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Abstract

Topological materials are of great interest to condensed matter physicists and engi-

neers alike due to their potential application in quantum technology. To this end,

two materials in this class, Weyl semimetals and quantum spin liquids, are studied in

this dissertation using a set of computational and theoretical techniques.

Quantum spin ice models are studied using exact diagonalization, numerical linked

cluster expansions, and perturbation theory. We calculate a host of observables like

entanglement entropy and Ising correlation, and use them extract the phase bound-

aries of these models as a function of model parameters. These results have potential

application in the experimental study of rare-earth pyrochlores.

We study the Hall transport properties of Weyl and multi-Weyl semimetals un-

der the periodic drive of a laser pulse using analytical methods such as the Kubo

formalism and the Matsubara Green’s function formalism. Physical quantities such

as the thermal Hall and Nernst conductivities are extracted for such models. The

information obtained is analyzed and we show the characteristics of the transport

coefficients as a function of monopole charge.

xii
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Chapter 1

Introduction

1.1 Topological materials

In this thesis, we will examine the role of topology in modern condensed matter

physics using a gamut of analytical and numerical techniques. The two most in-

vogue classes of topological materials are Dirac materials and quantum spin liquids

(QSLs). Besides the plethora of exotic phenomena they are predicted (and in some

cases, shown) to host, they find potential applications in the future of quantum tech-

nology. Dirac materials [1, 2] are those which host Dirac (or Weyl) points in their

energy dispersion in momentum space, and form the low energy manifestations of

Dirac (or Weyl) fermions. Over the last two decades Dirac materials such as topolog-

ical insulators, Dirac semimetals (DSMs), and Weyl semimetals (WSMs) have been

studied both theoretically and experimentally. QSLs [3, 4], on the other hand, are a

form of quantum matter which exhibit long range entanglement and fractional quasi-

particle excitations. They are topologically ordered systems which do not fit the

Landau paradigm of distinguishing phases based on symmetries. Despite a plethora

of proposals for quantum spin liquid materials, definitive demonstration of their exis-

tence is lacking. In what follows we dive in to a deeper understanding of these exotic



phenomena. The following subsections are classed into two sets: the first four cover

topics related to QSLs whereas the remaining five covers WSMs.

1.2 Topological paradigms in low energy physics -

I

Topology is the study of deformable spaces - those that maybe smoothly reshaped

without introducing holes or tearing them. It is apriori unclear as to how this abstract

mathematical subject may be relevant to condensed matter physicists. Remarkably

however, it shows up in more than one way in modern condensed matter physics. One

of the striking discoveries of the 1980’s was that of topological order [3, 4]. Before that,

it was thought that all phases of matter could be classified using Landau’s theory. Put

simply, Landau’s theory [5] states that a phase is characterized by local order which is

associated with the preserved/ broken symmetries of the system. There were at least

two distinct developments that led to the inception of topological order. The first

idea is the chiral spin state [6, 7], which was conjectured to describe high temperature

superconductivity. While experiments proved otherwise, it was realized that there are

many distinct chiral spin states with exactly the same symmetries, thereby escaping

Landau’s description. This new type of order was named topological order, motivated

by the fact that the underlying effective theory is a topological quantum field theory.

The notion of topological order also came about from another astonishing observation,

this time in the fractional quantum Hall effect (FQHE) [7, 8]. In this phenomenon, the

different Hall conductivities, which depend on the filling factor σH = ν e2

2π~ , represent

different phases, all of which have the same symmetries. Thus Landau’s theory does

not permit one to distinguish between the different FQH phases described by rational

values of ν. Hallmark features of topologically ordered phases include long-range

entanglement and quasi-particles excitations with fractional statistics.

2



It turns out that magnetic systems can also exhibit topological order. Typically

one would expect that when magnets in two and three dimensions are cooled down to

zero temperature, they develop long-range order. However, the presence of geometric

frustration can prevent this outcome by virtue of competing spin interactions that

cannot be simultaneously satisfied. The simplest example of geometric frustration

can be seen by imagining a three site triangular lattice Ising antiferromagnet with

one up and one down spin. There is no choice for the remaining spin which would lead

to a non-degenerate ground state. Geometric frustration can lead to a macroscopic

degeneracy in the ground state manifold for such systems - a classical spin liquid. A

quantum spin liquid is induced by introducing quantum fluctuations which pick out

a unique ground state via superposition, leading to long range entanglement.

1.2.1 Quantum Entanglement

The idea of quantum entanglement dates back to the Einstein-Podolsky-Rosen (EPR)

paradox [9] and is a feature of quantum mechanics with no classical analog. The

textbook example of this phenomenon is explained using the Bell pair - a pair of

electrons (spin 1/2 particles) A and B with the following state:

|ψ〉 =
1√
2

(|↑〉A |↓〉B − |↓〉A |↑〉B). (1.1)

If we measure the spin of either electron, we automatically know the state of the

other electron, no matter how far they are spatially separated. This is what Einstein

called “spooky action at a distance” and he used it to argue that quantum mechanics

was flawed - surely information cannot travel faster than the speed of light! Despite

its reputation with experiments, quantum mechanics wasn’t universally accepted for

quite a while. It wasn’t until in 1964, when John Bell [10] came along and showed that

no classical system would ever be able to reproduce the effects of quantum mechanics,

3



that the validity of quantum mechanics stood on incontrovertible ground.

In order to measure the degree of entanglement, an excellent object is the von

Neumann entropy, defined in terms of ρ, the density matrix of the system. The

von-Neumann entropy (henceforth referred to as entanglement entropy) answers the

question

“If a system is divided into two subsystems (say A and B), how much is subsystem

A entangled with subsystem B?”

The entanglement entropy is defined as

S = −Tr[ρA log ρA] = −Tr[ρB log ρB], (1.2)

where ρA and ρB are the reduced density matrices given by ρA = TrB(ρ) and ρB =

TrA(ρ) respectively. The Hilbert space H of the whole system can be decomposed as

a direct product of the Hilbert space of the subsystems H = HA ⊗ HB. A product

state is one where the wave-function can be decomposed as |ψ〉 = |ψA〉 ⊗ |ψB〉, with

|ψA〉 εHA and |ψB〉 εHB, and the entanglement entropy vanishes for such a state. We

will use the von-Neumann entropy as the measure of entanglement throughout the

dissertation.

1.2.2 Valence bonds, resonance, and spin liquids

Its now appropriate to consider the original idea of a spin liquid. This concept was

proposed by Philip W. Anderson as a variational solution for the ground state of the

Heisenberg antiferromagnet on a triangular lattice [11]. While the proposal turned

out to be incorrect, the idea of a spin liquid state persisted in the imaginations of

physicists. In this segment, we will review the basic building blocks of Anderson’s

4



idea. Defining the Bell pair [eqn.(4.1)] as a singlet, one can imagine tiling a triangular

lattice of N spins with N/2 singlets. This state is the so called valence bond (VB)

state |φ〉, and while all spins are entangled with at least one other spin, the entangle-

ment is not long-ranged. To incorporate this missing feature, Anderson considered

a superposition of all such valence bond coverings of the triangular lattice, leading

to the construction of the resonating valence bond (RVB) state - a quantum spin

liquid (QSL)! The defining property of a QSL phase is that it exhibits long range

entanglement, though other more restrictive definitions exist in the literature.

As we shall see resonances are a key component in the formation of QSLs, a fact

which will be unearthed using geometry and perturbation theory. A somewhat coarse

classification of QSLs [4] splits them into two classes: gapped QSLs and ungapped

QSLs. By “gapped” we mean that there is an energy gap between the ground state

and the first excited state of the QSL. Gapped QSLs usually have well defined emer-

gent quasi-particle excitations (spinons, magnetic monopoles, anyons, etc.) with a

topological structure which forces creation (and annihilation) in pairs. Due to the

resonating nature of the QSL phase these quasi-particles can be arbitrarily separated

at finite energy cost! Gapless spin liquids, on the other hand, can lead to the break-

down of the quasi-particle description. They typically have power-law correlations

for their observables. Next we consider a class of materials which are thought to host

a type of QSL called a quantum spin ice.

1.2.3 Spin-ice models

One class of materials that has attracted significant interest in the search for QSLs is

the spin-ice family of rare-earth pyrochlores [12–20]. Magnetic rare-earth ions form

a lattice of corner-sharing tetrahedra. Though these ions typically have large spin,

strong spin-orbit coupling and crystal-field effects map them on to an effective two-

state or spin-half system. The local Ising axis is defined by the line joining the vertex
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to the center of the tetrahedron. When exchange interactions favor ‘2-in-2-out’ Ising

states in each tetrahedron, this leads to macroscopic ground state degeneracy at the

classical level with the well-known Pauling entropy [21]. This classical spin-liquid,

also called spin-ice, is well established in some rare earth pyrochlores [13].

These materials can be divided into Kramers and non-Kramers systems [12]. The

former consist of odd number of electrons per ion which must have a two-fold degen-

eracy for every single-ion eigenstate. The latter will typically have non-degenerate

eigenstates and double degeneracy can only arise as a result of some lattice symme-

try. Thus spin-active non-Kramers systems can arise from two nearby non-degenerate

lowest-energy states well separated from the rest, or, from a lattice-symmetry pro-

tected doublet ground state which will be split by any impurities. These systems can

be modelled by random-transverse field Ising models (RTFIMs) [22–27]. Indeed the

material Pr2Zr2O7 is a realization of this model [28].

The pyrochlore lattice consists of corner-sharing tetrahedra and is not a Bravais

lattice. Each pyrochlore site is part of two-tetrahedra and each tetrahedron has four

sites. One way to construct the pyrochlore lattice is to consider an F.C.C. lattice

of lattice constant a with tetrahedra centred on each site with the vertices located

at (a/8, a/8, a/8), (−a/8,−a/8, a/8), (−a/8, a/8,−a/8) and (a/8,−a/8,−a/8). The

random transverse field Ising model (RTFIM) is defined by the following local Hamil-

tonian.

H = J
∑
<ij>

σzi σ
z
j +

∑
i

hiσ
x
i (1.3)

< i, j > represents nearest neighbors pyrochlore sites i and j, J represents the Ising

coupling, σµ represent the spin 1/2 Pauli matrices, and hi represent the local trans-

verse random fields. As stated previously, the Ising z-axis at each site is local and

points towards the center of the tetrahedon. Since σzi ’s commute with the Ising term,

the Hamiltonian is unitarily equivalent to an RTFIM with the local fields pointing
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along any direction in the x−y plane. Note that this is not the most general Hamilto-

nian allowed by symmetries on a pyrochlore lattice. We study this model extensively

in Chapter 2 using exact diagonalization and numerical linked cluster expansions

(NLCE). Since we have an easy Ising axis favoring the ‘2-in 2-out’ states, one can use

perturbation theory to derive an effective Hamiltonian with the space of states re-

stricted to the spin-ice manifold. The relevant degenerate perturbation theory scheme

is described by [16]

Heff = (1− P)

[
−H ′ P

HI

H
′
+H

′ P
HI

H
′ P
HI

H
′
+ . . .

]
(1− P), (1.4)

where HI = J
∑

<ij> σ
z
i σ

z
j , H

′
=
∑

i hiσ
x
i , and P is the projection onto the orthogonal

complement of the spin-ice manifold. H
′

introduces quantum fluctuations leading to

the spin liquid groundstate for the model at |hi| � J . The effective Hamiltonian

picks up non-trivial contributions at fourth and sixth orders in perturbation theory

leading to

Heff = 1
48

∑
<i,j> h

2
ih

2
jσ

z
i σ

z
j − 63

256

∑
uKu(σ

+
1 σ
−
2 σ

+
3 σ
−
4 σ

+
5 σ
−
6 + h.c.), (1.5)

where u is a sum over all hexagonal rings on the pyrochlore lattice, and Ku =

h1h2h3h4h5h6. The essence of the QSL physics stems from the ring-exchange term

while the local Ising term enriches the phase diagram generated by the model. We

discuss the physics of this model in Chapter 3 from a computational viewpoint.

We now switch gears and discuss some exotic physics in a related model. Ring-

exchanges are not uncommon in pyrochlore based QSL setups, with a striking example

being the seminal work by Hermele et. al. [16] on the easy-axis Heisenberg model.

Perturbation theory along the easy axis (Ising axis) generates a similar ring-exchange

term for that model although the Ising term (presented in the RTFIM) does not exist.
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The starting observation is the fact that the pure ring-exchange term is equivalent to a

quantum dimer model on a diamond lattice. As shown by Rokhsar and Kivelson [29],

quantum dimer models generically have a point in their parameter space where they

are exactly solvable, aptly named the RK point. Further, this model can be shown to

be equivalent to a U(1) compact lattice gauge theory [16], specifically lattice QED -

this theory supports artificial photons, and magnetic and electric excitations, among

other things. As a future direction, it would be interesting to see how the local Ising

term affects the structure of this gauge theory, and its consequences on the observables

in that language. The hope is to add to the list of established spin liquid phenomena

to aid in its experimental detection.

1.2.4 Computational tools to probe many body spin models

1.2.4.1 Exact diagonalization and Krylov space methods

Exact Diagonalization (ED) is the most direct method to analyze quantum spin lattice

models involving many body Hamiltonians. The idea is to find a matrix representation

of the many-body Hamiltonian and calculate the eigenvalues and eigenvectors using

a computer program. The system sizes accessible by modern computers and state-of-

the-art algorithms is ∼ 50 sites worth of spin 1/2 particles [30]. This is mainly due

to the fact that the Hilbert space sizes of quantum systems scale exponentially with

particle number N , and in the case of spin s particles this equals (2s + 1)N states.

Clearly then, any real system with an Avogadro number’s worth of particles cannot

be treated by this technique. To remedy this, one typically uses Born-von Karman

(periodic) boundary conditions on systems of finite size. Despite being a widely used

technique, in many cases finite size effects persist.

Additionally, fully diagonalizing matrices of size 250 is computationally impossible

given current standards. Luckily, all of the calculations done in this thesis are at

zero temperature, which means that only the ground state of the system is relevant.
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There exist a class of algorithms called Krylov space techniques which may be used to

determine the low-lying and high-lying eigenvalues and eigenvectors of a Hamiltonian.

In our works we employ one such algorithm, called the Lanczos algorithm, which

converges to the spectrum iteratively. We now outline the Lanczos algorithm.

The number of Lanczos iterations m depends on the N and also the degree of

numerical precision desired. Given an N × N Hermitian matrix and m <= N ,

the Lanczos Algorithm proceeds as follows: We initialize a unit norm arbitrary n-

dimensional vector v1 ∈ C. The iteration steps are outlined in table 1.2.4.1.

First iteration step Remaining Iteration steps

w
′
1 = Hv1 βj = |wj−1|

α1 = w∗
′

1 v1 vj = wj−1/βj

w1 = w
′
1 − αv1 w

′
j = Hvj

αj = w
′∗
j vj

wj = w
′
j − αvj − βjvj−1

Next we construct a m×m tridiagonal matrix T as



α1 β2 ... 0

β2 α2 β3

β3

. . .

αm−1 βm

0 ... βm αm


(1.6)

The eigenvalues of H coincide with the eigenvalues of T which is a much smaller

matrix and easier to diagonalize. The corresponding eigenvectors can also be obtained

without too much difficulty.
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1.2.4.2 Numerical Linked Cluster Expansions

As we have seen, the results of studying systems with ED may not hold in the ther-

modynamic limit. To probe the behavior of physical quantities in this limit, a class

of methods commonly employed is series expansions. A typical course in statistical

mechanics covers the high temperature expansion (HTE) and the low temperature

expansion (LTE) methods [31]. As their respective names suggest, they are valid

in the high and low temperatures regimes. The HTE involves a series expansion of

in powers of β = 1/kBT where each term represents a graph on the lattice. These

graphs are typically ordered by bonds and a finite number of terms are retained in any

computation. The HTE fails below a certain temperature Tc set by the energy scales

of the system’s Hamiltonian. A potent tool in the set of series expansion methods

is the numerical linked cluster expansion (NLCE) [32–35]. This involves the expan-

sion of a physical quantity (in the thermodynamic limit) in a series of graphs. Such

an expansion can converge below Tc as long as the correlations of the system are

short-ranged. We now briefly describe the prescription for the NLCE. An extensive

property of interest P , per site, can be calculated by a sum over connected clusters

C that can be embedded in the lattice.

P/N =
∑
C

L(C)×W (C), (1.7)

where L(C) is the lattice constant of the cluster, or the number of times the cluster

arises in the lattice per site. The weight W (C) is defined recursively as

W (C) = P (C)−
∑
c

W (c), (1.8)

where P (c) is the property for the cluster and the subtraction is over all sub-clusters

c ⊂ C. It turns out that there is greater freedom in the choice of graphs for the
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NLCE as compared to the HTE. As shown in [32, 35] one can choose to order graphs

by sites, bonds, and even larger units - typically these larger units can be translated

to reproduce the entire lattice without any overlapping bonds. We have used both

the regular NLCE and a modified version to probe spin-ice physics, as described in

Chapter 3.

1.3 Topological paradigms in low energy physics -

II

The role of topology in condensed matter physics can be viewed through a different

lens. This second part of our journey starts with the notion of the Berry phase or

geometric phase. Essentially, the idea is to determine how the wave-function of a

state changes due to the adiabatic variation of the parameters of the Hamiltonian.

Berry’s phase demonstrates how geometry and topology interplay with each other

in condensed matter. It is closely linked to the quantum Hall effect as we shall see

[8]. Additionally, it provides crucial insight to Weyl semimetal physics by the Chern

number - a topological invariant representing the monopole charge of a Weyl point

[1].

1.3.1 Geometric Phases and Chern Numbers

A great place to start discussing the role of geometry and topology in modern physics

is the subject of Berry phases or more precisely Berry holonomy [8]. Michael Berry

discovered this phenomenon in 1985 when he considered the following question:

“Imagine that a Hamiltonian is dependent on the usual phase space variables xµ

and a parameter λ. How does the wavefunction of a particular state change when this

parameter is varied slowly?”
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By “slowly” we mean that the parameter is varied adiabatically. For simplicity let

us assume that we are interested in the ground state and that it is non-degenerate.

The adiabatic theorem answers the question almost completely. It tells us that as

long as we avoid a level crossing, the system will cling to the groundstate |n〉 as the

parameter is varied adiabatically. However, there is one piece of information that

is missing - the state can (and will) pick up an overall phase factor which is left

undetermined.

|ψ〉 → eiγ |ψ〉 (1.9)

This phase eiγ is precisely the Berry phase and it can be computed. The final

result for a closed path C in parameter space reads

eiγ = exp

(
− i
∮
C

A(λ)dλ

)
(1.10)

The Berry phase does not depend on the time taken to traverse the path, but does

depend on the path taken. A is called the Berry connection and is defined as

A = −i 〈n| ∂
∂λ
|n〉 . (1.11)

The Berry connection is identical in formulation to the electromagnetic vector

potential. It also exhibits a gauge redundancy and in fact the gauge invariant quantity

turns out to be the corresponding Berry 2-form, equivalently, Berry curvature, defined

as

Fij =
∂Ai
∂λj
− ∂Aj
∂λi

. (1.12)

Note that we’ve introduced indices on the parameter - the parameter is not neces-
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sarily one dimensional and we suppressed the index so far for brevity. Using Stokes’

theorem, the Berry phase exponent can be expressed as

eiγ = exp

(
− i
∮
C

Aidλi
)

= exp

(
− i
∫
FijdSij

)
. (1.13)

We now switch to a toy model to elucidate some instructive results associated

with the Berry phase. Consider the Hamiltonian

H = − ~B · ~σ +B, (1.14)

where we will treat the magnetic field ~B as our parameter. One can readily show that

the ground state energy of this Hamiltonian is zero, so the only phase accumulated

when ~B is varied is the Berry phase. A straightforward calculation yields the Berry

curvature,

Fij( ~B) = −εijk
gBk

B3
. (1.15)

On closer examination, we see that the field strength represents a magnetic monopole.

g = 1/2 plays the role of magnetic charge. The monopole is a source for Berry flux -

as easily seen by integrating the 2-form over a 2-sphere to yield 4πg = 2π. We can

extract one more crucial piece of information. Imagine that we integrate the Berry

curvature over some solid angle Ω covering the surface of a sphere. For every closed

curve on the surface of a sphere there are two distinct choices of surfaces enclosed.

This would imply the consistency condition

eiγ = exp

(
iΩ

2

)
!

= exp

(
i(8πg − Ω)

2

)
(1.16)

Enforcing the last equality requires that 2g ∈ Z - the quantization of magnetic

charge. This quantization criteria is also present for a general Berry 2-form, which

13



when integrated over a closed surface must equal 2πC, where C ∈ Z is called the

Chern number.

Berry phases are intimately related to Weyl monopoles in momentum space and

anomalous Hall phases, which are central themes to this dissertation. Further details

are discussed in succeeding subsections.

1.3.2 Weyl and Dirac Fermions

In 1929, Paul Dirac produced his seminal work uniting the principles of special relativ-

ity with quantum mechanics. In doing so, he constructed the Dirac equation which

describes Dirac fermions [1, 36]. The equation requires the use of four-component

objects called Dirac spinors ψ and can be compactly written as

[
iγµ∂µ −m

]
ψ = 0. (1.17)

The index µ = 0, 1, 2, 3 label the 3 + 1 space-time dimensions, and the Einstein

summation convention is used to handle sums. m represents the mass of the Dirac

fermion, and the four 4× 4 matrices γµ form a representation of the Clifford algebra:

{γµ, γν} = 2ηµνI4, (1.18)

where ηµν is the Minkowski metric and I4 is the 4× 4 identity matrix.

Hermann Weyl noticed a special property of the Dirac equation in even space-

time dimensions [1, 36]. It turns out that for massless fermions, the Dirac equation

decouples further into two equations describing two two-component fermions. These

fermions are, respectively, left and right handed Weyl fermions (ψL, ψR), and the

corresponding set of equations are called the Weyl equations:

σµ∂µψR = 0, σ̄µ∂µψL = 0. (1.19)
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The set of matrices σ and σ̄ are given by σ = [I2, σx, σy, σz] and σ = [I2,−σx,−σy,−σz],

(σx, σy, σz) are the three Pauli matrices. The Weyl fermions are chiral in that they

have definite helicity (spin-momentum locking) - either the spin is parallel to the

momentum or it is anti-parallel. This is best understood by considering the Weyl

Hamiltonian (the Hamiltonian whose equations of motion are the Weyl equations) in

momentum space. A straightforward calculation shows that

HWeyl = ±~p · ~σ. (1.20)

With this we can make the connection between Weyl fermions and their manifesta-

tions in condensed matter physics. It turns out that near certain band-touching points

(called diabolic points or Weyl points) of certain materials, the effective Hamiltonian

of the system turns out to take the form of Eqn. 1.20. Thus we find the low-energy

realization of these relativistic objects and such materials are called Weyl semimet-

als. We will make the connection explicit later by deriving the low energy model

from a lattice model of Weyl semimetals. A word of caution: simply having the Weyl

Hamiltonian as the effective theory is insufficient to classify a material as a WSM.

One also requires that the chemical potential be sufficiently close to the diabolic or

Weyl points.

1.3.3 Accidental degeneracies and Weyl semimetals

Accidental degeneracies are not very common in all dimensions, especially in the ab-

sence of symmetries. To understand this statement further, we consider the following

generic two-band model in momentum space

H = f0(k) + f1(k)σx + f2(k)σyf3(k)σz. (1.21)

The energies of this Hamiltonian are E± = f0(k)±
√
f1(k)2 + f2(k)2 + f3(k)2. We see
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that in order for the bands to be degenerate, even at a single point, we require that

f1(k)2 +f2(k)2 +f3(k)2 = 0 - a condition which may only be satisfied by setting three

independent parameters to zero, i.e., f1(k) = f2(k) = f3(k) = 0. Thus, it is only in

three dimensions that one readily encounters point degeneracies [1]. This is not the

end of the story as one must also consider the possible symmetries of the system. For

example if both parity (inversion, I : ~r → −~r) and time-reversal symmetries (T ) are

simultaneously present, every momentum ~k maps back to itself and hence all bands

are doubly degenerate. If on the other hand if only T is present, then ~k → −~k and

so the only point at which degeneracy can occur is ~k = 0. A similar story prevails

when only inversion symmetry is present.

Weyl semimetals are materials where band degeneracies occur at pairs of points

(called Weyl points) throughout the Brillouin zone with the added ingredient that

the Fermi surface is sufficiently close to the Weyl points. Based on the above discus-

sion, it becomes clear that WSMs models break T or I [37–40]. The minimal time

reversal symmetry breaking model, consists of a Dirac-like dispersion around two dis-

tinct points in the first Brillouin zone, where the conduction and the valence bands

touch. These Weyl points or Weyl nodes are topological charges acting as a source

or a sink for Berry curvature [38, 41, 42]. They occur in opposite chirality pairs by

virtue of the Nielsen-Ninomiya fermion doubling theorem. The inversion symmetry

breaking minimal model requires four Weyl points [37, 40]. Such materials, classed as

type-I WSMs, exhibit a number of phenomena including chiral magnetic waves [43],

chiral anomaly induced plasmon modes [44], and chirality induced negative magneto

resistance [45].

The addition of a SO(3,1) symmetry breaking term to the low energy Hamiltonian

coupled to the momentum leads to a tilt in the dispersion relation. For sufficiently

large tilts, it can be shown [37] that a Lifshitz phase transition occurs, leading to a

new phase i.e. type-II WSMs, with different physical properties. Type-I WSMs have
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a point-like Fermi surface, whereas in type-II WSMs, the Fermi surface splits into

two, one each for electrons and holes, such that the density of states at each Weyl

points is finite. Reports on the experimental realizations of type-I Weyl semimetals

have been presented in [46, 47], and it was shown in [48] that WTe2 is a possible

experimental candidate for the type-II WSM phase.

As compared to n = 1 WSMs, n can be generically greater than one in some

materials, determined by the crystallographic point symmetries. These are called

as multi WSMs (mWSMs). Recent theoretical reports claim SiSr2 and HgCr2Se4 as

possible candidates [42, 49, 50] for mWSMs with monopole charge n = 2. Double-

Weyl (n = 2) and triple-Weyl (n = 3) semimetals have the quadratic and cubic energy

dispersion relations near the Weyl points, respectively. The dispersion anisotropy in

mWSMs coupled with spin-momentum locking has the potential to give rise to unique

quantum effects and transport signatures [51, 52]. The respective minimal models for

tilted WSMs and mWSMs are presented in Chapters 3 and 4. Their derivations from

lattice models are presented in Appendix B part A.

1.3.4 Time periodic drive and Floquet theory

Most real world quantum mechanical problems are time dependent. Such is the

nature of the Schrödinger equation, however, that in some cases we are able to solve

it in terms of time independent functions and time dependent functions, separately.

This class of problems correspond to potentials which are time independent leading

to the system possessing time translation symmetry. Time dependent potentials

pose a different and formidable challenge in most cases - the usual recourse being

to apply time dependent perturbation theory. In some cases we find that the time

dependent potentials are periodic and this particular property enables us to solve the

corresponding problem by mapping to a time independent picture [53–55]. We begin

by considering a Hamiltonian H(t) which is periodic with a time period T such that
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H(t+ T ) = H(t). (1.22)

The Hamiltonian possesses the symmetry of discrete time translations. We assume

that the Hamiltonian consists of a time independent piece H0 with a complete set of

orthonormal eigenstates {φn(x)}, and a time dependent piece V (t). Similar in spirit

to Bloch’s theorem, one can then apply Floquet’s theorem to show that there exist

solutions ψ(x, t) to the full time dependent Schrodinger equation of the form

ψα(x, t) = e−iεαtΦα(t). (1.23)

φα(t) shares the period of the Hamiltonian, i.e., φα(t + T ) = φα(t). The εα’s are

the so called quasi energies and are defined only up to to integer multiples of ~ω,

where ω = 2π/T . All of this should appear analogous to Bloch’s theorem where the

momenta are only defined up to reciprocal lattice vectors. The periodic piece of the

solution also has the following property

[
H(x, t)− i~ d

dt

]
Φα(x, t) = εαΦα(x, t). (1.24)

The eigenvectors of the full Hamiltonian satisfy the following time-averaged orthonor-

mality criteria:

〈〈Φα|Φβ〉〉 =

∫ T

0

dt

∫ ∞
−∞

dx Φ∗α(x, t) Φβ(x, t) = δα,β. (1.25)

Note that the full Hilbert space of solutions has a product structure - this will not

be crucial to our current discussion and we omit this.

The Floquet time evolution operator is defined over a period as

U(T ) = T exp

[
− i

~

∫ T

0

H(t) dt

]
, (1.26)
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where T represents the time-ordering operator. One can then derive a static effective

Hamiltonian Heff , by requiring that

Heff =
i~
T

log

(
exp

[
− i

~

∫ T

0

dt H(t)

])
(1.27)

This ansatz forms the basis of the high frequency or van-Vleck expansion [54, 55].

By algebraic manipulation, one can show that the effective Hamiltonian takes the form

of a series expansion in increasing powers of inverse frequency, Heff =
∑∞

n=0 H
(n)

with H(n) ∼ ω−n. We begin by expanding the Hamiltonian in frequency space as

H(t) =
∑

lεZHle
iωlt. The forms for H(n) are shown below up to the second order.

H(0) = H0

H(1) =
1

~ω

∞∑
l=1

1

l
[Hl, H−l]

H(2) =
1

~2ω2

∑
l 6=0

[
[H−l, [H0, Hl]]

2l2
+
∑
l′ 6=0,l

[H−l′ , [Hl−l′ , Hl]]

3ll′

]
(1.28)

The systems that we consider in this dissertation involve periodic driving with

a very high frequency laser - essentially, the laser field is used to drive the material

to a steady state. This permits us to treat the van-Vleck expansion perturbatively

and terminate the series to leading order. In what follows, we review the effects of

Floquet theory on quantum transport.

1.3.5 Quantum Floquet transport and the anomalous quan-

tum Hall effect

The classical Hall effect [56], discovered by Edwin Hall in 1879, is simply a conse-

quence of the Lorentz force acting on a charged particle inside a conductor. One can

envision this by imagining a 3D conductor with an electric field in the x-direction
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which leads to a flow of charge. Introducing a constant magnetic field along the

y-direction leads to a force acting on the particle in the z-direction given by

~F = q(~v × ~B) (1.29)

Thus charges accumulate on the edges of the conductor depending on the sign of the

charge and this eventually leads to equilibrium, wherein the effect of the magnetic

field is canceled by the electric field generated by the accumulated charges. The

corresponding transverse potential difference is called the Hall voltage.

The classical Hall effect can be modeled within the limits of Drude theory, whereby

the equation of motion of the charge carriers in a conductor under the simultaneous

effects of an electric field ~E and a magnetic field ~B is given by

m
d~v

dt
= −e ~E − e~v × ~B − m~v

τ
. (1.30)

m is the mass of the charge carrier, and τ models the scattering time within the

material. Solving the equations of motion, one obtains a version of Ohm’s law with the

conductivity being a tensor instead of a single number. The off-diagonal components

of this tensor represent the Hall conductivity, given in the Drude model by [8]

σHall =
ne2ωBτ

2

1 + ω2
Bτ

2
. (1.31)

The quantum Hall effect has been a subject of great interest since the early 1980’s

when von Klitzing explored the quantum realm of the Hall effect [8]. This led to a

great number of discoveries including the integer quantum Hall effect and the frac-

tional quantum Hall effect, the latter of which is partly responsible for the notion of

topological order. The key element in both these effects is the quantization of the

Hall conductivity, either in integer or in rational multiples of e2

2π~ . Since then, many

materials have been known to host quantum Hall phases.
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A related effect is the quantum anomalous Hall effect [57], the classical version

of which was also discovered by Edwin Hall in 1881. The quantum anomalous Hall

effect (QAHE or AHE) refers to the contribution to Hall conductivity from spin-

orbit coupling in ferromagnetic material. This effect is usually dependent on the

magnetization of the material and comes in two flavors [58]: intrinsic or scattering

between bands, and extrinsic or impurity scattering. Importantly, the time reversal

symmetry broken WSM and mWSM phases studied in this dissertation support a

quantum anomalous Hall phase due to their intrinsic magnetization.

An important tool to probe the effects of a perturbing field on a given system

is linear response theory - the key aspect being that since the field can be treated

perturbatively, the leading order response of the system is linear in the field. Within

the framework of this theory is the Kubo-formula for the conductivity tensor [8].

Specifically, the component σµν of the conductivity tensor is given by

σµν(ω) ∼
∑
m,n

f(En)− f(Em)

En − Em
〈n| Jµ |m〉 〈m| Jν |n〉
ω − En + Em − iη

,

where continuum indices have been suppressed for brevity. We note that f(Em) =

1/[1+exp(β(Em−µ))] represents the Fermi-Dirac distribution function, and Jµ = ∂H
∂kµ

is the current operator. The Kubo formula for conductivity can be recast into two

very interesting and completely equivalent forms. The first one, called the Matsubara

Green’s function approach [59], is an alternative way to calculate the components of

the conductivity tensor which is completely equivalent to the Kubo formula. The

key component to this technique is to compute the single particle Green’s function

G(iω,~k). With this, one is able to compute the current-current correlation function

Πij(Ω, ~q) = T
∑
ωn

JiG(iωn, ~k)JjG(iωn − Ω, ~k − ~q)|iΩ→Ω+iδ. (1.32)

where i, j = x, y, z, T is the temperature (setting the Boltzmann constant to unity),

21



ω(Ω) are the fermionic (bosonic) Matsubara frequencies, and the Ji’s are the current

operators. One can then relate the Hall conductivity to the current-current correlation

function as follows:

σxy = − lim
Ω→0

Πxy

iΩ
(1.33)

While this second formula for the Hall conductivity might seem tedious, in some

cases it proves simpler and more instructive than using the Kubo formula. A second

version of the Kubo formula was constructed by TKNN in their seminal 1982 work

[60] relating the Hall conductivity to Berry curvature. This work connected quantum

transport, geometry and topology. Their formulation can be expressed as

σxy =
e2

~

∫
d3k

(2π)3
f(Ek)Ωz(~k), (1.34)

where Ω(~k) is the Berry curvature. This simple formula has far reaching consequences

for the physics of Weyl semimetals. For one, it can be shown that the vacuum contri-

bution to the Hall conductivity (at zero chemical potential) is a topological invariant

coupled to the strength of the WSM monopole charge. We will now introduce the

central theme of the works on Weyl semimetals - Floquet transport.

Under a time periodic drive, a natural question concerns the variation of the

transport properties. Essentially, control over the drive would imply control over

the transport properties hence making this a viable research direction. As discussed

in the previous section, Floquet’s theorem permits us to map the time dependent

problem to a time independent setting and indeed there turns out to be a very simple

Kubo-like formula for the conductivity tensor σFµν in this setting [53].

σFµν ∼
∑
m,n

f(En)− f(Em)

En − Em
〈〈n| Jµ |m〉〉 〈〈m| Jν |n〉〉

En − Em + iη

This formula looks deceptively similar to the Kubo formula but has some major
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differences. For starters, periodic driving introduces a non-equilibrium steady state

and so the distribution functions are not the equilibrium distribution functions. Ad-

ditionally, the states and energies used in this formula correspond to the eigenstates

of the effective Floquet Hamiltonian and the corresponding quasi-energies. Finally,

〈〈α|β〉〉 = 1
T

∫ T
0
〈α(t)|β(t)〉 dt indicates a time average as well as an expectation value.

One might then wonder what happens to the Matsubara formalism in this Floquet-

Kubo picture, and also what of the TKNN formula. The latter is addressed instantly

[53]:

σxy =
e2

~

∫
d3k

(2π)3
f(Ek)[∇×A]z, (1.35)

where A is the Berry connection defined using the time averaged inner product men-

tioned above. In this dissertation, we show that for a class of Hamiltonians, the

Floquet-Kubo formalism can be further simplified to a form which is indistinguishable

from its static counterpart except for the use of the Floquet states and quasi-energies.

We also derive a similar result for the Matsubara formalism to leading order in per-

turbation theory. We then explore the Floquet Hall conductivity and some associated

effects using this formalism.

1.4 Summary of Results

In Chapter 2, we use Numerical Linked Cluster Expansions (NLCE) and Exact Di-

agonalization (ED) to study confinement transitions out of the Quantum Spin Liquid

(QSL) phase in the pyrochlore-lattice Ising antiferromagnet with random transverse

fields. We calculate entanglement entropies associated with local regions defined by

single tetrahedra to observe these transitions. The randomness-induced confinement

transition is marked by a sharp reduction in the local entanglement and a concomi-

tant increase in Ising correlations. In NLCE, this is studied through the destruction
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of loop resonances due to random transverse-fields. The confining phase is character-

ized by a broad distribution of local entanglement entropies, which persists to large

random fields.

In Chapter 3, we study an effective spin model derived perturbatively from the

random transverse-field Ising model on the pyrochlore lattice. The model consists

of spin-configurations on the pyrochlore lattice, restricted to the spin-ice subspace,

with spins interacting with random Ising exchange couplings as well as ring exchanges

along the hexagons of the lattice. This model is studied by exact diagonalization up

to N=64 site systems by restricting to the spin-ice manifold. We calculate spin-glass

correlation functions and local entanglement entropy ST between spins in a single

tetrahedron and the rest of the system. We find that the model undergoes two phase

transitions. At weak randomness the model is in a quantum spin-ice phase where

ST = ln 6. Increasing randomness, at low transverse-fields, first leads to a frozen

phase, with long-range spin-glass order and ST = ln 2 corresponding to the Cat

states associated with Ising order. Further increase in randomness leads to a random

resonating-hexagon phase with a frozen backbone of spins and a broad distribution of

entanglement entropies. The implications of these studies for non-Kramers rare-earth

pyrochlores are discussed.

In Chapter 4, we discuss the effect of a periodically driving circularly polarized

laser beam in the high frequency limit, on the band structure and thermal transport

properties of type-I and type-II Weyl semimetals (WSMs). We develop the notion of

an effective Fermi surface stemming from the time-averaged Floquet Hamiltonian and

discuss its effects on the steady-state occupation numbers of electrons and holes in

the linearized model. In order to compute the transport coefficients averaged over a

period of the incident laser source, we employ the Kubo formalism for Floquet states

and show that the Kubo formula for the conductivity tensor retains its well known

form with the difference that the eigenstates and energies are replaced by the Floquet
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states and their quasi-energies. We find that for type-I WSMs the anomalous thermal

Hall conductivity grows quadratically with the amplitude A0 of the U(1) gauge field

for low tilt, while the Nernst conductivity remains unaffected. For type-II WSMs,

the Hall conductivity decreases non-linearly with A0 due to the contribution from

the physical momentum cutoff, required to keep finite electron and hole pocket sizes,

and the Nernst conductivity falls of logarithmically with A2
0. These results may serve

as a diagnostic for material characterization and transport parameter tunability in

WSMs, which are currently the subject of a wide range of experiments.

In Chapter 5, we discuss the circularly polarized light (of amplitude A0 and fre-

quency ω) driven thermo-electric transport properties of type-I and type-II multi-

Weyl semimetals (mWSMs) in the high frequency limit. Considering the low energy

model, we employ the Floquet-Kubo formalism to compute the thermal Hall and

Nernst conductivities for both types of mWSMs. We show that the anisotropic na-

ture of the dispersion for arbitrary integer monopole charge n > 1 plays an impor-

tant role in determining the effective Fermi surface behavior; interestingly, one can

observe momentum dependent corrections in Floquet mWSMs in addition to momen-

tum independent contribution as observed for Floquet single WSMs. Apart from the

non-trivial tuning of the Weyl node position ±Q → ±Q − A2n
0 /ω, our study reveals

that the momentum independent terms result in leading order contribution in the

conductivity tensor. This has the form of n times the single WSMs results with effec-

tive chemical potential µ → µ − A2n
0 /ω. On the other hand, momentum dependent

corrections lead to sub-leading order terms which are algebraic functions of µ and are

present for n > 1. Remarkably, this analysis further allows us to distinguish type-

I mWSMs from their type-II counterparts. For type-II mWSMs, we find that the

transport coefficients for n ≥ 2 exhibit algebraic dependence on the momentum cut-

off in addition to the weak logarithmic dependence as noticed for n = 1 WSMs. We

demonstrate the variation and qualitative differences of transport coefficients between
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type-I and type-II mWSMs as a function of external driving parameter ω.
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Chapter 2

Local entanglement and

confinement transitions in random

transverse-field Ising model on the

pyrochlore lattice

The results and discussion below are based on the article Phys. Rev. B 100, 144437.

This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Document release number LLNL-JRNL-778510. The work of Dr. Rajiv R. P. Singh

is supported by NSF-DMR grant number 1855111.

We study the quantum Ising-antiferromagnet on the pyrochlore lattice by Numer-

ical Linked Cluster (NLC) expansions [32–34] and exact diagonalization (ED). We

focus on the local entanglement properties of the system and examine their behavior

at the confinement transitions. We find that local entanglement of the spins asso-

ciated with a single tetrahedron with the rest of the system contains sharp changes

associated with different confining transitions.



Figure 2.1: Cluster of 6 tetrahedra connected in a ring. The six interior sites of the
cluster are denoted by green circles and the 12 boundary sites are denoted by red
circles.

A simple NLC calculation diverges inside the QSL phase. To obtain convergent

results, one must consider each cluster as embedded in a superposition of spin-ice

states. The confinement transition can be observed by studying the destruction of

ring-exchange resonance due to the random fields. A modification of Benton’s pertur-

bative argument [27] shows that at the phase boundary the width of the transverse-

field distribution scales quadratically with the mean value in agreement with the NLC

results. We also find that the confining phase [25] is characterized by a broad dis-

tribution of local entanglement entropies, a property which persists to high random

fields. This means that even with increasing random fields there will be pockets of

strong entanglement with local behavior of a QSL.

2.1 Model and Observables

We consider the Hamiltonian

H = J
∑
<i,j>

σzi σ
z
j −

∑
i

hiσ
x
i , (2.1)

where J = 1, and the transverse fields hi are independent Gaussian random variables

with mean h and standard deviation w. On a finite cluster with periodic boundary

conditions, we calculate the ground state wavefunction of the system. We divide the
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Figure 2.2: (a) Expectation value of spin along the transverse field mx, and (b)
Single-tetrahedron entanglement entropy ST , as a function of the transverse-field h
with no disorder. The data is for 16 and 32-site clusters and 4th and 5th order NLC.
The vertical black lines denote the transition point [23, 24] between QSL and the
paramagnetic phase. NLC does not converge within the QSL phase, and for this
reason NLC results are not shown for small h values.
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Figure 2.3: (a) Ising correlations Czz, and (b) Single-tetrahedron entanglement en-
tropy ST as a function of width of the field distribution w for different mean values of
the field h. Data have been obtained via ED on a 16-site cluster, and each data point
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system into two parts A and its complement B. Let the reduced density matrix of A

be ρA. The von-Neumann entanglement entropy between A and its complement B is:

SA = SB = −Tr ρA ln ρA. (2.2)

In this work, A is made up of the four spins belonging to any single tetrahedron, and B

is made up of all the remaining spins. This leads to the definition of single-tetrahedron

entanglement entropy

ST = −Tr ρT ln ρT . (2.3)

This quantity is then averaged over the tetrahedra in the finite cluster. In addition,

we study the average moment along the local field, defined as

mx = [
1

N

∑
i

|〈σxi 〉|]. (2.4)

Here N is number of sites and the angular brackets throughout this study refer to

ground state expectation values, while the square brackets refer to an average over

disorder configurations. We also calculate the correlation sum for the Ising compo-

nents:

Czz = [
1

N(N − 1)

∑
i,j 6=i

|〈σzi σzj 〉| ], (2.5)

where the sum is over all pairs of spins.

2.2 Exact diagonalization and numerical linked clus-

ter expansion

To obtain the results in the thermodynamic limit, we turn to NLC [32–34]. An

extensive property of interest P , per site, can be calculated by a sum over connected
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clusters c that can be embedded in the lattice.

P/N =
∑
c

L(c)×W (c), (2.6)

where L(c) is the lattice constant of the cluster, or the number of times the cluster

arises in the lattice per site. The weight W (c) is defined recursively as

W (c) = P (c)−
∑
s

W (s), (2.7)

where P (c) is the property for the cluster and the subtraction is over subclusters.

To study property of spin-ice systems, it is useful to consider clusters made up of

full tetrahedra [61–63]. To 5th order, that is up to 5 tetrahedra, there are a total of

8 clusters. We include a 9th cluster, consisting of six tetrahedra in a ring, shown in

Fig. 2.1, as it plays a special role in the spin-ice phase.

We begin with results for the uniform system (w = 0). In Fig. 2.2, the expecta-

tion value of the spin along the transverse field and the local entanglement entropy

associated with a single tetrahedron are shown as a function of the field. The 4th and

5th order NLC results are indistinguishable in the plot in the high-field paramagnetic

phase, showing that they represent the results in the thermodynamic limit. The ED

results for 16− and 32−site clusters are also shown. In the thermodynamic limit,

there may be a small discontinuity at the transition [23, 24], but finite size effects

are small in the paramagnetic phase right down to the transition. This first order

transition point from previous studies [23, 24] is indicated by the vertical black lines.

While the simple NLC converges well in the high-field phase right up to the transi-

tion, it diverges in the QSL phase and we need to modify it for the QSL. The physics

of QSL is lost by having fluctuating spins at the boundary of the finite clusters. This

is because every spin must be part of two tetrahedra in order to not mix different ice

states by local fluctuations. But the boundary spins of a cluster belong to only one.
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Thus, two boundary spins in the same tetrahedron can be flipped to go from one ice

configuration to another already in order h2. This is clearly incorrect.

In order to fix this problem we adopt a modified NLC scheme. We envisage

local fluctuations in the interior of the QSL. Each cluster is divided into interior

and boundary spins depending on whether or not the spin belongs to two or one

tetrahedron in the finite cluster (See Fig. 2.1). The boundary spins feel additional

longitudinal fields, coming from tetrahedra external to the cluster. It can be shown

that the modified NLC in 5th order gives perturbative properties correct to order h8

except for the ring exchanges. However, these perturbative terms generate very small

entanglement at small fields and ring exchanges are key to the physics of the QSL

[16–18].

In order to capture the physics of ring exchanges one must consider clusters where

tetrahedra form rings.

All the order one entanglement for small h arises from ring exchanges [18, 23]. This

resonance can be destroyed by random fields, effectively killing the superposition and

consequential entanglement. For studying this, cluster 9 consisting of six tetrahedra

in a ring shown in Fig. 2.1 plays a crucial role.

In this cluster, each tetrahedron has two interior and two boundary spins. In our

modified NLC, the cluster is embedded in a larger system. The Ising couplings of

the spins external to the cluster result in longitudinal fields on the boundary spins

of the cluster. The problem divides into different sectors corresponding to different

boundary longitudinal fields. The key sector is one where in each tetrahedron one

boundary spin has a positive and the other negative longitudinal field. At low energies

this sector maps on to an effective 2−level system given by the two alternating spin

configurations along the hexagon of the cluster.

For a uniform system, this leads to an entanglement entropy for each tetrahedron

of ln 2 in the sector where the resonance occurs, and zero in all other sectors apart
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from small perturbative corrections. Thus a sum over all tetrahedron gives 6 ln 2 in

the resonating sector. The cluster has 730 total spin-ice states, 128 of which lead

to the resonating state. If we assume that each one of the spin-ice states must be

weighted with equal probability in the interior of the spin-ice as expected at the

Rokhsar-Kivelson (RK) point [29], the weight of this cluster for the entanglement

entropy per tetrahedron becomes (6 × 128/730) ln 2. This cluster has a count of

one per site or two per tetrahedron. Thus, multiplying the weight by a factor of 2

gives an entanglement entropy for a tetrahedron in the thermodynamic system to be

approximately 1.5. Our ED estimate for the low field entanglement entropy shown

in Fig. 2.2 is less than 20 percent higher than this. One would expect the finite size

calculation to be an over estimate because of a large number of short loops due to

periodic boundary conditions in the small clusters. The comparison suggests that

the resonating configurations are enriched relative to others by about 10 percent with

respect to the RK point in the model. This is consistent with the Monte Carlo study

of the ring-exchange model [18].

2.3 Results and Discussion

We now turn to the main focus of our study with random transverse fields. We

present results from NLC and from ED of 16-site cluster. The Ising correlation sum

and tetrahedron entanglement entropy from ED are shown in Fig. 2.3, where we see

that an increase in the Ising correlation occurs concomitant with a decrease in local

entanglement entropy. This shows that the confinement transition is associated with

the lifting of degeneracy in the spin-ice subspace and leads to the development of Ising

correlations [25]. Fig. 2.4 shows the distribution of single-tetrahedron entanglement

entropies. One finds that as soon as one enters the confining phase the entanglement

entropy develops a very broad distribution. Fig. 2.4 b shows a few cuts through the
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Figure 2.4: (a) Distribution of single-tetrahedron entanglement entropy ST for h =
0.1 and various w values. The color scale represents the normalized intensity I. (b)
Several cuts of the intensity I in (a) for selected w values. For w = 0.01, the intensity
is a delta function shown as a solid black line at ST ∼ 1.77.

distribution function. In the QSL phase the entanglement entropy is essentially a

delta function. In the confining phase it is very broad. There remains a substantial

weight at the largest value until one gets into a paramagnetic phase around w = 0.5

after which the peak gradually moves to smaller values. However, the distribution

remains very broad all the way up to very large randomness.

Note that ED cannot give the correct thermodynamic phase boundary because

our cluster has loops of length 4 coming from periodic boundary conditions. These

small loops lead to a phase boundary where w scales linearly with h.

To study the phase boundary for the thermodynamic system, we must use NLC

and focus on cluster 9. The tetrahedron entanglement entropy in the resonating

sector of cluster 9 is shown in Fig. 2.5. We see that the resonance, which leads to an

entanglement of ln 2 is killed with disorder. To further understand this, we turn to

perturbation theory [27]. With disorder, the two-state problem for the cluster can be

34



described by an effective Hamiltonian

Heff = aσx + bσz, (2.8)

where a = 63
256
h6, while

b =
1

48

∑
t

(h2
i1 − h2

i2)(h2
b1 − h2

b2), (2.9)

where the sum is over all six tetrahedra. Here, hi1 and hi2 are the random-fields at

the interior sites and hb1 and hb2 the random fields at the two boundary sites of the

tetrahedra. Benton had argued [27] that the average degeneracy lifting perturbation

should scale as wh3. However, as seen from Eq. 8, there are two cancellations in each

tetrahedron and b must vanish as w2. We find that for Gaussian disorder it scales

approximately as 14.7w2h2. Calling the point a = b as the transition point gives

the phase boundary w = ch2, with c ≈ 0.90. This phase boundary is also shown

in the inset of Fig. 2.5 and agrees well with our calculations, where the transition

is determined by the horizontal dashed line corresponding to an ST of 0.4165 as

appropriate for a = b in Eq. 7.

The suggested phase diagram is shown in Fig. 2.6 with QSL, Paramagnetic (PM)

and Ising (I) phases. The latter is defined by enhanced Ising correlations. The PM-

QSL boundary is indicated to be vertical. NLC results differ sharply from ED, even

with non-zero w, around h = 0.6. Whether the phase immediately to the left of the

boundary is a true thermodynamic QSL or an inhomogeneous Griffiths-like phase [64]

with only pockets of QSL deserves further attention. The paramagnetic phase bound-

ary at large w is roughly horizontal. Various properties collapse on a single scaling

curve at larger w implying a local paramagnetic behavior. The confinement transi-

tion due to randomness, obtained in the finite cluster study from Ising correlations

and entanglement entropy respectively are shown by open and closed triangles. The
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thermodynamic phase boundary, where hexagonal loop resonances are lost, is shown

by diamonds and perturbation theory results are indicated by a dashed line. The

nature of the phase transitions in presence of disorder deserves further field-theory

consideration.
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Chapter 3

Confinement, reduced

entanglement, and spin-glass order

in a random quantum spin-ice

model

The results and discussion below are based on the article Phys. Rev. B 101, 184423.

This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344,

Document release number LLNL-JRNL-796781. This work is supported in part by

National Science Foundation grant number NSF-DMR 1855111 and by grant number

NSF-PHY 1748958.

We study an effective model derived perturbatively from a random transverse-

field Ising model (RTFIM) on the pyrochlore lattice [26, 27]. The lattice consists of

corner-sharing tetrahedra, with rare-earth spins at the vertices of the tetrahedron.

The local Ising axis points along the line joining centers of neighboring tetrahedra,

and crystal-field effects and strong anisotropy make it an effective two-level Ising sys-



tem [12]. RTFIM has been shown recently to be relevant for non-Kramers family of

rare-earth pyrochlores [26–28]. Because two-fold degeneracy for eigenstates of non-

Kramers ions is not guaranteed by time reversal symmetry, effective two-level models

for these systems have random transverse-fields coming from quenched disorder. We

had recently studied such a random transverse-field Ising models by exact diagonal-

ization (ED) and numerical linked cluster expansion (NLC) methods [65], finding a

phase diagram consisting of quantum spin-liquid (QSL), paramagnetic (PM), Ising (I)

and Griffiths-McCoy (GM) phases. The systems studied were too small to establish

whether the Ising phases had long-range spin-glass order.

Here, we use perturbation theory to derive an effective model starting from RT-

FIM, where spins are restricted to the spin-ice configurations [26, 27]. In the spin-ice

subspace there are two types of random interactions. These are the Ising exchanges

along the bonds and the cyclic ring-exchanges along the hexagonal loops of the model.

Both these interactions are dependent on the configuration of random fields. The ef-

fective model can be studied up to larger systems (N=64 spins) allowing us to clearly

establish the nature of the confined phases. We study a two-parameter family of

models characterized by a mean value h and a width w for transverse-fields. As the

width is increased at small h values, one observes two phase transitions. First, into

a confined phase with long range spin-glass order and then into a partially decon-

fined phase, which we call a random resonating-hexagon (RRH) phase. In the latter,

the resonating hexagons are randomly placed and leave a fraction of spins forming a

frozen spinglass backbone. We believe the latter phase is a variant of cluster glass

phases such as random singlet phase [66–69] that arise naturally in random quantum

spin models. The implication of these findings to the rare earth pyrochlores will be

discussed.
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3.1 Models and Methods

We begin with the Hamiltonian for a transverse-field Ising model on the pyrochlore

lattice [22–25]:

H = J
∑
<i,j>

σzi σ
z
j −

∑
i

hiσ
x
i , (3.1)

where the sigmas denote Pauli spin matrices, and J is the Ising exchange constant

for nearest-neighbor interactions on the pyrochlore lattice. Note that the Ising axis

varies from one sublattice to another and points along the line joining the centers

of neighboring tetrahedron. The transverse fields hi are assumed to be independent

random variables at each site. In this work we will take the distribution of hi to be

Gaussian with mean h and standard deviation w, although details of the distribution

are not critical to the study. Working in the limit of J → ∞, restricts us to the

Hilbert space of spin-ice states. In this space, the first perturbations that lift the

degeneracy of ice states are fourth order terms that give rise to an Ising coupling on

a bond given by strength proportional to h2
ih

2
j [27]. Then, in 6th order perturbation

theory we get the ring exchange term on the hexagons that can lead to a resonating

QSL state.

In the spirit of effective models in a reduced subspace, like the t − J model de-

rived from the Hubbard model, we will now study the effective model in the spin-ice

subspace:

H = 1
48

∑
<i,j> h

2
ih

2
jσ

z
i σ

z
j (3.2)

− 63
256

∑
uKu(σ

+
1 σ
−
2 σ

+
3 σ
−
4 σ

+
5 σ
−
6 + h.c.),

where hi are quenched random variables with mean h and width w. The second

sum is over all hexagons u of the lattice and Ku =
∏6

i=1 hi where hi are the random

fields at the six sites of the hexagon and σ1 through σ6 are the spin operators on the
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hexagon in a cyclic order. Note that the cyclic term is only operative when the spins

alternate along the hexagon, otherwise it destroys the state. From here onward we

will study this effective model, which depends on two parameters h and w, and will

allow for all values of h and w.

For w = 0, the Ising couplings do not cause any dispersion in the spin-ice sub-

space. Hence, the model reduces to the pure hexagonal ring exchange model [16, 17]

simulated by several groups before [18, 19]. This model is known to have a quantum

spin liquid ground state with emergent quantum electrodynamics and a collective

photon excitation. Our goal is to study different phases of the model as a function of

w and h.

We compute the following quantities:

1. The many-body band-width of the system, per spin, defined as

B

N
=
Emax − Emin

N
, (3.3)

where Emax is the energy of the highest energy state and Emin the energy of the lowest

energy state for an N -site cluster.

2. Entanglement entropy of a tetrahedron of spins and their distribution: In a pure

state, the von-Neumann entanglement entropy for subsystem A and its complement

B is defined as

SA = SB = −Tr ρA ln ρA, (3.4)

where ρA is the reduced density matrix for subsystem A. In this work, A is made

up of the four spins belonging to any single tetrahedron. In the uniform system, it

is easy to see that the tetrahedron entanglement entropy ST = ln 6. Let us label our

basis states as |α, i >, where α stands for spins inside the tetrahedron and i stands
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for the spins outside. Then, a general state of the system can be expressed as

|ψ >=
∑
α,i

Cα,i|α, i > .

The reduced density matrix for the tetrahedron ρT has matrix elements

ρT α,β =
∑
i

(Cα,i)
∗ Cβ,i.

It must be diagonal because, for two state |α, i > and |β, i > to both lie in the spin-

ice subspace, one must have α = β. Furthermore, the uniform system has sublattice

symmetry and all 6 states are related by a permutation of sublattices. Hence, as

long as there is a non-degenerate ground state, all 6 diagonal matrix-elements of

the reduced density matrix must be equal implying ST = ln 6. Our earlier exact

diagonalization studies of 16 and 32 site systems [65] showed that, in the full random

transverse-field model, this entropy remains very close to ln 6, despite virtual dressing

of the spin-ice states due to perturbative fluctuations. Only when one is near the

confinement transition one sees deviations from this value.

3. Ising correlation function and correlation sum

Cij = [〈σzi σzj 〉2 ], (3.5)

Czz = [
1

N

∑
i,j

〈σzi σzj 〉2 ], (3.6)

where the angular brackets refer to ground state averages and square brackets to an

average over the distribution of random fields. Note that we have normalized the

correlation sum such that in a system with long-range (random) order the correlation

sum Czz should scale as N .
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4. Inverse participation ratio in the many-body space defined as

IPR =
1∑
i a

4
i

, (3.7)

where ai are the coefficients of the ground state wavefunction in the Ising basis.

In the quantum spin-ice phase this quantity should be of order D, where D is the

dimension of the spin-ice space, whereas in an equal admixture Cat state of two Ising

configurations, it should equal 2.

3.2 Numerical Results

We study finite clusters with periodic boundary conditions. We have looked at clusters

of size 32, 40, 48 and 64. To carry out the calculations we first pick a configuration

of random fields for each site from a Gaussian random distribution with mean h and

uncertainty w. This allows us to determine the Ising couplings for all the bonds, as

well as strength of the ring exchange for each hexagon. The ground state is then

obtained by the Lanczos method. We typically include 100 to 400 different field

configurations to average over random configurations. Variations from different field

configurations allow us to determine the statistical error bars.

With only the ring exchanges as the off-diagonal terms, this model is known to

partition into disjoint subspaces. We first determine all the disjoint parts of the

Hilbert space and then obtain the ground state in each subspace. The overall ground

state is obtained by comparing energies in different subspaces. In the QSL phase, the

ground state typically lies in the largest connected subspace but this is not necessarily

true. When the ground state is in a subspace where a state and its time reversed

partner are disconnected, there must be two degenerate ground states. Since, the

original transverse field model does not have a disconnected Hilbert space, in this

case, we take as our ground state the symmetrized linear superposition of the two.
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For N = 64 case, the total spin-ice subspace has dimensionality 2, 249, 370 whereas

the largest disjoint sector has dimensionality 194, 640.

We present the results for the 64 site cluster here, and those for smaller system

sizes can be found in the Appendix A. In Fig. 3.1, the many-body band-width of the

system per site, B/N , is shown. It is independent of width w in the QSL phase and

depends on h as h6 due to the ring exchange term. This is why the figures start off as

horizontal. In the perturbative regime, after the first phase transition the bandwidth

varies with w as w2 as known from previous studies using NLC [65] for RTFIM. This

follows from the fact that within each tetrahedron the maximum difference in the

energy between any two spin-ice states goes as w2h2, which at constant h varies as

w2. This behavior is indicated by a dashed line. For large w the bandwidth must

scale as w6. This just follows from dimensional analysis. This scaling behavior is also

indicated by a dashed line. It is clear that at the largest w and h studied, we are

deep in this limit.

In Fig. 3.2, we show the average entanglement entropy ST for a tetrahedron.

It is averaged over the tetrahedron in a cluster as well as over the distribution of

random fields. Two phase transitions are clearly seen in the plot at small h = 0.1,

which turns into a single phase transitions at larger h. It equals ST = ln 6 in the

QSL phase, as shown earlier from general considerations. The entanglement changes

at the transitions dramatically within a small parameter range. In the intermediate

phase it approaches ln 2 implying that the state is reduced to a Cat state, that is

a superposition of two Ising states related by spin inversion, with only global ln 2

entropy and there is negligible quantum fluctuation around that state. The error-bars

from the disorder averaging are small. At very large w, the entanglement entropy

approaches a value somewhat below 2 ln 2. This is an indication of a phase which

differs from the quantum spin-liquid but still has significant amount of quantum

fluctuations. We will call this phase a random resonating hexagon (RRH) phase.
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More discussion on this phase will be provided in the next section.

Fig. 3.3 shows a distribution of entanglement entropies. Inside the quantum spin-

liquid phase, the entropy is very sharply defined. As we showed rigorously earlier, in

this phase, the entanglement takes the maximal value of ST = ln 6. In the transition

regions as well as in the random resonating-hexagon (RRH) phase at large w the

entropy distribution becomes very broad. In the RRH phase, there is still a well-

defined peak in the distribution near ST = 2 ln 2. This will help us further understand

the properties of the RRH phase.

In Fig. 3.4, the Ising correlation sum is shown. The correlation sum is extensive

in both phases other than the QSL phase as shown in Fig. 3.5. In Fig. 3.5, we have

plotted Czz/N as a function of N . The fact that it is not decaying as a function of

N implies that in these phases there is long-range Ising correlation. In the middle of

the intermediate phase, which we identify as Ising spin-glass phase, Czz/N is close

to its maximum allowed value. In other words, all the spins are fully correlated with

each other. This further confirms that there is very little quantum fluctuation in this

state. This is not surprising as Ising couplings dominate over ring exchanges in this

regime. The fact that Czz is proportional to N in the RRH phase implies that at least

a subset of spins must be long-range correlated in this phase also. In other words,

there is a backbone of long-range Ising ordered spins. This observation would allow

us to further understand the RRH phase in the next section.

In Fig. 3.6, the inverse participation ratio is plotted. In the spin-glass phase it

is only slightly larger than 2, further confirming that only two Ising ordered states

are contributing to the ground state in this phase. In the other two phases, IPR is

strongly size dependent. In the QSL phase it must scale with the dimension of the

Hilbert space, and hence must be exponential in N . This is, indeed, found to be true.

In the random resonating-hexagon phase also it grows with the size of the system.

We have found that it varies exponentially with N as aN , but with a value of a only
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Figure 3.1: The total bandwidth of the spin-ice subspace per spin plotted on a log-
log scale for the 64 site cluster. The yellow dashed line represents the scaling as w6

in the RRH phase, and the blue dashed line represents the ISG scaling as w2 in the
intermediate phase.

slightly larger than unity (a ≈ 1.04). This will allow us to further understand the

nature of the RRH phase in next section.

The fact that the spin-glass and random resonating hexagon phases have long-

range Ising order implies that there must be a phase transition between QSL and

those phases. It cannot be a smooth crossover. The phase transition can be first or

second order. We have not seen evidence for finite size scaling as one might expect at

a second order transition. Instead the transition point is weakly dependent on size.

The entire transition region shifts weakly as one goes from one size to another. This

is, at least partially, because the system sizes studied are too small, and the shape

dependence of the different clusters is significant and makes it difficult to say more

about the nature of the phase transition.

3.3 Discussions: Phase Diagram

Our numerical results clearly establish three phases in the model separated by phase

transitions. As shown in the phase diagram in Fig. 3.7 these are the quantum spin-

liquid (QSL), the Ising spin-glass (ISG) and the random resonating-hexagon (RRH)
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Figure 3.2: Entanglement entropy for a tetrahedron of spins, ST , for different pa-
rameters, for the 64 site cluster. Vertical lines represent phase transitions. The
blue dashed line represents the QSL to ISG phase transition for h = .1, the orange
dashed-dot line represents the QSL to RRH transition for h = 1, the blue dotted line
represents the ISG to RRH transition for h = .1, and the green solid line represents
the QSL to RRH transition for h = 4. The horizontal dashed lines represent ln 6 and
2 ln 2 respectively.

Figure 3.3: Distribution of entanglement entropies for different values of w for h =
0.06.
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Figure 3.4: Ising correlation sum in different parameter regions for the 64 site cluster.
Vertical lines represent phase transitions. The blue dashed line represents the QSL
to ISG phase transition for h = .1, the orange dashed-dot line represents the QSL to
RRH transition for h = 1, the blue dotted line represents the ISG to RRH transition
for h = .1, and the green solid line represents the QSL to RRH transition for h = 4.

Figure 3.5: Scaling of Ising correlation sum with N , the size of the system.
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Figure 3.6: Inverse Participation Ratio for different parameters for the 64 site cluster.
Vertical lines represent phase transitions. The blue dashed line represents the QSL
to ISG phase transition for h = .1, the orange dashed-dot line represents the QSL to
RRH transition for h = 1, the blue dotted line represents the ISG to RRH transition
for h = .1, and the green solid line represents the QSL to RRH transition for h = 4.

phases. These phases are separated by sharp transition regions. When there is no

disorder, that is w = 0, the model is in the QSL phase for all values of h. This

must be separated from other phases by a thermodynamic phase transition as the

other phases have long range Ising order, and hence a broken Z2 symmetry in the

thermodynamic limit. At small h and w, the middle of the Ising spin-glass phase has

negligible quantum fluctuations. This is not surprising as the Ising couplings arise in

lower order of perturbation theory than the ring exchange term [27, 65]. Hence they

totally dominate, and as argued in the previous chapter 2 all the ring terms are frozen

out by disorder. In our perturbative model, at large h, the Ising couplings become

negligible and the model becomes a random ring-exchange model. In this case one

has a direct transition from the quantum spin-liquid to a random resonating hexagon

phase.

The transition is not a simple level crossing as clearly the transition region is

broad. However, we do not see evidence for crossing of physical properties for differ-

ent sizes as expected at a critical transition. Instead there is a weak size dependence

of the transition point. Yet, the transition region is characterized by substantial fluc-
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tuations, and the entanglement entropy develops a broad distribution there. Hence,

we conclude that the transition maybe weakly first order. Savary and Balents [26]

suggested a weakly first order confinement transition due to randomness even when no

spin-glass order develops on the other side. The development of an additional order is

even more likely to make it first order. However, the nature of the phase-transitions

in the model, deserves further consideration.

The novel phase, found in our study, is the random resonating-hexagon (RRH)

phase. This phase has a broad distribution of entanglement entropy with a peak

near 2 ln 2. The many-body inverse participation ratio suggests that it still grows

exponentially with system size, although very slowly 1.04N . Moreover, this phase

has Ising correlation sum which scales as N implying long-range order. This implies

that there must be a backbone of spins that have long-range Ising correlations. To

understand this phase, we focus on large-h, where our model reduces to a random ring-

exchange model. The ground state of this model can be understood along the lines

of real-space renormalization group (RSRG) approaches to understanding random

quantum spin problems [66–69]. As the distribution of couplings becomes very broad

(being a product of 6 field terms), one can first pick out the strongest hexagon and

make it into a resonating cluster. The strong resonance of one hexagon makes these six

spins ineligible for additional entanglement, and can render neighboring spins frozen

into certain configurations as otherwise they would interfere with this resonance [65].

This resonating cluster is like a singlet formation in a random-singlet phase, except

it involves six spins and is unrelated to any SU(2) symmetry. Then one can pick out

the next strongest resonating hexagon. When this process is continued, it will lead to

a random configuration of hexagons placed in the lattice and it can leave a backbone

of spins that must be fixed, apart from an overall spin-inversion, in order to maintain

compatibility with the resonance in the hexagons and be in the spin-ice subspace.

Our numerical results suggest that the backbone of Ising ordered spins is percolating
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and has a finite fraction of spins. Otherwise the Ising correlation sum would not scale

linearly with number of spins.

The participation ratio should scale as 2Nc , where Nc is number of resonating

clusters. The calculated value 1.04N implies one resonating cluster per about 16 spins.

This further confirms that some fraction of spins are not participating in resonances

and are forming a frozen backbone. Furthermore, one would expect the phase to have

a large distribution of entanglement entropies with a substantial weight around 2 ln 2,

corresponding to the four spins in a tetrahedron dividing into two groups of two and

participating in two independent resonances, one of them being the Ising backbone,

which in a finite system will form a Cat state and also add ln 2 to entanglement

entropy.

In the random transverse-field Ising model (RTFIM), such an RRH phase can only

arise at intermediate values of disorder w of order unity and h not too large [65]. We

know that too large an h in the RTFIM model leads to a different confining phase

with a condensation of spinons and the system moves away from the spin-ice subspace

altogether. That physics is absent in the effective model studied here, since the model

is defined in the restricted spin-ice subspace. Also, if the disorder w becomes much

larger than order one in RTFIM, one would once again enter a local phase where the

spins simply point along the local random fields and will no longer be in the spin-ice

subspace. Thus, this second limit is also absent in the effective model studied here.

The comparison of our results with the earlier ED study of the RTFIM model suggests

that some aspects of the RRH phase is possible in the RTFIM. However, the Ising

ordered backbone may be only short-range correlated in RTFIM due to the effect of

the local transverse fields.

It is interesting to consider this study from the perspective of rare-earth magnetic

pyrochlore materials, where RTFIM has been argued to be relevant [26–28]. First of

all, our work implies that if h = 0 and one only has weak random fields, the system
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will be in a frozen spin-glass phase. A variety of measurements such as NMR or µSR

can easily confirm that. Indeed restricted subspace generally promotes spin-glass

order [70]. However, if disorder becomes a fraction of J , then one is away from the

perturbative regime and the possibility of random resonating-hexagon phase becomes

likely. While not a true QSL, such a phase has a lot of quantum fluctuations and local

entanglement and should show interesting power-law temperature, magnetic field and

frequency dependence [68, 69] in various responses. These can be dominated by just

the behavior of single hexagons, and can be easily calculated. Indeed this physics can

survive up to very large randomness.

For the material Pr2Zr2O7, it has been argued [27, 28] that the width of the

random-field distribution can be much larger than the Ising couplings. The actual

distribution of random-fields, in the materials, was found to not be Gaussian but

Lorentzian. We have studied a Lorentzian distribution as well. It does not qualita-

tively change the phases discussed here but makes numerical data more noisy due to

the tails of the Lorentzian distribution. It is clear from our work that significantly

reduced randomness is needed to obtain a QSL phase. It would be interesting if

evidence for local resonating hexagons is observed in the experimental systems.

In order to obtain a true U(1) QSL phase, it is not enough to just reduce the

strength of the disorder or w. It is important to have a uniform component of the

transverse-field that is at least of order the randomness. The kind of impurities

or imperfections that can lead to this deserves further attention from a materials

point of view. It is more likely that when non Kramers ions have two nearby non-

degenerate crystal-field states that it can then be modeled as two level systems in a

uniform transverse-field. If such a system still has spin-ice physics, it would be a good

candidate for a QSL. Another possibility is that disorder is correlated over lengths

much larger than the lattice constant for example due to strain. In that case, the

system can behave effectively as having a uniform field in any region.
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Figure 3.7: Phase diagram of the perturbative model studied here in the w − h
plane consisting of quantum spin-liquid (QSL), Ising spin-glass (ISG) and random
resonating hexagon (RRH) phases. We expect the perturbative model to agree with
the RTFIM when both h and w are much less than unity.
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Chapter 4

Photo-induced tunable Anomalous

Hall and Nernst effects in tilted

Weyl Semimetals using Floquet

theory

4.1 The model Hamiltonian

The results and discussion below are based on the article Phys. Rev. B 98, 205109.

In this chapter, we consider the effects of a circularly polarized beam of laser

on the Floquet transport properties of Weyl semimetals. Consider a time reversal

symmetry breaking tilted Weyl semimetal with two Weyl nodes of opposite chirality.

The linearized Hamiltonian for such a system around each Weyl node s = ± is given

by [71]

Hs = ~Cs(kz − sQ) + s~vσ · (k − sQez) (4.1)

where Cs is the tilt parameter, which also is associated with the type of the Weyl



point. Here, v denotes the Fermi velocity in the absence of the tilting term, 2Q is

the distance between the Weyl points in momentum space along ez, and σ is the

vectorized Pauli matrix.
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E(k)
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Actual BandLinear Dispersion Bands
(Tilt near Lifshitz Transition)
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Figure 4.1: (a) Fermi surface relative to Weyl node for type-I WSM away from the
Lifshitz transition. The upper band is in orange and the lower band is in blue. (b)
Type-I WSM - failure of the linearized model near the Lifshitz transition. (c) Fermi
surface relative to Weyl node for type-II WSM showing how the linearized model can
give us qualitatively correct results by imposing a physical momentum cutoff since
the actual band structure (dashed lines) have finite electron and hole pockets.

For type-I WSMs shown in Figs. 4.1(a) and 4.1(b), the blue and orange lines

indicate the linearized band structure near the Weyl nodes (with their meeting point

being the Weyl point), the red lines indicate the Fermi energy or highest occupied

level, and the green pockets indicate the zone filled by electrons. It is clear from Fig.

4.1(b) that as we increase the tilt the higher order momentum terms in the Hamilto-

nian become relevant and while the actual electron pocket size is finite as indicated

by the the green zone (the dashed boundary corresponds to the actual band structure

with higher order corrections), the linearized model predicts infinite electron pocket

sizes. Fig. 4.1(c) shows that for type-II WSMs, past the Lifshitz transition, a physical

momentum cutoff needs to be introduced since the true band structure admits only

finite pocket sizes.
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4.2 Circular polarized light and Floquet theory

We use a polarized beam of form E(t) = E0(cosωt,− sinωt), where E0 and ω are

the amplitude and frequency of the optical field. The Pierels substitution leads to

~ki → ~ki + eAi, where ~A(t+ T ) = ~A(t), with T = 2π/ω as the periodicity. The full

time-dependent Hamiltonian has the form [72–77]

Hs(k, t) = H0(k) + Vs(t) (4.2)

with H0(k) = Hs = ~Cs(kz − sQ) + s~vσ · (k− sQez) and Vs(t) = s~νA0(σx sinωt+

σy cosωt). In the HFL, we map to a time-independent problem (See Appendix B part

1) by using Floquet theory [78] and employ the HFE [55, 77, 79–82].

The effective time independent Hamiltonian for our system can be obtained as,

Hs
F = ~Cs[kz − s(Q+ ∆)] + s~vσ · [k − s(Q+ ∆)ez]

+ s~Cs∆, (4.3)

where ∆ =
~vA2

0

2ω
, is the contribution of the radiation field. It is to be noted here from

eqn.(4.3) that the form of the effective Hamiltonian is similar to the original Hamil-

tonian in eqn.(4.1), with the Weyl nodes being further displaced by a distance 2∆

in momentum space. We restrict to the inversion symmetric case, sCs = C, ∀s = ±,

and so there is an overall shift in the total energy of both nodes by an amount equal

to ~C∆.
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4.3 Floquet-Matsubara formalism

In order to analyze the Nernst conductivities [83] and anomalous thermal Hall con-

ductivities [84–86] in both the regimes of WSMs, we can now use the Kubo formalism

modified for Floquet theory [87–89]. The modification to the standard form of the

Kubo formula, used to calculate the time-averaged conductivity tensor for periodi-

cally driven systems, lies in the use of Floquet states, quasi-energies, and the time

averaging integral. For a Hamiltonian linear in momentum, this can be simplified to

the form (for the detailed derivation of the modified Kubo formula for a Hamiltonian

linear in momentum see Appendix B part 2)

σab = i

∫
dk

(2π)3

∑
α 6=β

fβ(k)− fα(k)

εβ(k)− εα(k)
× 〈eα(k)|Jb|eβ(k)〉 〈eβ(k)|Ja|eα(k)〉

εβ(k)− εα(k) + iη
, (4.4)

which resembles exactly the standard form of the Kubo formula where Ja(b) rep-

resents the current operator, the eα’s represent the states of the effective Floquet

Hamiltonian, and the ε’s represent the corresponding quasi-energies. The fα’s rep-

resent the occupations which in general could be non-universal in systems which are

out of equilibrium. However, the steady-state occupations resemble the Fermi-Dirac

distribution with the quasi-energies for a certain class of system-bath couplings [90],

and our results are valid for such cases.

In general, Mott’s relationship defines the anomalous thermal Hall and Nernst
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conductivities as [83–86],

αxy = eLT
dσxy
dµ

, Kxy = LTσxy, (4.5)

E(k)

kz
Linear Dispersion Bands

Hole Pocket

Actual Band
Fermi Surface

Figure 4.2: Fermi surface relative to Weyl node for type-I WSM showing that on
lowering the effective chemical potential we eventually get incorrect estimates of the
hole pocket size.

where L = π2k2
B/3e

2 is the Lorentz number, e is the electronic charge, and kB is

the Boltzmann constant. It is to be noted here that the electric field, sourced by the

small d.c. bias needed to measure transport properties in the linear response regime,

has been suppressed in eqn.(4.2), and we account for it in the conductivity tensor σxy

calculation, done using the Matsubara approach (see Appendix B part 3).

4.4 Thermal Hall and Nernst effects in type-I WSMs

From eqn.(4.5), the Nernst and thermal Hall conductivities in the T → 0 limit for a

type-I WSM, are obtained as,

αxy =
−ek2

BTC

18~2v2

Kxy ≈
k2
BT

6~

[(
Q+ ∆

)
− C(µ− C∆)

3~v2

]
. (4.6)

Firstly, we note that Kxy varies smoothly around the point µ = C∆, and that
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setting ∆ = 0 gives us back the results in [37]. We rewrite the Hall conductivity in a

suggestive manner which shows that the Hall conductivity grows monotonously with

∆.

Kxy =
k2
BT

6~
[Q− µ

3~v2
C] +

k2
BT

6~
[1 +

C2

3~v2
]∆ = K0

xy +K∆
xy, (4.7)

where K0
xy is the Hall conductivity in the absence of irradiation and K∆

xy is the

positive contribution of the laser field. Since both nodes get an energy boost of C~∆,

the chemical potential which shows up in the Fermi-Dirac distribution function is

offset by it, and it’s instructive to think of this as fixing the chemical potential and

moving the band structure for both nodes vertically. It’s clear that as we increase the

amplitude of the radiation field, the effective chemical potential µ−C∆ decreases and

ultimately becomes negative. Since moving the effective chemical potential further

down amounts to increasingly incorrect hole pocket size estimations in the linearized

model (Fig. 4.2), with the dashed line indicating the actual band structure, one might

worry about the limit of validity of the result. However, the free carrier contribution

is a second order effect, supressed by C2

v2
, and the dominant contribution to Hall

conductivity comes from the shift in node spacing, i.e. ∆, which is part of the

vacuum contribution, known to be cutoff independent. Thus we can conclude that

the Hall conductivity grows with the amplitude of the irradiation field far away from

the linear regime. In Figs. 4.3(a) & (b), the anomalous thermal Hall conductivity is

plotted in units of (k2
B/~) as a function of optical frequency and temperature.

Since the linearized model predicts a linear dependence of Kxy on µ in the type-I

regime, the Nerst conductivity is predictably constant and remains unchanged by the

optical field.
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Figure 4.3: (a) Variation of thermal Hall conductivity with optical frequency for
three different values of the temperature for type-I WSM. The frequency axis is in
units of 1012 Hz. (b) Variation of thermal Hall conductivity with optical frequency
and temperature for type-I WSM. The frequency axis is in units of 1016 Hz, and the
temperature axis is in units of 104K.

4.5 Thermal Hall and Nernst effects in type-II WSMs

The Hall and Nernst conductivities for type-II WSMs are presented below.

αxy = −ek
2
BTv

6~2C2

[
ln
( C2Λ

v(C∆− µ)

)
− 1
]

Kxy =
ek2

BTv

6C~

[(
Q+ ∆

)
− (µ− C∆)

~C
ln
( C2Λ

v(C∆− µ)

)]
. (4.8)

Considering the expression for Kxy, which depends nonlinearly on the chemical

potential, it is clear that it decreases for increasing ∆, and we find that changing the

amplitude of the photon field affects the Nernst conductivity, which decreases loga-

rithmically with increasing ∆. For the correct qualitative description of the transport

coefficients, the momentum cutoff needs to be modified for increasing A0 .

Finally, while the physical momentum cutoff is difficult to estimate without using

a non-linear model, we can provide a way to experimentally verify our findings inde-

pendent of the cutoff. Notice that we can eliminate the Λ dependence from eqns.(4.8)

to get:
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[− 6~C
k2
BTv

Kxy +Q+ ∆]
~C

C∆− µ
=

6~2C2

ek2
BTv

αxy + 1 (4.9)

Figs. 4.4(a) & 4.4(b) show the anomalous Hall conductivities for a range of Nernst

conductivities and driving frequency at fixed temperature, as defined by eqn.(4.9).

A pump-probe experiment (see Appendix B part 4) is a potential candidate setup

for the verification of the results stated here. Such setups have been used to create

stable WSMs from Dirac metals and allow for the steering of Weyl points [91]. Since

the timescale for amplitude modulation is orders of magnitude larger than the oscil-

lation of the field, the position of the Weyl nodes is dictated by the frequency of the

optical field, with small variations due to amplitude modulation. Similar experiments

have been also proposed for the transport properties of other driven topological phases

[92–98]. The effective Floquet band close to the Weyl node can be experimentally

confirmed using time-resolved photo emission spectrosocopy [82, 91, 99, 100].
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Figure 4.4: (a) Variation of thermal Hall conductivity with optical frequency for
three different values of Nernst conductivity for type-II WSM. The frequency axis is
in units of 1010 Hz. (b) Variation of thermal Hall conductivity with optical frequency
and Nernst conductivity for type-II WSM. The frequency axis is in units of 1016 Hz.
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Chapter 5

Thermo-electric transport

properties of Floquet multi-Weyl

Semimetals

The results and discussion below are based on the article Phys. Rev. B 102, 014307.

5.1 Effective Floquet Hamiltonian

In this chapter, we consider the effects of a circularly polarized beam of laser on the

Floquet transport properties of Weyl semimetals. The low energy Hamiltonian for a

multinode WSM of monopole charge n near each Weyl point is given by[52, 101, 102]

Hs
k = ~Cs(kz − sQ) + s~αnσ · (nk − se) (5.1)

The derivation of the above model is shown explicitly in the SI, Sec. I. Here, s = ±

indicates the chirality of nodes, nk = [kn⊥ cos(nφk), kn⊥ sin(nφk), vkz
αn

]. e = (0, 0, Q),

and 2Q is the separation between two Weyl nodes. σ = [σx, σy, σz] is the vectorized

Pauli matrix, and αn is the mWSM coupling which reduces to the Fermi velocity



v when n = 1. We define the x − y plane azimuthal angle φk = arctan(ky
kx

), and

the in-plane momentum k⊥ =
√
k2
x + k2

y. The Hamiltonian (5.1) represents the two

Weyl nodes (0, 0,±Q), located at the same energy and separated by a distance 2Q,

while Cs indicates the tilt parameter associated with s Weyl node. Type-I mWSMs

corresponds to |Cs|/v � 1 while for type-II mWSMs we have |Cs|/v � 1. We restrict

to the inversion symmetric tilt given by sCs = C. We cast the above Hamiltonian in

matrix notation:

Hs
k =

~Cs(kz − sQ) + s~v(kz − sQ) s~αn(kx − iky)n

s~αn(kx + iky)
n ~Cs(kz − sQ)− s~v(kz − sQ)

 . (5.2)

Hereafter, we use Natural units and set ~ = c = kB = 1. We now examine the

effect of circularly polarized light on the mWSM. Under the influence of a periodic

optical driving with electric field of frequency ω, E(t) = E0(− cosωt, sinωt, 0), the

Hamiltonian transforms via the Pierel’s substitution ki → ki − Ai, where the vector

potential is given by A(t) = E0

ω
(sinωt, cosωt, 0), in the Landau gauge. The gauge

dependent momenta transform as kx → k′x = kx − A0 sinωt,

ky → k′y = ky− A0 cosωt ,and kz → k′z = kz. The driving amplitude of the vector

potential is related to the amplitude of the electric field by A0 = E0

ω
. Considering

the fact that (k′x ± ik′y)n =
∑n

m=1(k⊥e
±iφ)n−m(A0)me±im(π

2
−ωt) nCm, where nCm =

n!
(n−m)!m!

represents the combinatorial operator, the time dependent Hamiltonian takes

the form

Hs
k(A, t) = sσ+(k′x + ik′y)

n + sσ−(k′x − ik′y)n (5.3)

+ C(kz − sQ) + v(kz − sQ)σz
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Solving the problem with a time-dependent potential may be out of the reach

of analytical tractability. Instead, we resort to using Floquet’s theorem and the

extracting the sub-leading order term in the high frequency van-Vleck expansion, to

obtain a closed form expression for the effective Hamiltonian HF
k .

We note that one can numerically solve an extended Floquet Hamiltonian, defined

in the Hilbert space T ⊗H (with H being the Hilbert space of static Hamiltonian and

T being the Hilbert space associated with multi-photon dressed states), to obtain

the quasi-states and quasi-energies [103]. From mathematical point of view, one

can also use Lie algebra techniques and a decomposition of the evolution on each

group generator to obtain an effective Hamiltonian [104]. However, the van-Vleck

expansion is more tractable as the Hilbert space of the time-independent Hamiltonian

gets projected onto the zero-photon subspace: T ⊗H → T0⊗H = H. Corrections to

the Floquet Hamiltonian can be obtained to all orders in perturbation theory using

the van-Vleck expansion.

In this limit, one can describe the dynamics of the driven system over a period T

in terms of the effective Floquet Hamiltonian: HF
k ≈ Hs

k + V s
k , where V s

k represents

perturbative driving term. We restrict to contributions of order 1/ω throughout the

manuscript, and the form of V s
k is given by

V s
k =

∞∑
p=1

[V−p, Vp]

pω
, (5.4)

with Vp = 1
T

∫ T
0
Hs

k(A, t) eipωt dt and ω = 2π
T

. Evaluating V s
k for our system, we

arrive at
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Vp = sαn

n∑
m=1

(k⊥)n−m(−A0)m nCm

=

 0 e−i[(n−m)φ+mπ
2

]δp,−m

ei[(n−m)φ+mπ
2

]δp,−m 0

 . (5.5)

Using the result in (5.5) and evaluating the commuatator in (5.4), we find that

the effective Floquet Hamiltonian takes the form

HF
k = Hs

k + V s
k

= Cs(kz − sQ) + sαnσ · (nk − sQêz)

+
α2
n

ω

n∑
p=1

1

p

(n
CpA

p
0

)2

k2n−2p
⊥ σz

= Cs(kz − sQ) + sαn(n′k − sQêz) · σ (5.6)

with n′k = (kn⊥ cos (nφk) , k
n
⊥ sin (nφk) , Tk/αn). We define Tk ≡ vkz+

α2
n

ω

∑n
p=1 β

n
p k

2(n−p)
⊥ ≡

∆n + T ′k, with T ′k ≡ vkz + α2
n

ω

∑n−1
p=1 β

n
p k

2(n−p)
⊥ , and βnp = (nCpA

p
0)2/p. The momentum

independent contribution to the Floquet Hamiltonian acquires the form ∆n =
α2
nA

2n
0

nω
.

It clear from the construction of (5.6) that the effective Hamiltonian embodies terms

which couple higher momentum modes (modes which diverge faster than k as k →∞)

of the Weyl fermion to the photon. The extra terms, absent for n = 1, appears

due to the anisotropic energy dispersion of the static mWSM Hamiltonian (5.1). A

close inspection of effective Hamiltonian (5.6) suggests that circularly polarized light

can not open up a gap in WSM as the time reversal symmetry is intrinsically bro-

ken in static Hamiltonian (5.1); instead the position of the Weyl points shifts from

(0, 0, sQ) → (0, 0, sQ−∆n). We note here T ′k = vkz for k = (0, 0, kz). Interestingly,

unlike the single Weyl case where the shift Q quadratically varies with driving ampli-

tude A2
0, the shift in the Weyl point for mWSMs ∆n is coupled with monopole charge
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n as ∆n =
α2
nA

2n
0

nω
. The terms containing k⊥ in T ′k would lead to subleading corrections

in transport properties.

The effective quasi-energies obtained from Floquet Hamiltonian (5.6), are thus

EF
k = Cs(kz − sQ)± s

√
α2
nk

2n
⊥ + T 2

k , (5.7)

leading to the established result: EF
k (n = 1) = Cs(kz − sQ)± s

√
v2k2
⊥ + (vkz + ∆1)2

as α1 = v. One can observe that k⊥ term in Tk is absent for conical dispersion

while for n > 1, the anisotropy in conical dispersion leads to terms dependent on

k⊥ in Tk. For completeness, we note that the static energy of an mWSM Hamilto-

nian with no driving is obtained by diagonalizing the Hamiltonian (5.1) to obtain

E0
k = Cs(kz − sQ)±

√
α2
nk

2n
⊥ + v2k2

z . Therefore, one can clearly see that the external

optical field paramters get coupled with momentum k⊥ leading to the complex form

of Tk in Eq. (5.7). In particular, the nature of the Floquet dispersion (5.7) changes

due to the coupling of the incident light parameter A0 and ω with the momentum k⊥

and the topological charge n. Another interesting feature of the Floquet dispersion is

that kz gets coupled to k⊥ that is not noticed for irradiated single WSMs. The static

and Floquet dispersion are extensively analyzed in SI, Sec. II.

5.2 Berry Curvature

It is crucial to study geometric phases in any topological system as anomalous re-

sponse functions are usually related to the Berry curvature. Here our aim would be

to investigate the effect of the driving on the Berry curvature and subsequently on

the anomalous transport. Before going into detail, we begin by defining the Berry

curvature associated with the Floquet Hamiltonian HF
k . The Berry curvature of the
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mth band for a Bloch Hamiltonian H(k), defined as the Berry phase per unit area in

the k space, is given by [105]

Ωm
a (k) = (−1)m

1

4|nk|3
εabcnk ·

(
∂nk

∂kb
× ∂nk

∂kc

)
. (5.8)

The explicit form of the Berry curvature associated with the Weyl node having

chirality s = ±1 as obtained from Floquet effective Hamiltonian (5.6) is given by

Ω±,sF (k) = ±1

2

1

|EF
k |3

(nvα2
nk

2n−1
⊥ cosφk, nvα

2
nk

2n−1
⊥ sinφk,

− nβkα
2
nk

2n
⊥ + Tkn

2α2
nk

2n−2
⊥ ), (5.9)

with βk = α2
n

ω

∑n
p=1(2n − 2p)βnp k

2n−2p−2
⊥ . We note that +(−) sign refers to the va-

lence (conduction) band. The Berry curvature remains unaltered irrespective of the

chirality of the Weyl nodes, i.e., Ω±,+ = Ω±,−. One obtains the regular static Berry

curvature when A0 = 0, βk = 0 and Tk = vkz. The static Berry curvature using

Hamiltonian (5.1) becomes

Ω±,s0 (k) = ±1

2

1

|E0
k|3

(nvα2
nk

2n−1
⊥ cosφk, nvα

2
nk

2n−1
⊥ sinφk,

n2vα2
nk

2n−2
⊥ kz), (5.10)

Therefore, one can observe that Ωz(k) is modified due to the driving, while the

remaining two components of Ω±F (k) receive the correction from the effective energy

EF
k appearing in the denominator. This suggests that anomalous conductivity σaxy

would be modified due to the driving as compared to σaxz and σayz. We shall analyze

this extensively in the what follows.

Now, turning to n = 1 case, the Berry curvature for driven single WSM case

is given by Ω±,sF (k, n = 1) = (kx, ky, kz + v3∆1)/|E0
k(n = 1)|3. Importantly, even for

Ωz(k) in single WSMs, the momentum independent term ∆1 ∼ A2
0 bears the signature
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of periodic driving. For n > 1, the topological charge gets coupled with the driving

parameter which leads to a more complex form of Ωz(k) as compared to the n = 1

case.

We shall compute the anomalous Hall conductivity σaF,xy, considering the effective

Floquet Hamiltonian, from the z-component of Berry curvature in Eq. (5.10). In

order to obtain a closed form results in the leading order, we neglect βk as ω → ∞

as the effective energy in the denominator bears the correction terms due to driving

as shown in Eq. (5.7). We, on the other hand, consider the effect of the Floquet

driving on the cut-off limit of kz integration. In particular, zl = −Λ − sQ → z′l and

zu = Λ − sQ → z′u with z′l = −Λ − sQ + s∆n and z′u = Λ − sQ + s∆n. Therefore,

one can safely consider the static energy in the denominator, and we shall motivate

this assumption extensively while discussing the vacuum contribution Sec. 5.3.1. The

anomalous contribution to leading order is thus given by

σaF,xy = e2

∫
dk

4π2

∑
s

Ω−,sF (k)

' −ne
2

4π2

∫ z′u

z′l

∫ ∞
0

dk⊥dkz
kzk⊥

(k2
z + k2

⊥)3/2

' −ne
2

2π2
(Q+ ∆n) (5.11)

We have considered cylindrical polar co-ordinates for the convenience of the inte-

gration along with the following rescaling: kz → kz/v and k⊥ → k
1/n
⊥ α

−1/n
n . It is

noteworthy that this anomalous Hall coefficient is a topological property due to the

appearance of the monopole charge. For the static system, it is just given by −ne2

2π2Q.

Since the Berry curvature of the filled valence band remains same for both the nodes

with opposite chiralities. The results obtained considering these two nodes is just the

double of that of the obtained in single node.
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We now connect our findings to the transport phenomena in the mWSMs. It has

been shown that there exist n number of Fermi arcs for a mWSM with topological

charge n [52], and we know the transport is mainly governed by the surface states

present in the Fermi arc for WSMs. Interestingly, driving shifts the position of Weyl

points ±Q→ ±Q+∆n; this leads to the modification in Fermi arc for irradiated case

as compared to the static case. As a result, transport properties receive additional

corrections from driving. It has been shown that Fermi arc can be tuned using

Floquet replica technique when a WSM is irradiated with circularly polarized light

[92]. The factor n in front of Eq. (5.11) signifies that effective Floquet Hamiltonian

still supports n number of Fermi arcs. We here mention that the neglected βk term

would give rise to sub-leading non-topological contributions. Since we wish to probe

the question of transport due to laser driving, it would be appropriate to investigate

the optical conductivity using Floquet-Kubo formalism. However, we note at the

outset that one can find similar expression as given in Eq. (5.11) while calculating

the vacuum contribution of optical conductivity up to leading order.

5.3 Conductivity tensor

Having derived the Berry curvature induced anomalous Hall conductivity, we shall

now systematically formulate the conductivity tensor using the current-current cor-

relation function. This is constructed using the Matsubara Green’s function method.

The current-current correlation is written as

πµν(Ω,k) = T
∑
ωn

∑
s=±

∫
d3k

(2π)3
J (s)
µ Gs(iωn,k)

J (s)
ν Gs(iωn − iΩm,k− q)|iΩm→Ω+iδ (5.12)
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Here, µ, ν = {x, y, z}, T is the temperature, ωn and Ωn are the fermionic and bosonic

Matsubara frequencies and G is the single particle Green’s function. The Hall con-

ductivity can now be derived from the zero frequency Ω → 0 and zero wave-vector

limit.

Using the current-current correlation (5.12), one can define the static conductivity

tensor σ0
ab. We here use the form of the time-averaged conductivity tensor σFab in the

form of the Kubo formula, modified for the Floquet states as

σFab = i

∫
d3k

(2π)3

∑
α 6=β

fβ(k)− fα(k)

εβ(k)− εα(k)

× 〈Φα(k)|Jb|Φβ(k)〉〈Φβ(k)|Ja|Φα(k)〉
εβ(k)− εα(k) + iη

(5.13)

which resembles the standard form of the Kubo formula where Ja(b) represents the

current operator, the |Φα(k)〉 represents the states of the effective Floquet Hamilto-

nian (5.6), and εα represent the corresponding quasi-energies. The fα represent the

occupations which in general could be non-universal in systems which are out of equi-

librium. In such cases, the steady-state occupations can take the form of Fermi-Dirac

distribution associated with the quasi-energies of the Floquet states, depending on the

characteristics of the drive. The Matusubara formalism turns out to hold for Floquet

states as well [106] and we use this method in the current work. The Floquet-Kubo

formalism has been widely used in calculating optical Hall conductivity in open and

closed quantum systems. [107–110].

One can start from Luttinger’s phenomenological transport equations [111] for

the electric and energy DC currents. The energy current is originated from the

combination of heat current JQ and energy transported by the electric current JE in

presence of electromagnetic field while the underlying system is characterized by a
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finite chemical potential µ and temperature T . Within the Fermi liquid limit kBT �

|µ|, the Mott rule and the Wiedemann-Franz law relate the thermopower α and

thermal conductivity K, respectively, to the electric conductivity σ [37, 112, 113]:

αab = eLT
dσab
dµ

, Kab = LTσab. (5.14)

Here, αab is the Nernst conductivity and Kab is the thermal Hall conductivity and

L = π2k2
B/3e

2 is the Lorentz number. These formulas are assumed to be valid for the

effective time-independent Floquet Hamiltonian setup [106], and we shall investigate

them in what follows.

One can define the current operator from the effective Floquet Hamiltonian HF
k

Eq. (5.6)

Jµ = e
∂HF

k

∂kµ
(5.15)

In order to derive Jµ, we consider the leading order term neglecting ∂Tk/∂kµ term

as it contains 1/ω factor. We note that the current operator obtained in this man-

ner would be the same as the static current operator for mWSM Hamiltonian. This

leading order term can be further confirmed by the zeroth order Fourier component

of the current operator as shown in Appendix C part 3. The effect of Tk term is also

encoded in the single particle Greens function Gs. We compute the optical conduc-

tivity by using the complete expression of Gs and approximated current operator.

In terms of the Pauli matrices, we can write upto leading order as

Jx ≈ esnαnk
n−1
⊥ [cos((n− 1)φk)σx + sin((n− 1)φk)σy] (5.16)

Jy ≈ esnαnk
n−1
⊥ [cos((n− 1)φk)σy − sin((n− 1)φk)σx] (5.17)
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The point to note here is that Jx and Jy both depend on kx and ky which is in contrast

to the single WSM case where Ji ∼ kiσi. The anisotropic nature of dispersion of the

mWSM Hamiltonian thus engraves its effect on the current operator.

Employing the current-current correlation and performing a detailed calculation

(see Appendix C part 4), we arrive at the conductivity tensor as

σxy =
e2n2α2

n

4π2

∑
s=±

∫ ∞
0

dk⊥k
2n−1
⊥

∫ Λ

−Λ

dkz

sv(kz −Q) + sα2
n

ω

∑n
p=1 β

n
p k

2(n−p)
⊥

[( sα
2
n

ω

∑n
p=1 β

n
p k

2(n−p)
⊥ + sv(kz − sQ))2 + α2

nk
2n
⊥ ]3/2

× [nF (EF,−
k )− nF (EF,+

k )] (5.18)

where Λ is the ultra-violet cut-off of kz integral, nF (E) = 1
eβ(E−µ)+1

is the Fermi-

Dirac distribution function, and β = 1/T is inverse temperature. The total optical

conductivity (5.18) is the sum of vacuum and Fermi surface contributions which we

shall calculate below. We note that due to the existence of external and internal

energy scale ω and µ, the cut-off Λ plays an important role in achieving physically

meaningful results. This cut-off is ultra-violet in nature and can in principle depend

on the detail of the material.

5.3.1 Vacuum contribution

In this section, we investigate the vacuum contribution which is obtained in the limit

[nF (EF,−
k )−nF (EF,+

k )]→ 1. Physically this means that valence (conduction) band is

completely filled (empty). This vacuum contribution is topological and amounts to

an intrinsic contribution that remains finite for µ → 0. With suitable re-definitions

and linear integration variable shifts, we arrive at
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σvacxy =
e2n2α2

n

4π2

∑
s=±

∫ ∞
0

dk⊥k
2n−1
⊥

∫ Λ−sQ+
sα2n
ω
A2n

0

−Λ−sQ+
sα2n
ω
A2n

0

×
[svkz + α2

n

ω

∑n−1
p=1 β

n
p k

2(n−q)
⊥ ]

[(α
2
n

ω

∑n−1
q=1 β

n
q k

2(n−q)
⊥ )2 + α2

nk
2n
⊥ ]3/2

. (5.19)

We will compute the vacuum contribution using two separate procedures involving

suitable approximations and then compare the obtained results.

5.3.1.1 Coordinate Transformation Method

The method prescribed in this section relies on the fact that while several quantities

are set to infinity in a computation, in order to get physically plausible answers one

might need to define the order in which the limits are taken. For computation of the

integrals, the following coordinate map M : R2 → R2 is prescribed with the action

k⊥ → k′⊥ = k
1
n
⊥α
− 1
n

n , and kz → kz. With this coordinate transformation, the vacuum

contribution of the conductivity tensor looks like

σvacxy = −e
2nα

2− 2
n

n

4π2

∑
s=±

s

∫ zu

zl

∫ xu

xl

k⊥Tk
(k2
⊥ + T 2

k)3/2
dk⊥dkz

(5.20)

Here, the upper and lower limits of the integrals have been determined with appro-

priate physical justifications (see Appendix C part 4):

xl = 0, xu = Λ⊥ (5.21)

zu = v(Λ− sQ) + s

(
∆n +

α2
n

ω

n−1∑
p=1

βnpα
2(p−n)
n

n Λ
2(n−p)
n

⊥

)

zl = v(−Λ− sQ) + s

(
∆n +

α2
n

ω

n−1∑
p=1

βnpα
2(p−n)
n

n Λ
2(n−p)
n

⊥

)
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Λ⊥ is the cut-off for k⊥ integral. One can segregate zl,u from Λ⊥: zl,u = z′l,u+sα
2
n

ω
XΛ⊥

with XΛ⊥ =
∑n−1

p=1 β
n
pα

2(p−n)
n

n Λ
2(n−p)
n

⊥ and z′l,u = v(∓Λ− sQ) + s∆n. Hence one has to

handle this cut-off with care, and the issue reduces to the order of taking limits. We

again stress that the high frequency Floquet effective Hamiltonian is valid when ω is

larger than the bandwidth not permitting any real electronic transitions. Keeping this

in mind, the sub-leading 1/ω order correction that we want to extract is preserved as

we execute the k⊥ integral followed by the kz integral. We note that while solving the

k⊥ integral, without loss of generality Λ⊥ is considered to be large as compared to Λ.

Importantly, Λ⊥/ω is small compared to Λ and hence XΛ⊥ is a sub-leading term since

ω sets the dominant energy scale in the problem. Taken collectively, the subleading

XΛ⊥ term is held finite during the k⊥ integration and this leads to the Λ⊥ dependence

reappearing through the limits of the kz integral. In a nutshell, our resullt is applicable

when ω � Λ⊥ � Λ. We justify the above assumptions for the high frequency Floquet

effective Hamiltonian HF
k (5.6) that is derived from a low energy minimal model (5.1).

Finally, we obtain the vacuum contribution of conductivity in mWSM,

σvacxy = n
e2Qα

2− 2
n

n

2π2
− ne

2α
2− 2

n
n

2π2

[
∆n −

α2
n

ωv

n−1∑
p=1

βnpΛ
2(n−p)
⊥

]
(5.22)

Here, ∆n and βnp are the contributions appearing as an effect of irradiated light. One

can easily recover the n = 1 behavior of gap where ∆1 varies quadratically with the

amplitude of driving A0 [106]. For n > 1 further corrections, due to higher order

curvature of the Floquet Hamiltonian, contribute via the cut-off of the low-energy

model.
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5.3.1.2 Series Expansion Method

We shall now proceed with a physically justified alternative method to compute Λ⊥

in terms of the kz cut-off. The idea here is to expand the denominator around its

unperturbed static energy in increasing powers of driving period 1/ω → 0 as ω →∞.

The perturbative expansion is then given by

k2
⊥ + T 2

k ≈ E2
k +

2vkzα
2
n

ω

n−1∑
p=1

βpnα
2(p−n)
n

n k
2(n−p)
n

⊥ (5.23)

One can then note that for n = 2, only βn1 exists while for n = 3, βn1 and βn2 both

exist. Ek =
√
k2n
⊥ + v2k2

z is the bare static energy of mWSM in the absence of tilt.

Considering Xk⊥ =
∑n−1

p=1 β
n
pα

2(p−n)
n

n k
2(n−p)
n

⊥ , we now express the integrand as

Tk
(k2
⊥ + T 2

k)3/2
≈ 1

E3
k

[
vkz −

3v2k2
zα

2
n

E2
kω

Xk⊥

+
α2
n

ω
Xk⊥

(
1− 3vkzα

2
n

E2
kω

Xk⊥

)]
(5.24)

We explicitly write σvacxy for n = 2 (neglecting 1/ω2 term) as,

σvacxy (n = 2) = −e
2nα

2− 2
n

n

4π2

∑
s=±

s

∫ z′u

z′l

∫ ∞
0

k⊥Tk
(k2
⊥ + T 2

k)3/2
dk⊥dkz

≈ −e
2nα

2− 2
n

n

4π2

∑
s=±

s

(
v(zl + zu) + v2αnβ

n
1 (z′l − z′u)

)

≈ −e
2nα

2− 2
n

n

4π2

(
v(−2Q+ 2∆n) +

2v2αnβ
n
1

ω
Λ

)
(5.25)

In this derivation, we ignore the divergent contributions coming from the integrals

having higher powers of k⊥ in the numerator. These types of terms, being artifacts

of the underlying low-energy model, do not appear in the lattice model. In order to

obtain Λ⊥, we equate the coefficient of 1/ω from Eq. (5.25) and Eq. (5.22). We find
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Λ⊥ linearly depends on Λ′: Λ⊥ = 2v2Λ′. For n = 3, we find

σvacxy (n = 3) = −e
2nα

2− 2
n

n

4π2

[
v(−2Q+ 2∆n)

− 2v2α
2
n
n βn1
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u

4/3
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− 3v2α
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2
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u
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+
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4
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2
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u

2/3

)]]
(5.26)

It is noted that contrary to the n = 2 case, Λ⊥ is non-linearly related to Λ′ for n = 3:

Λ
4
n
⊥ = η1[|zl|

4
n + z

4
n
u ] and Λ

2
n
⊥ = η2[|zl|

2
n + z

2
n
u ] where η1,2 can be obtained by matching

the coefficient of βn1 /ω and βn2 /ω. The relationship between Λ and Λ⊥ derived here

are consistency conditions for the model parameters.

5.3.2 Fermi-surface contribution

We take a note of the point that for the calculation of the Fermi surface contribution,

one has to consider the finite upper limit in the k⊥ integral as b, a parameter which

we compute below. The Fermi surface contribution for a given n becomes

σFSxy (n) = nα2−2/n
n

∑
s

s

∫ z′u

z′l

dkz

∫ b

0

k⊥Tk
(k2
⊥ + T 2

k)3/2
dk⊥

× {Θ(v2k2
z + (Ckz + sC∆n − µ)2)− 1} (5.27)

In the equation above, Θ(x) represents the Heaviside function which arises from the

zero-temperature Fermi-Dirac distribution. It is then more convenient to write Tk ex-

plicitly for n = 2 as Tk = vkz+βn1α
−2/n
n k

2/n
⊥ and for n = 3 as Tk = vkz+βn1α

−4/n
n k

4/n
⊥ +

βn2α
−2/n
n k

2/n
⊥ . In a more compact notation, for n = 3, we define β′2 = βn2α

−2/n,

β′3 = βn1α
−4/n
n and for n = 2, we define β′2 = βn1α

−2/n and β′3 = 0. On the other hand,
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b = {Ckz + sCβ1 − µ)2 − v2k2
z}1/2. Below we shall exprees all our findings in terms

of β′2 and β′3 for a general n.

In the leading order approximation, β1 = O( 1
ω

), kz → 0 and µ is held finite. We

shall consider the cases for type-I and type-II cases separately: |C| � v, b = µ−Ckz

and |C| � v, b = (µ2−v2k2
z)

1/2. We resort to leading order method once again, where

we permit only the O(1/ω) order term and obtain the following:

σxy(n) =
nα

2−2/n
n

v

∫ z′l

z′l

dkz

∫ b

0

dk⊥k⊥(Fk,1 + Fk,2 + Fk,3) (5.28)

with Fk,1 = kz
E3

k
, Fk,2 =

β′2k
2
n
⊥+β′3k

4
n

E3
k

, Fk,3 = −3k2zFk,2

E5
k
. We note that in Eq. (5.28) the

leading order term Fk,1 is also present for the n = 1 Weyl node case. Similar to

the vacuum contribution of optical conductivity, the multi Weyl nature appears here

through a multiplicative factor nα
2−2/n
n . The additional anisotropic and band bending

corrections appear in terms of 1/ω in Fk,2 and Fk,3. To obtain a minimal expres-

sion, the above derivation is simplified by neglecting the term Fk,3 as k2
z/E

3
k → 0

for kz → 0 considered for low-energy model. A close inspection suggests that Fk,3

contains O(kp⊥/ω
p′) and O(kqz/ω

q′) with p, q(p′, q′) < 1(> 1). As a result, for ω →∞,

Fk,3 can be neglected compared to the leading order terms Fk,1.

For type-I mWSM, one can keep in mind the fact that b remains always positive.

78



The total contribution from the Fermi surface is given by

σFS(I)
xy ≈ −e

2nα
2−2/n
n

4π2

[
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[ v
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]
(5.29)

with

a(M) =
Γ(M

n
+ 2)

(2M
n

+ 2)(2M
n
− 3)Γ(M

n
+ 1)

(5.30)

with M = 1. Therefore, the leading contribution is not just given by nα
2−2/n
n multi-

plied to n = 1 contribution. In this first term µ gets shifted to µ − C∆n while ∆n

depends on topological charge n. The other sub-leading order terms are of order 1/ω.

We can write a closed form expression for v � |C| as follows,

σFS(I)
xy = n

α
2−2/n
n

v
· e

2

4π2

[
C(µ− C∆n)

6v2

+ 4β′2a(M)
((2µ)2/n−2

v
+

(2/n− 3)µ2/n−2

v

)
+ 4β′3a(2M)

(2µ4/n−2

v
+

(4/n− 3)µ4/n−2

v

)]
(5.31)

Therefore, total conductivity of type-I mWSM for a given n is expressed as

σIxy(n) = n
e2

4π2

α
2−2/n
n

v

[
(Q+ ∆n) + C

(µ− C∆n

6v2

)
+ 4β′′2a(M)µ2/n−2 + 4β′′3a(2M)µ4/n−2

]
(5.32)

with β′′2 = β′2( 2
v

+ 2/n−3
v

) and β′′3 = β′3( 2
v

+ 4/n−3
v

). This helps us to write the anomalous

thermal Hall conductivity KI
xy and Nernst conductivity αIxy respectively for the type-I
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mWSMs as ,

KI
xy(n) =

π2

3e2
k2
BTσ

I
xy

= n
Tk2

B

12

α
2−2/n
n

v

[
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(µ− C∆n

6v2
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]
(5.33)

One can find

αIxy(n) =
π2

3e2
k2
BT

dσIxy
dµ

= n
ek2

B

12
· α

2−2/n
n

v

[
− C
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( 2

n
− 2
)

µ2/n−3 + 4β′′3a(2M)
( 4

n
− 2
)
µ4/n−3

]
(5.34)

One can now easily derive the expressions for σIxy, K
I
xy and αIxy for n = 2 by con-

sidering β′3 = 0. Comments on the new results for n = 2 and n = 3 and their

characteristic dissimilarities from the n = 1 case are now in order. In general, non-

linear µ dependence comes from order 1/ω term in n > 1 multi Weyl case while the

linear µ dependence term only appear for n = 1.

Let us now explore the thermal responses for the type-II case of mWSM where

sign of k⊥ momentum cut-off b depends on kz. Handling of the k⊥ integral requires

extra care as sgn(b) becomes + (−), depending on kz being −(+). |C| � v, refers to
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(a) (b)

Figure 5.1: Type-I WSM: (a) Variation of thermal anomalous Hall conductivity with
optical frequency, for three different values of the monopole charge. (b) Variation of
anomalous Nernst conductivity with optical frequency, for three different values of
the monopole charge. The values of the various parameters are specified in Natural
units as follows: vF = 0.005, α1 = vF , α2 = 0.00012 eV−1, α3 = 0.00012 eV−2,
E0 = ωA0 = 1000.0 eV2, C = 0.1, µ = 1.0 eV, Q = 2.0 eV, and T = 3.4× 10−2K.

the fact v2k2
z − (Ckz + sC∆n − µ)2 < 0. Recalling the k⊥ integral, we find

σIIxy(n) = n
e2

4π2

α
2−2/n
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(∆n +Q)
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− 1 +
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)Cµ 2M

n
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2(4∆2
nv

C
− 2Λ2 − 2Q2

))
+ β′3{M → 2M}

]
(5.35)

with M = 1. The remarkable point to note here is that the momentum cut-off Λ shows

up algebraically in the Fermi surface contribution. However, this is accompanied with

the sub-leading term O(1/ω). This is indeed a new feature for the anisotropic char-

acter of the dispersion in type-II mWSMs. In type-II single WSMs, the momentum

cut-off can only appear logarithmically.

Using the results obtained above, we write the anomalous thermal Hall conduc-
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Figure 5.2: Type-I WSM: Variation of thermal anomalous Hall conductivity with
Anomalous Nernst conductivity, for n = 3 mWSM. The frequency range sampled is
0.50eV - 2.50eV The temperature values sampled are T = 1×10−2, 2×10−2, 3.4×10−2

K. The values of the other various parameters are the same as Fig. 5.1.

tivity for type-II mWSMs:

KII
xy(n) = nT

k2
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12
α2−2/n
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(5.36)

with a2(M) = (2∆nv/C − 2Q), a3(M) = C(2M/n − 3)(4∆2
nv/C − 2Λ2 − 2Q2) and

M = 1. On the other hand, the Nernst conductivity is given by

αIIxy(n) = ne
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]
(5.37)
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One can easily obtain the n = 2 results by considering β′3 = 0.

(a) (b)

Figure 5.3: Type-II WSM: (a) Variation of thermal anomalous Hall conductivity with
optical frequency, for three different values of the monopole charge. (b) Variation
of anomalous Nernst conductivity with optical frequency, for three different values
of the monopole charge. The plot (b) shows a strong overlap between the curves
for fixed n as a function of temperature. To highlight this issue, the data points
sampled for overlapping curves are at distinct values of frequency. The values of the
various parameters are specified in Natural units as follows: vF = 0.005, α1 = vF ,
α2 = 0.00012 eV−1, α3 = 0.00012 eV−2, E0 = ωA0 = 1000.0 eV2, C = 0.1, µ = 1.0
eV, Q = 2.0 eV, Λ = 900.0 eV, and T = 1× 10−2, 2× 10−2 K.

5.4 Discussion of Results

We now discuss some important aspects of our findings on the distinguishable trans-

port features of type-I and type-II mWSMs. First of all, we emphasize on the signifi-

cant results that show the characteristically different features of the effective chemical

potential µ and the cut off Λ for two different types of mWSMs. We also narrate the

key roles played by the topological charge n and the tilt C in the thermo-electric

transport properties of mWSMs. We note that dispersion becomes anisotropic due

to the multi Weyl nature; tilt can additionally make it anisotropic in the tilt di-

rection. Floquet driving can lead to complicated deformations of the static Fermi

surface. Moreover, it influences the distribution of chiral Weyl fermions in the elec-

tron and hole pockets. Therefore, Floquet transport can noticeably be altered upon

the introduction of the tilt. In terms of the physical parameters, the differences in
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(a) (b)

Figure 5.4: Type-II WSM: (a) Variation of thermal anomalous Hall conductivity
with Anomalous Nernst conductivity, for n = 2 mWSM. (b) Variation of thermal
anomalous Hall conductivity with Anomalous Nernst conductivity, for n = 3 mWSM.
For both cases, the frequency range sampled is 4.1eV - 6eV. The temperature values
sampled are T = 1 × 10−2, 2 × 10−2, 3.4 × 10−2 K. The values of the other various
parameters are the same as Fig. 5.3.

transport are clearly visible, originating from the nature of the Fermi surface. Having

qualitatively analyzed the differences, we below present their quantitative nature.

It is to be noted that Λ2 is associated with µ2M/n−4 and µ2M/n−5, (with M = 1, 2)

for optical Hall conductivity, and Nernst conductivity in case of type-II mWSMs,

respectively. Therefore, the transport properties in this phase are heavily influenced

by the coupling of µ and Λ. This is contrary to the type-I mWSM where only µ can

affect the transport in addition to the driving field; Λ does not appear in the transport

coefficients. For type-II single WSM, a purely logarithmic cut-off dependence is only

observed. Hence, the anisotropy in the tilted dispersion non-trivially couples with

the field parameters to generate the unusual cutoff dependence. The shape of the

Fermi pockets for type-II mWSMs is very different from type-I mWSM as it evident

from the cut-off dependence of transport coefficients. Notably, in case of irradiated

tilted mWSMs, the topological charge establishes its effect not only in a simple mul-

tiplicative fashion but also in a much more fundamental way, by coupling to the tilt

dependent effective chemical potential, where Λ appears algebraically. This algebraic

cut-off dependent term is associated with the additional corrections of O(1/ω). The
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leading order term in the off-diagonal conductivity is given by n times the single Weyl

result; here, the anisotropic nature of the dispersion is partially encoded in the shifted

chemical potential µ→ µ−C∆n, where ∆n = O(A2n
0 /ω). The effective chemical po-

tential is also dependent on the frequency of the driving potential and the monopole

charge.

Having discussed the implication of cut-off, we now consider the non-linear µ

dependence that arises in the conductivity tensor, besides the effective µ. In type-

I mWSMs, considering v � |C|, the vacuum contribution σIxy associated with β′2,3

term becomes decreasing function of µ for both for n = 2 and n = 3; β′2 term decays

inversely (as µ−1) for n = 2 and β′2,(3) decays non-linearly µ−4/3(µ−2/3) for n = 3.

The Nernst conductivity on the other hand, goes as µ−2 for n = 2, and for n = 3

it becomes decreasing function of µ (as µ−7/3 and µ−5/3). In type-II mWSMs, con-

sidering |C| � v, the vacuum contribution σIIxy associated with β′2,3Λ2 term becomes

decreasing function of µ for both the n = 2 and n = 3 cases. We note that the

sub-leading correction decays more rapidly with µ for type-II as compared to type-I

mWSMs. In particular, the cut-off independent contributions asscociated with β′2

term vary as µ−2 and µ−3 for n = 2. While for n = 3, these contributions associated

with β′2,(3) term go as µ−7/3 and µ−10/3 (µ−5/3 and µ−8/3). The Nernst conductivity

in this regime becomes strongly decreasing function of µ for both n = 2 and n = 3

with the lowest power as µ−3 and µ−8/3, respectively.

After investigating the transport behavior analytically, we illustrate them as a

function of driving frequency to analyze some salient qualitative features. We note

that our aim is to pictorially differentiate the type-I from type-II mWSM based on

our low-energy model. Hence, at the outset, we confess that certain lattice effects

might not be captured following our analysis. However, our study uncovers some
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trends which we believe can be probed in real materials.

We now discuss the transport coefficients for type-I mWSMs as shown in Fig. 5.1(a)

for thermal Hall conductivity and Fig. 5.1(b) for Nernst conductivity. We depict the

high frequency behavior of Kxy and αxy, calculated using Eq. (5.33) and Eq. (5.34),

respectively. Noticeably the response from the external field for a general n > 1

mWSM is not related to n = 1 single WSM by a simple multiplicative factor. This is

also very clearly evident from the variation of Kxy and αxy with driving frequency ω.

The sub-leading terms play an important role due to the fact that the chemical poten-

tial µ gets non-trivially coupled to the frequency; these terms are associated with the

factors β′2, β′3. The important point to note here is that Kxy decreases and eventually

saturates with optical frequency ω; while |αxy| remains unchanged with ω for n = 2.

In the case with n = 3, |αxy| increases followed by a saturation at sufficiently large

frequency. We note that even though β′′2 = β′′3 = 0 for both n = 1 and n = 2, Kxy

depends on ω as first two terms in Eq. (5.33) due to the term ∆n. The ω-independent

nature of αn=1
xy and αn=2

xy stems from the fact that β′′2 = β′′3 = 0 in the leading order;

the first term in Eq. (5.34) does not depend on ω. β′′2 , β
′′
3 6= 0 results in a further

ω-dependent behavior of αn=3
xy . The absence and lower degree of anisotropy can thus

lead to ω-independent nature of αn=1
xy and αn=2

xy , respectively; substantial amount of

anisotropy can significantly modify the light induced transport as observed in αn=3
xy .

However, the crossing of αn=3
xy with αn=1

xy and αn=2
xy might be restricted to the leading

order and higher order corrections may be frequency dependent. We note that one

needs to investigate the lattice model to get a more complete picture.

It is now important to analyze the behavior of Kxy as a function of αxy since it

could be useful from the experimental perspective. One can understand that Kxy and

αxy behave in an independent manner for n = 1 and n = 2 as Kxy depends on ω while

αxy does not. Interestingly, we see that this no longer holds for n = 3 and we plot
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this in Fig. 5.2. Here, Kxy increases with |αxy|. A qualitative change in the transport

character is observed with the increase in the degree of anisotropy, characterized by

n.

Similarly, for type-II mWSMs, we depict the behavior of Kxy, obtained from

Eq. (5.36), in Fig. 5.3 (a) and αxy, obtained from Eq. (5.37), in Fig. 5.3 (b), respec-

tively. One can find here for type-II mWSM, unlike the type-I mWSM, that Kxy and

αxy both decrease with ω. This may be due to the fact that they are influenced by

the quadratic momentum cutoff Λ2 dependent sub-leading term in addition to the

terms containing the function f(µ, ω, n).

Having thoroughly investigated the transport coefficients type-I and type-II mWSMs,

we would now like to comment on the differences between these two phases in single

WSM as far as the other magneto-transport conductivities are concerned. As a start,

planar Hall coefficients vary quadratically (linearly) for type-I (type-II) single WSMs

[114]. The type-I single WSMs can be differentiated from type-II while the anomalous

Nernst and anomalous Hall conductivities are studied [38, 115]. The tilt also causes

distinguishably different optical activities in Kerr and Faraday rotation as compared

to the non-tilted case [116, 117]. Our study considering the low energy irradiated

mWSM model further strengthens the list of distinction between these two types of

mWSMs. The distinct behavior coming from type-I and type-II single Weyl lattice

models which do not suffer from any cut-off dependence can thus be related to the

different cut-off characteristics as derived in low energy model. Therefore, the tilt

even in the presence of anisotropy is able to influence the transport properties in a

different manner as compared to non-tilted case.

We now propose a relevant experimental setup where our predictions can be tested.

One can have candidate double (HgCr2Se4) and triple WSM (Rb(MoTe)3) materi-

als as the samples. The Floquet driving can be realized by the conventional pump

(strong beam)-probe (weak beam) optical set up where ultrafast electron dynamics
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of the samples are observed as a function of time delay between the arrival of pump

and probe pulses. Recently, using polarized photons at mid-infrared wavelengths,

Floquet-Bloch states and photo-induced band gaps have been shown to be clearly

visible in time-and-angle-resolved photoemission spectroscopy [95]. We believe that

using similar arrangements with suitably chosen frequency ranges of pump laser, one

can experimentally measure the transport properties derived here. One can also con-

sider a non-optical substrate-terminal based closed circuit measurement of Nernst

conductivity and thermal Hall conductivity [96] The electric and heat current can be

measured considering a mutually perpendicular arrangement of DC power source and

thermocouple, respectively.
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Chapter 6

Conclusion

In this chapter, we summarize and make concluding remarks about the contents of

this dissertation. Additionally, possible future research directions are addressed. The

chapter is divided into two sections: the first section deals with quantum spin liquids

while the second concerns Weyl semimetals.

6.1 Random Transverse Field Ising Model

In chapter 2, we have studied the random transverse-field Ising model on the py-

rochlore lattice using NLC and ED. This model has a deconfined QSL phase, which

is subject to two types of confining transitions. Large transverse-fields lead to con-

finement where spins are locked along the field direction. On the other hand, a

distribution of random fields leads to a selection within the ice manifold also leading

to a loss of entanglement and confinement. We have shown that local entanglement

associated with a single-tetrahedron contains sharp changes associated with these

transitions.

The simple NLC converges well in the high-field phase, right up to the transition.

But, it diverges in the QSL phase. The QSL phase can be studied within NLC formal-

ism by embedding each cluster inside a larger spin-ice. Nearly all the entanglement in



the QSL phase arises from ring-exchange resonances. These can be frozen by random

transverse-fields leading to confinement.

In the confining phase, there is a broad distribution of local entanglement, a prop-

erty which persists to large random fields. This suggests that such local behavior may

be present in the material Pr2Zr2O7, which has rather large random fields compared

with exchange interactions, although a material with smaller random fields would be

a better candidate for a QSL.

In chapter 3 we have studied an effective model derived perturbatively from the

random transverse-field Ising model (RTFIM) on the pyrochlore lattice. The reduced

Hilbert space of the effective model allows us to study larger system sizes and thus

deduce the nature of different phases. We find three different phases. A U(1) QSL

phase occurs for sufficiently small randomness at all h. At weak transverse-fields,

increased randomness leads to an Ising spin-glass (ISG) phase, with nearly frozen

spins and very little quantum fluctuations. Increased random-fields can lead to a

random resonating hexagon (RRH) phase, which is a kind of a cluster-glass phase

where quantum fluctuations and entanglement are restricted to small clusters.

We have discussed possible relevance of this study to rare-earth pyrochlores where

RTFIM have been argued to be relevant. It is clear that a broad distribution of

transverse-fields, with width exceeding the mean, will not lead to a QSL phase. But,

it is possible for it to still be in a random resonating hexagon phase. It would be

interesting if evidence of local resonating hexagons is observed in Pr2Zr2O7. A true

U(1) QSL would need a material where the magnitude of the transverse-field is nearly

uniform at least at nearby sites, which could be the case if strain is the dominant

source of disorder.

My current work focuses on the pyrochlore lattice, but in principle there are other

frustrated geometries (for example the triangular lattice, Kagome lattice) that po-

tentially host a degenerate space of vacuua. This manifold of ground states maybe
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identified and then deformed (to mimic the effects of disorder) to give rise to macro-

scopic entanglement which can be studied using ED techniques and associated meth-

ods already present in my armory. Further, restricting to the reduced Hilbert space

of degenerate ground states permits the study of much larger system sizes, otherwise

inaccessible if the full Hilbert space of the underlying theory is necessary. The con-

struction of phase diagrams for different classes of materials and geometries would

be possible thereby equipping experimentalists with a potentially large set to choose

from and identify the elusive QSLs.

One can also envision the properties of the QSL system under excitations induced

by neutron scattering that may reveal signatures of the local structure of entangle-

ment. A candidate observable to assess this is the dynamical structure factor (DSF),

which could be compared to neutron-scattering data to identify such excitations.

DSFs can becomputed to great accuracy without access to the full Hilbert space of

states making it compatible with methods like the Lanczos algorithm. The DSF can

also be used to compare the scattering based excitations existing in the phases neigh-

boring the QSL as functions of the parameters, and very interestingly near the phase

boundaries. Another viable option would be to compute the DSF in position space in

the different phases of the candidate material, corresponding to the results obtained

from NMR data.

6.2 Anomalous Floquet Transport in Weyl semimet-

als

In chapter 4 we have considered the effects of an incident circularly polarized optical

field (CPL) on two distinct classes of Weyl Semimetals in the HFL using Floquet

theory. The corresponding changes in thermal Hall conductivity and Nernst conduc-

tivity have been calculated for the linearized model, with closed form expressions for
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the T → 0 case. These results and the underlying physics can be summed up as

follows.

For the effective Floquet Hamiltonian, we find that the Weyl nodes separate fur-

ther due to the radiation field dependent parameter ∆. This also gives rise to a

constant term in the Hamiltonian proportional to ∆, which leads to distinct shifts in

the spectrum of each Weyl node and is shown to be equal in the inversion symmetric

case. Thus, the effect of the latter is to change the effective Fermi surface leading to

an array of consequences for the transport coefficients. The time-averaged transport

coefficients are computed using the modified Kubo formalism applicable to Floquet

states, and we show that the conductivity tensor can be computed using the Mat-

subara Green’s function formalism, the key point being that the Kubo formula can

be used in it’s standard form with the states and energies in the expression being

interpreted as the states and quasi energies of the effective Floquet Hamiltonian.

For the type-I WSM case, we find that the leading correction to the Hall conduc-

tivity arises from the Floquet parameter ∆. There exist subleading order corrections

stemming from the true band structure which may not be accurately captured by the

linearized model. The Nernst conductivity remains unchanged by the optical field

because the Hall conductivty in the type-I regime shows a linear dependence on the

chemical potential.

In the type-II case, we find that the Hall conductivity decreases with the ampli-

tude of the incident laser beam, holding the frequency fixed. The Nernst conductivity

for this type of WSM is affected by the radiation field as the thermal Hall conduc-

tivity depends non-linearly on the chemical potential. With increasing ∆, the Nernst

conductivity falls off logarithmically. The qualitative and quantitative analyses of the

transport properties of WSMs presented here aims to the characterization of the two

types of WSMs.

In chapter 5 we have investigated the circularly polarized light (of amplitude A0
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and frequency ω) induced contributions to the thermo-electric transport coefficients

in type-I and type-II mWSM with topological charge n > 1 considering the low en-

ergy minimal model. Using the high frequency expansion (ω →∞) and appropriately

employing the non-equilibrium Floquet-Matsubara formalism, where the energies and

states of the Hamiltonian are replaced with the quasi-energy and quasi-states of the

effective Hamiltonian, we study the anomalous thermal Hall conductivity and Nernst

conductivity. The effective Floquet Hamiltonian suggests that the Weyl nodes, sep-

arated by Q in the momentum space for the static case, are further displaced by a

distance 2∆n ∼ A2n
0 /ω. Importantly, the low energy Hamiltonian of Floquet mWSMs

receive momentum dependent corrections in addition to the constant A2
0 shift in the

single n = 1 Floquet WSMs. This results in a change in the effective Fermi surface

which in turn leads to an array of non-trivial consequences for the transport coef-

ficients. The leading order contribution varies linearly with the topological charge

and the chemical potential µ is displaced to µ − C∆n. The light induced transport

phenomena in type-I, and type-II mWSMs become significantly different. In partic-

ular, one can show that optical conductivity increases with A0 for type-I mWSMs,

while it decreases with A0 in the case of type-II mWSM. However, the leading order

vacuum contribution to σxy remains topological, which we verify by calculating the

Berry curvature induced anomalous Hall conductivity.

Going beyond the leading order contribution, we compute the effect of the mo-

mentum dependent correction term in the Fermi surface effects to the conductivity

tensor. We find Floquet driving induced sub-leading contribution can show non-

trivial algebraic dependence on the chemical potential µ as µf(n). Most surprisingly,

unlike the case of type-II single WSMs, for type-II mWSMs, the Nernst and ther-

mal Hall conductivity depends algebraically on the momentum cut-off. However, for

type-I mWSMs, the Fermi surface contribution remain cut-off independent. Unlike

the type-I single WSM, the Nernst conductivity for type-I mWSM depends on µ.
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Combining all these, we graphically represent the variation of the total thermal Hall

and Nernst conductivities as a function of the optical driving frequnecy by evaluating

the analytical expression numerically. These suggest that type-I and type-II mWSM

exhibit distinct behavior while the multi Weyl nature can also be captured vividly.

Next, we consider possible research avenues for the future. While we have consid-

ered the leading order contribution in perturbation theory to the tilted Weyl Hamil-

tonian, it may be possible to sum the van-Vleck series exactly to all orders in per-

turbation theory. This might also hold true for other topological systems in their

respective minimal models, and exactly summing perturbation theory contributions

to all orders may lead to interesting non-perturbative results, which may have far

reaching consequences for the transport properties of such materials.

Also, the already developed formalism maybe useful in examining the properties

of other exotic materials like nodal line semimetals (NLSM) and the more recent

variant - surface line semimetals , using their effective low energy theories. In this

context, we are currently examining the effect of circularly polarized light on a tilted

NLSM. We find that the CPL induces a WSM phase with tilt correlated with the

NLSM! This leads to a richer phase diagram with a gapped phase, a type-I WSM and

a type-II WSM which are separated by a Lifshitz transition.

In conjunction with this, an examination of the non-equilibrium distribution func-

tions generated due to the irradiation of a material is needed to derive transport

coefficients which can be accurately compared to experimental measurements. While

there has been some work in this direction using the Master equation formalism, more

work is needed to rigorously establish the class of distributions that can exist in such

out of equilibrium systems, and their potential experimental realization.

Based on the research avenues presented above, I look forward to more adven-

tures with topological materials in my future career, and on that note this treatise is

terminated.
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Appendix A

Spin Ice - II: data

A.1 Results for different cluster sizes: 32 sites, 40

sites, 48 sites, and 64 sites

Here we present the results for 32 site, 40 site, 48 site, and 64 site lattice on the same

plot for each physical quantity.

A.1.1 Bandwidth

Figure A.1: The total Bandwidth of the spin-ice subspace per spin plotted on a
log-log scale in the 32 site (32s), 40 site (40s), 48 site (48s), and 64 site (64s) clusters
respectively. The yellow dashed line represents the scaling as w6 in the RRH phase
and the blue dashed line represent the ISG scaling as w2.



A.1.2 Entanglement Entropy

Figure A.2: Entanglement entropy for a tetrahedron of spins, ST , for different pa-
rameters in the 32 site (32s), 40 site (40s), 48 site (48s), and 64 site (64s) clusters
respectively. Vertical lines represent phase transitions. The red dashed lines represent
the QSL to ISG phase transition for h = .1, the red dashed-dot line represents the
QSL to RRH transition for h = 1, the red dotted line represents the ISG to RRH
transition for h = .1, and the red solid line represents the QSL to RRH transition for
h = 4. The horizontal dashed lines represent ln 6, 2 ln 2, and ln 2.

A.1.3 Ising Correlation

Figure A.3: Ising correlation sum in different parameter regions in the 32 site (32s),
40 site (40s), 48 site (48s), and 64 site (64s) clusters respectively. Vertical lines
represent phase transitions. The red dashed lines represent the QSL to ISG phase
transition for h = .1, the red dashed-dot line represents the QSL to RRH transition
for h = 1, the red dotted line represents the ISG to RRH transition for h = .1, and
the red solid line represents the QSL to RRH transition for h = 4.
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A.1.4 Inverse Participation Ratio

Figure A.4: Inverse Participation Ratio for different parameters in the 32 site (32s),
40 site (40s), 48 site (48s), and 64 site (64s) clusters respectively. Vertical lines
represent phase transitions. The red dashed lines represent the QSL to ISG phase
transition for h = .1, the red dashed-dot line represents the QSL to RRH transition
for h = 1, the red dotted line represents the ISG to RRH transition for h = .1, and
the red solid line represents the QSL to RRH transition for h = 4.
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Appendix B

Floquet Weyl Semimetal

B.1 Floquet effective Hamiltonian

For the sake of completeness we provide a brief review of the Floquet theory. The

off resonant condition (i.e. the presence of only virtual photon processes)[118, 119]

is maintained here, which effectively makes the system stationary, and the static

effective Hamiltonian in terms of the evolution operator U [77] is obtained as

Heff (k) =
i~
T

logU, (B.1)

where,

U = Ttime exp[
1

i~

∫ T

0

H(k, t)dt] (B.2)

with Ttime as the time-ordering operator. The effective Hamiltonian Heff describes

the dynamics of the system on the time scale much longer than a period T , thus

the response is described well by an average over a period of oscillation. The matrix



elements of the time-dependent Floquet Hamiltonian is [72–77]

Hm,m
′

F = H0δm,m′ +m~ωδm,m′ +H′
m,m′

(B.3)

where H′
m,m′

= Vn = 1
T

∫ T
0
V(t)ei(m−m

′
)tdt = 1

T

∫ T
0
V(t)einωtdt, where V(t) is the time

dependent periodic perturbation term. Considering terms upto order 1/ω, the static

time independent effective Hamiltonian is as follows

Heff = H0 +
[V−1, V+1]

~ω
. (B.4)

Note that all higher multi-photon state contributions vanish identically for our

system.

B.2 Modified Kubo Formula in the context of Flo-

quet Theory

Given a time dependent Hamiltonian H(t) influenced by a driving periodic potential

Ad(t) = Ad(T + t), with T being the period, one can exploit the periodicity of the

gauge potential to write the eigenstates of H(t) in the form [87]

|Ψ(t)〉 = e−iεαt |Φα(t)〉 . (B.5)

The states |Φ(t)〉 are called Floquet states (analogous to the Bloch states for

spatially periodic potentials) and they satisfy |Φ(t+ T )〉 = |Φ(t)〉. These states also

satisfy the Schrodinger equation with εα’s being the quasi-energies.

H(t) |Φ(t)〉 = εα |Φ(t)〉 . (B.6)
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The Floquet states are orthonormal under a time averaged inner product defined

as

〈〈Φα(t)|Φβ(t)〉〉 :=
1

T

∫ T

0

dt 〈Φα(t)|Φβ(t)〉 = δαβ. (B.7)

When applied to a system driven by an off-resonant optical field (i.e. the frequency

ω of the field is larger than the bandwidth), real processes of photon absorption and

emission cannot occur - this is why we stick to the high frequency regime, so that there

is no dissipation. However, the off-resonant light can affect the system via virtual

photon processes as described in [78]. The physics of such virtual processes can be

captured order by order by Fourier transforming the Floquet states to momentum

space.

|Φ(t)〉 =
∑
m

e−imΩt |umα 〉 (B.8)

In the equation above, m is the Floquet index and it describes the order of the

virtual photon process, while α is the band index for the full Hamiltonian. The states

|unα〉 are related to the Floquet Hamiltonian as [87]

∑
n

Hmn
F |unα〉 = (εα +mΩ) |umα 〉 , (B.9)

with the Floquet Hamiltonian matrix elements defined as

Hmn
F =

1

T

∫ T

0

dtH(t)e−i(m−n)Ωt. (B.10)

The full Floquet Hamiltonian has a Sambe space [78] (equivalent to a Hilbert

space but used in context of Floquet theory) given by F = Ω⊗H2x2, where H2x2

is the Hilbert space of the undriven Hamiltonian, and Ω is the space corresponding

which captures the different virtual photon processes. This Hamiltonian can be ap-
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proximated to linear order in perturbation theory in the high frequency expansion

(HFE) as HF
eff = H0,0 + 1

Ω
[H−10,H10], as used in our manuscript. The point of the

effective Floquet Hamiltonian is that it shares the same quasi-energies and states of

the full Floquet Hamiltonian to leading order in perturbation theory. The eigenstates

of the effective Floquet Hamiltonian are defined as

HF
eff |eα〉 = εα |eα〉 , (B.11)

and they are related to the Floquet states |unα〉 as

|eα〉 =
∑
n

|unα〉 , (B.12)

as shown in [55]. The authors of [87] state the form of the time-averaged conduc-

tivity tensor σab in the form of the Kubo formula, modified for the Floquet states in

Eqn. (B.6) as

σab = i

∫
dk

(2π)d

∑
α 6=β

fβ(k)− fα(k)

εβ(k)− εα(k)
× 〈〈Φα(k)|Jb|Φβ(k)〉〉〈〈Φβ(k)|Ja|Φα(k)〉〉

εβ(k)− εα(k) + iη
(B.13)

This is very similar to the Kubo formula with the following modifications: The

energies have been replaced with the Floquet quasi-energies and the current correla-

tion functions are time averaged. The f ’s are the Fermi distribution function which

take on a non-universal character out of equilibrium. Given the system described in

our work, the current operator defined as J = ∂H(t)
∂Aµ

= ~Csδµz + s~vσµ is indepen-

dent of time. We evaluate the current correlation function above using the Fourier

decomposition of Eqn.(B.8) as

101



〈〈Φβ(k)|J |Φα(k)〉 =
1

T

∫ T

0

dt
∑
m

∑
n

e−iΩ(n−m)t 〈umα |J |unβ〉

=
∑
m

∑
n

δnm 〈umα |J |unβ〉

=
∑
n

〈unα|J |unβ〉 , (B.14)

where the simplification arises because the time dependent parts factor out.

As derived in [55] (section III), in the HFE we find that |unα〉 ∼ O(ω−n), and so to

leading order only the zeroth level Floquet states |u0
α〉 contribute. Now, |u0

α〉 is given

in terms of the eigenstates of the effective Floquet Hamiltonian from Eqn.(B.12), and

thus the current correlator in Eqn. (B.14) can be re-expressed as

〈〈Φβ(k)|J |Φα(k)〉 =
∑
n

〈unα|J |unβ〉 = 〈u0
α|J |u0

β〉 = 〈eα|J |eβ〉 . (B.15)

The main point here is that the expectation value of observables are correctly

computed using the eigenstates of the effective Hamiltonian to leading order in per-

turbation theory. This brings the expression for the conductivity tensor on the r.h.s.

of Eqn.(B.13) to exactly the Kubo form for the undriven case with the use of effective

Floquet states and quasi-energies.

σab = i

∫
dk

(2π)d

∑
α 6=β

fβ(k)− fα(k)

εβ(k)− εα(k)
× 〈eα(k)|Jb|eβ(k)〉 〈eβ(k)|Ja|eα(k)〉

εβ(k)− εα(k) + iη
(B.16)

Since the Kubo formula as stated above is identically expressed using the Matsub-

ara Green’s function approach, using the effective Floquet states and quasi-energies

in the Matusbara formalism yeilds the same conductivities as the one computed using
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Eqn.(B.16). In the undriven case, the Matsubara formalism uses the Green’s function

derived from the Hamiltonian, and here it will correspondingly require the use of the

Green’s function of the effective Floquet Hamiltonian.

We note that the Fermi distribution is not universal for systems which are out

of equilibrium, but we claim that the contribution of the electrode chemical poten-

tial will be tiny in the regime of linear response theory as compared to the intrinsic

chemical potential of the system, and so we ignore the electrode chemical potential.

This allows us to write the chemical potential in the Kubo formalism as a constant

i.e. without accounting for sources at the boundary.

Note also that one could have conducted the calculation above using an additional

slowly varying gauge field, which is then subsequently set to zero as we take the zero-

frequency limit in the Kubo formula (i.e. the linear response regime), as done by the

authors of [87]

B.3 Hall Conductivity Computation using modi-

fied Kubo Formalism

The modified form of the Kubo formula as applicable to Floquet states of a strong

and periodically driven system (derived in appendix B) is used in this appendix to

compute the analytical form of the zero-temperature time-averaged components of the

conductivity tensor. The time-averaged anomalous Hall conductivity for the tilted

WSM under the action of the circularly polarized light may now be derived from the

zero frequency and zero wave-vector limit (i.e. the limit of an infinitesimal d.c. bias)

of the current-current correlation function, constructed using the Matsubara Green’s
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function method (with ~ = 1):

Πij(Ω,q) = T
∑
ωn

∑
s=±

∫
d3k

(2π)3
J

(s)
i Gs(iωn,k)J

(s)
j Gs(iωn − iΩm,k− q)

∣∣∣∣
iΩm→Ω+iδ

,(B.17)

where i, j = {x, y, z}, T is the temperature (setting the Boltzmann constant as unity)

and ωn(Ωm) are the fermionic(bosonic) Matsubara frequencies. Here Gs(iωn,k) is

the single particle Green’s function of the electron and J
(s)
i = e (Csδiz + svσi) is the

current operator with δij as the Kronecker delta. One can relate the Hall conductivity

to the current-current correlation function as follows,

σxy = − lim
Ω→0

Πxy(Ω, 0)

iΩ
. (B.18)

The one-particle Green functions have the following form

Gs(iωn,k) =
1

2

∑
t=±1

1− stσ · k−s(Q+∆)ez
|k−s(Q+∆)ez |

iωn + µ− Cs(kz − s(Q+ ∆) + tv|k− s(Q+ ∆)ez| − sCs∆
,

(B.19)

where µ is the chemical potential. We sum over the Matsubara fermion frequencies

and trace over Pauli σ-matrices to obtain the following form

Πxy(Ω, 0) = Π(+)
xy (Ω, 0) + Π(−)

xy (Ω, 0), (B.20)
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where we have separated the contributions from the two Weyl cones

Π(s)
xy (Ω, 0) = Π

(s)
0 (Ω, 0) + Π

(s)
FS(Ω, 0), (B.21)

Π
(s)
0 (Ω, 0) = −se2

∫ Λ0−s(Q+∆)

−Λ0−s(Q+∆)

dkz
2π

∫ ∞
0

k⊥dk⊥
2π

2v2Ωm

Ω2
m + 4v2k2

×kz
k

∣∣∣∣
iΩm→Ω+iδ

, (B.22)

Π
(s)
FS(Ω, 0) = se2

∫ Λ−s(Q+∆)

−Λ−s(Q+∆)

dkz
2π

∫ ∞
0

k⊥dk⊥
2π

2v2Ωm

Ω2
m + 4v2k2

×kz
k

{
nF (Cskz + vk − µ+ sCs∆)− nF (Cskz − vk − µ+ sCs∆) + 1

}∣∣∣∣
iΩm→Ω+iδ

.

(B.23)

Π0 denotes the vacuum contribution for µ = 0, whereas ΠFS is the contribution of

the states at the Fermi surface. nF (E) = (e(E−µ)/T + 1)−1 is the Fermi distribution

function and k =
√
k2
z + k2

⊥. The cut-off Λ0, which is introduced in the kz integral, is

known not to affect the vacuum contribution to the Hall conductivity. However, the

other cutoff in Πs
FS,which is denoted as Λ, is crucial for finite Fermi surface effects in

both the type-I and type-II regime.

Using eqn. (C.19), we have

σ(s)
xy = σ

(s)
0 + σ

(s)
FS , (B.24)

σ
(s)
0 = −e2

∫ Λ0−s(Q+∆)

−Λ0−s(Q+∆)

dkz
2π

∫ ∞
0

k⊥dk⊥
2π

skz
2k3

, (B.25)

σ
(s)
FS = e2

∫ Λ−s(Q+∆)

−Λ−s(Q+∆)

dkz
2π

∫ ∞
0

k⊥dk⊥
2π

×skz
2k3

[
nF (Cskz + vk − µ+ sCs∆)− nF (Cskz − vk − µ+ sCs∆) + 1

]
. (B.26)

Importantly, one should note that skz/2k
3 is the z-component of the Berry curvature

of the Weyl cone with chirality s. Interestingly, both the tilt Cs and the Floquet

parameter ∆ term has no effect on the Berry curvature component, but only affect
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the Fermi-Dirac distribution function.

Taking the T → 0, and performing the k⊥ integration, we get

σ
(s)
0 = − se

2

8π2

∫ Λ0−s(Q+∆)

−Λ0−s(Q+∆)

dkz sign(kz), (B.27)

σ
(s)
FS = − se

2

8π2

∫ Λ−s(Q+∆)

−Λ−s(Q+∆)

dkz

[
sign(kz)−

vkz
|Cskz − µ+ sCs∆|

]
×
[
(Θ
(
v2k2

z − (Cskz + sCs∆− µ)2
)
− 1
]
, (B.28)

where Θ(x) is the Heaviside function.

σxy = σ0 + σFS (B.29)

σ0 = − e2

4π2

∫ Λ0−(Q+∆)

−Λ0−(Q+∆)

dkz sign(kz) =
e2

2π2
(Q+ ∆) (B.30)

Noticeably, the optical field has lead to a positive offset to σ0. In this case the

Fermi surface contribution to the Hall effect can be written as

σsFS =
−se2

8π2

∫ Λ−s(Q+∆)

−Λ−s(Q+∆)

dkz

[
sign(kz)−

vkz
|Cskz − µ+ sCs∆|

[
θ
(
v2k2

z −
(
Cskz + sCs∆− µ

)2)
− 1
]]

(B.31)

The eq. (B.31) is nonzero only for v2k2
z −

(
Cskz + sCs∆ − µ

)2

< 0. Under this

condition there will be two cases for type-I WSMs: i)µ−C∆ > 0 ii)µ−C∆ < 0

B.4 Schematic Design for Experimental Realiza-

tion

We propose the use of the experimental setup in Fig. B.1 (of the appendix) above to

test the validity of our results, where the WSM sample is connected to two metallic

106



TC

Thermal Hall Current

WSM Material

D.C. Power Source

Circularly Polarized Laser Beam

Figure B.1: A schematic for an pump-probe experiment to measure the anomalous
thermal Hall conductivity of a WSM sample. TC represents a thermocouple which
may be used to determine the temperature gradient which maps to the thermal Hall
current.

leads which introduce a small d.c. bias (consistent with the use of linear response

theory), and the thermocouple measures the transverse temperature gradient which is

directly related to the thermal Hall current [37]. The circularly polarized irradiation

field should possess a frequency governed by −ω/2 < E < ω/2, where E represents

the band energy close to the Weyl points, i.e. in the linear dispersion regime. The

purpose of the d.c. source is to induce a transverse Hall, and consequentially, an

anomalous thermal Hall current.

In principle, one can design a pump-probe experiment, which serves the dual purpose

of driving the system into a non-equilibrium state with high temporal resolution, as

well as measuring the transport properties of the WSM sample. Note that the fre-

quency of the pump pulse (ωpump) is usually significantly smaller than the frequency

of the optical field (ω), i.e. ωpump << ω, and the high frequency ω implies that

the Floquet bands are well separated [82], additionally increasing the precision of

the high frequency expansion. For a choice of polarization of the optical field, the

dispersion relation for this system can be verified using time-resolved angle-resolved

photoemission spectroscopy (tr-ARPES [99, 100]. It is also possible to directly mea-
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sure the Nernst and anomalous thermal Hall conductivities by conventional transport

experiments [96–98], using the two distinct classes of WSMs used as samples.
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Appendix C

Floquet multi-Weyl Semimetal

C.1 Lattice Hamiltonian

We now discuss a prototype lattice model for type-I mWSM that breaks TRS but

remains invariant under inversion. Generalizing the low-energy effective Hamiltonian

of a mWSM with broken TR symmetry, the corresponding lattice model can be

written as [102]

H = Nk · σ (C.1)

For the single-WSM with n = 1, Nk takes the form N0 = t0(cos kz + cos kx − 1),

Nx = t sin kx, Ny = t sin ky, and Nz = tz cos kz − mz + t0(2 − cos kx − cos ky). We

define σ = [σ0, σx, σy, σz]. In this model, the Weyl nodes are located at k = (0, 0,±k0)

with

cos(k0) =
t0
tz

[mz

t0
+ cos kx + cos ky − 2

]
(C.2)

This model is found to be type-I for t0 < tz and type-II for t0 ≥ tz/3. One can expand

the above Hamiltonian for k0 = ±π/2 with mz = 0 to obtain the low energy Weyl

Hamiltonian: Hn=1,s ' t0kzσ0 + t(σxkx + σyky) + tzσzkz. The above Hamiltonian

represents the single Weyl Hamiltonian around a given node s. Now combining the



chirality of the nodes and complete Weyl Hamiltonian, comprised of two nodes, looks

like Hn=1 ' +τzσ0t0kz + t(τzσxkx + τzσyky) + tzτzσzkz. Here, τz = ±1 represents the

chirality of the node, and it turns out the Hamiltonian is block diagonal. Therefore,

one can simply work with a single 2×2 block Hamiltonian of the Hn=1,s ' s(t0kzσ0 +

t(σxkx + σyky) + tzσzkz) with s = ±1. Since the Weyl points are located (0, 0,±π/2)

and the low energy model is considered around (0, 0, 0) for convenience, one can write

a single Weyl Hamiltonian without loss of generality in the following way:

Hn=1,s = Cs(kz − sQ)σ0 + s(vσxkx + vσyky) + v′σz(kz − sQ) (C.3)

with Cs = st0, v = t, v′ = stz, Q = π/2 and s = ±1. When |Cs/v′| � 1 ( |Cs/v′| � 1),

this model becomes type-I (type-II) single WSM. In the main text, Hamiltonian (1)

reduces to the above form with n = 1.

On the other hand, in the case of double-WSM (n = 2), the form of Nk becomes

N0 = t0(cos kz + cos kx − 1), Nx = t(cos kx − cos ky), Ny = t sin kx sin ky and Nz =

tz cos kz − mz + t0(6 + cos 2kx + cos 2ky − 4 cos kx − 4 cos ky). The lattice model of

double-WSM contains two Weyl nodes at (0, 0,±k0) with

cos(k0) =
t0
tz

[mz

t0
− (6 + cos 2kx + cos 2ky − 4 cos kx − 4 cos ky)

]
(C.4)

One can similarly expand the above Hamiltonian around k0 = ±π/2 and mz = 0.

In this case, the low energy Hamiltonian for double-WSM with a given chirality

s is written as Hn=2,s ' t0kzσ0 + t
2
(σx(k

2
x − k2

y) + σykxky)) + tzσzkz. The complete

Hamiltonian, comprised of two nodes s and s′ is then given by Hn=2,s,s′ = τzHn=2,s=+1.

Therefore, the 2 × 2 compact form of the Hamiltonian where the Weyl points are

located at (0, 0, sQ) is given by

Hn=2 = Cs(kz − sQ)σ0 + s(vσx(k
2
x − k2

y) + 2vσykxky)) + v′σz(kz − sQ) (C.5)

110



with Cs = st0, v = t/2, v′ = stz, Q = π/2 and s = ±1. When |Cs/v′| � 1 (

|Cs/v′| � 1), this model becomes type-I (type-II) single WSM. In the main text,

Hamiltonian (1) reduces to the above form with n = 2.

Similarly, for a triple-WSM with topological charge n = 3, one should replace

Nk by N0 = t0(cos kz + cos kx − 1), Nx = t sin kx(1 − cos kx − 3(1 − cos ky)), Ny =

−t sin ky(1−cos ky−3(1−cos kx)) and Nz = tz cos kz−mz + t0(6+cos 2kx+cos 2ky−

4 cos kx − 4 cos ky). Here, the Weyl points are appeared at k = (0, 0,±k0). The gap

closing point can be found at mz = 0 with kz = π/2. The low energy triple-WSM

Hamiltonian is given by Hn=3,s ' t0kzσ0 + t
2
(σx(k

3
x − 3kxk

2
y) − σy(k

3
y − 3k2

xky)) +

vzσzkz. The complete Hamiltonian, comprised of two nodes s and s′ is then given by

Hn=3,s,s′ = τzHn=3,s=+1. Therefore, the 2× 2 compact form of the Hamiltonian where

the Weyl points are located at (0, 0, sQ) is given by

Hn=3 = Cs(kz− sQ)σ0 + s(vσx(k
3
x− 3kxk

2
y) + vσy(k

3
y− 3k2

xky)) + v′σz(kz− sQ) (C.6)

with Cs = st0, v = t/2, v′ = stz, Q = π/2 and s = ±1. When |Cs/v′| � 1 (

|Cs/v′| � 1), this model becomes type-I (type-II) single WSM. In the main text,

Hamiltonian (1) reduces to the above form with n = 3. Therefore, a minimal block

diagonal four-band model such that the two blocks describe two minimal mWSM

Hamiltonian of opposite chiralities s = ±1 whose Weyl nodes are located at different

points in momentum space. We note that the Weyl nodes appear at the same energy

for both the types of mWSMs.
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Figure C.1: (Color online) Plot shows the static double Weyl dispersion for s = +1
in (a) and s = −1 in (b) while the Floquet double Weyl dispersion are depicted for
s = +1 in (c) and s = −1 in (d). The parameters considered here are A0 = 1.0,
ω = 10.0, ky = 0.0, Q = 1.0, Cs = 0.0 and v = αn = 1. The Floquet dispersion
clearly shows the chirality dependent movement of the Weyl points. As is convention
throughout the manuscript, all values are considered in Natural units.
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C.2 Comparison between static and Floquet dis-

persion

C.2.1 Numerical Analysis

In what follows, we analyze the static and the Floquet dispersions for type-I and

type-II m-WSMs. We first the study n = 2 type-I case in Fig. C.1 (a), (b) for

static case and Fig. C.1 (c), (d) for irradiated case. The anisotropic nature is clearly

visible from the static dispersion, obtained from Eq. (1) of the main text, for both

the chirality s = ±1. Investigating the Floquet dispersion, calculated using Eq.

(6), one can find that the Weyl nodes receive a chirality dependent shift in their

position inside the Brillouin zone. In addition, the nature of Floquet dispersion

is characteristically different from static dispersion as the driving term consists of

k⊥, n, A0 and ω. Therefore, the static anisotropic multi Weyl nature of dispersion

becomes ever more complex after the introduction of light. For type-II, we repeat

the calculation in Fig. C.2. The anisotropic nature of multi Weyl dispersion gets

tilted in the kz direction. Two Weyl nodes with opposite chirality have opposite tilt

orientation. The light can modify the position of the Weyl nodes; however, orientation

of the tilt remains unaltered. Similar to the type-I case, the dispersion changes as far

as the anisotropic nature is concerned. Therefore, Floquet driving does not open up

a gap for Weyl systems irrespective of the types rather it moves the Weyl points in

an anisotropic manner.

We now analyze the triple Weyl semi-metal in Fig. C.3 for type-I and Fig. C.4

for type-II. In both the cases, we observe a shift in the Weyl point position and

the nature of the dispersion gets non-trivially modified upon the introduction of the

light. Compared to n = 2 case, the static and Floquet dispersion near the Weyl

points appear to be less dispersive as the higher k⊥ momentum modes changes slowly

k⊥ → 0. On the other hand, away from Weyl points with finite k⊥, the energy grows
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Figure C.2: (Color online) We repeat Fig. C.1 with the tilt parameter Cs = 5.0.
The position of the Weyl nodes changes from their static positions. As is convention
throughout the manuscript, all values are considered in Natural units.
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Figure C.3: (Color online) Plot shows the static triple Weyl dispersion for s = +1
in (a) and s = −1 in (b) while the Floquet triple Weyl dispersion are depicted for
s = +1 in (c) and s = −1 in (d). The parameters considered here are A0 = 0.50,
ω = 10.0, ky = 0.0, Q = 1.0, Cs = 0.0 and v = αn = 1. The Floquet dispersion
clearly shows the chirality dependent movement of the Weyl points. As is convention
throughout the manuscript, all values are considered in Natural units.
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Figure C.4: (Color online) We repeat Fig. C.3 with the tilt parameter Cs = 5.0.
The position of the Weyl nodes changes from their static positions. As is convention
throughout the manuscript, all values are considered in Natural units.

faster for n = 3 as compared to n = 2. The light induced modification would make

the transport properties to be dependent on chemical potential µ and parameters

of the light i.e., A0 and ω. We note that Weyl points of opposite chirality for both

the types of irradiated mWSMs appear at the same energy. The single WSMs also

exhibits similar feature under irradiation. The striking difference of n > 1 mWSMs

from n = 1 single WSM is that kz couples with k⊥ in the Floquet dispersion of

mWSMs.

C.2.2 Analytical proof of ungapped Floquet spectrum

We present an analytical proof that the Floquet spectrum of the mWSMs used in our

system remains ungapped. To do this we note that the spectrum is given by,
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EF
k (n, t, s) = Cs(kz − sQ) + st

√
α2
nk

2
⊥ + T 2

k , (C.7)

which is identical to Eq. (7) of the manuscript, with t = ± representing the valley

degrees of freedom, and Tk being defined as

Tk = v(kz − sQ) +
α2
n

ω

n−1∑
p=1

βnp k
2(n−p)
⊥ + ∆n. (C.8)

Note that k⊥ =
√
k2
x + k2

y ≥ 0. In order for the system to be ungapped the upper

band (t = +, conduction band), must touch the lower band (t = −, valence band)

at atleast one point for a fixed chirality s. Imposing the condition EF
k (n,+, s) =

EF
k (n,−, s), we find that:

α2
nk

2
⊥ +

[
(kz − sQ) +

α2
n

ω

n−1∑
p=1

βnp k
2(n−p)
⊥ + ∆n

]2

= 0. (C.9)

We note that this equation has a solution at k⊥ = 0 and kz = sQ − ∆n. Here,

we have rescaled kz → kz/v as also used in the main text. Thus the mWSM Floquet

spectrum is always ungapped for both type-I and type-II phases. In agreement with

the previous discussion, we find that the Weyl nodes appear at the same energy.

C.3 Alternative definition of current operator

One can alternatively obtain the above current operator by using the Floquet-Kubo

formula. We use Fourier component Jµl instead of the real time version Jµ(A, t).

Here, Jµ(A, t) is defined from Hs
k(A, t) in Eq.(3) of the manuscript.

Jµ(A, t) = e
∂Hs

k(A, t)

∂kµ
(C.10)
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We define the Fourier expansion of Ĵ in frequency space as Jµ(A, t) =
∑

l e
−ilΩtJµl .

We get

Jx(A, t) = senαn

n−1∑
q=0

 0 n−1Cq(ieA0e
iωt)n−q−1(k⊥e

−iφ)q

n−1Cq(−ieA0e
−iωt)n−q−1(k⊥e

iφ)q 0



Jy(A, t) = senαn

n−1∑
q=0

 0 −in−1Cq(ieA0e
iωt)n−q−1(k⊥e

−iφ)q

in−1Cq(−ieA0e
−iωt)n−q−1(k⊥e

iφ)q 0


The time averaged current operators are given by

〈〈Φα(k)|Jµ|Φβ(k)〉〉 =
1

T

∫ ∞
0

dt

×
∑
m,n,l

e−iΩ(m−n−l)t〈umα |Jµ|unβ〉

≈ 〈u0
α|J0

µ|u0
β〉 (C.11)

Here, we take into account that the leading order contribution can only come from

the zeroth level Floquet states |u0
β〉 as |unβ〉 ∼ O(ω−n).

C.4 Hall Conductivity Computation using modi-

fied Kubo Formalism

The modified form of the Kubo formula as applicable to Floquet states of a strong

and periodically driven system (derived in appendix B) is used in this appendix to

compute the analytical form of the zero-temperature time-averaged components of the

conductivity tensor. The time-averaged anomalous Hall conductivity for the tilted

WSM under the action of the circularly polarized light may now be derived from the
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zero frequency and zero wave-vector limit (i.e. the limit of an infinitesimal d.c. bias)

of the current-current correlation function, constructed using the Matsubara Green’s

function method (with ~ = 1):

Πij(Ω,q) = T
∑
ωp

∑
s=±

∫
d3k

(2π)3
J

(s)
i Gs(iωp,k)J

(s)
j Gs(iωp − iΩm,k− q)

∣∣∣∣
iΩm→Ω+iδ

,(C.12)

where i, j = {x, y, z}, T is the temperature (setting the Boltzmann constant as unity)

and ωp(Ωm) are the fermionic(bosonic) Matsubara frequencies. Here Gs(iωp,k) is

the single particle Green’s function of the electron and J
(s)
i = esnαnk

n−1
⊥ [(cos(n −

1)φk)σi ± (sin(n − 1)φk)σj] is the current operator with i, j = {x, y}. For mWSM,

Jx,y both depends on σx,y unlike the n = 1 case. Using the short hand notation Jx(y) =

esnαnk
n−1
⊥ (Jx(y),1σ1, Jx(y),2σ2), one can find Jx,1 = cos(n− 1)φk, Jx,2 = sin(n− 1)φk,

Jy,1 = − sin(n − 1)φk, Jy,2 = cos(n − 1)φk. One can relate the Hall conductivity to

the current-current correlation function as follows,

σxy = − lim
Ω→0

Πxy(Ω, 0)

iΩ
. (C.13)

The one-particle Green functions have the following form

Gs(iωp,k) =
1

2

∑
t=±1

1− tn′k/|n′k|
X − tn′k

=
1

2

∑
t=±1

1− stσ · n′k−s(Q+∆n)ez
|n′k−s(Q+∆n)ez |

iωp + µ− Cs(kz − s(Q+ ∆n) + tv|n′k − s(Q+ ∆n)ez| − sCs∆n

,(C.14)

where µ is the chemical potential. Here, n′k = (αnk
n
⊥ cos (nφk) , αnk

n
⊥ sin (nφk) , T ′k/αn).

We refer, T ′k = vkz + α2
n

ω

∑n−1
p=1 β

n
p k

2(n−p)
⊥ and ∆n = α2

n

nω
A2n

0 . Here, βnp = (nCpA
2
0)p/p.

X = iωp + µ − Cs(kz − sQ − s∆n). We note that in the main text, we refer

Tk = T ′k+∆n and nk = (αnk
n
⊥ cos (nφk) , αnk

n
⊥ sin (nφk) , Tk/αn) = n′k+(0, 0,∆n/αn).

Since ∆n is independent of k⊥, we can absorb ∆n in the kz momentum cut off Λ:
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Λ → Λ − ∆n. We here note that we shall use the cylindrical polar co-ordinate∫
d3k →

∫
k⊥dk⊥

∫
dkz

∫
dφ. After a few steps of detail calculation, considering the

fact
∫ 2π

0
dφ sin(Mφ) =

∫
dφ cos(Mφ) = 0 with M ≥ 1, the Πxy(Ω, 0) becomes

Πxy(Ω, 0) = T
e2n2α2

n

4π2

∑
s,t,u

∫ ∞
0

dk⊥k
2n−1
⊥

∫ Λ−s(Q+∆n)

−Λ−s(Q+∆n)

dkz

∫ 2π

0

dφ
i
2
(t− u)[εabcJx,aJy,bT

′
k]

(X − tn′k)(X − un′k)

(C.15)

with Ji,j is the j-th component of current Ji. Now using the Matsubara Fermionic

sum, one can show

T
∑
ωp

1

(X − tn′k)(X − un′k)
=
nF (Et

n)− nF (Eu
n)

Et
n − Eu

n

(C.16)

We get the finite contribution only from u = −t and u = ±.

We sum over the Matsubara fermion frequencies and trace over Pauli σ-matrices

to obtain the following form

Πxy(Ω, 0) = Π(+)
xy (Ω, 0) + Π(−)

xy (Ω, 0), (C.17)

where we have separated the contributions from the two Weyl cones

Π(s)
xy (Ω, 0) = Π

(s)
0 (Ω, 0) + Π

(s)
FS(Ω, 0), (C.18)

Π
(s)
0 (Ω, 0) = −se2n2α2

n

∫ Λ0−s(Q+∆n)

−Λ0−s(Q+∆n)

dkz
2π

∫ Λ1→∞

0

k2n−1
⊥ dk⊥

2π

2v2Ωm

Ω2
m + 4|n′k|2

× T ′k
|n′k|

∣∣∣∣
iΩm→Ω+iδ

, (C.19)

Π
(s)
FS(Ω, 0) = se2n2α2

n

∫ Λ−s(Q+∆n)

−Λ−s(Q+∆n)

dkz
2π

∫ ∞
0

k2n−1
⊥ dk⊥

2π

2v2Ωm

Ω2
m + 4|n′k|2

× T ′k
|n′k|

{
nF (Cskz + |n′k| − µ+ sCs∆n)− nF (Cskz − |n′k| − µ+ sCs∆n) + 1

}∣∣∣∣
iΩm→Ω+iδ

.

(C.20)

Here, Λ1 is cut-off considered for k⊥ integral. Π0 denotes the vacuum contribution for
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µ = 0, whereas ΠFS is the contribution of the states at the Fermi surface. nF (E) =

(e(E−µ)/T + 1)−1 is the Fermi distribution function and |n′k| =
√

(T ′k)2 + α2
nk

2n
⊥ . The

cut-off Λ0, which is introduced in the kz integral, is known not to affect the vacuum

contribution to the Hall conductivity. However, the other cutoff in Πs
FS,which is

denoted as Λ, is crucial for finite Fermi surface effects in both the type-I and type-II

regime.

Using eqn. (C.19), we have

σ(s)
xy = σ

(s)
0 + σ

(s)
FS , (C.21)

σ
(s)
0 = −e2n2α2

n

∫ Λ0−s(Q+∆n)

−Λ0−s(Q+∆n)

dkz
2π

∫ Λ1→∞

0

k2n−1
⊥ dk⊥

2π

sT ′k
2|n′k|3

, (C.22)

σ
(s)
FS = e2n2α2

n

∫ Λ−s(Q+∆n)

−Λ−s(Q+∆n)

dkz
2π

∫ ∞
0

k2n−1
⊥ dk⊥

2π

× sT ′k
2|n′k|3

[
nF (Cskz + |n′k| − µ+ sCs∆n)− nF (Cskz − |n′k| − µ+ sCs∆n) + 1

]
.

(C.23)

Having obtained these equation, we now have to approximate the expression
sT ′k

2|n′k|3

considering the leading order contribution around the bare term vkz/E
3
k with Ek =√

k2
⊥ + v2k2

z . Before that, in order to simply the calculation, we use the follow-

ing change of varibale k⊥ → k
1
n
⊥α
− 1
n

n . Under these transformation: T ′k = vkz +

α2
n

ω

∑n−1
p=1 β

n
pα

2(p−n)
n

n k
2(n−p)
n

⊥ with βnp = (nCpA
2
0)p/p and α2

nk
2n
⊥ = k2

⊥. In the following

approximation, we consider the fact ω → 0 due to high frequency expansion of the

Floquet effective Hamiltonian and hence, O(ω−q), q > 1 terms are neglected. There-

fore the denominator |n′k| =
√
k2
⊥ + (T ′k)2 becomes

k2
⊥ + (T ′k)2 ≈ E2

k +
2vkzα

2
n

ω

n−1∑
p=1

1

p
(nCpA

2
0)pα

2(p−n)
n

n k
2(n−p)
n

⊥ (C.24)
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Now, the main integrand is thus given by

Tk
(k2
⊥ + T 2

k)3/2
≈ 1

E3
k

(vkz −
3v2k2

zα
2
n

E2
kω

Xk +
α2
n

ω
Xk(1− 3vkzα

2
n

E2
kω

Xk)) (C.25)

with Xk =
∑n−1

p=1 β
n
pα

2(p−n)
n

n k
2(n−p)
n

⊥ . For n = 2, Xk = βn1α
−2/nk

2/n
⊥ and for n = 3, Xk =

βn1α
−4/nk

4/n
⊥ +βn2α

−2/n
n k

2/n
⊥ . It is then more convenient to write T ′k explicitly for n = 2

as T ′k = vkz + βn1α
−2/n
n k

2/n
⊥ and for n = 3 as T ′k = vkz + βn1α

−4/n
n k

4/n
⊥ + βn2α

−2/n
n k

2/n
⊥ .

Therefore, the vacuum contribution becomes

σvacxy = σ
(+)
0 + σ

(−)
0 , (C.26)

σ
(s)
0 ≈ −se2nα2−2/n

n

∫ Λ0−s(Q+∆n)

−Λ0−s(Q+∆n)

dkz
2π

∫ Λ1→∞

0

k⊥dk⊥
2π

(Fk,1 + Fk,2 + Fk,3), (C.27)

On the other hand, the Fermi surface contribution becomes

σFSxy = σ
(+)
FS + σ

(−)
FS , (C.28)

σ
(s)
FS ≈ −se

2nα2−2/n
n

∫ Λ0−s(Q+∆n)

−Λ0−s(Q+∆n)

dkz
2π

∫ b

0

k⊥dk⊥
2π

(Fk,1 + Fk,2 + Fk,3) (C.29)

×{θ(v2k2
z + (Ckz + sC∆n − µ)2)− 1} (C.30)
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with

for n = 2 for n = 3

Fk,1 =
kz
E3

k

Fk,1 =
kz
E3

k

Fk,2 =
βn1α

− 2
n

n k
2
n
⊥

E3
k

Fk,2 =
βn1α

− 4
n

n k
4
n
⊥ + βn2α

− 2
n

n k
2
n

E3
k

Fk,3 = −3k2
zFk,2

E5
k

Fk,3 = −3k2
zFk,2

E5
k

(C.31)

Importantly, one should note that skz/2k
3 is the z-component of the Berry curvature

of the Weyl cone with chirality s. Here, Θ(x) is the Heaviside function. Here, b =√
(Ckz + sC∆n − µ)2 − v2k2

z . Now we are in a position to treat type-I and type-II

mWSM differently. We know ∆n ∼ O(1/ω) and µ is an externally tunable parameter.

Now for small kz as considered in the low-energy model: b acquires the form b ≈√
µ2 − v2k2

z when |C| � v for type-I, b ≈ µ−ckz when |C| � v for type-II. Therefore,

the point to note here is that sgn(b) is always positive of small kz (under kz integral)

while sgn(b) can be positive and negative depending on the sgn(kz).

We shall now explicitly write the vacuum and Fermi surface contribution for n = 3.

Taking the T → 0, and performing the k⊥ integration, we get

σs0 = −se
2nα

2− 2
n

n

4π2

∫ Λ0−s(Q+∆n)

−Λ0−s(Q+∆n)

dkz[v sgn(kz)−
2v2α

2
n
n βn1

ω
√
π

Γ(
5

6
)Γ(

5

3
)k1/3
z sgn(kz)

+
βn2
ω

(−3v2α
4
n
n

2
√
π

Γ(
7

6
)Γ(

7

3
)k−1/3
z sgn(kz) +

α
4
n

√
π

Γ(
1

6
)Γ(

4

3
)k−1/3
z sgn(kz))] (C.32)

Now, while calculating the Fermi surface contribution, we consider kz → 0 and

b 6= 0. As a result, k⊥ integral approximated by only b. The Fermi surface contribution
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for n = 3 is thus given by

σ
(s)
FS ≈ −se

2nα
2−2/n
n

8π2

∫ Λ−s(Q+∆n)

−Λ−s(Q+∆n)

dkz

[
sign(kz)−

vkz
|Cskz − µ+ sCs∆n|

+ b
2M
n
−1a(M)βn2α

−2/n
n +

b
4M
n
−1a(2M)βn1α

−4/n
n

]
×
[
(Θ
(
v2k2

z − (Cskz + sCs∆n − µ)2
)
− 1
]
, (C.33)

with a(M) =
Γ(M

n
+2)

( 2M
n

+2)( 2M
n
−1)Γ(M

n
+1)

with M = 1.

Now, the leading order contribution for type-I with n = 3, σIxy is given by

σIxy = σ0 + σFS (C.34)

σ0 =
e2nα

2−2/n
n

2π2
(Q+ ∆n +O(

βn1
ω

) +O(
βn2
ω

)) (C.35)

σFS = n
α2−2/n

v
· e

2

4π2
[C
µ− C∆n

6v2
+O(

βn1
ω

) +O(
βn2
ω

)] (C.36)

Now, the leading order contribution for type-I with n = 3, σIIxy is given by

σIIxy = σ0 + σFS (C.37)

σ0 =
e2nα

2−2/n
n

2π2
(Q+ ∆n +O(

βn1
ω

) +O(
βn2
ω

)) (C.38)

σFS = n
e2

4π2

α2−2/n

v
[−v(cβ1 − µ)

C2
ln[

C2Λ

v(cβ1 − µ)
] +O(

βn1
ω

) +O(
βn2
ω

)] (C.39)
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