
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Efficient Algorithms for Markov Random Fields, Isotonic Regression, Graph Fused Lasso, and
Image Segmentation

Permalink
https://escholarship.org/uc/item/7xd7x5k3

Author
Lu, Cheng

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7xd7x5k3
https://escholarship.org
http://www.cdlib.org/

Efficient Algorithms for Markov Random Fields, Isotonic Regression, Graph
Fused Lasso, and Image Segmentation

by

Cheng Lu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dorit S. Hochbaum, Chair
Professor Ilan Adler

Assistant Professor Aditya Guntuboyina

Summer 2017

Efficient Algorithms for Markov Random Fields, Isotonic Regression, Graph
Fused Lasso, and Image Segmentation

Copyright 2017
by

Cheng Lu

1

Abstract

Efficient Algorithms for Markov Random Fields, Isotonic Regression, Graph Fused Lasso,
and Image Segmentation

by

Cheng Lu

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Dorit S. Hochbaum, Chair

Markov random field (MRF) is a multi-label clustering model with applications in image
segmentation, image deblurring, isotonic regression, graph fused lasso, and semi-supervised
learning. It is a convex optimization problem on an arbitrary graph of objective function
consisting of functions defined on the nodes (called deviation functions) and edges (called sep-
aration functions) of the graph. There exists a provably fastest MRF-algorithm for arbitrary
graphs and a broad class of objective functions. This MRF-algorithm uses the technique of
graph minimum cut. Although MRF of this class of objective functions generalizes isotonic
regression and graph fused lasso, this MRF-algorithm has lower time complexity than those
specialized algorithms for isotonic regression and graph fused lasso.

Some problems in time series and gene sequence signal processing are special cases of
MRF on a path graph. We present three efficient algorithms to solve MRF on a path graph
for different classes of objective functions. The algorithms are the fastest algorithms for
the respective classes of objective functions. The first algorithm uses graph minimum cut
technique inspired by the provably fastest MRF-algorithm. The second algorithm is based
on a relationship with a lot-sizing problem in production planning. The third algorithm is
based on the technique of Karush-Kuhn-Tucker (KKT) optimality conditions.

MRF is used in image segmentation to identify multiple salient features in an image. The
Hochbaum Normalized Cut (HNC) model is a binary clustering model that is also applicable
to image segmentation, with the goal to separate the foreground from the background. We
compare the empirical performance between the HNC model and the spectral method in
image segmentation. Both HNC and the spectral method can be viewed as heuristics for
the NP-hard normalized cut criterion, which is another binary clustering criterion often used
for image segmentation. We present experimental evidence that the HNC model provides
solutions which not only better approximate the optimal normalized cut solution, but also
have better visual segmentation quality over those provided by the spectral method. The
experimental evidence further suggests that HNC should be the preferred image segmentation
criterion over normalized cut.

i

To Mom, Dad, and Yu.

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Outline of the dissertation . 3
1.2 Problem Formulations . 3
1.3 Preliminaries and Notations . 4

2 Faster Algorithm for Special Cases of MRF of Convex Deviations with
Partial Order 7
2.1 A Sketch of Fastest Algorithm for MRF of Convex Deviations with Partial

Order: HQ-Algorithm . 7
2.2 Faster Algorithm for Isotonic Regression with HQ-Algorithm 8

3 Faster Algorithm for Special Cases of MRF of Convex Deviations and
“Bilinear” Separations 11
3.1 A Sketch of Fastest Algorithm for MRF of Convex Deviations and “Bilinear”

Separations: H01-Algorithm . 11
3.2 Faster Algorithm for Graph Fused Lasso with H01-Algorithm 11

4 Fast Algorithm for Special Cases of MRF of Convex Deviations and
Convex Separations 13
4.1 A Sketch of Fast Algorithm for MRF of Convex Deviations and Convex Sep-

arations: AHO-Algorithm . 13
4.2 Fast Algorithm for a Graph-based Semi-Supervised Learning Model with AHO-

Algorithm . 13

5 Min-Cut-based Algorithm for MRF on Path: Speed-up of Nearly-Isotonic
Median Regression and Generalizations 17
5.1 Special Cases and Applications . 17

iii

5.2 Existing Best Algorithms for Total Order Estimation 20
5.3 Summary of Results . 21
5.4 Review of H01-Algorithm . 23
5.5 Overview of GIMR-Algorithm . 23
5.6 `1-GIMR-Algorithm . 25
5.7 Extending `1-GIMR-Algorithm to GIMR-Algorithm 39
5.8 Experimental Study . 42
5.9 Concluding Remarks . 43

6 A Lot-sizing-linked Algorithm for MRF on Path 45
6.1 Comparison with Existing Best Algorithms 45
6.2 A Lot-sizing-linked Algorithm . 46

7 KKT-based Algorithms for MRF on Path 51
7.1 Comparison with Existing Best Algorithms 52
7.2 Additional Notations . 56
7.3 KKT-based Algorithms . 59
7.4 Concluding Remarks . 72

8 Evaluating Performance of Image Segmentation Criteria and Techniques 73
8.1 Introduction . 73
8.2 Notations and Problem Definitions . 76
8.3 Experimental Setting . 78
8.4 Assessing Quality of Seed Selection Methods of the Combinatorial Algorithm 81
8.5 Running Time Comparison Between the Spectral Method and the Combina-

torial Algorithm . 82
8.6 Quantitative Evaluation for Objective Function Values 83
8.7 Visual Segmentation Quality Evaluation . 91
8.8 Conclusions . 95

9 Concluding Remarks 96

Bibliography 97

A Red-Black Tree Data Structure to Maintain s-Intervals 105
A.1 Initializing the Red-Black Tree with a Single s-Interval 106
A.2 Pseudo-code of Subroutine [ik`, ikr] := get s interval(ik) 106
A.3 Pseudo-code of Subroutine update s interval(ik`, i

∗
k1, i

∗
k2, ikr) 107

B Dynamic Path Data Structure to Maintain Chapter 5’s Four Arrays 109
B.1 Initializing the Four Arrays for G0 . 111
B.2 Pseudo-code of Subroutine update arrays(ik, wik,jk−1, wik,jk) 113
B.3 Pseudo-code of Subroutine [i∗k1, i

∗
k2] := find status change interval(ik`, ik, ikr) . 114

iv

C Benchmark Images 116

v

List of Figures

5.1 The structure of graph G0. Arcs of capacity 0 are not displayed. Nodes 1 to n
are labeled s on top as they are all in the maximal source set S0 of the minimum
cut in G0. 26

5.2 The structure of graph Gk. Arcs of capacity 0 are not displayed. Here node
ik − 1 appears to the right of ik and ik + 1 appears to the left, to illustrate that
the order of the nodes in the graph, (1, 2, . . . , n), does not necessarily correspond
to the order of the nodes according to the subscripts of the sorted breakpoints,
(i1, i2, . . . , in). 26

5.3 Illustration of Lemma 10. ik ∈ Sk−1 (labeled s on top). If there is a node j < ik
that does not change its status from Gk−1 to Gk (i.e., either j is an s-node in
both Gk−1 and Gk or j is a t-node in both Gk−1 and Gk), then all nodes in [1, j]
do not change their status from Gk−1 to Gk; if there is a node j′ > ik that does
not change its status from Gk−1 to Gk, then all nodes in [j′, n] do not change
their status from Gk−1 to Gk. 30

5.4 Illustration of Corollary 11. ik ∈ Sk−1. Nodes are labeled on top s if they are
s-nodes in Gk−1 or Gk. Nodes are labeled on top t if they are t-nodes in Gk−1

or Gk. All s-nodes in [i∗k1, i
∗
k2] (possibly empty) in Gk−1, containing ik, change to

t-nodes in Gk. Note that [i∗k1, i
∗
k2] is a sub-interval of the s-interval w.r.t. node ik

in Gk−1, [ik`, ikr]. 31

6.1 Illustration of the lot-sizing problem, which is a convex minimum cost network
flow problem (6.6). The numbers in parentheses are the supply/demands of re-
spective nodes, where M = O(nDU

ε
), D = max{L,maxi{di,i+1, di+1,i}}. Flow

variable along each arc (i, j) is µi,j. The cost on an arc (0, i) is a convex cost
C0,i(µ0,i) (shown in the figure). The costs on arcs (i, i + 1) and (i + 1, i) are all
0. The capacity of arc (0, i) is 2M , the capacity of arc (i, i+ 1) is di,i+1, and the
capacity of arc (i+ 1, i) is di+1,i. The capacities of the arcs are not shown in the
figure. 49

8.1 Running times of SHI/SWEEP-NC-EXP and COMB-NC-EXP for images with
increasing resolutions. 84

vi

8.2 Bar chart for the ratios in Table 8.4 and Table 8.5. The darker bars represent
ratios for NC (Table 8.4) and the lighter bars represent ratios for q-NC (Table 8.5). 86

8.3 Bar chart for the ratios in Table 8.8 and Table 8.9. The darker bars represent
ratios for NC (Table 8.8) and the lighter bars represent ratios for q-NC (Table 8.9). 89

8.4 Bar chart for the ratios in Table 8.12 and Table 8.13. The darker bars represent
ratios for NC (Table 8.12) and the lighter bars represent ratios for q-NC (Table
8.13). 91

8.4 The visual segmentations of SHI-NC-IC (-SHI) and COMB(HNC)-EXP (-COMB),
and their respective original image (-Ori). 95

B.1 parray is a dynamic path constructed from array (array(i))i=0,1,...,n. In parray, we
designate vertex varray0 as head and vertex varrayn+1 as tail. parray is implemented as
a single full balanced binary tree of n+ 1 non-leaf nodes and n+ 2 leaf nodes. . 112

C.1 The twenty benchmark images . 116

vii

List of Tables

2.1 Comparison of HQ-algorithm in [53] with existing specialized algorithms for sim-
ple isotonic regression (SIR) and isotonic regression (IR). 10

5.1 Summary of comparison of complexities. Here LP stands for the complexity of
solving a linear programming problem of size O(n). 22

5.2 Running time (in seconds) comparison between GIMR-Algorithm and Gurobi for
solving GIMR (5.1). The numbers reported are the average running times(standard
deviations). 43

7.1 Summary of complexity comparison between the (differentiable/strict)-algorithm
and the recent/best-to-date algorithms. 55

7.2 Summary of complexity comparison between the (convex/convex)-algorithm and
the recent/best-to-date algorithms. Since the (convex/convex)-algorithm applies
to a broader class of objective functions, it can also be applied to the class of
problems shown in Table 7.1. 55

8.1 Three seed selection rules. 79
8.2 Portions of each seed selection method in yielding the smallest NC and q-NC

objective values. 81
8.3 Running times of SHI/SWEEP-NC-EXP, COMB-NC-EXP, SHI/SWEEP-qNC-

EXP and COMB-qNC-EXP. 83
8.4 The ratios of the NC objective values of SHI-NC-EXP to COMB-NC-EXP. . . . 85
8.5 The ratios of the q-NC objective values of SHI-qNC-EXP to COMB-qNC-EXP. 85
8.6 The means and medians of the improvements of COMB-NC-EXP on SHI-NC-

EXP and COMB-qNC-EXP on SHI-qNC-EXP. 85
8.7 Illustrating why COMB favors unbalanced cut with intervening contour similarity

weights. 87
8.8 The ratios of the NC objective values of SHI-NC-IC to COMB-NC-IC. 87
8.9 The ratios of the q-NC objective values of SHI-qNC-IC to COMB-qNC-IC. . . . 88
8.10 The means and medians of the improvements of COMB-NC-IC on SHI-NC-IC

and COMB-qNC-IC on SHI-qNC-IC. 88

viii

8.11 The means and medians of the improvements of SHI-NC-IC on COMB-NC-IC
and SHI-qNC-IC on COMB-qNC-IC. 88

8.12 The ratios of the NC objective values of SWEEP-NC-EXP to COMB-NC-EXP. 90
8.13 The ratios of the q-NC objective values of SWEEP-qNC-EXP to COMB-qNC-EXP. 90
8.14 The means and medians of the improvements of COMB-NC-EXP on SWEEP-

NC-EXP and COMB-qNC-EXP on SWEEP-qNC-EXP. 90
8.15 The means and medians of the improvements of SWEEP-NC-EXP on COMB-

NC-EXP. Notice that for q-NC, there is no improvement of SWEEP-qNC-EXP
on COMB-qNC-EXP. 91

8.16 Visual comparison results. 93

ix

Acknowledgments

The 6 years’ PhD life at Berkeley is of pain, but more of enjoyable memories. Words alone are
for from enough to express my all-hearted great gratitude to the following people. Without
their generosity, patience and love, I would not have gone through this path to complete the
dissertation.

It’s my great fortune and honor to work with my advisor, Professor Dorit S. Hochbaum.
She brought me to Berkeley and opened to me a brand new fantastic world of algorithm
and optimization. Her advice always illuminates my front road in the jungle of academia.
Her insight is always my trustworthy compass guiding me to the right direction and her
dedication is always my source of power to clear the impeding rocks and bushes along the
journey of exploration. I will not forget the days and nights of discussion with Professor
Hochbaum in her purple-door office. My brain was refreshed with new momentum and
inspiration after every discussion.

I am also very fortunate to have Professor Ilan Adler and Assistant Professor Aditya Gun-
tuboyina as my committee members. Professor Adler, world renowned expert in mathemati-
cal programming and optimization, pointed to me issues in this dissertation work through his
sharp questions and comments that set me the direction of improvement. Professor Aditya
Guntuboyina, an expert in statistics with beautiful work in statistical estimation, expanded
in front of me a grand picture of statistical problems and helped me broaden the impact of
the work.

My wife, Yu Du, always stand with me along this challenging journey. I am so lucky
to meet her and have her that made the life not lonely. She shares my happiness, struggle,
and frustration. I could not imagine how I would accomplish this dissertation without her
devotion, encouragement, and everyday emotional support.

My office mates and Berkeley friends made my life at Berkeley colorful and full of ex-
citement. My thanks goes to Dan Bu, Haoyang Cao, Ying Cao, Jue Chen, Shiman Ding,
Long He, Lingxi Huang, Wenwen Jiang, June Lai, Kevin Li, Kun Li, Xiaoya Li, Sheng Liu,
Stewart Liu, Wei Qi, Xiaochuan Qin, Amber Richter, Zhaoqi Situ, Quico Spaen, Nguyen
Le Truong, Luming Wang, Meng Wang, Yujia Wu, Jianbo Xie, Yang Xu, Zhiwei Xu, Nan
Yang, Hongcai Zhang, Yu Zhang, Min Zhao, Mo Zhou, Tailai Zhou, Junyan Zhu. I thank
my friends for accompanying me with these most precious times in my twenties.

My dearest Mom and Dad always give me the strongest support to help me accomplish
this dissertation. My deepest appreciation goes to their devotion and love to me. It’s their

x

love that sustain me to today. This dissertation is dedicated to them.

Thank you all! I love you!

1

Chapter 1

Introduction

Markov random field (MRF) is a convex optimization problem defined on a directed graph
G = (V,A) where each decision variable is associated with a node from the node set V . The
objective function of MRF consists of two types of penalty functions - one associated with
nodes in V and the other associated arcs in A. At each node, there is a convex penalty
function that gives a cost to the assigned value of the variable associated with the node.
Often this function penalizes the distance between the assigned value and an observed value
on the node. We call these node-associated penalty functions deviation cost functions or
data fidelity functions. On each arc, there is a convex penalty function that gives a cost to
the distance between assigned values of the two variables incident to the arc. These arc-
associated penalty functions are called separation cost functions or regularization functions.
The objective of MRF is to assign values to the variables so that the sum of the deviation
cost functions over all nodes and the separation cost functions over all arcs is minimized.

One common application of MRF is image deblurring. Given an noise degraded image, the
goal of image deblurring is to reset color values to the pixels so as to minimize the penalty for
the deviation from the observed colors, and furthermore, so that the discontinuity in terms
of separation of reset colors between adjacent pixels is as small as possible. To model image
deblurring as MRF, we let the pixels be nodes in a graph and the pairwise neighborhood
relation be indicated by bi-directed arcs between neighboring pixels in the image. The
optimal solution to the MRF problem that minimizes the sum of deviation and separation
penalty is used as the reset color values to the pixels.

Applications of MRF appeared in many different fields, such as operations research (e.g.
in [53, 44, 2]), production and supply chain management (e.g. in [106, 73, 90, 61]), economics
(e.g. in [96]), signal processing (e.g. in [84]), bioinformatics (e.g. in [12, 13, 75]), image
segmentation and deblurring (e.g. in [91, 44, 48]). MRF also includes as special cases
isotonic regression, graph fused lasso, and a graph-based semi-supervised learning model
that arise in statistical estimation and machine learning. These problems are of increasing
interests given the great upsurge on data analytics and machine learning nowadays (see e.g.
[100, 101, 36]).

There exist two provably fastest MRF-algorithms for MRF of arbitrary graphs and two

CHAPTER 1. INTRODUCTION 2

broad classes of deviation functions. The two provably fastest algorithms, with broader
applicability, have lower run time complexities than those of most specialized algorithms
for isotonic regression and graph fused lasso. The existing fastest algorithm for MRF on
arbitrary graphs of arbitrary convex deviation and separation functions offers a definitive
and fast complexity to solve the graph-based semi-supervised learning model [5, 17, 36],
whereas only generic convex optimization solvers were used previously [17, 63].

A path graph is one that nodes can lie on a sequence and there are only arcs between
successive nodes along the sequence. Besides the above mentioned applications of MRF on
general directed graphs, there are many applications that are special cases of MRF on a path
graph, such as in simple isotonic regression (e.g. in [11, 88]), time series signal processing
(e.g. in [67]), bioinformatics (e.g. in [35, 66]), and computer vision (e.g. in [37]). The
theoretical contribution of the dissertation is that we present three most efficient algorithms
to solve MRF on a path graph for different classes of deviation and separation functions. The
first algorithm uses graph minimum cut technique inspired by the two provably fastest MRF-
algorithms, with adaptation to path graphs to achieve a faster running time. The second
algorithm solves a related lot-sizing problem in production planning. The third algorithm
efficiently solves the KKT optimality conditions for the MRF problem on a path graph.

In addition, our new algorithms have matching or faster complexities than many of the
existing best or recent specialized algorithms proposed for specific applications of the MRF-
on-path-graph model.

The MRF model is used for multi-label clustering that can be applied to image segmen-
tation to separate an image into multiple salient feature regions. Another model that can
be used in image segmentation is the Hochbaum Normalized Cut (HNC) model [49]. It is
a binary clustering model that is used to separate the foreground from the background of
an image. We compare the empirical performance between the HNC model and the spec-
tral method in image segmentation. Both HNC and the spectral method can be viewed as
heuristics for the NP-hard normalized cut (NC) optimization criterion proposed by Shi and
Malik in [95], which is a binary clustering criterion often used for image segmentation. We
present experimental evidence that establishes three observations. First, the HNC model
is better than the spectral method at approximating the optimal normalized cut solution;
Second, the HNC model is better than the spectral method for good image segmentation
quality; Third, the segmentation of subjectively best visual quality rarely corresponds to the
one that minimizes the objective function value of the normalized cut criterion. The third
observation implies that normalized cut may not be an appropriate criterion for image seg-
mentation. Instead, HNC model not only provides better visual segmentations, but is also
solvable in polynomial time. Therefore, HNC should be the preferred image segmentation
criterion for both complexity and good segmentation quality reasons. This constitutes the
empirical part of contribution of the dissertation.

CHAPTER 1. INTRODUCTION 3

1.1 Outline of the dissertation

The organization of the dissertation is as follows. In the remaining part of this chapter, we
first introduce the formulation of MRF and its two special forms, which are all defined on
arbitrary graphs, whose deviation functions are all assumed arbitrary convex but differ in
the separation functions. Then we introduce preliminaries and notations that are required
to understand the technical details presented in the dissertation.

The two special forms of MRF are the ones for which provably fastest MRF-algorithms
exist. In Chapter 2 and Chapter 3, we review the complexities of these two MRF-algorithms,
and show that they have better complexities than most of the specialized algorithms for
isotonic regression and graph fused lasso. In Chapter 4, we review the complexity of the
existing fastest algorithm for MRF on arbitrary graphs of arbitrary convex deviation and
separation functions, and discuss its application to the graph-based semi-supervised learning
model.

In Chapter 5, Chapter 6 and Chapter 7, we present the details of the three most efficient
algorithms to solve MRF on path graphs for different classes of deviation and separation
functions. Chapter 8 reports the empirical comparison between the HNC model and the
spectral method for image segmentation. Chapter 8 is based off of a paper by Hochbaum,
Lu, and Bertelli [51]. Chapter 9 concludes the dissertation.

1.2 Problem Formulations

Given a directed graph G = (V,A), the Markov random field (MRF) problem is formulated
as follows [2, 48]:

(MRF) min
xi:i∈V

∑
i∈V

fi(xi) +
∑

(i,j)∈A

hi,j(xi − xj)

s.t. `i ≤ xi ≤ ui, ∀i ∈ V.
(1.1)

Function fi(xi) is an arbitrary convex deviation function and function hi,j(xi − xj) is an
arbitrary convex separation function.

We say that the separation function hi,j(xi−xj) is “bilinear” if it is in the form hi,j(xi−
xj) = di,j ·(xi−xj)+, where di,j ≥ 0 and the notation (x)+ is the positive part of x, max{x, 0}.
This special form of MRF with “bilinear” separation functions is called MRF-BL problem
in this dissertation, where “BL” stands for “bilinear” [44]:

(MRF-BL) min
xi:i∈V

∑
i∈V

fi(xi) +
∑

(i,j)∈A

di,j · (xi − xj)+

s.t. `i ≤ xi ≤ ui, ∀i ∈ V.
(1.2)

The “bilinear” separation function in MRF-BL includes the `1-norm separation function as
a special case, because an `1-norm function di|xi − xj| can be written as di · (xi − xj)+ +

CHAPTER 1. INTRODUCTION 4

di(xj − xi)+ = di|xi − xj|. This `1-norm function corresponds, for the pair of xi and xj, two
arcs of reverse directions (i, j) and (j, i) with equal coefficients di,j = dj,i = di.

One common application of the MRF-BL model is image segmentation, see Hochbaum
in [44] and [48]. Besides, applications of MRF-BL to optimization problems on graphs were
also illustrated by Hochbaum in [44].

For values of di,j that are sufficiently large, an optimal solution to MRF-BL satisfies the
partial order constraints xi ≤ xj. We call this special case of MRF-BL (thus MRF), that
has no separation functions but instead has partial order constraints xi ≤ xj, as the convex
cost closure (CCC) problem [53]:

(CCC) min
xi:i∈V

∑
i∈V

fi(xi)

s.t. xi ≤ xj, ∀(i, j) ∈ A
`i ≤ xi ≤ ui, ∀i ∈ V.

(1.3)

The convex cost closure (CCC) problem is used for partial order estimation [53]. The
partial order estimation problem arises from applications where noisy observations of param-
eters do not satisfy preset partial order requirement. The partial order estimation problem
seeks to find an adjustment of the observations that fit the partial order constraints and
minimize the total deviation penalty of the fitted values from the observations. The devia-
tion penalty is a convex function of the fitted value. The partial order estimation problem
has applications in numerous fields including production [106, 73, 90, 61], signal processing
[84], economics [96], bioinformatics [12, 13, 75] and statistical learning [9, 10, 11, 88, 60, 83].

The CCC problem has been discussed extensively in the literature since four decades ago;
see, e.g. Veinott [106] and Barlow et al. [11]. CCC has applications in production planning
and operations research, see e.g. the review by Hochbaum and Queyranne in [53].

1.3 Preliminaries and Notations

Nonlinear optimization The problems discussed are all continuous optimization prob-
lems. A fundamental issue in continuous nonlinear optimization is to define what constitutes
a solution to a nonlinear optimization problem. This is because the objective functions are
assumed to be general convex, one cannot bound a priori the number of digits required for
the length of nonlinear programming optimal solutions (they can consist of irrational or even
transcendental numbers), yet digital computers can only store numbers of finite accuracy.
For a detailed discussion, we refer to the review paper by Hochbaum in [45]. We adopt
the ε-accuracy model, with a pre-specified parameter ε, to specify the output of a nonlinear
optimization algorithm [54, 53, 45]. A feasible solution x is an ε-accurate solution if there
exists an optimal solution x∗ to the respective problem such that ||x − x∗||∞ < ε. The
value of log 1

ε
indicates the number of significant digits in the ε-accurate solution. As such,

a solution x is specified as an integer multiple of ε, i.e. it lies on the so-called ε-grid. The

CHAPTER 1. INTRODUCTION 5

ε-accuracy complexity model is the only way to solve problems that involve non-linear and
non-quadratic functions on digital computers. This issue is discussed in detail in [54, 53, 44],
and in the review [45].

In this dissertation, the objective functions of the CCC, MRF-BL and MRF problems,
and their special cases, are all convex. Unless specified otherwise, we assume no restriction
on the structure of the convex functions nor the functions to be differentiable. We assume
that a convex function is represented via an oracle that, for any ε-accurate argument, it
returns the function value in O(1) time.

In CCC, MRF-BL, and MRF, box constraints are presented which bound the optimal
values of the variables. We denote U = maxi{ui− `i} <∞. The issue of boundedness of the
solution vector is critical in the analysis of nonlinear optimization. This issue is discussed
in detail in [54]. In some applications, even though box constraints are not present, the
bounded range is implied by the practical contexts or the objective functions.

Graph definitions We follow the convention to represent a directed graph as G = (V,A),
where V is a set whose elements are called vertices or nodes, and A ⊆ V × V is a set of
ordered pairs of vertices of the form (i, j), called arcs. If the graph is undirected, then the
set of unordered pairs of vertices [i, j] are called edges. We denote the edge set as E.

A directed path of length n is an ordered list of nodes (v1, . . . , vn) so that (vi, vi+1) ∈ A
for all i = 1, . . . , n− 1. We call a graph G = (V,A) a bi-path graph if for V = {1, . . . , n} the
arc set is A = {(i, i+ 1), (i+ 1, i)}i=1,...,n−1.

In the sequel, when we discuss about MRF-BL and MRF on a path graph, we mean a
bi-path graph.

Given a directed graph G = (V,A), we denote n = |V | and m = |A|. When G is
undirected, m denotes the number of edges, |E|.

Minimum cuts and parametric minimum cuts Given a directed graph G = (V,A),
let the directed s, t-graph Gst = (Vst, Ast) be associated with graph G = (V,A) such that
Vst = V ∪ {s, t} and Ast = A ∪As ∪At. The appended node s is called the source node and
t is called the sink node. The respective sets of source adjacent arcs and sink adjacent arcs
are denoted as As = {(s, i) : i ∈ V } and At = {(i, t) : i ∈ V }. Each arc (i, j) ∈ Ast has an
associated nonnegative capacity ci,j.

For any two subsets of nodes V1, V2 ⊆ Vst, we let (V1, V2) = {(i, j) ∈ Ast|i ∈ V1, j ∈ V2}
and C(V1, V2) =

∑
(i,j)∈(V1,V2) ci,j.

An s, t-cut is a partition of Vst, ({s} ∪ S, T ∪ {t}), where T = V \ S. For simplicity, we
refer to an s, t-cut partition as (S, T). We refer to S as the source set of the cut, excluding
s.

The capacity of a cut (S, T) is defined as C({s}∪S, T ∪{t}). A minimum cut in s, t-graph
Gst is an s, t-cut (S, T) that minimizes C({s} ∪ S, T ∪ {t}).

A parametric s, t-graph Gst(α) = (Vst, Ast) is an s, t-graph whose arc capacities are
functions of a single scalar parameter α that have the following properties:

CHAPTER 1. INTRODUCTION 6

1. The capacities of arcs in A (not adjacent to source or sink) are constants.

2. The capacities of source adjacent arcs are nonincreasing functions of α.

3. The capacities of sink adjacent arcs are nondecreasing functions of α.

The minimum cuts in a parametric s, t-graph are functions of α. Those minimum cuts are
called parametric minimum cuts. There are parametric minimum cut procedures that solve
parametric minimum cuts for all values of α in a complexity of solving a single minimum
s, t-cut. Procedures known to date that can be used as parametric minimum cut and have
this property (that they solve the parametric problem in the complexity of a single cut) are
Hochbaum’s pseudoflow (HPF) algorithm [50] and the push-relabel algorithm [39].

The parametric minimum cuts in a parametric s, t-graph are nested:

Lemma 1. (Nested Cut Property [39, 44, 50]) For any two parameter values α1 ≤ α2, let
S∗α1

and S∗α2
be the respective source set of the minimum cuts of Gst(α1) and Gst(α2), then

S∗α1
⊇ S∗α2

.

The nested cut property is used in deriving the faster algorithm to solve MRF-BL on a
path graph with convex piecewise linear deviation functions (presented in Chapter 5) and in
the HNC algorithm to give good image segmentation results.

Convex minimum cost network flow problem Our second algorithm for MRF-BL on
a path graph involves solving a convex minimum cost network flow (convex MCNF) problem
[3, 46] that we introduce here. In a convex MCNF problem instance, we are given a directed
network G = (V,A) with a convex cost function ci,j(·), an upper bound ui,j, and a lower
bound `i,j associated with each directed arc (i, j), and a supply/demand bi associated with
each node i. The goal is to find a flow in the network of minimum total cost such that it
satisfies the capacity constraints on the arcs and the supplies/demands at the nodes. Let
the flow value on an arc (i, j) be fi,j, thus the cost of flow fi,j on arc (i, j) is ci,j(fi,j). The
convex MCNF problem is formulated as follows:

(Convex MCNF) min
fi,j :(i,j)∈A

∑
(i,j)∈A

ci,j(fi,j)

s.t.
∑

j:(i,j)∈A

fi,j −
∑

j:(j,i)∈A

fj,i = bi, ∀i ∈ V

`i,j ≤ fi,j ≤ ui,j, ∀(i, j) ∈ A.

7

Chapter 2

Faster Algorithm for Special Cases of
MRF of Convex Deviations with
Partial Order

2.1 A Sketch of Fastest Algorithm for MRF of

Convex Deviations with Partial Order:

HQ-Algorithm

MRF of general convex deviation functions (no separation functions) with arbitrary partial
order constraints, represented by a directed graph G = (V,A), is the CCC problem (1.3).
The existing fastest algorithm is by Hochbaum and Queyranne in [53] (HQ-algorithm), whose
complexity is O(T (n,m) + n log U

ε
), where T (n,m) is the complexity of solving a single

minimum s, t-cut on an associated s, t-graph of G, and O(n log U
ε
) is the complexity of

finding the minima of n convex deviation functions in the respective interval to ε accuracy.
This complexity is provably best possible since, as shown in [53], the CCC problem is a
generalization of both the graph minimum cut problem and the problem of finding the
minima of n convex deviation functions over each feasible interval [`i, ui] to ε accuracy.

The HQ-algorithm uses a parametric minimum cut procedure to solve parametric min-
imum cuts over a parametric s, t-graph that achieves the complexity of solving a single
minimum s, t-cut, T (n,m). For general graphs, this currently best complexity of T (n,m)
that solves parametric minimum cuts is O(nm log n2

m
), by either Hochbaum’s pseudoflow

(HPF) algorithm [52] or the push-relabel algorithm [39]. In the remainder of the disserta-
tion, we take the complexity of HQ-algorithm as O(nm log n2

m
+ n log U

ε
) when comparing it

with other algorithms.
For the special case of CCC that the partial order is a total order, the respective graph

is a directed path graph. For CCC on a directed path graph, the HQ-algorithm was shown
to have complexity O(n(log n+ log(U/ε))) in [53].

CHAPTER 2. FASTER ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS WITH PARTIAL ORDER 8

2.2 Faster Algorithm for Isotonic Regression with

HQ-Algorithm

The isotonic regression (IR) model is an alias of the CCC problem, which is more well-known
in the statistics community. When the underlying graph is a directed path, i.e., the partial
order of the decision variables is a total order, the respective isotonic regression model is a
simple isotonic regression (SIR) model which is formulated as follows:

(SIR) min
x1,...,xn

n∑
i=1

fi(xi)

s.t. xi ≤ xi+1 i = 1, . . . , n− 1

`i ≤ xi ≤ ui, i = 1, . . . , n.

(2.1)

Function fi(xi) is a convex deviation function, which often penalizes the distance between
estimated value xi and some observed value.

Isotonic regression has been studied since 1950s [9, 12, 13, 75, 11, 88], starting in the
statistics community. Isotonic regression has wide applications in many areas, such as statis-
tics, economics and bioinformatics. We refer readers to [4, 100, 99] and the reference therein
for applications.

We review existing efficient algorithms to solve SIR and IR with different types of objec-
tive functions, and compare them with HQ-algorithm in [53].

The PAVA (Pool Adjacent Violators Algorithm) [9, 11, 42] is a well-known O(n) linear
algorithm to solve SIR (2.1) of convex quadratic deviation functions, fi(xi) = (xi−ai)2. This
complexity is faster than HQ-algorithm for SIR of convex quadratic deviation functions, of
complexity O(n log n) [53]. If the objective function is sum of absolute value functions (`1

norm), the problem SIR is known as isotonic median regression (IMR) [87, 74, 18, 81, 4]:

(IMR) min
x1,...,xn

n∑
i=1

qi∑
j=1

wij|xi − aij|

s.t. xi ≤ xi+1, i = 1, . . . , n− 1

(2.2)

In IMR, each deviation term relates to qi observed values {aij}j=1,...,qi . Applications of IMR
in statistics can be found in [85, 86, 88]. Let q =

∑n
i=1 qi. Chakravarti in [18] gave an

O(qn) algorithm and Pardalos et al. in [81] gave an O(q log2 q) algorithm to solve IMR
(2.2). The fastest algorithm to date is the HQ-algorithm in [53] with complexity O(n log q)
provided that the q observations in the input are sorted (otherwise there is an additional
complexity of O(q log n) for merging n sorted lists of qi elements each to a sorted list of
q elements). The special case where qi = 1 for all i (thus q = n), called simple isotonic
median regression (SIMR), can be solved in time O(n log n) by [53, 4]. In Chapter 5, we will
present an algorithm that solves a generalization of IMR and achieves the same complexity
O(q log n) for IMR and O(n log n) for SIMR.

CHAPTER 2. FASTER ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS WITH PARTIAL ORDER 9

In addition to IMR, both HQ-algorithm in [53] and Ahuja and Orlin’s algorithm in [4]
are applicable to SIR of arbitrary convex objective functions. HQ-algorithm has complexity
O(n log n + n log U

ε
). Ahuja and Orlin’s algorithm has complexity O(n log U

ε
). The two

complexities are comparable.
Furthermore, recall that HQ-algorithm in [53] is applicable to IR, i.e. CCC problem,

of arbitrary convex deviation functions and arbitrary directed graphs. The complexity of
HQ-algorithm is O(nm log n2

m
+n log U

ε
), and the complexity is provably the fastest possible.

If the objective is convex quadratic, HQ-algorithm has complexity O(nm log n2

m
) [53]. After

this work of Hochbaum and Queyranne that was done more than a decade ago, there are
papers proposing algorithms to solve IR with specific forms of objective functions. Angelov
et al. in [8] studied the case of IR with `1-norm deviation functions:

min
xi:i∈V

n∑
i=1

wi|xi − ai|

s.t. xi ≤ xj, ∀(i, j) ∈ A.
(2.3)

It was claimed in [8] an algorithm that solves problem (2.3) in time O(nm + n2 log n), but
the complexity of the algorithm is incorrect. Stout in [100] studied a case of IR with `p-norm
deviation functions for 1 < p < +∞:

min
xi:i∈V

n∑
i=1

wi|xi − ai|p

s.t. xi ≤ xj, ∀(i, j) ∈ A.
(2.4)

It was claimed in [100] an algorithm that solves the problem (2.4) in complexity O((nm +
n2 log n) log U

ε
) where the factor O(nm+n2 log n) is the complexity of the algorithm in [8] as

it was used as a subroutine in Stout’s algorithm in [100]. As the complexity of the algorithm
in [8] is incorrect, hence the complexity of Stout’s algorithm in [100] is also incorrect. The
actual complexity is much higher than the claimed one.

We also note the following three series of papers by the same group of authors studying
IR at increasing generalized forms of deviation functions. Luss et al. in [70] studied the
case of convex quadratic deviation function fi(xi) = (xi − ai)

2, giving an algorithm of
complexity O(min{n4,mn2 log n}). This complexity is much higher than the HQ-algorithm
for convex quadratic deviation function, whose complexity is O(nm log n2

m
). Later Luss and

Rosset in [69] studied the case where fi(xi) is a convex and differentiable function, giving an
algorithm of complexity O(min{n4,mn2 log n} log U

ε
). Following that, Painsky and Rosset in

[79] studied the case where fi(xi) is convex yet not assumed to be differentiable, giving an
algorithm of complexity O(min{n4,mn2 log n} log U

ε
). As a comparison, HQ-algorithm does

not assume differentiability of deviation functions, and has better complexity O(nm log n2

m
+

n log U
ε
). We note that the three algorithms from the three papers are very similar, and they

all rely on properties of CCC that were first shown and used by HQ-algorithm in [53].

CHAPTER 2. FASTER ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS WITH PARTIAL ORDER 10

Problem fi(xi) HQ-Algorithm Specialized Algorithm(s)

SIR

(xi − ai)2 O(n log n) O(n) [9, 11, 42]∑qi
j=1 |xi − aij| O(n log q + q log n)

O(qn) [18]
O(q log2 q) [81]

|xi − ai| O(n log n) O(n log n) [4]

Convex O(n log n+ n log U
ε
) O(n log U

ε
) [4]

IR
(xi − ai)2 O(nm log n2

m
)

O(min{n4,mn2 log n})
[70]

Convex O(nm log n2

m
+ n log U

ε
)

O(min{n4,mn2 log n} log U
ε
)

[79]

Table 2.1: Comparison of HQ-algorithm in [53] with existing specialized algorithms for simple
isotonic regression (SIR) and isotonic regression (IR).

We summarize the above review and comparison results in Table 2.1. The results show
that HQ-algorithm in [53], for most classes of convex deviation functions, has faster or
comparable complexity than the complexities of the other specialized algorithms for both
SIR and IR.

11

Chapter 3

Faster Algorithm for Special Cases of
MRF of Convex Deviations and
“Bilinear” Separations

3.1 A Sketch of Fastest Algorithm for MRF of

Convex Deviations and “Bilinear” Separations:

H01-Algorithm

MRF of general convex deviation functions and “bilinear” separation functions is the MRF-
BL problem (1.2). The existing fastest algorithm is by Hochbaum in [44] (H01-algorithm),
whose complexity is the same as the HQ-algorithm for CCC, O(T (n,m) + n log U

ε
), where

T (n,m) is the complexity of a parametric minimum cut procedure that equals to the com-
plexity of a single minimum s, t-cut. This complexity is also provably the fastest possible
because MRF-BL also generalizes both the graph minimum cut problem and the problem
of finding the minima of n convex deviation functions over each feasible interval [`i, ui] to
ε-accuracy. We also take the value T (n,m) as O(nm log n2

m
) and thus the complexity of

H01-algorithm is O(nm log n2

m
+ n log U

ε
) when comparing it with other algorithms.

3.2 Faster Algorithm for Graph Fused Lasso with

H01-Algorithm

Graph fused lasso (GFL) is a model used for data smoothing where the each data point is
associated with a node of an undirected graph G = (V,E). Let the noisy observation at
node i ∈ V be ai ∈ R. The problem is that the observed values do not satisfy the local
smoothness assumption in the graph. The goal of the graph fused lasso model is to adjust
the observed values so that on one hand they are “close” to the values of their neighbors

CHAPTER 3. FASTER ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS AND “BILINEAR” SEPARATIONS 12

along the edges (fused lasso regularization or separation), and on the other hand do not
deviate too much from the observations (deviation aka fidelity). Let the adjusted value of
node i to be computed be xi. Graph fused lasso is the following optimization problem whose
optimal solution is used as the adjusted values:

(GFL) min
xi:i∈V

∑
i∈V

fi(xi; ai) + λ
∑

[i,j]∈E

|xi − xj|

s.t. `i ≤ xi ≤ ui, i ∈ V.
(3.1)

In the formulation of GFL, parameter λ ≥ 0 is a tuning parameter that measures the relative
importance between the deviation function costs and the separation function costs.

The special case of GFL on a 2-dimensional grid graph has applications in the field of
image deblurring and segmentation, see e.g. [41, 14, 40, 65, 16, 58, 44, 48]. The GFL model
is also known as a total variation model on a graph that was first proposed by Rudin et al.
in [91].

The GFL problem is a special case of MRF-BL (1.2) on an associated graph where an edge
[i, j] ∈ E is split as two directed arcs (i, j), (j, i) ∈ A and the respective separation functions
have same coefficient di,j = dj,i = λ. As a result, the H01-algorithm in [44] is applicable to

GFL (3.1). Recall that H01-algorithm has provable complexity of O(nm log n2

m
+ n log U

ε
).

When the deviation functions are convex quadratic, H01-algorithm reduces to complexity of
O(nm log n2

m
) [44].

After the H01-algorithm, specialized algorithms were derived for solving GFL with convex
quadratic deviation functions and arbitrary graphs. Hoefling in [55] gave an algorithm for
this special case that finds an approximate solution. The complexity of his algorithm is
O(Tmax flow(n,m)T), where Tmax flow(n,m) is the complexity of computing a maximum flow
[3] on a graph of n nodes and m edges, and T is the number of iterations of the algorithm.
Hoefling did not give in [55] a definitive bound on T . If we quote the currently best complexity
for solving maximum flow that depends only on n and m, we have Tmax flow(n,m) is O(nm)
given by Orlin in [78]. Thus Hoefling’s algorithm in [55] has complexity O(nmT). Comparing
with the H01-algorithm in [44], we see that, unless T = O(log n2

m
), the H01-algorithm has

faster running time. Another algorithm was given by Tibshirani and Taylor in [103] for GFL
of convex quadratic deviation functions and arbitrary graphs. Tibshirani and Taylor showed
that their algorithm has run time complexity O(mn2+Tm2) when m ≤ n, and O(m2n+Tn2)
when m > n, where T is the number of iterations of their algorithm and T ≥ m [103]. Hence
their algorithm has higher complexity than the H01-algorithm.

13

Chapter 4

Fast Algorithm for Special Cases of
MRF of Convex Deviations and
Convex Separations

4.1 A Sketch of Fast Algorithm for MRF of Convex

Deviations and Convex Separations:

AHO-Algorithm

For MRF of general convex deviation and general convex separation functions, the ex-
isting fastest algorithm is by Ahuja et al. in [2] (AHO-algorithm), whose complexity is
O(nm log n2

m
log nU

ε
). Note that although the term O(nm log n2

m
) is the same as what we

discuss above on parametric minimum cuts, the AHO-algorithm has nothing to do with
parametric minimum cuts. It uses a different technique that is based on solving a convex
MCNF problem related to MRF.

4.2 Fast Algorithm for a Graph-based

Semi-Supervised Learning Model with

AHO-Algorithm

Semi-supervised learning is to infer the labels of a large set of unlabeled data from a small
set of labeled data. A challenge in some machine learning problems is that the size of labeled
data is far smaller than the size of unlabeled data. This is because obtaining labeled data is
often very time consuming and expensive, as they require the efforts of human annotators,
who must often be quite skilled [114]. One approach is the following semi-supervised learning
model that construct a graph representing the data and their similarities. This approach
first solves a real-valued regression problem on a weighted undirected graph that computes

CHAPTER 4. FAST ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS AND CONVEX SEPARATIONS 14

continuous “label” values to the data, and then thresholds the continuous values to generate
discrete labels to the unlabeled data [114]. The graph regression problem is formulated as
follows. Suppose we have a data set of size n, and the data are indexed from 1 to n. Let
ai ∈ Rd be the feature vector of the ith datum. Suppose the first l data are labeled with
labels t1, . . . , tl, and the remaining u = n − l data are unlabeled. Usually we have l � u.
Let L = {1, 2, . . . , l} be the set of labeled data and U = {l + 1, l + 2, . . . , l + u = n} be the
set of unlabeled data. Consider a connected weighted undirected graph G = (V = L∪U,E)
with nodes in V corresponding to the n data. The weight wi,j of each edge [i, j] ∈ E is a
function of the feature vectors ai and aj that measures the similarity between the ith and
jth data, either labeled or unlabeled. For example, one can use the following Gaussian-based
similarity measure:

wi,j = exp

(
−

d∑
k=1

(aik − ajk)2

σ2
k

)
,

where aik is the k-th component of feature vector ai and σk is a length scale hyperparameter
for each dimension [114]. Let xi ∈ R be the estimated continuous label of node i (i =
1, . . . , l, l + 1, . . . , l + u = n) to be solved, including both labeled and unlabeled data. The
graph regression model has a noiseless and a noisy version. In the noiseless version, the
labels of the labeled data are assumed to be noise free. Thus the optimization problem to
solve xis is a constrained problem that minimizes the total `q-norm separation between pairs
of estimated continuous label values of nodes along the edges, weighted by their similarity.
The problem is referred as the (discrete) q-Laplacian of the graph G [36]:

(q-Laplacian(noiseless)) min
xi:i∈V=L∪U

∑
[i,j]∈E

wi,j|xi − xj|q

s.t. xi = ti, i = 1, . . . , l.

(4.1)

In the noisy version, the observed labels are not completely truthful. Hence we allow the es-
timated values on the labeled data to be deviated from the observed labels, but the deviation
is penalized by a deviation cost function in the objective:

(q-Laplacian(noisy)) min
xi:i∈V=L∪U

l∑
i=1

fi(xi; ti) +
∑

[i,j]∈E

wi,j|xi − xj|q. (4.2)

The noiseless version is a special case of the noisy version because one can give a sufficiently
large deviation penalty in the noisy version to prevent the estimated value from deviating
from the observed label on the labeled data. The modeling assumption of graph q-Laplacian
is that data of similar features should have similar labels [114, 36]. The graph q-Laplacian
model for semi-supervised learning has been studied extensively, see [114, 76, 5, 17, 36] and
the references therein.

CHAPTER 4. FAST ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS AND CONVEX SEPARATIONS 15

The graph q-Laplacian model for semi-supervised learning was first proposed by Zhu et
al. in [114] for q = 2:

(2-Laplacian(noiseless)) min
xi:i∈V=L∪U

∑
[i,j]∈E

wi,j(xi − xj)2

s.t. xi = ti, i = 1, . . . , l.

(4.3)

As the separation functions are quadratic and the constraints are equality constraints, Zhu et
al. in [114] showed that solving 2-Laplacian(noiseless) (4.3) is equivalent to solving a system
of linear equations, and thus the optimal solution has a closed-form matrix representation.
Despite its nice computational and representation property, the 2-Laplacian(noiseless) model
may be ill-posed for some semi-supervised learning tasks. Nadler et al. in [76] studied this
model in the setting where the number of labeled data l is fixed yet the number of unlabeled
data u goes to infinity on a d-dimensional geometric random graph. They showed that
as u → ∞, the optimal solution to problem (4.3) is degenerated in that it converges to a
solution that is constant everywhere except for the labeled data that are forced to be equal
to the observed labels by the equality constraints. This phenomenon also exists for the noisy
counterpart of 2-Laplacian(noiseless) (4.3), as every feasible solution to the noiseless version
(4.1) is feasible to the noisy version (4.2).

Following the result of Nadler et al. in [76], higher orders of q in the graph q-Laplacian
model are investigated to circumvent the degeneracy issue associated with the 2-Laplacian
case [5, 17, 36]. A “phase transition” property was shown for this model: When q is small,
the optimal solution is degenerated; however, there is a “phase transition” value such that
when q is greater than this specific value, the resulting graph q-Laplacian model gives non-
degenerated optimal solution, which is meaningful for the semi-supervised learning task.
The most recent result is by El Alaoui et al. in [36]. In this paper they studied the phase
transition property of graph q-Laplacian model on a d-dimensional geometric random graph.
They showed that the optimal solution is degenerated for q ≤ d, whereas for q ≥ d+ 1, the
optimal solution is smooth and non-degenerated. Hence they recommend q = d + 1 as an
optimal choice of the power index, yielding a solution that is smooth, non-degenerate, and
remaining maximally sensitive to the structure of the data [36].

Despite the above active study on statistical properties of the graph q-Laplacian model
for semi-supervised learning, there is no specialized efficient algorithm derived to solve this
model. For the q-Laplacian(noisy) model (4.2) with q > 2, only generic convex optimiza-
tion solvers were used in [17, 63]. However, there is no definitive complexity results of
generic convex optimization solvers for the q-Laplacian(noisy) model. One reason is that
theoretical convergence rate analyses of many generic convex optimization solvers for uncon-
strained convex optimization problems, like decent-type algorithms, does not apply to the
q-Laplacian(noisy) model because those analyses require the gradients of objective function
to be Lipschitz continuous [15, 68], which does not hold for the q-Laplacian(noisy) model
of arbitrary convex deviation functions fi(xi; ti) and `q-norm separation functions. Further-
more, regardless of the Lipschitz continuity condition, many generic solvers converge at rate

CHAPTER 4. FAST ALGORITHM FOR SPECIAL CASES OF MRF OF CONVEX
DEVIATIONS AND CONVEX SEPARATIONS 16

O(poly(1/ε)) to an optimal objective value of ε-accuracy [68], but 1/ε is not a polynomial
quantity because one only needs O(log(1/ε)) bits to achieve ε-accuracy.

On the other hand, note that the q-Laplacian(noisy) model (4.2) is a special case of
MRF (1.1). Hence algorithms for MRF are immediately applicable. Recall that the fastest
algorithm for MRF is AHO-algorithm in [2] with definitive complexity O(nm log n2

m
log nU

ε
),

where U = O(maxi∈L{ti} − mini∈L{ti}) for the q-Laplacian(noisy) model (One can eas-
ily check that the optimal values of all variables of q-Laplacian(noisy) are in the range of
[mini∈L{ti},maxi∈L{ti}]). Hence the AHO-algorithm has a definitive and faster run time
complexity over generic convex optimization solvers for the q-Laplacian(noisy) model (4.2).

17

Chapter 5

Min-Cut-based Algorithm for MRF
on Path: Speed-up of Nearly-Isotonic
Median Regression and
Generalizations

The problem studied in this chapter is MRF-BL on a path graph of convex piecewise linear
deviation functions. This special case of MRF-BL is a generalization of several well-known
problems including the Isotonic Median Regression (IMR). In this chapter we call this spe-
cial case problem of MRF-BL Generalized Isotonic Median Regression (GIMR). The GIMR
problem is formulated as:

min
x1,...,xn

n∑
i=1

fpli (xi; {ai,j}qij=1) +
n−1∑
i=1

di,i+1(xi − xi+1)+ +
n−1∑
i=1

di+1,i(xi+1 − xi)+

(GIMR) s.t. `i ≤ xi ≤ ui, i = 1, . . . , n,

(5.1)

where each deviation function fpli (xi) is a convex piecewise linear function with qi breakpoints
ai,1 < ai,2 < . . . < ai,qi (the superscript “pl” stands for “piecewise linear”). The separation
terms involve the nonnegative coefficients di,i+1 and di+1,i for positive and negative separation
penalties, and the notation (x)+ is the positive part of x, max{x, 0}. For values of di,i+1 that
are sufficiently large, an optimal solution to GIMR satisfies the total rank order x1 ≤ x2 ≤
. . . ≤ xn. The set of feasible values for each xi are contained in the interval [`i, ui].

5.1 Special Cases and Applications

Models with Deviation Terms Only

A commonly used special case of convex piecewise linear deviation functions, in the context
of isotonic regression, is the `1 norm. An `1 deviation function is a sum of (weighted) ab-

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 18

solute values of the differences between the estimated values and the respective observation
values. There are a number of advantages for the use of the `1 deviation function: This
function gives the exact maximum likelihood estimate if the noises in the observation values
follow the Laplacian distribution [74, 18]; it is in general robust to heavy-tailed noises and to
the presence of outliers [77, 107, 98]; it provides better preservation of the contrast and the
invariance to global contrast changes [20, 98]. The `1 deviation function, in weighted or un-
weighted form, was used in a number of models and applications. Isotonic median regression
(IMR) was studied in [87, 74, 18, 81], and its applications in statistics can be found in [85, 86,
88]. Additional areas in which IMR on partial order has been applied include chromosomal
microarray analysis (CMA) [8] in bioinformatics and ordinal classification with monotonicity
constraints [29]. We note that the algorithm of [8] is incorrect, and the complexity of the
corrected version is considerably worse than the complexity of the algorithm of [53] for IMR.

The formulation of IMR with weights wij is:

min
x1,...,xn

n∑
i=1

qi∑
j=1

wij|xi − aij|

(IMR) s.t. xi ≤ xi+1, i = 1, . . . , n− 1.

(5.2)

When each variable xi is associated with only one observation ai, i.e. qi = 1, IMR is then
referred to as the Simple Isotonic Median Regression (SIMR):

min
x1,...,xn

n∑
i=1

wi|xi − ai|

(SIMR) s.t. xi ≤ xi+1, i = 1, . . . , n− 1.

(5.3)

SIMR (5.3) was studied extensively, e.g. in [53, 4].
Some applications use deviation functions that are not `1 functions, but use only two

pieces in the piecewise linear deviation function. One example is the Quantile deviation
function which preserves the robustness property of the `1 deviation function. The quantile
deviation function of estimated variable xi from observation ai for parameter τ ∈ [0, 1] is:

ρτ (xi; ai) =

{
τ(xi − ai) if xi − ai ≥ 0

−(1− τ)(xi − ai) if xi − ai < 0.
(5.4)

Here the parameter τ represents the quantile of the observations of interest. For τ = 1
2

(half-
quantile), the quantile deviation function is identical to the absolute value function. Quantile
deviations have been used in array-based comparative genomic hybridization (array-CGH)
analysis in bioinformatics [35, 66].

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 19

Another special case of the convex piecewise linear function is the ε-insensitive deviation
function, defined as follows [79]:

dε(xi; ai) =


xi − ai − ε if xi − ai > ε

0 if |xi − ai| ≤ ε

−xi + ai − ε if xi − ai < −ε.
(5.5)

The absolute value function is a special case of the 0-insensitive deviation function.
The use of isotonic regression for medical prognosis was discussed by Ruy et al. [92].

They considered convex piecewise linear deviation functions (each with 3 pieces) and a
partial order that is derived from medical knowledge on the relative prognosis prospects for
pairs of feature vectors.

Models that Include Separation/Regularization Terms

There are variant models of total order estimation that include penalty terms in the objective
on the violation of total order constraints, instead of imposing those constraints. These
penalty functions are often referred to as separation or regularization functions. We present
here four such models that were presented for specific contexts.

Tibshirani et al., [102], studied a “nearly-isotonic” model on total order for the purpose
of fitting global warming data on annual temperature anomalies. Here ai is the observation
of the temperature anomaly value at the ith year of the dataset:

(Nearly-isotonic) min
x1,...,xn

1

2

n∑
i=1

(xi − ai)2 + λ
n−1∑
i=1

(xi − xi+1)+. (5.6)

In this model (5.6), the tuning parameter λ ≥ 0 measures the relative importance between
the deviation terms and the separation terms. As λ → ∞ the problem is equivalent to
imposing the total order constraints of IMR (5.2) and SIMR (5.3). In model (5.6) the
quadratic deviation terms are based on the Gaussian noise assumption on the observations.
We note that the GIMR model differs from (5.6) in that instead of convex quadratic deviation
functions it has convex piecewise linear deviation functions. This convex piecewise linear
class of functions includes `1 deviation functions that are considered to be more appropriate
as a model for Laplacian noises, or heavy-tailed noises.

The separation term in the nearly-isotonic model (5.6), λ(xi − xi+1)+, is “one-sided”
in that it only penalizes the surplus of xi over xi+1. A more general separation term also
penalizes the surplus of xi+1 over xi, in the form of λ′(xi+1 − xi)+, leading to a “two-sided”
separation penalty. If the two-sided penalty is symmetric (λ = λ′), it can be presented as
the absolute value (`1) separation term λ|xi − xi+1|. This `1 separation penalty is known as
fused lasso [104]. An example of the use of fused lasso model is in array-based comparative
genomic hybridization (array-CGH) analysis, [35, 66]. It is to estimate the ratio of gene
copying numbers at each position in DNA sequences between tumor and normal cell samples,

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 20

based on the biological knowledge that the ratios between adjacent positions in the DNA
sequences are similar. Eilers and de Menezes, [35], proposed the following quantile fused
lasso (Q-FL) model to identify the estimated log-ratio xi, based on the observed log-ratio ai
at the ith position:

(Q-FL) min
x1,...,xn

n∑
i=1

ρτ (xi; ai) + λ

n−1∑
i=1

|xi − xi+1|. (5.7)

The deviation terms are the quantile deviation functions (5.4) and the `1 separation functions
|xi − xi+1| drive the log-ratios of adjacent positions to be similar. Later, Li and Zhu in [66]
extended the above model to the following quantile weighted fused lasso (Q-wFL) model by
considering the distances between adjacent positions, which is claimed to help improve the
estimation [66]:

(Q-wFL) min
x1,...,xn

n∑
i=1

ρτ (xi; ai) + λ
n−1∑
i=1

1

di,i+1

|xi − xi+1|, (5.8)

where di,i+1 ∈ R is the distance between the ith and the (i+ 1)th positions. Thus the closer
the adjacent positions, the larger penalty on the log-ratio difference. The quantile devia-
tion functions are also claimed in [35, 66] to be advantageous over the standard quadratic
deviation functions (least square mean regression).

In signal processing, Storath et al., [98], considered a fused lasso model with `1 deviation
functions:

(`1-FL) min
x1,...,xn

n∑
i=1

wi|xi − ai|+ λ
n−1∑
i=1

|xi − xi+1|, (5.9)

where wis are nonnegative weights and λ > 0 is the model tuning parameter.
Recently, Kolmogorov et al., [62], studied a weighted fused lasso problem, which general-

izes Q-FL (5.7), Q-wFL (5.8) and `1-FL (5.9), by allowing deviation functions to be general
convex piecewise linear functions with O(1) breakpoints each, and different weights on the `1

separation terms |xi−xi+1| in place of the uniform coefficient λ. This problem is denoted by
PL-wFL-O(1), where PL stands for “piecewise linear”, and O(1) indicates that each convex
piecewise linear deviation function has O(1) breakpoints.

5.2 Existing Best Algorithms for Total Order

Estimation

Total order estimation with deviation terms only. For the special case that the par-
tial order is a total order, the respective graph is a directed path graph. For the directed
path graph HQ-algorithm was shown to have complexity O(n(log n+ log(U/ε))) in [53] and
the algorithm given by Ahuja and Orlin in [4] has complexity O(n log(U/ε)). (It is impor-
tant to note that the complexity term of log(U/ε) is provably unavoidable when minimizing a

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 21

non-linear and non-quadratic convex function, as discussed in [53] and is based on the impos-
sibility of strongly polynomial algorithms for non-linear non-quadratic optimization proved
in [47]). For quadratic deviation functions, the run time of HQ-algorithm is O(n log n).

Let q =
∑n

i=1 qi be the total number of breakpoints of the n convex piecewise linear

deviation functions, {fpli (xi)}i=1,...,n, in GIMR. For the GIMR problem with deviation terms
only, (or very large d parameters), if the q breakpoints of the convex piecewise linear deviation
functions are sorted, the complexity of HQ-algorithm is O(n(log n + log q)) = O(n log q)
(q = Ω(n)), and otherwise the sorting complexity of O(q log n) is added.

Other known algorithms for IMR (5.2) include an algorithm in [18] of complexity O(qn)
and an algorithm of complexity O(q log2 q) by [81]. GIMR-algorithm shown here solves IMR
(5.2) in time O(q log n), which improves the complexity of [18] and [81], and matches the
complexity of HQ-algorithm in [53]. For SIMR (5.3), the fastest algorithms to date, by [53,
4], have complexity O(n log n). GIMR-algorithm solves SIMR (5.3) in the same complexity.

Total order estimation with separation terms. GIMR is a special case of MRF-
BL (1.2) where the graph G is a bi-path graph with node set V = {1, . . . , n}, arc set
A = {(i, i + 1), (i + 1, i)}i=1,...,n−1, and the deviation functions are convex piecewise linear.
Therefore, any algorithm that solves MRF-BL can solve GIMR. A direct application of H01-
algorithm for MRF-BL to GIMR (5.1) (total order graph) is of complexityO(n2 log n+n log q)
since m = O(n) and the deviation functions are convex piecewise linear, so finding n times
the minima of such functions requires at most binary search on the set of breakpoints. Our
main contribution here can be viewed as an algorithm that speeds up H01-algorithm for
MRF-BL by efficiently generating the respective minimum s, t-cuts for a path graph.

Other algorithms were devised for various special cases of total order estimation with
separation terms: Eilers and de Menezes in [35], and Li and Zhu in [66], derived algorithms
to solve Q-FL (5.7) and Q-wFL (5.8) respectively, both based on linear programming. They
did not state concrete complexity results. For the `1-FL problem (5.9) Storath et al. in [98]
proposed an algorithm of complexity O(n2). GIMR algorithm solves all these problems in
O(n log n) complexity.

For problem PL-wFL-O(1), Kolmogorov et al., [62], derived an algorithm of complexity
O(n log n), which, like the algorithm presented here, uses a method for efficiently generating
the respective minimum s, t-cuts for H01-algorithm and achieves the same complexity as
ours (using a different methodology). Since PL-wFL-O(1) generalizes Q-FL (5.7), Q-wFL
(5.8) and `1-FL (5.9), this is also an alternative fastest algorithm for these problems. Note
that Kolmogorov et al. in [62] also claimed an O(n log log n) algorithm for the PL-wFL-O(1)
problem. However, the divide-and-conquer technique used in the algorithm requires the
sorting of the breakpoints, which adds to the complexity O(n log n).

5.3 Summary of Results

In Table 5.1 we provide a comparison of the complexity of our algorithm for GIMR and its
special cases as compared to the best and recent algorithms’ complexities known to date.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 22

Table 5.1: Summary of comparison of complexities. Here LP stands for the complexity of
solving a linear programming problem of size O(n).

Problem Deviation Separation
Algorithm Algorithms

here to-date

GIMR
Convex di,i+1(xi − xi+1)+ O(q log n)

O(n2 log n+ n log q)
piecewise linear +di+1,i(xi+1 − xi)+ [44]

IMR
∑qi
j=1 |xi − aij | O(q log n)

O(n log q + q log n)
[53]

SIMR |xi − ai| O(n log n) O(n log n) [53, 4]

Nearly-isotonic
Convex

λ(xi − xi+1)+ O(q log n)
O(n2 log n+ n log q)

piecewise linear [44]

Q-FL ρτ (xi; ai) λ|xi − xi+1| O(n log n) LP [35]

Q-wFL ρτ (xi; ai) λ 1
di,i+1

|xi − xi+1| O(n log n) LP [66]

`1-FL wi|xi − ai| λ|xi − xi+1| O(n log n) O(n2) [98]

PL-wFL-O(1)
Convex O(1)-

di,i+1|xi − xi+1| O(n log n) O(n log n) [62]
piecewise linear

As can be seen, our GIMR-algorithm’s complexity either matches the complexity of the best
algorithms to date, or improves on them. And furthermore, GIMR-algorithm is one unified
algorithm for all these special cases whereas up till now specialized algorithms were devised
for each category of the special cases.

We assess the empirical performance of GIMR-algorithm by comparing our software
implementation with Gurobi, a commercial linear programming solver, on simulated data
sets of various sizes. The experimental results demonstrate that GIMR-algorithm runs faster
than Gurobi on the collection of simulated data sets, by approximately a factor of 10.

Overview

The rest of this chapter is organized as follows: We first provide a brief review of H01-
algorithm [44] for MRF-BL (1.2) in Section §5.4. Then we give an overview of GIMR-
algorithm in Section §5.5, including additional notations that will help to present the algo-
rithm and its analysis. Then we present GIMR-algorithm in details in two steps: Firstly, in
Section §5.6 we present GIMR-algorithm for GIMR with `1 deviation functions, namely `1-
GIMR-algorithm; then, in Section §5.7, `1-GIMR-algorithm is generalized to solving GIMR
with arbitrary convex piecewise linear deviation functions, namely GIMR-algorithm. Ex-
perimental study that assess the performance of GIMR-algorithm is discussed in Section
§5.8. Concluding remarks are provided in Section §5.9. The pseudo-codes for the various
subroutines used in `1-GIMR-algorithm and GIMR-algorithm are given in Appendix A and
Appendix B.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 23

5.4 Review of H01-Algorithm

Recall that for MRF-BL (1.2), the partial order is represented by a directed graphG = (V,A).
H01-algorithm constructs a parametric graph Gst(α) = (Vst, Ast) associated with G = (V,A),
for any scalar value α in union of the ranges of the decision variables,

⋃
i[`i, ui]. The capacity

of arc (i, j) ∈ A is ci,j = di,j. Each arc in As = {(s, i)}i∈V has capacity cs,i = max{0,−f ′i(α)}
and each arc in At = {(i, t)}i∈V has capacity ci,t = max{0, f ′i(α)}, where f ′i(α) is the right
sub-gradient of function fi(·) at argument α. (One can select instead the left sub-gradient.)
Note that for any given value of α, either cs,i = 0 or ci,t = 0. H01-algorithm finds the
minimum cuts in the parametric graph Gst(α), for all values of α, in the complexity of a
single minimum s, t-cut. The key idea of H01-algorithm is the threshold theorem which links
the optimal solution of MRF-BL (1.2) with the minimum cut partitions in Gst(α):

Theorem 2. (Threshold Theorem, Hochbaum [44]) For any given α, let S∗ be the maximal
source set of the minimum cut in graph Gst(α). Then there is an optimal solution x∗ to
MRF-BL (1.2) satisfying x∗i ≥ α if i ∈ S∗ and x∗i < α if i ∈ T ∗.

An important property of Gst(α) is that the capacities of source adjacent arcs are non-
increasing functions of α, the capacities of sink adjacent arcs are nondecreasing functions of
α, and the capacities of all the other arcs are constants. This implies the following nested
cut property :

Lemma 3. (Nested Cut Property [39, 44, 50]) For any two parameter values α1 ≤ α2, let S∗α1

and S∗α2
be the respective maximal source set of the minimum cuts of Gst(α1) and Gst(α2),

then S∗α1
⊇ S∗α2

.

The threshold theorem is used to find an optimal solution to MRF-BL (1.2): For each
variable xi, the largest value of α in [`i, ui] for which the corresponding node is still in the
maximal source set is the optimal value of xi. This can either be done with binary search,
or as in H01-algorithm, all cut partitions for all values of α are identified with the use of a
parametric cut procedure.

5.5 Overview of GIMR-Algorithm

The key idea used in our GIMR-algorithm is to adapt the cut-derived threshold theorem of
Hochbaum’s MRF-BL algorithm. But, instead of using a parametric cut procedure as in the
MRF-BL algorithm, our algorithm uses certain properties of the cut function, for the special
case of a bi-path graph and convex piecewise linear functions, which lead to a more efficient
procedure for computing all relevant cuts. This adaptation runs an order of magnitude faster
than the direct application of H01-algorithm to GIMR, as explained in Section §5.2.

The parametric graph Gst(α) associated with a bi-path graph G has the capacities of arcs
(i, i+ 1), (i + 1, i) ∈ A as ci,i+1 = di,i+1 and ci+1,i = di+1,i respectively, and the capacities of

the source and sink adjacent arcs as cs,i = max{0,−(fpli)′(α)} and ci,t = max{0, (fpli)′(α)}

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 24

respectively. Based on the Threshold Theorem, Theorem 2, it is sufficient to solve the
minimum cuts in the parametric graph Gst(α) for all values of α, in order to solve GIMR
(5.1). We next show that the values of α to be considered can be restricted to the set of
breakpoints of the n convex piecewise linear functions, {fpli (xi)}i=1,...,n. This is proved in the
following lemma:

Lemma 4. The minimum cuts in Gst(α) remain unchanged for α assuming any value be-
tween any two consecutive breakpoints in the sorted list of breakpoints of all the n convex
piecewise linear functions, {fpli (xi)}i=1,...,n.

Proof. Recall that only the capacities of the source and sink adjacent arcs depend on the
values of α. Since each fpli (xi) is convex piecewise linear in GIMR, thus the source and sink
adjacent arc capacities remain constant for α between any two consecutive breakpoint values
in the sorted list of breakpoints over all the n convex piecewise linear functions. Therefore
the minimum cuts in Gst(α) remain unchanged as capacities of all the arcs in the parametric
graph are unchanged.

GIMR-algorithm efficiently computes the minimum cuts of Gst(α) for subsequent values
of α in the ascending list of breakpoints of all the n convex piecewise linear functions,
{fpli (xi)}i=1,...,n.

Remark 5. For graphs such as bi-path graphs, a simple, linear complexity, dynamic program-
ming algorithm solves the minimum cut in Gst(α) for a fixed value of α. A naive application
of this dynamic programming algorithm with setting α equal to each value of the q break-
points, would render the running time of O(qn) for solving GIMR. Our GIMR-algorithm
solves GIMR in O(q log n) complexity which is significantly faster.

Additional Notations

We introduce additional notations to facilitate the presentation of GIMR-algorithm.
A convex piecewise linear function fpli (xi) is specified by its ascending list of qi break-

points, ai,1 < ai,2 < . . . < ai,qi , and the slopes of the qi + 1 linear pieces between every two
consecutive breakpoints, denoted by wi,0 < wi,1 < . . . < wi,qi . We assume that the n sets of
breakpoints are disjoint and that the total number of breakpoints in the union is q =

∑n
i=1 qi.

Note that we make the disjoint breakpoint assumption only for convenience of presenting
the algorithm. Our algorithm works in the same way even when a breakpoint is shared by
multiple functions, for details see Remark 16 in Section §5.7.

Let the sorted list of the union of q breakpoints of all the n convex piecewise linear
functions be ai1,j1 < ai2,j2 < . . . < aiq ,jq , where aik,jk , the kth breakpoint in the sorted list, is

the breakpoint between the (jk − 1)th and the jkth linear pieces of function fplik (xik).

For fpli (xi) = wi|xi − ai|, each function has one breakpoint ai and two pieces of slopes
−wi and wi. Thus for this case the sorted list of all the n breakpoints is ai1 < ai2 < . . . < ain ,
where aik is the single breakpoint of function fplik (xik).

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 25

Let interval [i, j] in G for i ≤ j be the subset of V , {i, i + 1, . . . , j − 1, j}. If i = j, the
interval [i, i] is the singleton i. The notation [i, j) and (i, j] indicate the intervals [i, j − 1]
and [i+ 1, j] respectively. Let [i, j] = ∅ if i > j.

For an (S, T) cut, an s-interval is the maximal interval containing only s-nodes:

Definition 6. An interval [i`, ir] of s-nodes in Gst(α) is said to be an s-interval if it is not
strictly contained in another interval of only s-nodes.

Node i`(ir) is said to be the left(right) endpoint of the s-interval [i`, ir]. The definition
of s-interval implies that for an s-interval [i`, ir], if i` > 1, then i` − 1 is a t-node; if ir < n,
then ir + 1 is a t-node.

Let Gk, for k ≥ 1, be the parametric graph Gst(α) for α equal to aik,jk , i.e. Gk =
Gst(aik,jk) (Gk = Gst(aik) for the `1 special case). For ease of presentation, we introduce
G0 = Gst(ai1,j1 − ε) (or G0 = Gst(ai1 − ε) in the `1 special case) for a small value of ε > 0
(all values of ε > 0 generate the same graph G0). Let (Sk, Tk) be the minimum cut in Gk,
for k ≥ 0. Recall that Sk is the maximal source set.

5.6 `1-GIMR-Algorithm

This section describes an O(n log n) algorithm for the GIMR problem with `1 deviation
functions, fpli (xi) = wi|xi − ai| with nonnegative coefficients wi. This problem is referred to
as `1-GIMR:

(`1-GIMR) min
x1,...,xn

n∑
i=1

wi|xi − ai|+
n−1∑
i=1

di,i+1(xi − xi+1)+ +
n−1∑
i=1

di+1,i(xi+1 − xi)+. (5.10)

The algorithm generates the respective minimum cuts of graphs Gk in increasing order
of k. Based on the Threshold Theorem, Theorem 2, and the nested cut property, Lemma 3,
we know that for each node j = 1, . . . , n, x∗j = aik for the index k such that j ∈ Sk−1 and
j ∈ Tk.

In G0, illustrated in Figure 5.1, cs,i = wi and ci,t = 0 for all i = 1, . . . , n. The minimum
cut in G0 is ({s} ∪ V, {t}).

For k ≥ 1 graph Gk is obtained from graph Gk−1 as follows: Capacity cs,ik is modified
from wik to 0 and capacity cik,t is modified from 0 to wik . Other arcs’ capacities remain
unchanged. An illustration of Gk for k ≥ 1 is provided in Figure 5.2.

The key idea of the algorithm is to use a property, proved later, that the minimum cut in
Gk is derived by updating the minimum cut in Gk−1 on an interval of nodes that change their
status from s to t. It is then shown that this interval of s-nodes can be found in amortized
time O(log n). With this result, the total running time to solve `1-GIMR (5.10) is O(n log n).
The remainder of this section is a proof of this main result, stated as Theorem 7:

Theorem 7. Given the minimum cut (Sk−1, Tk−1) in Gk−1, there is an amortized O(log n)
algorithm for computing the minimum cut (Sk, Tk) in Gk.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 26

Figure 5.1: The structure of graph G0. Arcs of capacity 0 are not displayed. Nodes 1 to n
are labeled s on top as they are all in the maximal source set S0 of the minimum cut in G0.

Figure 5.2: The structure of graph Gk. Arcs of capacity 0 are not displayed. Here node
ik − 1 appears to the right of ik and ik + 1 appears to the left, to illustrate that the order
of the nodes in the graph, (1, 2, . . . , n), does not necessarily correspond to the order of the
nodes according to the subscripts of the sorted breakpoints, (i1, i2, . . . , in).

Note that the update of the graph from Gk−1 to Gk involves only a change in the capacities
of the source and sink adjacent arcs of ik. The algorithm proceeds from G0 to Gn by
inspecting in order the nodes i1, i2, . . . , in, the order of which is determined by the sorted
list of breakpoints ai1 < ai2 < . . . < ain . Next we evaluate certain properties of node ik.

For any node i, if i ∈ Tk−1, the nested cut property, Lemma 3, implies that i remains in
the sink set for all subsequent cuts (i.e., status(i) = t remains unchanged), and in particular
i ∈ Tk. Hence an update of the minimum cut in Gk from the minimum cut in Gk−1 can only
involve shifting some nodes from source set Sk−1 to sink set Tk (i.e., changing some nodes
from s-nodes in Gk−1 to t-nodes in Gk).

We first demonstrate that if node ik ∈ Tk−1, then (Sk−1, Tk−1), the minimum cut in Gk−1,
is also the minimum cut in Gk. This is proved in Lemma 8:

Lemma 8. If ik ∈ Tk−1 then (Sk, Tk) = (Sk−1, Tk−1).

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 27

Proof. Since ik ∈ Tk−1, by the nested cut property, Lemma 3, ik ∈ Tk.
The minimum cut in Gk−1 satisfies:

C({s} ∪ Sk−1, Tk−1 ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])

}
+ wik ,

and the minimum cut in Gk satisfies:

C({s} ∪ Sk, Tk ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])

}
+ 0.

Since the expressions inside the curly brackets are the same for both graphs, it follows
that C({s}∪Sk−1, Tk−1 ∪{t})−C({s}∪Sk, Tk ∪{t}) = wik , a constant. Therefore the total
cut capacities in the two graphs differ by a constant. Recall that the minimum cut is unique
as it is the maximal source set minimum cut. Hence the minimizer set S is the same for
both Gk−1 and Gk.

We conclude that there is no update to the minimum cut in Gk from the minimum cut
in Gk−1 when ik /∈ Sk−1 (i.e., ik ∈ Tk−1). As proved next, there is still no change to the
minimum cut in Gk from the minimum cut in Gk−1 when ik is an s-node that does not
change its status from Gk−1 to Gk:

Lemma 9. If ik ∈ Sk−1 and ik ∈ Sk, then (Sk, Tk) = (Sk−1, Tk−1).

Proof. The minimum cut in Gk−1 satisfies:

C({s} ∪ Sk−1, Tk−1 ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])

}
+ 0.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 28

And the minimum cut in Gk satisfies:

C({s} ∪ Sk, Tk ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ ([1, ik) ∪ (ik, n])) + C(S ∩ ([1, ik) ∪ (ik, n]), {t})

+ C(S ∩ [1, n], T ∩ [1, n])

}
+ wik .

Therefore, C({s} ∪ Sk−1, Tk−1 ∪ {t}) − C({s} ∪ Sk, Tk ∪ {t}) = −wik , and hence the
minimizer set S is the same for both Gk−1 and Gk.

These two lemmas imply that the only case that will involve an update to the minimum
cut in Gk is when ik ∈ Sk−1 yet ik ∈ Tk, i.e., when node ik changes its status from an s-node
in Gk−1 to a t-node in Gk. It is shown next that in this case, if there is any node j < ik (on
the left of ik) that does not change its status from Gk−1 to Gk (i.e., either j is an s-node in
both Gk−1 and Gk or j is a t-node in both Gk−1 and Gk), then all nodes in the interval [1, j]
do not change their status from Gk−1 to Gk; similarly, if there is any node j′ > ik (on the
right of ik) that does not change its status from Gk−1 to Gk, then all nodes in the interval
[j′, n] do not change their status from Gk−1 to Gk. This is proved formally in Lemma 10:

Lemma 10. Suppose that ik ∈ Sk−1 and ik ∈ Tk.

(a) If there is a node j < ik that does not change its status from Gk−1 to Gk (i.e., either
j is an s-node in both Gk−1 and Gk or j is a t-node in both Gk−1 and Gk), then all
nodes in [1, j] do not change their status from Gk−1 to Gk;

(b) If there is a node j′ > ik that does not change its status from Gk−1 to Gk, then all
nodes in [j′, n] do not change their status from Gk−1 to Gk.

Proof. (a) The minimum cut in Gk−1 satisfies:

C({s} ∪ Sk−1, Tk−1 ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})
}

= min
S∩[1,j]

C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ min
S∩[j,n]

{
C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})

}
.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 29

And the minimum cut in Gk satisfies:

C({s} ∪ Sk, Tk ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})
}

= min
S∩[1,j]

C({s} ∪ (S ∩ [1, j]), (T ∩ [1, j]) ∪ {t})

+ min
S∩[j,n]

{
C(S ∩ [j, n], T ∩ [j, n]) + C({s}, T ∩ (j, n]) + C(S ∩ (j, n], {t})

}
.

Since the arc capacities other than (s, ik) and (ik, t) in these two cut capacities are
respectively the same, and the status of j does not change from Gk−1 to Gk, the
expressions C({s}∪ (S∩ [1, j]), (T ∩ [1, j])∪{t}) are of the same value for both graphs.
As a result, the minimizer set S ∩ [1, j] is the same for both Gk−1 and Gk.

(b) The minimum cut in Gk−1 satisfies:

C({s} ∪ Sk−1, Tk−1 ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

+ C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t})
}

= min
S∩[1,j′]

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

}
+ min

S∩[j′,n]
C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t}).

And the minimum cut in Gk satisfies:

C({s} ∪ Sk, Tk ∪ {t}) = min
∅⊆S⊆V

C({s} ∪ S, T ∪ {t})

= min
∅⊆S⊆V

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

+ C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t})
}

= min
S∩[1,j′]

{
C({s}, T ∩ [1, j′)) + C(S ∩ [1, j′), {t}) + C(S ∩ [1, j′], T ∩ [1, j′])

}
+ min

S∩[j′,n]
C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t}).

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 30

Since the arc capacities other than (s, ik) and (ik, t) in these two cut capacities are
respectively the same, and the status of j′ does not change from Gk−1 to Gk, the
expressions C({s} ∪ (S ∩ [j′, n]), (T ∩ [j′, n]) ∪ {t}) are of the same value for both
graphs. As a result, the minimizer set S ∩ [j′, n] is the same for both Gk−1 and Gk.

Lemma 10 is illustrated in Figure 5.3.

Figure 5.3: Illustration of Lemma 10. ik ∈ Sk−1 (labeled s on top). If there is a node j < ik
that does not change its status from Gk−1 to Gk (i.e., either j is an s-node in both Gk−1 and
Gk or j is a t-node in both Gk−1 and Gk), then all nodes in [1, j] do not change their status
from Gk−1 to Gk; if there is a node j′ > ik that does not change its status from Gk−1 to Gk,
then all nodes in [j′, n] do not change their status from Gk−1 to Gk.

If there is a non-empty set of nodes that change their status from s in Gk−1 to t in Gk, it
must include ik (otherwise by Lemma 8 and Lemma 9, none of the nodes changes its status,
which is a contradiction). Among all the nodes in V = [1, n] that change from s in Gk−1

to t in Gk, we denote the smallest node index as i∗k1 and the largest node index as i∗k2, thus
i∗k1 ≤ ik ≤ i∗k2. All nodes in the interval [i∗k1, i

∗
k2] must change their status from s in Gk−1

to t in Gk, because if there is a node j ∈ [i∗k1, i
∗
k2] \ {ik} whose status does not change, then

Lemma 10 implies that either the status of i∗k1 does not change (when j < ik) or the status
of i∗k2 does not change (when j > ik), which contradicts the choice of these nodes as nodes
that do change their status. We conclude that if ik changes its status, then all nodes that
change their status form an interval of s-nodes containing ik. This is stated in the following
corollary:

Corollary 11. If ik ∈ Sk−1, then all the nodes that change their status from s in Gk−1 to t
in Gk must form a (possibly empty) interval of s-nodes containing ik in Gk−1.

Corollary 11 is illustrated in Figure 5.4. Note that [i∗k1, i
∗
k2] is a sub-interval of the s-

interval w.r.t. node ik in Gk−1, [ik`, ikr]. Using Corollary 11 the problem of computing the
minimum cut in Gk from the minimum cut in Gk−1 is reduced to the problem of identifying
the interval [i∗k1, i

∗
k2].

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 31

Figure 5.4: Illustration of Corollary 11. ik ∈ Sk−1. Nodes are labeled on top s if they are
s-nodes in Gk−1 or Gk. Nodes are labeled on top t if they are t-nodes in Gk−1 or Gk. All
s-nodes in [i∗k1, i

∗
k2] (possibly empty) in Gk−1, containing ik, change to t-nodes in Gk. Note

that [i∗k1, i
∗
k2] is a sub-interval of the s-interval w.r.t. node ik in Gk−1, [ik`, ikr].

Finding Node Status Change Interval

To identify the node status change interval [i∗k1, i
∗
k2], we have the following lemma:

Lemma 12. The node status change interval [i∗k1, i
∗
k2] is the optimal solution to the following

optimization problem for Gk:

min
[ik1,ik2]

C({s}, [ik1, ik2]) + C([ik`, ikr] \ [ik1, ik2], {t})

+ C([ik`, ikr] \ [ik1, ik2], [ik1, ik2] ∪ {ik` − 1, ikr + 1})
s.t. [ik1, ik2] = ∅ or ik ∈ [ik1, ik2] ⊆ [ik`, ikr]

(5.11)

Proof. The minimum cut (Sk, Tk) in Gk satisfies:

C({s} ∪ Sk, Tk ∪ {t}) = min
(S,T)

C({s} ∪ S, T ∪ {t})

= min
(S,T)

{
C({s} ∪ (S ∩ [1, ik` − 1]), (T ∩ [1, ik` − 1]) ∪ {t})

+ C({s}, T ∩ [ik`, ikr]) + C(S ∩ [ik`, ikr], {t})
+ C(S ∩ [ik` − 1, ikr + 1], T ∩ [ik` − 1, ikr + 1])

+ C({s} ∪ (S ∩ [ikr + 1, n]), (T ∩ [ikr + 1, n]) ∪ {t})
}

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 32

This minimization problem can be written as the sum of three minimization problems:

= min
S∩[1,ik`−1]

C({s} ∪ (S ∩ [1, ik` − 1]), (T ∩ [1, ik` − 1]) ∪ {t}) (5.12)

+ min
T∩[ik`,ikr]

{
C({s}, T ∩ [ik`, ikr]) + C(S ∩ [ik`, ikr], {t}) (5.13)

+ C(S ∩ [ik` − 1, ikr + 1], T ∩ [ik` − 1, ikr + 1])

}
+ min

S∩[ikr+1,n]
C({s} ∪ (S ∩ [ikr + 1, n]), (T ∩ [ikr + 1, n]) ∪ {t}). (5.14)

By Corollary 11, the minimizer set S∩ [1, ik`−1] in subproblem (5.12) is Sk−1∩ [1, ik`−1]
and the minimizer set S ∩ [ikr + 1, n] in subproblem (5.14) is Sk−1 ∩ [ikr + 1, n].

It remains to solve subproblem (5.13). Recall that since ik` − 1 and ikr + 1 are outside
an s-interval, they are both t-nodes in Gk, therefore, S ∩ [ik`− 1, ikr + 1] = S ∩ [ik`, ikr]. For
[ik1, ik2] ⊆ [ik`, ikr] the interval of nodes that change their status from s to t, that must contain
ik if non-empty (Corollary 11, S ∩ [ik`, ikr] = [ik`, ikr] \ [ik1, ik2], and T ∩ [ik`, ikr] = [ik1, ik2]).
An interval [ik1, ik2] ⊆ [ik`, ikr] is said to be feasible if it is either empty, [ik1, ik2] = ∅, or else
it contains ik, ik ∈ [ik1, ik2]. The interval [i∗k1, i

∗
k2] is optimal if it is the feasible interval that

minimizes the objective value of subproblem (5.13).
For any feasible interval [ik1, ik2] ⊆ [ik`, ikr], we can re-write the terms in subproblem

(5.13) as:

S ∩ [ik` − 1, ikr + 1] = S ∩ [ik`, ikr] = [ik`, ikr] \ [ik1, ik2], and

T ∩ [ik` − 1, ikr + 1] = (T ∩ [ik`, ikr]) ∪ {ik` − 1, ikr + 1} = [ik1, ik2] ∪ {ik` − 1, ikr + 1}.

Substituting for these expressions in subproblem (5.13), it is rewritten as:

min
[ik1,ik2]

C({s}, [ik1, ik2]) + C([ik`, ikr] \ [ik1, ik2], {t})

+ C([ik`, ikr] \ [ik1, ik2], [ik1, ik2] ∪ {ik` − 1, ikr + 1})
s.t. [ik1, ik2] = ∅ or ik ∈ [ik1, ik2] ⊆ [ik`, ikr]

This completes the proof.

Next, we discuss how to solve the optimization problem (5.11). In the following equations,
let d0,1 = d1,0 = dn,n+1 = dn+1,n = 0.

We evaluate the objective value of problem (5.11) for an empty interval solution, and
compare it to the objective value of the optimal nonempty interval solution. The one that
gives smaller objective value is the optimal solution to problem (5.11). For [ik1, ik2] = ∅, the
objective value of problem (5.11) is:

Z(∅) , C([ik`, ikr], {ik` − 1, ikr + 1, t}) =

ikr∑
i=ik`

ci,t + dik`,ik`−1 + dikr,ikr+1. (5.15)

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 33

Let [̂ik1, îk2] be the optimal solution to the problem (5.11) restricted to nonempty inter-
vals. Let the value of the objective function of problem (5.11) for [̂ik1, îk2] be Z([̂ik1, îk2]). If
Z([̂ik1, îk2]) < Z(∅) then the optimal solution is [i∗k1, i

∗
k2] = [̂ik1, îk2], otherwise [i∗k1, i

∗
k2] = ∅.

We next demonstrate that îk1 and îk2 can be found by solving two independent optimiza-
tion problems:

Lemma 13. The optimal nonempty interval solution, [̂ik1, îk2], can be found by solving two
independent minimization problems for ik1 and ik2 respectively.

Proof. Problem (5.11) that restricted to nonempty intervals is equivalent to

min
ik1:ik`≤ik1≤ik
ik2:ik≤ik2≤ikr

{
C({s}, [ik1, ik]) + C([ik`, ik1), {t}) + C([ik`, ik1), [ik1, ik] ∪ {ik` − 1})

+ C({s}, (ik, ik2]) + C((ik2, ikr], {t}) + C((ik2, ikr], [ik, ik2] ∪ {ikr + 1})
}

= min
ik1:ik`≤ik1≤ik

{
C({s}, [ik1, ik]) + C([ik`, ik1), {t}) + C([ik`, ik1), [ik1, ik] ∪ {ik` − 1})

}
+ min

ik2:ik≤ik2≤ikr

{
C({s}, (ik, ik2]) + C((ik2, ikr], {t}) + C((ik2, ikr], [ik, ik2] ∪ {ikr + 1})

}
, min

ik1:ik`≤ik1≤ik

{
f1(ik1)

}
+ min

ik2:ik≤ik2≤ikr

{
f2(ik2)

}
.

Hence îk1 is found by solving the optimization minik1:ik`≤ik1≤ik{f1(ik1)} and îk2 is found by
solving the optimization problem minik2:ik≤ik2≤ikr{f2(ik2)}.

We first show how to solve problem minik1:ik`≤ik1≤ik{f1(ik1)}. We evaluate the objective
value f1(ik1) for ik1 = ik`, and compare it to the optimal objective value for ik1 ∈ [ik` + 1, ik].
The one that gives smaller objective value is the optimal solution îk1. For ik1 = ik`, the
objective value f1(ik`) is:

f1(ik`) =

ik∑
i=ik`

cs,i. (5.16)

For ik1 ∈ [ik` + 1, ik], we have the following equation to express the objective value f1(ik1):

f1(ik1) =

ik1−1∑
i=ik`

ci,t +

ik∑
i=ik1

cs,i + dik`,ik`−1 + dik1−1,ik1 . (5.17)

Let ĩk1 be the minimizer of f1(ik1) for ik1 ∈ [ik` + 1, ik]. If there are multiple minima, ĩk1

takes the largest index, due to the maximal source set requirement. To summarize,

îk1 =

{
ĩk1, if ik` + 1 ≤ ik and f1(̃ik1) ≤ f1(ik`)

ik`, otherwise.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 34

We next show how to solve problem minik2:ik≤ik2≤ikr{f2(ik2)}. We evaluate the objective
value f2(ik2) for ik2 = ikr, and compare it to the optimal objective value for ik2 ∈ [ik, ikr−1].
The one that gives smaller objective value is the optimal solution îk2. For ik2 = ikr, the
objective value f2(ikr) is

f2(ikr) =

ikr∑
i=ik+1

cs,i. (5.18)

For ik2 ∈ [ik, ikr − 1], we have the following equation to express the objective value f2(ik2):

f2(ik2) =

ik2∑
i=ik+1

cs,i +

ikr∑
i=ik2+1

ci,t + dikr,ikr+1 + dik2+1,ik2 . (5.19)

Let ĩk2 be the minimizer of f2(ik2) for ik2 ∈ [ik, ikr − 1]. If there are multiple minima, ĩk2

takes the smallest index, due to the maximal source set requirement. To summarize,

îk2 =

{
ĩk2, if ik ≤ ikr − 1 and f2(̃ik2) ≤ f2(ikr)

ikr, otherwise.

Finally the value of the objective function of problem (5.11) for [̂ik1, îk2] is

Z([̂ik1, îk2]) = f1(̂ik1) + f2(̂ik2).

Data Structure to Find Node Status Change Interval Efficiently

We observe that Equations (5.15) to (5.19) share two operations, one is sum of capacities of
source adjacent arcs of nodes in an interval [i, j],

∑j
i′=i cs,i′ , and the other is sum of capacities

of sink adjacent arcs of nodes in an interval [i, j],
∑j

i′=i ci′,t. It will be convenient to rewrite
these two sums of capacities as:

j∑
i′=i

cs,i′ =

j∑
i′=1

cs,i′ −
i−1∑
i′=1

cs,i′ ,

j∑
i′=i

ci′,t =

j∑
i′=1

ci′,t −
i−1∑
i′=1

ci′,t.

To derive these sums easily, we maintain two arrays, (sa(i))i=0,1,...,n and (ta(i))i=0,1,...,n. sa(i)
is the sum of capacities of source adjacent arcs of nodes in [1, i] and ta(i) is the sum of
capacities of sink adjacent arcs of nodes in [1, i]. Formally:

sa(0) = 0; sa(i) = C({s}, [1, i]) =
i∑

j=1

cs,j (i = 1, . . . , n); (5.20)

ta(0) = 0; ta(i) = C([1, i], {t}) =
i∑

j=1

cj,t (i = 1, . . . , n). (5.21)

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 35

Note that both arrays can also be defined recursively as

sa(0) = 0; sa(i) = sa(i− 1) + cs,i (i = 1, . . . , n);

ta(0) = 0; ta(i) = ta(i− 1) + ci,t (i = 1, . . . , n).

The two arrays, along with two others to be introduced, will be used throughout the algo-
rithm.

Equations (5.15), (5.16) and (5.18) in terms of the two arrays result in:

Z(∅) =

ikr∑
i=ik`

ci,t + dik`,ik`−1 + dikr,ikr+1 = ta(ikr)− ta(ik` − 1) + dik`,ik`−1 + dikr,ikr+1

f1(ik`) =

ik∑
i=ik`

cs,i = sa(ik)− sa(ik` − 1).

f2(ikr) =

ikr∑
i=ik+1

cs,i = sa(ikr)− sa(ik).

Equation (5.17) can be rewritten as:

f1(ik1) =

ik1−1∑
i=ik`

ci,t +

ik∑
i=ik1

cs,i + dik`,ik`−1 + dik1−1,ik1

=
(
ta(ik1 − 1)− ta(ik` − 1)

)
+
(
sa(ik)− sa(ik1 − 1)

)
+ dik`,ik`−1 + dik1−1,ik1 .

Next we introduce a third array (tms(i))i=0,1,...,n defined as:

tms(i) = ta(i)− sa(i) + di,i+1 (i = 0, 1, . . . , n). (5.22)

With these arrays Equation (5.17) can be simplified to:

f1(ik1) = tms(ik1 − 1)− ta(ik` − 1) + sa(ik) + dik`,ik`−1.

Recall that the above equation is the expression of f1(ik1) for ik1 ∈ [ik` + 1, ik], and we want
to find the minimizer of f1(ik1) for ik1 ∈ [ik` + 1, ik]. The only term in f1(ik1) that depends
on ik1 is tms(ik1− 1), thus the minimizer ĩk1 of f1(ik1), is also the minimizer of tms(ik1− 1),
for ik1 ∈ [ik` + 1, ik]:

ĩk1 = argminik1:ik`+1≤ik1≤ik

{
f1(ik1)

}
= argminik1:ik`+1≤ik1≤ik

{
tms(ik1 − 1)

}
. (5.23)

Similarly, for f2(ik2) (ik2 ∈ [ik, ikr − 1]), Equation (5.19) can be rewritten as:

f2(ik2) =

ik2∑
i=ik+1

cs,i +

ikr∑
i=ik2+1

ci,t + dikr,ikr+1 + dik2+1,ik2

=
(
sa(ik2)− sa(ik)

)
+
(
ta(ikr)− ta(ik2)

)
+ dikr,ikr+1 + dik2+1,ik2 .

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 36

A final, fourth, array (smt(i))i=0,1,...,n is:

smt(i) = sa(i)− ta(i) + di+1,i (i = 0, 1, . . . , n). (5.24)

Then Equation (5.19) can be further simplified to:

f2(ik2) = smt(ik2)− sa(ik) + ta(ikr) + dikr,ikr+1.

Recall that the above equation is the expression of f2(ik2) for ik2 ∈ [ik, ikr − 1], and we want
to find the minimizer of f2(ik2) for ik2 ∈ [ik, ikr − 1]. The only term in f2(ik2) that depends
on ik2 is smt(ik2), thus the minimizer ĩk2 of f2(ik2), is also the minimizer of smt(ik2), for
ik2 ∈ [ik, ikr − 1]:

ĩk2 = argminik2:ik≤ik2≤ikr−1

{
f2(ik2)

}
= argminik2:ik≤ik2≤ikr−1

{
smt(ik2)

}
. (5.25)

To summarize, we introduced here four arrays: (sa(i))i=0,1,...,n in (5.20), (ta(i))i=0,1,...,n in
(5.21), (tms(i))i=0,1,...,n in (5.22) and (smt(i))i=0,1,...,n in (5.24). With the four arrays, ĩk1 is
identified by finding the minimum value of a subarray of array (tms(i))i=0,1,...,n according to
(5.23), ĩk2 is identified by finding the minimum value of a subarray of array (smt(i))i=0,1,...,n

according to (5.25). After we identify ĩk1 and ĩk2, we evaluate and compare f1(ik`) to f1(̃ik1)
to identify îk1, and evaluate and compare f2(ikr) to f2(̃ik2) to identify îk2. The process also
gives us the objective value of Z([̂ik1, îk2]). Finally, we evaluate Z(∅) and compare it to
Z([̂ik1, îk2]) to identify [i∗k1, i

∗
k2]. Evaluating all the above objective values involves querying

different specific elements of the four arrays.
In our algorithm, we implement the four arrays using a data structure introduced in

Appendix B. Using the data structure, the operations of identifying the minimum value
of any subarray of an array; querying a specific element of an array; updating the arrays
from graph Gk−1 to Gk, can all be done efficiently, in complexity of O(log n) per operation.
Therefore the node status change interval [i∗k1, i

∗
k2] and the array updates can be computed

efficiently.

The Complete `1-GIMR-Algorithm

To summarize, the algorithm proceeds from Gk−1 to Gk, by checking the status of node ik.
If this node is an s-node then it is possible that the minimum cut in Gk−1 is changed when
the graph is updated to Gk. In that case, the algorithm identifies the node status change
interval with respect to ik, [i∗k1, i

∗
k2]. If this interval is not empty then the nodes in the interval

change their status from s to t. This triggers a change in the set of s-intervals of Gk−1 by
decomposing one s-interval to up to two new s-intervals in Gk. Once the s-intervals have
been updated, the iteration for k terminates.

We next present the pseudo-code for `1-GIMR-algorithm, followed by explanation of the
subroutines used:

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 37

`1-GIMR-Algorithm
input: {wi, ai}i=1,...,n and {di,i+1, di+1,i}i=1,...,n−1 in `1-GIMR (5.10).
output: An optimal solution {x∗i }i=1,...,n.
begin
1 Sort the ais as ai1 < ai2 < . . . < ain ;
2 initialization();
3 for k := 1, . . . , n:
4 {Update graph}update arrays(ik,−wik , wik);
5 if status(ik) = s then
6 [ik`, ikr] := get s interval(ik);
7 [i∗k1, i

∗
k2] := find status change interval(ik`, ik, ikr);

8 if [i∗k1, i
∗
k2] 6= ∅ then

9 for i ∈ [i∗k1, i
∗
k2]: x∗i := aik , status(i) := t;

10 update s interval(ik`, i
∗
k1, i

∗
k2, ikr);

11 end if
12 end if
13 end for
14 return {x∗i }i=1,...,n;
end

At line 2, We use initialization() to initialize all the data structures for G0 that are needed
in the algorithm, including the set of s-intervals, the four arrays, and the status of all the
nodes. The data structure for the set of s-intervals is introduced in Appendix A. G0 contains
a single s-interval [1, n]. Appendix A.1 shows that initializing the set of s-intervals containing
a single s-interval [1, n] is done in O(1) time using the data structure. The data structure
for the four arrays is introduced in Appendix B. Appendix B.1 shows that initializing the
four arrays for G0 is done in time O(n log n) using the data structure. We implement the
status of all the nodes as a simple boolean array such that status(i) is the status of node
i for i = 1, . . . , n. As all nodes are in the maximal source set in the minimum cut in G0,
thus initially status(i) = s for all i = 1, . . . , n, which is initialized in O(n) time. Hence the
complexity of initialization() is O(n log n).

At line 3, the for loop computes, in the kth iteration, the minimum cut in Gk from
the minimum cut in Gk−1. At line 4 we first call subroutine update arrays(ik,−wik , wik) to
update the values of the four arrays from Gk−1 to Gk. Recall that graph Gk is obtained from
graph Gk−1 by changing only the capacities cs,ik and cik,t. Thus the values of the four arrays
are updated as follows:

∀i ∈ [ik, n] :

sa(i) := sa(i)− wik ;

ta(i) := ta(i) + wik ;

tms(i) := tms(i) + 2wik ;

smt(i) := smt(i)− 2wik .

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 38

Note that the above operations are all to add a same constant to a subarray. We show
in Appendix B.2 that adding a same constant to a subarray of size O(n) can be done
in complexity O(log n) using the data structure for the array. Hence the complexity of
update arrays is O(log n), with a pseudo-code provided in Appendix B.2.

At line 5 we check whether ik is an s-node in Gk−1, that is, whether ik ∈ Sk−1, and if so,
there is a potential change of status of nodes. If ik is an s-node, we proceed to the if statement
to identify the node status change interval [i∗k1, i

∗
k2]. We first find the s-interval [ik`, ikr] w.r.t.

node ik in Gk−1. This is implemented in subroutine [ik`, ikr] := get s interval(ik) at line 6.
The data structure for the (disjoint) s-intervals maintains them sorted in increasing order of
their left endpoints. This allows to identify [ik`, ikr] with binary search in O(log n) time. The
pseudo-code of get s interval is given in Appendix A.2. With the values of ik and [ik`, ikr],
the algorithm proceeds to subroutine [i∗k1, i

∗
k2] := find status change interval(ik`, ik, ikr) at line

7 to identify [i∗k1, i
∗
k2] by solving the optimization problem (5.11) according to the procedure

shown in Section §5.6. Appendix B shows that using the data structure, it takes O(log n)
time to identify the minimum value of any subarray of an array and O(log n) time to query a
specific element of an array. Hence the complexity of find status change interval is O(log n).
The pseudo-code for find status change interval is in Appendix B.3.

If [i∗k1, i
∗
k2] is nonempty, checked at line 8, we proceed to line 9 to record the optimal

values of all xi for all node i in the node status change interval [i∗k1, i
∗
k2], as x∗i = aik , and

update the status of node i from s in Gk−1 to t in Gk. The s-interval [ik`, ikr] in Gk−1 is
then decomposed into at most two new nonempty s-intervals in Gk, [ik`, i

∗
k1− 1] (if i∗k1 > ik`)

and [i∗k2 + 1, ikr] (if i∗k2 < ikr), while all the other s-intervals in Gk−1 remain unchanged in
Gk. This is achieved by subroutine update s interval(ik`, i

∗
k1, i

∗
k2, ikr) at line 10 by removing

the s-interval [ik`, ikr] from the data structure and inserting the decomposed nonempty s-
intervals [ik`, i

∗
k1 − 1] and [i∗k2 + 1, ikr] into the data structure. Appendix A.3 shows that the

data structure can complete the above operations, while keeping the s-intervals sorted, in
O(log n) time. Hence the complexity of update s interval is O(log n). The pseudo-code of
update s interval is in Appendix A.3. The optimal solution is returned at line 14.

It takes O(n log n) time to sort the breakpoints ais. In each iteration of the for loop
starting at line 3, each of the four subroutines called takes O(log n) time. For each node
i ∈ V = [1, n], its corresponding decision variable gets optimal value assigned exactly once
and it changes status from s to t exactly once over the n iterations. Thus the amortized
complexity of line 9 is O(1) in each iteration. Therefore each iteration takes amortized time
O(log n). This completes the proof of Theorem 7.

In addition, reading the input data and output the optimal solution take O(n) time in
total. Thus the total complexity of `1-GIMR-Algorithm is O(n log n). We therefore conclude
that,

Theorem 14. `1-GIMR-Algorithm solves problem `1-GIMR (5.10) in O(n log n) time.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 39

5.7 Extending `1-GIMR-Algorithm to

GIMR-Algorithm

The key ideas used in `1-GIMR-algorithm are extended here for GIMR (5.1) of general convex
piecewise linear deviation functions. The adjustments required are described below.

First we note that without loss of generality, any convex piecewise linear deviation func-
tion fpli (xi) with box constraints for the variable `i ≤ xi ≤ ui, is equivalent to a convex
piecewise linear function without the box constraints:

f̃pli (xi) =


fpli (`i)−M(xi − `i) for xi < `i,

fpli (xi) for `i ≤ xi ≤ ui,

fpli (ui) +M(xi − ui) for xi > ui,

for M sufficiently large. Therefore GIMR is unconstrained, without loss of generality, with
the first piece of each convex piecewise linear function having negative (non-positive) slope
(wi,0 = −M) and the last piece of each convex piecewise linear function having positive
(non-negative) slope (wi,qi = M).

The running time of GIMR-algorithm is proved in Theorem 15:

Theorem 15. GIMR (5.1) is solved in O(q log n) time, where q is the total number of
breakpoints of the n arbitrary convex piecewise linear deviation functions.

Proof. For GIMR (5.1), the structure of G0 remains as in Figure 5.1 as for `1-GIMR (5.10),
with cs,i = −wi,0 > 0 and ci,t = 0 for all i = 1, . . . , n. Thus the minimum cut in G0 is
({s} ∪ V, {t}). Hence subroutine initialization() is still valid for GIMR (5.1) in the same
complexity.

For GIMR (5.1), as for `1-GIMR (5.10), all arc capacities other than cs,ik and cik,t are the
same for both Gk−1 and Gk. But the construction of Gk from Gk−1 is more complicated than
that in `1-GIMR. Recall that from Gk−1 to Gk, the right sub-gradient of fplik changes from
wik,jk−1 to wik,jk . Thus depending on the signs of wik,jk−1 and wik,jk , we have the following
three possible cases:

Case 1. wik,jk−1 ≤ 0, wik,jk ≤ 0: cs,ik is changed from −wik,jk−1 to −wik,jk .

Case 2. wik,jk−1 ≤ 0, wik,jk ≥ 0: cs,ik is changed from −wik,jk−1 to 0 and cik,t is changed
from 0 to wik,jk .

Case 3. wik,jk−1 ≥ 0, wik,jk ≥ 0: cik,t is changed from wik,jk−1 to wik,jk .

The capacities of other arcs do not change.
Accordingly, the four arrays are updated for each one of these three cases as follows:

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 40

Case 1. wik,jk−1 ≤ 0, wik,jk ≤ 0:

∀i ∈ [ik, n] :

sa(i) := sa(i)− (wik,jk − wik,jk−1);

tms(i) := tms(i) + (wik,jk − wik,jk−1);

smt(i) := smt(i)− (wik,jk − wik,jk−1).

Case 2. wik,jk−1 ≤ 0, wik,jk ≥ 0:

∀i ∈ [ik, n] :

sa(i) := sa(i) + wik,jk−1;

ta(i) := ta(i) + wik,jk ;

tms(i) := tms(i) + (wik,jk − wik,jk−1);

smt(i) := smt(i)− (wik,jk − wik,jk−1).

Case 3. wik,jk−1 ≥ 0, wik,jk ≥ 0:

∀i ∈ [ik, n] :

ta(i) := ta(i) + (wik,jk − wik,jk−1);

tms(i) := tms(i) + (wik,jk − wik,jk−1);

smt(i) := smt(i)− (wik,jk − wik,jk−1).

Although seemingly more complicated, all the above operations amount to adding a constant
to a subarray, which can be done efficiently using the data structure for the four arrays. The
above update is done by calling the subroutine update arrays(ik, wik,jk−1, wik,jk) in complexity
O(log n) (see Appendix B.2 for pseudo-code). Note that the `1 deviation function in `1-GIMR
(5.10) is a special case of Case 2 above where wik,jk−1 < 0, wik,jk > 0 and −wik,jk−1 = wik,jk .

On the other hand, since all arc capacities other than cs,ik and cik,t are the same for both
Gk−1 and Gk, Lemma 8, Lemma 9, Lemma 10 and Corollary 11 for `1-GIMR (5.10) hold
true for GIMR (5.1). As a result, the procedure to identify the node status change interval
[i∗k1, i

∗
k2] in graph Gk for `1-GIMR, shown in Section §5.6 and §5.6, also applies to GIMR.

This implies that subroutines get s interval, find status change interval and update s interval
are still valid for GIMR in the same complexity respectively as for `1-GIMR. Thus Theorem
7 holds for GIMR.

The complete GIMR-algorithm is:

GIMR-Algorithm
input: {{ai,1, . . . , ai,qi}, {wi,0, . . . , wi,qi}}i=1,...,n and {di,i+1, di+1,i}i=1,...,n−1 in GIMR (5.1).
output: An optimal solution {x∗i }i=1,...,n.
begin

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 41

Sort the breakpoints of all the n convex piecewise linear functions as ai1,j1 < ai2,j2 <
. . . < aiq ,jq ;

initialization();

for k := 1, . . . , q:

{Update graph}update arrays(ik, wik,jk−1, wik,jk);

if status(ik) = s then

[ik`, ikr] := get s interval(ik);

[i∗k1, i
∗
k2] := find status change interval(ik`, ik, ikr);

if [i∗k1, i
∗
k2] 6= ∅ then

for i ∈ [i∗k1, i
∗
k2]: x∗i := aik,jk , status(i) := t;

update s interval(ik`, i
∗
k1, i

∗
k2, ikr);

end if

end if

end for

return {x∗i }i=1,...,n;

end

Reading the input data takes O(q) time. Sorting the q breakpoints from n ordered lists
takes O(q log n) time [27]. The amortized complexity of each iteration in the for loop remains
O(log n), thus for the q iterations the total complexity is O(q log n). Finally it takes O(n)
time to output the optimal solution. Therefore the total complexity of GIMR-Algorithm is
O(q log n).

Remark 16. The discussion above and algorithms’ presentation assume that all breakpoints
are distinct. However, when this is not the case and a breakpoint is shared by more than one
function, the algorithms still work in the same way, by breaking ties arbitrarily: A breakpoint
is associated with a function or a variable, or with multiple functions and variables. The
ordering of the variables that correspond to the same breakpoint can be selected arbitrary.
To see that, consider a “perturbed” problem, in which small perturbations are applied to the
original shared breakpoints so as to break the ties. The values that the optimal variables
would then assume are either values of the breakpoints or the perturbed breakpoints. Since
the perturbations can be made arbitrarily small, it follows that the optimal variables values
will be among the “un-perturbed” breakpoints.

Remark 17. GIMR-Algorithm also works for GIMR (5.1) on integer valued variables. In
[44] it is proved in the Threshold Theorem (Theorem 3.1) that the integer optimal solution
can only change when at least one integer sub-gradient, f ′(x) = f(x + 1) − f(x), changes.

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 42

This implies that, for the piecewise linear functions studied here, the only possible optimal
values of the variables are the breakpoints rounded up or down. In contrast to Lemma 4
for the continuous case that states that the optimal values reside at the breakpoints, here the
optimal values can only be the breakpoints rounded up or down (follows from [44]). Therefore
the running time of GIMR-Algorithm for the integer version of GIMR is the same as for the
continuous version, O(q log n).

5.8 Experimental Study

We implement GIMR-Algorithm in C++ in Microsoft Visual Studio 2015. We use the “set” data
structure object in C++ standard template library (STL) to maintain the set of s-intervals
in the algorithm. The dynamic path data structure has been implemented according to [97].
In order to assess the performance of GIMR-Algorithm in practice, we compare our software
implementation with Gurobi (version 6.5.2), a commercial linear programming solver, on
30 simulated data sets of various sizes. Both algorithms are run on the same laptop with
Intel(R) Core i7-6820HQ CPU at 2.70GHz, 32GB RAM, and 64-bit Windows 10 operating
system.

The GIMR problem can be formulated as a linear programming problem: Let bi,j =

fpli (ai,j) for i = 1, . . . , n; j = 1, . . . , qi. It is easy to see that the following linear programming
problem has the same optimal solution as GIMR (5.1), where ui is the upper envelope of
the qi lines,

{
wi,0(xi − ai,1) + bi,1, {wi,j(xi − ai,j) + bi,j}j=1,...,qi

}
, which correspond to the qi

linear pieces of function fpli (xi):

min
{ui,xi}i=1,...,n

{zi,i+1,zi+1,i}i=1,...,n−1

n∑
i=1

ui +
n−1∑
i=1

di,i+1zi,i+1 +
n−1∑
i=1

di+1,izi+1,i

s.t. ui ≥ wi,0(xi − ai,1) + bi,1, i = 1, . . . , n

ui ≥ wi,j(xi − ai,j) + bi,j, i = 1, . . . , n; j = 1, . . . , qi

xi − xi+1 ≤ zi,i+1, i = 1, . . . , n− 1

xi+1 − xi ≤ zi+1,i, i = 1, . . . , n− 1

`i ≤ xi ≤ ui, i = 1, . . . , n

zi,i+1, zi+1,i ≥ 0, i = 1, . . . , n− 1.

The simulated data sets. In the generated data sets there are no box constraints. For
each convex piecewise linear deviation function, we let the slope of the first linear piece
be negative and the slope of the last linear piece be positive. That guarantees that the
problem has an optimal solution in a bounded interval. In the separation terms, we set
di,i+1 = di+1,i = di, thus di,i+1(xi − xi+1)+ + di+1,i(xi+1 − xi)+ = di|xi − xi+1|. We set

the number of breakpoints of each piecewise linear function fpli (xi), qi, to be all equal to
a common value q̄. Thus the total number of breakpoints of the n convex piecewise linear

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 43

functions is q = nq̄. For each pair of (n, q̄), we generate 5 random problem instances, by
randomly generating 5 groups of q̄+ 1 slope values, q̄ breakpoints (for each convex piecewise
linear deviation function) and di coefficients for the separation terms. The slopes of each
fpli (xi) are randomly generated in increasing order as follows: We first sample the value of
wi,0 from a uniform distribution on (−q̄, 0). Each subsequent breakpoint wi,j (j = 1, . . . , qi)
is generated by adding a uniformly sampled random real value from (0, 100) to wi,j−1. The

breakpoints of fpli (xi) are generated in increasing order as follows: A first value, denoted
as ai,0, is sampled with uniform distribution from (−q̄, 0). This value is not a breakpoint.
Each subsequent breakpoint ai,j (j = 1, . . . , qi) is generated by adding a uniformly sampled
real value from (0, 100) to ai,j−1. This guarantees that the generated slopes and breakpoints
are strictly increasing in each convex piecewise linear function. Each di value is sampled
uniformly from the interval (0, q̄).

We compare the average running times of GIMR-Algorithm and Gurobi for the 5 random
instances of GIMR for each pair of (n, q̄). We use default parameters in calling the Gurobi
linear programming solver. We report the average running times(standard deviations) for
all six families of problem instances in Table 5.2.

Table 5.2: Running time (in seconds) comparison between GIMR-Algorithm and Gurobi for
solving GIMR (5.1). The numbers reported are the average running times(standard devia-
tions).

Time (in seconds)
(n, q̄) GIMR-Algorithm Gurobi
(100, 100) 0.17(0.013) 1.64(0.034)
(100, 1000) 1.47(0.079) 15.59(0.29)
(1000, 100) 1.97(0.035) 16.37(0.50)
(1000, 1000) 16.33(0.12) 148.46(0.40)
(1000, 10000) 174.06(9.86) 1608.36(61.66)
(10000, 1000) 190.53(3.62) 1559.07(63.41)

From Table 5.2 one can see that GIMR-Algorithm is approximately 10 times faster than
Gurobi for each problem size with a smaller standard deviation.

5.9 Concluding Remarks

We describe here an efficient algorithm that solves GIMR (5.1), generalizing isotonic median
regression and a class of fused lasso problems with wide applications in signal processing,
bioinformatics and statistical learning. The algorithm proposed here is the first known
unified, and most efficient in terms of complexity to date, for isotonic median regression
(IMR), simple isotonic median regression (SIMR), and fused lasso problems with convex
piecewise linear deviation functions. The latter includes the quantile fused lasso (Q-FL) and

CHAPTER 5. MIN-CUT-BASED ALGORITHM FOR MRF ON PATH: SPEED-UP OF
NEARLY-ISOTONIC MEDIAN REGRESSION AND GENERALIZATIONS 44

the quantile weighted fused lasso (Q-wFL) problems. For all these problems our algorithm
improves or matches on previous complexities of a collection of specialized algorithms and
offers a unified framework for all these problems. The unified framework here is also amenable
to extensions to other generalized versions of GIMR, that include generalized isotonic median
regression on simple structure graphs, such as directed trees or cycles. The algorithm devised
here is also shown to work well in practice, as demonstrated in an empirical study.

45

Chapter 6

A Lot-sizing-linked Algorithm for
MRF on Path

Recall that the formulation of MRF-BL on a path graph of general convex deviation functions
is:

(MRF-BL-PATH) min
x1,...,xn

n∑
i=1

fi(xi) +
n−1∑
i=1

di,i+1(xi − xi+1)+ +
n−1∑
i=1

di+1,i(xi+1 − xi)+

s.t. `i ≤ xi ≤ ui, i = 1, . . . , n.

(6.1)

In this chapter, we devise a fast polynomial time algorithm to solve MRF-BL-PATH of convex
L-Lipschitz deviation functions fi(xi). Recall that a function f(x) (x ∈ R) is L-Lipschitz
continous if there exists an L > 0 such that for any x, x′ ∈ R, |f(x)− f(x′)| ≤ L|x− x′|.

6.1 Comparison with Existing Best Algorithms

We give an algorithm to solve MRF-BL-PATH (6.1), of convex L-Lipschitz deviation func-
tions and arbitrary coefficients di,i+1, di+1,i ≥ 0, in time complexity ofO(n(log n+log U

ε
) log(nDU

ε
)),

where D = max{L,maxi{di,i+1, di+1,i}}.
Prior to this work, the fastest algorithm for MRF-BL-PATH of convex L-Lipschitz devi-

ation functions is by direct application of H01-algorithm in [44] for MRF-BL from arbitrary
graphs to path graphs. Recall that H01-algorithm has run time O(nm log n2

m
+ n log U

ε
).

When the graph is a path graph, m = O(n), hence the complexity of H01-algorithm is
O(n2 log n+n log U

ε
). The algorithm presented here improves over this prior best complexity

in terms of parameter n by a factor of O(n).
There exist faster specialized algorithms for MRF-BL-PATH of specific forms of deviation

and separation functions. For convex quadratic deviation functions and absolute value (`1-

CHAPTER 6. A LOT-SIZING-LINKED ALGORITHM FOR MRF ON PATH 46

norm) separation functions of same coefficient λ > 0:

min
x1,...,xn

1

2

n∑
i=1

(xi − ai)2 + λ

n−1∑
i=1

|xi − xi+1|, (6.2)

Johnson in [59] gave an efficient O(n) algorithm by dynamic programming. Hoefling in [55]
gave an efficient algorithm that finds the solution for all values of λ ≥ 0 of problem (6.2) in
a total time complexity of O(n log n). Tibshirani et al. in [102] studied a “nearly-isotonic
regression” model which is a special case of MRF-BL-PATH with convex quadratic deviation
functions and separation functions of “one-sided” penalty:

(Nearly-isotonic regression) min
x1,...,xn

1

2

n∑
i=1

(xi − ai)2 + λ

n−1∑
i=1

(xi − xi+1)+. (6.3)

They gave an efficient algorithm that solves the solution for all values of λ ≥ 0 of nearly-
isotonic regression (6.3) in time O(n log n). Comparing with the above faster specialized
algorithms for the case of convex quadratic deviation functions, the algorithm presented
here is one unified algorithm applicable to a broader class of arbitrary convex deviation
functions at an additional cost to the complexity of only some logarithmic factors.

6.2 A Lot-sizing-linked Algorithm

Our algorithm works on the following equivalent formulation of MRF-BL-PATH:

(MRF-BL-PATH) min
{xi}i=1,...,n

{zi,i+1,zi+1,i}i=1,...,n−1

n∑
i=1

fi(xi) +
n−1∑
i=1

di,i+1zi,i+1 +
n−1∑
i=1

di+1,izi+1,i

s.t. xi − xi+1 ≤ zi,i+1, i = 1, . . . , n− 1

xi+1 − xi ≤ zi+1,i, i = 1, . . . , n− 1

`i ≤ xi ≤ ui, i = 1, . . . , n

zi,i+1, zi+1,i ≥ 0, i = 1, . . . , n− 1.

(6.4)

Our algorithm leverages two existing results in [2] and [1]. We consider the dual problem
of MRF-BL-PATH (6.4), which was discussed in [2] for the more general MRF problem
(1.1) on arbitrary directed graphs. Following the primal-dual transformation in [2], we
show that the dual problem is a convex minimum cost network flow problem defined on a
simple structure graph (almost like a path graph). It was shown in [2] that the optimal
objective values of the primal MRF-BL-PATH problem and the dual convex minimum cost
network flow problem are equal. Ahuja and Hochbaum in [1] studied this specific convex
minimum cost network flow problem as a lot-sizing problem in production planning and gave
an efficient algorithm to solve this problem. Finally, we can compute an optimal solution to

CHAPTER 6. A LOT-SIZING-LINKED ALGORITHM FOR MRF ON PATH 47

the primal MRF-BL-PATH problem from the optimal solution to the dual convex minimum
cost network flow problem by a shortest path computation on the almost-path graph in the
dual network flow problem, which was discussed in [2]. The shortest path computation can
be done efficiently since the underlying graph has simple structure.

As in most places we directly adapt the results in [2] and [1] to our specific problem,
we only highlight the key steps in the adaptation. Note that our notation is significantly
different from that in [2] and [1].

We first remove the box constraints `i ≤ xi ≤ ui, without loss of generality, by modifying
each deviation function fi(xi) as in [2]:

f̃i(xi) =


fi(`i)−M(xi − `i), for xi < `i,

fi(xi), for `i ≤ xi ≤ ui,

fi(ui) +M(xi − ui), for xi > ui,

for a sufficiently large M . As is shown in [2], a sufficient value of M is equal to an upper
bound to the objective function value of MRF-BL-PATH (6.4) minus a lower bound to the
objective function value, both ignoring the constraints xi−xi+1 ≤ zi,i+1 and xi+1−xi ≤ zi+1,i.
As the deviation functions are L-Lipschitz continuous and the separation functions are linear,
the difference between an upper bound and a lower bound of the objective function value is
bounded by O(nDU), where D = max{L,maxi{di,i+1, di+1,i}}. As we solve MRF-BL-PATH
(6.4) on an ε-grid, a minimum violation to the box constrain `i ≤ xi ≤ ui is ε, thus we scale
the bound by 1

ε
. Hence M = O(nDU

ε
).

After removing the box constraints, we construct the dual problem of MRF-BL-PATH
(6.4). We introduce a dual variable µi,i+1 for each constraint xi − xi+1 ≤ zi,i+1 and a dual
variable µi+1,i for each constraint xi+1−xi ≤ zi+1,i. In addition, we introduce a dual variable
µ0,i (unrestricted in sign) for each deviation function fi(xi). For details of constructing the
dual problem, we refer readers to [2]. The dual problem is formulated as follows:

min
{µ0,i}i=1,...,n

{µi,i+1,µi+1,i}i=1,...,n−1

n∑
i=1

C0,i(µ0,i)

s.t. µ1,2 − (µ2,1 + µ0,1) = 0,

µi,i+1 + µi,i−1 − (µi+1,i + µi−1,i + µ0,i) = 0, i = 2, . . . , n− 1

µn,n−1 − (µn−1,n + µ0,n) = 0,

−M ≤ µ0,i ≤M, i = 1, . . . , n

0 ≤ µi,i+1 ≤ di,i+1, i = 1, . . . , n− 1

0 ≤ µi+1,i ≤ di+1,i, i = 1, . . . , n− 1.

(6.5)

Each function C0,i(µ0,i) is defined as C0,i(µ0,i) = −minxi{fi(xi)−µ0,ixi : `i ≤ xi ≤ ui} [2]. It
was shown in [2] that C0,i(µ0,i) is a convex function of µ0,i. Furthermore, as xi takes integer
multiple values of ε, it was shown in [2] that C0,i(µ0,i) is a piecewise linear function whose

CHAPTER 6. A LOT-SIZING-LINKED ALGORITHM FOR MRF ON PATH 48

slopes of the linear pieces are the integer multiple values of ε. Hence the number of linear
pieces in C0,i(µ0,i) is O(ui−`i

ε
).

In dual problem formulation (6.5), we re-define µ0,i as µ0,i + M . Then the equivalent
formulation (6.5) becomes:

min
{µ0,i}i=1,...,n

{µi,i+1,µi+1,i}i=1,...,n−1

n∑
i=1

C0,i(µ0,i)

s.t. µ1,2 − (µ2,1 + µ0,1) = −M,

µi,i+1 + µi,i−1 − (µi+1,i + µi−1,i + µ0,i) = −M, i = 2, . . . , n− 1

µn,n−1 − (µn−1,n + µ0,n) = −M,

0 ≤ µ0,i ≤ 2M, i = 1, . . . , n

0 ≤ µi,i+1 ≤ di,i+1, i = 1, . . . , n− 1

0 ≤ µi+1,i ≤ di+1,i, i = 1, . . . , n− 1.

(6.6)

And function C0,i(µ0,i) is updated to C0,i(µ0,i) = −minxi{fi(xi)−(µ0,i−M)xi : `i ≤ xi ≤ ui}.
This shift of variable µ0,i does not affect the properties of function C0,i(µ0,i) stated above.

The dual problem (6.6) is a convex minimum cost network flow problem. To see this,
consider the graph G = (V,A), where V = {0, 1, 2, . . . , n}, and A = {{(0, i)}i=1,...,n, {(i, i +
1), (i+1, i)}i=1,...,n−1}. The flow value on an arc (0, i) is µ0,i, the flow value on an arc (i, i+1)
is µi,i+1, and the flow value on an arc (i+ 1, i) is µi+1,i. The supply of node 0 is +nM , and
the demand of node i (i = 1, . . . , n) is −M . The cost of flow µ0,i on arc (0, i) is C0,i(µ0,i)
(i = 1, . . . , n). The costs of flows µi,i+1 and µi+1,i on the respective arc (i, i+ 1) and (i+ 1, i)
are all 0. The capacity of arc (0, i) is 2M , the capacity of arc (i, i + 1) is di,i+1, and the
capacity of arc (i + 1, i) is di+1,i. The convex minimum cost network flow problem is a
capacitated dynamic lot-sizing problem with back orders, where node 0 is a production node
and the other nodes 1 to n are demand nodes for period 1 to n. The flows on the arcs are
flows of items through production, inventory forwarding, or back ordering [1]. The convex
minimum cost network flow problem is illustrated in Figure 6.1.

The convex minimum cost network flow problem (6.6) (shown in Figure 6.1) is defined
on a simple structure graph (a path plus an additional node 0), and it has convex costs only
on arcs (0, i), while the costs on arcs (i, i + 1) and (i + 1, i) are all linear (0 costs in our
case). Ahuja and Hochbaum in [1] studied this capacitated dynamic lot-sizing problem in
production planning and gave an efficient algorithm to solve this problem. Their algorithm
solves our problem (6.6) in time O

(
n(log n + log U

ε
) logM

)
= O

(
n(log n + log U

ε
) log(nDU

ε
)
)

[1] (see Remark 19).
Solving the convex minimum cost network flow problem gives an optimal flow solution

{{µ∗0,i}i=1,...,n, {µ∗i,i+1, µ
∗
i+1,i}i=1,...,n−1}. An optimal solution to the primal MRF-BL-PATH

problem (6.4) can be obtained by solving a shortest path problem from node 0 to all other
nodes on an associated graph defined by the original graph G = (V,A) (defining the network
flow problem) and the optimal flow values [2]. This “shortest path” graph is very similar to

CHAPTER 6. A LOT-SIZING-LINKED ALGORITHM FOR MRF ON PATH 49

Figure 6.1: Illustration of the lot-sizing problem, which is a convex minimum cost network
flow problem (6.6). The numbers in parentheses are the supply/demands of respective nodes,
where M = O(nDU

ε
), D = max{L,maxi{di,i+1, di+1,i}}. Flow variable along each arc (i, j)

is µi,j. The cost on an arc (0, i) is a convex cost C0,i(µ0,i) (shown in the figure). The costs
on arcs (i, i+ 1) and (i+ 1, i) are all 0. The capacity of arc (0, i) is 2M , the capacity of arc
(i, i+ 1) is di,i+1, and the capacity of arc (i+ 1, i) is di+1,i. The capacities of the arcs are not
shown in the figure.

the original graph G in that there can only be arcs, in either direction, between node 0 and
node i (i = 1, . . . , n), and between node i and node i+ 1 (i = 1, . . . , n− 1). In the “shortest
path” graph, the cost of an arc between node 0 and node i is the slope, or its negative, of
the linear piece covering µ∗0,i in function C0,i(µ0,i); the cost of an arc between node i and
node i+ 1 is 0. Let d(i) be the shortest path distance from node 0 to node i in the “shortest
path” graph. Since all costs in the “shortest path” graph are integer multiples of ε, so do
all the d(i) distances. It was shown in [2] that x∗i = di (i = 1, . . . , n) is an optimal solution
to the primal MRF-BL-PATH problem (6.4). Constructing the “shortest path” graph takes
O(n log U

ε
), where each O(log U

ε
) term corresponds to finding the linear piece of C0,i(µ0,i)

containing µ∗0,i. Since the “shortest path” graph has a simple structure, we can solve all
the shortest path distances {d(i)}i=1,...,n in O(n log n) time using the Dijkstra’s algorithm
and a binary heap data structure [27]. Hence it takes a total of O

(
n(log n+ log U

ε
)
)

time to
compute an optimal solution to MRF-BL-PATH (6.4) from an optimal flow solution to the
dual problem.

Combining the complexities of the two steps, we conclude that the total complexity of
the algorithm is O

(
n(log n+ log U

ε
) log nDU

ε

)
. Thus we have:

Theorem 18. The MRF-BL-PATH problem (6.1) of convex L-Lipschitz deviation functions
is solved in time O

(
n(log n+ log U

ε
) log nDU

ε

)
, where D = max{L,maxi{di,i+1, di+1,i}}.

Remark 19. In Ahuja and Hochbaum’s algorithm in [1], at each iteration one needs to
evaluate the convex cost C0,i(µ0,i) on a value of argument µ0,i on arc (0, i). In their set-up,
they assume the time complexity to evaluate the convex function C0,i(µ0,i) for any argument
is O(1) time, so they state the complexity as O

(
n(log n+O(1)) log dtot

)
= O(n log n log dtot),

where dtot is the total demand quantity from node 1 to n, which is O(nM) = O(n2DU/ε) in

CHAPTER 6. A LOT-SIZING-LINKED ALGORITHM FOR MRF ON PATH 50

our case. In our set-up, however, we only assume that one can evaluate in O(1) time the
value of the deviation functions fi(xi), not for the functions C0,i(µ0,i). Hence for any value
of argument µ0,i, we do a binary search over the linear pieces of C0,i(µ0,i) to evaluate the
function value of C0,i(µ0,i), which incur an additional complexity of O(log U

ε
).

51

Chapter 7

KKT-based Algorithms for MRF on
Path

The problem studied in this chapter is MRF on a path graph, which is formulated as follows:

(MRF-PATH) min
x1,...,xn

n∑
i=1

fi(xi) +
n−1∑
i=1

hi(xi − xi+1) (7.1)

We assume that the optimal values of the variables in MRF-PATH are all in a bounded
range [−U,U] for some U <∞, which is implied by the objective functions.

Applications of MRF-PATH arise in time-series data analysis, in smoothing function
fitting to data, and in genetic data smoothing. In many practical contexts of time-series
and genetic signal processing, the signals are assumed to be smooth over time and genetic
sequences (e.g. see [67] and the references therein). One problem is that the observed data
do not satisfy this signal smoothness constraint. The MRF-PATH problem [91, 72, 34, 67]
seeks to tackle the problem by adjusting the observed data values such that the adjusted
values are smooth over the time or genetic sequences, while resemble the given observations.
Suppose we observe data at n discrete positions along a sequence. We model the n positions
as n nodes, 1, . . . , n, on a path graph where node i, except nodes 1 and n, has an edge with
node i − 1 and node i. Let ai ∈ R be the observed value at node i, and xi ∈ R be the
adjusted value from ai. For each node i, we introduce a convex deviation function fi(xi; ai)
that penalizes the distance between xi and ai. It is a data fidelity term that fits the adjusted
value to the respective observation. In addition, for each edge [i, i + 1], we introduce a
convex separation function hi(xi − xi+1) that penalizes the distance between xi and xi+1. It
is a regularization term that promotes signal smoothness along the path graph. Hence we
have the formulation of MRF-PATH in (7.1), for which the optimal solution is used as the
adjusted values from the observed values.

In many applications, such as in [67, 110, 108], it is often the case that fi(xi; ai) has
minimum value of 0 when xi = ai, and the function value grows with the distance between
xi and ai enlarges, and hi(xi−xi+1) has minimum value of 0 when xi = xi+1 and the function

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 52

value grows with the distance between xi and xi+1 enlarges. Yet the algorithms presented
here for MRF-PATH do not require these properties to the objective functions, with only
convexity assumed. Thus in the formulation (7.1) we remove the dependency on data ai in
the deviation functions.

MRF-PATH is a special case of MRF where the underlying graph is bi-path graph of arc
set A = {(i, i + 1), (i + 1, i)}i=1,...,n−1. In the formulation of MRF-PATH (7.1), we combine
two separation functions hi,i+1(xi−xi+1) and hi+1,i(xi+1−xi) into a single separation function
hi(xi − xi+1).

We will discuss algorithms to solve MRF-PATH of different (restricted) sub-classes of
convex deviation and separation objective functions. For each sub-class, we will denote it
with a “(deviation/separation)” notation where the “deviation” placeholder specifies the
additional assumptions, beyond convexity, to the deviation functions, and the “separation”
placeholder specifies the additional assumptions, beyond convexity, to the separation func-
tion. We denote the broadest class of general convex deviation and separation functions as
(convex/convex).

In this chapter, we present efficient algorithms to solve MRF-PATH of two different
classes of deviation and separation objective functions. For the class of differentiable convex
deviation functions and strictly convex separation functions (differentiable/strict), we give
an algorithm that solves MRF-PATH in time O(n log2 U

ε
). In the rest of the chapter, we call

this algorithm as (differentiable/strict)-algorithm. If the separation functions are convex
quadratic (`2-norm), (differentiable/strict)-algorithm has complexity O(n log U

ε
).

When the objective functions are from a broader class of general convex deviation and
separation functions (convex/convex), we give another algorithm that solves MRF-PATH
in time O(n2 log2 U

ε
). We call this algorithm as (convex/convex)-algorithm hereafter. If

the separation functions are convex piecewise linear with constant number of pieces, which
include the absolute value (`1-norm) separation functions, or the separation functions are
convex quadratic (`2-norm), (convex/convex)-algorithm has complexity O(n2 log U

ε
).

Both (differentiable/strict)-algorithm and (convex/convex)-algorithm directly solve the
KKT optimality conditions of MRF-PATH. We believe that our KKT-based algorithms are
the first to achieve fastest complexities for MRF problems using this technique.

In the following we compare our algorithms with the best algorithms to date for MRF-
PATH and some of its special cases to illustrate the advantage of our algorithms.

7.1 Comparison with Existing Best Algorithms

(convex/convex) and (differentiable/strict):
The best algorithm for MRF-PATH of the two classes of objective functions, (convex/convex)
and (differentiable/strict), is by direct application of the AHO-algorithm in [2] for MRF on
arbitrary directed graphs.

Recall (in Chapter 1) that the AHO-algorithm finds an ε-accurate solution of MRF of
general convex deviation and separation functions in time O(nm log n2

m
log nU

ε
). In MRF-

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 53

PATH, the graph is a path graph, thus m = O(n), as a result a direct application of
this algorithm leads to an algorithm to solve MRF-PATH of general convex deviation and
separation functions in time O(n2 log n log nU

ε
). The (convex/convex)-algorithm presented

here, of complexity O(n2 log2 U
ε
), is also applicable to general convex deviation and separation

functions. The (convex/convex)-algorithm improves over this existing fastest algorithm in
terms of parameter n by a factor of O(log n).

When the deviation functions are differentiable convex and the separation functions are
strictly convex, the (differentiable/strict)-algorithm presented here, of complexityO(n log2 U

ε
),

is applicable. In this case, the improvement of the (differentiable/strict)-algorithm over the
AHO-algorithm in terms of parameter n is O(n log n), which is more significant.

(convex/“bilinear”):
When the separation functions are “bilinear”, i.e. hi(xi − xi+1) = hi,i+1(xi − xi+1) +
hi+1,i(xi+1−xi) = di,i+1 ·(xi−xi+1)++di+1,i ·(xi+1−xi)+, the MRF-PATH problem becomes a
MRF-BL-PATH problem (6.1). The existing fastest algorithm for MRF-BL-PATH of general
convex deviation functions is by direct application of H01-algorithm in [44], of complexity
O(n2 log n+ n log U

ε
). Since “bilinear” separation functions are not strictly convex, only the

(convex/convex)-algorithm is applicable. In this case, the complexity of the (convex/convex)-
algorithm, O(n2 log U

ε
), is comparable to the above complexity of O(n2 log n+ n log U

ε
).

(`p/`q):
One special case of MRF-PATH, that was proposed in literature [91, 72, 104, 34, 55, 67]
for signal smoothing, has `p-norm deviation functions and `q-norm separation functions (for
fixed p, q ≥ 1), with the separation functions multiplied by a uniform fixed parameter λ > 0:

min
x1,...,xn

n∑
i=1

|xi − ai|p + λ
n−1∑
i=1

|xi − xi+1|q (7.2)

We use two exponents p and q to specify that deviation and separation functions can have
different norms. From the objective functions, one can easily see that the optimal values of
all variables are in the range of [mini{ai},maxi{ai}]. Thus here U = O(maxi{ai}−mini{ai}).

Many algorithms were proposed for problem (7.2) for different values of p and q. The
fastest algorithm for the case of p = q = 1 (`1-norm deviation and separation functions)
has run time O(n log n) presented in Chapter 5. The fastest algorithm for the case of p =
2, q = 1 (`2-norm deviation functions and `1-norm separation functions) has run time O(n)
by Johnson in [59]. The fastest algorithm for the case of p = q = 2 (`2-norm deviation and
separation functions) was given by Hohm et al. in [56] with complexity O(n2). Weinmann
and Storath in [110] studied the case of p = 2 and q > 2. They used the algorithm by
Chambolle and Pock in [19] which was designed to solve a family of more general convex
programming problems. But they did not discuss the complexity of solving this problem
(7.2) of p = 2 and q > 2 with Chambolle and Pock’s algorithm. We derive this complexity
as O(n log U

ε
log 1

ε
). This is the fastest algorithm found in the literatures.

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 54

Weinmann et al. in [108] proposed an iterative minimization algorithm for problem (7.2)
of arbitrary fixed values of p, q ≥ 1 and λ > 0. The algorithm was based on the earlier
work of the same authors in [109]. It was shown in [109] that the iterative minimization
algorithm converges to an optimal solution of problem (7.2). However, they did not prove
the convergence rate of the iterative algorithm.

Consider the (differentiable/strict)-algorithm and (convex/convex)-algorithm presented
here for problem (7.2). When p, q ≥ 2, the deviation functions are differentiable and the sep-
aration functions are strictly convex, hence the (differentiable/strict)-algorithm is applicable,
with complexity O(n log2 U

ε
). In addition, if the separation functions are quadratic (q = 2),

the complexity of the (differentiable/strict)-algorithm becomes O(n log U
ε
). Our results are

faster than the O(n2) algorithm for p = q = 2 by Hohm et al. in [56] and comparable to the
O(n log U

ε
log 1

ε
) result for p = 2 and q > 2 by Weinmann and Storath in [110].

(convex/`q):
In computer vision, Felzenszwalb and Zabih in [37] considered a sequential element labeling
problem that is related to MRF-PATH. In the problem, a label from a discrete set is to be
assigned to each element in the sequence. The problem arises, for example, in pixel labeling
for a pixel along a scanline of video frames. Let the label of the ith element to be assigned
as xi. Suppose xi takes label from set Li. Felzenszwalb and Zabih introduced a Di(xi) cost
for assigning a specific label xi to the ith element of the sequence, and a Vi(xi, xi+1) cost for
assigning specific labels xi ∈ Li and xi+1 ∈ Li+1 to the ith and (i+1)th elements respectively.
The labels of the elements are attained via minimizing the sum of the above two types of
costs over all elements in the sequence [37]:

min
x1,...,xn

n∑
i=1

Di(xi) +
n−1∑
i=1

Vi(xi, xi+1)

s.t. xi ∈ Li, i = 1, . . . , n.

(7.3)

In problem (7.3), the function Vi(xi, xi+1) generalizes the separation function hi(xi − xi+1)
in that the cost is not necessarily a function of the difference between xi and xi+1, xi− xi+1.
Felzenszwalb and Zabih in [37] used dynamic programming to solve the problem. Let ki =
|Li|, and k = maxi{ki}. They showed that the dynamic programming algorithm has run time
complexity of O(nk2). In addition, they showed that, if Vi(xi, xi+1) = |xi−xi+1|q for a given
value of q ≥ 1, the dynamic programming algorithm can be sped up to O(nk) complexity.
In their set-up, the value of k is part of the input, so their dynamic programming algorithm
has polynomial run time.

Applying the dynamic programming algorithm of Felzenszwalb and Zabih to MRF-PATH
yields a pseudo-polynomial algorithm, since the parameter k is not a polynomial quantity
for MRF-PATH. This is because, in order to find an ε-accurate solution in MRF-PATH, the
set of values of each variable xi to be considered in [−U,U] are integer multiples of ε. The
number of such values in [−U,U] is O(U

ε
). Thus k = maxi{ki} = O(U

ε
). Plugging this value

of k into the complexity expression of the dynamic programming algorithm, one attains an

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 55

O(n(U
ε
)2) algorithm for MRF-PATH for general convex deviation and separation functions.

In addition, if the separation functions are of the form hi(xi−xi+1) = |xi−xi+1|q, the speed-up
version of the dynamic programming algorithm leads to an algorithm of complexity O(n(U

ε
))

for MRF-PATH. However, the quantity of U is exponential to the input size of MRF-PATH,
as the value U is given as input with O(logU) bits.

We summarize the above comparison between our algorithms and existing algorithms
in Table 7.1 for the (differentiable/strict)-algorithm and Table 7.2 for the (convex/convex)-
algorithm respectively.

fi(xi) hi(xi − xi+1)
Algorithm Algorithm(s)

here to-date
Strictly

O(n log2 U
ε
)

O(n2 log n log(nU/ε))[2]
Convex O(n(U/ε)2)[37]

Convex and |xi − xi+1|2 O(n log U
ε
)

differentiable O(n2 log n log(nU/ε))[2]
|xi − xi+1|q O(n log2 U

ε
)

O(n(U/ε))[37]
(q > 2)

|xi − xi+1|2 O(n log U
ε
) O(n2)(p = q = 2)[56]|xi − ai|p

(p ≥ 2) |xi − xi+1|q O(n log2 U
ε
)

O(n log(U/ε) log(1/ε))(p = 2, q > 2)[110]
(q > 2) Iterative algorithm(p, q ≥ 2)[108]

Table 7.1: Summary of complexity comparison between the (differentiable/strict)-algorithm
and the recent/best-to-date algorithms.

fi(xi) hi(xi − xi+1)
Algorithm Algorithm(s)

here to-date

Convex

Convex O(n2 log2 U
ε
)

O(n2 log n log(nU/ε))[2]
O(n(U/ε)2)[37]

|xi − xi+1|
O(n2 log U

ε
)

O(n2 log n+ n log(U/ε))[44]
O(n(U/ε))[37]

|xi − xi+1|2 O(n2 log n log(nU/ε))[2]
|xi − xi+1|q O(n2 log2 U

ε
)

O(n(U/ε))[37]
(q > 2)

Table 7.2: Summary of complexity comparison between the (convex/convex)-algorithm
and the recent/best-to-date algorithms. Since the (convex/convex)-algorithm applies to a
broader class of objective functions, it can also be applied to the class of problems shown in
Table 7.1.

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 56

The chapter is organized as follows. Chapter-specialized notations are introduced in
Section §7.2. Then we present our algorithms for MRF-PATH in Section §7.3. We first
present the (differentiable/strict)-algorithm. This algorithm conveys all key ideas that are
shared by the (convex/convex)-algorithm. Then we show how to apply these ideas to derive
the (convex/convex)-algorithm. Concluding remarks are discussed in Section §7.4.

7.2 Additional Notations

In this chapter, the case of convex and differentiable deviation functions includes the as-
sumption that the gradient, or derivative, of function f is available via an oracle such that,
for any ε-accurate argument x, it returns the derivative value f ′(x) in O(1) time.

When a convex function f is not differentiable, f ′(x) denotes a sub-gradient of function
f at argument x. The interval of sub-gradients of a convex function f at input x is denoted
as ∂f(x) = [f ′L(x), f ′R(x)], where f ′L(x) is the left sub-gradient of f , and f ′R(x) is the right
sub-gradient of f . On the ε-grid, the left and right sub-gradient values are:

f ′L(x) = (f(x)− f(x− ε))/ε,
f ′R(x) = (f(x+ ε)− f(x))/ε.

(7.4)

By equations (7.4), the intervals of sub-gradients of function f over input on the ε-grid are
continuous in that f ′R(x) = f ′L(x+ε). For simplicity, we let f ′(−∞) = f ′L(−∞) = f ′R(−∞) =
−∞ and f ′(+∞) = f ′L(+∞) = f ′R(+∞) = +∞.

By the convexity of function f , for any x1 < x2, we have

f ′L(x1) ≤ f ′R(x1) ≤ f ′L(x2) ≤ f ′R(x2). (7.5)

A function f(x) is strictly convex if for any x1 < x2 and λ ∈ (0, 1), we have the following
strict inequality holds:

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).

Given a strictly convex function f(x), for any x1 < x2, the first and third inequalities of
(7.5) hold strictly:

f ′L(x1) < f ′R(x1) ≤ f ′L(x2) < f ′R(x2).

We introduce an inverse operation that, for a convex function h and a given sub-gradient
value g, computes the maximal interval of argument z on the ε-grid, [zL, zR], such that for
any z ∈ [zL, zR], g ∈ ∂h(z), i.e. h′L(z) ≤ g ≤ h′R(z). The maximality of the interval implies
that zL satisfies g ∈ ∂h(zL) and ∀z ≤ zL−ε, h′R(z) < g; similarly, zR satisfies that g ∈ ∂h(zR)
and ∀z ≥ zR + ε, h′L(z) > g. We denote the operation to compute zL as zL := (∂h)−1

L (g),
and the operation to compute zR as zR := (∂h)−1

R (g).
In the above inverse operations, if the given sub-gradient value g is greater than the

range of sub-gradients of function h, we define (∂h)−1
L (g) = (∂h)−1

R (g) = +∞; if the given

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 57

sub-gradient value g is smaller than the range of sub-gradients of function h, we define
(∂h)−1

L (g) = (∂h)−1
R (g) = −∞.

By the convexity of function h, for any two sub-gradient values g1 < g2, we have

(∂h)−1
L (g1) ≤ (∂h)−1

R (g1) ≤ (∂h)−1
L (g2) ≤ (∂h)−1

R (g2).

In addition, if function h is strictly convex, for any sub-gradient value g, we have that
|(∂h)−1

L (g) − (∂h)−1
R (g)| ≤ ε. In the (differentiable/strict)-algorithm for strictly convex sep-

aration functions, it is sufficient to always use either (∂h)−1
L (g) or (∂h)−1

R (g), because both
values maintain ε-accuracy of solution. Hence for strictly convex functions, we define oper-
ation (∂h)−1(g) = (∂h)−1

L (g).
For a given value of g, one can do a binary search to find the values of (∂h)−1

L (g) and
(∂h)−1

R (g) on an interval of length O(U). This is because function h is convex, thus the
operations reduce to finding zeros of monotone sub-gradient functions. The complexity is
O(log U

ε
) for either operation. If function h is convex quadratic (`2-norm) or convex piecewise

linear with constant number of pieces, including `1-norm, then one can compute the sub-
gradient inverses in O(1) time each.

An Equivalent Formulation of MRF-PATH

Both algorithms presented here work on an equivalent formulation of MRF-PATH that we
introduce here. Since each xi is bounded in [−U,U], we have xi−xi+1 bounded in [−2U, 2U].
For each separation function hi, we find its ε-accurate minimizer, ci, in the interval [−2U, 2U].
We assume that 0 ∈ ∂hi(ci). This can be done by binary search over the interval in time
O(log U

ε
) for each separation function hi, with a total O(n log U

ε
) complexity for all the

n− 1 separation functions. Then for each separation function hi(xi − xi+1), we split it into
two convex separation functions, hi,i+1(zi,i+1) and hi+1,i(zi+1,i), with additional two decision
variables zi,i+1 and zi+1,i:

hi,i+1(zi,i+1) = hi(zi,i+1 + ci)− hi(ci),
hi+1,i(zi+1,i) = hi(ci − zi+1,i)− hi(ci).

The split separation functions hi,i+1 and hi+1,i have the following properties:

Proposition 20. The (strict) convexity of function hi implies the (strict) convexity of func-
tions hi,i+1 and hi+1,i. Both functions hi,i+1(zi,i+1) and hi+1,i(zi+1,i) are nondecreasing for
zi,i+1, zi+1,i ≥ 0, and h′i,i+1;R(0), h′i+1,i;R(0) ≥ 0.

Proof. We prove the properties for hi,i+1. The case of hi+1,i can be proved similarly.
If function hi is (strictly) convex, so is function hi(zi,i+1 +ci)−hi(ci), hence by definition,

hi,i+1(zi,i+1) is also (strictly) convex.
By definition, we have h′i,i+1(zi,i+1) = h′i(zi,i+1 + ci). Since 0 ∈ ∂hi(ci), by definition

we have h′i;L(ci) ≤ 0 ≤ h′i;R(ci). As a result, plugging zi,i+1 = 0 into h′i,i+1(zi,i+1), we have

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 58

h′i,i+1;R(0) = h′i;R(ci) ≥ 0. Combining the convexity of hi,i+1(zi,i+1) and h′i,i+1;R(0) ≥ 0, we
have that for any zi,i+1 > 0, h′i,i+1;R(zi,i+1) ≥ h′i,i+1;L(zi,i+1) ≥ h′i,i+1;R(0) ≥ 0. This implies
that hi,i+1(zi,i+1) is nondecreasing for zi,i+1 ≥ 0.

By splitting the separation functions, we introduce the following equivalent formulation
of MRF-PATH (7.1):

(MRF-PATH) min
{xi}i=1,...,n

{zi,i+1,zi+1,i}i=1,...,n−1

n∑
i=1

fi(xi) +
n−1∑
i=1

hi,i+1(zi,i+1) +
n−1∑
i=1

hi+1,i(zi+1,i)

s.t. xi − xi+1 ≤ zi,i+1 + ci, i = 1, . . . , n− 1

xi+1 − xi ≤ zi+1,i − ci, i = 1, . . . , n− 1

zi,i+1, zi+1,i ≥ 0, i = 1, . . . , n− 1.

(7.6)

The equivalence between problem (7.6) and MRF-PATH (7.1) is proved in the following
lemma:

Lemma 21. MRF-PATH (7.1) and problem (7.6) share the same optimal solution.

Proof. Let P ({xi}i=1,...,n) be the objective value of MRF-PATH (7.1) for any given values
x1, . . . , xn. Let P̃ ({zi,i+1, zi+1,i}i=1,...,n−1|{xi}i=1,...,n) be the objective value of problem (7.6)
such that, given the values of {xi}i=1,...,n, the values of the z variables are selected to minimize
the objective function. Note that given xi and xi+1, either xi − xi+1 − ci or xi+1 − xi + ci
must be non-positive. Without loss of generality, let’s assume that xi − xi+1 − ci ≥ 0 and
xi+1 − xi + ci ≤ 0. Then due to the monotonicity of hi,i+1 and hi+1,i on the nonnegative
axis (Proposition 20), we have zi,i+1 = xi − xi+1 − ci and zi+1,i = 0 being the optimal values
for this given pair of xi and xi+1 that minimize the objective. Plugging these two values
of zi,i+1 and zi+1,i into hi,i+1(zi,i+1) and hi+1,i(zi+1,i) respectively, we have hi,i+1(zi,i+1) =
hi,i+1(xi−xi+1−ci) = hi(xi−xi+1−ci+ci)−hi(ci) = hi(xi−xi+1)−hi(ci), and hi+1,i(zi+1,i) =
hi+1,i(0) = hi(ci)−hi(ci) = 0. Applying the above analysis to all pairs of (xi, xi+1), we have:

P̃ ({zi,i+1, zi+1,i}i=1,...,n−1|{xi}i=1,...,n) =
n∑
i=1

fi(xi) +
n−1∑
i=1

hi(xi − xi+1)−
n−1∑
i=1

hi(ci)

= P ({xi}i=1,...,n)−
n−1∑
i=1

hi(ci).

Since
∑n−1

i=1 hi(ci) is a constant, thus solving min{xi}i=1,...,n
P ({xi}i=1,...,n) is equivalent

to solving min{xi}i=1,...,n,{zi,i+1,zi+1,i}i=1,...,n−1
P̃ ({zi,i+1, zi+1,i}i=1,...,n−1|{xi}i=1,...,n). Hence the

lemma holds.

Consequently, we refer to both problems (7.1) and (7.6) as MRF-PATH problem.

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 59

7.3 KKT-based Algorithms

The KKT Optimality Conditions and Overview of the Algorithms

We illustrate the KKT optimality conditions of MRF-PATH (7.6). For each constraint xi −
xi+1 ≤ zi,i+1 +ci, we introduce a dual variable λi,i+1; for each constraint xi+1−xi ≤ zi+1,i−ci,
we introduce a dual variable λi+1,i; for each constraint zi,i+1 ≥ 0, we introduce a dual variable
µi,i+1 and for each constraint zi+1,i ≥ 0, we introduce a dual variable µi+1,i. The KKT
optimality conditions state that,

(
{x∗i }i, {z∗i,i+1, z

∗
i+1,i}i

)
is an optimal solution to MRF-PATH

(7.6) if and only if there exist sub-gradients
(
{f ′i(x∗i)}i, {h′i,i+1(z∗i,i+1), h′i+1,i(z

∗
i+1,i)}i

)
, and

optimal values of the dual variables
(
{λ∗i,i+1, λ

∗
i+1,i}i, {µ∗i,i+1, µ

∗
i+1,i}i

)
such that the following

conditions hold:
f ′1(x∗1) + λ∗1,2 − λ∗2,1 = 0,

f ′i(x
∗
i)− λ∗i−1,i + λ∗i,i+1 + λ∗i,i−1 − λ∗i+1,i = 0, i = 2, . . . , n− 1

f ′n(x∗n)− λ∗n−1,n + λ∗n,n−1 = 0,

(7.7)

{
h′i,i+1(z∗i,i+1)− λ∗i,i+1 − µ∗i,i+1 = 0, i = 1, . . . , n− 1

h′i+1,i(z
∗
i+1,i)− λ∗i+1,i − µ∗i+1,i = 0, i = 1, . . . , n− 1

(7.8)
x∗i − x∗i+1 ≤ z∗i,i+1 + ci, i = 1, . . . , n− 1

x∗i+1 − x∗i ≤ z∗i+1,i − ci, i = 1, . . . , n− 1

z∗i,i+1, z
∗
i+1,i ≥ 0, i = 1, . . . , n− 1

(7.9)

{
λ∗i,i+1, λ

∗
i+1,i ≥ 0, i = 1, . . . , n− 1

µ∗i,i+1, µ
∗
i+1,i ≥ 0, i = 1, . . . , n− 1

(7.10)
(x∗i − x∗i+1 − z∗i,i+1 − ci)λ∗i,i+1 = 0, i = 1, . . . , n− 1

(x∗i+1 − x∗i − z∗i+1,i + ci)λ
∗
i+1,i = 0, i = 1, . . . , n− 1

z∗i,i+1µ
∗
i,i+1 = 0, i = 1, . . . , n− 1

z∗i+1,iµ
∗
i+1,i = 0, i = 1, . . . , n− 1.

(7.11)

Equations (7.7) and (7.8) are stationarity conditions for x and z variables respectively,
inequalities (7.9) and (7.10) are primal and dual feasibility conditions for the primal x, z
variables and the dual λ, µ variables respectively, and equations (7.11) are complementary
slackness conditions.

The algorithms use a trial-and-error procedure to find a solution to the above KKT
optimality conditions: We first guess an optimal value of x∗1. Then we propagate the value
of the guessed x∗1 to determine the (ranges of) optimal values x∗2 to x∗n that satisfy the KKT
optimality conditions. If our guess is correct, i.e. all the equations and inequalities in the
KKT optimality conditions are satisfied, we are done. If not, we will make a next guess to x∗1
and propagate the values to x∗2 until x∗n again following the KKT optimality conditions. We
show that, by the convexity of the deviation and separation functions, we can adopt a binary

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 60

search procedure to converge our guesses to a correct optimal value of x1 exponentially fast.
The optimal value x∗1 also locks the (ranges of) optimal values of x∗2 to x∗n by the propagation
along the KKT optimality conditions.

(Differentiable/Strict)-Algorithm

Recall that the (differentiable/strict)-algorithm solves MRF-PATH of differentiable convex
deviation functions and strictly convex separation functions. With differentiable convex
deviation functions and strictly convex separation functions, we show that if we fix the value
of x1, then all the values of x2 to xn can be uniquely determined by the KKT optimality
conditions. This is proved in the following propagation lemma:

Lemma 22. Given any value of x1, the KKT optimality conditions (7.7), (7.8), (7.9), (7.10)
and (7.11) uniquely determine the other values of x2, . . . , xn.

Proof. We prove the lemma by induction on i from 1 to n. The case of i = 1 is trivial.
Suppose the values of x1, . . . , xi are uniquely determined by x1 for some i (1 ≤ i ≤ n − 1),
we show that the value of xi+1 is also uniquely determined.

Adding up the equations of j = 1, . . . , i in the stationarity conditions (7.7), we have

i∑
j=1

f ′j(xj) = −λi,i+1 + λi+1,i. (7.12)

There are 5 different cases about equation (7.12), depending on the value of
∑i

j=1 f
′
j(xj):

1.
∑i

j=1 f
′
j(xj) > h′i+1,i;R(0) ≥ 0:

By the dual feasibility conditions (7.10), we have λi,i+1, λi+1,i ≥ 0 . Hence λi+1,i ≥∑i
j=1 f

′
j(xj) > 0. If λi+1,i >

∑i
j=1 f

′
j(xj), then λi,i+1 > 0 as well. Then by the

complementary slackness conditions (7.11), we have xi − xi+1 − zi,i+1 − ci = 0 and
xi+1 − xi − zi+1,i + ci = 0. These two equations imply that zi,i+1 + zi+1,i = 0. On the
other hand, by the primal feasibility conditions (7.9)), we have zi,i+1, zi+1,i ≥ 0. As
a result, it must be zi,i+1 = zi+1,i = 0. Then we plug zi+1,i = 0 into the stationarity
condition on zi+1,i in (7.8), we have that there exists a sub-gradient h′i+1,i(0) such that

h′i+1,i(0) = λi+1,i + µi+1,i ≥ λi+1,i >
∑i

j=1 f
′
j(xj) > h′i+1,i;R(0) (µi+1,i ≥ 0 is due to

the dual feasibility conditions (7.10)), which is a contradiction. Therefore we have
λi+1,i =

∑i
j=1 f

′
j(xj) and λi,i+1 = 0. Then by the stationarity condition on zi+1,i in

(7.8), we have that there exists a sub-gradient h′i+1,i(zi+1,i) such that h′i+1,i(zi+1,i) =

λi+1,i + µi+1,i ≥ λi+1,i =
∑i

j=1 f
′
j(xj) > h′i+1,i;R(0). As a result, we have zi+1,i > 0, and

this implies that µi+1,i = 0 by the complementary slackness conditions (7.11). And
since hi+1,i(zi+1,i) is a strictly convex function, zi+1,i is thus uniquely determined by

zi+1,i = (∂hi+1,i)
−1(λi+1,i) = (∂hi+1,i)

−1
(i∑
j=1

f ′j(xj)
)
.

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 61

Since λi+1,i > 0, by the complementary slackness conditions (7.11), we have xi+1 is
uniquely determined by the equation xi+1 = xi + zi+1,i − ci.

2. 0 <
∑i

j=1 f
′
j(xj) ≤ h′i+1,i;R(0):

This case exists only if h′i+1,i;R(0) > 0. By the dual feasibility conditions (7.10), we still

have λi+1,i, λi,i+1 ≥ 0, and thus λi+1,i ≥
∑i

j=1 f
′
j(xj). If λi+1,i > h′i+1,i;R(0), we can de-

rive the same contradiction as Case 1. As a result, it must be 0 <
∑i

j=1 f
′
j(xj) ≤

λi+1,i ≤ h′i+1,i;R(0). Then we consider the stationarity conditions (7.8) on zi+1,i:
h′i+1,i(zi+1,i) = λi+1,i + µi+1,i. If µi+1,i > 0, then by the complementary slackness con-
ditions (7.11), we have zi+1,i = 0. If µi+1,i = 0, then h′i+1,i(zi+1,i) = λi+1,i ≤ h′i+1,i;R(0),
which still implies that zi+1,i = 0 by the strict convexity of hi+1,i. In either case, by the
complementary slackness conditions (7.11) with λi+1,i > 0, we have xi+1 is uniquely
determined by the equation xi+1 = xi + zi+1,i − ci = xi − ci.

3.
∑i

j=1 f
′
j(xj) = 0:

In this case, we have λi,i+1 = λi+1,i. If both λi,i+1 and λi+1,i are positive, then by
the complementary slackness conditions (7.11) on λi,i+1 and λi+1,i, and the primal
feasibility conditions (7.9) on zi,i+1 and zi+1,i, we have zi,i+1 = zi+1,i = 0. As a result,
xi+1 = xi − ci. If λi,i+1 = λi+1,i = 0, we consider the stationarity conditions (7.8) on
both zi,i+1 and zi+1,i. For zi,i+1, we have that there exists a sub-gradient h′i,i+1(zi,i+1)
such that h′i,i+1(zi,i+1) = µi,i+1 ≥ 0. If µi,i+1 ≤ h′i+1,i;R(0), by the strict convexity
of hi,i+1, we have zi,i+1 = 0; otherwise µi,i+1 > h′i+1,i;R(0), then the complementary
slackness condition (7.11) also implies that zi,i+1 = 0. Therefore we always have
zi,i+1 = 0. The same analysis shows that zi+1,i = 0. Then by the primal feasibility
conditions (7.9) on xi and xi+1, we have xi+1 = xi − ci being uniquely determined.

4. −h′i,i+1;R(0) ≤
∑i

j=1 f
′
j(xj) < 0:

This case exists only if h′i,i+1;R(0) > 0, it is symmetric to case 2. By the dual feasibility

conditions (7.10), we have λi+1,i ≥ 0 and λi,i+1 ≥ −
∑i

j=1 f
′
j(xj) > 0. If λi,i+1 >

h′i,i+1;R(0), then λi+1,i > 0. Same as Case 1, it implies that zi,i+1 = zi+1,i = 0. However,
this violates the stationarity conditions (7.8) on zi,i+1 because h′i,i+1(0) = λi,i+1 +
µi,i+1 ≥ λi,i+1 > h′i,i+1;R(0). Therefore we have 0 < λi,i+1 ≤ h′i,i+1;R(0). Then we
consider the stationarity conditions (7.8) on zi,i+1: h′i,i+1(zi,i+1) = λi,i+1 + µi,i+1. If
µi,i+1 > 0, then by the complementary slackness conditions (7.11), we have zi,i+1 = 0.
If µi,i+1 = 0, then h′i,i+1(zi,i+1) = λi,i+1 ≤ h′i,i+1;R(0), which still implies that zi,i+1 =
0 by the strict convexity of hi,i+1. In either case, by the complementary slackness
conditions (7.11) with λi,i+1 > 0, we have xi+1 is uniquely determined by the equation
xi+1 = xi − zi,i+1 − ci = xi − ci.

5.
∑i

j=1 f
′
j(xj) < −h′i,i+1;R(0) ≤ 0:

This case is symmetric to Case 1. Following the same reasoning in Case 1, we can
show that λi,i+1 = −

∑i
j=1 f

′
j(xj) > h′i,i+1;R(0) ≥ 0 and λi+1,i = 0. As a result, we have

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 62

zi+1,i > 0, thus µi,i+1 = 0 by the complementary slackness conditions (7.11). And since
hi,i+1(zi,i+1) is a strictly convex function, zi,i+1 is uniquely determined by

zi,i+1 = (∂hi,i+1)−1(λi,i+1) = (∂hi,i+1)−1
(
−

i∑
j=1

f ′j(xj)
)
.

Since λi,i+1 > 0, by the complementary slackness conditions (7.11), we have xi+1 is
uniquely determined by the equation xi+1 = xi − zi,i+1 − ci.

This completes the proof for the case of i+ 1.

Lemma 22 implies that, given a value of x1, the values of x2 to xn are uniquely determined
by the following iterative equations:

xi+1 = xi + zi − ci, i = 1, . . . , n− 1 (7.13)

where

zi =


(∂hi+1,i)

−1(
∑i

j=1 f
′
j(xj)), if

∑i
j=1 f

′
j(xj) > h′i+1,i;R(0)

0, if − h′i,i+1;R(0) ≤
∑i

j=1 f
′
j(xj) ≤ h′i+1,i;R(0)

−(∂hi,i+1)−1(−
∑i

j=1 f
′
j(xj)), if

∑i
j=1 f

′
j(xj) < −h′i,i+1;R(0).

(7.14)

Based on the convexity of functions fi(xi), hi,i+1(zi,i+1), and hi+1,i(zi+1,i), we have the
following monotonicity property for any two sequences of x1, . . . , xn generated by equations
(7.13) and (7.14):

Corollary 23. Let x
(1)
1 < x

(2)
1 be any two given values of variable x1. Let (x

(1)
1 , x

(1)
2 , . . . , x

(1)
n)

and (x
(2)
1 , x

(2)
2 , . . . , x

(2)
n) be the respective sequence of x values determined by the value of x1

and equations (7.13) and (7.14). Then we have x
(1)
i < x

(2)
i for all i = 1, . . . , n.

Proof. We prove the corollary by induction on i (i = 1, . . . , n). The case of i = 1 holds.

Suppose x
(1)
j < x

(2)
j for all j = 1, . . . , i for some i (1 ≤ i ≤ n− 1), we show that x

(1)
i+1 < x

(2)
i+1.

Due to the convexity of hi,i+1 and hi+1,i, equation (7.14) implies that zi is a nondecreasing
function of

∑i
j=1 f

′
j(xj). On the other hand, since all fj (j = 1, . . . , i) functions are convex, by

the induction hypothesis, we have f ′j(x
(1)
j) ≤ f ′j(x

(2)
j) for j = 1, . . . , i. Hence

∑i
j=1 f

′
j(x

(1)
j) ≤∑i

j=1 f
′
j(x

(2)
j). As a result, we have z

(1)
i ≤ z

(2)
i . Since we have x

(1)
i < x

(2)
i by the induction

hypothesis, we have x
(1)
i+1 = x

(1)
i + z

(1)
i − ci < x

(2)
i + z

(2)
i − ci = x

(2)
i+1.

The only equation in the KKT optimality conditions that a given sequence of x1, . . . , xn
determined by equations (7.13) and (7.14) may violate is the last stationarity condition (7.7)
for xn. This is because xn, λn−1,n and λn,n−1 are determined in the step of computing xn
from xn−1, based on the equation

∑n−1
j=1 f

′
j(xj) = λn,n−1 − λn−1,n, however, the generated

values of xn, λn−1,n and λn,n−1 do not necessarily satisfy the last stationarity condition for

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 63

xn, f ′n(xn) − λn−1,n + λn,n−1 = 0. On the other hand, we observe that if we sum up all the
stationarity conditions (7.7) for the x variables, we have:

n∑
i=1

f ′i(x
∗
i) = 0. (7.15)

The equation for xn in the stationarity conditions (7.7) can be equivalently replaced by
equation (7.15). Hence a sequence of x1, . . . , xn determined by equations (7.13) and (7.14)
satisfy the KKT optimality conditions if and only if equation (7.15) also holds.

The above analysis implies a trial-and-error binary search algorithm to solve the KKT
optimality conditions. In every iteration, we try a value of x1, and compute the values of x2 to
xn based on equations (7.13) and (7.14). Then we check whether equation (7.15) holds for the
generated sequence of x1, . . . , xn. If yes, then the generated sequence of x1, . . . , xn satisfies
the KKT optimality conditions, thus it is an optimal solution to MRF-PATH. Otherwise,
we determine the next value of x1 to try based on the sign of

∑n
i=1 f

′
i(xi) of the currently

generated sequence of x1, . . . , xn: If
∑n

i=1 f
′
i(xi) > 0, we check a smaller value of x1; If∑n

i=1 f
′
i(xi) < 0, we check a larger value of x1. The binary search efficiently locks the

optimal value of x1, so are the optimal values of x2 to xn by equations (7.13) and (7.14).
The complete algorithm is presented as follows:

Algorithm for MRF-PATH of differentiable convex deviation functions fi(xi) and strictly convex
separation functions hi(xi − xi+1):
Step 0: Solve ci = argmin−2U≤zi≤2Uhi(zi) for i = 1, . . . , n−1. Initialize the lower and upper
bounds of the search region of an optimal value of x1 as ` = −U and u = U respectively.
Step 1: Set x1 = b `+u

2ε
cε. Compute the values of x2, . . . , xn based on iterative equations

(7.13) and (7.14):
xi+1 = xi + zi − ci, i = 1, . . . , n− 1

where

zi =


(∂hi+1,i)

−1(
∑i

j=1 f
′
j(xj)), if

∑i
j=1 f

′
j(xj) > h′i+1,i;R(0)

0, if − h′i,i+1;R(0) ≤
∑i

j=1 f
′
j(xj) ≤ h′i+1,i;R(0)

−(∂hi,i+1)−1(−
∑i

j=1 f
′
j(xj)), if

∑i
j=1 f

′
j(xj) < −h′i,i+1;R(0).

Step 2: If u− ` < ε or
∑n

i=1 f
′
i(xi) = 0, return (x1, x2, . . . , xn) and stop.

Step 3: If
∑n

i=1 f
′
i(xi) < 0, set ` = x1 + ε; otherwise set u = x1. Go to Step 1.

The number of different x1 values we need to check in the algorithm is O(log U
ε
). For each

x1 value fixed, the complexity to compute the values of x2, . . . , xn by equations (7.13) and
(7.14) is O(n log U

ε
), where the O(log U

ε
) term corresponds to the complexity of computing

sub-gradient inverse of hi+1,i or hi,i+1 functions to compute zi. Hence the complexity of the
Step 1 to Step 3 is O(n log2 U

ε
). At Step 0, it takes O(n log U

ε
) time to compute the ε-accurate

ci values for i = 1, . . . , n− 1. Thus we have:

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 64

Theorem 24. The MRF-PATH problem of differentiable convex deviation functions and
strictly convex separation functions is solved in O(n log2 U

ε
) time.

Note that if the separation functions hi are convex quadratic, so are the functions hi,i+1

and hi+1,i, then the complexity of sub-gradient inverse isO(1), thus the (differentiable/strict)-
algorithm can be sped-up to O(n log U

ε
) complexity.

(Convex/Convex)-Algorithm

We extend the (differentiable/strict)-algorithm to solve MRF-PATH of arbitrary convex
deviation and separation functions, leading to the (convex/convex)-algorithm.

The impact of the more general assumptions on deviation and separation functions is
two-fold: the non-differentiability of fi(xi) implies that a given xi value corresponds to
a non-singleton interval of sub-gradients ∂fi(xi) = [f ′i;L(xi), f

′
i;R(xi)], instead of a unique

derivative f ′(xi) in the differentiable case; the non-strict convexity of hi,i+1 (and hi+1,i)
implies that a sub-gradient value g can be inversely mapped to a non-singleton interval
of arguments [(∂hi,i+1)−1

L (g), (∂hi,i+1)−1
R (g)] (and [(∂hi+1,i)

−1
L (g), (∂hi+1,i)

−1
R (g)]), instead of a

unique z argument (∂hi,i+1)−1(g) (and (∂hi+1,i)
−1(g)). Both observations imply that, based

on the KKT optimality conditions, a given value of x1 does not lock the other variables
x2, . . . , xn to a unique value respectively, but to unique a range instead.

We first show that, when the sequence of x1 to xi and the corresponding sequence of
sub-gradients f ′1(x1) to f ′i(xi) are fixed, we can extend the proof of Lemma 22 to determine
the range of xi+1 that satisfies the KKT optimality conditions. This is shown in the following
lemma:

Lemma 25. Given a sequences of x1 to xi (for i : 1 ≤ i ≤ n−1), and the corresponding sub-
gradients f ′1(x1) to f ′i(xi), we can determine the range of xi+1, following the KKT optimality
conditions (7.7), (7.8), (7.9), (7.10) and (7.11), with equations (7.16) and (7.17):

xi+1 = xi + zi − ci, (7.16)

where

zi ∈



[
(∂hi+1,i)

−1
L

(∑i
j=1 f

′
j(xj)

)
, (∂hi+1,i)

−1
R

(∑i
j=1 f

′
j(xj)

)]
, if

∑i
j=1 f

′
j(xj) > 0

[
−(∂hi,i+1)−1

R (0), (∂hi+1,i)
−1
R (0)

]
, if

∑i
j=1 f

′
j(xj) = 0

[
−(∂hi,i+1)−1

R

(
−
∑i

j=1 f
′
j(xj)

)
,−(∂hi,i+1)−1

L

(
−
∑i

j=1 f
′
j(xj)

)]
, if

∑i
j=1 f

′
j(xj) < 0.

(7.17)

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 65

Proof. The proof is similar to the induction steps in the proof of Lemma 22. Recall that by
summing up the equations of j = 1, . . . , i in the stationarity conditions (7.7), we have

i∑
j=1

f ′j(xj) = −λi,i+1 + λi+1,i. (7.18)

There are 5 different cases about equation (7.18), depending on the value of
∑i

j=1 f
′
j(xj):

1.
∑i

j=1 f
′
j(xj) > h′i+1,i;R(0) ≥ 0:

Similar to Case 1 in Lemma 22, we first have that λi+1,i =
∑i

j=1 f
′
j(xj) > h′i+1,i;R(0)

and λi,i+1 = 0. Then by the complementary slackness conditions (7.11) for λi+1,i, we
have xi+1 = xi + zi+1,i − ci.
To figure out the range of zi+1,i, we look at the stationarity condition on zi+1,i in (7.8).
We have that h′i+1,i(zi+1,i) = λi+1,i + µi+1,i ≥ λi+1,i > h′i+1,i;R(0). Hence zi+1,i > 0, and
this implies that µi+1,i = 0 by the complementary slackness conditions (7.11). Hence
h′i+1,i(zi+1,i) = λi+1,i =

∑i
j=1 f

′
j(xj). Therefore the range of zi+1,i is

zi+1,i ∈
[
(∂hi+1,i)

−1
L

(i∑
j=1

f ′j(xj)
)
, (∂hi+1,i)

−1
R

(i∑
j=1

f ′j(xj)
)]
.

2. 0 <
∑i

j=1 f
′
j(xj) ≤ h′i+1,i;R(0):

This case exists only if h′i+1,i;R(0) > 0. Similar to Case 2 in Lemma 22, we have

that 0 <
∑i

j=1 f
′
j(xj) ≤ λi+1,i ≤ h′i+1,i;R(0). Thus by the complementary slackness

conditions (7.11) for λi+1,i, we have xi+1 = xi + zi+1,i − ci.
To figure out the range of zi+1,i, we consider two cases. If λi+1,i >

∑i
j=1 f

′
j(xj), then

λi,i+1 > 0 as well, by equation (7.18). This implies that zi+1,i = 0 by the complementary
slackness conditions (7.11) on λi+1,i and λi,i+1, and the primal feasibility conditions
(7.9) on zi+1,i and zi,i+1. Otherwise λi+1,i =

∑i
j=1 f

′
j(xj) and λi,i+1 = 0. Then we

consider the stationarity conditions (7.8) on zi+1,i: h′i+1,i(zi+1,i) = λi+1,i + µi+1,i. If
µi+1,i > 0, then by the complementary slackness conditions (7.11), we have zi+1,i = 0.
Otherwise µi+1,i = 0, and h′i+1,i(zi+1,i) = λi+1,i =

∑i
j=1 f

′
j(xj). Therefore the range of

zi+1,i is

zi+1,i ∈
[
(∂hi+1,i)

−1
L

(i∑
j=1

f ′j(xj)
)
, (∂hi+1,i)

−1
R

(i∑
j=1

f ′j(xj)
)]
.

Note that as 0 <
∑i

j=1 f
′
j(xj) ≤ h′i+1,i;R(0), the above interval contains value 0.

3.
∑i

j=1 f
′
j(xj) = 0:

This is similar to Case 3 in Lemma 22. In this case, we have λi,i+1 = λi+1,i. If
λi,i+1 = λi+1,i > 0, then we have zi+1,i = zi,i+1 = 0, by the complementary slackness

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 66

conditions (7.11) on λi,i+1 and λi+1,i, and the primal feasibility conditions (7.9) on zi,i+1

and zi+1,i. Thus xi+1 = xi− ci. If λi+1,i = λi,i+1 = 0, we have, by the primal feasibility
conditions (7.9):

xi − zi,i+1 − ci ≤ xi+1 ≤ xi + zi+1,i − ci.

We consider the stationarity conditions (7.8) on both zi+1,i and zi,i+1 to figure out
the ranges of zi+1,i and zi,i+1 respectively. For zi+1,i, we have h′i+1,i(zi+1,i) = µi+1,i. If
µi+1,i > 0, then by the complementary slackness conditions (7.11), we have zi+1,i = 0.
Otherwise, µi+1,i = 0, and h′i+1,i(zi+1,i) = 0. Hence the range of zi+1,i is

zi+1,i ∈
[
(∂hi+1,i)

−1
L (0), (∂hi+1,i)

−1
R (0)

]
.

Similarly, for zi,i+1, we have h′i,i+1(zi,i+1) = µi,i+1. If µi,i+1 > 0, we also have zi,i+1 = 0.
Otherwise, µi,i+1 = 0, and h′i,i+1(zi,i+1) = 0. Hence the range of zi,i+1 is

zi,i+1 ∈
[
(∂hi,i+1)−1

L (0), (∂hi,i+1)−1
R (0)

]
.

As a result, we can summarize the range of xi+1 as:

xi+1 = xi + zi − ci, where zi ∈
[
−(∂hi,i+1)−1

R (0), (∂hi+1,i)
−1
R (0)

]
.

4. −h′i,i+1;R(0) ≤
∑i

j=1 f
′
j(xj) < 0:

This case exists only if h′i,i+1;R(0) > 0. This case is symmetric to the Case 2 here.

Similar to Case 4 in Lemma 22, we have that 0 < −
∑i

j=1 f
′
j(xj) ≤ λi,i+1 ≤ h′i,i+1;R(0).

Thus by the complementary slackness conditions (7.11) for λi,i+1, we have xi+1 =
xi − zi,i+1 − ci.
To figure out the range of zi,i+1, we consider two cases. If λi,i+1 > −

∑i
j=1 f

′
j(xj), then

λi+1,i > 0 as well, by equation (7.18). This implies that zi,i+1 = 0 by the complementary
slackness conditions (7.11) on λi,i+1 and λi+1,i, and the primal feasibility conditions
(7.9) on zi,i+1 and zi+1,i. Otherwise λi,i+1 = −

∑i
j=1 f

′
j(xj) and λi+1,i = 0. Then we

consider the stationarity conditions (7.8) on zi,i+1: h′i,i+1(zi,i+1) = λi,i+1 + µi,i+1. If
µi,i+1 > 0, then by the complementary slackness conditions (7.11), we have zi,i+1 = 0.
Otherwise µi,i+1 = 0, and h′i,i+1(zi,i+1) = λi,i+1 = −

∑i
j=1 f

′
j(xj). Therefore the range

of zi,i+1 is

zi,i+1 ∈
[
(∂hi,i+1)−1

L

(
−

i∑
j=1

f ′j(xj)
)
, (∂hi,i+1)−1

R

(
−

i∑
j=1

f ′j(xj)
)]
.

Note that as 0 < −
∑i

j=1 f
′
j(xj) ≤ h′i,i+1;R(0), the above interval contains value 0.

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 67

5.
∑i

j=1 f
′
j(xj) < −h′i,i+1;R(0) ≤ 0:

This case is symmetric to the Case 1 here. Similar to Case 5 in Lemma 22, we first have
that λi,i+1 = −

∑i
j=1 f

′
j(xj) > h′i,i+1;R(0) and λi+1,i = 0. Then by the complementary

slackness conditions (7.11) for λi,i+1, we have xi+1 = xi − zi,i+1 − ci
To figure out the range of zi,i+1, we look at the stationarity condition on zi,i+1 in (7.8).
We have that h′i,i+1(zi,i+1) = λi,i+1 + µi,i+1 ≥ λi,i+1 > h′i,i+1;R(0). Hence zi,i+1 > 0, and
this implies that µi,i+1 = 0, by the complementary slackness conditions (7.11). Hence
h′i,i+1(zi,i+1) = λi,i+1 = −

∑i
j=1 f

′
j(xj). Therefore the range of zi,i+1 is

zi,i+1 ∈
[
(∂hi,i+1)−1

L

(
−

i∑
j=1

f ′j(xj)
)
, (∂hi,i+1)−1

R

(
−

i∑
j=1

f ′j(xj)
)]
.

Equations (7.16) and (7.17) are a compact summary of results of the above 5 cases.

Lemma 25 is an extension of the propagation lemma (Lemma 22) in that, instead of
determining a unique value of xi+1, it determines a range of xi+1. Note that the range
of xi+1 in Lemma 25 is achieved for any given sequence of sub-gradients f ′1(x1) to f ′i(xi).
Since each fi(xi) could be non-differentiable, there could be an interval of sub-gradients
for each given xi. Therefore to obtain a complete range of xi+1 values following the KKT
optimality conditions, one needs to apply Lemma 25 on all sequences of sub-gradients of
f ′1(x1), . . . , f ′i(xi).

Given an initial value of x1, we compute the complete ranges of x2, . . . , xn iteratively.
The intuitive idea is that the upper bound of the complete range of xi+1 comes from the
upper bounds of xi and zi according to equation (7.16). According to equation (7.17), the
upper bound of zi depends on the upper bounds of the sub-gradients of functions f1, . . . , fi,
evaluated at the upper bound values of x1, . . . , xi respectively. Similarly, the lower bound
of the complete range of xi comes from the lower bounds of xi and zi. The lower bound of
zi depends on the lower bounds of the sub-gradients of functions f1, . . . , fi, evaluated at the
lower bound values of x1, . . . , xi respectively.

Formally, let [`kkt,i, ukkt,i] be the complete range of xi determined by the KKT optimality
conditions and the initial value of x1. Then `kkt,i and ukkt,i are defined iteratively as follows:

`kkt,1 = ukkt,1 = x1,{
ukkt,i+1 = ukkt,i + zi;R − ci,
`kkt,i+1 = `kkt,i + zi;L − ci,

i = 1, . . . , n− 1
(7.19)

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 68

where

zi;R =


(∂hi+1,i)

−1
R

(∑i
j=1 f

′
j;R(ukkt,j)

)
, if

∑i
j=1 f

′
j;R(ukkt,j) ≥ 0

−(∂hi,i+1)−1
L

(
−
∑i

j=1 f
′
j;R(ukkt,j)

)
, if

∑i
j=1 f

′
j;R(ukkt,j) < 0

(7.20)

zi;L =


(∂hi+1,i)

−1
L

(∑i
j=1 f

′
j;L(`kkt,j)

)
, if

∑i
j=1 f

′
j;L(`kkt,j) > 0

−(∂hi,i+1)−1
R

(
−
∑i

j=1 f
′
j;L(`kkt,j)

)
, if

∑i
j=1 f

′
j;L(`kkt,j) ≤ 0.

(7.21)

The validity of the above defined upper and lower bounds is proved in the following
lemma:

Lemma 26. Given any value of x1, the range of variables xi (i = 1, . . . , n), following the
KKT optimality conditions (7.7), (7.8), (7.9), (7.10) and (7.11), is [`kkt,i, ukkt,i], where ukkt,i
and `kkt,i are defined iteratively from ukkt,i−1 and `kkt,i−1 respectively according to equations
(7.19), (7.20) and (7.21).

Proof. We prove the lemma by induction on i. The range holds for i = 1 since `kkt,1 =
ukkt,1 = x1. Suppose the range holds for j = 1, . . . , i for some i (1 ≤ i ≤ n − 1). We prove
the range for xi+1. Consider any sequence of x1 to xi that is generated according to the
KKT optimality conditions from the given value of x1, with the corresponding sequence of
sub-gradients f ′1(x1) to f ′i(xi). According to Lemma 25, we have xi+1 = xi + zi − ci, where
zi is defined in equation (7.17).

We first show the validity of the upper bound ukkt,i+1. Based on the induction hypothesis,
we have xj ≤ ukkt,j for j = 1, . . . , i. Due to the convexity of functions f1 to fi, we have
f ′j(xj) ≤ f ′j;R(ukkt,j). Hence

∑i
j=1 f

′
j(xj) ≤

∑i
j=1 f

′
j;R(ukkt,j). Comparing equation (7.17)

for zi and equation (7.20) for zi;R, due to convexity of functions hi+1,i and hi,i+1, we have
zi ≤ zi;R. As a result, xi+1 = xi + zi− ci ≤ ukkt,i + zi;R− ci = ukkt,i+1. All inequalities in this
derivation can take equalities.

The validity of the lower bound `kkt,i+1 can be proved similarly. Based on the induction
hypothesis, we have xj ≥ `kkt,j for j = 1, . . . , i. Due to the convexity of functions f1 to fi,
we have f ′j(xj) ≥ f ′j;L(`kkt,j). Hence

∑i
j=1 f

′
j(xj) ≥

∑i
j=1 f

′
j;L(`kkt,j). Comparing equation

(7.17) for zi and equation (7.21) for zi;L, due to convexity of functions hi+1,i and hi,i+1, we
have zi ≥ zi;L. As a result, xi+1 = xi + zi − ci ≥ `kkt,i + zi;L − ci = `kkt,i+1. All inequalities
in this derivation can take equalities.

The ranges [`kkt,i, ukkt,i]i=1,...,n have a similar monotonicity property as Corollary 23, due
to the convexity of fi(xi), hi,i+1(zi,i+1), and hi+1,i(zi+1,i):

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 69

Corollary 27. Let x
(1)
1 < x

(2)
1 be any two given values of variable x1. Let(

[`
(1)
kkt,1, u

(1)
kkt,1], [`

(1)
kkt,2, u

(1)
kkt,2], . . . , [`

(1)
kkt,n, u

(1)
kkt,n]

)
,(

[`
(2)
kkt,1, u

(2)
kkt,1], [`

(2)
kkt,2, u

(2)
kkt,2], . . . , [`

(2)
kkt,n, u

(2)
kkt,n]

)
,

be the respective sequence of ranges of x values determined by the value of x1 and equations
(7.19), (7.20) and (7.21). Then we have, for all i = 1, . . . , n:

u
(1)
kkt,i < u

(2)
kkt,i, (7.22)

`
(1)
kkt,i < `

(2)
kkt,i. (7.23)

Proof. We show the proof of Inequalities (7.22). Inequalities (7.23) are proved in a similar
way.

The proof is by induction on i. The inequality is true for i = 1 because u
(1)
kkt,1 = x

(1)
1 <

x
(2)
1 = u

(2)
kkt,1. Suppose the result is true for all j = 1, . . . , i for some i (1 ≤ i ≤ n − 1).

We prove that it is also true for i + 1. By the induction hypothesis and the definition
equations (7.19), it is sufficient to prove that z

(1)
i;R ≤ z

(2)
i;R. Equation (7.20) shows that zi;R is

an nondecreasing function of the term
∑i

j=1 f
′
j;R(ukkt,j), by the convexity of functions hi,i+1

and hi+1,i. On the other hand, by the induction hypothesis and the convexity of all the fj
functions, we have

∑i
j=1 f

′
j;R(u

(1)
kkt,j) ≤

∑i
j=1 f

′
j;R(u

(2)
kkt,j). As a result, z

(1)
i;R ≤ z

(2)
i;R. Hence

u
(1)
kkt,i+1 = u

(1)
kkt,i + z

(1)
i;R − ci < u

(2)
kkt,i + z

(2)
i;R − ci = u

(2)
kkt,i+1.

Finally, Corollary 27 implies the following lemma, which forms the basis of our algorithm:

Lemma 28. For a sequence of intervals ([`kkt,i, ukkt,i])i=1,...,n for variables {xi}i=1,...,n com-
puted iteratively according to (7.19), (7.20) and (7.21) from an initial value of x1, we have

1. If
∑n

i=1 f
′
i;R(ukkt,i) < 0, then there exists an optimal value x∗1 such that x∗1 > x1.

2. If
∑n

i=1 f
′
i;L(`kkt,i) > 0, then there exists an optimal value x∗1 such that x∗1 < x1.

3. If
∑n

i=1 f
′
i;L(`kkt,i) ≤ 0 ≤

∑n
i=1 f

′
i;R(ukkt,i), then the value of x1 is optimal.

Proof. Summing up the stationarity conditions (7.7), we have an equation analogous to
(7.15):

n∑
i=1

f ′i(x
∗
i) = 0,

for some sub-gradients f ′i(x
∗
i) ∈ ∂fi(x∗i) (i = 1, . . . , n).

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 70

If
∑n

i=1 f
′
i;R(ukkt,i) < 0, then consider any x′1 such that x′1 ≤ x1, and any sequence

x′1, x
′
2, . . . , x

′
n generated by the KKT optimality conditions according to Lemma 25, where

x′i ∈ [`′kkt,i, u
′
kkt,i]. By Corollary 27, we have x′i ≤ u′kkt,i ≤ ukkt,i for i = 1, . . . , n. Hence

by the convexity of functions f1 to fn, for the corresponding sequence of sub-gradients
f ′1(x′1), . . . , f ′n(x′n), we have

n∑
i=1

f ′i(x
′
i) ≤

n∑
i=1

f ′i;R(u′kkt,i) ≤
n∑
i=1

f ′i;R(ukkt,i) < 0.

This implies that no values smaller than or equal to x1 are optimal. Hence there exists an
optimal value x∗1 such that x∗1 > x1.

If
∑n

i=1 f
′
i;L(`kkt,i) > 0, then consider any x′1 such that x′1 ≥ x1, and any sequence

x′1, x
′
2, . . . , x

′
n generated by the KKT optimality conditions according to Lemma 25, where

x′i ∈ [`′kkt,i, u
′
kkt,i]. By Corollary 27, we have x′i ≥ `′kkt,i ≥ `kkt,i for i = 1, . . . , n. Hence

by the convexity of functions f1 to fn, for the corresponding sequence of sub-gradients
f ′1(x′1), . . . , f ′n(x′n), we have

n∑
i=1

f ′i(x
′
i) ≥

n∑
i=1

f ′i;L(`′kkt,i) ≥
n∑
i=1

f ′i;L(`kkt,i) > 0.

This implies that no values greater than or equal to x1 are optimal. Hence there exists an
optimal value x∗1 such that x∗1 < x1.

If the third case holds, then by continuity of the intervals of sub-gradients and their
inverses, there exists a sequence x1, . . . , xn generated by the KKT optimality conditions
according to Lemma 25, and the corresponding sub-gradients f ′1(x1), . . . , f ′n(xn), such that
xi ∈ [`kkt,i, ukkt,i], and

∑n
i=1 f

′
i(xi) = 0. Thus the KKT optimality conditions are satisfied

and we conclude that the value of x1 is optimal.

Lemma 28 implies a binary search algorithm to find an optimal value of x1, x∗1: In
every step, we try a value of x1 and compute the endpoints of the intervals [`kkt,i, ukkt,i] for
i = 1, . . . , n based on equations (7.19), (7.20) and (7.21). Then we compute the two quantities∑n

i=1 f
′
i;R(ukkt,i) and

∑n
i=1 f

′
i;L(`kkt,i). If

∑n
i=1 f

′
i;L(`kkt,i) ≤ 0 ≤

∑n
i=1 f

′
i;R(ukkt,i), then the

current value of x1 is optimal to MRF-PATH (7.6). Otherwise, if
∑n

i=1 f
′
i;R(ukkt,i) < 0, we

check a larger value of x1, or if
∑n

i=1 f
′
i;L(`kkt,i) > 0, we check a smaller value of x1. The

binary search efficiently determines an optimal value of x1, in time complexity of O(n log2 U
ε
),

where one O(log U
ε
) term indicates the number of iterations in the binary search, and the

other O(log U
ε
) term indicates the complexity of sub-gradient inverse on separation functions.

After x∗1 is found, we plug it into MRF-PATH (7.1) to reduce the problem from n variables
to n− 1 variables of the same form. In the reduced MRF-PATH problem, f1(x∗1) is removed
since it is a constant, and the deviation function of x2 becomes f2(x2) + h1(x∗1 − x2). This
process is repeated in order to find an optimal solution of x2, x∗2. As a result, it requires n
iterations to solve an optimal solution x∗1, . . . , x

∗
n for MRF-PATH (7.6). In the ith iteration,

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 71

x∗i is solved and the problem MRF-PATH (7.1) is reduced to a smaller problem, of the same
form, with one less variable.

We first present a subroutine that solves an optimal value of xi on the reduced MRF-
PATH problem of n−i+1 variables, xi, xi+1, . . . , xn, with deviation functions fi(xi), . . . , fn(xn),
and separation functions hi(xi − xi+1), . . . , hn−1(xn−1 − xn). (The values of x1, . . . , xi−1 are
fixed.)

x∗i := SOLVE REDUCED MRF PATH({fi, . . . , fn}, {hi, . . . , hn−1})
Step 0: If i = n, solve x∗n = argminxn:−U≤xn≤Ufn(xn) in ε-accuracy by binary search and
return. Otherwise initialize the lower and upper bounds of the search region of the optimal
value of xi as ` = −U and u = U respectively.
Step 1: Set xi = b `+u

2ε
cε. Set `kkt,i = ukkt,i = xi. Compute the intervals [`kkt,j, ukkt,j] for

j = i, . . . , n− 1 based on the following equations:{
ukkt,j+1 = ukkt,j + zj;R − cj,
`kkt,j+1 = `kkt,j + zj;L − cj,

j = i, . . . , n− 1

where

zj;R =


(∂hj+1,j)

−1
R

(∑j
p=i f

′
p;R(ukkt,p)

)
, if

∑j
p=i f

′
p;R(ukkt,p) ≥ 0

−(∂hj,j+1)−1
L

(
−
∑j

p=i f
′
p;R(ukkt,p)

)
, if

∑j
p=i f

′
p;R(ukkt,p) < 0,

zj;L =


(∂hj+1,j)

−1
L

(∑j
p=i f

′
p;L(`kkt,p)

)
, if

∑j
p=i f

′
p;L(`kkt,p) > 0

−(∂hj,j+1)−1
R

(
−
∑j

p=i f
′
p;L(`kkt,p)

)
, if

∑j
p=i f

′
p;L(`kkt,p) ≤ 0.

Step 2: If u− ` < ε or
∑n

j=i f
′
j;L(`kkt,j) ≤ 0 ≤

∑n
j=i f

′
j;R(ukkt,j), return x∗i = xi and stop.

Step 3: If
∑n

j=i f
′
j;R(ukkt,j) < 0, set ` = xi + ε; otherwise set u = xi. Go to Step 1.

With the subroutine SOLVE REDUCED MRF PATH, the complete algorithm to solve
MRF-PATH is as follows:

Algorithm for MRF-PATH of general convex deviation and separation functions:
Step 0: Solve ci = argmin−2U≤zi≤2Uhi(zi) for i = 1, . . . , n− 1. Set i = 1.
Step 1: x∗i := SOLVE REDUCED MRF PATH({fi, fi+1, . . . , fn}, {hi, hi+1, . . . , hn−1}).
Step 2: Set fi+1(xi+1) := fi+1(xi+1) + hi(x

∗
i − xi+1). i := i+ 1.

Step 3: If i ≤ n, go to Step 1. Otherwise, return (x∗1, x
∗
2, . . . , x

∗
n) and stop.

The complexity of subroutine SOLVE REDUCED MRF PATH is O(n log2 U
ε
), hence the

total complexity of the complete algorithm is O(n2 log2 U
ε
). Therefore,

CHAPTER 7. KKT-BASED ALGORITHMS FOR MRF ON PATH 72

Theorem 29. The MRF-PATH problem of arbitrary convex deviation and separation func-
tions is solved in O(n2 log2 U

ε
) time.

Note that if the separation functions hi are convex quadratic or piecewise linear with con-
stant number of pieces, including `1-norms, so are the functions hi,i+1 and hi+1,i correspond-
ingly, the the complexity of sub-gradient inverse is O(1). As a result, the (convex/convex)-
algorithm can save a O(log U

ε
) factor, with complexity O(n2 log U

ε
).

The (convex/convex)-algorithm can also be applied to solve MRF-PATH where each
variable xi has a explicit box constraint `i ≤ xi ≤ ui. This is because one can remove
these box constraints, without loss of generality, by extending the deviation and separation
functions while maintaining convexity, as

f̃i(xi) =


fi(`i)−M(xi − `i), for xi < `i

fi(xi), for `i ≤ xi ≤ ui

fi(ui) +M(xi − ui), for xi > ui,

h̃i(zi) =


hi(`i − ui+1)−M(zi − (`i − ui+1)), for zi < `i − ui+1

hi(zi), for ui − `i+1 ≤ zi ≤ `i − ui+1

hi(ui − `i+1) +M(zi − (ui − `i+1)), for zi > ui − `i+1,

with a sufficiently large M coefficient. We choose M such that any solution that violates the
box constraints cannot be an optimal solution. Any value of M > (Lf − Lb)/ε will suffice,
where Lf denotes a feasible objective function value and Lb denotes a lower bound on the
objective function value. Lf is easy to determine. To determine Lb, we can solve:

min
{xi,zi}i

n∑
i=1

fi(xi) +
n−1∑
i=1

hi(zi)

s.t. `i ≤ xi ≤ ui, i = 1, . . . , n

`i − ui+1 ≤ zi ≤ u1 − `i+1, i = 1, . . . , n− 1.

This problem can be solved in O(n log U
ε
) time by solving each function separately. This

complexity is not dominating in the (convex/convex)-algorithm.

7.4 Concluding Remarks

In this chapter we present two efficient algorithms to solve the MRF-PATH problem (7.1)
of different forms of deviation and separation functions. The algorithms directly solve the
KKT optimality conditions of the MRF-PATH problem. For differentiable convex deviation
functions and strictly convex separation functions, we present an algorithm that solves MRF-
PATH in time O(n log2 U

ε
). For general convex deviation and separation functions, we present

an algorithm that solves MRF-PATH in time O(n2 log2 U
ε
). Our algorithms have faster

running times than the existing best algorithms for MRF-PATH and some of its special
cases.

73

Chapter 8

Evaluating Performance of Image
Segmentation Criteria and Techniques

8.1 Introduction

Image segmentation is fundamental in computer vision [93]. It is used in numerous appli-
cations, such as in medical imaging [82, 30, 57, 89], and is also of independent interest in
clustering [26, 80, 111, 95, 112, 105]. The image segmentation problem is to delineate, or
segment, a salient feature in an image. As such, this is a bipartition problem with the goal
of separating the foreground from the background. It is not obvious how to construct a
quantitative measure for optimizing the quality of a segmentation. The common belief is
that normalized cut (NC) criterion [95] (see mathematical formulation (8.1)) is a good model
for achieving high quality image segmentation and it is often used.

The normalized cut criterion uses similarity weights that quantify the similarity between
pairs of pixels. These weights are typically set to be a function of the difference between
the color intensities of the pixels. Such functions are increasing with the perceived similarity
between the pixels. Even though the use of normalized cut is common, it is an NP-hard
problem [95] and heuristics and approximation algorithms have been employed [95, 112, 31,
105, 32]. The most frequently used method for obtaining an approximate solution for the
normalized cut problem is the spectral method that finds the Fiedler eigenvector [95].

In [49] Hochbaum presented a new relaxation of the normalized cut problem, called the
Hochbaum normalized cut (HNC) problem (see mathematical formulation (8.3)). The HNC
problem was shown in [49] to be solved in polynomial time with a combinatorial (flow-based)
algorithm. In addition, Hochbaum introduces in [49, 43] a generalization of normalized cut,
called the q-normalized cut problem (q-NC, see mathematical formulation (8.2)). For the
q-normalized cut problem, there are, in addition to the similarity weights, also pixel weights.
The pixel weights could be a function of some pixel’s feature other than color intensity. The
combinatorial algorithm that solves the HNC problem was shown to generalize, with the
same complexity, to a respective relaxation problem q-Hochbaum normalized cut (q-HNC,

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 74

see mathematical formulation (8.4)), [49, 43]. It is also shown in [43] that the spectral method
heuristic for the normalized cut problem extends to a respective heuristic for q-normalized
cut.

Unlike the combinatorial algorithm’s solution, the spectral method’s solution is a real
eigenvector, rather than a discrete bipartition. In order to generate a bipartition, a method,
called the threshold technique, is commonly used. For a given threshold value, all pixels
that correspond to entries of the eigenvector that exceed this threshold are set in one side
of the bipartition, and the remaining pixels constitute the complement set. For further
improvement, the spectral sweep technique selects, among all possible thresholds, the one
that gives a smallest objective value for the respective normalized cut objective. A different
technique, utilized by Shi et al. [113, 28], generates a bipartition from the Fiedler eigenvector
which is claimed to give a superior approximation to the objective value of the respective
normalized cut problem. This different method will be referred to as Shi’s code in the
remainder of the chapter. Our experimental study implements both the spectral sweep
technique and Shi’s code for the spectral method.

In this chapter we provide a detailed experimental study comparing the combinatorial
algorithm to the spectral method, in terms of approximating the optimal value of both the
normalized cut and q-normalized cut criteria; quality of visual segmentation; and in terms
of running times in practice.

To compare the approximation quality, we evaluate the objective functions of the nor-
malized cut and q-normalized cut problems for the solutions resulting from solving the HNC
problem and the spectral method. These solutions are bipartitions, and hence feasible solu-
tions for the normalized cut and q-normalized cut problems.

To evaluate visual quality, we view the feature(s) that are delineated by the bipartition
solutions. The evaluation is inevitably subjective. The manner in which we evaluate the
visual quality is explained in detail in Section §8.7.

For running time comparisons, we test the methods not only for the benchmark images
given in 160× 160 resolution, but also for higher image resolutions.

The main findings of the experimental study presented here are:

1. The combinatorial algorithm solution is a better approximation of the optimal objec-
tive value of the normalized cut problem than the solution provided by the spectral
method. This dominance of the combinatorial algorithm holds for both the spectral
sweep technique and Shi’s code’s. This is discussed in Section §8.6.

2. The discretizing technique used in Shi’s code to generate a bipartition from the eigen-
vector is shown here to give results inferior to those of the spectral sweep technique, in
terms of approximating the objective value of the respective normalized cut problem.
This is displayed in Section §8.6.

3. The visual quality of the segmentation provided by the combinatorial algorithm is far
superior to that of the spectral method solutions, as presented in Section §8.7.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 75

4. Shi’s code includes a variant that uses similarity weights derived with intervening
contour [64, 71]. The visual quality resulting from segmentation with the intervening
contour code is much better than the other spectral segmentations. Yet, the combinato-
rial algorithm with standard similarity (exponential similarity) weights delivers better
visual results than Shi’s code with intervening contour (Section §8.7). The combina-
torial algorithm does not work well with intervening contour similarity weights since
these weights tend to be of uniform value. A detailed discussion of this phenomenon
is provided in Section §8.6.

5. Our study compares the visual quality of segmentations resulting from the q-HNC cri-
terion with those resulting from the HNC criterion in Section §8.7. (We use entropy
for pixel weights in the q-HNC instances.) The results show that q-HNC often pro-
vides better visual segmentation than HNC. Therefore for applications such as medical
imaging, where each pixel is associated with multiple features, these features can be
used to generate characteristic node weights, and q-HNC would be a better criterion
than HNC.

6. Over the benchmark images of size 160× 160, the combinatorial algorithm runs faster
than the spectral method by an average speedup factor, for the normalized cut ob-
jective, of 84. Furthermore, the combinatorial algorithm scales much better than the
spectral method: The speedup ratio provided by the combinatorial algorithm com-
pared to the spectral method grows substantially with the size of the image, increasing
from a factor of 84 for images of size 160 × 160 to a factor of 5628 for images of size
660× 660.

7. For HNC we get a collection of nested bipartitions as a bi-product of the combinatorial
algorithm [49, 43]. The best visual bipartition and the best normalized cut objective
value bipartition are chosen among these nested bipartitions. Our study results show
that in most cases the best visual bipartition does not coincide with the bipartition
that gives the best objective value of the normalized cut (or q-normalized cut) problem.
(The details are discussed in Section §8.7.) Therefore normalized cut, in spite of its
popularity, is not a good segmentation criterion. HNC improves on normalized cut not
only in complexity (from NP-hard to polynomial time solvable problem) but also in
segmentation quality delivered.

The chapter is organized as follows: Section §8.2 presents the notations employed. The
detailed settings of the experiment are discussed in Section §8.3. In Section §8.4, we first
evaluate the effect of different selection of seeds–an important component of the combina-
torial algorithm–in approximating the optimal objective values of the normalized cut and
q-normalized cut problems. Then in Section §8.5, we evaluate and compare the running
times of the spectral method and the combinatorial algorithm. In Section §8.6 we present
the quantitative evaluation of the spectral method and the combinatorial algorithm, in terms
of the quality of approximation to the optimal objective values of the normalized cut and

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 76

q-normalized cut problems. Section §8.7 provides a comparison of the visual results for
the spectral method versus the combinatorial algorithm. Section §8.8 includes concluding
remarks.

8.2 Notations and Problem Definitions

In image segmentation an image is formalized as an undirected weighted graph G = (V,E).
Each pixel in the image is represented as a node in the graph. A pair of pixels are said to
be neighbors if they are adjacent to each other. The common neighborhoods used in image
segmentation are the 4-neighbor and 8-neighbor relations. In the 4-neighbor relation, a pixel
is a neighbor of the two vertically adjacent pixels and two horizontally adjacent pixels. The
8-neighbor relation adds also the four diagonally adjacent pixels. Every pair of neighbors
i, j ∈ V is associated with an edge [i, j] ∈ E. Each edge [i, j] ∈ E has a weight wij ≥ 0
representing the similarity between pixel node i and j. We adopt the common notations
that n = |V | and m = |E|.

For two subsets V1, V2 ⊆ V , we define C(V1, V2) =
∑

[i,j]∈E,i∈V1,j∈V2 wij. A bipartition of a

graph is called a cut, (S, S̄) = {[i, j] ∈ E|i ∈ S, j ∈ S̄}, where S̄ = V \ S is the complement
of set S. The cut capacity is C(S, S̄). Each node has a weight d(i) =

∑
[i,j]∈E wij which is

the sum of the weights of its incident edges. For a set of nodes S, d(S) =
∑

i∈S d(i). A node
may have also an arbitrary nonnegative weight associated with it, q(i). For a set of nodes
S ⊆ V , q(S) =

∑
i∈S q(i).

Let D be a diagonal n×n matrix with Dii = d(i) =
∑

[i,j]∈E wij. Let W be the weighted
node-node adjacency matrix of the graph where Wij = Wji = wij. The matrix L = D−W
is called the Laplacian of the graph.

The mathematical formulations of the normalized cut and q-normalized cut problems
are:

Normalized cut (NC), [95]

NCG = min
∅⊂S⊂V

C(S, S̄)

d(S)
+
C(S, S̄)

d(S̄)
, (8.1)

q-Normalized cut (q-NC), [43]

q-NCG = min
∅⊂S⊂V

C(S, S̄)

q(S)
+
C(S, S̄)

q(S̄)
. (8.2)

A relaxation of these problems, introduced by [49, 43], omits the second term in the
objective value. We call these relaxations HNC and q-HNC problems respectively:

HNC, [49]

HNCG = min
∅⊂S⊂V

C(S, S̄)

d(S)
, (8.3)

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 77

q-HNC, [49, 43]

q-HNCG = min
∅⊂S⊂V

C(S, S̄)

q(S)
. (8.4)

It is shown in [49, 43] that

min
∅⊂S⊂V

C(S, S̄)

C(S, S)
(8.5)

defined in [94] is equivalent to (8.3) in that both have the same optimal solution. Problem
(8.5) is a criterion characterizing a good image bipartition by two goals. One requires the
salient region segmented to be dissimilar from the rest of the image, or formally to have a
small value for C(S, S̄). The second goal is to have the pixels in the segmented region as
similar to each other as possible. This second goal is to have a large value for C(S, S).

The normalized cut and q-normalized cut problems are NP-hard [95, 43]. The combina-
torial algorithm presented in [49] solves the normalized cut and q-normalized cut problems
approximately by solving their relaxations, HNC and q-HNC problems respectively. Both
the HNC and q-HNC problems are polynomial time solvable by the combinatorial algorithm.

A Bound on the Relation Between the Spectral Method Solution
and NCG

The bounds on the Fiedler eigenvalue were developed for a problem closely associated with
normalized cut. This problem, devised by Cheeger in [23] and called the Cheeger constant
problem (e.g. [25]), is a “half-version” of normalized cut: If the balance constraint d(S) ≤
d(V)/2 is added, the formulation of the Cheeger constant problem is

hG = min
∅⊂S⊂V,d(S)≤d(V)/2

C(S, S̄)

d(S)
. (8.6)

hG is called the Cheeger constant of the graph G. Like the normalized cut problem, the
Cheeger constant problem is also NP-hard (e.g. [25]). For any (undirected) graph G, the
Cheeger inequality states that its Cheeger constant hG is bounded by the second smallest
eigenvalue of the (normalized) Laplacian of G, the Fiedler eigenvalue λ1: λ1

2
≤ hG ≤

√
2λ1

[23, 25]. In addition, the solution resulting from applying the spectral sweep technique to
the Fiedler eigenvector evaluated by the objective of the Cheeger constant problem, is of
value at most 2

√
hG [24]. On the other hand, it is easily shown that hG and NCG satisfy:

1
2
NCG ≤ hG ≤ NCG (e.g. [43]). These (approximation) bounds for the Cheeger constant

(with respect to λ1 and the sweep solution) can be easily transformed to corresponding
bounds for the normalized cut objective. Therefore, the spectral method approximately
solves the normalized cut (and the Cheeger constant and q-normalized cut) problem by
finding the Fiedler eigenvector [23, 33, 38, 7, 6, 95, 43].

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 78

8.3 Experimental Setting

Edge and Node Weights

Similarity Edge Weights

The benchmark images used here consist of grayscale images. A color intensity value is asso-
ciated with every pixel, represented as an integer in [0, 255] in MATLAB. This is normalized
and mapped to [0, 1]. The similarity weight between a pair of pixel nodes is a function of
the difference of their color intensities. For pi and pj the color intensities of two neighboring
pixel nodes i and j, the exponential similarity weight is defined as

wij = e−α|pi−pj |, (8.7)

where α can be viewed as amplifying the dissimilarity between two pixels based on the color
intensity difference. If α is too small, then the dissimilarity is not significant enough to
reflect the color intensity difference. On the other hand, setting the value of α to be too
large results in all pairs of pixels very dissimilar and therefore color intensity differences are
not sufficiently informative. We tested several settings for α values and found α = 100 works
well. In all experiments prepared here α is set to 100.

Another similarity weight is intervening contour introduced in [64, 71]. Intervening con-
tour uses the contour information in an image to characterize the (local) similarity between
two pixels that are not necessarily neighboring. If two pixels are on the two different sides
of a boundary, their similarity should be small as they are more likely to belong to different
segments. In the experiment, we use the intervening contour similarity weight generated
by Shi’s code. Since Shi’s code with intervening contour is considered to generate good
segmentation, therefore we compare it to the combinatorial algorithm.

Node Weights

For q-normalized cut, the entropy of a pixel is used as its weight. The entropy of an image
is a measure of randomness in the image that can be used to characterize the texture of an
image. In MATLAB, by default the local entropy value of a pixel is the entropy value of the
9-by-9 neighborhood around the pixel. In our experiment, the entropy of a pixel is computed
directly via the MATLAB built-in function entropyfilt.

Images Database

We select twenty benchmark images from the Berkeley Segmentation Dataset and Benchmark
(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/). See Fig-
ure C.1 in the appendix. The twenty benchmark images are chosen to cover various segmen-
tation difficulties and have been resized to be 160× 160 for testing since it is the default size
in Shi’s code.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 79

Implementation of the Combinatorial Algorithm

Seed Selection

The combinatorial algorithm requires to designate a node as a seed in one set and a node as
a seed in the other set to guarantee that both sets are nonempty [49]. On the other hand,
the delineation of foreground versus background depends on the interpretation of what is
the main feature. This is not self evident and the purpose of the seeds is to have one seed
indicating a pixel in the foreground and the other seed indicating a pixel in the background.

Theoretically, in order to obtain the optimal solutions to the HNC and q-HNC problems,
all possible pairs of seed nodes should be considered. This increases the complexity of the
combinatorial algorithm by a factor of O(n). To avoid this added complexity we devise a
test for automatically choosing the seed nodes.

Two automatic seed selection rules are introduced here. The first rule is to select the
pixel with the maximum entropy as a seed node in one set. The second rule is to select
the pixel with the maximum group luminance value as a seed node in one set. The group
luminance value is defined for pixels not on the boundary. For every pixel i, the group
luminance value of pixel i is the average of color intensities of the nine neighboring pixels in
the 3 × 3 region centering at i. Intuitively, if a pixel has a greater group luminance value,
that pixel and its surrounding pixels are more likely to be in the same segment. The other
seed node is any arbitrarily selected node in the complement region to the one occupied by
the first seed node. We compare the two automatic seed selection methods with a manual
selection of both seed nodes.

Method # One Seed Node

1 Manual
2 Max Entropy
3 Max Group Luminance

Table 8.1: Three seed selection rules.

For each pair of seed nodes, the combinatorial algorithm is run twice where in the second
run the two seed nodes are exchanged between the two sets. Therefore for each image the
combinatorial algorithm is executed six times, for the three different seed selection rules.

Nested Cuts

Each run of the combinatorial algorithm for a pair of seed nodes, to either the HNC or
the q-HNC problem, produces a series of nested cuts. This is because the combinatorial
algorithm uses a parametric minimum cut solver as a subroutine [49, 43]. The parametric
minimum cut problem can be solved efficiently. Theoretically, it is shown in [39, 50] that the
running time to solve the parametric minimum cut problem is only a small constant factor of

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 80

the time to solve a single instance of the minimum cut problem. We implement Hochbaum’s
pseudoflow algorithm in [50] as the parametric minimum cut solver. The implementation is
described in [21] and the code is available online at [22].

The number of the nested cuts is typically 5 to 15. The combinatorial algorithm stores
the visual segmentations by all the nested cuts, which enables to choose the one that is
deemed (subjectively) best visually. The combinatorial algorithm also automatically selects
the bipartition which gives the smallest objective values of the normalized cut or q-normalized
cut problem among the nested cuts.

Implementation of the Spectral Method

The eigenvector solver subroutine of Shi’s code, named eigs2, is based on the MATLAB
built-in eigenvector solver eigs with some modifications. Shi’s code applies the following two
operations to the Laplacian matrix L = D−W:

1. Sparsifying operation: It rounds to 0 small values of wij where the “small” is deter-
mined by some threshold value. The default threshold value in Shi’s code is 10−6.

2. Offset operation: It adds a constant (1 by default) to Dii = d(i) (i = 1, . . . , n). It also
adds a value to each diagonal entry of the W matrix. This value for entry Wii is 0.5
plus a quantity that estimates the round-off error for row i, e(i) = d(i)−

∑n
j=1wij.

In our experiment, we exclude the above two operations in Shi’s code in order to compare
it with the combinatorial algorithm, which contains no any sparsifying or offset operations.

The spectral sweep technique uses the Fiedler eigenvector from Shi’s code (without the
two operations) and then chooses the best bipartition threshold as described in Section §8.1.

Algorithm, Optimization Criterion, and Similarity Classifications
and Nomenclatures

Each experimental set is characterized by the choice of algorithm, the choice of optimization
objective, and the choice of similarity weight definition. For the algorithm, we choose among
the combinatorial algorithm, COMB, Shi’s code, SHI and the spectral sweep technique,
SWEEP. For the optimization objective, we choose among normalized cut, NC, and q-
normalized cut, qNC. For the similarity weight definition, we choose among the exponential
similarity weights, EXP, and the intervening contour similarity weights, IC. The format of
Algorithm-Criterion-Similarity is used to represent an experimental set.

For each choice of optimization objective and similarity weight definition, the combina-
torial algorithm outputs a series of nested cuts for a pair of seeds (see Section §8.3), among
which the cut that gives the smallest objective value of NC or q-NC is selected. The pairs
of seeds are selected according to the automatic seed selection criterion, including both the
maximum entropy criterion and the maximum group luminance criterion, described in Sec-
tion §8.3. The numerically best cut is selected among the four series of corresponding nested

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 81

cuts. The segmentation of the selected cut is considered as the output of the combinatorial
algorithm and the objective value of NC or q-NC of the selected cut is considered as the
objective value output by the combinatorial algorithm.

We test the following experimental sets:
COMB-NC-EXP
COMB-qNC-EXP
COMB-NC-IC
COMB-qNC-IC
SHI-NC-EXP
SHI-qNC-EXP
SHI-NC-IC
SHI-qNC-IC
SWEEP-NC-EXP
SWEEP-qNC-EXP
SWEEP-NC-IC
SWEEP-qNC-IC.

8.4 Assessing Quality of Seed Selection Methods of

the Combinatorial Algorithm

In this section we evaluate the three seed selection methods introduced in Section §8.3 for
the combinatorial algorithm in terms of approximating the objective values of NC and q-NC.
We evaluate the objective values of NC and q-NC for each of the solutions provided by the
three seed selection methods and count the number of images on which each seed selection
method gives the smallest objective values of NC and q-NC. Table 8.2 gives the percentage
of the number of images, out of the twenty images, in which each method gets the best values
for NC and q-NC respectively. The exponential similarity weight is used in both cases.

Method 1 (manual) Method 2 (max-entropy) Method 3 (max-group luminance)

NC 33.33% 37.04% 29.63%
q-NC 26.09% 47.83% 26.09%

Table 8.2: Portions of each seed selection method in yielding the smallest NC and q-NC
objective values.

The results given in Table 8.2 show that method 2 (max entropy) is best for NC and
q-NC. This indicates that the maximum entropy is a good seed selection method for image
segmentation.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 82

Since method 3 (max group luminance) is automatic, and also works well, we derive an
automatic seed selection method which combines method 2 and method 3. This is done
by running the combinatorial algorithm for the pairs of seeds generated by method 2 and
method 3, and the output is the one corresponds to the best of these four values. The
automatic seed selection method is best 66.67% of the time for NC and 73.92% of the time
for q-NC. This improves a great deal on method 1, where the two seeds are selected manually.

As a result of the comparison, in the following comparisons the cut that gives the smallest
objective values of NC or q-NC of COMB is selected from the four series of nested cuts
corresponding to the four pairs of seeds selected according to the automatic seed selection
method defined above.

8.5 Running Time Comparison Between the Spectral

Method and the Combinatorial Algorithm

In order to provide a fair comparison of the running times of the two algorithms, we disregard
the input and output processing parts of each algorithm. We run both algorithms on a 2010
Apple MacBook Pro Laptop (2.4GHz Intel Core 2 Duo processor and 4GB of 1067 MHz
DDR3). The running times of the two algorithms over all the twenty benchmark images
with size 160 × 160 are reported in Table 8.3. The exponential similarity weights are used
and both NC and q-NC objectives are applied.

Table 8.3 shows that the combinatorial algorithm runs much faster than the spectral
method for the NC objective by an average speedup factor of 84. For the q-NC objective, in
most cases the combinatorial algorithm is still faster. The same comparison results also apply
to the case of intervening contour similarity weights. It is not clear why the spectral method
runs so much faster for q-NC than NC. We note, however, that the results delivered by the
spectral method for q-NC are dramatically inferior to those provided by the combinatorial
algorithm, both in terms of approximating the optimal objective value of q-NC (Figure 8.2
and 8.4), and in terms of visual quality (Section §8.7).

We further evaluate the scalability of the two algorithms by creating input sequences of
images each based on one image at increasing resolutions: We employ six different image
sizes: 160× 160, 260× 260, 360× 360, 460× 460, 560× 560 and 660× 660. For every image
size we run the two algorithms on five of the twenty benchmark images (Image 4, 8, 12,
16 and 20) and average the running times over the five images. The running times of the
spectral method and the combinatorial algorithm with these different image sizes are plotted
in Figure 8.1.

Figure 8.1 shows that as the input size increases, the running time of the spectral method
grows significantly faster than that of the combinatorial algorithm, with an average speedup
factor increasing from 84 for images of size 160 × 160 to 5628 for images of size 660 × 660.
The running time of the combinatorial algorithm appears insensitive to changes in the input
size. Interestingly, we observe that the running time of the combinatorial algorithm does not

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 83

Time(s)
SHI/SWEEP COMB SHI/SWEEP COMB

-NC-EXP -NC-EXP -qNC-EXP -qNC-EXP

Image1 19.5905 0.468 0.67045 0.595
Image2 20.5193 0.029 0.56141 0.047
Image3 19.9446 0.090 0.34875 0.208
Image4 19.0059 0.186 0.79889 0.287
Image5 20.4605 0.526 0.32494 0.810
Image6 19.2924 0.138 0.95232 0.543
Image7 20.4066 0.214 0.65428 0.505
Image8 17.6540 0.390 0.82868 0.440
Image9 17.5387 0.150 0.36554 0.241
Image10 17.3702 0.119 0.37487 0.206
Image11 19.6832 0.024 0.34565 0.162
Image12 17.7123 0.226 0.39409 0.468
Image13 17.3662 0.034 0.58339 0.046
Image14 17.5793 0.456 0.54604 0.615
Image15 18.9113 0.376 0.35412 0.617
Image16 19.9957 0.125 0.78376 0.329
Image17 19.6383 0.068 0.53126 0.073
Image18 17.5165 0.263 0.56119 0.430
Image19 20.3009 0.455 0.54215 0.575
Image20 22.3611 0.227 0.54404 0.267

Table 8.3: Running times of SHI/SWEEP-NC-EXP, COMB-NC-EXP, SHI/SWEEP-qNC-
EXP and COMB-qNC-EXP.

increase with the size of the image. This is because for these images in higher resolutions,
the number of breakpoints is smaller and therefore there are fewer updates required between
consecutive breakpoints [43].

8.6 Quantitative Evaluation for Objective Function

Values

In this section, we compare the performance of the spectral method and the combinatorial
algorithm in terms of how well they approximate the optimal objective values of the nor-
malized cut and q-normalized cut problems. In Section §8.6 we compare SHI with COMB
and in Section §8.6 we compare SWEEP with COMB. Both exponential similarity weights
and intervening contour weights are used in the comparisons.

In order to compare the performance of the spectral method, either SHI or SWEEP,

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 84

Figure 8.1: Running times of SHI/SWEEP-NC-EXP and COMB-NC-EXP for images with
increasing resolutions.

with COMB in approximating the optimal objective value of NC or q-NC, we compute
a ratio of the objective value of NC or q-NC generated by the spectral method to the
corresponding objective value generated by COMB. If the ratio is greater than 1, it indicates
that COMB performs better than the spectral method, while the ratio smaller than 1 is
indicative of the spectral method having better performance. If the ratio is smaller than 1, its
reciprocal characterizes the improvement of the spectral method on COMB in approximating
the optimal objective value of NC or q-NC.

Comparing Approximation Quality of SHI and COMB

Comparing Instances with Exponential Similarity Weights: Comparing
SHI-NC-EXP with COMB-NC-EXP and SHI-qNC-EXP with
COMB-qNC-EXP

Table 8.4 and Table 8.5 show the ratios over the twenty benchmark images using exponential
similarity weights. Table 8.4 and Table 8.5 present the ratios with respect to NC and q-NC
respectively, for SHI versus COMB.

As seen in Table 8.4, for every case COMB yields smaller NC objective values than SHI,
with the mean improvement factor exceeding 2.3×106. For q-NC the results in Table 8.5 show
that COMB not only yields smaller objective values than SHI, but these improvements are
dramatically larger than those for NC, with a mean improvement factor exceeding 9.2×1011.
We conclude that the relative performance of SHI is non-competitive for NC and worse still
for q-NC. Figure 8.2 is a bar chart for the ratios in Table 8.4 and Table 8.5. (Note that the
bar chart ratios are given in log scale, and same for the rest bar charts.) Table 8.6 displays
the means and medians of the ratios in Table 8.4 and Table 8.5. They demonstrate the

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 85

Image 1 Image 2 Image 3 Image 4 Image 5
10.034375 34.945958 228.88261 1.0776067 522467.35
Image 6 Image 7 Image 8 Image 9 Image 10
45242414 757898.1 800.08425 7.1908952 357.12512
Image 11 Image 12 Image 13 Image 14 Image 15
11514.768 125.05640 4.8974465 1340.9285 233.03002
Image 16 Image 17 Image 18 Image 19 Image 20
11.050608 16.897142 345.39787 471.05938 6.5424435

Table 8.4: The ratios of the NC objective values of SHI-NC-EXP to COMB-NC-EXP.

Image 1 Image 2 Image 3 Image 4 Image 5
257689.45 3599904.9 654763.23 5261971.8 1418996100
Image 6 Image 7 Image 8 Image 9 Image 10

1.8295880× 1013 1.6418361× 1011 92852128 10836.986 63071852
Image 11 Image 12 Image 13 Image 14 Image 15

6835417700 5388176 431894.04 3397368.9 2755701700
Image 16 Image 17 Image 18 Image 19 Image 20
13524963 1440666.1 14317766 5203545.6 681058.90

Table 8.5: The ratios of the q-NC objective values of SHI-qNC-EXP to COMB-qNC-EXP.

extent of the improvement of COMB over SHI.

Mean of Improvements Median of Improvements
NC 2326914.4 230.95632

q-NC 9.2356417× 1011 5325073.9

Table 8.6: The means and medians of the improvements of COMB-NC-EXP on SHI-NC-EXP
and COMB-qNC-EXP on SHI-qNC-EXP.

Comparing Instances with Intervening Contour Similarity Weights: Comparing
SHI-NC-IC with COMB-NC-IC and SHI-qNC-IC with COMB-qNC-IC

For the intervening contour similarity weights, we observe that the graph has nodes of
(roughly) equal degrees. The edge weights are almost the same value close to 1. Hence the
cut separating a small set of nodes consists of fewer edges, and thus smaller capacity, than
those cuts that separate sets of roughly equal sizes. Consequently, COMB favors unbalanced
cuts with a small number of nodes on one side of the bipartition. This phenomenon is
illustrated for Image 8 in Table 8.7.

The bipartition (S8, S̄8) obtained by COMB-NC-EXP in Figure (8.7a) has the back-
ground pixels all black and the foreground pixels unmodified. In this particular bipartition

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 86

Figure 8.2: Bar chart for the ratios in Table 8.4 and Table 8.5. The darker bars represent
ratios for NC (Table 8.4) and the lighter bars represent ratios for q-NC (Table 8.5).

the background is the sky. Thus the similarity weights of edges in the cut (S8, S̄8) should
be small. We compute the capacity of cut (S8, S̄8), C(S8, S̄8), with respect to exponential
weights and intervening contour weights.

For the exponential and intervening contour similarity weights, the maximum similarity
value is 1. Note however, that the average intervening contour edge weight in cut (S8, S̄8)
is 0.67385345, which is quite close to 1. This is not the case for exponential similarity
weights where the average exponential edge weight in cut (S8, S̄8) is 0.0000018360302. This
demonstrates that intervening contour similarity weights are almost uniform and close to 1
throughout the graph.

We now select a single pixel v (highlighted with the square) in the background (sky),
which implies it is highly similar to its neighbors, and consider the cut ({v}, V \ {v}). For
exponential similarity weights the capacity of this cut, C({v}, V \{v}), is 3.9985 and therefore
substantially higher than the capacity of the cut (S8, S̄8). For intervening contour similarity
weights, however, the capacity of the cut ({v}, V \ {v}) is 8, which is far smaller than the
capacity of the cut (S8, S̄8).

Therefore intervening contour similarity weights do not work well and produce unbalanced
cuts with algorithms that consider the cut capacity such as COMB.

Table 8.8 and Table 8.9 show the ratios over the twenty benchmark images using inter-
vening contour similarity weights. Table 8.8 demonstrates the ratios with respect to NC
objective values and Table 8.9 for q-NC objective values, for SHI versus COMB.

For the NC results shown in Table 8.8, there are 5 images where COMB gives better
approximations while for the rest 15 images SHI performs better. In most of the cases
among the 15 images, COMB just favors an unbalanced cut.

For q-NC, as can be seen from the ratios displayed in Table 8.9, COMB performs much
better than SHI. There are 15 images where COMB gives better approximations to q-NC

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 87

(a) Image8-Cut (S8, S̄8)

C(S8, S̄8)
Number of edges Average edge weight

C({v}, V \ {v})
in (S8, S̄8) of (S8, S̄8)

EXP 0.00095473570 520 0.0000018360302 3.9985
IC 886.11728 1315 0.67385345 8

(b) The capacities of the cut (S8, S̄8) and ({v}, V \ {v}), and the average edge weight of edges in
cut (S8, S̄8) with two similarity weights.

Table 8.7: Illustrating why COMB favors unbalanced cut with intervening contour similarity
weights.

Image 1 Image 2 Image 3 Image 4 Image 5
0.0059191506 3.013586× 10−5 2.0904086× 1016 1 7.42769

Image 6 Image 7 Image 8 Image 9 Image 10
0.0026249997 0.00019634185 2.8444556 0.0047000578 0.014255762

Image 11 Image 12 Image 13 Image 14 Image 15
0.0053146160 0.0086205694 0.0071974529 9.7893761× 10−6 1.5935882

Image 16 Image 17 Image 18 Image 19 Image 20
0.0015875799 0.0045286429 2.0502743 0.00040627891 0.033866313

Table 8.8: The ratios of the NC objective values of SHI-NC-IC to COMB-NC-IC.

than SHI. Furthermore, for q-NC, the improvements of COMB on SHI are very significant.
Table 8.10 shows the average improvements of COMB on SHI with respect to NC and q-NC
with intervening contour similarity weights. They are the means and medians of the ratios
that are greater than 1 in Table 8.8, for NC, and Table 8.9, for q-NC, respectively. We
also display the average improvements of SHI on COMB for NC and q-NC with intervening
contour similarity weights in Table 8.11. For all the ratios in Table 8.8 and Table 8.9 that

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 88

Image 1 Image 2 Image 3 Image 4 Image 5
426.94051 0.49236168 51.416438 1291202.2 10270.311
Image 6 Image 7 Image 8 Image 9 Image 10

44.623615 0.64894629 110933.38 1.5971419 0.68595629
Image 11 Image 12 Image 13 Image 14 Image 15

0.61131118 1.1039278 1.1031171 1.3381326 3497.6627
Image 16 Image 17 Image 18 Image 19 Image 20
11.839168 0.50931088 34866.574 165.89208 307.61301

Table 8.9: The ratios of the q-NC objective values of SHI-qNC-IC to COMB-qNC-IC.

are smaller than 1, the corresponding reciprocals characterize the improvements of SHI. We
take the means and medians of these reciprocals from Table 8.8, for NC, and Table 8.9, for
q-NC, respectively, to produce Table 8.11. We display the ratios of Table 8.8 and Table
8.9 in bar chart Figure 8.3. The bars extending to the right (the ratios are greater than 1)
indicate the improvements of COMB on SHI while the bars extending to the left (the ratios
are smaller than 1) indicate the improvements of SHI on COMB.

Mean of Improvements Median of Improvements
NC 4.1808173× 1015 2.8444556

q-NC 96785.570 165.89208

Table 8.10: The means and medians of the improvements of COMB-NC-IC on SHI-NC-IC
and COMB-qNC-IC on SHI-qNC-IC.

Mean of Improvements Median of Improvements
NC 9669.7517 212.76334

q-NC 1.7258142 1.6358281

Table 8.11: The means and medians of the improvements of SHI-NC-IC on COMB-NC-IC
and SHI-qNC-IC on COMB-qNC-IC.

Comparing Approximation Quality of SWEEP and COMB

In general SWEEP should perform better than just taking the eigenvector with some pre-
determined procedure for bipartition. Let NCSWEEP be the normalized cut objective value
generated by SWEEP. By the analysis in Section §8.2, it can be shown that NCSWEEP ≤
4
√
NCG. Therefore one may expect that SWEEP will improve on SHI in approximating

the optimal objective value of NC. We illustrate the potential improvement of SWEEP
over SHI for Image 6, where the gap between the approximation of COMB-NC-EXP and

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 89

Figure 8.3: Bar chart for the ratios in Table 8.8 and Table 8.9. The darker bars represent
ratios for NC (Table 8.8) and the lighter bars represent ratios for q-NC (Table 8.9).

the approximation of SHI-NC-EXP is largest among the twenty images, as shown in Table
8.4. From the original data, the approximate objective value of NC achieved by COMB is
NCCOMB = 3.8129621 × 10−11. Therefore the optimal NC objective of Image 6, NCG, is
less than or equal to the value of NCCOMB. If we use NCCOMB as an estimation to NCG,
then we obtain an upper bound for NCSWEEP :

NCSWEEP ≤ 4
√
NCG ≤ 4

√
NCCOMB = 4

√
3.8129621× 10−11 = 2.4699675× 10−5. (8.8)

However, our original data show that the objective value of NC achieved by SHI for Image 6
is 1.7250761×10−3. Since NCSWEEP can only be smaller than the upper bound 2.4699675×
10−5, the objective value of NC achieved by SWEEP improves by at least a factor of 70 on
the objective value generated by SHI. Indeed the experimental results match the theoretical
prediction that SWEEP does better than SHI for NC. But still, COMB is better than
SWEEP with exponential similarity weights.

In addition to the improvement of SWEEP over SHI or fixed threshold bipartition of
the Fiedler eigenvector, SWEEP can improve on COMB for intervening contour similarity
weights. As discussed in Section §8.6, COMB tends to provide unbalanced bipartitions for
intervening contour similarity weight matrices. For SWEEP this is not an issue, because
each threshold bipartition is considered, and the best threshold will obviously correspond to
a balanced bipartition. Therefore we expect SWEEP to do better than COMB for intervening
contour similarity weights.

In the following we display the comparisons of approximation quality of SWEEP-NC-
EXP with COMB-NC-EXP and SWEEP-qNC-EXP with COMB-qNC-EXP.

Table 8.12 and Table 8.13 show the ratios over the twenty benchmark images using
exponential similarity weights for SWEEP versus COMB. Table 8.12 and Table 8.13 present
the ratios with respect to NC and q-NC respectively.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 90

Image 1 Image 2 Image 3 Image 4 Image 5
0.0066413908 0.030815693 1.7318891 0.25438092 1.021992

Image 6 Image 7 Image 8 Image 9 Image 10
32.769017 151053.5 1.0124601 0.65635751 16.970223
Image 11 Image 12 Image 13 Image 14 Image 15
3229.7642 1.7051154 0.59025832 0.073415316 13.387584
Image 16 Image 17 Image 18 Image 19 Image 20

0.025636729 1.2725133 1.6439209 0.56137852 0.22995850

Table 8.12: The ratios of the NC objective values of SWEEP-NC-EXP to COMB-NC-EXP.

Image 1 Image 2 Image 3 Image 4 Image 5
44415.346 295255 222060.29 4827.1580 26524576
Image 6 Image 7 Image 8 Image 9 Image 10

20416303000 16686194000 248921.64 5306.5587 23558163
Image 11 Image 12 Image 13 Image 14 Image 15

2097520100 1344474.1 80934.898 921433.37 25749626
Image 16 Image 17 Image 18 Image 19 Image 20
54403.132 216141.34 1191186.4 2289243 70300.882

Table 8.13: The ratios of the q-NC objective values of SWEEP-qNC-EXP to COMB-qNC-
EXP.

For the NC results shown in Table 8.12, there are 11 out of the twenty benchmark images
where COMB gives a better approximation than SWEEP and the improvements of COMB
over SWEEP are smaller than those over SHI. For the q-NC results displayed in Table
8.13, COMB dominates SWEEP and gives better approximations in every case. The results
establish that while SWEEP delivers better results than SHI, COMB is still dominant, and
gives better results in most cases. We display the means and medians of the improvements
of each method to the other in Table 8.14 and 8.15 respectively. Table 8.14 is for the average
improvement of COMB on SWEEP while Table 8.15 is for the average improvement of
SWEEP on COMB. The means and medians are obtained from the ratios in Table 8.12 and
Table 8.13 for NC and q-NC respectively, using the same method introduced in Section §8.6.
The ratios in Table 8.12 and Table 8.13 are displayed as a bar chart in Figure 8.4.

Mean of Improvements Median of Improvements
NC 14032.252 1.7318891

q-NC 1964141900 608344.19

Table 8.14: The means and medians of the improvements of COMB-NC-EXP on SWEEP-
NC-EXP and COMB-qNC-EXP on SWEEP-qNC-EXP.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 91

Mean of Improvements Median of Improvements
NC 27.658703 4.3486107

Table 8.15: The means and medians of the improvements of SWEEP-NC-EXP on COMB-
NC-EXP. Notice that for q-NC, there is no improvement of SWEEP-qNC-EXP on COMB-
qNC-EXP.

Figure 8.4: Bar chart for the ratios in Table 8.12 and Table 8.13. The darker bars represent
ratios for NC (Table 8.12) and the lighter bars represent ratios for q-NC (Table 8.13).

8.7 Visual Segmentation Quality Evaluation

In this section, we first evaluate the visual segmentation quality among the three methods,
COMB, SHI and SWEEP. Then we compare the criteria HNC and q-HNC to NC and q-NC
respectively to see which is a better criterion to give good visual segmentation results. Since
visual quality is subjective, we provide a subjective assessment, which may not agree with
the readers’ judgement.

In some of the comparisons made in this section, we select for COMB the cut which gives
the visually best segmentation among the four series of nested cuts corresponding to the four
pairs of seeds selected according to the automatic seed selection criterion, as the output of
COMB. This visually best cut is often not the numerically best cut that gives the smallest
value for NC or q-NC objectives. When the visually best cut is chosen as the output of
COMB, we use the experimental set notation COMB(HNC)-Similarity or COMB(qHNC)-
Similarity. Here the (HNC) or (qHNC) are used to denote which optimization objective
that COMB actually solves, and the -Similarity choice can be either exponential or inter-
vening contour similarity weights. Notice that COMB(HNC)-Similarity represents a different
experimental set from COMB-NC-Similarity introduced in Section §8.3, since the former ex-
perimental set uses the visually best cut while the latter experimental set uses the numerically
best cut. So are COMB(qHNC)-Similarity and COMB-qNC-Similarity.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 92

For SHI and SWEEP, since each of them outputs a unique cut as the solution, there is
no distinction between the numerically and visually best cuts. We still use the experimental
set notations defined in Section §8.3 for experimental sets of SHI and SWEEP.

SHI uses a discretization method to generate a bipartition from the Fiedler eigenvector
[113] which is considered to give good visual segmentations. Hence when comparing SHI
with COMB, we use the visually best cut as the output of COMB. We conduct the following
four comparisons between SHI and COMB:

SHI-NC-EXP and COMB(HNC)-EXP
SHI-qNC-EXP and COMB(qHNC)-EXP
SHI-NC-IC and COMB(HNC)-IC
SHI-qNC-IC and COMB(qHNC)-IC.
When comparing SWEEP with COMB, we use the numerically best cut as the output

of COMB. This is because SWEEP outputs the cut that gives the smallest objective value
of NC or q-NC among all potential threshold values. Hence we conduct the following two
comparisons between SWEEP and COMB:

SWEEP-NC-EXP and COMB-NC-EXP
SWEEP-qNC-EXP and COMB-qNC-EXP.
We assess the visual quality of segmentations generated by COMB to compare the per-

formance of different optimization criteria in producing visually good segmentation results.
We compare the visual segmentation quality of COMB(HNC)-EXP with COMB(qHNC)-
EXP to determine which criterion, HNC or q-HNC, works better visually. We then compare
NC with HNC and q-NC with q-HNC by comparing the visual segmentation quality of the
following two pairs of experimental sets:

COMB-NC-EXP and COMB(HNC)-EXP
COMB-qNC-EXP and COMB(qHNC)-EXP.
For each of the above comparisons of two experimental sets, namely experimental set 1

and experimental set 2, we classify each of the twenty benchmark images into the following
three categories:

1. Experimental set 1 gives a better visual segmentation result than experimental set 2.
This is denoted as 1 �v 2, where the subscript “v” stands for “visual” and same for
the rest.

2. Experimental set 2 gives a better visual segmentation result than experimental set 1.
This is denoted as 2 �v 1.

3. Both experimental set 1 and experimental set 2 give segmentations of similar visual
quality. It includes both cases where the segmentations generated by the two experi-
mental sets are either both good or both bad. This is denoted as 1 'v 2.

For each of the above visual comparisons, we count how many benchmark images belong
to each category. The results are summarized in Table 8.16.

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 93

Experimental set 1 Experimental set 2 1 �v 2 2 �v 1 1 'v 2

SHI-NC-EXP COMB(HNC)-EXP 2 14 4
SHI-qNC-EXP COMB(qHNC)-EXP 0 20 0

SHI-NC-IC COMB(HNC)-IC 10 5 5
SHI-qNC-IC COMB(qHNC)-IC 0 5 15

SWEEP-NC-EXP COMB-NC-EXP 2 8 10
SWEEP-qNC-EXP COMB-qNC-EXP 3 8 9
COMB(HNC)-EXP COMB(qHNC)-EXP 0 7 13

COMB-NC-EXP COMB(HNC)-EXP 0 14 6
COMB-qNC-EXP COMB(qHNC)-EXP 0 13 7

Table 8.16: Visual comparison results.

Based on the data in the first six rows of Table 8.16, we find that with exponential
similarity weights, in general the visual quality of segmentations generated by COMB is
superior to both SHI and SWEEP. If the q-NC (or q-HNC) optimization objective is applied,
the visual superiority of COMB over SHI and SWEEP is dominant. Based on the data in the
seventh row of Table 8.16, we find that q-HNC works better visually than HNC. According to
the data in the last two rows of Table 8.16, we find that the criteria NC or q-NC are not good
segmentation criteria. Since the visually best segmentations are obtained through solving
HNC or q-HNC, they should be preferred segmentation criteria, for good visual segmentation
quality and their tractability.

We find from Table 8.16 that in general SHI-NC-IC delivers best visual segmentations
among all the experimental sets using method SHI or SWEEP. That is, SHI works better with
intervening contour similarity weights. We also find that COMB(HNC)-EXP provides better
visual results than COMB(HNC)-IC, meaning that COMB works better with exponential
similarity weights.

We provide here the images and their segmentations for the two leading methods, SHI-
NC-IC and COMB(HNC)-EXP. The segmentation is displayed by setting all the pixels in the
background part to be black. For each of the twenty benchmark images shown, we give the
segmentations generated by SHI-NC-IC and COMB(HNC)-EXP in Figure 8.4. Notice that
for Images 1, 2, 10, 12, 19 and 20, the segmentations generated by SHI-NC-IC are almost
entirely black. This is because the segmentations of these images by SHI-NC-IC have almost
all pixels in the background parts.

Our judgment is that for Image 1, Image 2, Image 5, Image 10, Image 12, Image 13,
Image 14, Image 15, Image 16, Image 17, Image 19 and Image 20, COMB(HNC)-EXP gives
visually better segmentations than SHI-NC-IC; for Image 3 and Image 6, SHI-NC-IC is
visually better than COMB(HNC)-EXP; for Image 4, Image 7, Image 8 and Image 18, both
SHI-NC-IC and COMB(HNC)-EXP generate visually good segmentations of similar quality;
for the rest two images, Image 9 and Image 11, neither COMB(HNC)-EXP nor SHI-NC-IC

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 94

Img1-Ori Img1-SHI Img1-COMB Img2-Ori Img2-SHI Img2-COMB

Img3-Ori Img3-SHI Img3-COMB Img4-Ori Img4-SHI Img4-COMB

Img5-Ori Img5-SHI Img5-COMB Img6-Ori Img6-SHI Img6-COMB

Img7-Ori Img7-SHI Img7-COMB Img8-Ori Img8-SHI Img8-COMB

Img9-Ori Img9-SHI Img9-COMB Img10-Ori Img10-SHI Img10-COMB

Img11-Ori Img11-SHI Img11-COMB Img12-Ori Img12-SHI Img12-COMB

Img13-Ori Img13-SHI Img13-COMB Img14-Ori Img14-SHI Img14-COMB

Img15-Ori Img15-SHI Img15-COMB Img16-Ori Img16-SHI Img16-COMB

CHAPTER 8. EVALUATING PERFORMANCE OF IMAGE SEGMENTATION
CRITERIA AND TECHNIQUES 95

Img17-Ori Img17-SHI Img17-COMB Img18-Ori Img18-SHI Img18-COMB

Img19-Ori Img19-SHI Img19-COMB Img20-Ori Img20-SHI Img20-COMB

Figure 8.4: The visual segmentations of SHI-NC-IC (-SHI) and COMB(HNC)-EXP (-
COMB), and their respective original image (-Ori).

gives visually good segmentations.

8.8 Conclusions

We report here on detailed experiments conducted on algorithms for the normalized cut and
its generalization as quantity normalized cut applied to image segmentation problems. We
find that, in general, the combinatorial flow algorithm of [49, 43] outperforms the spectral
method both numerically and visually. In most cases, the combinatorial algorithm yields
tighter objective function values of the two criteria we test. Furthermore, we find that the
combinatorial algorithm almost always produces a visual segmentation which is at least as
good as that of the spectral method, and often better.

Another important finding in our experiments, is that contrary to prevalent belief, the
normalized cut criterion is not a good model for image segmentation, since it does not
provide good quality solutions, in terms of visual quality. Moreover, the normalized cut
problem is NP-hard. We conclude that instead of modeling the image segmentation problem
as the normalized cut problem, it is more effective to model and solve the problem as the
polynomial time solvable Hochbaum normalized cut problem.

For future research, we plan on investigating other methods of solving image segmentation
and other clustering problems, such as the k-means clustering method discussed in [31, 32].

96

Chapter 9

Concluding Remarks

In the dissertation, we enlarge the algorithmic toolbox of solving the MRF-BL and MRF
models on simple path graphs. We introduce three different algorithmic techniques for
different types of objective functions. We explore the application of graph minimum cut
and network flow based algorithms to solve MRF-BL on a path, and we are the first to
propose directly solving the KKT optimality conditions of MRF on a path by leveraging
the simplicity of a path graph. The three techniques all yield the fastest algorithms for the
respective class of problems. As paths are building blocks of more complicated graphs, one
may use the algorithms devised here as subroutines to solve MRF and related problems on
more complicated graphs.

For image segmentation, the first interesting lesson learned from the empirical study is
that computational complexity should be taken into account when we build models. Image
segmentation is one of the types of problems with no consensus on criterion. Although the
normalized cut criterion is theoretically intuitive and intriguing, its NP-hardness discounts
its performance in practice as no algorithms are actually solving the exact normalized cut
problem, but instead some sorts of relaxations. On the other hand, as we have shown in the
experimental study, some polynomially solvable criteria, such as Hochbaum normalized cut,
not only enjoy theoretical tractability, but also deliver practically better quality solutions. As
a result, these kinds of criteria should be preferred. Another interesting observation made
through the empirical comparison between the combinatorial algorithm and the spectral
method is the gap between theory and practice. The spectral method, although celebrating
some nice theoretical properties, does not perform as good as the combinatorial algorithm
in practice for image segmentation.

97

Bibliography

[1] R. K. Ahuja and D. S. Hochbaum. “Solving Linear Cost Dynamic Lot-Sizing Problems
in O(n log n) Time”. In: Operations Research 56.1 (2008), pp. 255–261.

[2] R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. “Solving the Convex Cost Integer
Dual Network Flow Problem”. In: Management Science 49.7 (2003), pp. 950–964.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. 1993.

[4] R. K. Ahuja and J. B. Orlin. “A Fast Scaling Algorithm for Minimizing Separable
Convex Functions subject to Chain Constraints”. In: Operations Research 49.5 (2001).

[5] M. Alamgir and U. V. Luxburg. “Phase Transition in the Family of p-Resistances”.
In: Neural Information Processing Systems (NIPS) (2011), pp. 379–387.

[6] N. Alon. “Eigenvalues and Expanders”. In: Combinatorica 6.2 (1986), pp. 83–96.

[7] N. Alon and V. D. Milman. “λ1, Isoperimetric Inequalities for Graphs, and Super-
concentrators”. In: Journal of Combinatorial Theory, Series B 38.1 (1985), pp. 73–
88.

[8] S. Angelov et al. “Weighted Isotonic Regression under the L1 Norm”. In: Symposium
on Discrete Algorithms (SODA) (2006), pp. 783–791.

[9] M. Ayer et al. “An Empirical Distribution Function for Sampling with Incomplete
Information”. In: Annals of Mathematical Statistics 26.4 (1955), pp. 641–647.

[10] R. E. Barlow and H. D. Brunk. “The Isotonic Regression Problem and its Dual”. In:
Journal of the American Statistical Association 67.337 (1972), pp. 140–147.

[11] R. E. Barlow et al. Statistical Inference under Order Restrictions: The Theory and
Application of Isotonic Regression. New York: Wiley, 1972.

[12] D. J. Bartholomew. “A Test for Homogeneity for Ordered Alternatives”. In: Biometrika
46.1 (1959), pp. 36–48.

[13] D. J. Bartholomew. “A Test for Homogeneity for Ordered Alternatives II”. In: Biometrika
46.3 (1959), pp. 328–335.

[14] A. Blake and A. Zisserman. Visual Reconstruction. Boston: MIT Press, 1987.

BIBLIOGRAPHY 98

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge: Cambridge Univer-
sity Press, 2004.

[16] Y. Boykov, O. Veksler, and R. Zabih. “Markov Random Fields with Efficient Ap-
proximations”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (1998), pp. 648–655.

[17] N. Bridle and X. J. Zhu. “p-Voltage: Laplacian Regularization for Semi-supervised
Learning on High-dimensional Data”. In: Eleventh Workshop on Mining and Learning
with Graphs (MLG2013) (2013).

[18] N. Chakravarti. “Isotonic Median Regression: A Linear Programming Approach”. In:
Mathematics of Operations Research 14.2 (1989), pp. 303–308.

[19] A. Chambolle and T. Pock. “A First-order Primal-dual Algorithm for Convex Prob-
lems with Applications to Imaging”. In: Journal of Mathematical Imaging and Vision
40.1 (2011), pp. 120–145.

[20] T. Chan and S. Esedoglu. “Aspects of Total Variation Regularized L1 Function Ap-
proximation”. In: SIAM Journal on Applied Mathematics 65.5 (2005), pp. 1817–1837.

[21] B. G. Chandran and D. S. Hochbaum. “A Computational Study of the Pseudoflow and
Push-relabel Algorithms for the Maximum Flow Problem”. In: Operations Research
57.2 (2009), pp. 358–376.

[22] B. G. Chandran and D. S. Hochbaum. “Pseudoflow Parametric Maximum Flow Solver
Version 1.0”. In: http://riot.ieor.berkeley.edu/Applications/Pseudoflow/parametric.html
(2012).

[23] J. Cheeger. “A Lower Bound for the Smallest Eigenvalue of the Laplacian”. In: Prob-
lems in Analysis, R. C. Gunning, ed., Princeton University Press (1970), pp. 195–
199.

[24] F. R. K. Chung. “Four Proofs for the Cheeger Inequality and Graph Partition Algo-
rithms”. In: Proceedings of ICCM 2 (2007), p. 378.

[25] F. R. K. Chung. Spectral Graph Theory. American Mathematical Soc., 1997.

[26] G. B. Coleman and H. C. Andrews. “Image Segmentation by Clustering”. In: Pro-
ceedings of the IEEE 67.5 (1979), pp. 773–785.

[27] T. H. Cormen et al. Introduction to Algorithms. Cambridge, MA: The MIT Press,
2009.

[28] T. Cour, S. Yu, and J. Shi. “MATLAB Normalized Cut Image Segmentation Code”.
In: http://www.cis.upenn.edu/∼jshi/software/ (2011).

[29] K. Dembczyński, W. Kotlowski, and R. Slowiński. “Learning Rule Ensembles for
Ordinal Classification with Monotonicity Constraints”. In: Fundamenta Informaticae
94.2 (2009), pp. 163–178.

BIBLIOGRAPHY 99

[30] P. A. Dhawan. Medical Imaging Analysis. Hoboken, NJ: Wiley-Interscience Publica-
tion, 2003.

[31] I. S. Dhillon, Y. Q. Guan, and B. Kulis. “Kernel k-Means: Spectral Clustering and
Normalized Cuts”. In: Proceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (2004), pp. 551–556.

[32] I. S. Dhillon, Y. Q. Guan, and B. Kulis. “Weighted Graph Cuts Without Eigenvectors:
A Multilevel Approach”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 29.11 (2007), pp. 1944–1957.

[33] W. E. Donath and A. J. Hoffman. “Lower Bounds for the Partitioning of Graphs”.
In: IBM Journal of Research and Development 17.5 (1973), pp. 420–425.

[34] L. Dümbgen and A. Kovac. “Extensions of Smoothing via Taut Strings”. In: Electronic
Journal of Statistics 3 (2009), pp. 41–75.

[35] P. H. C. Eilers and R. X. de Menezes. “Quantile Smoothing of Array CGH Data”.
In: Bioinformatics 21.7 (2005), pp. 1146–1153.

[36] A. El Alaoui et al. “Asymptotic Behavior of `p-based Laplacian Regularization in
Semi-supervised Learning”. In: JMLR: Workshop and Conference Proceedings 49
(2016), pp. 1–28.

[37] P. F. Felzenszwalb and R. Zabih. “Dynamic Programming and Graph Algorithms in
Computer Vision”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI) 33.4 (2011), pp. 721–740.

[38] M. Fiedler. “A Property of Eigenvectors of Nonnegative Symmetric Matrices and its
Applications to Graph Theory”. In: Czechoslovak Mathematical Journal 25.4 (1975),
pp. 619–633.

[39] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. “A Fast Parametric Maximum Flow
Algorithm and Applications”. In: SIAM Journal on Computing 18.1 (1989), pp. 30–
55.

[40] D. Geiger and F. Girosi. “Parallel and Deterministic Algorithms for MRFs: Surface
Reconstruction”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI) 13 (1991), pp. 401–412.

[41] S. Geman and D. Geman. “Stochastic Relaxation, Gibbs Distributions and the Bayesian
Restoration of Images”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence (PAMI) 6 (1984), pp. 721–741.

[42] S. J. Grotzinger and C. Witzgall. “Projections onto Simplices”. In: Applied Mathe-
matics and Optimization 12.1 (1984), pp. 247–270.

BIBLIOGRAPHY 100

[43] D. S. Hochbaum. “A Polynomial Time Algorithm for Rayleigh Ratio on Discrete
Variables: Replacing Spectral Techniques for Expander Ratio, Normalized Cut and
Cheeger Constant”. In: Operations Research 61.1 (2013). Early version in Replac-
ing Spectral Techniques for Expander Ratio, Normalized Cut and Conductance by
Combinatorial Flow Algorithms. arXiv:1010.4535v1 [math.OC], 2010, pp. 184–198.

[44] D. S. Hochbaum. “An Efficient Algorithm for Image Segmentation, Markov Random
Fields and Related Problems”. In: Journal of the ACM 48.2 (2001), pp. 686–701.

[45] D. S. Hochbaum. “Complexity and Algorithms for Nonlinear Optimization Problems”.
In: Annals of Operations Research 153.1 (2007), pp. 257–296.

[46] D. S. Hochbaum. Graph Algorithms and Network Flows. UC Berkeley: Lecture Notes
for IEOR 266, 2016.

[47] D. S. Hochbaum. “Lower and Upper Bounds for the Allocation Problem and Other
Nonlinear Optimization Problems”. In: Mathematics of Operations Research 19.2
(1994), pp. 390–409.

[48] D. S. Hochbaum. “Multi-label Markov Random Fields as an Efficient and Effective
Tool for Image Segmentation, Total Variations and Regularization”. In: Numerical
Mathematics: Theory, Methods and Applications 6.1 (2013), pp. 169–198.

[49] D. S. Hochbaum. “Polynomial Time Algorithms for Ratio Regions and a Variant of
Normalized Cut”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI) 32.5 (2010), pp. 889–898.

[50] D. S. Hochbaum. “The Pseudoflow Algorithm: A New Algorithm for the Maximum
Flow Problem”. In: Operations Research 56.4 (2008), pp. 992–1009.

[51] D. S. Hochbaum, C. Lu, and E. Bertelli. “Evaluating Performance of Image Segmen-
tation Criteria and Techniques”. In: EURO Journal on Computational Optimization
1.1-2 (2013), pp. 155–180.

[52] D. S. Hochbaum and J. B. Orlin. “Simplifications and Speedups of the Pseudoflow
Algorithm”. In: Networks 61.1 (2013), pp. 40–57.

[53] D. S. Hochbaum and M. Queyranne. “Minimizing a Convex Cost Closure Set”. In:
SIAM Journal on Discrete Mathematics 16.2 (2003). Extended abstract in Proceed-
ings of the 8th Annual European Symposium on Algorithms, ESA, 2000, pp. 192–
207.

[54] D. S. Hochbaum and J. G. Shanthikumar. “Convex Separable Optimization is not
Much Harder than Linear Optimization”. In: Journal of the ACM 37.4 (1990), pp. 843–
862.

[55] H. Hoefling. “A Path Algorithm for the Fused Lasso Signal Approximator”. In: Jour-
nal of Computational and Graphical Statistics 19.4 (2010), pp. 984–1006.

BIBLIOGRAPHY 101

[56] K. Hohm, M. Storath, and A. Weinmann. “An Algorithmic Framework for Mumford-
Shah Regularization of Inverse Problems in Imaging”. In: Inverse Problems 31.11
(2015), p. 115011.

[57] M. S. Hosseini, B. N. Araabi, and H. Soltanian-Zadeh. “Pigment Melanin: Pattern
for Iris Recognition”. In: IEEE Transactions on Instrumentation and Measurement
59.4 (2010), pp. 792–804.

[58] H. Ishikawa and D. Geiger. “Segmentation by Grouping Junctions”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (1998), pp. 125–131.

[59] N. A. Johnson. “A Dynamic Programming Algorithm for the Fused Lasso and L0-
Segmentation”. In: Journal of Computational and Graphical Statistics 22.2 (2013),
pp. 246–260.

[60] A. T. Kalai and R. Sastry. “The Isotron Algorithm: High-dimensional Isotonic Re-
gression”. In: Proceedings of the Conference on Learning Theory (COLT) (2009).

[61] Y. Kaufman and A. Tamir. “Locating Service Centers with Precedence Constraints”.
In: Discrete Applied Mathematics 47.3 (1993), pp. 251–261.

[62] V. Kolmogorov, T. Pock, and M. Rolinek. “Total Variation on a Tree”. In: SIAM
Journal on Imaging Sciences 9.2 (2016), pp. 605–636.

[63] R. Kyng et al. “Algorithms for Lipschitz Learning on Graphs”. In: Proceedings of the
Conference on Learning Theory (COLT) (2015), pp. 1190–1223.

[64] T. Leung and J. Malik. “Contour Continuity in Region Based Image Segmentation”.
In: European Conference on Computer Vision, Springer Berlin Heidelberg (1998),
pp. 544–559.

[65] S. Z. Li, K. L. Chan, and H. Wang. “Bayesian Image Restoration and Segmentation by
Constrained Optimization”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (1996), pp. 1–6.

[66] Y. J. Li and J. Zhu. “Analysis of Array CGH Data for Cancer Studies using Fused
Quantile Regression”. In: Bioinformatics 23.18 (2007), pp. 2470–2476.

[67] M. A. Little and N. S. Jones. “Generalized Methods and Solvers for Noise Removal
from Piecewise Constant Signals. I. Background Theory”. In: Proceedings of the Royal
Society A 467.2135 (2011), pp. 3088–3114.

[68] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2016.

[69] R. Luss and S. Rosset. “Generalized Isotonic Regression”. In: Journal of Computa-
tional and Graphical Statistics 23.1 (2014), pp. 192–210.

[70] R. Luss, S. Rosset, and M. Shahar. “Efficient Regularized Isotonic Regression with
Application to Gene-gene Interaction Search”. In: The Annals of Applied Statistics
6.1 (2012), pp. 253–283.

BIBLIOGRAPHY 102

[71] J. Malik et al. “Contour and Texture Analysis for Image Segmentation”. In: Interna-
tional Journal of Computer Vision 43.1 (2001), pp. 7–27.

[72] E. Mammen and S. van de Geer. “Locally Adaptive Regression Splines”. In: The
Annals of Statistics 25.1 (1997), pp. 387–413.

[73] W. L. Maxwell and J. A. Muckstadt. “Establishing Consistent and Realistic Reorder
Intervals in Production-Distribution Systems”. In: Operations Research 33.6 (1985),
pp. 1316–1341.

[74] J. A. Mendendez and B. Salvador. “An Algorithm for Isotonic Median Regression”.
In: Computational Statistics & Data Analysis 5.4 (1987), pp. 399–406.

[75] R. E. Miles. “The Complete Amalgamation into Blocks, by Weighted Means, of a
Finite Set of Real Numbers”. In: Biometrika 46.3 (1959), pp. 317–327.

[76] B. Nadler, N. Srebro, and X. Y. Zhou. “Semi-supervised Learning with the Graph
Laplacian: The Limit of Infinite Unlabelled Data”. In: Neural Information Processing
Systems (NIPS) (2009), pp. 1330–1338.

[77] M. Nikolova. “Minimizers of Cost-functions Involving Nonsmooth Data-fidelity Terms.
Application to the Processing of Outliers”. In: SIAM Journal on Numerical Analysis
40.3 (2002), pp. 965–994.

[78] J. B. Orlin. “Max Flow in O(nm) Time, or Better”. In: Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing (STOC) (2013), pp. 765–774.

[79] A. Painsky and S. Rosset. “Isotonic Modeling with Non-differentiable Loss Functions
with Application to Lasso Regularization”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI) 38.2 (2016), pp. 308–321.

[80] T. N. Pappas. “An Adaptive Clustering Algorithm for Image Segmentation”. In: IEEE
Transactions on Signal Processing 40.4 (1992), pp. 901–914.

[81] P. M. Pardalos, G. L. Xue, and L. Yong. “Efficient Computation of an Isotonic Median
Regression”. In: Applied Mathematics Letters 8.2 (1995), pp. 67–70.

[82] D. L. Pham, C. Y. Xu, and J. L. Prince. “Current Methods in Medical Image Seg-
mentation”. In: Annual Review of Biomedical Engineering 2.1 (2000), pp. 315–337.

[83] K. Punera and J. Ghosh. “Enhanced Hierarchical Classification via Isotonic Smooth-
ing”. In: Proceedings of the 17th International Conference on World Wide Web (2008),
pp. 151–160.

[84] A. Restrepo and A. C. Bovik. “Locally Monotonic Regression”. In: IEEE Transactions
on Signal Processing 41.9 (1993), pp. 2796–2810.

[85] T. Robertson and P. Waltman. “On Estimating Monotone Parameters”. In: The An-
nals of Mathematical Statistics 39.3 (1968), pp. 1030–1039.

[86] T. Robertson and F. T. Wright. “Algorithms in Order Restricted Statistical Infer-
ence and the Cauchy Mean Value Property”. In: The Annals of Statistics 8.3 (1980),
pp. 645–651.

BIBLIOGRAPHY 103

[87] T. Robertson and F. T. Wright. “Multiple Isotonic Median Regression”. In: The
Annals of Statistics 1.3 (1973), pp. 422–432.

[88] T. Robertson, F. T. Wright, and R. L. Dykstra. Order Restricted Statistical Inference.
New York: Wiley, 1988.

[89] C. A. Roobottom, G. Mitchell, and G. Morgan-Hughes. “Radiation-Reduction Strate-
gies in Cardiac Computed Tomographic Angiography”. In: Clinical Radiology 65.11
(2010), pp. 859–867.

[90] R. Roundy. “98%-Effective Integer-ratio Lot-sizing for One-warehouse Multi-retailer
systems”. In: Management Science 31.11 (1985), pp. 1416–1430.

[91] L. I. Rudin, S. J. Osher, and E. Fatemi. “Nonlinear Total Variation based Noise
Removal Algorithms”. In: Physica D: Nonlinear Phenomena 60.1-4 (1992), pp. 259–
268.

[92] Y. U. Ryu, R. Chandrasekaran, and V. Jacob. “Prognosis using an Isotonic Prediction
Technique”. In: Management Science 50.6 (2004), pp. 777–785.

[93] L. G. Shapiro and G. C. Stockman. Computer Vision. New Jersey: Prentice-Hall,
2001.

[94] E. Sharon et al. “Hierarchy and Adaptivity in Segmenting Visual Scenes”. In: Nature
442.7104 (2006), pp. 810–813.

[95] J. Shi and J. Malik. “Normalized Cuts and Image Segmentation”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI) 22.8 (2000), pp. 888–
905.

[96] T. S. Shively, S. G. Walker, and P. Damien. “Nonparametric Function Estimation
subject to Monotonicity, Convexity and Other Shape Constraints”. In: Journal of
Econometrics 161.2 (2011), pp. 166–181.

[97] D. D. Sleator and R. E. Tarjan. “A Data Structure for Dynamic Trees”. In: Journal
of Computer and System Sciences 26.3 (1983), pp. 362–391.

[98] M. Storath, A. Weinmann, and M. Unser. “Exact Algorithms for L1-TV Regulariza-
tion of Real-valued or Circle-valued Signals”. In: SIAM Journal on Scientific Com-
puting 38.1 (2016), A614–A630.

[99] Q. F. Stout. “Isotonic Regression for Multiple Independent Variables”. In: Algorith-
mica 71.2 (2015), pp. 450–470.

[100] Q. F. Stout. “Isotonic Regression via Partitioning”. In: Algorithmica 66.1 (2013),
pp. 93–112.

[101] W. Tansey and J. G. Scott. “A Fast and Flexible Algorithm for the Graph-fused
Lasso”. In: arXiv: 1505.06475v3 (2015).

[102] R. J. Tibshirani, H. Hoefling, and R. Tibshirani. “Nearly-isotonic Regression”. In:
Technometrics 53.1 (2011), pp. 54–61.

BIBLIOGRAPHY 104

[103] R. J. Tibshirani and J. Taylor. “The Solution Path of the Generalized Lasso”. In:
The Annals of Statistics 39.3 (2011), pp. 1335–1371.

[104] R. Tibshirani et al. “Sparsity and Smoothness via the Fused Lasso”. In: Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 67.1 (2005), pp. 91–108.

[105] D. A. Tolliver and G. L. Miller. “Graph Partitioning by Spectral Rounding: Appli-
cations in Image Segmentation and Clustering”. In: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition-Volume
1 (2006), pp. 1053–1060.

[106] A. F. Jr. Veinott. “Least d-Majorized Network Flows with Inventory and Statistical
Applications”. In: Management Science 17.9 (1971), pp. 547–567.

[107] H. S. Wang, G. D. Li, and G. H. Jiang. “Robust Regression Shrinkage and Consistent
Variable Selection through the LAD-Lasso”. In: Journal of Business & Economic
Statistics 25.3 (2007), pp. 347–355.

[108] A. Weinmann, L. Demaret, and M. Storath. “Mumford-Shah and Potts Regularization
for Manifold-Valued Data”. In: Journal of Mathematical Imaging and Vision 55.3
(2016), pp. 428–445.

[109] A. Weinmann, L. Demaret, and M. Storath. “Total Variation Regularization for
Manifold-valued Data”. In: SIAM Journal on Imaging Sciences 7.4 (2014), pp. 2226–
2257.

[110] A. Weinmann and M. Storath. “Iterative Potts and Blake-Zisserman Minimization
for the Recovery of Functions with Discontinuities from Indirect Measuremens”. In:
Proceedings of the Royal Society A 471.2176 (2015), p. 20140638.

[111] Z. Wu and R. Leahy. “An Optimal Graph Theoretic Approach to Data Clustering:
Theory and its Application to Image Segmentation”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI) 15.11 (1993), pp. 1101–1113.

[112] E. P. Xing and M. I. Jordan. “On Semidefinite Relaxations for Normalized k-Cut
and Connections to Spectral Clustering”. In: Technical Report No. UCB/CSD-3-1265
(2003).

[113] S. X. Yu and J. Shi. “Multiclass Spectral Clustering”. In: Proceedings of International
Conference on Computer Vision (2003), pp. 313–319.

[114] X. J. Zhu, Z. Ghahramani, and J. Lafferty. “Semi-supervised Learning using Gaussian
Fields and Harmonic Functions”. In: Proceedings of The 31st International Conference
on Machine Learning (ICML) 3 (2003), pp. 912–919.

105

Appendix A

Red-Black Tree Data Structure to
Maintain s-Intervals

A red-black tree is a binary search tree. Each node of the tree contains the following five
fields [27]:
color : The “color” of a node. Its value is either RED or BLACK.
key : The “key” value of a node. It is a scalar.
left, right : The pointers to the left and the right child of a node. If the corresponding child
does not exist, the corresponding pointer has value NIL.
p: The pointer to the parent of a node. If the node is the root node, the pointer value is
NIL.

As it is a binary search tree, the keys of the nodes are comparable. Furthermore, it has
the following two properties [27]:

1. Binary-search-tree property: Let x be a node in a binary search tree. If y is a node
in the left subtree of x, then key[y] ≤ key[x]. If y is a node in the right subtree of x,
then key[y] ≥ key[x].

2. Tree height property: A red-black tree with n nodes has height at most 2 log(n+ 1).

We use a red-black tree data structure T to represent the set of s-intervals. Each node
of the tree represents one s-interval. Due to the disjointness property of s-intervals, every s-
interval is uniquely identified by its two endpoints. Thus we extend the key field from a scalar
to a tuple: For a node x representing an s-interval [i`, ir], the key field of x, key[x], contains
two values, key[x].f irst and key[x].second, such that key[x].f irst = i` and key[x].second =
ir. As a result, we also define a comparison between the key tuples of two nodes, which can
also be viewed as a comparison between their corresponding s-intervals: For any two nodes
x1 (representing an s-interval [i`1, ir1]) and x2 (representing an s-interval [i`2, ir2]), we define:

1. key[x1] < key[x2]: if key[x1].second = ir1 < i`2 = key[x2].f irst. It is the case where
[i`1, ir1] is on the left of [i`2, ir2].

APPENDIX A. RED-BLACK TREE DATA STRUCTURE TO MAINTAIN
s-INTERVALS 106

2. key[x1] = key[x2]: if key[x1].f irst = i`1 = i`2 = key[x2].f irst. It implies that
key[x1].second = ir1 = ir2 = key[x2].second. It is the case where x1 and x2 refer
to the same tree node and the same s-interval.

3. key[x1] > key[x2]: if key[x1].f irst = i`1 > ir2 = key[x2].second. It is the case where
[i`1, ir1] is on the right of [i`2, ir2].

As s-intervals do not overlap, the comparison of any two (possibly identical) nodes in the
tree must fall into exactly one of the above three outcomes.

The above is our only extension of the red-black tree discussed in [27] in the algorithm
presented in Chapter 5. Since any two different nodes in the tree represent different s-
intervals, the binary-search-tree property still holds with the two inequalities are strict, i.e.,
“ ≤ ” → “ < ”. The tree height property still satisfies as its proof in [27] does not involve
the key fields.

A.1 Initializing the Red-Black Tree with a Single

s-Interval

In each of the two algorithms presented in Chapter 5, the red-black tree is initialized with a
single s-interval [1, n]. This is achieved by a subroutine z := new node(i`, ir) initializing a new
node z for s-interval [i`, ir], such that color[z] = RED, key[z].f irst = i`, key[z].second = ir,
and left[z] = right[z] = p[z] = NIL [27]. This is done in O(1) time [27]. Thus the
initialization of the tree is completed by calling z := new node(1, n). Node z is the root of
the tree.

A.2 Pseudo-code of Subroutine

[ik`, ikr] := get s interval(ik)

Let root[T] represent the root node of the red-black tree T . The pseudo-code of get s interval
is:

[ik`, ikr] := get s interval(ik)
begin

z := root[T];

while z 6= NIL:

if ik ≥ key[z].f irst and ik ≤ key[z].second {node ik is in the s-interval represented
by node z}
then ik` := key[z].f irst, ikr := key[z].second; return [ik`, ikr];

APPENDIX A. RED-BLACK TREE DATA STRUCTURE TO MAINTAIN
s-INTERVALS 107

else if ik < key[z].f irst
then z := left[z];

else z := right[z];
end if

end while

end
The correctness of the pseudo-code is justified by the binary-search-tree property with

the extended comparison for the key tuples. The complexity is determined by the height of
the tree. Note that since all s-intervals are originally decomposed from the initial s-interval
[1, n], hence the number of s-intervals generated throughout the algorithm is at most n. Thus
the red-black tree has at most n nodes. Therefore the tree height is at most 2 log(n+ 1). As
a result, the complexity of get s interval is O(log n).

A.3 Pseudo-code of Subroutine

update s interval(ik`, i∗k1, i
∗
k2, ikr)

Cormen et al. in [27] define and analyze the following three operations on a red-black tree
with scalar key values:

1. TREE-SEARCH(T , k): Searching for a node in red-black tree T with a given key value
k. It returns a pointer to a node with key k if one exists; otherwise it return NIL. In
our case in Chapter 5 the key value is a tuple and the comparison of scalar key values
is extended to key tuples.

2. RB-INSERT(T ,z): Inserting a node z into red-black tree T . The pseudo-code involves
comparing the key values of two nodes, where we can simply apply our definition of
key tuple comparison. As a result, literally there is no change to the pseudo-code of
RB-INSERT(T , z) in our extension.

3. RB-DELETE(T , z): Deleting a node z from red-black tree T . The pseudo-code does
not involve the key field, hence it is directly applicable to our extension.

Cormen et al. in [27] prove that each of the above operation has complexity O(log n) for a
tree of at most n nodes. The complexities are the same in our case with key tuples.

update s interval is implemented by calling the above three built-in operations, and the
new node subroutine. It changes the red-black tree T .

update s interval(ik`, i
∗
k1, i

∗
k2, ikr)

begin

z := TREE-SEARCH(T, (ik`, ikr));

APPENDIX A. RED-BLACK TREE DATA STRUCTURE TO MAINTAIN
s-INTERVALS 108

RB-DELETE(T, z);

if ik` ≤ i∗k1 − 1 then z := new node(ik`, i
∗
k1 − 1); RB-INSERT(T, z); end if

if i∗k2 + 1 ≤ ikr then z := new node(i∗k2 + 1, ikr); RB-INSERT(T, z); end if

end
As the tree has at most n nodes, each call to update s interval takes O(log n) time.

109

Appendix B

Dynamic Path Data Structure to
Maintain Chapter 5’s Four Arrays

Dynamic path [97] is a data structure for a collection of vertex-disjoint paths. Each path in
the collection is an undirected symmetric path, where each edge has a real-valued cost.

Each internal vertex of a path has two edges adjacent to it. To distinguish the two edges,
we define the following terminology. We designate one end of the path as head and the other
end as tail [97]. For any internal vertex v, we define the vertex before vertex v as the index
of the adjacent vertex of v that is closer to the head of the path. Similarly, we define the
vertex after vertex v as the index of the adjacent vertex of v that is closer to the tail of
the path [97]. For head vertex v, the vertex before vertex v does not exist. Likewise, for
tail vertex v, the vertex after vertex v does not exist. The designation of the head and tail
vertices is arbitrary. If the head and tail vertices are reversed, the references to the vertices
before and after vertex v are also reversed accordingly.

The following 11 operations are supported in dynamic paths [97]:

p := path(v): Return the path p containing vertex v.

v := head(p): Return the head vertex v of path p.

v := tail(p): Return the tail vertex v of path p.

u := before(v): Return the vertex u before vertex v on path(v). If v is the head of the
path, return NIL.

u := after(v): Return the vertex u after vertex v on path(v). If v is the tail of the
path, return NIL.

x := pcost(v): Return the real-valued cost x of the edge (v, after(v)). If vertex v is the
tail of the path, return NIL.

APPENDIX B. DYNAMIC PATH DATA STRUCTURE TO MAINTAIN CHAPTER 5’S
FOUR ARRAYS 110

v := pmincost(p): Return the vertex v closest to tail(p) such that (v, after(v)) has
minimum cost among edges on path p. If p contains only one vertex (degenerate case),
return NIL.

pupdate(p, x): Add real value x to the cost of every edge on path p.

reverse(p): Reverse the direction of path p, making the head as the tail and vice versa.

p3 := concatenate(p1, p2, x): Merge paths p1 and p2 by adding the edge (tail(p1), head(p2))
of real-valued cost x. Return the merged path p3.

[p1, p2, x, y] := split(v): Divide path(v) into (up to) three parts by deleting the edges
incident to v. Return a list [p1, p2, x, y], where p1 is the subpath consisting of all
vertices from head(path(v)) to before(v), p2 is the subpath consisting of all vertices
from after(v) to tail(path(v)), x is the cost of the deleted edge (before(v), v), and y is
the cost of the deleted edge (v, after(v)). If v is originally the head of path(v), p1 is NIL
and x is undefined; if v is originally the tail of path(v), p2 is NIL and y is undefined.

A dynamic path is implemented as a full balanced binary tree [97]. Each vertex of the
path is constructed as a leaf node of the tree and each edge of the path is constructed as a
non-leaf node of the tree, which stores the edge cost as a node field. Besides, each node in
the tree contains various other fields in support of efficient implementation of the above 11
operations on dynamic paths. The complete details of the binary tree implementation of a
dynamic path was presented in [97], Chap. 4.

We highlight the complexity of each of the above operations: Sleator and Tarjan in [97]
show that, for a collection of dynamic paths with a total of O(n) vertices, head(p), tail(p),
pupdate(p, x) and reverse(p) each takes O(1) time and path(v), before(v), after(v), pcost(v),
pmincost(p), concatenate(p1, p2, x) and split(v) each takes O(log n) time.

We define the following two additional split operations that are more convenient to use
for our purpose:

[p1, p2, x] := split-before(v): Divide path(v) into (up to) two parts by deleting the edge
(before(v), v). Return a list [p1, p2, x], where p1 is the subpath consisting of all vertices
from head(path(v)) to before(v), p2 is the subpath consisting of all vertices from v to
tail(path(v)), x is the cost of the deleted edge (before(v), v). If v is originally the head
of path(v), p1 is NIL and x is undefined.

[p1, p2, y] := split-after(v): Divide path(v) into (up to) two parts by deleting the edge
(v, after(v)). Return a list [p1, p2, y], where p1 is the subpath consisting of all vertices
from head(path(v)) to v, p2 is the subpath consisting of all vertices from after(v) to
tail(path(v)), y is the cost of the deleted edge (v, after(v)). If v is originally the tail of
path(v), p2 is NIL and y is undefined.

Both split-before and split-after can be implemented efficiently using concatenate and
split :

APPENDIX B. DYNAMIC PATH DATA STRUCTURE TO MAINTAIN CHAPTER 5’S
FOUR ARRAYS 111

[p1, p2, x] := split-before(v)
begin

[p1, p2, x, y] := split(v);

if p2 6= NIL then p2 := concatenate(v, p2, y);
else p2 := [v, v]; {a path with single vertex v}
end if

return [p1, p2, x];

end

[p1, p2, y] := split-after(v)
begin

[p1, p2, x, y] := split(v);

if p1 6= NIL then p1 := concatenate(p1, v, x);
else p1 := [v, v]; {a path with single vertex v}
end if

return [p1, p2, y];

end
Since each subroutine calls one split and one concatenate operation, the complexity of

split-before(v) and split-after(v) each isO(log n). We include split-before(v) and split-after(v)
into our pool of dynamic path operations.

B.1 Initializing the Four Arrays for G0

For GIMR (5.1), the four arrays are initiated for G0 as follows:

begin

sa(0) := 0, sa(i) := sa(i− 1)− wi,0, for i = 1, . . . , n;
psa := init dynamic path((sa(i))i=0,1,...,n);

ta(i) := 0, for i = 0, 1, . . . , n;
pta := init dynamic path((ta(i))i=0,1,...,n);

tms(0) := 0, tms(i) := ta(i)−sa(i)+di,i+1, for i = 1, . . . , n−1, tms(n) := ta(n)−sa(n);
ptms := init dynamic path((tms(i))i=0,1,...,n);

smt(0) := 0, smt(i) := sa(i)−ta(i)+di+1,i, for i = 1, . . . , n−1; smt(n) := sa(n)−ta(n);
psmt := init dynamic path((smt(i))i=0,1,...,n);

APPENDIX B. DYNAMIC PATH DATA STRUCTURE TO MAINTAIN CHAPTER 5’S
FOUR ARRAYS 112

end
Note that for `1-GIMR (5.10), wi,0 = −wi. The conversion of an ordinary array into a

dynamic path is achieved in subroutine parray := init dynamic path((array(i))i=0,1,...,n), which
takes as argument an array (array(i))i=0,1,...,n and returns a dynamic path parray constructed
from the array.

Let (array(i))i=0,1,...,n be any of the four arrays of n + 1 elements. We can construct a
dynamic path parray of n+ 2 vertices, from vertex varray0 to varrayn+1 , such that the cost of edge
(varrayi , varrayi+1) is array(i) for i = 0, 1, . . . , n (See Figure B.1).

Figure B.1: parray is a dynamic path constructed from array (array(i))i=0,1,...,n. In parray, we
designate vertex varray0 as head and vertex varrayn+1 as tail. parray is implemented as a single
full balanced binary tree of n+ 1 non-leaf nodes and n+ 2 leaf nodes.

We use the concatenate operation to construct parray from array (array(i))i=0,1,...,n. The
pseudo-code is the following:

parray := init dynamic path((array(i))i=0,1,...,n)
begin

Initialize dynamic path parray of a single vertex varray0 , i.e., parray := [varray0 , varray0];

for i := 0, . . . , n:

Create dynamic path q of a single vertex varrayi+1 , i.e., q := [varrayi+1 , varrayi+1];

parray := concatenate(parray, q, array(i));

end for

return parray;

end
It takes O(1) time to create a single vertex dynamic path [97], therefore the complexity

of the subroutine is O(n log n).
Note that by the definition of the concatenate operation, parray has vertex varray0 as head

and vertex varrayn+1 as tail. Recall that pcost(v) returns the cost of edge (v, after(v)), hence
array(i) is accessed by calling pcost(varrayi).

APPENDIX B. DYNAMIC PATH DATA STRUCTURE TO MAINTAIN CHAPTER 5’S
FOUR ARRAYS 113

B.2 Pseudo-code of Subroutine

update arrays(ik, wik,jk−1, wik,jk)

We define subroutine update constant(parray, ik, w) that add a constant value w to the sub-
path of dynamic path parray that corresponds to the subarray from array(ik) to array(n).

update constant(parray, ik, w)
begin

[p, q, x] := split-before(varrayik
); {q is the subpath corresponding to the subarray array(ik)

to array(n)}

pupdate(q, w); {∀j ∈ [ik, n] : array(j) := array(j) + w}

if p 6= NIL then parray := concatenate(p, q, x); else parray := q; end if {Merge the
split vertex-disjoint paths p and q back to a single dynamic path parray corresponding
to the whole array (array(i))i=0,1,...,n}

end
The complexity of each call to update constant is O(log n).

With update constant, update arrays is implemented as follows:

update arrays(ik, wik,jk−1, wik,jk)
begin

if wik,jk−1 ≤ 0 and wik,jk ≤ 0 then

update constant(psa, ik,−(wik,jk − wik,jk−1));

update constant(ptms, ik, wik,jk − wik,jk−1);

update constant(psmt, ik,−(wik,jk − wik,jk−1));

else if wik,jk−1 ≤ 0 and wik,jk ≥ 0 then

update constant(psa, ik, wik,jk−1);

update constant(pta, ik, wik,jk);

update constant(ptms, ik, wik,jk − wik,jk−1);

update constant(psmt, ik,−(wik,jk − wik,jk−1));

else if wik,jk−1 ≥ 0 and wik,jk ≥ 0 then

update constant(pta, ik, wik,jk − wik,jk−1);

update constant(ptms, ik, wik,jk − wik,jk−1);

update constant(psmt, ik,−(wik,jk − wik,jk−1));

APPENDIX B. DYNAMIC PATH DATA STRUCTURE TO MAINTAIN CHAPTER 5’S
FOUR ARRAYS 114

end if

end
As update arrays makes constant number of calls to update constant, hence the complexity

of update arrays is O(log n).
For the special case of `1-GIMR (5.10), update arrays is called with argument wik,jk−1 =

−wik and wik,jk = wik .

B.3 Pseudo-code of Subroutine

[i∗k1, i
∗
k2] := find status change interval(ik`, ik, ikr)

The following pseudo-code operates on the dynamic paths of the four arrays:

[i∗k1, i
∗
k2] := find status change interval(ik`, ik, ikr)

begin

{Identify îk1}
if ik` = ik then îk1 := ik`, f1(̂ik1) = pcost(vsaik)− pcost(vsaik`−1);
else

{Identify ĩk1 ∈ [ik` + 1, ik]}
[p1, p2, x] := split-before(vtmsik`

); {Path ptms is split into path p1 and path p2}
[q1, q2, y] := split-after(vtmsik

); {Path p2 is split into path q1 and path q2. Path q1

corresponds to the subarray tms(ik`) to tms(ik − 1)}
ĩk1 := pmincost(q1) + 1;
{Recover a single dynamic path ptms for (tms(i))i=0,1,...,n}
if q2 6= NIL then ptms := concatenate(q1, q2, y); else ptms := q1; end if
if p1 6= NIL then ptms := concatenate(p1, ptms, x); end if

f1(̃ik1) := pcost(vtms
ĩk1−1

)− pcost(vtaik`−1) + pcost(vsaik) + dik`,ik`−1;

f1(ik`) := pcost(vsaik)− pcost(vsaik`−1);

if f1(̃ik1) ≤ f1(ik`) then îk1 := ĩk1, f1(̂ik1) := f1(̃ik1); else îk1 := ik`, f1(̂ik1) :=
f1(ik`); end if

end if

{Identify îk2}
if ikr = ik then îk2 := ikr; f2(̂ik2) := pcost(vsaikr)− pcost(vsaik);
else

{Identify ĩk2 ∈ [ik, ikr − 1]}
[p1, p2, x] := split-before(vsmtik

); {Path psmt is split into path p1 and path p2}
[q1, q2, y] := split-after(vsmtikr

); {Path p2 is split into path q1 and path q2. Path q1

APPENDIX B. DYNAMIC PATH DATA STRUCTURE TO MAINTAIN CHAPTER 5’S
FOUR ARRAYS 115

corresponds to the subarray smt(ik) to smt(ikr − 1)}
reverse(q1); {Make vsmtik

as the tail and vsmtikr
as the head}

ĩk2 := pmincost(q1);
reverse(q1); {Resume vsmtik

as the head and vsmtikr
as the tail}

{Recover a single dynamic path psmt for (smt(i))i=0,1,...,n}
if q2 6= NIL then psmt := concatenate(q1, q2, y); else psmt := q1; end if
if p1 6= NIL then psmt := concatenate(p1, psmt, x); end if

f2(̃ik2) := pcost(vsmt
ĩk2

)− pcost(vsaik) + pcost(vtaikr) + dikr,ikr+1;

f2(ikr) := pcost(vsaikr)− pcost(vsaik);

if f2(̃ik2) ≤ f2(ikr) then îk2 := ĩk2, f2(̂ik2) := f2(̃ik2); else îk2 := ikr, f2(̂ik2) :=
f2(ikr); end if

end if

Z([̂ik1, îk2]) := f1(̂ik1) + f2(̂ik2);

Z(∅) := pcost(vtaikr)− pcost(vtaik`−1) + dik`,ik`−1 + dikr,ikr+1;

if Z(∅) ≤ Z([̂ik1, îk2]) then [i∗k1, i
∗
k2] := ∅; else [i∗k1, i

∗
k2] := [̂ik1, îk2]; end if

return [i∗k1, i
∗
k2];

end
The number of calls to the dynamic path operations is constant. More precisely, there

are 16 calls to pcost, 2 calls to split-before, 2 calls to split-after, 2 calls to pmincost, 4 calls to
concatenate and 2 calls to reverse. Therefore the complexity of find status change interval is
O(log n).

116

Appendix C

Benchmark Images

Figure C.1 contains all the twenty benchmark images we use in the experiment. We sequen-
tially name them from Image 1 to Image 20.

Image 1 Image 2 Image 3 Image 4 Image 5

Image 6 Image 7 Image 8 Image 9 Image 10

Image 11 Image 12 Image 13 Image 14 Image 15

Image 16 Image 17 Image 18 Image 19 Image 20

Figure C.1: The twenty benchmark images

