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Abstract 
Hand gesture classification is crucial for the control of many modern technologies, ranging 

from virtual and augmented reality systems to assistive mechatronic devices. A prominent 

control technique employs surface electromyography (EMG) and pattern recognition algo-

rithms to identify specific patterns in muscle electrical activity and translate these to device 

commands. While being well established in consumer, clinical, and research applications, 

this technique suffers from misclassification errors caused by limb movements and the 

weight of manipulated objects, both vital aspects of how we use our hands in daily life. 

An emerging alternative control technique is force myography (FMG) which uses pattern 

recognition algorithms to predict hand gestures from the axial forces present at the skin’s 

surface created by contractions of the underlying muscles. As EMG and FMG capture 

different physiological signals associated with muscle contraction, we hypothesized that 

each may offer unique additional information for gesture classification, potentially improving 

classification accuracy in the presence of limb position and object loading effects. Thus, we 

tested the effect of limb position and grasped load on 3 different sensing modalities: EMG, 

FMG, and the fused combination of the two. 27 able-bodied participants performed a grasp 

and release task with 4 hand gestures at 8 positions and under 5 object weight conditions. 

We then examined the effects of limb position and grasped load on gesture classification 

accuracy across each sensing modality. It was found that position and grasped load had 

statistically significant effects on the classification performance of the 3 sensing modalities 

and that the combination of EMG and FMG provided the highest classification accuracy 

of hand gesture, limb position, and grasped load combinations (97.34%) followed by FMG 

(92.27%) and then EMG (82.84%). This points to the fact that the addition of FMG to tradi-

tional EMG control systems offers unique additional data for more effective device control 

and can help accommodate different limb positions and grasped object loads.
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Introduction
From manipulating objects and tools to communication, our hands are a vital part of our daily 
interactions with the world and others around us. As many consumers and clinical technolo-
gies continue to advance, our hand gestures are becoming more utilized as a mode of control 
making non-invasive gesture recognition systems increasingly important with such devices. 
Commercial systems and current research use hand positioning and movements for a variety 
of different interfaces, spanning from virtual reality to aiding in sign-language communica-
tion [1–4]. One field that relies heavily on hand gestures is the field of assistive and rehabilita-
tive mechatronics. Many devices such as upper limb prostheses or hand exoskeletons depend 
on gesture classification for effective control [5–7]. Thus, a major thrust in the research of 
such assistive devices is to optimize control techniques that decode hand gestures to achieve 
effective and reliable device control.

Depending on the application, there are many ways to decode hand gestures spanning 
from optical techniques to wearable sensors that can differentiate between varying gestures 
[1–4,8,9]. One of the most commonly used approaches pairs surface electromyography (EMG) 
with machine learning algorithms for gesture recognition [10]. This technique places multiple 
EMG sensors on the skin’s surface to measure electrical muscle activity resulting from activa-
tion of the muscles associated with hand movements. Electrodes are most usually positioned 
on the forearm although positioning over hand intrinsic muscle may also be used [11,12]. 
In patient populations where the hand itself is missing yet the forearm musculature remains 
(ex. transradial or wrist disarticulation amputations) EMG and machine learning algorithms 
can be used to distinguish patterns of muscle activity and identify the user’s intended missing 
hand movements, which is then translated into device actuation [13].

Even though widely employed across a variety of applications, EMG control systems 
exhibit limitations. Pattern recognition algorithms require a degree of consistency in the 
incoming EMG signals to achieve reliable device control. In practical applications, especially 
for individuals using devices such as assistive hand exoskeletons or prostheses, the users will 
often require the device to assist them as they manipulate and interact with objects. This can 
cause EMG signal variance as muscles within the forearm contract to grasp an object and 
stabilize the wrist, hand, and/or limb in the required position. All the resulting muscle activity 
can then be directly influenced by the weight (load) of the object itself. Variances in the output 
of the EMG sensors can negatively impact the classification accuracy as the system’s control 
algorithms are often trained by the user in a single unloaded position, leading to incorrect 
classification of hand gestures and unreliable device control [14–17]. The degradation of 
pattern classification specifically related to limb movement is an issue that has been termed 
the position effect [18,19], a prominent challenge for EMG control systems. For prosthesis 
users, position and load effects can cause the EMG sensors embedded in the prosthetic socket 
to lift away from the surface of the skin in some areas while pressing more firmly into the skin 
in other areas. This variability in EMG contact changes impedance values often resulting in 
inconsistent gesture classification [16,18].

One potential approach to mitigate position and load effects is by implementing a multi-
modal combination of sensors. The additional unique and complementary information pro-
vided by various sensing modalities can more completely capture the muscle activity resulting 
from different hand gestures, limb positions, and grasped loads; potentially providing a more 
robust technique for classifying gestures. One potential complementary sensing modality 
to EMG is a technique known as force myography (FMG). First described in the 1960s [20], 
FMG measures normal forces at the skin’s surface generated during muscle contractions 
and the corresponding local changes in muscle volume or shape [21], often captured using 
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multiple force or pressure sensors (typically force sensitive resistors, or FSRs). Like EMG, 
FMG-based control can use machine learning algorithms to differentiate between patterns of 
muscle activity by capturing pressure changes across the sensors during hand gestures. FMG 
has been implemented in a variety of experiments, demonstrating its ability to classify hand 
gestures, finger, elbow, and shoulder movements [21–25]. Much of the appeal of FMG systems 
stems from the fact that the driving circuitry is often less complex when compared to EMG 
systems, requiring less componentry, facilitating their ease of fabrication and cost effective-
ness [25]. Further, FMG has been found to provide classification accuracies that are similar to, 
and sometimes better than, that of EMG [21,26]. Additional advantages of FMG include that 
the sensors are typically not electrically sensitive to skin sweat and cross talk [27–29], chal-
lenges that must be overcome for effective implementation of EMG systems. While FMG sys-
tems do suffer from potential hysteresis and drift errors [30–32], FMG provides an additional 
bio-signal when paired with EMG as it records changes in muscle volume or shape rather 
than underlaying muscles’ electrical activity [27]. Thus, while both sensing modalities have 
limitations, both record unique information about muscle activity that offer the potential to 
be combined for more robust classification of hand gestures, mitigating challenges associated 
with limb position and object load effects.

In fact, in recent works, the efficacy of the combination of EMG and FMG has begun to 
be explored. Ke et al. designed and fabricated an EMG+FMG sensor package, and tested its 
ability to classify hand gestures, demonstrating that that the combined EMG and FMG sensor 
yielded gesture classification accuracies upwards of 97% [33]. Ahmadizadeh et al. used FMG 
sensors paired with commercially purchased EMG sensors to classify multiple hand gestures 
during dynamic movements in a transradial amputee subject and found that the addition of 
EMG to their FMG system added no statistical improvements to classification accuracy in 
each of their testing conditions as compared to FMG alone [34]. A study by Chen et al. created 
an experimental EMG+FMG system to classify 22 hand gestures using a variety of different 
classification models. They found that the addition of FMG to EMG added additional robust-
ness to their system and yielded higher classification accuracies [35]. A similar test was  
conducted by Jiang et al. who tested an experimental EMG+FMG band for hand gesture rec-
ognition for able-bodied participants and found that the addition of FMG increased classifica-
tion accuracy by about 10% when compared to EMG [36]. Finally, a study from Nowak et al. 
used an EMG+FMG system to classify hand gestures using a variety of different signal features 
and sensor configurations and found that FMG performed statistically better than EMG 
during hand gesture classification and yielded less error while the combination of EMG and 
FMG was found to not improve classification accuracy when compared to solely FMG [37].

While these studies have begun to demonstrate the potential of combining EMG and FMG 
for hand gesture classification, there is no consensus on whether their combination statisti-
cally improves classification performance [33–37]. Additionally, most previous research either 
tested and compared these sensing modalities individually or, if combined, did so at a single 
limb position and/or without considering the load effects of grasped objects. For example, 
while there have been multiple studies that examined how limb position affects classification 
accuracy for EMG systems [18,38–41], this body of literature often neglects the interaction 
with objects (load effects). Therefore, such approaches may differ significantly from how we 
interact within the real world, moving our limbs to different positions and interacting with 
objects of varying weights.

Our work expands upon the current body of research by quantifying hand gesture perfor-
mance of EMG, FMG, and their combination (EMG+FMG) under conditions more repre-
sentative of the real world that incorporate changes in limb position and manipulated object 
loads. We hypothesized that the combination of EMG and FMG would provide higher gesture 
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classification accuracies across a variety of different positions and grasped loads when com-
pared to EMG and FMG separately. However, we further anticipated that variations in both 
position and grasped weight would still lead to a decrease in classification accuracy across all 
sensing modalities.

Methods
We recruited N=27 able-bodied participants between the ages of 18–35 years old (17 male, 10 
female, average age = 23.7, standard deviation (SD) = 3.04). Research protocols were approved 
by the Institutional Review Board at the University of California, Davis and participants 
provided written, informed consent. Recruitment began on July 28th, 2023 and the last partic-
ipant was recruited on April 17th, 2024. N=27 was strategically selected after performing an a 
priori power analysis with an effect size of 0.5, alpha value of 0.05, and power of 0.8 on data 
collected from 21 participants by our EMG, FMG and EMG+FMG systems [42]. Prior to the 
experiment, participants completed a demographic and handedness survey [43], as well as had 
measurements taken of their forearm circumference and length. Participants performed the 
experiment with their dominant hand.

EMG+FMG band
To collect both EMG and FMG data, we designed and fabricated a custom EMG+FMG arm-
band that housed both sensor types and was donned on each participant’s dominant forearm 
(Fig 1).

Our armband incorporated 8 Trigno Mini EMG Sensors (Delsys Inc., Boston, USA). 8 sen-
sors were selected for size considerations and to meet the minimum number of EMG sensors 
suggested to avoid negative impact on classification performance [44]. For our FMG system, 
we used 8 Interlink Electronics FSR400 FSR sensors to ensure consistency with prior literature 
[24,45–49]. While we acknowledged that FSRs have known limitations including hysteresis 
and drift error, they were selected as they are commonly implemented through literature and 
offer advantages related to ease of use, implementation, and low cost [25,30–32]. The FSRs 
were placed in 3D printed housings and spaced equidistantly on a Velcro strap in an alternat-
ing sequence, allowing adjustments to accommodate varying forearm sizes. While we chose 
to place these sensors in this manner, it has been suggested that this along with a variety of 
other sensor configurations provide no significant difference in gesture classification accuracy 
[37]. The recordings from both the EMG and FMG sensing modalities were captured using 2 

Fig 1.  The EMG+FMG band used for the experiment. We employed 8 EMG sensors and 8 FMG sensors which were housed in 3D printed housings and placed in an 
alternating sequence on a Velcro strap. The sensors were positioned such that they could be spaced equidistantly around the participant’s forearm before the band was 
strapped to the arm.

https://doi.org/10.1371/journal.pone.0321319.g001

https://doi.org/10.1371/journal.pone.0321319.g001
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National Instrument USB 6210 Data Acquisition Systems, one for each sensing modality, at a 
rate of 2000 Hz and saved for offline analysis using a custom MATLAB code.

Experimental design
Participants stood in front of a shelving unit (described further below) and were instructed to 
grasp objects (manipulanda) of varying weights at varying positions (in line with the sagittal 
plane of their dominant arm) using prompted hand grasp configurations (Fig 2a and 2b); 
collectively manipulating hand grasp, object weight, and limb position. While this experiment 
followed a similar paradigm to Radmand et al., it differed as it included physical object manip-
ulations rather than performing hand grasps in space without grasping objects [19,21].

As shown in Fig 2b, we 3D-printed a manipulandum designed to be loaded with different 
weights and held using 4 different hand grasps: Key, Pulp Pinch, Power, and Tripod Pinch. 
These represent 4 of the 7 most frequently used hand grasps in activities of daily living [50]. 
The weights used for the experiment were 0 grams added (the weight of the manipulandum, 
53 grams), 250 grams, 500 grams, 750 grams, and 1000 grams. These values were based on 
work by Feix et al. in which they found the typical weight of manipulated household objects to 
be on average 500 grams and range from nearly weightless to 1000 grams [50].

Participants stood in front of a shelving unit at zone A (the close distance) or zone B (the 
far distance), to reach and grasp in 8 positions, as shown in Fig 1a. Participants stood at zone 
A for reaching positions 1–4 to simulate the “close” positions and stood at zone B for reaching 
positions 5–8 to simulate the “far” positions. The placements of both the reaching positions 
and standing zones were determined by participant height and thus varied between partici-
pants to ensure that the participant could comfortably grasp the object at all positions [21]. 
The manipulandum was placed in line with the sagittal plane of the participant’s dominant 

Fig 2.  The reaching positions, standing zones, and hand gestures. (a) The reaching positions and standing zones 
for the experiment [42]. The subject would reach to positions 1-4 while standing at zone A and positions 5-8 while 
standing at zone B. The participant’s elbow was bent at 90 degrees at position 2, between 90 degrees and fully extended 
for positions 1, 3, and 4, and fully extended for positions 5-8. (b) The 4 hand gestures used for the experiment along 
with the 3D printed manipulandum. The manipulandum was made of two parts which allowed it to be top loaded and 
grasped with a variety of hand gestures. The weights used for the experiment consisted of a no weight condition (the 
weight of the manipulandum, 53 g), 250g, 500g, 750g, and 1000g.

https://doi.org/10.1371/journal.pone.0321319.g002

https://doi.org/10.1371/journal.pone.0321319.g002


PLOS ONE | https://doi.org/10.1371/journal.pone.0321319  April 10, 2025 6 / 27

PLOS ONE The effects of limb position and grasped load on hand gesture classification

arm and could be moved either forward or backward on the shelf to ensure the participant 
could grasp it comfortably at the specific position.

Testing protocol
Setup.  The experimental set up began with first aligning the reaching positions and 

standing zones for each participant. The participant would face the shelving system and 
bend their dominant arm to 90 degrees, as measured by a goniometer. A shelf was moved 
to this position and marked as position 2 and used to set up the remaining shelving heights, 
as illustrated by Fig 2a. The standing zones were then marked as positions that allowed the 
participant’s forearm to be fully extended at positions 5–8 and between 90 degrees and fully 
extended for positions 1–4 [21,42].

After the positions and zones were set, participants would then don the EMG+FMG band 
which was worn around the muscle bulk of the forearm at a position approximately 2/3 of the 
distance from the distal end [51]. The EMG and FMG channels were then tested by having 
the participant perform 3 voluntary maximum contractions. During these contractions we 
visually inspected the data and adjusted the armband’s positioning to ensure that the sensors 
were recording muscle activity data while minimizing noise.

Testing.  A custom MATLAB script was used to both collect data as well as queue the 
participants to interact with the manipulandum. During testing, participants stood at the 
appropriate zone, raised their arm to the first prompted position, and relaxed their limb. The 
MATLAB script queued participants via an auditory tone to grasp the manipulandum with 
one of the 4 hand grasps and lift it, holding it for 3 seconds before releasing and relaxing for 3 
seconds. This process was repeated a total of 3 times before the manipulandum was moved to 
a different position. After the participant completed all 8 positions, the test was repeated for 
the remaining weights and then for all remaining hand grasps. The order of the hand grasps, 
weights, and positions was randomized to ensure that any potential muscle fatigue did not 
influence EMG or FMG recordings on a specific hand grasp, weight, or position combination. 
In total, each participant performed 480 grasps, which took approximately 3 hours with 
multiple opportunities for rest to mitigate the effects of fatigue.

Data processing
Data segmentation.  Using event time stamps collected by the MATLAB script, we 

segmented our data into “contraction” and “rest” phases which isolated data from when the 
manipulandum was grasped and when the participant was not grasping the manipulandum, 
respectively. Using these time stamps, we were able to select the time that was directly in the 
middle of the 3 second contraction. This point was then used to isolate 70% of the data (35% 
from either side of the middle point) to avoid capturing muscle states in-between contraction 
and relaxation periods and to ensure consistency across contractions. This resulted in 2.1 
seconds of data per contraction and 6.3 seconds of data for each hand grasp, weight, and 
position combination. The “contraction” data for each hand grasp, weight, and position was 
parsed together and segmented using a 200ms window and a 50ms time increment, as has 
been suggested in literature [52].

Feature extraction.  Next, features were extracted from the sensor data from each of the 
segmented windows to create feature vectors for pattern classification [17]. As we used 3 
sensing modality types (EMG, FMG, and EMG+FMG), we used 3 separate feature extraction 
techniques. For EMG feature extraction, we used the Hudgins Set, which contains the 
following features: mean absolute values, slope sign changes, waveform length, zero crossings, 
and root mean squared [53,54]. For FMG feature extraction we used a single feature, the mean 
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absolute value of the data, which has been shown to provide effective gesture classification 
performance in prior literature [21]. For EMG+FMG these same features were extracted and 
then combined to create an EMG+FMG feature vector, a combination technique known 
as “stacked” [37]. Although it is possible that more advanced feature sets and combination 
techniques may be more robust to position and loading effects, these features were selected 
for EMG and FMG as we wanted to investigate how position and loading effects alter the 
classification accuracy of the sensing modalities in their most basic form. That is, we aimed 
to characterize performance using features that are among the most widely reported in 
literature; thus, helping this work establish a performance baseline that may serve as a point of 
comparison for other more advanced feature sets and machine learning approaches.

Pattern classification.  The feature vectors were then used to train a linear discriminant 
analysis (LDA) classifier which was selected for its simplicity of implementation, minimal 
computational demands, and ease of training [17]. While there are other pattern recognition 
models such as Support Vector Machines or Random Forest Classification that may have 
the potential to be more robust to limb position and loading effects, LDA was chosen as 
we wanted to establish a performance baseline using a classifier that is among the most 
commonly reported in literature [55–58]. To find classification accuracy, we implemented 
leave-one-out cross validation to train and test our classifier [59,60]. This technique trained 
the classifier on all but one of the hand gesture repetitions in the data set. The trained classifier 
was then tested with the “left out” repetition and the classification accuracy was recorded. 
This process was repeated with a different repetition left out until all combinations of training 
and testing were achieved. The predictions made by the classifier were then compared to the 
correct values and used to create confusion matrices to tabulate the accuracy of each sensing 
modality. This was done for varying combinations of position and grasped loads described 
in the statistical analysis section below. The overall accuracy of each confusion matrix, or the 
classification accuracy, was calculated by averaging the diagonal elements of the confusion 
matrix which correspond to the percentage of correct predictions.

Statistical analysis
To examine statistical differences between the classification performance of each sensing 
modality and to test for significant effects of position and grasped load, we used multiple lin-
ear mixed effect (LME) models, with subject as a random intercept to account for the repeated 
measures design. The LME models were fit using restricted maximum likelihood. Diagnostic 
plots for all models were examined visually to confirm normality and homoscedasticity of 
residuals. For all models, an alpha value of 0.05 was used to determine significance between 
data sets. The analyses were grouped into 3 tests which are shown pictorially in Fig 3 and 
described and detailed in the following subsections. For each test, classification accuracies 
were aggregated by sensing modality across participants for statistical comparisons.

Test 1: The effects of position and grasped load.  This test was comprised of 2 analyses 
that were used to test how the position and grasped load affect each sensing modality and 
draw comparisons between them.

Variations in position, grasped load, and hand grasp: The first analysis investigated how 
accurately each sensing modality could predict changes in combinations of grasp pattern, 
grasped load, and position, providing information as to which sensing modality performed 
the best under variations in these 3 variables. For each participant, 3 confusion matrixes were 
created (1 for each sensing modality) encompassing every combination of grasp, grasped 
load, and position resulting in a 160x160 element matrix. We then calculated the classification 
accuracy of these confusion matrices by averaging the diagonal elements to quantify how well 
each sensing modality could correctly predict a specific grasp, weight, and position pattern. 
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The classification accuracies for each sensing modality were aggregated across all participants 
and then averaged to find the average classification accuracy for EMG, FMG, and their combi-
nation. To create an overarching confusion matrix for each sensing modality, we averaged the 
confusion matrices across all participants (shown in the results section).

We then used a LME model to examine if the sensing modalities were significantly differ-
ent from one another. In the model, classification accuracy was the dependent variable, the 
sensing modality type was used for the fixed effect, and the participant ID was the random 
effect. To calculate differences between sensing modality, we calculated the estimated marginal 
means (EMM) and then used pairwise comparisons using the Benjamini and Hochberg false 
discovery rate (FDR) correction to adjust and decrease the chances of type 1 error [61].

Neutral vs. varying: The next analyses compared the classification accuracy of the 4 hand 
gestures at a neutral and unloaded position to the classification accuracy of the hand gestures 
when the positions and weights were varied. This allowed us to quantify how varying the posi-
tions and grasped loads could affect overall gesture classification. The neutral and unloaded 
position was defined as the participant grasping the unloaded manipulandum with their elbow 
bent at 90 degrees (position 2). This position was chosen as it is commonly used for training 

Fig 3.  Overview of the 3 tests conducted in the experiment. Test 1 was split into 2 analyses, as shown by the dashed line. The first analysis examined how accurately 
each of the sensing modalities could classify combinations of limb position, grasped load, and hand gesture. The second analysis compared classifying hand gestures in 
the neutral and unloaded position to varying limb positions and grasped loads. Test 2 was also split into 2 analyses and investigated different training and testing condi-
tions, the first being a constant grasped load with varying limb positions and the second being a constant limb position with varying grasped loads. Test 3 characterized 
how each sensing modality was affected by large variations in limb position and grasped load by training the model in a neutral and unloaded condition and testing it in 
4 other conditions.

https://doi.org/10.1371/journal.pone.0321319.g003

https://doi.org/10.1371/journal.pone.0321319.g003
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hand gesture recognition systems [17]. We again employed leave-one-out cross validation, 
using feature vectors from each of the four hand gestures to create a 4x4 matrix with the hand 
gestures being the true and predicted labels. The neutral condition contained features from 
only the neutral and unloaded position while the varying conditions contained features from 
all position and weight combinations. From these confusion matrices, the classification accu-
racies for each sensing modality were calculated and then compared using a LME which used 
the accuracy as the dependent variable, sensing modality as the fixed effect, and participant ID 
as the random effect.

Test 2: Training conditions.  We then wanted to investigate the effect of training the 
classifier in a single position or weight and testing in the others. This would allow us to 
investigate the effect that position and grasped load has on each sensing modality when 
trained at single position and weight, as is a common technique employed in literature 
[48,54,62]. In previous work [42] we investigated how training the sensing modalities in 
the conventional unloaded, neutral position, then testing in an outstretched and loaded 
condition yields much lower and more variable classification accuracies for each sensing 
modality, pointing to the fact that varying the position and weight influenced the classification 
accuracies. To expand on this concept, we created 2 separate conditions: Constant weight with 
varying positions and constant position with varying weights. These conditions helped isolate 
the effects of limb position and grasped load by keeping one constant and varying the other. 
For the constant weight and varying position test, we began by collecting all the data from 
a certain weight (i.e., 0, 250, 500, 750, and 1000g). For each weight, we would then start at 
position 1 and train the classifier at that position to classify the 4 hand gestures. The classifier 
was then tested with data from the remaining positions and the overall accuracy was recorded. 
This process was repeated for each of the remaining positions and then repeated for each 
weight condition. Data from all participants at each constant load was aggregated together by 
sensing modality to portray the spread of classification accuracies over our sample population. 
For the constant position test, a similar testing method was used except the position was kept 
constant and the classifier was trained and tested on the varying weights.

After these accuracies were calculated for each position and weight combination, we used 
multiple LME models to examine their effects. For the constant weight and varying position 
condition, we employed 5 LME models, one for each weight. Each model used accuracy as the 
dependent variable, sensing modality accuracy as the fixed effect, and participant ID as the 
random effect. Just as done before, the EMM were calculated for each sensing modality and 
pairwise comparisons using an FDR adjustment were used to draw comparisons across the 
sensing modalities. For the constant position and varying weight condition, 8 LME models 
(one for each position) were used and each of them used the same dependent variable and 
fixed and random effects as the previous condition.

Test 3: Large variations in position and grasped load.  We then tested the extent that each 
sensing modality was affected by large variations in limb position and grasped load. This was 
done using a similar scheme to the previous test where the classifier was trained at the neutral 
and unloaded position (position 2, 0 grams) to classify the 4 hand gestures (pinch, power, key, 
and tripod). The classifier was then tested at the 4 most extreme conditions: At the neutral and 
unloaded position (baseline test, termed “neutral”), at the most outstretched position without 
load (position 5, 0 grams, termed “outstretched”), at the neutral position but heavily loaded 
(position 2, 1000 grams, termed “loaded”), and at the most outstretched and loaded position 
(position 5, 1000 grams, termed “outstretched and loaded”). The classification accuracies 
from all 4 conditions were calculated and averaged across all participants by sensing modality. 
The results were then compared in 2 ways using LME models: 1) The same sensing modality 
across each testing condition and 2) across sensing modalities within the testing condition. 
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The positions and grasped loads chosen for this test represent the most variation from the 
neutral position to demonstrate how large changes in both affect each sensing modality when 
trained at the neutral position.

Results

The effects of position and grasped load
Classifying hand gesture, grasped load, and position combinations.  We first investigated 

the impact of variation of position and grasped load on the accuracy of each sensing modality 
when classifying different combinations of grasp, grasped load, and limb position. This 
resulted in a 160x160 confusion matrix for each sensing modality per participant (3 matrices 
per participant). We averaged these confusion matrices for each sensing modality to find 
maximum and minimum classification accuracies and the combinations they corresponded 
with. The average confusion matrix for FMG is depicted in Fig 4 and is also pictured in the 
supplementary material along with the other sensing modality’s average confusion matrices 
(S1–S3 Figs).

From Fig 4, S2, and S3 Figs, we found which hand grasp, grasped load, and limb position 
combination yielded the maximum and minimum classification accuracies on average across 
participants. The combination that resulted in the minimum accuracy for FMG was tripod 
with 250 grams at position 7 (54.95 ±32.57%) while the maximum accuracy was found at 
key with 500 grams at position 2 (86.71±15.18%). For EMG, the minimum accuracy was at 
the combination of tripod with 500 grams at position 8 (52.12±18.64%) while the maximum 

Fig 4.  The average confusion matrix for classifying combinations of hand gesture, grasped load, and limb position for FMG. The confusion matrix is 
broken down into 4 sections, one for each hand grasp (key, pinch, power, and tripod). These sections are further broken down into the 5 grasped loads (0, 
250, 500, 750, and 1000g) which are subsequently broken down into 8 positions, ordered 1-8. The color bar on the side visually shows the percent of times a 
label is classified as another. Darker colors indicate lower percent while lighter colors correspond to a higher percent. The maximum and minimum average 
accuracies across the participants are included along with the standard deviation of the average classification accuracies.

https://doi.org/10.1371/journal.pone.0321319.g004

https://doi.org/10.1371/journal.pone.0321319.g004
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accuracy occurred at key with 0 grams at position 2 (90.27±9.79%). Finally, for EMG+FMG, 
power with 750 grams at position 8 produced the minimum classification accuracy 
(79.43±20.47%) while key with 0 grams at position 2 corresponded to the maximum accuracy 
(98.43±3.35%).

Using these confusion matrices, the classification accuracy for each sensing modality was 
found by taking the average across the diagonal for each of these matrices for each participant. 
Accuracy values for each sensing modality were aggregated and then averaged across all 27 
participants to create an average classification accuracy for each. A bar graph displaying these 
average values is shown in Fig 5.

As shown, the combination of EMG and FMG produced higher prediction accuracies than 
either of them by themselves, yielding an average accuracy of 91% and a standard error of 
0.99%. Further, the classification accuracies of EMG and FMG were found to not be statisti-
cally different from one another and yielded standard errors of 1.14% and 2.59%, respectively. 
To further illustrate variance in the data, the standard deviation for each sensing modality was 
calculated and it was found that FMG (13.71%) yielded the largest variance followed by EMG 
(5.92%) and then EMG+FMG (5.25%). The numerical values for the classification accuracies, 
standard errors, and standard deviations are displayed in Table 1.

Comparing the neutral position to varying limb positions and grasped loads.  We then 
examined the difference between classifying the 4 hand gestures at the neutral and unloaded 
position to classifying them under varying grasped loads and positions. This is shown in Fig 6 
which statistically compares the averaged classification accuracies at the unloaded and neutral 
position to the results when grasped loads and limb positions were varied.

Fig 5.  Average classification accuracies for each sensing modality classifying hand grasp, grasped load, and limb 
position combinations. These accuracies were calculated by averaging the classification accuracies for each partici-
pant per sensing modality. Using a LME model, statistical differences were found between EMG+FMG and the two 
sensing modalities separately (p<0.001). Further, EMG and FMG were found to be not statistically different from one 
another.

https://doi.org/10.1371/journal.pone.0321319.g005

Table 1.  The average classification accuracy (%), standard error, and standard deviation for each sensing modal-
ity for test 1.

Sensing Modality Accuracy (%) Standard Error (%) Standard Deviation (%)
EMG+FMG 91.02 1.01 5.25
EMG 72.23 1.14 5.92
FMG 74.89 2.64 13.71

https://doi.org/10.1371/journal.pone.0321319.t001

https://doi.org/10.1371/journal.pone.0321319.g005
https://doi.org/10.1371/journal.pone.0321319.t001
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As shown by Fig 6, no statistical differences were found between EMG+FMG and FMG 
when at the neutral and unloaded position, with the classification accuracy of the 4 hand 
gestures averaging close to 100% and exhibiting standard errors close to 0. Interestingly, our 
model illustrated a statistical difference between EMG+FMG and EMG at the neutral position. 
For the varied grasped loads and position condition, each sensing modality was found to be 
statistically different from one another, with EMG+FMG performing the best with an average 
classification accuracy of 93% followed by EMG (85%) and then FMG (74%). Further, when 
comparing across the 2 conditions for the same sensing modality, it was found that the aver-
age classification accuracies were statistically different. These classification accuracies along 
with the standard error and deviation are displayed numerically in Table 2.

As tabulated in Table 2, for the neutral and unloaded condition, standard error and stan-
dard deviation all remained close to 0, with EMG having the largest standard error and devia-
tion (0.08%, 0.41%). However, for the varied weight and position condition, a larger variance 
was observed for all sensing modalities. FMG was found to yield the largest standard error 

Fig 6.  The average classification accuracy for each sensing modality at the neutral and unloaded position com-
pared to varying grasped loads and limb positions. Averages were calculated by aggregating and then averaging all 
participant’s classification accuracies by sensing modality. For the neutral and unloaded position, EMG was found to 
be statistically different from EMG+FMG. For the varying weight and position condition, all sensing modalities were 
found to be statistically different from one another. Further, when comparing within a sensing modality, it was found 
that the neutral and unloaded condition was statistically different than the varying weight and position condition. * p 
< 0.05, ** p < 0.01, *** p < 0.001.

https://doi.org/10.1371/journal.pone.0321319.g006

Table 2.  The average accuracy, standard error, and standard deviation for comparing the classification accuracy 
of the 4 hand gestures at the neutral and unloaded condition to the varied weight and position condition.

Condition Sensing Modality Accuracy (%) Standard Error (%) Standard Deviation (%)
Neutral and Unloaded EMG+FMG 100.00 0.00 0.00

EMG 99.83 0.08 0.41
FMG 99.97 0.03 0.16

Varying Weight and Position EMG+FMG 93.14 0.67 3.47
EMG 84.18 1.00 5.19
FMG 73.84 1.96 10.17

https://doi.org/10.1371/journal.pone.0321319.t002

https://doi.org/10.1371/journal.pone.0321319.g006
https://doi.org/10.1371/journal.pone.0321319.t002
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and standard deviation (1.96%, 10.17%) followed by EMG (1%, 5.19%) and then EMG+FMG 
(0.67%, 3.47%), demonstrating that FMG had the largest amount of variance when classifying 
the 4 hand gestures during varied positions and weights.

Training effects
Constant grasped load and varying positions.  We then examined the performance of 

each sensing modality when trained in a single position or weight and tested in others. To 
isolate the effects of position and grasped load on each sensing modality, we employed 2 
cases: Constant grasped load with varying positions and constant limb position with varying 
grasped loads. The data for this analysis was found to be not normally distributed using a 
Shaprio-Wilk test and we thus reported our values as median and interquartile ranges to make 
comparisons. An example graph depicting the spread of classification accuracies for each 
modality under a constant grasped load of 500g is shown in Fig 7.

Fig 7 depicts the average accuracies of the 4 hand gestures when trained at a specific limb 
position and tested in another (represented by the different colors in the legend) while sub-
jected to a constant load of 500 grams. This figure along with the remaining graphs for the 
constant load condition can be found in S4–S8 Figs. As shown, each sensing modality demon-
strated large amounts of variability when trained at one position and tested at the remaining 
positions. As shown in Fig 7, based on the median value, EMG+FMG demonstrated numeri-
cally larger classification values (roughly 75%) followed by FMG and then EMG.

The median values for each sensing modality for all constant weight conditions are high-
lighted in Table 3.

Fig 7.  The spread of all participant’s gesture classification accuracy for EMG +FMG, EMG and FMG when 
trained at a single position and tested at the remaining positions under a constant grasped load of 500g. For each 
modality, the classifier was trained in one of 8 positions, as shown by the different colors in the legend. Once trained, 
it was tested in the remaining 7 positions. This was done at a constant grasped load of 500g. The overall variation 
of classification accuracy for each sensing modality is depicted by the black overlay which also shows the median 
classification accuracy.

https://doi.org/10.1371/journal.pone.0321319.g007

https://doi.org/10.1371/journal.pone.0321319.g007
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Our results revealed statistical differences for all EMG+FMG weight conditions. For all 
cases except 1000 grams, EMG and FMG by themselves were found to be statistically differ-
ent from one another. Further, large amounts of variance were observed, as accuracy values 
ranged from close to 100% to almost 0% for all sensing modalities. This variance is illustrated 
by the IQR values (ranging from 28–44%) which demonstrate where most of the data was 
centralized around the median. As shown by Table 3, training in a single position and test-
ing in another yielded a large variance in classification accuracies and a decrease in overall 
performance.

Constant position and varying grasped loads.  We then performed the inverse test and 
kept the position constant while changing the grasped load to depict the effects caused by 
variations in grasped load. Fig 8 depicts sample data of the classification accuracies for all 
participants for the constant position of position 1.

Just as before, each exhibited large amounts of variance for each load they were trained 
in. As shown, on average, each of the sensing modalities achieved a median classification 
accuracy of roughly 75% when trained in a single weight. Fig 8 and the remaining graphs for 
the constant position condition can be found in S9–S16 Figs. Median values for each sensing 
modality for all constant positions are tabulated in Table 4.

As shown, there were statistical differences found between EMG+FMG and the other sens-
ing modalities for all positions except for position 3 and position 6. At these positions, values 
from EMG+FMG were only statistically different from FMG. These results point to the fact 
that the combination of the two yields statistically different and numerically larger classifica-
tion accuracies for most positions. It is good to note that each sensing modality demonstrated 
large amounts of variance, spanning from almost 0% to almost 100%. This is illustrated by the 
IQR values (ranging from 22–35%), depicting where the bulk of the average accuracies were 
found. For all positions, classification accuracies for EMG and FMG were found to not exhibit 
statistical differences from one another, hinting at the fact that these sensing modalities 

Table 3.  The median of the classification accuracies from the constant weight and varied position tests reported 
with the interquartile range.

Grasped Load Sensing Modality Median Accuracy (%) Interquartile Range
0g EMG+FMG * 74.19 43.34

EMG (*, ⸕) 52.03 34.20

FMG (⸕) 73.37 43.70
250g EMG+FMG (*, ⸸) 75.00 44.51

EMG (*, ⸕) 59.04 30.49

FMG (⸸, ⸕) 74.39 42.73

500g EMG+FMG (*, ⸸) 74.19 41.92

EMG (*, ⸕) 62.20 27.29

FMG (⸸, ⸕) 72.15 39.68

750g EMG+FMG (*, ⸸) 74.59 42.28

EMG (*, ⸕) 64.84 28.66

FMG (⸸, ⸕) 71.14 40.45

1000g EMG+FMG (*, ⸸) 73.37 40.45

EMG (*) 67.07 28.25

FMG (⸸) 68.29 35.57

For each grasped load, sensing modalities that share the same letter are statistically different than each other (p < 
0.05). The * is used when comparing EMG+FMG to EMG, the ⸸ is used when comparing EMG+FMG to FMG, and 
the ⸕ is used when comparing EMG to FMG.

https://doi.org/10.1371/journal.pone.0321319.t003

https://doi.org/10.1371/journal.pone.0321319.t003
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behave similarly to one another. As shown by Table 4, variations in weight effect the classifica-
tion accuracy of each sensing modality and lead to a decrease in accuracy and large amounts 
of variance, a similar result to the one found from Table 3.

Fig 8.  The spread of all participant’s gesture classification accuracy for EMG+FMG, EMG and FMG when trained 
at a single grasped load and tested at the remaining loads while at a constant position of position 1. For each 
modality, the classifier was trained at 1 of 5 loading conditions, as shown by the different colors in the legend. Once 
trained, the classifier was then tested in the remaining 4 loading conditions. This was done at a constant position of 
position 1. The overall variation of classification accuracy for each sensing modality is depicted by the black overlay 
which also shows the median classification accuracy.

https://doi.org/10.1371/journal.pone.0321319.g008

Table 4.  The median of the classification accuracies from the constant position and varied grasped loads tests 
reported with the interquartile range and the standard deviation.

Position Sensing Modality Median Accuracy (%) Interquartile Range
1 EMG+FMG (*, ⸸) 75.00 31.96

EMG (*, ⸕) 75.41 22.76

FMG (⸸, ⸕) 73.98 30.08

2 EMG+FMG (*, ⸸) 73.48 28.91

EMG (*, ⸕) 73.78 26.52

FMG (⸸, ⸕) 70.73 26.88

3 EMG+FMG (⸸) 74.09 31.86

EMG (⸕) 70.53 30.13

FMG (⸸, ⸕) 69.51 26.83

4 EMG+FMG (*, ⸸) 73.07 32.98

EMG (*) 66.67 26.83

FMG (⸸) 68.09 26.22

5 EMG+FMG (*, ⸸) 75.00 35.42

EMG (*, ⸕) 67.28 26.83

FMG (⸸, ⸕) 75.000 38.26

(Continued)

https://doi.org/10.1371/journal.pone.0321319.g008
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Large variations in limb position and grasped load
We further investigated how large variations in position and weight affected the gesture classi-
fication accuracy of each sensing modality. We did this by training the classifier in the neutral 
and unloaded position (position 2, 0 grams), then tested the classification accuracy under the 
most extreme conditions (4 conditions in total): At a neutral condition (position 2, 0 grams, 
termed “neutral”), at a maximum loaded condition (position 2, 1000 grams, termed “loaded”), 
at an outstretched condition (position 5, 0 grams, termed “outstretched”), and at an out-
stretched and loaded condition (position 5, 1000 grams, termed “outstretched and loaded”). 
The results of this are shown in Fig 9.

As shown in Fig 9a–9d, the addition of load and variation in position greatly affects classifica-
tion accuracy of each of the sensing modalities. For all sensing modalities, the neutral condition 
was significantly different from each of the other testing conditions (P < 0.001) and yielded accu-
racies close to 100% and exhibiting little variance (as shown in Fig 6 as well). The other testing 
conditions however demonstrated more variance. For the loaded condition, no significant dif-
ferences were found across sensing modalities, each yielding classification accuracies of roughly 
55% with EMG reporting the highest value of 58%. This was a similar result to the outstretched 
and loaded condition where no significant differences were found across sensing modalities. 
At this condition, EMG and FMG both reported classification accuracies of roughly 37% while 
EMG+FMG yielded 31%. However, for the outstretched condition, it was found that FMG and 
EMG were significantly different from one another, yielding classification accuracies of 54% and 
41% respectively. For this case, EMG+FMG was not significantly different from either of the 
sensing modalities and yielded an average classification accuracy of 51%.

We then compared the same sensing modalities across each of the testing conditions 
(i.e., FMG loaded compared to FMG outstretched). For FMG, there were no significant 
differences between the loaded and outstretched conditions and classification accuracies 
for both were found to be 55% and 54% respectively. However, the outstretched and loaded 
condition was found to be significantly different from the other 2 conditions and resulted 
in a classification accuracy of 37%. This trend was found to be the same for EMG+FMG 
which yielded classification accuracies of 54%, 51%, and 31% for the loaded, outstretched, 
and outstretched and loaded conditions (respectively). However, for EMG, it was found 
that the loaded condition was significantly different from the other 2 conditions when 
comparing classification accuracies. These results are tabulated and can be seen in Table 5.

Position Sensing Modality Median Accuracy (%) Interquartile Range
6 EMG+FMG (⸸) 74.49 32.11

EMG (⸕) 73.98 23.22

FMG (⸸, ⸕) 71.04 32.11

7 EMG+FMG (*, ⸸) 72.97 35.06

EMG (*, ⸕) 73.37 23.02

FMG (⸸, ⸕) 67.99 30.28

8 EMG+FMG (*, ⸸) 75.00 35.87

EMG (*, ⸕) 76.32 24.03

FMG (⸸, ⸕) 70.63 32.98

For each position, sensing modalities that share the same letter are statistically different from each other (P < 0.05). 
The * is used when comparing EMG+FMG to EMG, the ⸸ is used when comparing EMG+FMG to FMG, and the ⸕ is 
used when comparing EMG to FMG.

https://doi.org/10.1371/journal.pone.0321319.t004

Table 4.  (Continued)

https://doi.org/10.1371/journal.pone.0321319.t004
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Fig 9.  Average classification accuracies for each modality when training in the neutral and unloaded condition (position 2, 0g) and testing in the 4 most extreme 
conditions for each sensing modality: Neutral (position 2, 0g), Loaded (position 2, 1000g), Outstretched (position 5, 0g), and Outstretched and Loaded (position 
5, 1000g). For each sensing modality, participant data was averaged to portray average classification accuracies over all participants. Fig 9a depicts how the neutral con-
dition was statistically different from the other 3 conditions for each sensing modality (P < 0.001). Across sensing modalities for each condition, it was found that EMG 
and EMG+FMG were statistically different at the neutral condition and FMG and EMG were statistically different at the outstretched condition (P < 0.05). Fig 9b–9d 
compare across conditions for the same sensing modality (from right to left: FMG, EMG, EMG+FMG). It was found for all sensing modalities that the neutral condition 
was statistically different from all other conditions (P < 0.001). For the other conditions, it was found that loaded – outstretched, loaded – outstretched and loaded, and 
outstretched – outstretched and loaded were significantly different for FMG and EMG+FMG. For EMG, the loaded condition was significantly different from the others. 
* p < 0.05, ** p < 0.01, *** p < 0.001.

https://doi.org/10.1371/journal.pone.0321319.g009

https://doi.org/10.1371/journal.pone.0321319.g009
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Discussion
The objective of this study was to explore how variations in limb position and grasped load 
affect the classification accuracy of 3 sensing modalities during hand gesture recognition: 
EMG, FMG, and the combination (EMG+FMG). In an offline analysis, it was found that when 
using LDA paired with leave-one-out cross validation that EMG+FMG was able to account for 
variations in position and grasped load better than EMG and FMG by themselves. This was 
illustrated by statistically different and higher classification accuracies when classifying hand 
gestures and combinations of hand gestures, grasped loads, and positions in space. However, 
when trained in a single position or weight condition and tested in another, it was found that 
all 3 sensing modalities yielded highly variable classification accuracies, demonstrating that 
the addition of another sensing modality does not yield better classifications if it is trained in a 
single position and weight condition.

Additional information
It was found that EMG+FMG was more accurate in classifying combinations of hand 
grasp, grasped load, and limb position than the sensing modalities separately and yielded 
lower standard deviation and standard error values, demonstrating a more consistent 
classification accuracy. These results point to the fact that EMG and FMG provide 
unique additional information to each other. The combination of the two sensing 
modalities was found to create a richer set of data to aid in classifying the hand gesture 
along with where the limb is in space and how much load the limb was experiencing. 
This idea of unique additional information is further reinforced by the fact that EMG 
and FMG were found to be not statistically different from one another when classifying 
hand gesture, weight, and position, and yielded a lower average classification value than 
EMG+FMG (Fig 5).

Furthermore, it was shown that during changes in position and weight, EMG and FMG 
together can classify the 4 hand gestures more accurately than the 2 sensing modalities 
alone (Fig 6). While this was not tested in a real-time control application, our results 
show that combining FMG with EMG yields a more accurate and less variable classifica-
tion. This is likely the result of the additional information provided to the classifier by 
both sensing modalities. The current literature, while sparse, does not offer a consensus if 

Table 5.  The average accuracy, standard error, and standard deviation for each of the sensing modalities when 
trained at the neutral condition and tested in the conditions listed.

Condition Sensing Modality Accuracy (%) Standard Error (%) Standard Deviation (%)
Neutral EMG+FMG 100.00 0.00 0.00

EMG 99.83 0.08 0.41
FMG 99.97 0.03 0.16

Loaded EMG+FMG 54.60 4.10 21.31
EMG 58.91 3.45 17.92
FMG 55.33 4.63 24.07

Outstretched EMG+FMG 51.01 4.79 24.88
EMG 41.72 2.77 14.38
FMG 54.03 4.75 24.67

Loaded and Outstretched EMG+FMG 31.30 18.19 3.50
EMG 37.56 21.35 4.11
FMG 37.51 21.39 4.12

https://doi.org/10.1371/journal.pone.0321319.t005

https://doi.org/10.1371/journal.pone.0321319.t005
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the combination of the 2 sensing modalities aid in gesture classification, as some articles 
describe no statistical differences [34,37] while others find an improved accuracy with the 
combination [33,35,36]. However, these studies do not include the variation of grasped 
load and, to the best of our knowledge, only one study includes variations in limb posi-
tion [34], both of which were found to have significant effects on gesture classification 
accuracy of EMG and FMG. In this study, we have found that EMG+FMG yields larger 
and less variable classification accuracies during changes in limb position and grasped 
load, illustrating that the addition of FMG to EMG aids in the classification accuracy 
during movement and object interaction.

Impact of varying position and grasped load
This work underscores the importance of including variations of both position and weight 
into hand gesture classification models. This consideration is essential, since many applica-
tions involving gesture classification such as exoskeletons or prostheses generally require the 
manipulation of objects of varying weights in a variety of limb positions. We have shown that 
varying these 2 parameters can dramatically decrease gesture classification accuracy regardless 
of the employed sensing modalities (EMG, FMG, or EMG+FMG). This is an important find-
ing, as current literature often focuses on classifying hand gestures in a neutral and unloaded 
position or do not include the variation in grasped load [22,45,57,63]. While our results (as 
shown in Fig 6) alone are not enough to completely characterize the effect of position and 
weight across all possible activities of daily living, it does show a stark difference between 
classifying hand gestures in a neutral and unloaded position compared to when the positions 
and weights are varied. The addition of weight alters the muscle activation as a greater weight 
requires more activation to hold. Combined with varying positions, these minor changes in 
muscle activation can greatly affect classification accuracy and result in incorrect classifica-
tion. Taken together, these results point to the fact that position and weight have a significant 
effect on classification accuracy and should be included or considered in the development of 
hand gesture recognition training and testing algorithms.

Training effect
We found that when the classifier was trained at one position and grasped load and then tested at 
either a different position or load, there was a significant decrease in classification accuracy and 
an increase in the variance of classification accuracies. As shown by Table 3 and 4, the median val-
ues from both the conditions were numerically similar, ranging from 68–75% and yielding large 
variance as shown by the IQR values. These results demonstrate that training and testing gesture 
classification algorithms in a single position leads to suboptimal classification performance if 
these conditions are changed. These results are expected as the variations in both position and 
grasped load alter muscle activations during hand gestures. Thus, if trained in either a single posi-
tion or loading condition, a classifier would not be able to account for these variations and result 
in higher variance and lower classification accuracy, as we found. Other works have attempted 
to mitigate these effects by training the classifier at multiple limb positions [18,38,41,64]. While 
this has proven to yield better classification accuracies than training at a single position, such 
techniques can be time consuming and can still lead to incorrect gesture classification as test-
ing in every position or under every possible weight may be infeasible and impractical. Other 
studies have used dynamic training approaches, where the subject performs a hand gesture over 
a set range of motion [21,39]. While these tests have yielded better classification accuracies and 
reduced training times, these tests omit the importance of object interactions and the imposition 
of grasped weight on the hand and supporting musculature, which we have shown to significantly 
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effect gesture classification. A more robust training scheme that can adapt to these changes in 
positions and weights, perhaps by dynamically training the system with different weights that rep-
resent a light, medium, and heavy load, or using regression strategies could yield more accurate 
gesture classification. While the techniques used in this experiment highlighted the importance of 
limb position and grasped load, training a classifier in all the limb positions and load conditions 
as we did likely does not represent the most time efficient approach. Thus, a further investigation 
into a strategic training scheme that optimizes time demands while accommodating the varying 
limb positions and grasped loads is pertinent for gesture recognition devices.

Our results also point to the fact that changes in position impact classification accuracy more 
heavily than changes in weight. Shown in Tables 3 and 4, the IQR values from the constant 
weight and varying position condition were found to be numerically larger than that of the 
constant position and varying weight condition, ranging from 28–44% and 22–35% respectively. 
The higher variability caused by variations in position may be caused by additional muscle 
contractions that are used to support and stabilize the limb in a specific position. This ultimately 
could lead to incorrect hand gesture classification as the data from a single gesture in one posi-
tion may be dramatically different from the same hand gesture in another position.

Large variations in position and grasped loads
We found that large variations in limb position and grasped load effect each of the sensing 
modalities when they were trained in the neutral and unloaded condition (shown in Fig 9). 
The classification accuracy for each sensing modality was found to be statistically different 
when comparing the neutral condition to any of the other more extreme conditions. This was 
expected as training and testing at the neutral condition resulted in an accuracy close to 100% 
for each sensing modality (Fig 6) while training at one condition and testing in another yields 
variable results (Tables 3 and 4).

When comparing the other conditions, it was found that for EMG+FMG and FMG, there 
were no statistical differences between the loaded condition and the outstretched condition. This 
points to the fact that large changes in position and grasped load affect these sensing modalities 
to a similar degree. Interestingly, the results from Fig 9 show that EMG is more influenced by 
variations in limb position rather than grasped load, as there is a statistical difference between the 
loaded and outstretched conditions with the outstretched condition resulting in a lower classifi-
cation accuracy. This is further reinforced by the fact that the combined loaded and outstretched 
condition is not statistically different from the outstretched condition, suggesting that the addi-
tion of load did not have as much of a significant effect on EMG classification accuracy. In fact, 
the results indicate that EMG is more affected by changes in position than FMG, as a significant 
difference was found between EMG and FMG at the outstretched condition. Changes in limb 
position may affect EMG more as the sensor’s position on the forearm can be altered as the limb 
is outstretched, causing variations in EMG recordings. As FMG relies solely on the volumet-
ric changes of the limb, slight shifts in FMG sensor placement cause less discrepancy in FMG 
recordings than in EMG recordings. However, it is most important to note that the addition of 
these changes in position and grasped load led to a major decrease in classification accuracy for all 
sensing modalities for all conditions when comparing to the neutral condition. This highlights the 
importance of including these variations in classification models.

Future work and conclusion
While this work examined how variations in limb position and grasped load effect EMG, 
FMG, and EMG+FMG, there are many opportunities to expand this experiment in future 
works. One of these ways is the testing of different hand gesture classification algorithms. We 
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chose to use LDA as it is easy to implement and commonly used in muscle pattern classifi-
cation [57,58]. We further wanted to establish a baseline to illustrate how variations in limb 
position and grasped load affect LDA, as it is low complexity but still widely used in both 
commercial and experimental systems. However, a more robust classifier may be able to 
account for changes in limb position and loading more effectively than LDA is able to. Thus, 
this work offers a baseline data point to begin comparing various classifiers to help identify 
those that best accommodate varying limb positions and grasped loads. Building off this idea, 
identifying features and feature sets that maximize classification performance under limb 
position and load effects is warranted in future work. In this work, we used low complexity 
and widely implemented features for EMG (the Hudgin’s Set) and FMG (MAV) and used a 
“stacked” method for the EMG+FMG feature, creating a performance baseline for both the 
position and loading effects on all 3 sensing modalities. However, there are multiple other 
features and feature combination techniques that can be investigated in future work to better 
understand those yielding the most robust classification accuracies during changes in limb 
position and loading, such as frequency domain features and a hierarchy-based combination 
strategy [37]. There may be also different feature extraction methods, such as spatial based 
feature extraction schemes that have been shown to be more effective when sensors are worn 
radially [65,66].

An important aspect of future work expanding upon this study resides in its clinical appli-
cation for assistive devices such as upper limb prostheses. Advanced upper limb prostheses 
translate muscle activity into device movement using EMG and thus suffer from both position 
and loading effects. While prostheses have historically served as the primary use case for many 
EMG pattern recognition and FMG techniques, it is important to acknowledge that body posi-
tion and grasped load are reflected as forces developed inside a prosthetic socket, a very dif-
ferent loading condition not captured in our work with able-bodied individuals. Nevertheless, 
the methodologies presented in this study can be readily adapted in future research to explore 
these differences seen in prostheses to allow for more effective control during variations in 
limb position and loading. Additionally, other assistive devices and consumer-related applica-
tions such as exoskeleton control or gesture recognition for virtual and augmented reality sys-
tems are increasingly adopting multi-sensor approaches that integrate EMG for hand gesture 
recognition [67]. Our data is particularly relevant to these emerging applications, where users 
are likely to interact with physical objects using their intact hand in various positions relative 
to the body. Finally, it is important to note that our work involved offline analysis. While this 
approach provides important insights for real-time control applications, future studies must 
focus on the real-time control of external devices in real-world scenarios to enhance device 
performance in their specific use cases.

In conclusion, we found that variations in the position and grasped weight affect gesture 
classification of EMG, FMG, and their combination. The combination of EMG and FMG 
proved to be the most robust sensing modality and more accurately classified hand gestures 
with less variability during changes in limb position and grasped load. However, it was shown 
that training in a single position and grasped load, then testing in other positions and load 
conditions yielded variable classifications from all sensing modalities, pointing to the fact 
that the current technique of training and testing in a neutral and unloaded position is not 
amenable to how we use our hands in daily life. Thus, as the field of gesture classification from 
muscle activity progresses, it is pertinent to account for these changes in position and grasped 
weight. Overall, this works serves as baseline for how position and loading effects alter the 
effectiveness of EMG, FMG and EMG+FMG gesture classification. The techniques, systems, 
and methodologies used in the present work can be expanded upon to investigate different 
classification strategies as well as be adapted to test with those living with limb difference.
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Supporting information
S1 Fig.  The average confusion matrix from the FMG data. 
(TIF)

S2 Fig.  The average confusion matrix from the EMG data. 
(TIF)

S3 Fig.  The average confusion matrix from the EMG+FMG data. 
(TIF)

S4 Fig.  Constant load of 0g with varying positions. The gesture classification accuracies 
from training and testing at various positions under a constant grasped load of 0g.
(TIF)

S5 Fig.  Constant load of 250g with varying positions. The gesture classification accuracies 
from training and testing at various positions under a constant grasped load of 250g.
(TIF)

S6 Fig.  Constant load of 500g with varying positions. The gesture classification accuracies 
from training and testing at various positions under a constant grasped load of 500g.
(TIF)

S7 Fig.  Constant load of 750g with varying positions. The gesture classification accuracies 
from training and testing at various positions under a constant grasped load of 750g.
(TIF)

S8 Fig.  Constant load of 1000g with varying positions. The gesture classification accuracies 
from training and testing at various positions under a constant grasped load of 1000g.
(TIF)

S9 Fig.  Constant position of position 1 with varying grasped loads. The gesture classification 
accuracies from training and testing at various grasped loads under a constant position of position 1.
(TIF)

S10 Fig.  Constant position of position 2 with varying grasped loads. The gesture classification 
accuracies from training and testing at various grasped loads under a constant position of position 2.
(TIF)

S11 Fig.  Constant position of position 3 with varying grasped loads. The gesture classification 
accuracies from training and testing at various grasped loads under a constant position of position 3.
(TIF)

S12 Fig.  Constant position of position 4 with varying grasped loads. The gesture classifica-
tion accuracies from training and testing at various grasped loads under a constant position of 
position 4.
(TIF)

S13 Fig.  Constant position of position 5 with varying grasped loads. The gesture classifica-
tion accuracies from training and testing at various grasped loads under a constant position of 
position 5.
(TIF)

S14 Fig.  Constant position of position 6 with varying grasped loads. The gesture classifica-
tion accuracies from training and testing at various grasped loads under a constant position of 
position 6.
(TIF)
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S15 Fig.  Constant position of position 7 with varying grasped loads. The gesture classifica-
tion accuracies from training and testing at various grasped loads under a constant position of 
position 7.
(TIF)

S16 Fig.  Constant position of position 8 with varying grasped loads. The gesture classifica-
tion accuracies from training and testing at various grasped loads under a constant position of 
position 8.
(TIF)
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