffer
around each obstacle.

UAVs may use visibility graphs when the goal of the UAV is to get from one point to
another as quickly, or most efficiently as possible. If the obstacles, which could be buildings
or no fly zones, are sparsely populated, then a large buffer could be added around each
obstacle, and the UAVs would be able to safely track the paths generated by the visibility
graph. For receding horizon controllers, the visibility graph could be used to generate an
estimate of the cost-to-go from any vertex on the graph.

Voronoi Graphs

Voronoi graphs are another form of skeletal decomposition, and like visibility graphs, they
map features in the environment to a network of one dimensional paths. Unlike visibility
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graphs, Voronoi graphs do not attempt to find the shortest euclidean distance to the goal,
instead they create a network of paths that maximizes the distance from every obstacle.
Figure 3.5 shows a Voronoi graph of a constrained environment.

As with the visibility graphs, each edge of the Voronoi graph can be assigned a weight,
and any graph search algorithm can be used to find the best path. The bold dashed line in
3.5 shows the shortest path from the starting configuration to the goal configuration. In this
case, the vehicle was constrained to move to one of the vertices of it’s Voronoi cell.

Figure 3.5: Generalized Voronoi between two obstacles in a constrained space.

There are several methods for building Voronoi graphs. If the obstacles in the environ-
ment can be represented as points, then the Voronoi graph is simple a Voronoi diagram.
Voronoi diagrams can be computed by finding the hyperplane equidistant from two points
that is orthogonal to the vector connecting the two points.

UAVs may use Voronoi graphs to plan paths around adversarial agents, such as surface-
to-air missiles sites or radar towers. Voronoi graphs are also useful around closely spaced
obstacles, for instance city buildings, where it is advantageous to keep as large a buffer as
possible between the vehicle and any possible collision.

3.2.2 Potential Field

Potential field path planning algorithms provide fast way of computing an optimized path
from a starting configuration to a goal configuration, but they are not guaranteed to find
feasible solutions even when they exist. Potential fields are created by artificially creating a
repulsive force between the vehicle and obstacles and and attractive force towards the goal.
Potential fields are often explained as a statically charged particle moving through a field
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of similar charged particles towards a single particle of the opposite charge. The degree to
which each obstacle is ’charge’ can be weighted in order to plan paths the preferentially avoid
some obstacles over others. An example of a potential field is shown in figure 3.6. In this
example, for simplicity, each obstacle is represented as a point, but potential fields can easily
represent any shape. Paths through the potential field can be found by apply any gradient
descent algorithm.

Figure 3.6: A potential field for two point obstacles and a goal state. The potential between
each feature is inversely proportional to the distance from the vehicle.

Besides being very fast to compute, potential fields can be used to find paths around
obstacles, or adversarial agents, without having to apply hard constraints. Unfortunately, in
many situations potential graphs will have local minimums that prevent a simple gradient
decent path planner from reaching the goal configuration. An example of a local minimum
is shown in figure 3.7.
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Figure 3.7: A potential field with a local minimum created between to obstacles. A simple
gradient descent path planner would fail to find a feasible solution

Small UAVs may use potential field path planners because they require very little compu-
tation and can be solved very quickly. Simple range/bearing sensors can be used to calculate
the resultant force’ that that obstacle imposes on the vehicle. Potential field path planners
may also be used as a local path planner between a series of way points that were chosen by
a higher level path planner. Such heretical path planning schemes avoid the local minimum
problems that arise from using the potential field method alone.

3.2.3 Cell Decomposition

In some cases it is useful to partition the environment into discrete cells. Doing so is
called Cell Decomposition. Figure 3.8 shows how the example world is decomposed into
cells. To find a feasible path, series of connected cells must be found from the starting cell
to the goal cell. The path between the two points is the represented as a series of discrete
configurations such that each configuration represents one cell.
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Figure 3.8: Cell decomposition of the configuration space.

If any part of the cell is inhabited by an obstacle, then the entire cell must be omitted
from the Cspace of the vehicle. Finding a feasible path from the start to the goal can be
done many ways, some of which will be discuses later, but an exhaustive search of the grid
will always result in a feasible path if it exist, or otherwise prove that no path exist, but only
if the resolution of the grid is fine enough. In other words, cell decomposition has resolution
completeness. Cell decomposition is an important step in many numerical path planners.

3.3 Optimal Path Planning

When the goal of the path planning algorithm is not just to find a feasible path from
start to goal configuration, but to find, in some sense, the best path, then is is necessary
to run some type of optimization algorithm. Except for relatively simple Cspaces complete
optimal path planning algorithms are very costly to solve. For complex environments, if
solutions must be found quickly, then it is often necessary to use heuristic algorithms that
approximates the optimal solution. In any case, the goal of an optimal path planner is to
minimize some cost, or maximize some reward, that accumulates along the path. In the case
of a UAV, it might be to minimize the chance of detection by advisories, or to maximize the
chance of detecting targets[51].

3.3.1 A* Search

A* gearch is an optimal tree search algorithm with resolution completeness. The first
step of an A* path planning algorithm, is to apply cell decomposition to the Cspace. Then
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using an admissible heuristic, the algorithm estimates the cost-to-go from each cell, meaning
it estimates the cost to reach the goal configuration from the current configuration. The
cost-to-go from cell n is h(n). Any heuristic that does not over estimate the actual cost-to-
go is admissible. In other words, h(n) is a lower bound on the cost of reaching the goal state
from cell n. As the tree search progresses it calculates the actual cost, g(n) of reaching cell
n. Therefore, the estimated cost of any branch, or path, is given by equation 3.1.

f(n) = g(n) + h(n) (3.1)

The tree search continues by expanding from which ever cell has the lowest estimated path
cost, f(n) until the goal is reached, and no other cell has a lower estimated cost. The speed
and resolution completeness of A* path planning makes it a good choice for rough optimal
path planning for small UAVs. Unfortunatly, since the paths generated by A* search are not
dynamically constrained, the cell size must be large enough that the UAV can track from
one cell to another despite its dynamic constraints.

3.3.2 Random Sampling

Many path planning problems have large enough dimensionality and complexity that it
would be computationally impossible to search though a cell decomposition that has a high
enough resolution to be complete. So, rather than systematically partitioning the Cspace in
to regularly spaced nodes, nodes are created by randomly selecting configurations from the
Cspace. Then as before, a tree search algorithm finds the path that is closest to the optimal
path.

Probabilistic Roadmaps

A probabilistic roadmap is created by randomly sampling the Cspace n times, in order
to create n nodes. Those nodes are then each connected to there nearest feasible neighbour,
which results in one or more trees. More than one tree results when two trees cannot find
a feasible path between any of their nodes. In that case, more samples of the Cspace can
be taken in the space between the two trees in an attempt to find a feasible path between
them. An example of a probabilistic roadmap is shown in figure 3.9.
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Figure 3.9: Cell decomposition of the configuration space.

Probabilistic roadmaps are very efficient at finding feasible paths in high dimensional,
complex environments|[6][26]. Though they are probabilisticly complete, they are not good
at finding paths through narrow passages. Connecting the graph through a narrow passage
requires a node to be randomly sampled near the inlet to the passage, which without special
consideration, has a very low probability of being sampled, just as any other particular point
has a low probability of being sampled.

Since node are sampled randomly from the Cspace, there is no consideration given for
dynamic constraints, which means even just because a feasible path is found does not mean
it can be tracked. Never the less some work has been done to extend probabilistic road maps
to work with non-holonomic vehicles, but those approaches usually use a two stage approach
that adjusts for constraints with a smoothing function that runs after the road map has been
generated[48][49][39].

Rapidly Exploring Random Trees

Rapidly Exploring Random Trees (RRTS) are like probabilistic roadmaps in that they
randomly sample the Cspace, but unlike probabilistic roadmaps they only sample nodes that
are feasible given a vehicle’s dynamic constraints. RRTs are an extension of probabilistic
roadmaps and are specifically meant to handle path planning for robots with kinodynamic,
non-holonomic, constraints, like UAVs[31][27][30].

RRTs are created by randomly sampling points in the configuration space, finding the
nearest existing node to the randomly sampled configuration, then expanding the graph from
the nearest node towards the sampled configuration, and finally creating a new node close to
the sampled configuration. The new node is known to be dynamically feasible because of the
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way the graph is expanded. The new node is found by integrating a dynamically constrained
model over a fixed period of time, using a control action that is selected to 'steer’ the vehicle
towards the sampled configuration. For any dynamic model given by & = f(x,u) a RRT can
be created by sampling the configuration space of the vehicle, 4,4, and expanding in that
direction. Algorithm 1 details the original algorithm for generating an RRT [29].

Algorithm 1 Original algorithm for generating an RRT

1: procedure GENERATE_RRT(Zin;t, I, At)

2 T.init(Tim);

3 for k=1 to K do

4: Trand < RANDOM_STATE();
5: Tnear < NEAREST NEIGHBOR(%, 4.4, T); > According to the metric p
6-
7
8
9

u < SELECT_INPUT (Z,and; Tnear )3
Tnew — NEW_STATE(Zpcar, u, At);
T.add_vertex(Tpew);
: T.add_edge(Tnear; Tnew, U);
10: end for
11: return 7T’
12: end procedure

The basic algorythm that builds the RRT tree 7" is composed of four main functions. The
function RANDOM_STATE() returns a randomly sampled configuration from the Cspace of
the vehicle. The sample may be uniformly random or biased towards certain configurations.
Previous work has shown that for holonomic models, selecting sample configurations biased
towards large regions of the voronoi diagram created by the existing nodes in 7', produces a
RRT with uniformly distributed nodes in Cspace.

The next two functions, NEAREST_NEIGHBOR() and SELECT_INPUT(), are respon-
sible for finding a path from the existing nodes in 7" to the randomly sampled configuration
Trand- These two steps are the most computational intensive part of the RRT algorithm.
Finding the exact nearest node in T" to x,4,q requires calculating the exact path from every
node in 7" to x,qnq, which could be up to k times more difficult than the original problem.
Likewise, once the nearest node is found calculating the control action u that will 'steer’ ,cqr
t0 Xrang 18 just as difficult again as the original problem. Consequently, simple heuristics,
like those discussed in the geometric path planning section, must be used to estimate both
functions in order for the algorithm to run efficiently.

The NEAREST _NEIGHBOR() function uses the metric p to calculate a scaler value
that estimates which node in 7' is nearest to x,.,q. The metric p could also account for
other parameters besides just the distance required to travel from 71" to ,4,q, such as fuel
consumption, and control effort. However, in most cases, for efficiency, p is typical just the
euclidean distance.
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As discussed before, finding the control action that will bring a non-holonomic, kino-
dynamic model from one configuration state to another is an NP-hard problem, therefore
SELECT_INPUT() will not return the exact control input that will drive the vehicle from
Tnear 1O Trang, but rather an approximation that is likely to drive the vehicle close to x,qnq.
Many different heuristics can be used to approximate u.

NEW_STATE then takes the control u that is returned by SELECT_INPUT() and returns
a new node T,e,, which is added to the tree T. SELECT_INPUT() generates X,e, by
integrating the model # = f(z,u) over At. Calculating x,., by integrating over the model
of the system ensures that regardless of the u returned by SELECT _INPUT(), the new node
in the graph, z,.,, will be dynamically feasible. This method of inherently accounting for
dynamic constraints is what makes the RRT motion planner a good choice for non-holonomic,
kinodynamically constrained sytems.

Obstacle Avoidance with RRT's

In addition to being well suited to planning paths subject to non-holonomic and kinody-
namic constraints, RRT are also very good at planning paths around non-convex, and even
time varying obstacles [20][34]. Their random nature precludes them from becoming stuck
in local minimums like naive potential field algorithms. In the presents of obstacles, as the
function NEW_STATE() integrates the model forward in time it also checks for any collisions
along the way. If NEW_STATE() detects a collision, then the sampled configuration z,q,q is
rejected, and the loop returns to the beginning where a new sample is taken.

3.4 Planning UAV Paths that Optimize Image Quality

One of the main contributions of this thesis is a novel approach towards controlling small
UAVS to optimize the quality of the image that is recorded by an on-board cameras. The
first step in optimizing the quality of the image captured by the UAV is controlling the UAV
to a state that puts the target in the image. Once the target is in the image, a number
of other factors can the considered to improve the image. For instance, often the most
important aspect of an image is the resolution of the target that the image has captured.
Higher resolution images contain more information about the target. Other factors, such as
optical distortion, glare, occlusions, and blur can all have a large impact on the quality of
the image.

The path planner presented here attempts to solve the optimal image collection problem
in two steps by first finding a set of feasible paths, and then selecting the optimal path from
the set of feasible paths. The first step is to find a path that puts the target within the
UAV’s sensor’s field of view, here forward referred to as the UAV’s field of view. If the path
planner samples many paths that put the target within the UAV’s field of view, then from
that set of feasible paths, the path planner returns the path with the least cost according to
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a given cost function, which is chosen to optimize the quality of the image.

One aspect of the path planning problem that differs from most is that the goal is not
to reach one particular state. If the goal state of this path planner was defined as any
configuration that puts the UAV’s field of view on the target, the path planning problem is
not just to reach that state, but rather to persistantly stay within the bounds of that goal
space.

The problem of keeping the target path within the sensors field of view is akin to restrict-
ing the UAVs free Cspace to those configurations that keep the target within the sensor’s
field of view. Consequently, finding a path that keep the sensor on the target, is reduced to
the problem of finding a feasible path through the "tunnel’ that is created by restricting the
Cspace. Though the actual 'tunnel’ of free space is multi dimensional figure 3.10 attempts
to depict one two dimensional slice.

Figure 3.10: A two dimentional slice of the tunnel of free Cspace created by restricting the
Cspace to configurations that keep the target within a sensor’s feild of view.

In figure 3.10, the UAV’s yaw, roll, and latitude have been fixed. The remaining free
Cspace in the longitudinal and vertical directions is shown by the green triangle connecting
the UAVs. In the actual problem presented here the UAV is restricted to a constant altitude,
leaving it only four degrees of freedom (z,y, 1, @)
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3.4.1 Relationship between the UAVs Lateral Displacement of its
Sensor Footprint and its Turn Rate

For the small the UAVs presented here, the only control input is the UAVs desired
turnrate. Commanding a desired turn rate is the only way to control the lateral motion of
the UAV, which is necessary to steer the UAV towards any desired target. Unfortunately,
as shown in equation 3.2 the turn rate of the aircraft also directly effects the aircraft’s roll
angle, which greatly effects the lateral displacement of the UAV’s sensor footprint.

¢:tmrlzf (3.2)
)

Where the lateral position, relative to the position of the UAV, of the sensor footprint is

given by equation 3.3. Equation 3.3 assumes a body fixed downward looking field of view.

y = —ztan¢ (3.3)

By substituting equation 3.2 into equation 3.3, the resulting equiation 3.4 makes it ap-
parent that the lateral displacement of the UAV’s sensor footprint is inversely proportional
to the UAV’s turn-rate, which means that when the UAV steers towards the target, the field
of view moves away from the target.

zV .
Y= —71# (3.4)

Since the UAV must sometimes steer towards the target path in order to eventually put
the target within its field of view, it must at times move the sensor footprint away from the
target, which means finding a feasible path is not always possible.

3.4.2 Approximating the Distance Between two UAV Configura-
tions

A major requirement for just about any path planner, is the ability to approximate
the distance between two independent configurations [22]. That distance function may be
used in several ways including a metric to select the shortest path in a tree search, graph
construction, or as a heuristic for the cost-to-go. In any case, the distance between two
independent configurations is usually an approximation because finding the exact between
two configurations would be just as hard as the original path planning problem. Often times
the accuracy of the distance approximation can have a large effect on the efficiency of the
planner.

In many cases, it is sufficient just to use the euclidean distance between the two states.
Even for non-holonomic vehicles like fixed wing UAVs, this approximation is often valid, but a
better approximation of the distance a UAV travels to get from one configuration to another is
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given by the Dubin’s distance [13]. The Dubin’s distance between two points is the minimum
distance between two states of a unicycle model. Every Dubin’s path is composed of an initial
maximum turn-rate turn, a final maximum turn-rate turn, and either a straight line or a
third maximum turn-rate turn connecting the initial and final turns. Using the euclidean
distance to approximating the distance between two UAV configuration is appropriate when
the straight path of the Dubin’s distance between those two configurations is much greater
than both the initial and final turns. Another way of saying that, is that approximating the
distance between two UAV configurations is appropriate when the two configurations are
very far apart in the world space.

Figure 3.11: Dubin’s distance compared to euclidean distance.

Figure 3.11 show an extreme case of how euclidean approximations can be very inaccurate
over short distances. For probabilistic road maps and RRT, which use distance approxima-
tions to find the nearest nodes to random samples, bad distance functions, like this, make
it hard to grow trees with a high density of nodes, which makes it hard to achieve prob-
abilistic completeness. Because of their non-holonomic constraints, nodes which are very
close together by euclidean distance, cannot typically be connected by a short feasible path.
As a result the NEW_STATE() function in algorithm 1 does not generate a new node near
the sampled node, which means that the RRT algorithm is incapable of generating a well
distributed tree.

3.5 Solving the Field of View Path Planning Problem
with an RRT

Finding a feasible path that keeps a target path within the field of view of a fixed
camera on board a UAV is an NP-hard problem [20], but one that is well suited to the RRT
framework. Unlike the original problem that RRTs were developed to address, this problem
does not ask the RRT to find a feasible path through a complex environment in order to
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reach a goal state, but rather to find any feasible path, or better yet a set of feasible paths
that stays within a complex goal state for as long as possible.

Eventually this path planner will be re-described in a receding horizon context, but for
now the only important aspect of that problem is that the distribution of the RRT is not
just dependent on the current configuration of the UAV, but that the distribution of the
RRT is also parametrized by time. Previous receding horizon RRT path planners have
introduced such notions as iterative planning and committed trajectories, which address
how the configuration space is continually sampled at every iteration of the planner[44].
Accordingly, this planner gives greater weight to the distribution of the states n steps along
each path, as the n'" step will have the greatest effect on the optimal configuration of the
UAV in the future.

While random sampling is what gives RRT the ability to find paths through complicated,
non-convex Cspaces, sampling uniformly over the whole configuration space is often ineffi-
cient, and a number of algorithms have proposed more efficient sampling strategies. This
planner build on the idea that it is more efficient to sample around known good configurations
by using a guided Gaussian search algorithm.

Unlike most other UAV path planning problems, the solution to this problem is not actu-
ally an aircraft path, it is a sensor path for a camera fixed to a UAV. As it was stated before,
the path of the sensor footprint is hard to control largely because it is inversely proportional
to the turn rate of the UAV. It is also hard to plan because small changes in the UAV’s roll
angle have a drastic impact on the lateral position of the sensor footprint. Consequently, it
is necessary to have a very dense sampling algorithm to account for configurations which are
close together in the world space but are very different in the Cspace, due to different roll
angles.

3.5.1 Generating an RRT with Iterative Gaussian Sampling

This planning algorithm addresses two main issues with the standard RRT algorithm,
namely inefficient sampling and costly heuristic distance functions. The results presented
here show that uniform random sampling in the control space produces a Gaussian distri-
bution in the Cspace. As other approaches have shown, biased, Gaussian sampling around
tight constraints can drastically improve performance[6]. The advantage of this sampling
strategy is that it does not require the most computationally costly function of the RRT
algorithm, namely the NEAREST_NEIGHBOUR() function.

It is well know that the NEAREST NEIGHBOUR() function is the key bottle necks
in the RRT algorithm [31]. This is especially true of path planning for UAVs, which as
stated before must use more computationally costly distance metrics like Dubin’s distance
algorithms. Likewise, for relatively free configuration spaces that are free of non-convex
obstacles, it is inefficient to sample uniformly across the Cspace. One common method it
to bias the sample distribution around locations that are likely to generate good paths. By
uniformly sampling in the control space and integrating every branch forward n steps into
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the future, this algorithm produces a Gaussian distribution around an a priori suggested
path. A key feature of this sampling strategy is that it produces a Gaussian distribution
without having to run any NEAREST_NEIGHBOUR() function. Algorithm 2 details how
to generating an RRT with Itereative Gaussian Sampling (IGS).

Algorithm 2 Generating an RRT with Itereative Gaussian Sampling
1: procedure GENERATE_RRT(Xipit, Winit, 1<, At)
2 Wpest — Winti >u=[u...u,| is a sequence of control inputs
3 Jpest < PATH_COST (x;pit, u;nit)
4 for k=1 to K do
5: Wang ¢ RANDOM_CONTROL (upes);
6
7
8
9

Jromd < PATH,COST(szt, umnd)
if Jrand < Jbest then
Upest <~ Urand
end if
10: end for
11: return ug.,
12: end procedure

There are two main functions in algorithm 2. The first RANDOM_CONTROL() generates
a vector of controls of length n that samples uniformly from the control space, which in
this case is the set of desired turn-rate ranging from ., t0 V... Ever path that the
RRT algorithm generates is fully parametrized by the UAVs initial configuration x;,;;, and
the vector u that is integrated to generate it. Therefore it is unnecessary to store the
entire distribution of nodes, as long as the vector U that generated the best path is stored.
RANDOM_CONTROL() takes the previous best path as an input and uses it to generate
random paths that are uniformly distributed around the previous best path.

The PATH_COST() function calculates the cost of each node along the path parametrized
by X and u. The PATH_COST() accounts for the bounds of the UAV’s field of view by
dramatically increasing the cost of paths that do not put the target within the UAV’s field
of view. The PATH_COST() function also calculates the cost of any other image quality
parameters such as distance from the center of the sensor footprint, view angle, and distance
from the target. The PATH_COST() uses a model of the UAV to integrate over the control
sequence U to estimate the future cost of any potential path.

Algorithm 2 is extremely memory efficient and simple to implement. Since, generating
a Gaussian distribution does not require referencing the current distribution of nodes, it is
unnecessary to store the entire tree. Furthermore each path, including the best path, is
completely parametrized by the vector of control inputs u. The only cost associated with
not storing the full graph, is slight increase in computation since some of the initial nodes,
which may be close in the Cspace, are recomputed instead of referenced. On the the other
hand, by not referencing, and growing the tree from just a few initial nodes, the resolution of
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the graph just ahead of the UAV is very high, which drives the planner towards probabilistic
completeness and the optimal solution.

3.5.2 Uniform vs Gaussian Distribution of Nodes

As was stated before, this discussion focuses on the distribution of nodes at the end of
each path. Since this is a receding horizon path planner the Cspaces is actually sampled many
times throughout the planning horizon of the vehicle, but only one instance of the single-
query RRT is discussed here. Since the n'” node in the path has the greatest opportunity
to explore the Cspace ahead of the vehicle, it has a large impact on the head of the UAV’s
path. Therefore the remainder of this discussion will focus on the distribution of the n'*
node.

Uniform Distribution of Nodes

Uniformly sampling the Cspace of a UAV is difficult mostly because of the challenge of
finding a NEAREST NEIGHBOUR() function that accurately chooses which node to expand
in the direction of the sampled configuration. The uniform distribution used in the following
simulations was constructed off-line with rejection sampling. A uniform distribution of paths
in the world space is shown in figure 3.12.



CHAPTER 3. ON-BOARD MOTION PLANNING FOR SMALL UAVS 49

Uniform Distribution of Paths
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Figure 3.12: A uniform distribution of paths in the world space.

It is difficult to show the four degree of freedom Cspace in just two dimensions, but
in figure 3.12 all four dimensions are represented. The x and y axes represent the UAV’s
latitude and longitude. The yaw angle of the UAV is equal to the tangent line of any point
along the UAV’s path. And finally, the roll angle of the UAV is shown at every node on a
color scale ranging from blue to red. Even so, it is still difficult to see the uniformity of the
distribution. Figure 3.13 attempts to simplify this picture even more by looking at only the
n' node along each path.
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Two Dimensional Histogram Comparing Direction Traveled vs Roll Angle
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Figure 3.13: A near uniform distribution of nodes

In this two dimensional histogram, one axis is the roll angle of the UAV at the n'* node,
while the second axis is the angle the UAV has travelled from the initial configuration. In
the world space shown in figure 3.12, the path angle can be visualized as the angle between
a y-axis, and the vector pointing from Xj,; to the last node of the path. The mathmatical
representation of this metric is given by the equation 3.5.

1 TnY — Tinit-Y
Tn X — Tinit-L

l = tan — ZE”ut’l?D (35)

The path angle tries to capture the displacement of the UAV in the world space, along
with a rough approximation of the yaw angle of the aircraft. This metric only makes sense
because of the short time horizon presented here. metric assumes that in order for the UAV
to fly far to the left or right, the mean turn-rate, must have been to either the left or the
right, which would result in a final yaw angle that is either biased to the left or right. Figure
3.13 shows that n* nodes are approximately uniformly distributed for path angles between
+1 radian.



CHAPTER 3. ON-BOARD MOTION PLANNING FOR SMALL UAVS 51

Gaussian Distribution of Nodes

Similar to figure 3.12, figure 3.14 shows a Gaussian distribution on paths. As stated in
algorithm 2 the Gaussian distribution lies around and initial guess of the best path, which,
in this case, for the purposes of comparison to the uniform distribution is a straight line.

Distribution of Paths
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Figure 3.14: A Gaussian distribution of paths in the world space.

Figure 3.15 shows the same two dimensional histogram of roll angle vs path angle as
figure 3.13. In this case, it is apparent that the roll angle of the n'* node is indeed uniform,
which is to be expected since the desired turn rate, and by extension roll angle, for that node
is selected uniformly from the control space.
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Two Dimensional Histogram Comparing Direction Traveled vs Roll Angle
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Figure 3.15: A Gaussian distribution of nodes

It also looks like the path angle is normally distributed around a mean of zero. The
Central Limit Theorem supports this observation since the final lateral displacement of the
UAV is subject to a sequence of independent identically distributed random variables, namely
the uniformly sampled sequence of turn-rates. The histogram in figure 3.16 confirms this by
fitting a Gaussian curve to the path angle data presented in figure 3.15.
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Histogram of Path Angles with a Gaussian Fitting Curve
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Figure 3.16: A Gaussian distribution of nodes

Uniform vs Gaussian Performance

There has been substantial work done to show that uniformly distributed RRTs are prob-
abilist complete. Previous work has shown that an RRT with a uniform distribution of nodes
will find a feasible path with a probababolity that exponentially approaches one[20]. This
section aims to demonstrate by Monte Carlo simulation that Iterative Gaussian Sampling,
as described in algorithm 2 can to achieve a significantly lower cost than uniform sampling.

The Monty Carlo simulations were conducted by first randomly generating a feasible
target path in the configuration space. The target paths were generated uniformly across
the Cspace. The target paths were generated by integrating a give control sequence over
a standard period of time, so it is known that there is atleast one feasible solution. Then
both the uniform RRT and Gaussian RRT attempt to find the UAV path that generates the
lowest cost. The lowest cost path in this case is path that keeps the target path as close
as possible to the center of the UAV’s sensor footprint. Specifically, it is the mean squared
cross-track error.

For a given path length n a number of simulations were run, each time with a different
target path. The Standard Error of the Mean is used to qualify the results of the Monte
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Carlo simulations. The Standard Error of the Mean is used to generate a confidence interval
that bounds the actual average mean squared cross-track error of each path planner. Figure
3.17 shows how the standard error of the sample set decreases as the number of Monte Carlo

simulations increase.

Standard Error of the Mean
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Figure 3.17: As the number of Monte Carlo simulations increase, the standard error
decreases.

Using the Standard Error to qualify the Monte Carlo results means that the Monte
Carlo estimates of the average mean squared cross-track error of each RRT algorithm can be
bounded by an interval of 95% confidence. So given the number of simulations run, it can
be said with 95% confidence that the true average mean squared cross-track error of each
algorithm is with in a bounded interval of the sample average of mean squared cross-track
errors.

Figure 3.18 shows the average mean cross-track error generated by both RRT algorithms.
From this graph it is obvious that for the same number of sampled nodes, the Iterative
Gaussian Sampling method generates paths that keep the target path several times closer
to the center of the UAV’s field of view far better than the uniform sampling method.
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Monte Carlo Comparison of Uniform vs A Priori Gaussian Sampling

& 350 . . : : : : . ;
E ------ Uniform Sampling
o 300F | — — Gaussian Sampling 2.
2
2 ;
5 2801 I §
& i
: 3
2 200} I i
E ol
& 150} I’"IP_‘I |
3 i
= 100t T v i
- 1 v
= o
% 50 }J}’}; |
@ F,I—~I/
g 1=

0 L L 1 I

a 10 12 14 16 18 20 22 24 26
Seconds Planned into the Future

Figure 3.18: Results Average error of paths generated by uniformly distributed and normaly
distributed RRTs based on Monte Carol simulations.

Figure 3.18 shows the performance of the iterative Gaussian sampling method with no a
priori guess of the best path. With an a priori guess of the best a path, the average mean
cross-track error is halved again (see figure 3.19)
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Monte Carlo Comparison of Uniform vs A Priori Gaussian Sampling
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Figure 3.19: Improvement to the Iterative Gaussian Sampling RRT with a priori knowledge.

In figure 3.19 the IGS-RRT is given an a priori guess of where the best path may lie in
the Cspace. Since, this is a receding horizon path planner, the IGS-RRT uses the previous
path planning solution as a best guess for the next planning step. Since the RRT path
planner produces a uniform distribution of nodes, it does not have an inherent method of
using information from the previous iteration of planning. As a result, figure 3.20 shows that
by using the information learned in the previous planning step the IGS-RRT is able to plan
far more optimal paths than the traditional RRT algorithm.
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Monte Carlo Comparison of Uniform vs A Priori Gaussian Sampling
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Figure 3.20: Improvement to the Iterative Gaussian Sampling RRT with a priori knowledge.

3.6 Conclusions

This chapter presented several common motion planners along with a novel iterative
Gaussian sampling strategy for the rapidly exploring random tree algorithm. The relative
advantages and disadvantages of each motion planner were discussed with respect to motion
planning for small UAVs. In particular, the chapter discussed the difference between fast
motion planning, and kinodynamic motion planning. Data from the Monte Carol simulations
showed that, given the same number of samples, the IGS-RRT generated paths that cost,
on average, nearly ten times less than paths generated by a uniform sampling strategy. The
data also showed that the IGS-RRT algorithm was able to generate a Gaussian distribution
of nodes without calling a 'nearest neighbour’ function, which significantly reduces the com-
putational complexity of the algorithm. Lastly, the IGS-RRT showed that by initializing the
tree with the 'best path’ from the last query, it essentially continues to iterate on the same
tree, and returning solutions like an anytime algorithm.
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Chapter 4

Turn-rate Controllers for Small UAVs

This chapter presents a novel nonliner model predictive controller for small UAVs that
that solves the nonminimum phase problem of tracking a desired path with a UAV’s sensor
footprint. The NMPC receding horizon controller uses the kinodynamic model, and the
iterative Gaussian sampling RRT algorithm discussed in the previous chapters to rapidly
converge to a dynamically feasible, near optimal path. Then it uses the turn-rates that
parametrizes the near optimal path to steer the UAV.

For comparison, a purely feedforward controller, a simple PID controller, and a spatial
sliding mode controller are also presented. Although none of these controllers are capable
of solving the nonminimum phase sensor tracking problem, a degenerate minimum phase
tracking problem is considered so that their performance can be compared to the NMPC
controller’s performance.

Finally, hardware-in-the-loop data is presented to show that in the highest fidelity com-
parison, the NMPC controller is capable of achieving nominally the same tracking perfor-
mance as the spatial sliding mode controller, for the degenerate minimum phase tracking
problem.

4.1 Introduction

The goal of a typical UAV autopilot is to control the position of the UAV by either having
it fly toward a specific point, or along a specific route. In contrast, the goal of the autopilot
presented here is to control the position of a UAV’s sensor footprint to track either a specific
point or path. In this context, a UAV’s sensor footprint is defined as the projection of the
maximum field of view of any sensor, namely a camera, from the aircraft to the ground. For
a UAV with a fixed camera, the sensor footprint of the UAV would simply be the camera’s
field of view projected onto the the ground. For a UAV with a gimballed camera, the sensor
footprint of the UAV would be the union of all of the camera’s sensor footprint’s modulated
across the gimbal’s angles.
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The goal of this controller is not to control just the position of the UAV, but it’s attitude
as well. What makes this controller unique is that the error it measures is the cross-track error
of the sensor footprint rather than the tracking error of the UAV. The data presented here
will attempt to show that directly controlling the error of the position of the sensor footprint
rather than the position of UAV, improves the quality of the data collected, specifically
images from a fixed camera.

4.1.1 Motivation

The goal of this controller is to increase the autonomous capabilities of small UAVs so
that they are capable of reliably carrying out image and data collection with less supervision.
The plurality of UAVs are small hand launched vehicles with minimal autonomy. They are
many orders of magnitude cheaper than larger UAVs like the Predator and Global Hawk, but
they have significantly less recognisances capabilities, most notably, UAVs like the Raven do
not have a gimballed camera. The Predator and Global Hawk have gimbals that give them
the capability of accurately placing their sensor footprint on just about any target within
range regardless of their relative position and attitude to the target. The Raven on the other
hand, must fly specific patterns around the target that will hopefully put its fixed sensor
footprint on the target. At this point, their ability to reliably position their sensor footprint
on a target is quite limited, but if that capability was improved, they would be capable of
accomplishing the same missions as larger UAVs at a fraction of the cost.

4.1.2 Problem Statement

Consider a UAV with a body fixed downward looking camera. The position of the UAV
is represented as (x,y) and the yaw and roll of the UAV are respectively ¢ and ¢. Figure
4.1 shows that the position of the center of the UAV’s sensor footprint, (xs,ys), is simply
the intersection of the body fixed z-axis with the ground plane. If the goal of the UAV is to
keep its sensor footprint on a desired target, then the goal of the sensor footprint controller
is to minimizes the error e = (zs,ys) — f((xs, ys))
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A1,

Figure 4.1: The geometry of the sensor footprint of a body fixed downward looking camera

Figure 4.1 shows the difference between the UAVs position and the position of the sensor
footprint, which is:

oxs = ztang@siny
oy, = —ztan¢cosy (4.1)

Substituting the coordinated turn assumption,

.
tan ¢ = —w
g
into difference equations 4.1 yeilds:
ox, = VY sin
g .
%
0ys = _AY cos (4.2)
g

The equation for the center of the sensor footprint is therefore:
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Ts :x—i—C’@bsin@/)
{ ys =y — Ccosy) (43)

Where C = %.

4.1.3 The Control Challenge

The challenge of using a UAV’s turnrate to control its sensor footprint is that the vehicle’s
lateral control is inversely proportional to the lateral displacement of its sensor footprint.
In other words, inorder to control the sensor footprint to go to the left, it must first be
commanded to the right. In a linear system, that type of behaviour would be indicative of
a non-minimum phase system, meaning that the system has zeros in the right half plane.
Since the idea of having zero’s in the right half plane does not easily extend to non-linear
systems, it is difficult to extend that concept to this problem, but looking at the system’s
zero-dynamics can give similar incite into the behaviour of the system[47].

The relative degree of a non-linear system is given by the number of times the output
of the system must be differentiated before it becomes a function of the control input. For
instance, if the output of a unicycle was the position of its sensor footprint, then the system
would have a relative degree of zero, since the output is a direct function of the input.

e = ys — f2,) = (y — Cucosy) — f(z + Cusing) = g(x, u) (4.4)

Whenever the relative degree of a system is not equal to the order of the system some of
the dynamics of the system will be 'unobservable’. Those unobservable dynamics are refered
to as the internal dynamics of the system. If those internal dynamics are at least locally
stable about a desired trajectory, then a number of feedback linearisation techniques can be
used to control the system. If not, then perfect tracking is most likely not possible, and the
goal of the controller should only be to minimize, if not bound, the tracking error[47].

The stability of the internal dynamics about the desired trajectory can be found by
looking at the system’s zero-dymanics. The zero-dynamics of a system describe the internal
dynamics while the control is driving the error to zero.

Consider a UAV modeled as a kinematic unicycle, with a fixed downward looking camera,
and a simple desired sensor path y¢ = f(z,) = x,. Then the equations for its sensor footprint
given by the equations 4.3, and the output error would be:

ezys_yg:ys_xs (4.5)

Then substituting equations 4.3 into equation 4.5 gives:

e=1ys— f(xs) = (y — Cucost)) — (x + Cusin) (4.6)

Since the relative degree of the system is zero, then the error can be controlled directly
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by the input. Using feedback linearisation, the controller that achieves perfect tracking is
simply the solution to the equation:

e=1ys— f(zs) = (y — Cucosyp) — (x 4+ Cusing)) =0 (4.7)
or e
‘= C(cost +sinv)) (48)

Figure 4.2 shows the error that the feedback linearisation control law 4.8 can achieve.
Though the error is, for the most part, reduced to zero, there is a large difference between
the relative degree of the system and the actual third order model of the UAV, which means
there are unobserved internal dynamics.
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Figure 4.2: Error based on feedback linearisation.

If it were not for the numerical limitations of the simulation, the error would be uniformly
zero, which means that the internal dynamics of this system are also the zero-dynamics. For
the most part the error is controlled to zero, but the occasional near infinite spikes in error
hint that zero-dynamics of the system may be unstable. Looking at the control input in
figure 4.3 it is clear that the zero-dynamics of the system are indeed unstable.
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Figure 4.3: Control of the feedback linearisation law.

In order to achieve perfect tracking, figure 4.3 shows that the system must use infinite
control. Figure 4.3 shows that to numerical precision, the bank angle of the aircraft switches
with infinite frequency between a positive and negative 90 degree bank angle, which corre-
sponds to an infinite turn-rate to the left and right. Figure 4.4 shows the path of a simulated
UAYV using this control strategy.
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Figure 4.4: Simulation of a UAV using feedback linearisation.

As one would expect, even thought the sensor path is tracked perfectly, the UAV does not
behave as intended. The results of this simulation confirm that this system is in fact a non-
minimum phase, non-linear system as defined by [47]. As a result, except for a few degenerate
examples, any controller that attempts to achieve perfect tracking will be unstable.

4.2 Myopic Solutions

Myopic solutions are the set of controllers that ’greedily’ attempt to minimize the output
error at a given instant without regard for any potential future error. By definition, myopic
controllers that are applied to the sensor footprint control problem described in section 4.1.2
will cause the system to be unstable. On the other hand, many myopic solutions are easy
to implement, and computational inexpensive. But, in order to apply any myopic controller
to the sensor footprint tracking problem, the problem must be redefined to one which is
asymptomatically minimum phase.

One way to do that, is to find the optimal aircraft path that when followed exactly, will
minimized the error between the sensor footprint and the desired target. Unfortunately, as
it was discussed in chapter 3, finding that optimal aircraft path is NP-hard. But given that
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the tracking problem is non-minimum phase, and that therefore the goal of the controller is
not perfect tracking, but only to minimize the error, a near optimal solution to the tracking
problem will suffice.

There are a number of ways of translating a sensor path into an aircraft path, some of
them are presented in chapter 3, but assuming the aircraft path is near optimal, tracking
it perfectly should, by definition, also cause the UAV’s sensor footprint to track the desired
sensor path. This assumption, however, relies on the principle that the aircraft path can be
tracked perfectly, which for any real system is impossible, if for no other reason then that the
running time of the controller would introduce delay, which would result in tracking error.

The danger of assuming that perfect tracking of the aircraft path results in perfect track-
ing of the sensor path is in making the further assumption that minor tracking errors of the
aircraft path result in minor tracking errors of the sensor path, which is not true. Take,
for instance the projected sensor path of the sinusoidal aircraft path in figure 4.5. If an
aircraft were to fly straight with its wings level down the center of the aircraft path, the
mean squared cross track error of the aircraft path would only be 49 m?, while the mean
squared cross track error of the sensor path would be 1161 m?.

Mean Squared Errors: Aircraft Path Err=49, Sensor Path Err=1161
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Figure 4.5: Example of nominally bad aircraft tracking, but very bad sensor tracking.

While this example may be slightly contrived, its purpose is to demonstrate the fact
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that nominally following an aircraft path does not necessarily imply nominally following the
sensor path. The reason, of course, is nominally following the aircraft path does not required
the UAV to track a specific bank angle. For instance, a controller that oscillates back and
forth across the aircraft path may produce error similar to figure 4.5, but in reverse. In order
for a myopic controller to track a desired sensor path well, by tracking a desired aircraft path,
it must also come close to tracking the radius of curvature of the desired aircraft path. By
closely matching the radius of curvature of the desired, the aircraft will then come close to
matching the desired bank angle at every point along that path.

The remainder of this section will discuss the performance of a few myopic controllers,
and how well they are able to track a desired sensor path, given an optimal aircraft path.
In each case, the the optimal aircraft path is a sine curve, and the desired sensor path is
the projection of that sine curve onto the ground plane. The minimum radius of curvature
of the the aircraft path is only about 80% of the aircraft’s minimum turning radius, so the
path is feasible for any controller to track.

4.2.1 Tracking the Radius of Curvature of the Optimal Path

Assuming that the optimal aircraft path for a desired sensor path has already been
generated by a higher level path planner, it is not unreasonable to assume that if that path
could be turned into a control law, then that control would produce reasonable tracking
performance. By looking at the instantaneous radius of curvature at a given point along the
desired aircraft path, the desired turn-rate at a point along the path can be calculated using
equation 4.9, which describes the rate of change of a tangent line along a curve.

_ W

"7 ds

k is the curvature of, and inversely proportional to, the osculating circle at any point
along the path s. Applying the chain rule to equation 4.9 gives the following result.

(4.9)

k=4 (4.10)

or

Y =kKV (4.11)

For a curve described by a function such that y = f(z), the curvature, x(z) can be
calculated by the following equation.

P2y
K= da? (4.12)

1+ (27"
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The open loop control law is then found by substituting equation 4.12 into equation 4.11.
2y
u(x) =19 =V dao? Y (4.13)
()]
Assuming a UAV had the proper initial conditions, and was perfectly modelled as a

unicycle, applying the continuous control law from equation 4.13 should result in perfect
tracking. Figure 4.6 shows the results of applying this control at 30hz.
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Figure 4.6: Steady state tracking performance of an open loop controller.

In simulation, the performance of the open loop controller is quite good, but despite the
best conditions, the controller still suffers from lag and delay. Since the UAV is not a true
unicycle, lag from the turn-rate response slowly adds error to the system. Likewise, since the
control is not applied continuously, even at 30hz, small delays in the control adds up over
time. Most importantly, this pure open loop control has no method of rejecting disturbances.
As figure 4.7 shows, any wind at all will through the UAV irrecoverably off course.
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Mean Errors: Aircraft Path Err=529 1m, Sensor Path Err=504_8m, with Wy=10m/s
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Figure 4.7: Tracking performance of a simple PID controller in the presence of wind.

Though an open loop controller like this cannot be used by itself for long periods of time,
many feed-forward and model predictive controllers will use this type of open loop control
over very short periods of time. By re-planning optimal paths quickly and adjusting the
control accordingly, a degree of disturbance rejection can be achieved.

4.2.2 Simple PID Control

This PID tracking controller is presented here to provide context to sensor tracking
problem. It is a simple waypoint tracking controller that demonstrates the potential down fall
of tracking an aircraft path without regard for the tracking error of the sensor footprint. As
such it also represents an upper bound on the tolerable error of the other tracking controllers
presented here.

This controller uses closed PID loop control to steer the aircraft towards a waypoint
ahead of the UAV, along the desired aircraft path. This type of control is analogous to
steering the UAV with a carrot and a stick. Figure 4.8 gives the physical interpretation of
the error shown in equation 4.14 that the PID controller attempts to drive to zero.

e =1y — 1 (4.14)
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Figure 4.8: A graphical depiction of the heading error associated with the PID controller.

Given a predefined lookahead distance, L, the controller defines a waypoint along the
aircraft path that intersects a line that is L meters ahead of the UAV and perpendicular
to its heading. Variations of this type of control have better performance, but suffer from
similar degradation interns of sensor tracking performance. One proposed variation uses an
adaptive lookahead distance[25]. While others propose fitting a connecting curve from the
aircraft’s current state to a lookahead point on the desired aircraft path, and then tracking
that connecting curve until the aircraft path is reached[25][17][37][2].

Though this is a relatively simple controller, waypoint navigation is the primary tracking
controller for many small and inexpensive UAV autopilots[9][10][32]. This method of tracking
control merely replicates an aircraft path defined by densely spaced waypoints, with a pre-
turn radius equal to L.

Performance Analysis

Since the PID controller only responds when there is an error, as figure 4.9 shows, this
type of control will always lag behind the desired path. The PID controller has no knowledge
of the future path, but as the error grows from zero, the derivative element of the control
attempts to minimize the 'predicted’ future error by applying control based on the growth
of the error.
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Figure 4.9: Steady state tracking performance of a simple PID controller.

The mean steady state cross-track error of the aircraft path is not bad, and even the cross-
track error of the sensor path is not terrible, but the quality of the tracking performance
is not good. Qualitatively, the target path is continuously oscillating with respect to the
center of the sensor footprint. Quantitatively, though the average cross-track error of the
sensor footprint is only 9.9m, the standard deviation of that error is 6.5 m?, meaning that it
swings wildly about the target path. Those oscillation would not only make it more difficult
to correlate images from one frame to another, it would also significantly degrade the image
quality causing blur every time the camera capture an image while the aircraft is rolling.

Figure 4.10 gives an idea of the transient response of the PID controller. The transient
respond is largely effected by lookahead distance of the controller. As the look ahead distance
increases, the settling time of the cross-track error increases, but the oscillations about
aircraft path decreases. Essentially a longer lookahead distance eases the UAV into the
aircraft path. Unfortunately, a longer look ahead distance also increases the steady state
cross-track error. The UAV is always trying to get to the waypoint at the end of its lookahead
distance, if that way point is close to the UAV, then flying towards that waypoint also
minimizes the cross-track error. If the point is far away, the UAV will potentially fly away
from the aircraft path in order to fly towards the waypoint.
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Figure 4.10: Transient response of a simple PID controller.

Another important thing to note about the transient response of the PID controller, is
that during the controller’s settling time, it does nothing to minimise the sensor path error.
In other words, if the desired sensor path was updated with any frequency, this controller
would have a very difficult time tracking it.

Finally, figure 4.11 shows the response of the PID tracking controller when it is given a
step input disturbance. Initially the UAV is at steady state, but at the beginning of this
simulation a 10 wind to the north is introduced.
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Figure 4.11: Disturbance response of a simple PID controller.

4.2.3 Spatial Sliding Mode

Sliding mode control offers a robust method of controlling nonlinear systems despite
bounded model error, and uncertainties. Unlike the PID controller presented in section 4.2.2,
sliding mode controllers use information about the whole path, in the form of derivatives,
in order to theoretically achieve perfect tracking. More about sliding mode control can be
found here [47]

Sliding mode controllers have been used in a variety of UAV tracking applications [41][46],
and a detail analysis of sliding mode controllers applied to UAVs can be found here [33].
Additionally, in [33] McGee introduces a novel spatial sliding mode controller for UAVs. By
reformulating the sliding mode controller with regard to a spatial, versus temporal, coordi-
nate, the controller avoids potential singularities that make the UAV controller unstable.

As with traditional temporal sliding mode controllers, spatial sliding mode controllers
can also theoretically achieve perfect tracking. But, perfect tracking requires very active
control, which for UAVs means high frequency roll maneuvers. Not only would this highly
active control be bad for sensor tracking, it would certainly fatigue the UAVs airframe, and
possibly excite some unmodel dynamics of either airframe itself or the low level controllers.
In order to avoid that type of high frequency control, a boundary layer, ®, is added around
the sliding surface. Inside the boundary layer the control is an affine function with respect
to the sliding surface, s, instead of the step function, sgn (s).
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The spacial sliding mode (SSM) controller presented here performs very well. The steady
state cross-track of both the aircraft path and the sensor path is less than a meter. Unfor-
tunately, just as with the feedback linearisation controller, if the SSM controller is used to
track the sensor path directly, the internal dynamics cause the system to become unstable.
Nevertheless, as the PID controller was presented to give context to the sensor tracking
problem by demonstrating the greatest tolerable error, the SSM controller is presented here
not as a lower bound, but as an example of very good tracking control. Then section 4.3 will
present a novel non-linear model predictive controller that is capable of directly tracking the
sensor path with nearly the same performance.

Spatial Sliding Mode Formulation

The formulation of the SSM controller requires that the desired aircraft path must be a
continuous function, y? = f(x), with continuous first and second derivatives, but, in practice,
if the desired path does not fit those requirements, a local function that does have continuous
first and second derivatives can be used to approximate the desired path [33].

Sliding mode control is acheived by defining a sliding surface s such that,

ss’ < —n|s (4.15)

Where s represents the spatial derivative of s with respect to x. In other words,

ds
= = 4.16
s = (4.16)
Rearranging the sliding condition in equation 4.15 give the following result.
sl
S
s < —nsgn(s) (4.17)

If s is chosen such that equation 4.17 is true at all times, then the function s will be
driven to the invariant set s = 0 in finite time. By making s a function of the error dynamics
of the system, then once the s has been driven to 0, the error will also go to zero according
to the chosen error dynamics. By defining s such that,

s(x,u) = (% + A te (4.18)

where r is the relative degree of the system, then choosing u such that equation 4.17 is
true implies that s — 0 and e — 0.

Given an error function e = y—y? = y— f(x), in order to implement the sliding controller,
the sliding surface must be formulated such that the control input, u appears in the first
spacial derivative of s, s’. Note that ’ denotes the derivative of s with respect to x.
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If the UAV is modelled as a unicycle within a wind frame, then the dynamics of the UAV
with respect to time are, given by the following equations.

z = Vecosy+ W,
y = Vsing+W, (4.19)
Y = wu

Then by the chain rule,

dy dydt %y
a _ayar g Y 4.20
dr  dt dx ‘Zl—f T ( )

Then it is easy to see that the dynamics of the UAV with respect to the spacial coordinate
x are,

¥ =1
Vsiny + W,
= T 4.21
Y Vecosy + W, ( )
u
/ —
v Vcosy + W,

From equations 4.21 is apparent that the system has a relative degree of 2, which means
that the sliding surface should be a first order model.

s=¢€+ e (4.22)

So that the derivative of s is,

s'=e" + X (4.23)
Substituting e = y — f(¢) into equations 4.22 and 4.23 yeilds,

s = (¥ = f@)+ Ay - flx)
S o= W @) A - W) (4:24)

The control term is in the expansion of y”.
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" (Vsiny + W,)'(V cosyp + Wy,) — (V cosp + W,) (Vsiny + W)

v (V cosyp + W,)?
, (V'cosyp + W) (Veos + W) — (V' sing + W) (Vsing + W)
v (Vcosyp +W,)?
. (V' cosy + W;)x — (=Vy'siny + W))y
2
- H(Vicosy + W, )i — H(=Vising + Wa)y
2
J = (Vucosy) + W,)i — (=Vusiny + W,y
— =
J = (Vi cosy + Vysing)u + (W, — gW,)
3
" = au+b (4.25)

The term b accounts for the rate of change of the wind frame.

W, — yW,
b= yT (4.26)
Simplifying a yields,
Y - (Vi costy 4+ Vysini)
— e
Y - Veosyp(V cosp + W,) + Vsiny(Vsing + W)
- e
. - V2 cos? i + VeosyW, + VZsin? ¢ + V sin W,
= =
V2(cos? ih +sin® ) + aW, — W2 + gW, — W2
a g
3
V2 4 W, + W, — (W2 4+ W2)
a = 3
. V2 iW, +yW, — W?
= e

Where W? = W2 + W?. Then noting that the velocity of the UAV with respect to the
ground is given by,
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V2 — x-2 4 92

V2 = (Veostp+W,)(Veostp + W) + (Vsing + W,)(V sing + W,)
V2 = VZ(cos® ¢ +sin® ) + 2V cos YW, + 2V sin W, + W2 + W,
V2 = V242V cospW, + 2V sinypW, + W?

Vi o= VP20@W, — W2 +20W, — W)+ W?

V2 o= V2420W, +29W, — W?

Then it is clear that,

Vi+VE—Ww?
a= ey (4.27)

Therefore the derivative of the sliding surface is,

s =au+b+c

Where,
c=—f"(x)+ Ay - [(2)) (4.28)
In practice, the actual wind values, (W,, W, W, Wy), are unknown, but the controller
does have access to an estimate of the their mean values, (W,, W,, W, Wy). Assuming that
the error of the estimate is bounded such that |W, — W, | < W, then it is still possible to
design a controller that is capable of perfect tracking despite wind and wind gusts, as long

as the disturbances are bounded. The values of a, b and ¢ based on the wind estimates and
differentiated GPS values, (&, 7) are,

‘/;]2 + V2 _ Wz
2
_ W, — gW,

Y
¢ = 1)+ M- f@)
Substituting s’ into the sliding condition given in 4.17 yields,

au~+b+c < —nsgn(s) (4.30)

Given the form of s’. a natural choice for u is
) )
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u:—l_)—c—_ngn(s) (4.31)

a

Substituting 4.31 into 4.30 yeilds,

b—c— K
a( c Sgn(s))er—irc < —nsgn(s)

a
—gl_)—gc—nggn(s)—Fb—i-c < —nsgn(s)

a a
<1——> (b—c)—i—(b—l_))—%l(sgn(s) < —nsgn(s)

(1——) (b—c)—i—éb—nggn( s) < —nsgn(s)

a

Then the sliding condition will be satisfied if K is chosen such that,

K= max[ (5 _ )b—c +6b+n>]

szax[( — S_L 5b+n)}

And, since,

max [(@ — 1) (b—c)+ 2(55-1—77)} < max [(é — 1> (b— C)} + max [3(56—1—77)}

a a
Then,
a - a
K = max [(— — 1) (b — c)] + max [—((5b—|— 77)]
a a
will also satisfy the sliding condition in equation 4.30.

If wind is quasi-static, meaning I/I; =0, and b = 0, then the control law becomes,

K = max [c <<g>mw — 1) ,C <1 — <g>mmﬂ + (g)nm (0bmaz + 1) (4.32)

Were, -
a Vi+Vi-w?2
CL_VQQJrVQ—VV2
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and,
a V24 V2 — (W24 2W6W + 6W?)
(e = e
<a> 4. V24 V24 2W0W — oW?
a’/ max N ‘/92 + V2 — (W + ow sgn (V_V))2
7 V24 V24 2WoW
<2> - 14+ g > (4.33)
a/ max vag + V2 — (W + (5W sgn (W))2
and,

<1

a VR VE—w
<>min N Vg2+V2

a

Given these values for K the sliding condition will always be satisfied, which means
s — 0, e = 0 and the controller will theoretically achieve perfect tracking.

Performance Analysis

Figure 4.12 shows the effect of the discontinuity of the function sgn (()s). As expected,
it causes aggressive, high frequency control action once the UAV has reached the invariant
set s = 0.
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Figure 4.12: Steady state tracking performance of a spatial sliding mode controller.

Normally high frequency control action, called chatter, like that shown in figure 4.12
would be bad simply because it would fatigue the aircraft, and possibly excite unmodelled
dynamics, but in this case the chatter exemplifies how tracking the aircraft path does not
necessarily imply that the sensor path is also tracked. Essentially, figure 4.12 is the opposite
of the example shown in figure 4.5.

Fortunately, chatter is a well know limitation of sliding mode controllers, with well known
solutions. To avoid chatter about the sliding surface, the function sgn (s) in the controller
is replaced with the function sat (%) Where,

5\ : if |[£] <1
sat <6> N { sgn?%) othqérwise (4.34)

Using the function sat (%) instead of sgn (s) will significantly reduce chatter as ¢ in-
creases, but the controller is no longer guaranteed to drive s — 0, which means that there
error no longer guaranteed to go to zero either. Instead, the controller guarantees to drive s
to an invariant set described as a boundary layer around s = 0. Correspondingly, the error
is driven to within a maximum tolerance, ¢, away from e = 0.

Figure 4.13 shows the steady state tracking performance of a SSM controller with a well
tuned boundary layer.
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Figure 4.13: Steady state tracking performance of a spatial sliding mode controller with a
boundary layer.

As expected, the tracking performance of this controller is superb. In perfect conditions,
the sensor tracking performance is only slightly worse than the aircraft tracking performance.
Once again, this is the type of performance the controller presented in section 4.3 will attempt
to achieve, but without the need of having a well defined aircraft path.

Figure 4.14 shows the transient response of the SSM tracking controller. While its per-
formance is still good, it is worth pointing out that relative to the steady state tracking
performance the sensor tracking performance is 13% worse when compared to the aircraft
tracking performance. This is as expected, since good sensor tracking performance is not
the controller’s goal, but an ancillary effect of good aircraft tracking performance.
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Figure 4.14: Transient response of a spatial sliding mode controller.

Finally, figure 4.15 shows the response of the SSM controller to a step disturbance, which
is once again a 107 wind toward the north.
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Figure 4.15: Disturbance response of a spatial sliding mode controller.

In this case, it is quite obvious that the tracking controller’s goal is to minimize the cross-
track error of the aircraft path, without regard for the sensor path. Where in the previous
examples the sensor cross-track error was comparable to the cross-track error of the aircraft
path, in this case it is several times worse.

Improving the tracking performance of the sensor is one of the main goals of the controller
presented in the section 4.3. By attempting to directly control the sensor footprint to track a
desired sensor path, the controller aims to reverse the performance degradation seen in figure
4.15. Meaning that as the aircraft is disturbed, the controller will attempt to minimize the
cross-track error of the sensor path, without regard for the cross-track error of the aircraft
path.

4.3 Direct Control of a UAV’s Sensor Footprint

The controller presented here takes a novel approach to solving the sensor tracking prob-
lem described in section 4.1.2. Rather than redefining the target sensor path as an aircraft
path and then using a traditional tracking controller to track that aircraft path, this con-
troller directly tracks the sensor path removing the need for a translation step and improving
the sensor tracking performance in the presence of disturbances.

In a very general sense, this controller could be classified as a receding horizon, nonlinear
model predicitive controller(NMPC)[40]. It uses a model of a UAV to integrate forward in
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time to a limited horizon, applies a cost function to find a near optimal path, and then uses
the initial control law from that path as the control input, until is able to compute a new
optimal path. The main challenge of controlling the sensor footprint is that the difficulty of
finding an optimal path is superseded by the difficulty of finding even a feasible path, where
a feasible path is defined as one that keeps the desired sensor path within the UAVs sensor
footprint. The difficult of finding a feasible path was discussed previously in section 3.4.

To solve the tracking problem this NMPC controller first attempts to find a set of feasible
paths and then from that set of feasible paths, chooses the path that is closest to the optimal
path. The controller finds feasible paths by applying the RRT with iterative Gaussian
sampling path planner that was discussed in section 3.5.1.

4.3.1 Formulating an Optimal Control Problem

The optimal control, u°, is defined as the set of controls that uses the least control effort
necessary to keep the desired sensor target as near to the center of a sensors field of view
as possible. The optimal controller will find a sequence of controls that keeps the desired
sensor target within the UAV’s field of view at all times, but if that is not possible, it will
always find a path that steers the UAV towards a configuration that will eventually put the
target with in the UAV’s field of view, if such a solution exists.

The trajectory of the aircraft, and its sensor footprint, is parametrized by the control
sequence,

u = [uus . .. Uso) (4.35)

where each element of u is from the set of desired turn rates,
id o id
u; € [wmmn l/Jmax]
Then, given a model of the aircraft of the form,

X = f(Xv u<t))

the trajectory of the aircraft X is defined as
X =[X1...Xpn .. Xing]

where,

2 kAt
X; = Z/ f(xo, uy)dt (4.36)

1 J (k—1)At
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The cost associated with any trajectory X is defined as,
J(X) = ZQ(Xz’,Ui, Uui—1) (4.37)
i=1

where g(x;,u;, u;_1) is the stage cost at each step.

The stage cost is a function of the distance of the center of the sensor footprint from the
desired sensor path, and the control effort required to get to that point. The sensor error at
each stage, e;, is the square of the perpendicular distance from the desired ground path to
the center of the sensor footprint.

)L
Yi Ya

where xj and y; are defined the same as they were in equation 4.3, which in vector form

Qlf _ T + Clpt sin wt
[ Y ] B [ Y — Cy cos 1y ] (4.39)

Figure 4.16 is a graphical representation of the stage cost due to sensor error at every
stage.

2
el = min
X3

(4.38)

2

is,

t=n “#- Points that define the ground path

4 The center of the sensor footprint at each time step
— Perpendicular distance to the path

[l The sensor faoiprint of a standard camera

Figure 4.16: A depiction of the cost associated with the sensor footprint. The total cost
associated with the sensor footprint is the sum of the distance, e;, squared at every time
step.

The second term in the stage cost, g(x;,u;, u;—1), acts to dampen the control effort,
effectively smoothing the optimal path. The cost at each stage due to the control effort is

e (uy — up_1)? (4.40)

Without it, the aircraft will constantly change its turn-rate for a negligible increase in
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its tracking performance. Constantly changing its turn-rate causes the aircraft to roll back
and forth, and provide poor surveillance data. When the aircraft is far from the desired
ground path, small differences in the UAV’s roll angle do very little to improve the tracking
performance. But, when the aircraft is directly over the desired ground path, the UAV tracks
the desired path primarily by changing its roll angle. Therefore the difference in control
action between every time step is weighted by the aircraft’s distance from the desired path.
Putting together both terms of the stage cost gives

(%, i, uimy) = € (1+ (uy — Ut—1)2) (4.41)

Since, the goal of the controller is to place the center of the UAV’s sensor footprint on
the desired sensor target, if it accomplishes that, then the stage cost goes to zero. So, even
though the summation within the trajectory cost, J(X) goes to infinity, assuming that a
feasible path exist, the cost of the optimal path is finite, because the stage cost becomes
ZEro.

4.3.2 Approximating the Optimal Solution in Real-time

Since the aircraft may be very far from placing its sensor footprint on the desired sensor
path, and because the wind disturbances are not well modelled, it would be inefficient to
spend resources calculating the exact cost of each feasible solution. Instead, the controller
uses a receding horizon approach that calculates the exact cost of the first n steps of each
feasible solution, and then calculates an estimated cost for the remainder of each solution.

Each potential aircraft path is therefore parametrised by the finite vector,

u = [uguy . .. Up) (4.42)

Where n is the number of steps in the receding horizon. Since, each element of the control
sequence is integrated over a fixed time step, At, the receding horizon plans nAt seconds
into the future. The cost of the remainder of each path, the cost-to-go, is estimated by the
infinite horizon heuristic h(x,), which is a function of the final state of the UAV at the end
of the receding horizon. Therefore, the estimated cost of the UAV’s trajectory is calculated
by the heuristic function,

H(X) = Z g(xi,u) + h(x,) (4.43)

Unfortunately, finding the optimal solution to the sensor tracking problem is even more
difficult than finding a feasible solution to the path planning problem discussed in section 3.5,
which was already NP-hard. Rather than directly trying to optimize the UAV’s trajectory,
the NMPC uses the RRT iterative Gaussian sampling path planner to find a set of feasible
paths, and then chooses the path with the lowest cost. The exact NMPC algorithm is as
follows.
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Algorithm 3 NMPC using an RRT with Itereative Gaussian Sampling
1: procedure IGSRRT_NMPC(Zinit, Wast, K, At)
2 Upest < Winti
3 Hyest < PATH_COST (Xinti, Upest)
4: for k=1 to K do
5: Ujogic ¢ LOGICAL_CONTROL (tpest);
6-
7
8
9

Hrand — PATH7COST(Xinita ulogic)
if Hlog'ic < Hbest then
Upest < WUjogic

: end if
10: end for
11: for k=1 to K do
12: Uyand ¢ RANDOM_CONTROL (upest);
13: Hyona < PATH_COST (Xnit, UWrand)
14: if Hygna < Hpesr then
15: Upest < Urand
16: end if
17: end for
18: return u; € Upey

19: end procedure

In the IGSRRT_NMPC algorithm, the PATH_COST() function integrates the control
sequence u in order to generate X, which it uses to calculate the heuristic cost H(X). The
first for-loop in the algorithm cycles though a sequence of logical control laws that often
times generate trajectory with the lowest cost, but are unlikely to be generated by random
sampling. They also do a very rough job of sampling uniformly across the configuration
space, which helps the controller avoid local minimums. Figure 4.17 shows a sample of the
logical paths that IGSRRT_NMPC controller generates.
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Figure 4.17: A sample of the set of logical paths generated by the IGSRRT_NMPC controller.

By including a set of logical control vectors, the controller produces smoother trajectories
when tracking straight paths and orbits, for which the optimal aircraft trajectories are lines
and circles.

The IGSRRT_NMPC is initiated with the best control sequence from the previous itera-
tion. So, not only does the IGSRRT iterate through out its runtime, causing it to converge
to paths with lower and lower cost, the controller also continues to iterate to a lower cost
solution every time it is called. Essentially, as the frequency of the controller increases,
the number of iterations of the IGSRRT path planner also increases. Similar to the RRT-
Anytime algorith [44], this controller will essentially continue to build a single IGSRRT that
continuously increases its density while updating the control law any time it finds a more
optimal path.

The choice of the heuristic cost function, h(x), plays a large role in the run time efficiency
and stability of the IGSRRT_NMPC controller. Because the controller only cycles through
a fixed number of iterations each time it is called, and the number of computations that
are made in each iteration is always the same, the controller will always generate a control
output in a fixed finite time. Assuming that the algorithm runs sufficiently quickly, it meets
the requirements of being used as a real-time controller[18]. Of course, running quickly
means having a fast and simple heuristic for calculating the cost-to go, but for stability, the
heuristic function must also have atleast limited precision.
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4.3.3 Stability Analysis

The stability of the NMPC tracking controllers is a complicated subject and is the subject
of on going research [43][40][8]. The first question is what does stability mean in this context?
Depending on the desired sensor path, it may not be dynamically feasible to track the
sensor path with zero error. In fact, as pointed out here [47] the goal of a non-minimum
phase tracking problem is not to reduce the error to zero, because in most cases that is
not possible. Furthermore what does it mean for the controller to be unstable. The output
of the controller in a desired turn-rate that is sent to a lower level turn-rate controller. It
is assumed that the turn-rate controller is already bounded input, bounded output stable,
therefore the IGSRRT_NMPC cannot cause the UAV to become dynamically unstable. The
worst behaviour that the tracking controller can exhibit is to cause the cross-track error to
go to infinity. So it makes sense that the stability of the IGSRRT_NMPC tracking controller
should be measured by its ability to minimize the cross-track error.

Given that there is an optimal solution that does minimize the cross-track error, as
described in section 4.3.1, a measure of the stability of the tracking controller should then
be its ability to converge to that optimal solution. Given the probabilistic completeness of
the IGSRRT algorithm if the controller used an infinite horizon path planner, it is clear that
as the iterations of the IGSRRT path planner increases, the control output will eventually
converge to the the optimal control law.

Theorem 4.3.1 Given a smooth function, J(X), that describes the optimal path, X°, such
that,
J(Xo) < J(Xz) V {Xz . Xz §£ XO}

Then the lowest cost path generated by probabilistically complete path planner will asymp-
totically converge to the optimal solution as the number of samples taken by the path planner
goes to infinity.

Proof 4.3.2 Let J(X) be a smooth function that describes the optimal path, X° and the
optimal cost J°(X°). Then there exists a bounded set of paths, X¢ such that,
J(XZ) <J°+¢ VX;: X, X"

Then the set of paths, X¢ defines a bounded volume in the configuration space of the
vehicle. Because the path planner is probabilistically complete, the probability of randomly
sampling a path in X goes to one as the number of samples goes to infinity.

Furthermore, there exists a set X° C X¢ and a § < € such that,

JX) < J+0<J+e VX;: X, €X°

Where the probability of a randomly sampled path being in X° is greater than zero, because
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X° € X9, but less than the probability of the path being in Xe.
o P(X; €X9) = P(X; € XX, € X)P(X; € X9) < P(X; € X9)

Again, because the path planner is probabilistically complete the probability of sampling a path
in X° goes to one as the number of samples goes to infinity. Therefore, for any path sampled
in the configuration space that has a cost greater than the optimal cost by €, as the number
of samples goes to infinity, the path planner is probabilistically guaranteed to sample a lower
cost path from the set of paths that have atleast € — & lower cost.

Stability of the Receding Horizon Controller

The stability of the NMPC controller must be discussed in terms of its convergence
to the optimal path. The previous section showed that the infinite horizon IGSRRT path
planner probabilistically and asymptomatic converges to the optimal path, but for the NMPC
controller to converge to the optimal path, then it must do so using a finite horizon path
planner. This section will show that if the infinite horizon estimator, h(x), satisfies certain
conditions, then the NMPC controller will converge to the optimal path to within a margin
of error that is proportional to the error of the infinite horizon estimator.

Lemma 4.3.3 If h(x) has a single infimum, then the domain of, {h(x) : h(x) < z} is not
disjoint for any z > hpyin.

Proof 4.3.4 Given a function, h(x), with a single infimum, assume that the domain of
{h(x) : h(x) < z} is disjoint. Then there would be a infimum in each set in the domain of
{h(x) : h(x) < z}. Since it is given that there is only one infimum, the assumption must be
wrong. Therefore the domain must not be disjoint.

Lemma 4.3.5 If h(x) has a single infimum, hins = h(Xinf), and h(x) is defined over the
range {h(x) : h(x) < z}, then as z decreases, € also decreases. where € is defined as,

£ = max||x — X, f|| (4.44)

Proof 4.3.6 Let ¢, be the the € for some z, and let z1 < z5. Then, assume that €,, > €.,.
Then there must exist some
X; = argmax ||X — X || (4.45)
X, 21
such that, x; € {h(x) : h(x) < z1} and x1 & {h(x) : h(x) < 20}. But that can not be true
since

Domain{h(x) : h(x) < z1} C Domain{h(x) : h(x) < 23} (4.46)

Therefore the assumption must be wrong, and ., < €,,.
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Theorem 4.3.7 Given a smooth function, J(X), that describes the optimal path, X°, such
that,

JX) =3 glxe)

And, a heuristic, H(X),

k=1
that estimates J(X), such that,
Mz 3 o) VX,
k=n+1
and that h(x) has one single infimum such that,
hixp) Sh(x) = > g(x) < Y g(x)
k=n+1 k=n+1

Then the lowest cost path according to H(X) generated by probabilistically complete path
planner will asymptotically converge to within,

[e.9]

hETT(Xi> = h(X;) - Z g(X;c)

k=n+1

of the optimal solution as the number of samples taken by the path planner goes to infinity.

Proof 4.3.8 Let h(x) be a heuristic with a single infimum such that,

h(x)) <h(x) = > g(xp) < Y g(x)
k=n+1 k=n+1

Then, there exists a bounded set of paths, X¢ such that,

H(X;) <H(X°)4+e VX;:X; X
where X° is defined as,
J(XO) < J(XZ) v {Xz : X 7£ XO}

Furthermore, since,
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H(X;) = J(Xo) +hix,) = D g(xi) = T(X) + hers (X0)
k=n-+1
then,
H(XZ) < Jo+herr(Xi)+€ VXZ )(Z € X©

Then the set of paths, X defines a bounded volume in the configuration space of the
vehicle. Because the path planner is probabilistically complete, the probability of randomly
sampling a path in X goes to one as the number of samples goes to infinity.

Furthermore, there exists a set X0 C X¢ and a § < € such that,

H(X;) < J° 4 hepr(Xi) 46 < J° + her(Xi) ¢ VX0 X, € X

Where the probability of a randomly sampled path being in X? is greater than zero as long
as 0 1is greater than zero, but less than the probability of the path being in X€.

o P(X; €X%) = P(X; € X°|X; € X9)P(X; € X9) < P(X; € X9)

Again, because the path planner is probabilistically complete the probability of sampling a path
in X° goes to one as the number of samples goes to infinity. Therefore, for any path sampled
in the configuration space that has a cost greater than the optimal cost by €, as the number
of samples goes to infinity, the path planner is probabilistically guaranteed to sample a lower
cost path from the set of paths that have atleast € — 0 lower cost. Therefore as d goes to zero,
X°® becomes the set of paths bounded by the error J° + herr(X;), where he(X;) decreases as
X; = X°.

4.3.4 Performance Analysis

The performance of the IGSRRT_NMPC controller is comparable to SSM controller,
despite the fact that is it solving the non-minimum phase sensor tracking problem, rather
than the minimum phase aircraft tracking problem. The IGSRRT_NMPC controller in these
simulations uses a time step of At = 1s and a receding horizon of 15 steps. In other words, it
calculates the exact modelled cost of the first 15 seconds, and then estimates the remainder
of the infinite horizon cost.

Compared to the PID and SSM controllers, which ran at 30Hz, the IGSRRT_NMPC
controller only runs at 10Hz. This is for two reasons. Firstly, the IGSRRT_NMPC is more
computationally expensive to run. Though it does not require a second path planner to trans-
late the sensor path into and optimal aircraft path, as the PID and SSM controllers require,
running it at 30Hz would require a significant percentage of the processing power available
to a small UAV. Secondly, unlike the PID and SSM controllers which are theoretically con-
tinuous control laws, and who’s proof of stability assumes that they will be implemented as
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close as possible to a theoretical continuous control law, the IGSRRT_NMPC only expects
to be updated once at the end of every time step. In between each time step, the controller
acts like an open loop controller similar to the one presented in section 4.2.1.

Figure 4.18 shows the steady state tracking performance of the IGSRRT_NMPC con-
troller. The cross-track error is slightly greater than the SSM controller, which is to be
expected, since under ideal conditions the SSM controller is capable of perfect tracking.

Mean Errors: Aircraft Path Err=1.8m, Sensor Path Err=2.7m
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Figure 4.18: Steady state tracking performance of the RRT_NMPC controller.

The motivation for using the IGSRRT_NMPC controller is to track desired sensor paths
that cannot be tracked perfectly, but since the SSM cannot track those paths at all, the
purpose of these simulations is to show that under nominal conditions, the IGSRRT_NMPC
tracks as well as the SSM controller.

Figure 4.19 shows the transient response of the IGSRRT_NMPC controller, which is once
again comparable to the SSM controller.



CHAPTER 4. TURN-RATE CONTROLLERS FOR SMALL UAVS 93

Mean Errors: Aircraft Path Err=9.4m, Sensor Path Err=13.5m
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Figure 4.19: Transient response of the RRT_NMPC controller.

Finally, figure 4.20 shows the response of the IGSRRT_NMPC to a step disturbance. In
this case, the IGSRRT_NMPC controller actually performs better than the SSM controller.
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Mean Errors: Aircraft Path Err=5.9m, Sensor Path Err=6.7m, with Wy=10m/s

600 I I I
------- Desired Aircraft Path
— - — - Desired Sensor Path
400 - 3 Actual Aircraft Path [
Actual Sensor Path
200 - _
i —
Sy [
L e
0F i ;- _
Q_“_ J,,;f‘
L e
200 _
400 - _
600 | | 1 l ! ! =
] 500 1000 1500 2000

Figure 4.20: Disturbance response of the RRT_NMPC controller.

In the presence of a disturbance, the SSM attmepts to minimize the cross-track error of
the aircraft path, while the IGSRRT_NMPC controller attempts to minimize the cross-track
error of the sensor path. As a result, the SSM produces the lowest cross-track error of the
aircraft path, while the IGSRRT_NMPC produces the lowest cross-track error of the sen-
sor path. These results, along with the rest of the simulation results, are listed in table 4.3.4.

Aircraft Error(m) Sensor Error(m)
Control | Tracking Transient Disturbance ‘ Tracking Transient Disturbance
PID 4.6 15.4 7.7 9.9 26.9 13.5
SSM 0.4 7.3 2.3 0.7 13.5 8.7
NMPC 1.8 94 5.9 2.7 13.5 6.7

Hardware-in-the-loop Simulations

In addition to Matlab simulations, both the SSM and IGSRRT_NMPC controllers flew
identical sinusoidal paths in C3UV’s hardware-in-the-loop (HIL) simulator. The HIL sim-
ulator allows control algorithms to run on the same processors, and use the same Piccolo
autopilot that it would use in an actual flight. The aircraft dynamics are simulated on a
third computer, which runs a 12 degree-of-freedom UAV model provided by cloud cap.
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Comparing the performance of these two controllers within a HIL simulation is the only
way to get high fidelity results while still being able to control environmental parameters,
which is necessary in order to ensure that neither controller is effected by extraneous distur-
bances.

In both HIL simulations, the controllers were given the same sinusoidal aircraft path,
and projected sensor footprint that were used in the MatLab simulations. Figure 4.21 shows
the steady state results of the SSM controller.
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Figure 4.21: Sinusoidal Tracking results of the spatial sliding mode controller.

As one would expect, the further the simulation strays from the idealized model of a small
UAV the poor the performance becomes. Qualitatively, it is clear that the SSM controller
demonstrates more chatter in the HIL simulation than the Matlab simulation.

Quantitatively the average cross track error of the aircraft path is 1.3m, while the average
cross-track error of the sensor path is 4.0m. Both of which are considerably worse than the
near perfect tracking in the MatLab simulation, but are still reasonably good.

Figure 4.22 shows the steady state tracking performance of the IGSRRT_NMPC con-
troller.
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Figure 4.22: Sinusoidal tracking results for the kinodynamic controller.

For the kinodynamic controller, the average aircraft path error was 3.7 meters, while
the average sensor path error was 6.1 meters. Both controllers demonstrate the ability
to track the specified path. It is difficult to truly assess the relative performance of the
two controllers in this simulation environment, but it is worth noticing that despite the
kinodynamic controller’s slightly poorer tracking performance, it tracks the line much more
smoothly. Since the ultimate goal is to collect video data of the target path, the quality of
the data would benefit from the smoother tracking. Both ground paths are well within the
sensor footprint of the UAV. The following table summarises the HIL results.

‘ Aircraft Error ‘ Sensor Error
SSM 1.3 4.0
NMPC 3.7 6.1

4.4 Conclusion

This chapter presented a novel NMPC turn-rate controller that steers a UAV in order to
have the UAV’s sensor footprint track a desired target. It was shown that a greedy solution
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to the sensor tracking problem results in a non-linear non-minimum phase system, where
in most cases, perfect tracking is not possible. Both a qualitative and quantitative analysis
of good and bad tracking was presented, and it was shown that the tracking performance
of the NMPC controller is comparable to a spatial sliding mode controller, and that the
NMPC controller is capable of solving the sensor tracking problem by finding a near optimal
solution with real-time performance characteristics.
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Chapter 5

Vision in the Loop Tracking with
Small UAVs

The following chapter presents the experimental results of flights conducted at the CIR-
PAS airfield in Camp Roberts, CA, using the Berkeley Sig Rascal UAV. The purpose of these
experiments was to quantify the real world performance of the NMPC controller presented in
Chapter 4. In the following sections, the NMPC controller is applied to a variety of tracking
tasks including:

e tracking various paths
e flying directly over a point to acquire images
e orbiting a point for persistent surveillance

Several significant modelling assumptions were made in order to develop the NMPC
controller described in Chapter 4, namely that:

e the dynamics of the UAV are well modelled by the kinodynamic unicycle model
e the wind disturbance is purely additive

e the UAV only make coordinated turns

e the UAV’s pitch remains nominally zero

Chapter 2 has already addresses each of these assumptions individually. The goal of the
following experiments is to assess the tracking performance of the NMPC controller despite
the limitations of those assumptions.
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5.1 Tracking Paths

This section discusses the performance of the NMPC controller tracking a given sensor
path from a UAV with a fixed, downward looking camera. These examples are a direct
application of the work that has been discussed in the previous chapters.

The first experiment, tracking a river, summarizes the culmination of the work that pre-
ceded the NMPC controller, and strongly motivated the need for a sensor tracking controller
like the one presented here. The second experiment simply verifies the straight line tracking
performance and stability of the NMPC controller. The third experiment presents the real
world sinusoidal tracking performance of the NMPC controller, verifying the steady state
sinusoidal tracking simulation presented in chapter 4. The final experiment presents the
tracking performance of the NMPC controller when it is given nearly random, discontinuous
paths. The paths are generated by a higher level planner running a search algorithm over an
area. This final experiment also compares the tracking performance of the NMPC controller
with the SSM controller.

5.1.1 Tracking a River

Tracking linear structures, both natural and man-made, is an obvious application for the
NMPC controller. In the summer of 2006, an experiment was performed to track a river
using vision in the loop feedback from a near infra-red camera. As part of the tracking
challenge, the controller had no prior knowledge of the river’s location. The experiment was
initiated by sending the aircraft along a heading that would intercept the river. Then, the
UAV had to use vision in the loop data to acquire the river, and then track it. The goal
was to image the length of the river, in order to later map it offline. The next two sections
present the results of the controller used in 2006, along with simulated results using the
NMPC controller.

Previous Work

The objective of the controller used in 2006 was to minimize the cross-track error of UAV’s
position over the river[36]. Without going into too much detail, the assumption was that
if the UAV remained over the river, and used minimum control effort, the sensor footprint
would remain on the river. The controller used a connecting spline and back stepping to
derive its control law. Unfortunately, the controller’s transient performance made it nearly
impossible for the UAV to track the river, unless it was initially nominally aligned with the
river. As a result, the controller required the elaborate alignment procedure shown in figure
5.1.
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Figure 5.1: Alignment procedure for the original river tracking algorithm.

The red, looping line shows the path the UAV took to align itself with the river, prior to
using the spline controller, or vision in the loop feedback. Figure 5.2 shows the coverage of
the river this controller was able to achieve. The whited-out portions of the river, are points
along the river that were imaged.



CHAPTER 5. VISION IN THE LOOP TRACKING WITH SMALL UAVS 101

Figure 5.2: Coverage of the river using the spline controller in 2006.

In particular, the portions of the river where the river take a sharp bend, were not imaged.
In these experiments, the UAV was flying from the North end of the river to the South. As
ths UAV came to each bend in the river, it would turn sharply to stay on track, as it did
so, it banked so hard that the river went out of view. The assumption, that minimizing the
UAV’s cross-track error with the river, would keep the river in view, turned out to be false.

Simulated Results of the NMPC Controller

As a first attempt at applying the NMPC controller, and in order to assess its potential
advantage over the spline controller, the river tracking experiment was recreated in simula-
tion, in order to explore the NMPC’s performance.

In order to simulate river tracking with vision in the loop, a vision simulator was created.
An image of the river was taken from Google maps and the center line of the river was then
manually identified and stored in a lookup table. The center line of the river is shown in
5.3 by a blue line. The vision simulator then calculated which points from the lookup table
were within the sensor footprint of the UAV, and then sent those points to the controller.
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The infinite horizon estimator is simply the cost the UAV would accumulate while travelling
to the path from it’s current position, and worst case heading angle.

= Desired Ground Path
UAY Flight Path

w— Center of the Sensor Footpeint
I Aova Irmagid by the LAY

Figure 5.3: Coverage of the river using the NMPC controller.

The magenta area shows that the entire length of the river was well imaged, including
the bends in the river that were previously missed by the old controller. The tracking
performance had a mean cross-track error of 5.8 m and a standard deviation of 6.0. Given
the limited information horizon, about 6 seconds, provided to the controller, it showed very
good performance.

Figure 5.4 shows the UAV aligning with the river using the new tracking controller.
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Figure 5.4: The UAV aligning with the river using the NMPC controller.

The aircraft starts by flying directly west and has no information about the river’s lo-
cation. As soon as the river comes within the field of view of the cameras, the UAV makes
a minimum radius turn to align itself. It then aligns itself with the river with minimal
over shoot. As was previously shown in Chapter 4, the transient behaviour of the NMPC
controller is quite good, which in this case allows the UAV to skip the elaborate alignment
procedure that was used by the spline controller.

5.1.2 Tracking a Runway

The goal of the first experimental flight was to track a straight path on the ground. In
order to give that path some relative meaning in the physical world, it was superimposed
on to the runway at the CIRPAS facility. In order to decouple the errors associated with
vision detection and tracking, the GPS coordinates of the air field were manually entered into
the tracking controller. The aircraft flew along the runway for 16 min. When the aircraft
reached the end of the runway, the tracking controller, in order to reduce the sensor footprint’s
distance from the runway, would turn the aircraft around for another pass. Quantitatively,
the Controller shows very good tracking performance. Once the sensor footprint settled on
the runway, it had an average cross track error of only 1.0m and a standard deviation of
1.7m?.
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Figure 5.5: Plot of line tracking flight results.

Figure 5.5 shows the path of the UAV throughout the experimental flight. The tight
turns at the both ends of the runway are the minimum turning radius of the vehicle. Even
though the goal of the controller is to place the sensor footprint on the desired path, the
settling time of the UAV also turned out to be quite good, about three times better than
the line tracking controller provided by the Piccolo autopilot.
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Figure 5.6: This controller provides 100% surveillance of the path in a single pass.

Figure 5.6 shows how the UAV banks in order to place its sensor footprint as close to
the runway as possible. As the UAV approaches from the left it banks sharply to the right,
shifting its footprint from its right side to its left. By taking minimum radius turn to the
left and then, at the optimal moment, shifting to a minimum radius turn to the right, the
UAV is able to survey the entire length of the runway on every pass.

3 .. 25

Figure 5.7: Animations of the UAV acquiring the runway.

Figure 5.7 shows the UAV acquiring the runway. The white trapezoids are projections



CHAPTER 5. VISION IN THE LOOP TRACKING WITH SMALL UAVS 106

of the camera’s field of view. As the sensor foot print of the UAV settles on to the runway,
the controller produces no overshoot in either the camera position or the aircraft’s position.

5.1.3 Tracking a Sinusoidal Path

The third path track experiment recreates the steady state sinusoidal track experiment
that was discussed in Chapter 4. Figure 5.8 shows the results.
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Figure 5.8: Real world sine tracking performance.

Once the UAV had settle, it tracked the projected sine path with an average cross-track
error of 7.2m. During this experiment, the mean wind speed was less than 1m/s. The
following table summarizes the three different sine tracking experiments.
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NMPC | Aircraft Error(m) | Sensor Error(m)

MatLab 1.8 2.7
HIL 3.7 6.1
Flight 5.1 7.2

5.1.4 Tracking a Nearly Random, Discontinuous Path

The final path tracking experiment required the NMPC controller to find an optimal
trajectory along a disjoint path. The disjoint paths were created by a higher level controller
that was attempting to search an area by minimizing a probability function that defined the
likelihood of finding a target. Further discussion on the searching algorithm can be found
here[50]. Essentially, the goal of the search algorithm was to have the tracking controller
look from left to right in order to 'sweep out’ as much probability mass as possible. Figure
5.9 shows an example of the desired paths that were sent to the NMPC controller, along
with the controller’s tracking performance.
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Figure 5.9: Example of the typical disjoint path.

The high level search algorithm generated both a desired sensor path and the correspond-
ing optimal aircraft path. As such, it was possible to compare the tracking performance of
the NMPC controller with the SSM controller. Unlike the HIL simulation results, which
were based on exactly the same initial conditions for both controllers, difference in the ini-
tial conditions and environmental conditions for the two controllers had to be accounted for
by averaging over several flights. The following table presents the tracking average tracking
results of each controller.
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Sensor Error(m)
Average Error ‘ Standard Deviation
SSM 9.2 7.2
NMPC 7.5 7.2

Once again, both controllers, perform about the same, though in this case the NMPC
controller ends up tracking the sensor path slightly better. This data provides compelling
evidence, that even for the most disjoint desired paths, the NMPC controller is still capable
of finding near optimal paths that place the UAV’s sensor footprint on the desired sensor
path. It is even more compelling given the fact that the SSM is given the optimal path and
it is still out performed by the NMPC controller.

5.2 Flying Over a Point

This next section describes the tracking results of a slightly different tracking task. The
goal of these tracking tasks is to flight the aircraft, wings level over a target so that the UAV
can take picture of the target from directly over head. Pictures from directly over a target
are particularly useful for localization and photo mosaicking. Photos taken orthogonal to
the ground are less distorted than those taken at a skew angle.

In order to take a wings level over the target both of these tracking tasks superimpose a
line over the desired point. By making the line long enough that the controller has enough
time to settle, the UAV should fly wings level over the target, just as the UAV flew wings
level over the runway.

5.2.1 Tracking Orthogonal Paths Over a Target

In this experiment, the goal was to fly a figure eight pattern over the target, so that
every pass would provide an image that was orthogonal to the last. By using a camera that
was slightly pitch forward, the camera would get several pictures of the target as the UAV
approached it. In principle getting perpendicular views of the target would be the best way
to localize it.

The goal was to track a figure eight centred over a desired point. The figure eight was
divided into 4 sub paths, shown in figure 5.10 as fine yellow lines. The white dot in figure
5.10 represents the center of the figure eight and the point of interest the controller is trying
to image. The bold grey line is the path taken by the sensor footprint. This experiment was
done in the presence of a bm/s wind to the North West, which accounts for the error at the
top of the figure eight; the aircraft could not turn any sharper in order to avoid being blown
off course.
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Figure 5.10: The UAV flying a figure eight pattern over a point.

The wind also caused and unexpected saw-tooth pattern when the plane was flying di-
rectly into it. This is likely caused by a combination of the two following effects. Previous
simulations produced a similar pattern that was later traced back to poor GPS estimates.
The data from the flight showed that GPS filter did not perform well in the rather strong
winds, and it is very likely that the controller was getting poor GPS estimates. The un-
modeled aircraft dynamics could have also caused this strange behaviour, as it was shown in
Chapter 2 each of the assumptions that lead to the kinodynamic unicycle model of a UAV
begin to break down in winds over 5m/s.

In this experiment, the average cross track error was 15.3m with a standard deviation of
22.5m2. Conditions with less wind would have likely produced much better data. Despite
the saw-tooth pattern, the biggest source of error occurred at the top of the figure eight.
The aircraft was already turning at its maximum rate at the top of the figure eight; it was
not physically possible for the UAV to stay on track. Despite being blown off course, the
controller was able to recover from the disturbance and get back on track in time to take
and image of the desired point.

5.2.2 Maximizing Time Over the Target using Wind

Rather than enforcing that the UAV fly perpendicular paths over the target, an alter-
native meathode of flying wings level over the target is to rotate the straight path over the
desire point to what ever direction minimizes the cost of the tracking controller. This is a
particular useful approach when there is wind, as the path will automatically rotate such
that the UAV flies directly into the wind as it flies over the target. As a result, the UAV
will spend a greater percentage of the flight, over the desired target. Figure 5.11 shows an
example of this tracking stratagy when there is no wind. Each picture from left to right is
snapshot of an animated simulation.



CHAPTER 5. VISION IN THE LOOP TRACKING WITH SMALL UAVS 110

=155 =305 =455
50 50 50
100 1 100
:”
150 -~ 4 150
/r
200 g 4 200
250/ q 250
300 300
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
t=60s t=79s t=90s
50 50
100
A
150
200
250
300
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

Figure 5.11: Frames taken from a simulation showing a wings level fly over controller.

Figure 5.12 shows the path of the UAV using the same controller, but when there is a
5m/s wind head to the Southwest, where North is up.
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Figure 5.12: Frames taken from a simulation with wind showing a wings level fly over
controller.

In the simulation with no wind, the UAV takes the fastest route to fly over the point.
But, in the simulation with wind, the UAV lines up to fly over the point while heading into
the wind.

5.3 Orbiting a Point

In many situations, it is advantageous to have persistent surveillance of a target, rather
than periodic images from flying over the target. In order to achieve persistent surveillance
the UAV must orbit around the target, which minimizes the average distance of the UAV to
the target overtime. Unlike the previous tracking tasks which all used a downward looking
cameras, orbiting a target requires a sideways looking camera.

Choosing the angle of the sideways looking camera is a critical decision. The choice of
angle determines the radius of the orbit required to track a target, given that the aircraft
is at a desired altitude. In most situations, it makes sense to let the desired orbit radius
and altitude determine the angle of the camera. If the angle of the camera is defined as
the positive rotation of a downward looking camera about the body-fixed x-axis, then the
geometry of the camera angle is given by figure 5.13.
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Figure 5.13: The geometry defining the camera angle for a given orbit radius.

The bank angle required to maintain a given orbit can be found by substituting,

.V
TR

into the coordinated turn equation, which results in the following equation.

2
o= (5z)

Adding this bank angle to geometry from figure 5.13 results in the following equation for

the camera angle.
R, V2
® = tan* (—) + tan™! ( )
z gR,

Other than changing the kinodynamic unicycle model to account for this new camera
angle when calculating the projection of the sensor footprint, the NMPC controller remains
the same for orbit tracking as it was for path tracking.

5.3.1 Finding an Infinite Horizon Estimator

The infinite cost horizon estimate is a bit different for the orbit tracking task versus the
path tracking task. The biggest different is that the state of having zero cost is not when the
UAV is on top of the target. The zero cost state is when the UAV is in a minimum radius,
clockwise orbit about the target. Other than that the heuristic that calculates the infinite
cost does so by calculate a Dubins like path from the UAV’s current position to a position
in orbit about the target. Figure 5.14 shows a few examples of those Dubins like paths. The
main difference, between the actual Dubins paths and these paths is that the heuristic has
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a bias towards turning right. From experiential observations, having the UAV take mostly
right turns results in faster settling times, by forcing the UAV to approach the orbit without
going through it.

600 —

200 ! I \ e f I

S e
o i
T e g e
o ] 22
/’_‘_h"\ PR
&~ & // %
f L ; / L
! | = |
200 - ! | e ! |
‘.\ ! \\ l’.
£
\\ o '\\ ok
e s R
400 |-
-600
| | | | | | | I | |
-1000 -800 -B00 -400 -200 1] 200 400 B00 800 1000

Figure 5.14: Sample paths showing the distance to the orbit.

Once the Dubins like distance, d has been calculated, the heuristic calculates the cost
that would accrue at each time step on the way to the orbit. Given the distance to the
target, the cost the would accrue is given by the following equation.

h(d) = %d + (% + 1) (5.1)

The first term in the equation for A(d) is simply the average distance remaining for the
set of remaining steps until the UAV reaches the orbit. The second term calculates the
number of remaining steps until the UAV reaches the orbit.

Figure 5.15 shows the distance function with respect the UAV.
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Figure 5.15: The distance function for the infinite cost heuristic for the orbit tracking task.

Because the minimum of this function is unique, the IGS_RRT algorithm rapidly con-
verges to position about the target that minimizes this heuristic cost.

5.3.2 Pedestrian Tracking

The last experiments that were performed with this controller involved tracking a pedes-
trian using vision in the loop feedback. Much like the river tracking experiment, the UAV
was commanded to look at a point, until it identified a pedestrian in the image, and then
to track the pedestrian. Figure 5.16 shows the slides from an animation of the flight data
from one of the orbit experiments. In the animation the yellow dot is the pedestrian, and
the green trapezoid is the sensor footprint.
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Figure 5.16: Slides from an animation of the flight data.

Again, like the river tracking experiment, the goal of this experiment was to provide
coverage, or persistent surveillance of the pedestrian. Unfortunately, the wind during the
experiments was consistently in excess of 5m/s, which lead to rather mediocre tracking. The
goal of good tracking it being able to you a camera with a smaller field of view, which
translates to an image with greater resolution. Figure 5.17 gives an idea of the tracking
performance by showing the percentage of coverage as field of view goes from 0 to 30 degrees.
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Figure 5.17: The percentage of frames with the target within the feild of view as a function
of the size of the field of view.

As the field of view drops down to less than 10 degrees, a mere 5 degrees of error will
put the target out of the field of view. In Chapter 2 it was shown that if the wind speed
is over bm/s there are about 5 degrees error in the coordinated turn approximation of the
bank angle, let alone all of the other errors that accumulate do to the wind. As such it is
not surprising that a field of view less than 10 degrees would almost never have the target
in view.

5.4 Conclusions

This chapter presented the tracking results of the IGS-RRT NMPC tracking controller
that was developed in the previous chapters. The first experiment showed that the controller
was capable of positing the UAV’s sensor footprint on a straight line, with an accuracy of
1.0m and a standard deviation of 1.7m?. The second experiment showed that the controller
was able to maintain a tracking performance of 7.5m on average even when the desired
sensor path was discontinuous and nearly random. Furthermore, the experiment showed
that given real world conditions, the NMPS controller was able to track slightly better than
the spatial sliding mode controller presented in chapter 4. The third experiment used the
NMPC controller to acquire aerial imagery of a point from directly over head, which it was
able to do despite significant wind disturbances. And, the final experiment, showed the
tracking performance of the NMPC control when used to persistently track a pedestrian, by
orbiting a single point.

From the experimental data, it is clear the NMPC controller performs very well when
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tracking paths, but not quite as well when orbiting points, which is somewhat expected based
on the modelling conclusions from chapter 2. In the presence of win disturbances, many of
the modelling assumptions become less valid, and significantly reduce the accuracy of the
model especially when the aircraft is banking. As a result, when the UAV performs a nearly
constant maximum bank angle turn, in order to orbit a point, the tracking performance of
the NMPC controller is significantly degraded. It follows then that improving the model
with respect to wind disturbances may significantly improve the NMPC’s orbit tracking
performance.
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Chapter 6

Summary of Conclusions

6.1 Conclusions

The previous chapters presented a novel approach to controlling the sensor footprint of
a UAV such that it optimizes the quality of the images the UAV collects. The approach
was composed of three innovations. Firstly, it was shown that an innovative kinodynamic
unicycle model that augments the traditional, kinematic unicycle model with a first order
approximation of a UAV’s roll dynamics, improves the model’s accuracy by about 25%.
Secondly, an iterative Gaussian sampling strategy for the rapidly exploring random tree
algorithm was introduced that generates paths that are ten times more optimal, and actually
runs faster than the original uniform sampling strategy. And lastly, a receding horizon,
nonlinear model predictive controller was presented that leverages the other two innovations
to solve the non-minimum phase problem of controlling a UAV’s sensor footprint.

Chapter 2 presented a novel kinodynamic unicycle model, and used actual flight data to
evaluated its accuracy. It also evaluated several common assumption that are often made in
order to reduce the complexity of the dynamics of fixed wing UAVs. Both the coordinated
turn assumption, and zero pitch assumption, turned out to be accurate when the mean wind
speed was small, and both assumptions became less accurate as the wind increased. In fact,
by every metric, the performance of both unicycle models degraded rapidly as the mean wind
speed increased, which motivates the need for a better model of the effect wind disturbances.

Several common motion planners were presented in Chapter 3, along with a novel iterative
Gaussian sampling strategy for the rapidly exploring random tree algorithm. The relative
advantages and disadvantages of several motion planners with respect to motion planning for
small UAVs was also discussed. In particular, the chapter discussed the difference between
fast motion planning, and kinodynamic motion planning.

Chapter 3 also presented data from Monte Carol simulations that showed that, in addition
to being computationally less complex than a uniform sampling strategy, the IGS-RRT
algorythm also generates paths who’s costs are ten times lower. Lastly, the IGS-RRT showed
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that by initializing the tree with the 'best path’ from the last query, it essentially continues
to iterate on the same tree, and returning solutions like an anytime algorithm.

Chapter 4 presented a novel NMPC turn-rate controller that steers a UAV in order to
have the UAV’s sensor footprint track a desired target. It was shown that a greedy solution
to the sensor tracking problem results in a non-linear non-minimum phase system, where
in most cases, perfect tracking is not possible. Both a qualitative and quantitative analysis
of good and bad tracking was presented, and it was shown that the tracking performance
of the NMPC controller is comparable to a spatial sliding mode controller, and that the
NMPC controller is capable of solving the sensor tracking problem by finding a near optimal
solution with real-time performance characteristics.

Finally, chapter 5 presented the real world tracking results of several experiments that
used the IGS-RRT NMPC controller to control the Berkeley Sig Rascal UAV. The first ex-
periment showed that the controller was capable of positing the UAV’s sensor footprint on
a straight line, with an accuracy of 1.0m and a standard deviation of 1.7m?. The second
experiment showed that the controller was able to maintain a tracking performance of 7.5m
on average even when the desired sensor path was discontinuous and nearly random. Fur-
thermore, the experiment showed that given real world conditions, the NMPS controller was
able to track slightly better than the spatial sliding mode controller presented in chapter
4. The third experiment used the NMPC controller to acquire aerial imagery of a point
from directly over head, which it was able to do despite significant wind disturbances. And,
the final experiment, showed the tracking performance of the NMPC control when used to
persistently track a pedestrian, by orbiting a single point. From the experimental data, it
is clear the NMPC controller performs very well when tracking paths, but not quite as well
when orbiting points, though it’s orbit tracking performance may be greatly improved with
a better disturbance model

6.2 Future Work

Though this paper presents the results of individual UAVs flying in collision free environ-
ments, by using the RRT algorithm, it lays the ground work for a much more complicated
problem, possibly involving team work among UAVs, sensor tracking around obstacles, and
optimizing the quality of an image based on occlusions, localization, and environmental
conditions.

In particular, the disturbance model for the way a UAV is effected by the wind may be
significantly improved if it accounted for the attitude of the aircraft relative to the wind.
For instance, a neural network could be used to generate wind estimates, based on a large
volume of previous light data.

The efficiency of the RRT path planner, could be improved by sampling the configuration
space of the UAV using a discrete number of maneuvers, instead of, or in combination with,
model integration. Thought using maneuvers would decrease the sampling resolution, after



CHAPTER 6. SUMMARY OF CONCLUSIONS 120

the first few seconds, based on the accuracy of the model, it probably wouldn’t make a
difference.

Finally, it may be possible to get the spatial sliding mode controller to track the sensor
path directly by using output redefinition techniques [47]. Essentially the output redefinition
would require a path planner to find an optimal sensor path, and then reflect that path around
the longitudinal axis of the UAV, which would put the reference path above the UAV. Then,
by minimizing the error between the reference path and a vector pointed up from the UAV,
the UAV’s sensor footprint, should track the target.
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