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ABSTRACT OF THE THESIS

On the Capacity of Weakly-Private Information Retrieval

By

Zhuqing Jia

Master of Science in Electrical Engineering

University of California, Irvine, 2019

Professor Syed Jafar, Chair

The problem of weakly-private information retrieval, is a variant of private information

retrieval, where the user wants to retrieve 1 out of K messages from a distributed storage

system with N servers that stores all K messages, and is willing to leak some information

of the identity of the desired message. In this work, we study the problem of weakly-private

information retrieval. A novel information leakage metric is proposed, and the capacity for

the setting of N = 2 servers, and arbitrary number of messages K is characterized. In

particular, in the capacity achieving scheme, designing the distribution of the non-uniformly

distributed noise Z turns out to be the key to achieve the capacity.

vi



Chapter 1

Introduction

As we are entering the era of big data, the design of distributed storage systems (DSS) is

of growing interest. Motivated by the importance of privacy in DSS, the problem of private

information retrieval (PIR) was first proposed in [1]. The problem of PIR is to retrieve a

desired message from a database of K messages stored at N distributed servers, without

revealing any information about the identity of desired message to any server. The goal

is to find the most efficient approach. Initially, the problem of PIR was studied in the

computer science perspective, and the cost of PIR was considered as the total amount of

communication (upload and download). However, in recent years, the problem of PIR was

studied in the information-theoretic perspective, where upload cost are ignored, since it is

negligible compared to the download cost. The rate of a PIR scheme is the ratio of the

number of bits of the desired message retrieved by the user to the total number of bits

downloaded from all servers. The supremum of achievable rates is called the capacity of

PIR. This is an active area, and a growing body of literature has produced many capacity

results of PIR and its variants.

The problem of PIR was first studied information-theoretically by Sun and Jafar in [2]. The

1



capacity of PIR was found to be

CPIR(N,K) =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−1) . (1.1)

This capacity result was then generalized to the T -PIR setting, where privacy is guaranteed

to any group of up to T colluding servers. In [3], the capacity of T -PIR was shown to be

CTPIR(N,K, T ) =


(
1 + T/N + T 2/N2 + · · ·+ TK−1/NK−1)−1 , T < N

1/K, T ≥ N.
(1.2)

Subsequently, the problem of PIR with arbitrary colluding pattern was studied in [4, 5], and

the capacity for disjoint colluding sets was found in [5].

In all above-mentioned settings, the storage of DSS is repetition code. Moreover, another

interesting setting is PIR with coded storage. The capacity of MDS-PIR, where in each

server the MDS-coded version of messages are stored, was proved to be

CMDS-PIR =

(
1 +

(
M

N

)
+ · · ·+

(
M

N

)K−1)−1
(1.3)

in [6], where messages are stored across N servers according to an (N,M) MDS code. How-

ever, the natural generalization of MDS-PIR, the problem of MDS-TPIR remains an open

problem [7, 8], and an achievable rate was found to be 1− M+T−1
N

for any 1 ≤ T ≤ N −M .

Another class of PIR variants is PIR with side information. The problem of PIR with

private side information (PIR-PSI) was first studied in [9], where the user has M out of K

messages available as side-information, and the servers are not aware of the identity of these
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M messages. The capacity of such setting is

CPIR-PSI(N,K,M) =
(
1 + 1/N + 1/N2 + · · ·+ 1/NK−M−1) . (1.4)

Following this work, a number of PIR with side-information under variety constraints were

studied [10, 11, 12, 13, 14].

Variety models of PIR with security concerns were also studied in an information-theoretical

perspective. The problem of symmetric PIR requires the user learns nothing about the

messages besides his desired message. In [15, 16, 17], the capacity of symmetric PIR under

T -private constraint was proved to be

CTSPIR(N,K, T ) = 1− T

N
. (1.5)

The problem of T -PIR with a Byzantine adversary, who may introduce arbitrary errors to

the answer strings of any group of up to B servers, was studied in [18], and its capacity was

shown to be

C0-BTPIR(N,K, T,B) =
N − 2B

N
CTPIR(N − 2B,K, T ) (1.6)

under zero-error criteria, and in [19, 20], BTPIR with coded storage were studied. Recently

in [21], the capacity of symmetric PIR with a Byzantine adversary under ε-error criteria was

characterized to be

Cε−BTSPIR(N,K, T,B) = 1− T +B

N
. (1.7)

Wiretap models requires data security when communication between user and servers may

be listened by eavesdroppers[22, 23]. In [23], the problem of ETPIR was considered, where
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the eavesdropper can listen any group of up to E servers. The capacity is shown to be

CETPIR(N,K, T,E) =


(
1− E

N

) (
1 + T−E

N−E +
(
T−E
N−E

)2
+ · · ·+

(
T−E
N−E

)K−1)−1
, E < T

1− E
N
, E ≥ T.

(1.8)

While the most natural generalization of PIR under security constraints is PIR with secure

storage, its capacity was characterized until recently in [24]. The problem of X-secure T -

private information retrieval (XSTPIR) is to guarantee data security against collusion among

up to X servers and the user’s privacy against collusion among up to T servers. In [24], the

asymptotic capacity (the capacity in the limit as the number of messages K → ∞) of

XSTPIR was proved to be

lim
K→∞

CXSTPIR(N,K,X, T ) =

 1−
(
X+T
N

)
, N > X + T

0, N ≤ X + T.
(1.9)

Besides, the exact capacity for any K if X = T = 1, N = 3 was also characterized to be

CXSTPIR(N = 3, K,X = 1, T = 1) =

(
N −X
N

)
CTPIR(N −X,K, T ) (1.10)

=
2

3

(
1 +

1

2
+

1

22
+ · · ·+ 1

2K−1

)−1
. (1.11)

Moreover, it was also shown that if we relax privacy constraint to T = 1, we get symmet-

ric security for free, i.e., the user learns nothing beyond its desired message. Finally, the

asymptotic capacity of X-secure T -private computation [25] was also settled.

Recently in [26], another novel PIR model, weakly-private information retrieval (WPIR) was

proposed, where the privacy constraint is relaxed such that information-theoretic privacy

leakage is allowed. In [26], two different information leakage metrics were studied and two
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WPIR schemes were also proposed accordingly. However, no capacity results was given. In

this work, we propose a novel information leakage metric for the weakly-private information

retrieval problem, and characterize the capacity for the setting of N = 2 servers.

Notation: For n1, n2 ∈ Z, n1 < n2, [n1 : n2] denotes the set {n1, n1 +1, . . . , n2}. For an index

set I = {i1, i2, . . . , in}, XI denotes the set {Xi1 , Xi2 , . . . , Xin}.
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Chapter 2

Problem Statement

Consider a DSS withN servers. We have a total ofK independent messages, W1,W2, · · · ,WK ,

that are stored in the DSS, and each message consists of L random symbols from the finite

field Fq.

H(W1) = H(W2) = · · · = H(WK) = L, (2.1)

H(W1,W2, . . . ,WK) = KL, (2.2)

in q-ary units. The information stored at the nth server is denoted by Sn, n ∈ [1 : N ]. To

ensure information retrieval, note that the set of messages W1, · · · ,WK must be a function

of S[1:N ].

H(W1, · · · ,WK | S[1:N ]) = 0. (2.3)

The user generates a desired message index θ privately and uniformly from [1 : K]. In order

to retrieve Wθ privately, the user generates N queries, Q
[θ]
1 , Q

[θ]
2 , . . . , Q

[θ]
N . The query Q

[θ]
n is
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sent to the nth server.

For compact notation, let us define

Q = {Q[k]
n : k ∈ [1 : K], n ∈ [1 : N ]}. (2.4)

The user has no prior knowledge of the information stored at the servers, i.e.,

I(S[1:N ];Q
[θ]
[1:N ], θ) = 0. (2.5)

Now consider the privacy constraint. In this work, we use an information leakage metric

derived from the converse of PIR problem. The W -privacy constraint, given the information

leakage metric W , is defined as

WL = H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (2.6)

= H(A
[3]
1 |W1,W2,Q)−H(A

[2]
1 |W1,W2,Q) (2.7)

= . . . (2.8)

= H(A
[K]
1 |W1,W2, . . . ,WK−1Q)−H(A

[K−1]
1 |W1,W2, . . . ,WK−1,Q) (2.9)

= . . . (2.10)

= H(A
[2]
N |W1,Q)−H(A

[1]
N |W1,Q) (2.11)

= H(A
[3]
N |W1,W2,Q)−H(A

[2]
N |W1,W2,Q) (2.12)

= . . . (2.13)

= H(A
[K]
N |W1,W2, . . . ,WK−1Q)−H(A

[K−1]
N |W1,W2, . . . ,WK−1,Q) (2.14)

Here we note that W ∈ R, 0 ≤ W ≤ 1
N

. The lower bound of W is easy to see, since

W = 0 indicates the perfect privacy. Now let us explain the upper bound of W . Consider an

information retrieval scheme with no privacy constraint completely, where the user randomly,
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privately choose 1 out of N servers, and retrieve the desired message from the chosen server.

It is easy to see that for the given scheme, W = 1
N

, and the rate achieved is trivially 1. Since

the information retrieval rate can not exceed 1, 1
N

is the upperbound of W .

Upon receiving the query Q
[θ]
n , the nth server generates an answering string A

[θ]
n , as a function

of the query Q
[θ]
n and its stored information Sn.

H(A[θ]
n |Q[θ]

n , Sn) = 0. (2.15)

From all the answers the user must be able to recover the desired message Wθ,

[Correctness] H(Wθ|A[θ]
[1:N ], Q

[θ]
[1:N ], θ) = 0. (2.16)

The rate of an WPIR scheme characterizes how many bits of desired message are retrieved

per downloaded bit, (equivalently, how many q-ary symbols of desired message are retrieved

per downloaded q-ary symbol),

R =
L

D
, (2.17)

where D is the expected value (with respect to the random queries) of the number of q-ary

symbols downloaded by the user from all servers. The capacity of WPIR, denoted C, is the

supremum of achievable rates over all L.
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Chapter 3

Main Result

For the sake of simplicity, let us define

S(K) =
1− 1

2K

1− 1
2

. (3.1)

The main result of this work, is the characterization of the capacity of WPIR problem with

N = 2 servers and arbitrary number of messages K under the information leakage metric

defined in (2.14), which is presented in the following theorem.

Theorem 3.1. The capacity of WPIR with N = 2 servers and arbitrary number of messages

K under the information leakage metric defined in (2.14) is

C =
1

S(K)− S(K − 1)W
. (3.2)

The capacity of Weakly-private information retrieval (WPIR), as a function of the informa-

tion leakage metric W defined in (2.14), with N = 2 servers and different number of messages

K, is presented in the following figure.
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Figure 3.1: The capacity of WPIR as a function of proposed W with N = 2 servers and
different K.

The proof of achievability is presented in Chapter 4, while the proof of converse is presented

in Chapter 5.
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Chapter 4

Achievability

Throughout the scheme, we will assume that each message consist of L = 1 symbol from F2,

i.e., one binary symbol. Besides, let us define 1×K vector

W = [W1,W2, . . . ,WK ]. (4.1)

Also, we define K × 1 vector Q[θ] to be the θ-th column of a K ×K identity matrix. Z is

a K × 1 random vector from all vectors over FK2 , according to some distribution. A WPIR

scheme, for N = 2, presented in terms of storage of each server, query to each server and

answer symbol downloaded from each server, is as follows

DB1 DB2

Storage W W

Query Z Q[θ] + Z

Answer WZ WQ[θ] + WZ

Table 4.1: Construction of storage, query and answer of N = 2 servers.

Correctness of the scheme is proved as follows. Upon receiving N = 2 answer symbols, the
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user finds summation of the two symbols.

WZ + WQ[θ] + WZ (4.2)

= WQ[θ]. (4.3)

The interference term WZ cancels out because all symbols are binary. Due to the definition

of W and Q[θ], we have

WQ[θ] = Wθ (4.4)

is the desired message symbol, this completes the proof of correctness.

One may notice that the construction of the scheme resembles that in [1], however, we

highlight that this scheme achieves the PIR capacity when Z is a uniformly distributed

random vector from all vectors over FK2 and also independent from Q[θ], in other words, we

focus on W = 0 for now. First, let us see why perfect privacy is guaranteed. For the first

database, we have

I(Z;Q[θ]) = 0. (4.5)

Similarly, for the second database, we have

I(Q[θ] + Z;Q[θ]) (4.6)

= I(Z;Q[θ]) = 0 (4.7)

This guarantees the perfect privacy. Now let us consider the rate that the scheme achieves.

Since Z and Q[θ]+Z are uniformly distributed random vectors from all vectors over FK2 , with

probability 1
2K

, the query vector is the all zero vector, thus no download is needed whenever

12



this happens. Therefore, we can calculate that the rate achieved is

R =
1

1− 1
2K

(
1− 1

2

)
(4.8)

=
1− 1

2

1− 1
2K

(4.9)

=

(
1 +

1

2
+

1

4
+ · · ·+ 1

2K−1

)−1
(4.10)

which matches the capacity of this setting (W = 0).

From the construction of the scheme, we can see the role of the field size plays in the

achieved rate. With higher probability that the query vector is the all zero vector, the

average download is reduced. Therefore, the intuition behind the construction of WPIR

scheme is to increase the probability that the query vector is the all zero vector, by carefully

designing the distribution of Z. Let us start from the setting where K = 2.

4.1 K=2 Messages

As we stated before, the key insight to design the capacity achieving WPIR scheme is to

carefully design the distribution of Z. When K = 2, the distribution of Z, conditioning on

desired message index θ, is shown in the following table.

Z θ = 1 θ = 2

[0, 0]T 1
4

+ 1
2
W 1

4
+ 1

2
W

[0, 1]T 1
4
− 1

2
W 1

4
+ 1

2
W

[1, 0]T 1
4

+ 1
2
W 1

4
− 1

2
W

[1, 1]T 1
4
− 1

2
W 1

4
− 1

2
W

Table 4.2: Distribution of Z, for N = 2, K = 2 setting.
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where W is the information leakage metric, W ∈ R, 0 ≤ W ≤ 1
2
. Recall that W is defined as

WL = H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (4.11)

= H(A
[2]
2 |W1,Q)−H(A

[1]
2 |W1,Q). (4.12)

This is a valid distribution, which can be easily verified. We also note that by symmetry of

the distribution, Z and Q[θ]+Z have the same distribution conditioning on θ. Let us see why

W -privacy is achieved. In order to calculate W , consider the distribution of A
[1]
1 , A

[1]
2 , A

[2]
1

and A
[2]
2 .

P A
[1]
1 A

[1]
2 A

[2]
1 A

[2]
2

1
4

+ 1
2
W 0,W1 0,W1 0,W2 0,W2

1
4
− 1

2
W W2,W1 +W2 W2,W1 +W2 W1,W1 +W2 W1,W1 +W2

Table 4.3: Distribution of A
[1]
1 , A

[1]
2 , A

[2]
1 and A

[2]
2 , for N = 2, K = 2 setting.

Therefore,

H(A
[1]
1 |W1,Q) = 0×

(
1

2
+W

)
+H(W2)

(
1

2
−W

)
(4.13)

= L

(
1

2
−W

)
. (4.14)

Similarly,

H(A
[2]
1 |W1,Q) =

1

2
L. (4.15)

Thus we obtain

H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) = WL. (4.16)

H(A
[2]
2 |W1,Q) − H(A

[1]
2 |W1,Q) = WL can be also similarly verified. This guarantees the

14



W -privacy. Now let us consider the rate achieved by the scheme. When θ = 1, Z = [0, 0]T

or Z = [1, 0]T , and when θ = 2, Z = [0, 0]T or Z = [0, 1]T the user only need to download

1 symbol from N = 2 servers. Since θ is uniformly distributed from [1 : K], the average

download D̄ is

D̄ =
1

2
× 4× L

(
1

4
+

1

2
W

)
+

1

2
× 2× 4× L

(
1

4
− 1

2
W

)
(4.17)

= L

(
3

2
−W

)
. (4.18)

Thus the rate achieved is

R =
L

D̄
=

1
3
2
−W

. (4.19)

which matches the capacity for this setting.

Discussion: As a sanity check, let us consider corner cases, i.e., when W = 0 and W = 1
2
.

When W = 0, no information leakage is allowed, therefore, perfect privacy is guaranteed.

It is easy to see that when W = 0, Z is a uniformly distributed random vector from all

vectors over F2
2 and also independent from Q[θ], thus guarantees perfect privacy. The rate

achieved is R = 2/3, which matches the capacity of this setting. On the other hand, when

W = 1
2
, i.e., no privacy constraint at all, the scheme is equivalent to randomly select one

server from N = 2 servers, then download the desired symbol directly from that server. And

the achieved rate is trivially 1.

4.2 K=3 Messages

When K = 3, the distribution of Z, conditioning on desired message index θ, is shown in

the following table.
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Z θ = 1 θ = 2 θ = 3

[0, 0, 0]T 1
8

+ 3
4
W 1

8
+ 3

4
W 1

8
+ 3

4
W

[0, 0, 1]T 1
8
− 1

4
W 1

8
− 1

4
W 1

8
+ 3

4
W

[0, 1, 0]T 1
8
− 1

4
W 1

8
+ 3

4
W 1

8
− 1

4
W

[0, 1, 1]T 1
8
− 1

4
W 1

8
− 1

4
W 1

8
− 1

4
W

[1, 0, 0]T 1
8

+ 3
4
W 1

8
− 1

4
W 1

8
− 1

4
W

[1, 0, 1]T 1
8
− 1

4
W 1

8
− 1

4
W 1

8
− 1

4
W

[1, 1, 0]T 1
8
− 1

4
W 1

8
− 1

4
W 1

8
− 1

4
W

[1, 1, 1]T 1
8
− 1

4
W 1

8
− 1

4
W 1

8
− 1

4
W

Table 4.4: Distribution of Z, for N = 2, K = 3 setting.

where W is the information leakage metric, W ∈ R, 0 ≤ W ≤ 1
2
. In this setting, W is defined

as

WL = H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (4.20)

= H(A
[3]
1 |W1,W2,Q)−H(A

[2]
1 |W1,W2,Q) (4.21)

= H(A
[2]
2 |W1,Q)−H(A

[1]
2 |W1,Q) (4.22)

= H(A
[3]
2 |W1,W2,Q)−H(A

[2]
2 |W1,W2,Q). (4.23)

Considering the distribution of answer symbols, and due to symmetry of the distribution,

we obtain

H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (4.24)

= L

(
1

8
+

3

4
W − 1

8
+

1

4
W

)
(4.25)

= WL. (4.26)
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Similarly,

H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (4.27)

= H(A
[3]
1 |W1,W2,Q)−H(A

[3]
1 |W1,W2,Q) (4.28)

= H(A
[2]
2 |W1,Q)−H(A

[1]
2 |W1,Q) (4.29)

= H(A
[3]
2 |W1,W2,Q)−H(A

[3]
2 |W1,W2,Q) (4.30)

= WL. (4.31)

Thus the W -privacy is guaranteed. Now let us calculate the average download of the scheme.

D̄ =
1

3
× 6L×

(
1

8
+

3

4
W

)
+

1

3
× 36L×

(
1

8
− 1

4
W

)
(4.32)

= L

(
7

4
− 3

2
W

)
(4.33)

The rate achieved is

R =
L

D̄
=

1
7
4
− 3

2
W

(4.34)

which matches the capacity of this setting.

4.3 Arbitrary Number of Messages K

For arbitrary number of messages K, the distribution of Z conditioning on θ is as follows

P (Z|θ) =


1− 1

2
(S(K)− S(K − 1)W ), Z = 0

1− 1
2
(S(K)− S(K − 1)W ), Z = Q[θ]

1
2K−2(S(K)− S(K − 1)W − 1), otherwise.

(4.35)
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To verify the distribution is valid, we note that for each realization of θ, among 2K possible

realizations of Z, we have

2×
(

1− 1

2
(S(K)− S(K − 1)W )

)
+ (2K − 2)

1

2K − 2
(S(K)− S(K − 1)W − 1)

(4.36)

= 2− (S(K)− S(K − 1)W ) + (S(K)− S(K − 1))W − 1 (4.37)

= 1. (4.38)

Thus this distribution is valid. Now let us see why W -privacy holds. For arbitrary K, the

information leakage metric W is defined as

WL = H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (4.39)

= H(A
[3]
1 |W1,W2,Q)−H(A

[2]
1 |W1,W2,Q) (4.40)

= . . . (4.41)

= H(A
[K]
1 |W1,W2, . . . ,WK−1Q)−H(A

[K−1]
1 |W1,W2, . . . ,WK−1,Q) (4.42)

= H(A
[2]
2 |W1,Q)−H(A

[1]
2 |W1,Q) (4.43)

= H(A
[3]
2 |W1,W2,Q)−H(A

[2]
2 |W1,W2,Q) (4.44)

= . . . (4.45)

= H(A
[K]
2 |W1,W2, . . . ,WK−1Q)−H(A

[K−1]
2 |W1,W2, . . . ,WK−1,Q) (4.46)
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Due to symmetry of the distribution, we have

H(A
[2]
1 |W1,Q)−H(A

[1]
1 |W1,Q) (4.47)

= H(A
[3]
1 |W1,W2,Q)−H(A

[2]
1 |W1,W2,Q) (4.48)

= . . . (4.49)

= H(A
[K]
1 |W1,W2, . . . ,WK−1Q)−H(A

[K−1]
1 |W1,W2, . . . ,WK−1,Q) (4.50)

= H(A
[2]
2 |W1,Q)−H(A

[1]
2 |W1,Q) (4.51)

= H(A
[3]
2 |W1,W2,Q)−H(A

[2]
2 |W1,W2,Q) (4.52)

= . . . (4.53)

= H(A
[K]
2 |W1,W2, . . . ,WK−1Q)−H(A

[K−1]
2 |W1,W2, . . . ,WK−1,Q) (4.54)

= L

(
1− 1

2
(S(K)− S(K − 1)W )− 1

2K − 2
(S(K)− S(K − 1)W − 1)

)
(4.55)

= L

(
2K − 1

2K − 2
+

2K−1

2K − 2
S(K − 1)W − 2K−1

2K − 2
S(K)

)
(4.56)

= L

(
2K − 1

2K − 2
+

2K−1

2K − 2
S(K − 1)W − 2K − 1

2K − 2

)
(4.57)

= L

(
2K−1

2K − 2
S(K − 1)W

)
(4.58)

= WL. (4.59)

Equation (4.54) is justified as follows. Since A
[θ]
n is a linear combination of W[1:K], given a

subset of W[1:K], H(A
[θ]
n ) equals either 0 or L. Therefore,

H(A[θ]
n |WK,Q) = (1− P (A[θ]

n = 0|WK))L. (4.60)

From the construction of distribution of Z, the following equation always holds.

P (A[θ]
n = 0|WK)− P (A[θ′]

n = 0|WK) (4.61)

= 1− 1

2
(S(K)− S(K − 1)W )− 1

2K − 2
(S(K)− S(K − 1)W − 1. (4.62)
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where θ ∈ K, θ′ /∈ K. Thus the equation (4.54) holds. This completes the proof of W -privacy.

Finally, let us calculate the average download of the scheme.

D̄ = 2×
(

1− 1

2
(S(K)− S(K − 1)W )

)
(4.63)

+ 2(2K − 2)

(
1

2K − 2
(S(K)− S(K − 1)W − 1)

)
= S(K)− S(K − 1)W. (4.64)

which matches the capacity of this setting. This completes the construction of capacity

achieving WPIR scheme for N = 2, arbitrary number of messages K setting.

Discussion: The construction of the capacity achieving scheme exploits the fact that when

the query is the all zero vector, the user don’t have to download anything from the server,

thus the rate is increased. This is done by designing the distribution of Z and increase the

probability that the query is the all zero vector. Besides, the distribution is symmetric,

such that the query vectors for two servers, Z and Q[θ] + Z are identically distributed.

Consequently, under the information leakage metric used in this work, for the setting of

N = 2 and arbitrary number of messages K, the capacity is achieved. However, we note

that the capacity of WPIR problem with the same setting under other information leakage

metrics remains open.
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Chapter 5

Converse

In this chapter, we prove the converse of Theorem 3.1. Let us start from the setting where

N = 2, K = 2.

5.1 K = 2 Messages

The download satisfies

D ≥ H(A
[1]
1 , A

[1]
2 |Q) (5.1)

= H(A
[1]
1 , A

[1]
2 ,W1|Q) (5.2)

= H(W1|Q) +H(A
[1]
1 , A

[1]
2 |W1,Q) (5.3)

= L+H(A
[1]
1 , A

[1]
2 |W1,Q). (5.4)
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(5.2) follows from the correctness constraint, i.e., from A
[1]
1 , A

[1]
2 we can decode W1. Therefore,

we have

D ≥ L+H(A
[1]
1 |W1,Q) (5.5)

= L+H(A
[2]
1 |W1,Q)−WL. (5.6)

(5.6) follows from the definition of W -privacy. Similarly, we have

D ≥ L+H(A
[1]
2 |W1,Q) (5.7)

= L+H(A
[2]
2 |W1,Q)−WL. (5.8)

Averaging the two inequalities, we have

D ≥ L+
1

2
H(A

[2]
1 |W1,Q) +

1

2
H(A

[1]
2 |W1,Q)−WL (5.9)

≥ L+
1

2
H(A

[2]
1 , A

[2]
2 |W1,Q)−WL (5.10)

= L+
1

2
H(A

[2]
1 , A

[2]
2 ,W2|W1,Q)−WL (5.11)

≥ L

(
3

2
−W

)
. (5.12)

In (5.11) we used the fact that from A
[2]
1 , A

[2]
2 we can decode W2. Thus we have

R ≤ L

D
=

1
3
2
−W

. (5.13)

This completes converse proof for this setting.
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5.2 K = 3 Messages

From (5.11), we have

D ≥ L+
1

2
H(A

[2]
1 , A

[2]
2 ,W2|W1,Q)−WL (5.14)

= L+
1

2
(H(W2|W1,Q) +H(A

[2]
1 , A

[2]
2 |W1,W2,Q))−WL (5.15)

=
3

2
L+

1

2
H(A

[2]
1 , A

[2]
2 |W1,W2,Q)−WL (5.16)

Therefore, we have

D ≥ 3

2
L+

1

2
H(A

[2]
1 |W1,W,Q)−WL (5.17)

=
3

2
L+

1

2
H(A

[3]
1 |W1,W2,Q)− 3

2
WL (5.18)

where in (5.18), we used the definition of W -privacy. Similarly, we have

D ≥ 3

2
L+

1

2
H(A

[2]
2 |W1,W2,Q)−WL (5.19)

=
3

2
L+

1

2
H(A

[3]
2 |W1,W2,Q)− 3

2
WL (5.20)

Averaging the two inequalities, we have

D ≥ 3

2
L+

1

4
H(A

[3]
1 |W1,W2,Q) +

1

4
H(A

[3]
2 |W1,W2,Q)− 3

2
L (5.21)

≥ 3

2
L+

1

4
H(A

[3]
1 , A

[3]
2 |W1,W2,Q)− 3

2
L (5.22)

=
3

2
L+

1

4
H(A

[3]
1 , A

[3]
2 ,W3|W1,W2,Q)− 3

2
L (5.23)

≥ L

(
7

4
+

3

2
W

)
. (5.24)
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(5.23) follows from the decodability of message W3. Thus we have

R ≤ L

D
=

1
7
4
− 3

2
W
. (5.25)

This completes converse proof for this setting.

5.3 Arbitrary Number of Messages K

The proof of converse for arbitrary number of messages K is based on an induction argument.

We repeatedly use the correctness constraint and the definition of W -privacy. Starting from

(5.23), we have

D ≥ 3

2
L+

1

4
H(A

[3]
1 , A

[3]
2 ,W3|W1,W2,Q)− 3

2
WL (5.26)

=
3

2
L+

1

4
H(W3|W1,W2,Q) +H(A

[3]
1 , A

[3]
2 |W1,W2,W3,Q)− 3

2
WL (5.27)

≥ 7

4
L+

1

4
H(A

[3]
1 , A

[3]
2 |W1,W2,W3,Q)− 3

2
WL. (5.28)

Thus we have

D ≥ 7

4
L+

1

4
H(A

[3]
1 |W1,W2,W3,Q)− 3

2
WL (5.29)

=
7

4
L+

1

4
H(A

[4]
1 |W1,W2,W3,Q)− 7

4
WL. (5.30)

Similarly, we have

D ≥ 7

4
L+

1

4
H(A

[4]
2 |W1,W2,W3,Q)− 7

4
WL. (5.31)
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Averaging the two inequalities, we have

D ≥ 7

4
L+

1

8
H(A

[4]
1 |W1,W2,W3,Q) +

1

8
H(A

[4]
2 |W1,W2,W3,Q)− 7

4
WL (5.32)

≥ 7

4
L+

1

8
H(A

[4]
1 , A

[4]
2 |W1,W2,W3,Q)− 7

4
WL (5.33)

Now we continue from (5.33), and repeat the procedure (K − 4) times, we have

D ≥ S(K − 1)L+
1

2K−1
H(A

[K]
1 , A

[K]
2 |W1,W2,W3, . . . ,WK−1Q)− S(K − 1)WL

(5.34)

= S(K − 1)L+
1

2K−1
H(A

[K]
1 , A

[K]
2 ,WK |W1,W2,W3, . . . ,WK−1Q)− S(K − 1)WL

(5.35)

≥ S(K − 1)L+
1

2K−1
L− S(K − 1)WL (5.36)

= L(S(K)− S(K − 1)W ). (5.37)

Thus the outer bound of the rate is

R ≤ 1

S(K)− S(K − 1)W
. (5.38)

This completes the proof of converse for N = 2 and arbitrary K setting.
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Chapter 6

Discussion

The capacity of WPIR with N = 2 servers and arbitrary number of messages K under a

novel information leakage metric is characterized in this work. The following observations are

noticeable. First, for a fixed number of messages K, the lower bound of expected download

D, is a linear function of W . Under the asymptotic setting, i.e., K →∞, we have

lim
k→∞

C =
1

2− 2W
. (6.1)

Thus with W -privacy, the rate increases, even the number of messages K is large. Besides,

the capacity achieving scheme, exploits the fact that all symbols are from F2. Symmetric

distributions of the noise vector Z, that is used to protect the query vector, are designed

according to different K. However, the generalization of the scheme to arbitrary number of

servers N is not straightforward. For example, consider the setting where N = 3. To achieve

the asymptotic capacity, for each message, we need L = 2 symbols from F2. Therefore, for

arbitrary K, the scheme achieves the rate

R =
1

1− 1
22K

(
1− 1

3

)
. (6.2)
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However, the capacity for this setting [2] is

C =
1− 1

3

1− 1
3K

. (6.3)

Thus the rate achieved does not match the capacity. Therefore, the capacity of WPIR for

arbitrary N,K under the information leakage metric defined in (2.14) merit investigation

for the future work. Besides, in practical, other information leakage metrics may also be

considered, such as the worst-case information leakage [26]. The capacity of WPIR under

such information leakage metrics, even for N = 2, K = 2 and asymptotic settings, remains

open. The relation between W -privacy and upload cost, computation cost, storage overhead,

are other interesting problems that deserve study.
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