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ABSTRACT OF THE DISSERTATION

Interval Joins for Big Data

by

Eldon Preston Carman, Jr.

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2020

Dr. Vassilis J. Tsotras, Chairperson

The main part of this dissertation considers how to scale interval join queries.

To provide scalable query processing for such joins, we adapted five recently published

overlapping interval join algorithms and modified them to work in a shared-nothing big data

management system (AsterixDB) under a memory budget. We developed a cost model for

each algorithm to predict when an algorithm will spill to disk (run out of memory). Our

experimental evaluation shows that the cost models are accurate and can be used to pick

the most efficient algorithm for the given input data. The adapted interval join algorithms

are shown to scale for large datasets using both synthetic and real datasets. Finally, we

further adapt these algorithms to support several new types of interval joins, specifically

overlap and contains, as defined by Allen’s interval algebra. We detail how to abstract the

memory management from these algorithms.

As a by-product we also implemented a scalable parallel processor, namely Apache

VXQuery, that extends a stack consisting of Hyracks, a parallel execution engine, and

Algebricks, a language-agnostic compiler toolbox. VXQuery provides an implementation of

vii



the XQuery specifics (data model, data-model dependent functions and optimizations, and a

parser). We describe the architecture of Apache VXQuery, its integration with Hyracks and

Algebricks, and the XQuery optimization rules applied to the query plan to improve path

expression efficiency and to enable query parallelism. An experimental evaluation using a

real 500GB dataset with various XML selection, aggregation, and join queries shows that

Apache VXQuery performs well both in terms of scale-up and speed-up.
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Chapter 1

Introduction

Today’s applications create many types of data. In this dissertation, we consider

two types of data: data with intervals and data stored in XML. For the first data type,

consider jobs running on a supercomputer, songs played on a streaming site, and network

files transferred as a few examples where the activity includes a start and end time, thus

creating an interval that describes the duration of the activity. The existence of interval data

leads to interesting queries. One of the most processing-intensive queries is the ‘interval-

join’, where tuples from two relations are joined together if their respective intervals satisfy

some query-specified condition. There are various join conditions between two intervals

(overlaps, covers, covered_by, etc.), as defined by Allen’s relationships [2]. The second

type of data comes from the widespread acceptance of XML as a standard for document

management and data exchange, which has enabled the creation of large repositories of

XML data. An interesting problem is to efficiently query such large data collections while

taking advantage of parallelism.
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In this dissertation we consider scenarios where data is very large (as, for example,

in log-related applications that keep track of what happened in an application logs). As a

result, solutions to interval joins or XML data need to scale to the data size. The dissertation

starts by looking at interval join and then wraps up by considering XML data. While

there are many recent works presenting various interval-join algorithms, they are limited to

running on a single (possibly multi-core) machine, and often all in main memory. Here we

consider how these algorithms can be extended to work in a standard big data environment,

where data can reside on many different processing nodes with bounded memory working,

under a shared-nothing framework. In particular, we implement our interval join algorithms

on AsterixDB, an open-source, shared-nothing distributed environment. In Chapter 2 we

review the shared-nothing architecture of AsterixDB and its basic join query structure.

One basic interval join condition is for the tuple intervals to overlap; we call this

query the ‘overlapping interval join’ [29] and it is the focus in Chapter 3. Given two relations

whose tuples include intervals, an overlapping interval join finds all pairs of tuples from the

two relations whose intervals share at least one time instant. Since a given tuple’s interval

may overlap with many intervals in the other relation, the join results tend to be large,

often larger than the input relations.

The state-of-the-art algorithms for interval overlapping joins can be divided in two

categories; ones that further partition data to perform the interval join and those that do

not use partitioning. The non-partitioning interval join algorithms – sort-merge (SM) (as

described by [38]), time-sweep (TS) (a modified algorithm from [43]) and forward scan (FS)

[16] – and the partitioning interval join algorithms–overlap interval partition join (OIP)
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[24] and disjoint interval partitioning (DIP) [17]–are reviewed in Chapter 3. Chapter 3 also

looks at each algorithm’s memory usage and how to run the algorithm when memory is

insufficient for in-memory operations. Experiments were performed to show how different

interval properties affect these algorithms and consider both varied data input and query

output characteristics. Since each algorithm uses its memory budget in different ways, we

created cost models to enable these algorithms to be integrated into a cost-based query

optimizer. Chapter 4 describes the cost models for predicting the processing associated

with Memory, CPU, and IO. We include a model for determining the join size estimation,

which predicts how many tuples will be created from an interval join.

Recent publications on interval joins have focused on the overlapping join condi-

tion. There are, however, many types of interval joins, as defined by Allen’s thirteen interval

algebra relationships [2]. These thirteen relationships define all possible ways that one in-

terval can relate to another interval and thus allow for more descriptive interval queries. In

Chapter 6, we describe how to extend the five state-of-the-art interval join algorithms to

process four of Allen’s interval algebra relationships, namely: covers, covered-by, overlaps,

and overlapped-by. We focus on these four relationships since their predicates involve both

the start and end points of the two intervals; relationships like starts, finishes, or meets in-

volve one interval end point and are thus easier to process – using, for example, traditional

indexes like B-trees or hashing. The five state-of-the-art interval join algorithms have been

updated to process four of Allen’s interval algebra relationships. Using Sort Merge Interval

Join as a test case, we show experiments that explore how these Allen interval joins are

impacted through speed up, scale up and handle limited memory.
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Chapter 7 turns from intervals to semistructured data and in particular to how

to build a scalable processor for querying XML data, using the same interval frameworks

that support AsterixDB. To efficiently query such large XML data collections, a scalable

implementation of XQuery (the standard XML query language) is needed that can take

advantage of parallelism. The result is the Apache VXQuery processor, which builds upon

two other open-source Asterix frameworks: Hyracks, a parallel execution engine, and Alge-

bricks, a language agnostic compiler toolbox. Apache VXQuery provides an implementation

of the XQuery specifics (data model, data-model dependent functions and optimizations,

and a parser) and is currently available as open source at the Apache Software Foundation

[13]. We describe the architecture of Apache VXQuery, its integration with Hyracks and

Algebricks, and the XQuery optimization rules applied to query plans to improve path ex-

pression efficiency and to enable query parallelism. We have performed an experimental

evaluation using a large (500GB) real dataset (a NOAA weather dataset from [14]) and

various XML selection, aggregation, and join queries that show the efficiency of our parallel

XQuery processor, both in terms of speed up and scale up.
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Chapter 2

Background: The AsterixDB

Software Stack

In this chapter, we introduce the AsterixDB software stack and explain how a

traditional (i.e., non-interval) join query is currently optimized and executed. This chapter

will serve as a background for Chapters 3 and 6, where we describe how AsterixDB was

extended to support interval joins. AsterixDB’s software stack can be represented in three

layers, as shown in Figure 2.1. After parsing a supplied SQL++ query statement, the top

layer, AsterixDB, builds an Algebricks logical plan. The Algebricks logical plan is then

optimized and translated into an Algebricks physical plan that maps directly to a Hyracks

job. A brief explanation of each layer in the stack follows in the next subsections. Figure

2.1 also shows how other systems, such as the Apache VXQuery processor [33], can use

the layers of the Algebricks and Hyracks infrastructure. Chapter 7 will present details of

building the Apache VXQuery processor using Algebricks and Hyracks.
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Figure 2.1: The layers of the Asterix architecture.

AsterixDB is an open-source, shared-nothing distributed platform for big data

management. A shared-nothing architecture consists of many nodes where each node has

its own processes, memory, and disks. AsterixDB runs on a cluster of commodity hardware.

A cluster controller manages the cluster and handles incoming queries’ requests. Figure 2.2

shows the components of the AsterixDB cluster and node controllers which work together

to orchestrate the query execution. In the following sections we will describe these pieces,

starting from the bottom of the stack.

2.1 Hyracks

Hyracks is a data-parallel execution platform that builds upon mature parallel

database techniques and modern big data trends [12, 30]. This generic platform offers a

framework to run dataflows in parallel on a shared-nothing cluster. The system was designed

to be independent of any particular data model. Hyracks processes data in partitions

of contiguous bytes, moving data in fixed-sized frames that contain physical records. It
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Figure 2.2: The components of the AsterixDB system architecture.

also defines interfaces that allow users of the platform to specify the data-type details for

comparing, hashing, serializing and de-serializing data. Hyracks provides built-in base data

types to support storing data on partitions or when building higher level data types (first

row of Table 2.1).

A Hyracks job is defined by a dataflow directed acyclic graph (DAG) with opera-

tors (nodes) and connectors (edges). During execution, the operators allow the computation

Hyracks Base Types boolean, byte, byte array, short, integer, long,

double, float, UTF8 string, void

AsterixDB Types Interval, List, Record

Table 2.1: AsterixDB builds on the Hyracks Base types to create more advanced data types.
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to consume an input partition and produce an output partition while the connectors re-

distribute data among partitions. The dataflow among Hyracks operators is push-based:

each source (producer) operator pushes the output frames to a target (consumer) operator.

The extensible runtime platform provides a number of operators and connectors for use in

forming Hyracks jobs. While each operator’s operation is defined by Hyracks, the operator

relies on data-model specific functionality provided by the client of (next level above) the

platform.

2.2 Algebricks

Algebricks [13, 14] is a parallel framework providing an abstract algebra for par-

allel query translation and optimization. This language-agnostic toolbox complements the

lower-level extensible Hyracks platform. Implementations of data-intensive programming

languages can extend Hyracks’ model-agnostic algebraic layer to create parallel query pro-

cessors on top of the Hyracks platform. A language developer is free to define the language

and data model when using the Hyracks platform and the Algebricks toolkit. Algebricks

features a rule-based optimizer and data-model-neutral operators that allow for language

specific customization. Figure 2.3 shows each of the components that Algebricks provides

and the components contributed by the language implementation.

A system that uses Algebricks for its query processing provides its own parser and

translator to translate a query to a query plan that uses Algebricks’ logical operators as an

intermediate representation. The Algebricks rule-based optimizer then transforms the query

plan over three stages. The first is a Logical-to-Logical plan optimizer that creates alternate
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Figure 2.3: The components of the Algebricks architecture.

logical plans. Once the logical plan is finalized, the Logical-to-Physical plan optimizer

converts the logical operators into a physical plan. Then, the physical optimizer considers

the operator characteristics, partition properties, and data locality to choose the optimal

physical implementation for the plan. Algebricks provides generic language-independent

rewrite rules for each stage and allows for the addition of other rules. Finally, a Hyracks

job is generated and submitted for execution on a Hyracks cluster.

Algebricks’ intermediate logical algebra uses logical operators that map onto Hyracks’

physical operators. A logical operator’s properties are considered when determining the best

physical operator. For example, a join query that has an equijoin predicate allows a hash-

based join instead of the default nested-loop join. The Algebricks logical operators exchange
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data in the form of logical tuples, each of which is a set of fields. The following Algebricks

logical operators are used in a basic AsterixDB query plan:

The DATASCAN operator reads from a data source and returns one tuple for each

item in the data source.

The DISTRIBUTE-RESULT operator collects the final query results on each par-

ticipating data node. Once the job is completed, the controller will request each local result

and transfer it back to the user to create a complete result.

The EMPTY-TUPLE-SOURCE operator contributes the first tuple without any

fields. Algebricks uses this operator to start all DAG dataflow paths.

The JOIN operator matches and combines tuples from two streams of input tuples.

The ORDER operator sorts tuples in the local partition.

The Algebricks operators are each parameterized with custom expressions. The

expressions map directly to functions provided by the higher level (which can be built-in

functions or custom functions). These operators are linked by connectors that are respon-

sible for transporting data from one operator to the next. The following are common

connectors:

The 1:1 EXCHANGE connector reads from an operator and sends the data to

another operator.

The 1:1 PARTITION EXCHANGE connector reads from an operator and applies

a partitioning function to determine the next operator to which to send the data.

The 1:M BROADCAST EXCHANGE connector reads from an operator and sends

the same data to a specified collection of M operators.
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2.3 AsterixDB Runtime(s)

AsterixDB extends the language-agnostic layer provided by Algebricks to create a

scalable SQL++ processor. An AsterixDB cluster configuration defines the number of nodes

and the number of partitions in each node. The system supports having multiple disks on

each node and any number of partitions on each disk. The hardware and workload determine

how the cluster is configured. Two options are typically considered for determining the

number of partitions on a node. If the process is disk-intensive, then assigning one partition

per disk allows for optimal IO. The log storage should also have a separate disk. If the

process is computationally intense, like interval joins, then choosing the number of partitions

should be related to the number of cores available on each node. A good practice, even

for computational intense workloads, to keep one disk (or disks) designated for data with a

separate disk for the logs.

Hyracks data storage and processing uses the AsterixDB — provided binary rep-

resentation of various data types, including an interval (see Table 2.1). The data is sharded

across all partitions on all nodes in the cluster based on hashing the primary key and dis-

tributing the records evenly throughout the cluster as shown in Figure 2.4. Let’s call the

result of this sharding process global partitioning. If an operator (such as an interval join)

uses partitioning to further partition the data, we call this local partitioning. The data does

not move to another remote partition and is only partitioned to make the local processing

more efficient.

Query evaluation proceeds through the usual steps. The query is parsed into

an abstract syntax tree (AST) and is then analyzed, normalized, and translated into a
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Figure 2.4: Global partitioning of a dataset in AsterixDB for interval join.

logical plan. The logical plan consists of Algebricks data-model-independent operators

parameterized with Asterix data-model-dependent expressions. The logical plan is then

optimized using both generic rewrite rules provided by Algebricks and AsterixDB — specific

rewrite rules. After rewriting the logical plan, it is translated into a physical plan and

optimized further (physical optimization includes such rules as the selection of join methods

or the distribution of the plan). Finally, the physical plan is translated into a Hyracks job

that is executed. Similar to Algebricks operators that have physical representations based on

Hyracks operators, AsterixDB provides executable functions that implement AsterixDB’s

data-model-dependent expressions.

At runtime, the AsterixDB cluster processes a query that arrives via the web

interface or the RESTful query API served from the cluster controller. The process starts
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with a user submitting a SQL++ query statement to AsterixDB for parallel execution. The

cluster controller parses and optimizes the query and then submits the generated Hyracks

job to the cluster controller, which manages and distributes tasks to each of the data nodes

for evaluation. Each data node contains the globally hash-partitioned records as well as

the AsterixDB runtime expressions used to evaluate the node’s tasks. Finally, the cluster

controller collects the data nodes’ results and sends the result back to the cluster controller,

which returns the result to the user.

2.4 Partitioning for Parallel Join Query Plans

The AsterixDB query optimizer is responsible for recognizing join queries and

implementing the logical join operator. After the logical optimization step is finished, the

physical optimizer will select the physical join operator. The physical operator describes

the global partitioning and local data properties required to complete the operator’s task

in a shared-nothing architecture. Each physical join operator creates the join results for its

partition; they are then combined together to form the complete result. The data must be

globally partitioned and ordered in a way that allows the physical operator to create the

complete result. Table 2.2 shows a list of example joins and their required global partitioning

properties.

The physical join operator must pick a global partitioning strategy that ensures

that the overall join process will yield the complete join result when all result partitions

are combined. Consider the nested-loop join, a brute force join operator, which compares

every tuple in the left (or build) dataset with every tuple in the right (or probe) dataset.

13



Join Name Physical Operator Left Dataset Right Dataset

Nested Loop Block Nested Loop Hash Partition Broadcast Partition

Hash Join Hybrid Hash Join Hash Partition Hash Partition

Broadcast Join Hybrid Hash Join Broadcast Partition Hash Partition

Merge Join Merge Join Hash Partition, Hash Partition,

Locally Sorted Locally Sorted

Sort Merge Join Merge Join Range Partition, Range Partition,

Locally Sorted Locally Sorted

Table 2.2: Various parallel joins and their required data partitioning strategies.

The global partitioning strategy for the physical nested-loop join operator ensures that each

tuple in the left dataset can be matched with each tuple in the right dataset. The physical

nested-loop join operator must be able to apply its local join process to each joined partition

and guarantee that all join results will be created. That is, each tuple in the left partition

must be compared to every other tuple in right partition. To scale this join approach, the

system must ensure that the global partitioning strategy allows for every tuple in the left

dataset is be compared with all possible matching tuples in right dataset. One way to scale

this join to many nodes is to HASH PARTITION the left (or build) dataset to allow for

minimal data in each join operator partition, as shown in Figure 2.5. The right (or probe)

dataset is BROADCAST (which is stored using a globally HASH PARTITION strategy) to

make each global partition hold the whole right dataset, as shown in Figure 2.6. While a
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Before After

Figure 2.5: Hash partitioning applies a partition function to the data and re-partitions
based on the hash results.

Before After

Figure 2.6: Broadcast partitioning sends each partition to all other partitions to create the
full dataset in each partitions. The figure shows how the resulting partitions grows to hold
the whole dataset.

copy of the right dataset is distributed to all partitions, pieces of the left dataset are spread

evenly across partitions.

Using the BROADCAST connector means the right dataset is sent over the net-

work to every other partition and each local join computation must process the whole right

dataset. For join predicates that can be supported by hash join, the partitioning for the

right dataset could also use HASH PARTITIONING, thus reducing the network and local

processing for the join, not to mention using a faster (hash-based) local join algorithm.

Sort-merge join is an alternate approach to a hash-based join. The sort-merge

join requires that the global partitions hold all tuples that could be matched and locally

sorted. For data that is already locally sorted, the global partitioning strategy could either
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Before After

Figure 2.7: Range partitioning creates partitions where each partition holds a specific range
of join key values.

be hash-partitioned or range-partitioned. Both of these global partitioning schemes ensure

that the join key from each dataset will be located in same partition. Figure 2.7 shows

a range partitioned layout which keeps the partitions with a global time range order as

compared to hash partitioning where partitions do not have a global order.

The local join operators use different global partitioning schemes to ensure the

correct overall join result. Traditional joins use the global partitioning schemes discussed

in this chapter. Chapter 3 describes an additional global partitioning scheme that could be

added to Apache AsterixDB to support interval joins.
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Chapter 3

Scaling Overlapping Interval Joins

3.1 Introduction

For the purposes of this dissertation, time is assumed to be discrete and is described

by a succession of consecutive non-negative integers. A time interval is represented by two

integers: start and end, where start < end. Further we assume that an interval is semi-

closed as in [start, end), meaning that it contains all the time instants starting from start,

but not including the end time instant. For the remainder of this dissertation we will use

the terms “time instant” and “point” interchangeably. If data is too large for a node’s

main memory computation, it may “spill” to disk to be processed later. Such spilling can

significantly impact the join algorithm’s performance, especially since we do not assume the

existence of any indexing or other data structures on the data to be joined.

In a shared-nothing environment, each node has a part of the data (called a data

partition) and operates on it independently. The system uses local processes to execute

query plans which are made up of operators and connectors. When implementing an interval
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join on a shared-nothing big data management system, the parallel interval join approach

involves three phases of query processing: a global partitioning (where data may be sent to

other nodes), a local sort, and a local join. The local phases use operators which only have

access to local partitions of data. Note that there are typically two stages where data is

distributed among nodes. First, there is an initial distribution of the interval data among

the nodes before the query begins (i.e., for data storage); this has traditionally been done

using a hashing scheme on the tuple key. Second, there is a subsequent distribution (global

partitioning, sometimes called repartitioning) of interval data from the node that initially

hosted the data to any other node(s) that may need the data to perform the requested join

operation. (Improving this distribution approach is the focus of later discussion.) The global

partitioning phase ensures that all interval data (whether from the local node or remote

nodes) is grouped based on their time instances for the local join operator. Then the local

sort phase proceeds by sorting each local partition’s interval data. For the sorting phase, we

sort intervals lexicographically based on the start point followed by the end point. Finally,

the interval join is processed using sorted interval data. The distributed result operator

collects all partition results from all nodes to build the complete result.

The state-of-the-art algorithms for interval overlapping joins can be divided into

two categories, namely algorithms that utilize local partitioning and those that do not

further partition the data; these are called partitioning and non-partitioning algorithms,

respectively. The non-partitioning interval join algorithms – sort-merge (SM) (as described

by [38]), time-sweep (TS) (a modified algorithm from [43]) and forward scan (FS) [16] –

have been extended by us to work within a memory budget. The partitioning interval
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join algorithms – overlap interval partition join (OIP) [24] and disjoint interval partitioning

(DIP) [17] – come from papers that included descriptions of the query processing for both

in-memory and on-disk data. The on-disk descriptions from these papers are used in our

work when the memory budget is insufficient for in-memory operations.

This chapter makes three contributions to overlapping interval joins: (i) we imple-

ment various state-of-the-art overlapping interval join algorithms on AsterixDB, an open-

source shared-nothing big data management system; (ii) in doing that, we had to extend

AsterixDB to include an interval partitioning connector and update the query optimizer to

recognize and construct an interval join query plan; and (iii) we extend the non-partitioning

algorithms to support “spilling”, i.e., to work under a limited memory scenario.

We proceed by describing the changes applied to AsterixDB so as to support an

interval join query plan in Section 3.2. Section 3.3 details how each considered algorithm

is extended to work within a memory budget and its implementation in AsterixDB. The

performance of the overlapping interval joins are evaluated in Section 3.4, and conclusions

appear in Section 3.5.

3.2 Extending AsterixDB for More Efficient Interval Joins

Prior to our work, the query language of AsterixDB supported interval expres-

sions that can be used to create an interval join query. Consider two datasets, Staff and

Students, each with an interval data field. The Staff dataset has fields name(string) and

employment(interval), while Students has fields name(string) and attendance(interval). In
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Figure 3.1: The initial query plan for Interval joins in AsterixDB.

each dataset the primary key is the field name. Using these datasets, a sample SQL++

interval join query is the following:
1 SELECT element{ ‘ s t a f f ’ : f , ‘ student ’ : d }
2 FROM Sta f f AS f , Students AS d
3 WHERE interva l−overlapping ( f . employment , d . attendance ) ;

Running this join query on AsterixDB before our work would have selected a

nested-loop join operator since the optimizer did not support specific interval joins. The

join operators and connectors for a simplified plan generated from this query are shown in

Figure 3.1. The logical join operator uses a nested-loop physical join operator which defines

the global partitioning properties needed for the join operation. With this approach, the

data will be distributed among the nodes only once, before the join operation starts. One

dataset (shown on the left of the figure) is broadcast so that the entire dataset exists on all

partitions while the other dataset (on the right) transfers data using a 1:1 exchange which

just copies its portion of the data locally to the next operator while keeping its original

hash partitioning on the primary key (wherein each node contains a part of this dataset).
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The initial BROADCAST exchange connector in Figure 2.6 creates multiple copies

of the left dataset, one for each partition. This level of network traffic and data duplication

impose a significant overhead, and the local join algorithm (a brute-force, nested loop join

that compares all tuples) is not optimal. To address these inefficiencies, we implemented

both a new partitioning scheme and a new join operator which we describe next.

Chawda et al. [20] describes how a generic Map-Reduce interval join can be run

on multiple machines in the Hadoop world and defines how to globally partition interval

joins (the map phase) for many different types of interval joins using Allen’s interval alge-

bra [2]. In particular, they demonstrated how to map data into partitions for independent

local join processing with replicated interval data so as not to create duplicate join results.

Three partitioning schemes were proposed (PROJECT, SPLIT, and REPLICATE) that

each distribute the tuples based on an interval’s start time and end time (so that a tuple

can be distributed to multiple nodes) rather than on a hash of the tuple key. Each par-

tition is designed to be a non-overlapping temporal range defined by a set of split points

given in a query hint. PROJECT partitioning transfers an interval to a global partition

whose temporal range holds the interval’s start point (or end point, depending on the join

condition) as shown in Figure 3.2. The range partitioning from Figure 2.7 can be used to

perform PROJECT partitioning by selecting the partitioning key to be either the interval’s

start or end point. In contrast, SPLIT partitioning (partially) broadcasts an interval to

all global partitions whose temporal range overlaps the interval as shown in Figure 3.3.

Finally, REPLICATE partitioning transfers an interval to the global partition whose tem-
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Before After

Figure 3.2: PROJECT partitioning is the same as range partitioning with the interval start
point as the key.

Before After

Figure 3.3: SPLIT partitioning is similar to range partitioning, but includes additional
values that overlap multiple partitions.

poral range holds the interval’s start point and then (partially) broadcasts the interval to

all subsequent (later in time) partitions as shown in Figure 3.4.

The Map-Reduce interval join of [20] focuses on the global partitioning (mapping

phase) of interval joins, while its local join process (reducer phase) only utilizes a nested-loop

join. AsterixDB supports many traditional database operators, like aggregate and join. The

Before After

Figure 3.4: REPLICATE partitioning is similar to range partitioning, but partially broad-
casts each interval to all partitions with its start point and subsequent partitions.
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global partitioning from [20] can instead be paired with a specialized local join operator that

is more focused on applying an efficient join algorithm to a local partition. Other supporting

operators are discussed later in this section when we introduce an AsterixDB interval join

query plan. This dissertation utilizes the global partitioning from Map-Reduce interval join

but connects it with five different interval join algorithms for local join processing.

Chawda’s SPLIT partitioning for Allen’s interval algebra can be used to partition

interval data for overlapping interval joins. Consider the following self-join example which

uses the data from Figure 3.3. The two identical datasets have been labeled R and S in

Figure 3.5 to show a join scenario. (The two look ”similar” because the example assumes

a self-join where R and S are actually the same interval collection.) Each dataset has

two partitions divided into two non-overlapping temporal ranges identified by the red lines.

The join process needs to create the complete overlapping interval join result for the labeled

intervals, which is [(a,w), (b,x), (b,y), (b,z), (c,x), (c,y), (d,x), (d,z)]. The two first temporal

range partitions, the top left and top right partitions, have been assigned intervals based

on the intervals’ start times. The first temporal range partitions creates the following

overlapping intervals: [(a,w), (b,x), (b,y), (c,x), (c,y)]. The bottom two partitions represent

the second temporal range and create a few scenarios that need to be addressed by using

SPLIT partitioning. The long interval b in dataset R have been sent to both the first and

second temporal ranges, similarly for x in dataset S. The two duplicated intervals (b and x)

are needed to ensure that they will be joined with the short intervals (d and z, respectively)

in the second temporal range. First, consider b; it must be in temporal range one for

matching with y and x and in temporal range two for matching with z. Similarly for x, it
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must be in temporal range one for matching with b and c and in temporal range two for

matching with d. As a result of b and x being in temporal range two, the following pairs are

created: [(b,x), (b,z), (d,x), (d,z)]. Using SPLIT partitioning strategy ensures that local

join processing can create all the interval join results. However, note that duplicating the

long interval (b and x) has created two (b,x) results: one in the first and one in the second

temporal range. To ensure no duplicate results, the join algorithm must not create interval

pairs for intervals whose start times are before their partition’s designated temporal range.

In this case, the second temporal range partition would then not create the (b,x) pair and

the overlapping interval join results would not have any duplicates.

Using the SPLIT partitioning scheme from [20], Figure 3.6 shows an updated

interval join query plan. The primary-key-partitioned data is read with a DATASCAN

operator and uses a 1:1 EXCHANGE to connect to the next operator. The FORWARD

operator reads the split points from a query hint (defined by the query writer) and shares

the split points with an M:N SPLIT MULTICAST EXCHANGE connector to partition

the intervals. The data is redistributed using the M:N SPLIT MULTICAST EXCHANGE

connector to put the data in an ordered partition layout based on the SPLIT partitioning

details. Since all the local interval join methods described in this chapter require the data

to be sorted before starting the joining phase, the ORDER operator has been added after

M:N SPLIT MULTICAST EXCHANGE connector to do the required sorting on each local

partition. On each node, the data is then streamed into a join operator that computes a

local interval join. The result may be streamed to another node (to be merged with results
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Figure 3.5: A sample join for Datasets R and S (where R and S have the same data) each
with two partitions created using global SPLIT partitioning.

from other nodes), or maybe left on the current node for later retrieval and viewing, as

determined by the distributed result operator.

Our new interval join algorithms required the addition of several new items to the

AsterixDB code base. A new connector, called M:N SPLIT MULTICAST EXCHANGE,

was implemented to apply a new SPLIT partition function that defines to which N operators

(on the same or other nodes) the data is sent. To incorporate the range split points into

the SPLIT partitioner, a FORWARD operator was introduced for reading the range query

hint and sharing the range split points with the M:N SPLIT MULTICAST EXCHANGE

connector.

The SM, TS, and FS algorithms require a more dynamic memory manager than

existed with AsterixDB. The previous memory manager allows tuples to be added to the join

operator’s memory and once they had been used, the join’s memory was completely wiped.

These three interval join operators need the ability to add and remove tuples as needed due

to the interval properties and the algorithms process. The new memory manager supports

dynamically adding and removing manages tuples while minimizing garage collection. The

manager also includes an iterator for processing the available tuples.
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Forward
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Figure 3.6: Updated query plan for AsterixDB interval join ordered partitioning and local
sorting with SPLIT partitioning.

Finally, the five interval join algorithms utilize the previous JOIN logical operator

and extend a new stream join physical operator that works at a more granular (and thus

more efficient) level. Specifically, the previous join physical operators had a blocking edge

between the processing of the two input join streams. As a result, all data from one dataset

had to be processed (”built”) before starting the join process (”probe”). The new stream

join operator is able to start the join processing with the first tuple in the data stream, that

is, neither branch needs to be fully processed to start the join process. Note that partitioned

interval joins still use the previous (non-steam) join approach because such joins can only

occur after one side has been completely partitioned.
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3.3 Overlapping Interval Join Algorithms

The join operator shown in Figure 3.6 can support many different local join meth-

ods. In this section, we present five options for local interval join methods: sort-merge (SM),

time-sweep (TS), forward-scan (FS), overlap interval partition join (OIP), and disjoint in-

terval partitioning (DIP). Each method has been implemented in AsterixDB, optimized in

order to scale, and runs within a memory budget. For the following algorithmic descriptions,

consider an overlapping interval join between two datasets: R and S. For each algorithm,

we will describe the in-memory method and then explain how, when memory is full, the

algorithm completes the join using a spilling phase.

3.3.1 Sort-Merge Interval Join

An interval join algorithm for parallel processing was first defined by Leung and

Muntz [38]. They defined a three phase (replication, join, and merge) process for doing a join

on interval data that works well in a shared-nothing environment. The Leung and Muntz

algorithm was designed only for a single machine and did not consider limited memory.

Their replication phase is similar to our Split partitioning, while the join and merge phases

resemble the local sort-merge interval join operator we discuss in this section. Instead, our

SM algorithm scales to many nodes, works within a memory budget, and does not need to

remove duplicates after the join due to the partitioning scheme used before the join.

Note that the behavior of a sort-merge interval join is similar to a traditional sort-

merge join when many duplicate keys are present. The difference is that while duplicate

keys in a traditional sort-merge will only match with the same key, in interval joins each
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Figure 3.7: Sort-merge interval join actions for the in-memory mode. A) move a tuple from
the stream of S to memory; B) move a tuple from the stream of R to memory; D) move a
tuple from the spill file of R to memory; E) remove an active tuple in memory from S; and
F) put the merged the tuples from R and S in to the result stream.

interval matches with all tuples with overlapping intervals. The basic idea for SM is to

sort the two datasets and then merge the result by picking an interval from dataset R and

testing it for overlapping tuples in S. The process is repeated for every tuple in dataset R.

Since the tuples are in sorted order, the matching process does not need to scan the whole

dataset S, instead scanning only the range of tuples that are in the overlapping area. The

algorithm has a low number of extra comparisons since the algorithm stops processing an

interval tR once the process finds a interval tS that starts after tR ends.

The SM algorithm requires both dataset streams to be sorted by the interval start-

point followed by end-point. First, a single tuple (tR) from R is loaded into memory from

the stream, as shown by the B arrow in Figure 3.7. Tuples from the S stream are loaded

into memory (as shown by the A arrow in Figure 3.7) and, as each tS tuple is loaded into

memory, the tuple tR in memory is compared to the interval of tS and, if they overlap,
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Figure 3.8: Sort-merge interval join actions for the spilling mode. B) move a tuple from the
stream of R to memory; C) copy the R tuple from memory to the spill file for R; D) move
a tuple from the spill file of R to memory; E) remove an active tuple in memory from S;
and F) put the merged the tuples from R and S into the result stream.

the join result is produced as shown by the F arrow in Figure 3.7. Once a new tuple

(tS) is loaded into memory that does not overlap with tR, the loading stops since no more

tuples from S will match with the tuple tR in memory due to data sorting. The process

repeats by loading the next tuple from R into memory. Each interval in memory from S

is compared with the new tuple tR. If tS ’s end-point is before tR’s start-point, then it is

purged from memory, as shown by the E arrow in Figure 3.7. If tS overlaps tR, a join result

is created. After going through all memory tuples, new tuples from S are added to memory

and compared with tR. The process continues for all the tuples in S. Once all tuples in R

have gone through this process and been compared with tuples from S that are in memory,

the join is complete.

The SM algorithm may run out of memory if tR is overlapping with more tuples

from S than can fit in memory (when there is no more space to hold a tuple in Active Tuples
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From S). When memory is used up, the algorithm can no longer continue processing the

join in memory. In this case, the memory used for active tuples from S could overlap with

future tuples from R so they cannot be permanently eject from memory. The spill algorithm

will start by continuing to load individual tuples from R (as shown in the B arrow in Figure

3.8) and compare them with the active tuples from S in memory. Since these tuples from

R may overlap data in the S stream, these tuples will be written to a replay spill file, as

shown by the C arrow in Figure 3.8. No new tuples from S are added to memory during

this process, but tuples from S are purged when they no longer match with R (as shown in

the E arrow in Figure 3.8). The process continues until all active tuples from S have been

removed from memory. At this point, the in-memory join method may resume with one

condition. While S will stream tuples into memory, dataset R must start by loading tuples

from the replay spill file (as shown in the D arrow in Figure 3.7) and then continue into

the R stream. The process repeats each time memory is full, and the S stream is paused

to free up memory.

3.3.2 Time-Sweep Interval Join

Instead of scaling up resources (more memory per node or more nodes), another

approach is to speed up interval join queries through the use of an index. For example, [34]

uses the Timeline Index, while [25] uses the RI-index for the interval join; however, these

indexing methods are created before executing a join. This requirement is unattractive

because we are looking for algorithms that can run ad hoc interval joins on AsterixDB

without any changes to existing stored datasets. Instead, Piatov [43] defines an end-point

based interval join algorithm, that uses a sweep-based approach focused on compact memory
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management to maximize cache utilization. The algorithm runs in memory and requires

an in-memory index that can be built on-the-fly. The algorithm builds the end-point index

in memory and then uses a second pass to perform the join using the index. [43] outlines

a few optimizations to minimize cache misses during the joining phase. Our time-sweep

algorithm alters the end-point interval join of [43] in two ways, so that it can be performed

in a single pass when the memory budget is sufficient and so that it also works when memory

is limited.

Like most of the other interval join algorithms, this algorithm requires interval

data to be sorted by [begin | end] point before starting the time-sweep interval join. Our

implementation has a few key differences. In particular, our algorithm utilizes the incoming

sorted interval data as the index for start-points and only builds a simple min heap for the

end-points while they are stored in memory, shown as ”Delete Order” in Figure 3.9. The

Delete Order data structure is also used to speed up memory clean up which incorporates

the optimizations discussed in [43]. Doing this allows the join process to only perform one

pass over the dataset. The algorithm has also been extended to work when memory is

limited by using a similar process to SM to up free memory.

The algorithm starts with the first interval in time order from either dataset.

Assume that R has the first time-ordered interval tR. The interval is added to R’s active

tuples in memory (as shown by the B arrow in Figure 3.9), and the interval end-point is

added to the Delete Order data structure structure. The next operation is based on where

the lowest remaining end-point is found, which may come from the Delete Order, stream

R, or stream S. If the interval is from dataset S, it is added to memory (as shown by the
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Figure 3.9: Time-sweep interval join actions for the in-memory mode. A) move a tuple from
the stream of S to memory; B) move a tuple from the stream of R to memory; D) move a
tuple from the spill file of R to memory; E) remove an active tuple in memory from S; F)
remove an active tuple in memory from R; and G) put the merged the tuples from R and
S into the result stream.

A arrow in Figure 3.9), joined with all active tuples in memory from R (as shown by the

G arrow in Figure 3.9), and added to the Delete Order. The reverse is true for adding a

tuple from dataset R’s stream. If the next time ordered end-point is from the Delete Order,

then the tuple linked to that end-point is removed from memory, as shown by the E or F

arrow in Figure 3.9. Tuples are added and removed so that only tuples that hold active

intervals during the time sweep are in memory. No additional comparisons are needed as

the time-sweep algorithm properties ensure that they are overlapping.

If the number of active tuples from both datasets exceeds the available memory,

the algorithm must stop the in-memory join. In an effort to free the most memory, the

algorithm picks the memory partition with the most active tuples. As an example, assume

that S’s memory partition has the most tuples. Since the S active tuples in memory may

match with future tuples from R, all active tuples from S must be joined with R’s data
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Figure 3.10: Time-sweep interval join actions for the spilling mode. B) move a tuple from
the stream of R to memory; C) copy the R tuple from memory to the spill file for R; D)
move a tuple from the spill file of R to memory; E) remove an active tuple in memory from
S; and G) put the merged the tuples from R and S into the result stream.

stream. The R data stream is processed tuple by tuple (as shown by the B arrow in Figure

3.10), comparing tuples with S’s active tuples in memory. Similar to the SM process of

freeing memory, R’s data stream is written to a replay spill file (as shown by the C arrow in

Figure 3.10), and S’s active tuples in memory that no longer match are removed both from

memory and the Delete Order, as shown by the E arrow Figure 3.10. Once S’s memory

partition is emptied, memory has been freed and the in-memory join can resume. The

algorithm will continue to load tuples from the S stream and start with the R replay spill

file and then continue with R stream, as shown in Figure 3.10 D and B, respectively. While

Figure 3.10 only shows a replay file for R, the spill process could be conducted for either

dataset, depending on which dataset has more active tuples in memory.
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3.3.3 Forward-Scan Interval Join

The Forward-Scan Interval Join [16] is based on the classic Plane Sweep Algorithm

[44] and takes a different approach than the time-sweep interval join [43]. Forward-Scan

showed how to scale up to many threads on a single machine using several different parti-

tioning strategies. For this dissertation we focus on implementing the Forward-Sweep local

join process in AsterixDB (a multi-node shared-nothing database system) and extend it for

working within a memory budget.

The Forward-Scan join performs a sweep through the sorted (by start points)

intervals dataset. The algorithm continues to pick the interval with the next start point,

matches it with all overlapping intervals in the other dataset, and then the initially-selected

interval is removed from memory. The process repeats, picking the interval with the next

start point and matching all overlapping intervals in memory. The process first joins tuples

in memory and then loads any new tuples, as needed from the stream, to complete the join.

Consider two datasets R and S where R has the first time-ordered interval tR.

The interval tR is added to R’s active tuples in memory, as shown by the B arrow in Figure

3.11. The active tuples from S are scanned to find all overlapping tuples with tR and added

to the result set. Tuples from stream S are added to memory (as shown by the A arrow in

Figure 3.11) and matched with tR until a tS tuple is found that starts after the tR’s interval

ends. If during the scan of the active tuples from S, a tuple tS is found that does not match

with a future tuple from R, it is removed from memory as shown by the E arrow in Figure

3.11. Once tuple tR has been matched with all overlapping tuples, tR is removed as shown
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Figure 3.11: Forward-Scan join actions for the in-memory mode. A) move a tuple from the
stream of S to memory; B) move a tuple from the stream of R to memory; D) move a tuple
from the spill file of R to memory; E) remove an active tuple in memory from S; F) remove
an active tuple in memory from R; and G) put the merged the tuples from R and S into
the result stream.

by the F arrow in Figure 3.11. The next tuple in time order is picked (from either dataset).

The process continues until all tuples have been loaded from both streams.

The join process collects active tuples through loading future tuples that overlap

the tuple being processed into memory. If the number of active tuples from both datasets

is going to exceed the memory budget, the algorithm must stop the in-memory join. In this

case, the algorithm picks the dataset with the most active tuples to free up the maximum

amount of space in memory and allow the join to continue. The spill process takes over and

pauses the in-memory time-sweep algorithm. The process used to free memory is same as

for the TS algorithm and can be used for either dataset, depending on which dataset has

more active tuples in memory. One difference for FS is that there is no Delete Order data

structure to be updated during the spill process.
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Figure 3.12: Forward-Scan join actions for the spilling mode. B) move a tuple from the
stream of R to memory; C) copy the R tuple from memory to the spill file for R; D) move
a tuple from the spill file of R to memory; E) remove an active tuple in memory from S;
and G) put the merged the tuples from R and S into the result stream.

3.3.4 Overlap Interval Partition Join

The non-partitioning interval join algorithms all generally have similar memory

management, while the partitioning algorithms’ memory management approaches are quite

diverse. Overlap Interval Partition Join (OIP) [24] outlines how to create temporal parti-

tions and perform an overlapping join. This partitioning method groups intervals with a

close starting point and similar duration into separate local partitions. OIP focuses on a

join process that is efficient for interval data with a few long duration intervals among many

short intervals and that works in memory or on disk. The paper claims that the algorithm

can outperform other disk-resident interval join algorithms due to the way that its join

process incorporates statistics on the machine’s CPU and I/O. The algorithm takes a set of

parameters (the longest expected interval, the number of tuples in each dataset, the speed

of the CPU, and the speed of an I/O request) which are used to determine the optimal
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number of partitions to be used during the join. OIP is the only interval join algorithm

discussed in this dissertation that requires additional parameters besides the range partition

split points given in the query hint.

Prior to the join process, OIP evenly splits the temporal range into slots. The

number of slots is based on a formula using the longest expected interval, the number of

tuples in each dataset, the speed of the CPU, and the speed of an I/O request. The OIP uses

these slots to create an overlapping temporal partitioning where each partition is defined by

its start and end slot. Consider a case where three slots are used for partitioning, Figure 3.13

shows the temporal partitions with their identifiers, composed of the start slot followed by

the end slot. The algorithm begins by partitioning the data into these temporal partitions.

The partitioning process maps an interval’s start point to a slot and the end point to a slot

which together determines the interval’s overlapping temporal partition. Then, a nested-

loop join is performed for overlapping temporal partitions to produce the final result. The

algorithm uses a nested-loop join for joining partitions since, if partitioned well, most of the

intervals will match and be in the result. Since our queries are executed in a multi-node

environment using Split partitioning, the first and last slots were overloaded with intervals

that either start before or after the temporal range for this join operator. Thus, we added

two special slots to create separate partitions for these intervals that extend beyond the

nodes’ responsible temporal range: one for intervals with start points before the range and

a second one for intervals with end points after the range.

Sorting on the tuples assigned starting slot followed by ending slot results in group-

ing the overlapping temporal partitions together. Figure 3.14 shows how tuples from the
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Figure 3.13: Temporal partitioning with partition identifiers when using three slots.

stream R (A arrow) are added to memory. Once the interval’s temporal partition is deter-

mined, the interval is written to a partition file (as shown by B arrow in Figure 3.14) and

the partition count is updated. If this is a new temporal partition, the file’s location for

the partition start (as shown by the blue triangles in Figure 3.14) is saved in the partition

locations data structure. The partitioning process is complete when all intervals from the

stream have been written to the partitioning file. The process is repeated for dataset S.

After each dataset has been partitioned in this manner; the join uses the partition

counts to calculate all overlapping temporal partitions to be joined. The join starts by

reading the first tuple tR from the partition file of R into the active tuples from R, as

shown by the B arrow in Figure 3.15. Using the precalculated list of join partitions, all

relevant partitions from S are loaded into memory as shown by the A arrow in Figure 3.15.

The partition order is maintained to ensure that the join can be completed with a single

scan of partition file S with the partition represented by tR. The tR tuple is matched with
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Figure 3.14: Overlapping interval join activities during partitioning. A) Move a tuple from
the stream of R to memory; and B) move a tuple from the memory to a partition file of R.

all active tuples for S, creating results for overlapping intervals, as shown by the C arrow

in Figure 3.15 The process repeats for each tuple in R’s partition until all its tuples have

been joined. Once the R partition has completed all overlapping partition joins, the next

partition in R loads its first tuple into memory and the process repeats.

When dataset S is larger than memory, the join will no longer be able to calculate

all results using a single pass of dataset R. As a result, the join begins by loading as

many tuples from overlapping partitions from S into memory, then a single scan of the R

partitions is done to complete the join process all S tuples in memory. The join continues

by loading the next set of overlapping partitions from S into memory and then joins with

a single pass over R. The process basically becomes a block nested-loop join, but the join

only needs to compare temporal partitions that are overlapping. Finally, note that S will be

processed in one pass while R will be loaded as many times as necessary for the overlapping

partitions.
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Figure 3.15: Overlapping interval join actions for the joining. A) move a tuple from the
partition file of S to memory; B) move a tuple from the partition file of R to memory; and
C) put the merged the tuples from R and S into the result stream.

3.3.5 Disjoint Interval Partitioning Join

Disjoint Interval Partitioning (DIP) [17] ensures a simple partition merge join

without backtracking like in sort-merge join. The number of disjoint interval partitions

needed is limited to the largest number of intervals that are active at the same time. The

limit becomes a constant factor used by the join’s cost model to give an upper bound on the

number of data scans used during an interval join. The algorithm can be done in memory

or from disk and uses two activities: one for partitioning and one for doing a merge join.

The merge join process here has an advantage of only reading partitions in sequential order.

The algorithm’s partitioning process begins by loading the first tuple (tR) from

stream R into memory as shown by the A arrow in Figure 3.16. tR’s partition is determined

by finding a partition that does not create overlapping intervals within the partition. A list
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Figure 3.16: Disjoint Interval Partition Join activities during partitioning. A) Move a tuple
from the stream of R to memory; and B) move a tuple from the memory to a partition file
of R.

of partition end points is saved in decreasing order, and the partitioner simply picks the next

partition based on the lowest interval end-point. tR is then moved into that partition file

for R as shown by the B arrow in Figure 3.16, and the Partition End Points data structure

is updated with tR’s end point for the partition that it was added to. If tR overlaps this

lowest end-point, then all existing partitions will overlap and a new partition is created.

The process continues loading new stream R tuples and processing them until all intervals

have been assigned a partition. The partitions for dataset R are written to disk and then

the partition process is repeated for to dataset S.

Once both datasets have been partitioned, the merge join starts by picking a single

partition from R and merge-joining this partition with every S partition. The first tuple

tR is loaded into memory from an R partition, as shown by the B arrow in Figure 3.17. All

partitions for S are loaded into memory as shown by the A arrow in Figure 3.17. The first

tuple tR is checked against the first tuple for each partition from S in memory. If tuple
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Figure 3.17: Disjoint interval partition join actions for the joining. A) move a tuple from
the partition file of S to memory; B) move a tuple from the partition file of R to memory;
and C) put the merged the tuples from R and S in to the result stream.

tR is after tS , then the pointer for the S partition is advanced. If they are overlapping,

then they are sent to the result as shown by the C arrow in Figure 3.17 and the pointer

for the S partition is then advanced. This continues until the tuple tS start point is later

then tR’s end point. Then the next partition in S is selected and the process repeats for

each partition in S. After merging tR all S partitions, the next tuple in R is selected and

merged with every partition of S starting at the partition marker. The process continues

until all of the tuples in R have been processed or the partition marker is at the end of

each S partition. The next partition in R is selected and its first tuple tR is loaded into

memory, the S partition markers are reset to the beginning of the partition and the merge

process is repeated. The join is complete after processing all partitions of from R with the

S partition in memory.
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If dataset S is larger than memory, the partition and join process is altered to

manage memory. During partitioning, instead of keeping the whole partition in memory,

only the last frame is kept in memory while the other frames are written to disk. Using one

frame per partition maximizes the number of partitions (M - 1) that can be processed. A

single frame is used to track all intervals that could not be assigned an overflow partition.

Once all intervals have been assigned a partition or added to the overflow partition, all

partition frames are flushed to disk and the process is repeated for the remaining tuples in

the overflow partition. The process is repeated as many times as necessary until all tuples

added to the overflow partition have been assigned a partition.

When limited memory exists during the merge join activity, batches of S partitions

in memory will be processed at one time. The algorithm will need multiple passes over the

partitions in R to complete the join. The work is now split up into sets of partitions which

can be processed together by filling the available memory (M - 1). Each S partition set

should only be scanned once for each R partition that is being joined. A page of memory

is designated for the first R partition, and the remaining memory pages are devoted to sets

of S partitions. The first tuple in R will be merge-joined with the first tuples in the first

frame of the S partitions loaded in the first memory batch. The merge process continues

until all of the R partitions have been processed or the partition marker is at the end of

each S partition. Then the next partition from R is loaded, and the S partition pointers are

reset to the beginning of their partition. The process continues for all R partitions. Once

they are complete, the next block of S partitions are loaded, and the process is repeated

for all R partitions.
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An important distinction among the two partitioning algorithms is due. In DIP,

each algorithm created partition is written in a separate file (for example, Figure 3.15

shows two such partition files for R). Instead, OIP writes all algorithm partitions in a

single partition file (see Figure 3.14). This is possible for OIP, since it first determines the

number of slots, and sorts the tuples based on their starting and ending slots. Tuples are

written to the partition based on this sort order. In contrast, in DIP, a tuple is assigned on

the fly to one of the active partition files, based on the tuple’s overlapping with the active

partitions. If it overlaps with all active partitions, then a new partition file is created for

this tuple. Important here is that we do not know when a partition is done (neither the

size of a partition) until the whole relation is considered. Hence the DIP algorithm needs to

create a separate file per partition. Based on the tuple interval characteristics, the number

of partition files created can become large.

As we will see in the experimental evaluation, a large number of partition files

can directly affect the DIP algorithm’s spilling performance in two ways. First, during

partitioning, each partition file requires a separate frame in memory; if not enough memory

is available, partitioning will take extra passes. Second (and more important), during

joining, each partition file has to be joined with all partition files from the other relation.

3.4 Performance

We have conducted a set of performance experiments to look at how these five

algorithms perform in a real database system, AsterixDB. Three sets of experiments review

different aspects of measuring their performance: speed-up (when sufficient memory is
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available), scale-up (increasing data size and available resources), and scale-up with spilling

(when limited memory requires the use of disk space). All of the experiments were run on

an eight-node gigabit-connected cluster. Each node has two dual-core AMD Opteron(tm)

processors, 8GB of memory, and two 1TB hard drives. AsterixDB was configured to use

one drive for data and one for logging. The number of partitions per node was defined in

each experiment.

When preparing our experiments, we attempted to compare our performance to

that reported in previously published papers. However, those algorithms were mostly imple-

mented with bare minimum C++ code and only worked with collections of 64-bit integers.

Their custom custom code was essentially a count query for an interval join. We found that

such a custom-built application cannot be directly compared to a database implementation.

To show these differences, we also set up a simple one-node experiment to sort one million

random 64-bit integers using direct C++ code vs. using a database system.

The baseline experiment that used the C++ sorting code that was included in the

Forward Scan algorithm, and it timed the process for sorting one million 64-bit integers

using native C++ functions and data. Next, the same sorting process was applied to

two database applications on the same list of random integers: a popular SQL database,

PostgresSQL, written in C++, and AsterixDB, which is written in Java. Table 3.1 shows

the times for sorting under each of these scenarios. The C++ library is roughly 14 times

faster than either of the databases. The AsterixDB time is fairly close to the PostgresSQL

time even though AsterixDB was written in Java. The experiment shows that the data
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Method Language Time

Vector Library C++ 67 ms

PostgresSQL C++ 890 ms

AsterixDB Java 914 ms

Table 3.1: Sorting using different libraries and systems.

generality and overhead of handling full records in a DBMS does this with a performance

price.

Since interval join queries tend to produce a large number of results, the exper-

iments reported have been designed to measure the join execution time on a query with

human-readable results. Figure 3.18 shows six variants of interval join queries where only

the number of results returned has been changed. The query time is shown for the six

different result sizes using a log scale. The first count only query uses an aggregate count

to return the number of joined intervals. The empty result query creates all the interval

joined pairs, but immediately after the join operator a filter has been added that will al-

ways be false, and thus no results will be returned. The top-k queries limit the result to k

interval pairs by picking the interval pairs with the most overlap. The top-k queries include

a constant time operation for each tuple to determine the interval overlap. The full result

query returns all of the interval-joined pairs. Its time includes the cost of result generation,

but does not include the time to download the result from the cluster. The count only

query is the fastest due to only having to perform the join and apply no additional logic

besides counting. The top-k queries are each slower than the empty result query due to
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the calculation of the interval overlap. The sorting for the top-k queries starts to impact

the performance after exceeding 1,000 result reads. Since any small value of k has similar

performance, we will choose k = 100 going forward since a person (an analyst) would be

able to consume the results.

Figure 3.18: An overlapping interval join query on a single partition with various result
sizes.

The final interval join query, full result, creates a new record using id, interval,

and filler fields from each dataset. The filler field is used during the experiment to change

the size of the tuple being processed in the join operator. An ORDER BY and LIMIT limit

the results to the top 100 join results with the largest overlap. The actual SQL++ interval

join query is the following:

1 SELECT element{ ‘ id1 ’ : ds1 . id , ‘ id2 ’ : ds2 . id ,
2 ‘ interval1 ’ : ds1 . interva l , ‘ interval2 ’ : ds2 . interva l ,
3 ‘ f i l l e r 1 ’ : ds1 . f i l l e r , ‘ f i l l e r 2 ’ : ds2 . f i l l e r }
4 FROM Dataset1 AS ds1 , Dataset2 AS ds2
5 WHERE interval_overlapping ( ds1 . interva l , ds2 . in t e rva l )
6 ORDER BY duration_from_interval (
7 get_overlapping_interval ( ds1 . interva l , ds2 . in te rva l ) ) DESC
8 LIMIT 100;
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The performance section continues by showing how the different algorithms speed-

up with sufficient memory (non-spilling experiments). The speed-up section considers the

number of partitions both on a single node and for many nodes. The scale-up experiments

demonstrate the ability to add more data and corresponding processing with consistent

performance. The last experiment reviews the case when memory is not sufficient and the

system must spill to disk during the join.

3.4.1 Speed-Up Non-Spilling Experiments

For non-spilling experiments, we looked at how the queries speed-up locally using

both synthetic and real data. We also considered speed-up experiments in a multi-node

cluster using a synthetic dataset. We use the synthetic datasets to explore how the algo-

rithms are affected by controlling one property of the data: cardinality, duration, or record

size. The cardinality experiment represents changing the number of tuples in the dataset,

by changing the intervals’ “arrival rate” (λ). Changing the cardinality will affect the num-

ber of tuples in an interval’s overlapping region. Similarly, changing the duration of a query

will affect the number of join results due to the increased overlapping among tuples. The

last property, record size, will not change the number of results but will affect the amount

of memory required to process each join.

Local Speed-Up on Synthetic Data. Figure 3.19 shows the performance of

the algorithms on a single node, using an overlapping interval join query over a synthetic

dataset with 10,000 records evenly distributed over a time range of 1,000 units (λ = 10).

Each interval has a duration d equal to 10 and the tuple the size is 74 bytes. The overlapping

join query is a self-join, so the same dataset is used on both sides of the join. All algorithms
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show good speed-up until eight partitions, at which point the processing node uses hyper-

threading since it only has four cores.

Figure 3.19: Single node speed-up performance for the baseline overlapping interval join
query on synthetic data (λ = 10 and d = 10).

In Figure 3.20, the dataset cardinality has been increased ten times, while the time

range and other properties have not been changed. As a result, the dataset has 100,000

records, a time range of 1,000, a density of λ = 100, and duration of d = 10. There are

ten times as many in tuples in the dataset, and each such tuple will match (self-join) with

tuples that have been increased by ten times. This results in 100 times more comparisons;

as it can be seen in the figure the query time has increase similarly, when compared with

Figure 3.19. Again each algorithm shows good speed-up.

In Figure 3.21, the dataset duration has been increased ten times. The self-joined

dataset has now 10,000 records, a time range of 1,000, a density of λ = 10, and duration

of d = 100. As a result, each tuple will now match with ten times as many tuples. The

number of comparisons has increased by 10 times (when compared with Figure 3.19) due
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Figure 3.20: Single node speed-up performance for an overlapping interval join on synthetic
dataset (λ = 100, and d = 10).

to the increased overlapping tuples while keeping a fixed cardinality of 10,000 tuples. The

DIP results for this test are a special case. For each thread DIP creates 1,000 algorithm

partitions; each of these algorithm partitions requires one frame (page) in memory. Since

the available join memory has only 256 frames, the algorithm spills to disk. This happens for

every thread. Except for DIP that is affected by spilling, the other algorithms show good

speed-up performance under this scenario, too. We examine DIP’s spilling performance

further, in the scale-up experiments of this section.

Figure 3.22 shows how large records affect the performance in the local speed-up

experiments. The same interval characteristics as in Figure 3.19 are used but here the

record size has increased to 2,296 bytes. The key difference is the amount of data that must

be pushed through the join operator has increased thus resulting in higher query times as

compared with Figure 3.19. The non-partitioning algorithms (FS, SM and TS) show good

speed-up. The partitioning algorithms have an issue with the amount of memory needed to
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Figure 3.21: Single node speed-up performance for an overlapping interval join on synthetic
dataset (λ = 10 and d = 100).

perform efficiently. DIP spills again to disk, but for a different reason. DIP creates the same

number of algorithm partitions per thread as in Figure 3.19, thus there are enough frames

for all algorithm partitions in memory; however, these frames spill because the records

are much larger. Since there are enough memory frames the algorithm has fewer passes

over the data than the previous spilling case. Overall, it shows good speed-up (affected

though by disk contention since there is a single disk resource). OIP also spills for these

experiments and the total I/O does not change as more threads are added. Since the cluster

configuration uses only a single disk, the I/O bound OIP query time remains the same as

threads are added.

Real Datasets. We used two datasets, infectious and TPC-H, to show how the

algorithms perform on more realistic data. The infectious dataset [32] provides a real dataset

with many short intervals with a low number of overlaps. The infectious dataset comes from

an experiment tracking people’s contact in an office building hallway. The researchers were
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Figure 3.22: Single node speed-up performance for an overlapping interval join on synthetic
dataset large records (2,296 bytes) (λ = 10 and d = 10).

looking into how epidemics spread in populations. The dataset holds pairs of people’s ids

and the starting time point of their contact. A contact corresponds to a 20-second interval

where the two objects were both in the hallway (if a contact lasted for more than 20 seconds,

a new record would appear). The dataset has 4̃00 thousand records of contacts and at most

5̃0 active contacts at each time instant. The dataset takes about 80 MB of disk space.

The performance of the algorithms for the infectious dataset appears in Figure 3.23. All

algorithms exhibit good speed-up performance on this dataset. Since the OIP algorithm

was designed for joins that contain some long intervals, OIP had the worse query times on

this dataset which has only small intervals.

The next dataset, TPC-H, is from a decision support benchmark. The benchmark

includes a data generator that builds a dataset based on relevant industry data. One of

the tables holds shipping times for ordered items. Each item entry has the dates when it

was shipped and received, which we used to create an interval representing the time period

52



473,000
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Figure 3.23: Overlapping join run over the Infectious dataset on a single node.

during which an item was in transit during shipping. In this example, 60 thousand records

are self-joined in an overlapping query to create a result set of 44 million pairs of items

in transit at the same time. Figure 3.24 shows the speed-up results; again all algorithms

showed good speed-up performance; now OIP had overall faster query times.

Multi-Node Speed-Up. The local speed-up tests show that there is a benefit

from adding partitions and threads up to the number of cores (4) of the local node. The

next set of speed-up experiments focus on adding nodes to the cluster (“scaling out”) while

the number of partitions per node has been fixed to four. The first multi-node experiment

has a synthetic dataset of 100,000 records, a time range of 10,000, a density λ = 10, and

a duration d = 10. This baseline dataset setting is followed by changes to the cardinality,

duration, and record size, similar to the local speed-up tests.
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Figure 3.24: Overlapping join run over a TPC-H dataset on a single node.

Figure 3.25 shows that query execution times improve as the number of nodes is

increased. However, the performance gain is slightly less than when adding threads in a

single node because the network traffic from global partitioning starts to impact performance

as the cluster’s aggregate processing power increases.

Figures 3.26, 3.27, and 3.28 examine the cluster speed-up performance when chang-

ing the cardinality, duration and record size respectively. Overall, the algorithms show good

speed-up performance for the cluster experiments, except for one DIP experiment. DIP in

Figure 3.27 spills due to the large number algorithm partitions created to process the join;

the same issue occurred for DIP in Figure 3.21. Also note that in the large record experi-

ment in Figure 3.28, the partitioning algorithms (DIP and OIP) spill to disk, which causes

slower performance in comparison to the other algorithms.
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Figure 3.25: Speed-up performance for an overlapping interval join on a cluster with syn-
thetic data (λ = 10 and d = 10).

Figure 3.26: Speed-up performance for an overlapping interval join on a cluster with syn-
thetic data (λ = 100 and d = 10).

3.4.2 Scale-Up Non-Spilling Experiments

The scaling experiments demonstrate how the system handles large data by keeping

the data size the same per partition as the number of partitions is increased. In perfect
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Figure 3.27: Speed-up performance for an overlapping interval join on a cluster with syn-
thetic data (λ = 10 and d = 100).

1,960,000
698,000

Figure 3.28: Speed-up performance for an overlapping interval join on a cluster with syn-
thetic data using large records (2,296 bytes) (λ = 10 and d = 10).

scaling, as the dataset increases in size and resources are added, the query time would not

change. The scale-up experiments were run for both single node with multiple partitions

and for multiple nodes with a fixed number of partitions per node. Each partition in the
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dataset has 10,000 records, a time range of 1,000, a density of λ = 10, and a duration of

d = 10. Figure 3.29 shows how the algorithms’ scale-up on a single node from one to eight

partitions. The scaling stops with four partitions since the node has four dedicated cores

and hyper threads to eight cores.

Figure 3.29: Scale-up on a single node which increase the number of partitions (1, 2, 4, and
8) where each partition has the same size of data.

The second scaling experiment, Figure 3.30, considers scale-up over multiple nodes.

Here we show: one node (four partitions), two nodes (eight partitions), four nodes (16

partitions), and eight nodes (32 partitions). The queries on two or more nodes include

network data transfers between nodes to arrange the data for local join processing. Going

to two, four and eight nodes leads to additional network traffic, which slows the query down;

otherwise, the algorithms handle scaling to many nodes fairly well.
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Figure 3.30: Scale-up for 1, 2, 4, and 8 nodes where each node holds four partitions each
with the same size of data.

3.4.3 Scale-Up Spilling Experiments

Last but not least, the spilling experiments look at how the algorithms perform

with limited memory. When dealing with limited memory, the size of tuples that flow

through the query plan significantly affects the overall performance. If the “data does not

stay with the record”, the join process would create a list of all joined tuple pairs then

another process must scan the datasets and create the new joined tuple for the result.

Creating the result in a separate process would require another scan of one dataset and

many random accesses to match the paired tuples with the other dataset. To understand

the performance impact of larger tuples, we looked at various tuples sizes in the query

pipeline. Table 3.2 shows the different tuples sizes tested in the query plan. When the

query plan has both the primary key and the interval data, the input tuple is 74 bytes

(from both relations), and when joined with the other side, the output tuple size is 148
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Data Padding Input Tuple Size Output Tuple Size

Id and Interval 0 74 148

Full Record 222 296 592

Full Record 2,222 2,296 4,592

Table 3.2: Record size experiments and the effect on the input and output tuple size.

Join Memory 74 B Tuple 296 B Tuple 2296 B Tuple

2 MB 28,160 6,912 768

32 MB 453,376 113,152 14,592

Table 3.3: Number of input tuples needed to fill memory and force the algorithm to spill
for various input tuple sizes and join memory sizes.

bytes. We tested increasing the record size by adding 222 bytes (a medium sized record)

and 2,222 bytes (a large record).

Figure 3.31 shows how these record sizes affect performance. Carrying the larger

tuples adds overhead in the pipeline due to the increased coping for larger tuples. The

memory has been limited to 2MB for the join operator to ensure that each algorithm will

make use of disk I/O to process the join query for the large record case (2,222 bytes). The

increased tuple size leads to a sharp increase in query time.

The spilling scale-up experiments were configured so that each interval join algo-

rithm will spill under these memory constraints. Each partition in the dataset has 100,000

records, a time range of 10,000, a density of λ = 10, a duration of d = 100, and a record size

2,222 bytes. The local scale-up experiments consider only tests with one and two partitions
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69,300

Figure 3.31: Performance test for increasing tuple size.

since the node has two disks. Note that the database logging happens on the same disks

storing the data. The results of the single node scale-up experiments are in Figure 3.32.

Each algorithm shows good scale-up behavior except DIP. We will discuss DIP scale-up

performance later in this section.

The multi-node scale-up spilling experiments use one partition per node. A new

(equal sized) partition is added with the addition of each node to the cluster. Note that

data is written to one disk while the database logging is kept on the second disk, similar

to the prior speed-up experiments. With the exception of DIP, the algorithms show good

scale-up behavior from one node to eight nodes.

In the last two scale-up experiments, we noticed that DIP did not scale well, so

we examined its behavior further. In particular, we examined how the number of partition

files affects its performance. We performed a multi node scale-up experiment (with 1 to
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16,700,000

Figure 3.32: Single node scale-up spilling experiments with one and two partitions using
large records and synthetic data (λ = 10 and d = 100).

Figure 3.33: Multi-node scale-up spilling experiments on 1, 2, 4, and 8 nodes (one partition
per node) using large records and synthetic data (λ = 10 and d = 100).

8 nodes), where each partition in the dataset has 10,000 records, a time range of 1,000, a

density of λ = 10, a record size of 2,222 bytes and a varying duration. The duration was

varied as follows d = 10, d = 20, d = 40, d = 70, d = 100, d = 120. As duration increases,
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the number of algorithm partition files increases (since it is equal to the number of active

tuples, namely: λd). Figure 3.34 shows the results of this experiment. DIP exhibits good

scale-up behavior up to d = 20 (i.e. 200 partition files) but its performance deteriorates as

we reach d = 120 (1,200 partition files). One could consolidate all partition files into one,

after the partition ends using one more pass (and before the join starts). This will enable

the join to avoid various random I/Os, but requires elaborate partition markers in the file.

While this is a promising idea, we leave it open for future research.

Figure 3.34: DIP multi-node scale-up spilling experiments on 1, 2, 4, and 8 nodes (one
partition per node) using large records and synthetic data with λ = 10 while varying the
duration d.

3.5 Conclusions

We have implemented five overlapping interval join algorithms in a real database

system, Apache AsterixDB. The implementation required adding the Split global parti-

tioner, adding a dynamic memory manager, creating a stream join operator, and updating
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the optimizer to recognize interval joins and pick a physical interval join operator. All five

algorithms can now support spilling when memory is limited, which increases the oppor-

tunities to use these algorithms against big data. The algorithms’ modifications presented

allow the interval join algorithms to scale out gracefully across nodes and to work with

limited memory.
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Chapter 4

Cost Models for Overlapping

Interval Joins

4.1 Introduction

Each of the presented interval joined algorithms has a different approach to pro-

cessing a join and method of utilizing the available memory budget. The CPU cost is based

on the number of comparisons used to process the join. The I/O cost is based on the number

of frames accessed from disk during the join. Further, the I/O cost model includes a method

to determine if the algorithm is expected to spill. Due to the large difference in execution

time between spilling and not spilling queries, this method can be used to determine if an

algorithm spills (and thus select instead an appropriate algorithm to execute an interval

join query without spilling, if possible). Finally, we note that these models have also been

used to confirm the implementation of each algorithm.
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To build the cost model, we considered a few key properties of the intervals associ-

ated with the dataset tuples: start of time range, end of time range, number of tuples, and

average interval duration. To reduce the model complexity (and achieve closed formulas)

we made two simplifying assumptions. First we assume that each tuple’s interval has the

same duration. Second that the interval start times are uniformly distributed over the time

range. Then the arrival rate λR at a given time instant (i.e. how many intervals start at

that time instant) can be calculated by dividing the number of tuples TR in dataset R by

the dataset’s time range: λR = TR
rR.end−rR.start

. Finally we note that the I/O cost model

does not include the I/O for reading input or writing the result since this is the same for

all algorithms. In Section 4.4.6, we discuss how the basic cost model can be expanded to

describe a dataset that contains various classes of intervals (i.e., when the dataset contains

a mixture of interval classes, where a class has its own arrival rate and average interval

duration). Table 4.1 summarizes the notation used by our cost models.

An important part in understanding the cost models and spilling, is how the five

algorithms use main memory; this is discussed in Section 4.2. Another important quantity

is the size of the join result; Section 4.3 describes the join size estimation. The CPU and

I/O cost models are presented for each of the five interval join algorithms in Section 4.4.

Section 4.5, we presents the accuracy of the cost models while conclusions appear in Section

4.7.
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Label Description

R Dataset R

FR Size of Dataset R in frames

TR Size of Dataset R in tuples

tR Single tuple from Dataset R

rR, rR.start, rR.end Dataset R’s time range, start and end

λR Arrival rate in dataset R (λR = TR
rR.end−rR.start

)

dR Average interval duration in dataset R

LR Active tuples in R (LR = λRdR)

bR Dataset R’s Tuple size in bytes

FM Memory size in frames

TM Memory size in tuples (TM = bfb cFM )

f Frame size in bytes

Tf Frame size in tuples (Tf = bfb c)

Table 4.1: Cost model notation (shown for Dataset R).

66



a) Example Datasets

S

R

b) SM c) TS

d) FS e) OIP f) DIP

Figure 4.1: Main memory utilization for the interval join algorithms.

4.2 Main Memory Utilization

Figure 4.1 visualizes how main memory is used by each algorithm. It displays two

datasets separated by a dotted line with R on the bottom and S on the top. The tuple

intervals are depicted as line segments where time is increasing from left to right.

First, consider the non-partitioning algorithms. The SM algorithm in Fig4.1b.

The first algorithm displayed is SM, shown in Figure4.1b. This algorithm keeps in memory

one tuple (tR) from R and all the overlapping tuples with tR from S. The bold segments

highlight intervals in memory and the overlapping range of tR is shown by a vertical gray

region. The TS algorithm (Fig4.1c) keeps in memory all intervals that include a specific
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point in time; this time instant is depicted as a vertical line while the bold segments are

those kept in memory. Note that TS must maintain active tuples from both R and S in

memory. The FS algorithm manages memory similarly to SM, but applies the idea to both

datasets. Figure 4.1d shows the case when FS has selected a tuple (tR) in R and loaded

into memory any S tuples (shown in the vertical grey region) that start during tR. Note

that R already has tuples in memory that started during some previously selected tS tuple.

For the two partitioning algorithms we use horizontal grey boxes to illustrate the

partitions created from partitioning each dataset. The OIP algorithm (Figure 4.1e) is using

three slots and the intervals have been separated into partitions based on which slots they

start and end. In this figure, we assume that partition (2,3) from dataset R (shown as the

darker grey box; it contains intervals that started in the 2nd slot and end in the 3rd slot)

has been selected and its overlapping partitions from S are loaded into memory (shown

as dark grey boxes at the top). Only those partitions that contain intervals are loaded.

The bold segments represent the intervals from those partitions that are in memory. The

DIP algorithm creates partitions with non-overlapping intervals. Figure 4.1f displays the

resulting disjoint partitions. The first disjoint partition from R is loaded into memory and

all disjoint partitions from S will be in memory to process the join.

4.3 Join Size Estimation

For join size estimation we assume that datasets R and S cover the same time

range (since disjoint time ranges will not produce results). Let’s first assume that both R

and S datasets fit in a single memory partition and include a tuple interval tR. Clearly, tR
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will overlap with tuple intervals from S that start during tR’s duration (dR). It will also

overlap with tS tuples that have started at time instants that are at most dS − 1 before the

start of tR. Thus the number of S tuples that will match tR are λS ∗ (dR + dS − 1). As

there are TR tuples in R, Equation 4.1 provides the number of overlapping interval results

from joining dataset R and S.

JE(R,S) = TR ∗ λS ∗ (dR + dS − 1) (4.1)

This formula overestimates the join result in two ways. First, it assumes that for

each tuple tR there are dS − 1 time instants before its start time where tuples from S can

start. However, tR tuples that start in the first dS − 1 time instants in the time range

will not have all those S matching tuples. The formula JEbefore(R,S) (4.2) calculates this

overcounting. A similar case involves the matchings of tR tuples that extend beyond the

end of the time range, calculated by JEafter(R,S).

JEbefore(R,S) =λR ∗ λS ∗
dR−1∑
i=1

i = λR ∗ λS ∗ (dR − 1) ∗ dR
2

JEafter(R,S) =λR ∗ λS ∗
dS−1∑
i=1

i = λR ∗ λS ∗ (dS − 1) ∗ dS
2

(4.2)

As a result, the join result estimate for the single node case is given by:

JEsingle(R,S) =JE(R,S)− JEbefore(R,S)− JEafter(R,S) (4.3)

When the joined relations cannot fit in one partition, a shared-nothing system

(like AsterixDB) can the SPLIT partitioning strategy to divide each dataset into many

partitions. Each partition is responsible for a non-overlapping portion of the dataset’s time
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range. As a result, there is an initial partition representing the start of the time range,

followed by zero or more middle partitions and the last partition which is responsible for

the end of the time range. Respective partitions in R and S (say Rk, Sk) share the same

portion of the time range. When estimating the number of join results in a partition one

must consider if this partition is first, middle or last in the time range so as to eliminate

result overestimation. The following formulas are used to calculate the join size estimation

for those individual cases.

JEfirst(R,S) =JE(R,S)− JEbefore(R,S)

JEmiddle(R,S) =JE(R,S)

JElast(R,S) =JE(R,S)− JEafter(R,S)

(4.4)

The join result size estimation is important as it enables a cost-based query model

to calculate the number of tuples expected as output from the interval join operator. To

explore the accuracy of the above formulas, we ran experiments over a single partition, while

varying the duration and arrival rate and calculated the error between the actual number

of results and our estimates (%error = |(actual − estimated)|/estimated ∗ 100%). Table

4.2 shows samples from a self join where the dataset’s interval duration d changes from 1

to 100 time instants while the time range is fixed to 1,000 instants and the arrival rate is

10. Table 4.3 considers a self join where we varied the interval arrival rate (λ) while the

time range is fixed to 1,000 instants and the duration is 10. Since the time range does not

change, the arrival rate changes the total number of intervals (or cardinality) in the dataset.

However the duration in this case does not change, hence the overlap is not affected and
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Duration Join Size Estimation Error

d = 1 0.00%

d = 5 0.02%

d = 10 0.05%

d = 50 0.25%

d = 100 0.50%

Table 4.2: The join size estimation cost model error for various durations where the time
range is fixed at 1,000 instances and λ = 10.

thus the error remains the same. Overall, the tables show that the join estimation formulas

are fairly accurate.

4.4 Cost Models

We next present CPU and I/O cost models for these five algorithms: Sort-Merge,

Time-Sweep, Forward-Scan, Overlapping Interval Partition Join, and Disjoint Interval Par-

tition Join. One assumption shared by all algorithms is that the input relations are ordered

by their intervals’ start time (followed by their end time). Hence, the models below do not

consider the prior sorting phase as it is equivalent for all algorithms.

4.4.1 Sort-Merge Interval Join Model

The sort-merge interval join is similar to a typical sort-merge join which contains

many duplicates (where those duplicates behave as an overlapping interval). The cost model
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Lambda Join Size Estimation Error

λ = 1 0.05%

λ = 5 0.05%

λ = 10 0.05%

λ = 50 0.05%

λ = 100 0.05%

Table 4.3: The join size estimation cost model error for various lambdas where the time
range is fixed at 1,000 instances and d = 10.

focuses on the merge phase where tuples from the two input streams are scanned to build

the join.

The join memory becomes full when a tuple tR from R overlaps with more tuples

in S than can fit into memory (see Figure 4.2). The overlapping range of tR with tuples in

S is dR + dS − 1. Multiplying that range by the arrival rate in S (λS) gives the number

of S tuples that will overlap tR (using Little’s formula [39]). To avoid spilling these tuples

must be in memory at the same time. The number of frames needed to store these tuples is

computed by dividing the number of tuples by the tuples per frame, or Tf.S = b f
bS
c, which

is the number of tuples of size bytes bS from S that can fit into a frame of size f in bytes.

The join algorithm also uses four frames that reduce the total join memory available: a

frame for each of the two input streams R and S, one frame for the output result and one

for managing the spilled dataset. The remaining memory is used by sort-merge interval join

to store S tuples for join processing. Thus, the join algorithm exceeds available memory

(FM ) and spills when the following inequality is satisfied:
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Figure 4.2: Important tuples during the spilling process for sort-merge interval join. The
colored blocks represent intervals in memory, the input streams for R and S and the spill
file for R. Tuple a corresponds to the first S tuple currently in memory, tuple tS is the last
S tuple in memory and tuple b is the next tuple from the S stream. Similarly, tuple tR
corresponds to the active R tuple in memory, tuple c is the first tuple in the spill file of R,
tuple d corresponds the last tuple in that spill file, and tuple tR′ is the next tuple from the
R stream.

λS ∗ (dR + dS − 1)

Tf.S
> FM − 4 (4.5)

The spill process starts with the first tuple, tR, that overlaps more S tuples than

what can fit into memory. When this happens, the algorithm pauses reading tuples from S.

The spill process focuses on freeing space by removing S tuples from main memory. Before

an S tuple can be removed from main memory, the spill process must ensure the tuple has

already been matched with all possible R tuples (including future tuples from the stream).

Thus the algorithm will proceed by reading tuples from R, until the matches for all S tuples

currently in memory have been found. At this point the entire memory resident set of S

tuple can be erased from main memory, since all match tuples from R have been made with
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these S tuples. However, these R tuples may have matches with future S tuples from the

stream, hence they cannot be thrown away. This is why we spill (future) R tuples to a

temporary file to allow for these R to match with future S tuples.

The sort-merge interval join may have many spills. The size of these spills varies

based on the relative properties of the two input streams. Note that while the S and R

streams may begin at separate times, we start matching only when they overlap. For a given

time instant, what is important is how many tuples from each stream are ‘active’ during

(i.e. contain) this time instant. Based on our assumption of a steady arrival rate and a

fixed tuple interval duration for each input stream, there are three phases: (1) a warm-up

phase where the number of ‘active’ tuples keeps increasing, (2) followed by a steady state,

where the number of active tuples remains constant, and (3) the cool-down phase where the

number of ‘active’ tuples decreases, eventually returning to zero.

As a result, during the course of the sort-merge interval join, the size of the spills

follows the same pattern, as seen in Figure 4.3. During the warm-up phase the spill starts

from an initial size (depicted as ‘a’ in the figure) that incrementally increases (adding ‘b’

increments) until it reaches its steady-state size (depicted as ‘c’). Then during the cool-

down phase, the spill starts decreasing (by decrements ‘b’) until it reaches the last spill size

depicted as ‘d’.

To create the I/O cost model, we start by calculating the size of each of these

spills. Next, we proceed with determining how many spills occur during each of these

phases. Finally, using the size and number of spills, we calculate the total read and write

I/O for the sort-merge interval join.
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Figure 4.3: The R spilling phases for interval merge join. The spill file denoted as w
represents the very first spill, while z represents the spill increment, x the spill file during
the steady state, and y the very last spill file.

Size of the spill files. We proceed with the calculation of the spill size for the

‘steady’ state, followed by the size of last spill, first spill, and the increment spill. For each

spill process initiated, a spill file is created to store tuples from R that match with S tuples

in memory. When considering the spill file at steady state (shown in Figure 4.3 as ‘x’ spill)

the algorithm should find all matches for the current memory resident S tuples. These

matches are new tuples (after tR) from the R stream. (see Figure 4.2.) This process reads

tuples from R until we reach a tuple in R (say tR′) that starts after the furthest end point

of any S tuple currently in memory. This guarantees that the S tuples currently in memory

cannot overlap with any future tuple in the R stream. Since the R tuples between tR and

tR′ may also match future S tuples, they need to be saved to a spill file and processed

later. The time range represented by the start of tR until the start of tuple tR′ is defined as

dR+dS−1, and explained next. (This formula assumes that tuples matching this time range
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exist in R; as with the join estimation case, there are two extreme cases, in the beginning

and the end of the R stream, that need special attention and will be discussed as part of

the first and last spill).

The tR’s duration, dR, represents a time range for start points of all S tuples in

memory that have been added to memory due to overlapping with tR. Consider an S tuple

(tS) in memory which has the latest end time among those S tuples currently in memory;

this tuple could overlap with R tuples for all time instances in its own duration dS . Since

this S tuple’s duration does not include its endpoint, the overall range is decreased by one.

As a result, the number of R tuples that are in the range represented by S tuples

in memory is given by: λR(dR + dS − 1). Let Tf.R = b f
bR
c be the number of tuples of size

bR bytes from R that can fit into a frame of size f in bytes. The number of I/O frames

needed to write the spilled R tuples in the spill file is thus:

CIO.steady.spill(R,S) = min(FR,
λR

Tf.R
(dR + dS − 1)) (4.6)

With every spill that happens, the start time of tuple tS (Figure 4.2) approaches

the start time of the final tuple in relation R. Consider the situation when the last spill

occurs (depicted as ‘y’ spill in Figure 4.3). It may be that the tuple tS starts exactly at the

start time of the final tuple in R. Because this is the final R tuple, no other tuples can spill

from R during dS (the duration of tS). In order to calculate CIO.last.spill(R,S), i.e., the size

of the very last spill file, the temporal range becomes: dR + 1− 1, or simply dR. Thus:

CIO.last.spill(R,S) = min(FR,
λR

Tf.R
dR) (4.7)
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Similarly to the last spill file, the first R spill file (depicted as ‘w’ in Figure 4.3) has

a different range of overlapping tuples. As tuples from S are loaded into memory, it may

be that tS (the last S tuple in memory) starts at the same time instance as tuple tR (the

initial R tuple). In this case, instead of loading all S tuples for the temporal range of dR,

memory can be filled after loading only a single time instance from S. Thus the temporal

range becomes 1+ dS − 1, or simply dS . Hence CIO.first.spill(R,S), the size of the very first

spill file is:

CIO.first.spill(R,S) = min(FR,
λR

Tf.R
dS) (4.8)

We next consider the spill increment size (represented by ‘z’ in Figure 4.3) that

will bring the initial spill file to its steady state and then incrementally decrements it to

the final spill file size. The reason the algorithm has spilled is because the overlapping

tuples of S could not fit into memory. Each time memory spills, the number of additional

tuples written to the spill file is based on the additional interval represented in memory

by S. Consider the actual number of S tuple in memory, TM.S , and the interval of time

represented by these tuple’s start points, calculated by dividing TM.S by the number of S

tuples starting at a time instance, λS . What tuples from R exist in the same the time

interval as these S tuples in memory? Multiplying by λR gives the number of R tuples in

the time interval of memory. Consider if these tuples R tuples were saved to a spill file,

dividing the number of tuples by Tf.R converts the number of tuples to frames of R tuples.

The resulting formula is used for number of new frames during the warm-up phase and the
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number of frames removed during the cool-down phase. The final formula for increment

spill is:

CIO.spill.inc(R,S) =
λR

Tf.R

TM.S

λS
(4.9)

CIO.spill.inc(R,S) is the same for change in the spill size from the first spill size to

the stead state. With each flush of S from memory, the spill file will grow CIO.spill.inc(R,S)

until it reaches the full size of CIO.steady.spill(R,S).

Number of spill files. The next step is to determine the number of spills for

each of the three phases: warm-up, steady state, and cool-down. First consider Itotal(S),

the total number of spills that occur during the join. To enter a spill process, memory will

be full of S tuples. After each spill the tuples from S in memory are no longer needed for

the join. Thus Itotal(S) is upper bounded by the ratio of the size of dataset FS and the size

of memory FM :

Itotal(S) =

⌊
FS

FM

⌋
(4.10)

We will proceed with computing the number of spills in the cool-down phase,

followed by the warm-up and finally the steady state. The cool-down phase uses two types

of spills: the last spill and the increment spill. Working backwards, during each new spill,

the last spill will be augmented by the increment spill until it reaches the steady state size.

A particular spill in this phase represents the last spill plus some number of increment spills

to create the current spill size. If the final spill size is CIO.last.spill(R,S) and each preceding
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spill is increased by CIO.spill.inc(R,S) until the size reaches CIO.stead.spill(R,S), then the

number of spills in the cool-down phase IcoolDown(R,S) is given by:

IcoolDown(R,S) =

⌊
CIO.steady.spill(R,S)− CIO.last.spill(R,S)

CIO.spill.inc(R,S)

⌋
(4.11)

The same argument can be applied to the warm-up phase in relationship to the

initial and steady state spills. If each spill file grows by CIO.spill.inc(R,S) starting from

CIO.first.spill(R,S) until the size reaches the steady state of CIO.steady.spill(R,S), then the

number of spills in the warm-up phase IwarmUp(R,S), is given by:

IwarmUp(R,S) =

⌊
CIO.steady.spill(R,S)− CIO.first.spill(R,S)

CIO.spill.inc(R,S)

⌋
(4.12)

As a result, the number of spills at the steady state Isteady(R,S) is given by:

Isteady(R,S) = Itotal(S)− IwarmUp(R,S)− IcoolDown(R,S) (4.13)

Calculating the I/O Cost. The I/O cost is determined by the number of

frames written and read during the sort-merge interval join. First consider the number of

frames written using Figure 4.3 as a guide. When the sort-merge interval join algorithm

resumes after a spill, it first starts reading tuples from the spill before it continues processing

relation R (recall that it had paused at tuple tR′). Nevertheless, another spill can happen

while reading from the spilled R tuples. One approach could be to write a new spill file and

read from there when the sort-merge algorithm restarts, as shown by each row in Figure

4.3. However, we can save writes by appending to the existing spill file (with tuples from

R that were spilled and are after tR′). This single spill file may be read multiple times (as
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new spills may occur) but such reads are easy to manage with appropriate pointers to its

tuples (keeping track of where each spill effectively starts). By appending the spill file (and

re-reading it) the total number of frames written to the spill file is upper-bounded by the

size of R.

CIO.written(R,S) = FR (4.14)

Now consider the number of frames read during the three spilling phases. The

complete spill file will be read for each spill. The read I/O can be calculated using the

formulas for the size of each spill and the number of spills. Thus, the read I/O during the

steady state is given by:

CIO.steady(R,S) = Isteady(R,S) ∗ CIO.steady.spill(R,S)) (4.15)

The read I/O for the cool-down spill phase is given by the following summation:

CIO.coolDown(R,S) =

IcoolDown(R,S)−1∑
i=0

(i ∗ CIO.spill.inc(R,S) + CIO.last.spill(R,S)) (4.16)

In this summation, the case i = 0 corresponds to reading the last spill file which

has size CIO.last.spill(R,S). Then this spill file is incremented by CIO.spill.inc(R,S) to create

the second to last spill file, etc. until i = IcoolDown(R,S)− 1.

In the warm-up spill phase we start from the first spill which has size CIO.first.spill(R,S).

The second spill has size of CIO.first.spill(R,S) + CIO.spill.inc(R,S) (as shown in Figure 4.3

by the top two spill rows). The next spill adds another CIO.spill.inc(R,S) frames to the spill

file, etc. As a result, the read I/O for the warm-up phase is calculated by the following

summation:

80



CIO.warmUp(R,S) =

IwarmUp(R,S)−1∑
i=0

(i ∗ CIO.spill.inc(R,S) + CIO.first.spill(R,S)) (4.17)

The total I/O cost CIO(R,S) sums the frames written and read through the three

spill phases:

CIO(R,S) = CIO.written(R,S) + CIO.steady(R,S) + CIO.coolDown(R,S) + CIO.warmUp(R,S)

(4.18)

Calculating the CPU Cost. The CPU cost can be computed by the size of

the result (which we already estimated as JE(R,S) in Section 4.3) plus an estimate of

the number of comparisons that did not produce any result. To estimate the non-result

producing comparisons, we note that the algorithm keeps comparing tR’s interval with

matching S tuples until it reaches the first S tuple that does not overlap (at which point it

proceeds to the next tR tuple). Thus, the total number of non-result producing comparisons

is TR, the number of tuples in the stream R. Again we need to consider for overestimation.

Consider the last tuple in S; there may be various R tuples that overlap the interval of the

last tuple in S. These R tuples do not produce any non-result comparison, simply because

there is no more S tuple. As there are λR ∗ (dR − 1) such R tuples, the total CPU cost is:

CCPU (R,S) = JE(R,S) + TR − λR ∗ (dR − 1) (4.19)

Note that the SM algorithm has a special case for when the duration is one. In

this case the algorithm does not need to make any unproductive comparisons.
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4.4.2 Time-Sweep Interval Join Model

The time-sweep interval join (TS) algorithm processes the join by sweeping through

time, instance by instance. In this case, the algorithm sweeps through the time instances

stored in the tuples intervals. The tuples stored in memory are the ones currently active

for the time instance the algorithm is currently processing. Using Little’s formula [39] we

can get the number of active tuples from each dataset, namely LR and LS (see Table 4.1).

The TS algorithm will spill if the active tuples from each dataset exceeds the

available join memory. Since memory is referenced in frames, the active tuples must be

converted into frames using the number of tuples in a frame for each dataset, Tf.R and Tf.S

respectively. The join memory must also account for the five buffers (frames) TS uses for

performing the join: a frame for each of the two input streams R and S, one frame for the

output result, and one frame for each of the spilled datasets for R and S. Considering these

buffers and Little’s formula, the algorithm will spill when the following formula is true:

LR

Tf.R
+

LS

Tf.S
> FM − 5 (4.20)

The spill process starts when the next tuple in time order can not be added to

memory. The difference here is that this tuple may come from either dataset. If memory

becomes full and the next time ordered tuple can not be added to memory, the TS algorithm

pauses to free memory. In an effort to free the most memory, the dataset with the most

tuples in memory is chosen for removal (after all its matches are found). Assume that S

has the most tuples in memory. To free these S tuples, the tuples must be matched with

upcoming R tuples. The join process will continue to read R tuples and match them with
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Figure 4.4: Important tuples during the spilling process for the time-sweep interval join.
The colored blocks represent the intervals in memory, the input streams for R and S and
the spill files for R and S. Tuple a corresponds to the first S tuple currently in memory,
tuple tS is the last S tuple in memory, tuple b is the first tuple in the spill file of S, tuple
c corresponds to the last tuple in that spill file, and tuple TS′ is the next tuple from the S
stream. Similarly, tuple d is the first R tuple currently in memory, tuple tR corresponds to
the last R tuple in memory, tuple e is the first tuple in the spill file of R, tuple f corresponds
the last tuple in that spill file, and tuple tR′ is the next tuple from the R stream.

memory until all in memory S tuples have been matched. Since future S tuples may match

with these R tuples, they are saved to a spill file to be read later. The same spill process is

used for when R has the most tuples in memory and, in that case, a spill file of S would be

created.

The join algorithm may spill many times while processing the join. The size of

each spill file depends on the data input and which dataset is being spilled. Similar to

SM, the TS algorithm has several spill phases. The TS algorithm loads tuples into memory

from both datasets based on time order. Since all tuples are processed in time order from

both datasets, the algorithm does not have a warm-up spill phase, only the steady-state
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Figure 4.5: The R and S spilling phases for time-sweep interval join. The spill file denoted
as x represents the steady state spill file for relation S, while y represents the spill increment,
and z the spill file during the steady state for relation R.

and cool-down phases as shown in Figure 4.5. The next spilled partition is determined by

the dataset with the most tuples in memory. Figure 4.5 highlights an example set of spills

while performing the TS join with each spill alternating between the two datasets and the

two spill phases. To create the I/O cost model, we continue with the same steps from SM.

First the size of each spill is calculated, then the number of spills is determined, which is

used to create the complete I/O cost model for time-sweep interval join.

Size of the spill files. Assume again the case in steady state where the largest

memory partition is for S. To free the memory currently occupied by S tuples, will require

matching those tuples with tuples from the stream of R. As these R tuples will be needed

for future matchings with S tuples, they are saved in a spill file for R. The size of the spill

file is determined by time range of tuple tS (the tuple from S with the latest end time)

currently in memory. While in the SM algorithm we consider tuples in R that either start
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or end within the duration of tS (dS), TS only needs to consider R tuples that start during

dS . Thus the size of the spill file when R is spilled, CIO.steady.spill(R,S), is given by:

CIO.steady.spill(R,S) = min(FR,
λR

Tf.R
(dS − 1)) (4.21)

If instead, S was spilled, the spill file CIO.steady.spill(S,R), is given by:

CIO.steady.spill(S,R) = min(FS ,
λS

Tf.S
(dR − 1)) (4.22)

Next we consider the cool-down phase, by looking at the last partition. Since TS

progresses through each tuple instance by instance, the last spill file is based on the number

of tuples in memory. In the SM model, we showed that CIO.spill.inc(R,S) is based on the S

tuples in memory. Instead, the last spill for the TS algorithm holds both S and R tuples

in memory. For simplicity we make the assumption that memory is used equally by each

dataset (in practice the number of tuples from each dataset in memory depends on the

relative interval distributions). Hence, the incremental formulas for spilling (whether R or

S are spilled respectively) are given by:

CIO.spill.inc(R,S) =
λR

Tf.R
∗

1
2TM.S

λS

CIO.spill.inc(S,R) =
λS

Tf.S
∗

1
2TM.R

λR

(4.23)

Number of spill files. Note that for the SM algorithm, to calculate the number

of spills we use the fact that each spill flushes the whole available memory FM . However,

since in the TS algorithm, memory is occupied by two datasets, there is an alternating

spilling pattern that causes part of the memory to be spilled (i.e., βFM , where β < 1). In
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order to determine β, consider the sequence of spills. To simplify the process, assume that

the arrival rate in both datasets is the same; then at the first spill the memory is equally

occupied by the two datasets. This means that the first spill, will free half of the memory

(12FM , i.e. β1 = 1
2). If the freed memory is then equally occupied by the two datasets,

at the second spill, the largest dataset in memory will have size 3
4FM (i.e., 1

2 + 1
4), which

is how much memory will be freed (while 1
4FM remains in memory). For the third spill,

the empty memory is equally divided among the two relations, adding 3
8FM tuples to the

existing 1
4FM tuples; thus the memory to be freed becomes 5

8FM . Under these simplifying

assumptions, the portion of freed memory from each spill follows the following sequence,

starting with the first spill: 1
2 , 3

4 , 5
8 , 11

16 , 21
32 , ... It can be shown that the portion of the freed

memory at the n − th split satisfies the following recurrence relation: βn = 1 − 1
2βn−1 for

n = 2, 3, ..., where β1 =
1
2 . Solving this recurrence, reveals that as n → ∞, βn → β = 2

3 .

The above recurrence formula can easily be generalized to the case where the

number of active tuples from each stream is not the same. For example, assume that

LR > LS , then the recurrence becomes: βn = 1− LS
LR+LS

βn−1, where β1 =
LS

LR+LS
(since LR

is larger, tuples from relation R will occupy a larger part of the memory; to free this part,

we will spill the smaller part currently in memory, which are tuples from S). Solving this

recurrence, reveals that as n → ∞, βn → β = LS+LR
2LS+LR

.

If on average, for each spill we process βFM tuples from a stream, then to process

the whole stream of R or S, the number of spills required respectively is given by:
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Itotal(R) =

⌊
FR

bβFMc

⌋
Itotal(S) =

⌊
FS

bβFMc

⌋ (4.24)

The increment spill files begin when the end time of tR′ (or tS′) occurs after the

last start time in S (respectively R). The cool-down spill files are created from a number

of increment spill files up to the size of the steady-state spill file. If the increment spill is

continually appended to itself until it reaches the steady state size, the formulas for the

number of spills in the cool down phase (whether R or respectively S spills) are given by:

IcoolDown(R,S) =

⌊
CIO.steady.spill(R,S)

CIO.spill.inc(R,S)

⌋
IcoolDown(S,R) =

⌊
CIO.steady.spill(S,R)

CIO.spill.inc(S,R)

⌋ (4.25)

As a result, the number of spills during the steady state phase for relation R

(namely, IsteadyState(R,S)) and for relation S (namely, IsteadyState(S,R)) are given by:

IsteadyState(R,S) = Itotal(R)− IcoolDown(R,S)

IsteadyState(S,R) = Itotal(S)− IcoolDown(S,R)

(4.26)

Calculating the I/O Cost. The I/O cost is determined by the number of frames

written and read during the time-sweep interval join. Since each spill file is only written

once and we spill both relations, the I/O for writes is given by:

CIO.written(R,S) = FR + FS
(4.27)

Now consider the read I/O for the steady-state and cool-down spilling phases. The

read I/O during the steady-state when R (respectively S) is spilled is given by:
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CIO.steadyState(R,S) = Isteady(R,S) ∗ CIO.steady.spill(R,S)

CIO.steadyState(S,R) = Isteady(S,R) ∗ CIO.steady.spill(S,R)

(4.28)

For our simplified example, the two sides alternate in building the spill files that

total the increment spills during the cool-down phase, as shown in Figure 4.5. The cool-

down SM model must be split into two summation, one for each dataset. Figure 4.5 shows

increment spills alternate between the two datasets, thus cool-down increment count for R

and S is split in half and one side will be for the odd number of spills and the other side

represents the even number spills. The following formula shows the CIO.coolDown(R,S), if

R has been chosen to hold the odd spills.

CIO.coolDown(R,S) = CIO.spill.inc(R,S) ∗
IcoolDown(R,S)∑

i=1

i

CIO.coolDown(S,R) = CIO.spill.inc(S,R) ∗
IcoolDown(S,R)∑

i=1

i

(4.29)

The I/O cost model is the sum of the number of writes and the reads for each spill

phase.

CIO = CIO.written(R,S)

+ CIO.steadyState(R,S) + CIO.steadyState(S,R)

+ CIO.coolDown(R,S) + CIO.coolDown(S,R)

(4.30)

Calculating the CPU Cost. The CPU cost can be computed by the size of the

result (which we already estimated as JE(R,S) in Section 4.3) plus the estimated number

of comparisons that did not produce any result. To estimate the non-result producing

comparisons, we note that the TS algorithm only compares active tuples from each relation.
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Thus, each time a tuple is added to memory it will match with all tuples in memory. When

a tuple becomes inactive, the tuple is removed from memory before it would be used in a

unproductive comparison. The CPU cost for TS algorithm’s is just the join size estimation,

since no unproductive comparisons are made. Thus:

CCPU = JE(R,S) (4.31)

During the spilling phase, the algorithm uses a spilling method similar to SM

and must add the unproductive comparisons during the spilling phase. During spilling, an

unproductive comparison is made for each tuple in memory as it scans through the spill file

to find all matches.

CCPU.unproductive(R,S) = β ∗ TM ∗ Isteady(R,S) ∗ λR + β ∗ TM ∗ Isteady(S,R) ∗ λS

(4.32)

Resulting formula for the CPU for spilling cases:

CCPU.spill = JE(R,S) + CCPU.unproductive(R,S) (4.33)

4.4.3 Forward-Scan Interval Join Model

The Forward-Scan Interval Join (FS) is a cross between SM and TS. The algorithm

splits memory between the two relations similar to TS but picks the next tuple to process

based on time order like SM. FS starts by picking the first time ordered tuple from either

relation and loads all matching tuples from the other relation into memory. Assume that
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the first tuple is from R (tR), then all overlapping tuples from S are loaded into memory.

These are all tuples from S that start during the time interval of tR, i.e., λSdR tuples. The

process continues by selecting the next time ordered tuple to process. If this next tuple is

from S (tS), then all overlapping tuples from R are loaded into memory; these are λRdS

tuples. That is, memory would then hold all previous tuples from S (λSdR) and the new

R tuples (λRdS). If during this process memory becomes full, the algorithm must spill. To

perform the join, the FS algorithm reserves the following five frames: a frame for each of

the two input streams R and S, one frame for the output result, and one frame for each of

the spilled datasets for R and S. In this case, the FS algorithm will spill if the following

formula is true:

λRdS
Tf.R

+
λSdR
Tf.S

> FM − 5 (4.34)

Note, that spilling can also happen using one relation in memory, for example, if

all overlapping S tuples for tR cannot fit in memory (i.e., λSdR
Tf.S

> FM −5). Similarly, in the

case that the first tuple comes from S and the overlapping R tuples cannot fit in memory

(i.e., λRdS
Tf.R

> FM − 5).

More interesting is the case where spilling happens while having loaded tuples from

both relations in memory. Following the above example assume that when the memory

gets full the relative portions from the two relation tuples currently in memory satisfy:

λSdR
Tf.S

> λRdS
Tf.R

. That is, during the first spill, S happens to occupy more memory (in practice

this would be based on the data properties and arrival rates). The FS algorithm will pause

and try to free the larger relation currently in memory (S). To do this, the algorithm
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needs to find all matches with R tuples (whether in memory or from the R stream) for

the memory resident S tuples. Considering Figure 4.6, assume that the current S tuples in

memory start from tuple tS until tuple c. Any tuples accessed from the R stream starting

with tuple tR′ need to spill since they may match with future S tuples. After all such

matchings are found, memory flushes the S tuples and the FS algorithm restarts with the

next tuple in time order. Note that since the S tuples in memory have been processed,

time has advanced for the S relation and the next S time ordered tuple comes from the S

stream starting at tS′ while the next time ordered tuple from R remains tuple tR, which is

still in memory and may have more S matches. For this tuple tR, we need to load new S

tuples that may match with it, starting with tS′ . Since time has advanced in S the next

time ordered tuple will be from R until time advances in relation R and catches up with S.

This means that more S tuples will be loaded to memory from S. Under the simplifying

assumptions of similar arrival rates and equal interval sizes, this will lead to the previous

spilling scenario, i.e. the same relation (in our example R) will be spilled. In practice the

spilling order will change if there is a long temporal distance between two consecutive tuples

in S which allows tuples in R to be processed without loading new matching tuples from

S, thus effectively, ‘restarting’ the spilling pattern.

Similarly with the SM algorithm, the FS algorithm includes three phases during

a spill: warm-up, steady-state, and cool-down. The I/O cost model is calculated by deter-

mining the size of each spill, counting the number of spills, and then building a full I/O

cost formula. Below we make the simplifying assumption that the same relation will always

spill.
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Figure 4.6: Important tuples during the spilling process for the forward-scan interval join.
The colored blocks represent the intervals in memory, the input streams for R and S and
the spill files for R and S. Tuple tS corresponds to the first S tuple currently in memory,
tuple c is the last S tuple in memory, tuple a is the first tuple in the spill file of S, tuple
b corresponds to the last tuple in that spill file, and tuple tS′ is the next tuple from the S
stream. Similarly, tuple tR is the first R tuple currently in memory, tuple d corresponds to
the last R tuple in memory, tuple e is the first tuple in the spill file of R, tuple f corresponds
the last tuple in that spill file, and tuple tR′ is the next tuple from the R stream. In our
example, spill file S is not used.
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time

Figure 4.7: The R spilling phase for the Forward Scan interval join. The FS spill files have
been split into two parts: the part from the start of tR until the start of tuple c (before c),
and the interval of tuple c (during c). The steady-state spill file depicts these two parts as
x for before c and y for during c. The warm-up and cool-down spill phases also utilize an
increment spill file: depicted as w (in the warm-up) and z (in the cool-down).

Size of the spill files. The spill size is determined by the properties of the tuples

being freed from memory. Recall that in our example, the earliest time currently in memory

is the start of tuple tR. Let c be the tuple from S with the latest end point (see Figure

4.6). When the FS algorithm pauses due to memory becoming full, the S tuples in memory

must be matched with all R tuples after tR (from the memory or form the stream). Note

that all R tuples before tR have already been processed. The join process will continue to

match R tuples starting from the start of tR until the end of the c tuple. This interval can

be divided into two parts: (i) from the start of tR until the start of tuple c, and (ii) the

interval of tuple c. To calculate the size of the spill we need to find how many R tuples are

in these two parts.

Consider the steady-state spill phase for the first of the above intervals, shown in

Figure 4.7 as x. There are two cases depending on whether the memory is filled only by S
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tuples or if the memory is shared between R and S tuples. In the case where memory is

full with S tuples, these tuples were loaded because of overlapping with tR (which has size

dR).

Thus the spill file, contains those R tuples that arrive during dR; the number of

frames to hold these R tuples is thus: (dR∗λR
Tf.R

). The other steady-state scenario considers

the case when memory is occupied by tuples from both relations. In this scenario, the spill

size should be reduced by the number of R tuples that are already in memory; such tuples

can stay in memory and will be matched with future S tuples, i.e., this part does not need

to be spilled. The number of R tuples that are in memory has the following size in frames:

FM − dS∗λS
Tf.S

. The resulting steady-state formula for these two scenarios is:

CIO.beforeC(R,S) =


dR ∗ λR

Tf.R
, if dR ∗ λS

Tf.S
> FM

dR ∗ λR

Tf.R
− (FM − dS ∗ λS

Tf.S
), otherwise

(4.35)

Consider now the steady-state spill phase for the second part of the spill, the time

interval during tuple c, depicted as the y spill file in Figure 4.7. In this case, the spill file

is the number of frames that hold the R tuples which start during the interval of tuple c

(which has size dS):

CIO.duringC(R,S) =
dS ∗ λR

Tf.R

(4.36)

Next consider the warm-up spill phase shown in Figure 4.7. Note the warm-up

spill phase is only needed when the spill part coming from R tuples that arrive before

the start of the c tuple, is smaller than the steady-state spill file. This occurs only when
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memory is filled by a single relation, in our case S. The spill increment file (depicted as w in

Figure 4.7) is used to calculate the amount of S tuples that can be processed in one batch

of memory for the “before tuple c” spill part. As the figure suggests, each new spill file

increases in size by one spill increment file during the warm-up spill phase until it reaches

the steady-state spill file size. Consider the first spill that happens in the warm-up phase.

The R tuples that arrive before tuple c will be matched against the tuples of S in memory.

Currently, there are TM.S tuples from S. These tuples arrived during an interval of length

TM.S
λS

. During this interval, the number of R tuples that arrived is: TM.S
λS

∗ λR. The size of

the spill CIO.spill.inc(R,S), in number of frames, is thus:

CIO.spill.inc(R,S) =
TM.S

λS
∗ λR

Tf.R

(4.37)

Note that the resulting CIO.spill.inc(R,S) formula is the same as the SM spill

increment shown in Formula 4.9. Similarly to the warm-up spill phase, the cool-down spill

phase uses the increment spill file (depicted as z in Figure 4.7) to decrease the “during tuple

c” spill part (shown as y in Figure 4.7).

Number of spill files. The next step is to determine the number of spills for

each of the three phases: warm-up, steady state, and cool-down. First consider the total

number of spills that occur during the join. To enter a spill process, memory will be full;

assume that S has more tuples in memory than R. There are two scenarios: either S fills

the full memory (FM.S) or both relations fill the memory and only the S part of memory

(dR∗λS
Tf.S

) is processed. The total number of S frames (FS) is divided by these batches of S
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tuples to determine the total number of spills. Since the last pass could be done in memory

the total number is reduced by one. Thus:

Itotal(R,S) =
FS

min(FM.S ,
dR∗λS
Tf.S

)
− 1 (4.38)

The number of warm-up spills is determined by how many times it would take to

build the steady-state spill file CIO.beforeC(R,S) using the increment spill file, i.e.:

IwarmUp(R,S) =

⌊
CIO.beforeC(R,S)

CIO.spill.inc(R,S)

⌋
(4.39)

Similarly the number of spills in the cool-down phase is given by:

IcoolDown(R,S) =

⌊
CIO.duringC(R,S)

CIO.spill.inc(R,S)

⌋
(4.40)

The number of spills in the steady-state is then given by:

Isteady(R,S) = Itotal(R,S)− IwarmUp(R,S)− IcoolDown(R,S) (4.41)

Calculating the I/O Cost. The I/O cost is determined by the number of frames

written and read during the FS algorithm. Since the FS algorithm only spills one relation

(R) and is only written once, the I/O for writes is given by:

CIO.write(R,S) = FR
(4.42)

Now consider the read I/O for the steady-state, warm-up and cool-down spill

phases. The steady-state spilling phase I/O is calculated by adding the spilled frames from
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each steady-state spill make up of both the “before tuple c” and “during tuple c” spill parts.

Given by:

CIO.steady(R,S) = Isteady(R,S) ∗ (CIO.beforeC(R) + CIO.durringC(R)) (4.43)

Figure 4.7 depicts the parts of each spill file. The warm-up spilling phase I/O

includes the steady-state spill part for “during tuple c” (depicted as y) and the increasing

number of increment spills (depicted as w). Thus:

CIO.warmUp(R,S) = IwarmUp(R,S) ∗ CIO.duringC(R,S)

+ CIO.spill.inc(R,S) ∗
IwarmUp(R,S)∑

i=1

i

(4.44)

In this summation, the case i=1 corresponds to reading the first spill file which

has the size CIO.spill.inc(R,S). Then this spill file is incremented by CIO.spill.inc(R,S) to

create the second spill file, etc. until i = IwarmUp(R,S).

Figure 4.7 the cool-down phase and show the two parts: the increment spill part

(depicted as z) and the steady-state spill for the “before tuple c” part (depicted as x). In

the cool-down spilling phase we start from the last spill which has size CIO.spill.inc(R,S).

Then continue to the second to last spill, incrementing the spill size similar to the warm-up

spill phase. Thus:

CIO.coolDown(R,S) = IcoolDown(R,S) ∗ CIO.beforeC(R,S)

+ CIO.spill.inc(R,S) ∗
IcoolDown(R,S)∑

i=1

i

(4.45)

97



The I/O cost model is the sum of the frames written and read during the three

spilling phases. Thus:

CIO(R,S) = CIO.write(R,S) + CIO.warmUp(R,S) + CIO.steady(R,S) + CIO.coolDown(R,S)

(4.46)

Calculating the CPU Cost. The CPU cost can be computed by the size of the

result (which we already estimated as JE(R,S) in Section 4.3) plus the estimated number

of comparisons that did not produce any result. To estimate the non-result producing

comparisons, we note that the FS algorithm will stop comparing tR with S on the first S

tuple that starts after tR’s end time (i.e., one non-result comparison per R tuple). When tR

reaches the end of the relation’s time interval, no non-producing comparisons will be made

and can be removed (λR ∗ (dR − 1)). The same is true for when the selected tuple comes

from the S relation. The total CPU cost is thus:

CCPU (R,S) = JE(R,S) + TR − λR ∗ (dR − 1) + TS − λS ∗ (dS − 1) (4.47)

4.4.4 Overlap Interval Partition Join Model

The Overlap Interval Partition Join (OIP) is the first of our two partitioning

interval joins. These joins utilize the partitions defined by their algorithm as the spill files.

Thus the model presented here considers how many partitions are created and their sizes

to determine the I/O cost.
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To determine when the OIP algorithm spills data, consider the two activities used

to complete the join process: partitioning and joining. The partitioning activity evenly

splits the temporal range (covered by the intervals of a relation) into slots. The OIP uses

these slots to create an overlapping temporal partitioning scheme, where each partition

is defined by its start and end slot. An example scenario with three slots was discussed

in Figure 3.13; here each temporal partition has been assigned an identifier, composed by

a start slot and followed by an end slot. A partition will store all relation tuples whose

intervals start and end times fall within the respective slots. The aim of the partitioning

activity is to assign tuples of each relation to their respective partitions.

As with the other algorithms, prior to joining, the data is assumed sorted, although

in OIP’s case, the sorting keys are different. Instead of sorting tuples by their interval start

and end times, the sorting process in the OIP algorithm uses each tuple’s starting and the

ending slots. The tuples are sorted first in increasing order of their ending slot, followed

by the decreasing order of their starting slot; these slots are easily computed as a tuple is

read using the tuple’s start and end times. Effectively, this slot-based sort order creates

the overlapping temporal partitions. That is, the partitions can be created by reading the

sorted stream of each relation. Looking at Figure 3.13 the ordered stream of a relation will

have first the tuples from partition (1,1) followed by the tuples from partition (2,2), (1,2),

(3,3), (2,3) and (1,3). Note that within each partition the tuples are not ordered. Further,

there may be partitions without tuples; the algorithm below simply reads the next tuple

from the relation stream. Below we assume for simplicity that both relations use the same

slots, resulting to the same respective partitions.
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OIP is a specialized block nested-loop algorithm therefore we will use one frame in

memory to read tuples from the outer relation (say R), one frame for storing the join results

and the rest of the memory frames will have tuples from the other relation (S). The joining

activity begins by filling up the available memory with tuples from the S stream (that is,

partitions S(1,1), S(2,2), S(1,2), ...). We then read the first frame from relation R (starting

from R(1,1)). For each tuple from R the algorithm will calculate which S partitions are

overlapping with it and will proceed to join that tuple with tuples from the overlapping S

partitions.

In general, since the OIP algorithm makes a single pass over S by loading it in

blocks from its stream, there may be other partitions from S also in memory interleaved with

the needed partitions. For example, if we are processing a tuple from R(2,2) the OIP will

need in memory all partitions from S(2,2) until S(1,3). This includes partition S(3,3) which is

loaded from the stream but is not needed for this join. Such interleaved S partitions occupy

memory space, thus it may happen than not all needed partitions for the specific R tuple

are in memory. If an overlapping partition from S could not be fully loaded into memory,

the algorithm will pause and process all S tuples currently in memory, by reading tuples

from the R stream. Since these R tuples may match with future tuples from S, they are

saved to a spill file for R.

The worst case occurs when processing tuples from partition R(1,1): using the

above example, the OIP algorithm will require in memory all the related overlapping S

partitions, namely, S(1,1), S(1,2), and S(1,3). Given the ordering of the S stream, the OIP

join algorithm will need to load in memory the whole S relation (since partition S(1,3) is
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at the end of the stream based on the above ordering). In this worst-case scenario, spilling

occurs if the stream S is not able to fit into memory, that is:

FS > FM + 2 (4.48)

To simplify calculating the I/O and CPU cost for the OIP algorithm, the temporal

partitions are grouped by slot length. An example for the partition slot groups of S is shown

in Figure 4.8. Here slot groups are identified by the relation and partition’s slot length.

For example, the S partitions that have length one slot are in the group slS1 , which in our

example includes partitions S(1, 1), S(2, 2), and S(3, 3). Similar groups will be created for

R. We assume that each partition within a slot group has a similar number of tuples.

The I/O and CPU cost models consider the join of all slot group pairs from R and

S. The models use the number of overlapping partitions to determine the number of times

these partitions in a slot group will be joined. We start with a method to determine the

number of joined partitions for a pair of slot groups. Then we discuss how to count the

number of tuples in a partition and how to determine the number of frames in a partition.

Finally formulas for the overall I/O and CPU costs are presented.

Number of partition joins. The next formula considers the number of joins

between individual R partitions in one slot group and individual S partitions in another

slot group. Figure 4.9 depicts an example with k = 6 slots and considers the joining of slot

groups slR3 and slS2 . In general the number of partitions in a slot group sli, denoted by |sli|

is given by |sli| = k− i+1. Thus the slR3 slot group has 4 partitions. Consider the number

of slS2 partitions that overlap a given slR3 partition, say R(2, 4) take from the middle of the
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Figure 4.8: The slot partition groups for S.

partition group, the total number of overlapping partitions given by: slR3 +slS2 −1 = 3+2−1;

this is computed similarly with how the join size estimation computes overlap between two

tuples. Recall from Section 4.3 that the overlap was calculated by counting: (i) the number

of tuples that end during a tuple tR and, (ii) all the tuples that start during tuple tR.

For the partitioning example, partition R(2, 4) overlaps four slS2 partitions, namely: S(1, 2)

which ends in the partition, and S(2, 3), S(3, 4), and S(4, 5) partitions which start during

the R partition. The total number of joined partitions between slot groups slRi , sl
S
j is given

by the number of partitions in the slRi group multiplied by the number of overlapping S

partitions in the slSj group, namely:

Itotal(sl
R
i , sl

S
j ) = |slRi | ∗ (slRi + slSj − 1) (4.49)

However, similar to the join size overestimation, this approach over counts the

joined partitions at the beginning and end of a relation’s time range. Consider partition
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Figure 4.9: An example join where k has been set to 6 and a pair of slot groups are being
joined: slR3 and slS2 . The before and after phases where the number of overlapping partitions
changes due to partitions starting before the first slot or ending after the last slot.

R(1, 3); the previous discussion suggests that it should overlap four partitions, but it only

overlaps three, namely: S(1, 2), S(2, 3), and S(3, 4). That is, partition S(0, 1) should not be

counted as it starts before the first R slot. The number of such over-counted partitions can

be estimated using an approach similar to the “before” formula in the join size estimation

(Section 4.3). The formula has been updated to count partitions instead of individual

tuples. In particular, updating the JEbefore(R,S) formula to count the partitions involves:

(i) setting λR = 1, since only one partition starts at each slot (similarly for λS) and (ii)

replace dR by the slot length. The resulting overestimations are:

Ibefore(sl
R
i , sl

S
j ) = Iafter(sl

R
i , sl

S
j ) =

slSj −1∑
u=1

u (4.50)

Hence, the number of joined partitions after removing the ‘before’ and ‘after’

overestimation from the total join estimation is:
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Figure 4.10: The resulting partitioning over four slots on R relation with these properties:
kinterval = 5, dR = 13, and λR = 1.

Ijoin(sl
R
i , sl

S
j ) = Itotal(sl

R
i , sl

S
j )− Ibefore(sl

R
i , sl

S
j )− Iafter(sl

R
i , sl

S
j ) (4.51)

Number of tuples in a partition. Figure 4.10 depicts a time range with 25

time instances, divided among an k = 5 slots. The example relation R has the following

properties: each time instance there is one tuple arriving (λR = 1) while the interval

length of the each tuple is dR = 13. The figure highlights two cases for how tuples will be

partitioned among these slots, using tuples tR and tR′ as examples. Depending on when a

tuple starts, it can in this case be assigned to a partition that covers three (as for tR) or

four (tR′) slots. Since each slot has the same size, the time interval covered by a slot in R

is:

Kinterval(R) =

⌈
rR.end − rR.start

k

⌉
(4.52)
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A tuple with length of dR will be assigned to a partition that covers
⌈

dR
Kinterval(R)

⌉
or (

⌈
dR

Kinterval(R)

⌉
+ 1) slots (depicted as slR3 and slR4 respectively). In the first case, the

partition contains
⌈

dR
Kinterval(R)

⌉
∗Kinterval(R) time instants (and there are λR tuple arrivals

per time instant). However, the partition only holds tuples that start in the first slot

and end in the third slot. The tuple length (dR) is subtracted from the partition’s total

time interval to find the number of time instances when a tuple will start during the first

partition, Q(R) = ((
⌈

dR
Kinterval(R)

⌉
∗Kinterval(R))−dR−1). The tuples in the partition with

length (
⌈

dR
Kinterval(R)

⌉
+ 1) slots, start in the remaining time instances of the first slot, that

is: (Kinterval(R) − Q(R)). To find out the number of tuples in each case, we multiply by

the arrival rate of R, λR:

Tpartition(sl
R
i ) =



Q(R) ∗ λR, if slRi =

⌈
dR

Kinterval(R)

⌉
(Kinterval(R)−Q(R)) ∗ λR, if slRi =

⌈
dR

Kinterval(R)

⌉
+ 1

0, otherwise

(4.53)

The size of an individual slot partition in frames is then:

CIO.partition(sl
R
i ) =

⌈
Tpartition(sl

R
i )

Tf.R

⌉
(4.54)

Calculating the I/O Cost. The I/O cost is determined by the number of

partitions written and read to process the join. OIP writes the R partitions only once and

processes the join with a single pass over S during which, R may be read multiple times.

Thus the number of writes is:
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CIO.write(R,S) = FR
(4.55)

Recall that all S partitions are loaded into memory. If an individual S partition

cannot fit into memory multiple passes over R (denoted as Ipasses) are needed to find all

matches in S. Ipasses is determined by how many blocks of size FM we can have in this S

partition:

Ipasses(sl
S
j ) =

⌈
CIO.partition(sl

S
j )

FM

⌉
(4.56)

Note that Ipasses(sl
S
j ) is looking at an individual S partition. A slot group would

need to make Ipasses(sl
S
j ) over each slot partition in the group.

Join partition count is made up of joining all slot groups from each relation. The

set of R slot groups is expressed as 〈slR〉 which represents slR1 , slR2 , and slR3 from Figure

4.8. Note that slot groups may not have tuples located in their individual partitions, in this

case those slot groups would be left out of the set. The I/O cost includes the partitions

written and the summation of joining all pairs of partition groups. For each pair the number

of partition joins (Ijoin(slRi , slSj )) is multiplied by the number of passes over S needed to

process the individual partition R and the size of the R partition.

CIO(〈slR〉, 〈slS〉) = CIO.write(R,S)

+
n∑

i=1

m∑
j=1

Ijoin(sl
R
i , sl

S
j ) ∗ Ipasses(slSj ) ∗ CIO.partition(sl

R
i )

where n is the size of 〈slR〉 and m is the size of 〈slS〉

(4.57)
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Calculating the CPU Cost. The CPU cost model follows the I/O cost model

but changes the number of frames read for the number of comparisons. OIP uses a nested

loop to join individual partitions so the number of comparisons is simply the number of

tuples in R partitions times the number of tuples in the S partition. Thus:

CCPU (〈slR〉, 〈slS〉) =
n∑

i=1

m∑
j=1

Ijoin(sl
R
i , sl

S
j ) ∗ Tpartition(sl

R
i ) ∗ Tpartition(sl

S
j )

where n is the size of 〈slR〉 and m is the size of 〈slS〉

(4.58)

4.4.5 Disjoint Interval Partitioning Model

The Disjoint Interval Partitioning Join (DIP) is the second partitioning algorithm.

The DIP algorithm assumes the input data is time ordered similarly to the SM, TS and

FS algorithms. The algorithm is split into two activities: partitioning and joining. The

partitioning activity partitions each relation separately. Assume that the DIP algorithm

first partitions relation R. It starts by selecting the first R tuple and assigning to a partition.

A heap maintains the end time of the last tuple added in each partition. For each next

R tuple selected there are two options: assign it to an existing partition or create a new

partition. If the start time of the new R tuple is greater or equal to the smallest end time in

the heap, it is added to an existing partition. Otherwise (i.e. it is less), the tuple overlaps all

existing partitions and must be added to a new partition. The partitioning process repeats

until all R tuples have been assigned a partition. While partitioning the relation, the DIP

algorithm will spill if an R tuple cannot be added in memory. The partitioning activity uses

two frames that reduce the total memory available: one frame for the input stream and one

frame for the output stream. Thus, the DIP algorithm will spill while partitioning R if:
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FR > FM + 2 (4.59)

If relation R cannot fit in memory, the partitioning activity switches to utilize

one memory frame for each partition. If there are enough frames for the partitions, the

partitioning will finish in one pass over R. If however, there are more partitions than

available frames in memory, the output frame is used to create a spill that will contain all

tuples that have not been partitioned (i.e. cannot be assigned to existing partitions). Once

the stream of R has been fully processed, the partitioning activity will pick up the spill

file with tuples that do not have a partition and repeat the partitioning process again with

these tuples as input (effectively making multiple passes over R). Following the completion

of partitioning relation R, all partitions are written to disk; partitioning proceeds with

relation S. The end of partitioning results in (disjoint) interval partitions for relations R

and S (their partitions are depicted respectively as z and y in Figure 4.11).

When partitioning S, there are two cases: either the S partitions fit in memory

or the S partitions spill to disk. In the first case, the join can be completed with one pass

over R (one partition at a time).

In the second case, the join activity will continue by reading relation S from disk

using one memory frame per S partition. The join activity picks an R partition and loads

the first frame from that partition; it then does a merge-join with all S partitions (one

frame per partition at a time). If the number of S partitions are larger than the number

of available memory frames, then multiple passes over S will be made when joining with

each R partition. The join activity does not backtrack during the merge-join process (since
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time

z

R.1

steady-state
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R.3

R.4

S.1

S.2

S.3

S.4

Figure 4.11: The R and S spilling phase for disjoint interval partition join. The spill file
denoted as y represents the disjoint partitions in S and z represents the disjoint partitions
in S.

partitions within a relation have disjoint intervals), but may reread partitions to complete

the join with other partitions.

The DIP algorithm does not have warm-up or cool-down spill phases, only the

steady-state phase. Similar with the OIP algorithm, to calculate the I/O cost we need to

determine the number of partitions and the size of each partition. The two algorithms defer

on how the partitions are created and used by the join algorithm.

Number of partitions. Recall that each disjoint interval partition has no over-

lapping intervals. Thus, Itotal(R) the number of R partitions, is equal to the largest number

of active R tuples at a given instance; assuming the simplifying scenario with evenly dis-

tributed tuples over the relation R, this is given by LR, i.e.:

Itotal(R) = LR (4.60)

Size of partitions. Continuing with our example, the (average) size of each

partition is simply the size of the relation divided by the number of partitions.
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CIO.partition(R) =

⌈
FR

Itotal(R)

⌉
(4.61)

Calculating the I/O Cost. The I/O cost is determined by the number of frames

written and read during the DIP algorithm. Since each partition is only written once and

we spill all partitions from both relations, the I/O for writes is given by:

CIO.write(R,S) = FR + FS
(4.62)

Consider the scenario where memory does not have enough available frames to

hold all S partitions. The algorithm must process batches of S to complete the join with

partitions from R. The number of batch is based on the number of times portions of S will

be loaded into memory. If one frame is designated for R partitions, then available memory

is FM − 1. The total number of partitions for S is found using the number of partitions

(Itotal(S)) times the size of each partition (CIO.partition(S)). The batches to process relation

S is the number of frames used to store the S partitions divided by the available memory,

given by:

Ibatch(S) =

⌈
Itotal(S) ∗ CIO.partition(S)

FM − 1

⌉
(4.63)

An R partition is read through one frame in memory and must be merged with

each batch of S partitions in memory. When it is finished, the next R partition is streamed

through this frame. For each R partition, the join will make one pass over all S partitions

loaded into memory. The I/O cost for this case includes the frames written for both re-
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lations, the frames read for each R partition once for each batch of S partitions, and the

frames read for each S partition. Thus:

CIO(R,S) = CIO.write(R,S)

+ Ibatch(S) ∗ Itotal(R) ∗ CIO.partition(R)

+ Itotal(S) ∗ CIO.partition(S)

(4.64)

Calculating the CPU Cost. The CPU cost can be computed by the size of

the result (which we already estimated as JE(R,S) in Section 4.3) plus an estimate for the

number of comparisons that did not produce any results. Consider when the merge join

will make an non-result comparison for each tuple in relation R, TR. The DIP merge join

selects a tuple from R, say tR, and matches it with the selected tuple from each S partition.

The comparison will determine if there is a result. The next R or S tuple to be advanced

is picked based on which tuple has the smaller end time instance. If the tR tuple has the

smaller time instance, then tR tuple advances and this tR tuple will not make any more

comparison for with this S partition. If the S tuple has the smaller time instance, then

S tuple advances to the next tuple in the partitions and the check is made again. This

can lead to a non-result comparison. Consider our simplified relation with a steady arrival

rate and consistent time interval for each tuple, the S tuple will only be advanced to a

non-result comparison when the tuples share the same end time. The number of non-result

comparisons for each R tuple is how many tuples share the R tuples end time, λS . Thus,

the CPU cost is the join size estimation and the non-result comparisons:

CCPU (R,S) = JE(R,S) + TR ∗ λS (4.65)
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4.4.6 Expanding the Models for Complex Datasets

The models described previously have focused on the simpler case where the data

within a relation follows the same arrival rate and has the same interval length. This

simplistic assumption allowed for the creation of the basic models for spilling, I/O and

CPU costs. However, more likely, a real dataset may have various types of interval data.

For example, log data tracking jobs from a distributed computing system, may include short

jobs that occur frequently and longer jobs that have a lower frequency. Our models can be

expanded to support these more complex datasets, by considering a dataset as the union

of datasets, each with its own tuple arrival rate and tuple interval length. For example,

the short and longer jobs could be separated into two individual datasets: one capturing

the behavior of the short jobs and another for the long jobs. In general, we assume that

a relation R, can be represented as the union of n individual subrelations R1, R2,...,Rn,

where each subrelation Ri is a dataset that has its own fixed interval duration di and fixed

arrival rate λi (we assume here that the arrival rate λi remains the same for the tuples of

subrelation Ri over the whole time range of R). That is: R = R1 ∪R2 ∪ ... ∪Rn.

Using the property that the Cartesian product is distributive over union (that is,

A × (B1 ∪ B2) = (A × B1) ∪ (A × B2)), it follows that the join of two relations R,S each

consisting of unions of subrelations, is the union of the joins of the individual subrelations.

Each subrelation join (i.e., Ri ./ Sj) follows the previous models since it uses specific interval

lengths (respectively di, dj) and arrival rates (λi, λj). Below we discuss how the models for

spilling, I/O and CPU need to be adapted for each algorithm, for the general case where
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the input relations are seen as unions of subrelations. We assume that relations R,S have

respectively nR and nS subrelations.

The CPU cost model can directly utilize the above distributive property of rela-

tional algebra since it counts the number of comparisons for the join. That is, the total

number of comparisons can be calculated by adding up the number of comparisons for each

subrelation join. When it comes to the I/O cost model (and determining whether spilling

occurs), if we consider the many subrelation joins separately, the model will not be able

to correctly calculate the memory needs of the full join operation. Hence, for the I/O cost

model for complex datasets we focus on the worst case scenario. The I/O model thus picks

the duration and arrival rate from the subrelations that would create the worst case memory

requirements.

Calculating the CPU Cost. The CPU cost model for multiple relations utilizes

the union of n individual subrelations to estimate the CPU cost. The cost model sums up

the costs of all subrelation joins’ CPU cost to create a complex dataset model.

CCPU.complex(R,S) =

nR∑
i=0

nS∑
j=0

CCPU (R.i, S.j) (4.66)

The TS CPU cost model has a separate formula for CPU when the algorithms

spills. Since the I/O cost model generally use the worst case, the CPU unproductive com-

parisons for the TS formula also uses the worst case, instead of the union of all sub relations.

CCPU.complex.spill(R,S) =

nR∑
i=0

nS∑
j=0

CCPU (R.i, S.j) + CCPU.spill(R,S) (4.67)
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I/O Spilling Check. Consider the complex dataset and its’ subrelations’ interval

properties. We will approximate the complex dataset with one duration and one arrival

rate, those that will create the worst case I/O. First, we note the most I/O is caused

when processing the longest duration. Thus, the largest duration from all subrelations is

selected for the worst case. That is: dR = max
1≤i≤nR

(dR.i). Second, the worst case for the

interval arrival rate occurs at a time instance with the most arriving intervals. Since each

subrelation may contribute to the number of tuples arriving on a specific time instance, the

cumulative arrival rate is selected. That is: λR =
∑nR

i=1 λR.i.

The SM algorithm stores data in memory according to a single tuple tR selected

from R. The worst case scenario happens for the tuple with the longest interval in R, since

it overlaps with the largest number of S tuples (considering the matches of the longest tR

with tuples from every Sj), and these need to be stored in memory. If all the matching S

tuples cannot be stored in memory the algorithm will spill. The original SM spilling formula

(Formula 4.5) is replaced by the following formula:

nS∑
j=1

λS.j ∗
(

max
1≤i≤nR

(dR.i) + dS.j − 1
)

Tf.S
> FM − 4 (4.68)

The Time-Sweep Interval Join keeps all active tuples in memory to perform the

join. In this case, we need to add up the active tuples in each subrelation (namely LR.i, LS.j),

from both inputs. Hence Formula 4.20 is replaced by:

nR∑
i=1

LR.i

Tf.R
+

nS∑
j=1

LS.j

Tf.S
> FM − 5 (4.69)
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The Forward Scan Interval Join keeps tuples in memory from both datasets. For

the longest tuple from dataset S we want to find all R tuples that overlap with it (arriving

with rate λi from each Ri); similarly for the longest tuple from R. Hence the spilling

Formula 4.34 becomes:

max
1≤k≤nS

(dS.k)
∑nR

i=1 λR.i

TfR

+

max
1≤l≤nS

(dR.l)
∑nS

j=1 λS.j

TfS

> FM − 5 (4.70)

Note that the spilling formulas for the partition-based algorithms (namely, OIP’s

Formula 4.48 and DIP’s Formula 4.59), remain unchanged since for these algorithms, the

spilling test is based on dataset size only.

Calculating the I/O Cost. The formulas for the I/O cost model for SM, TS,

and FS are the same, except for replacing the worst case duration and arrival rate.

The OIP algorithm is able to handle the individual subrelations since it uses nested

loop join (and thus the distributive property holds). The I/O cost model is split into write

and read formulas. The write formula is only called once since we write the whole relation

to disk. The read cost model can sum up the I/O for each subrelation pair being joined

together. Hence the I/O cost model formula is:

CIO.complex(R,S) = CIO.write(R,S) +

nR∑
i=0

nS∑
j=0

CIO.read(R.i, S.j) (4.71)

The DIP algorithm chooses partitions based on the number of active intervals in

Formula 4.60. The Itotal(R) formula must be updated to consider the number of active

intervals from all relations. The modified formula is:
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Itotal(R) =

nR∑
i=1

LR.i (4.72)

4.5 Model Accuracy

The accuracy for predicting the number of comparisons (CPU) and the number of

disk accesses (I/O) was tested by logging the number of join comparisons and disk accesses

while executing interval join queries. During this process, the cost model highlighted a few

issues with the implementation by showing where the algorithm implementation did not

match the model, usually finding a coding mistake or opportunity for improvement. A few

of the algorithm implementations had an extra comparison or disk access often due to using

a condition which included more tuples than necessary. The model accuracy experiments

have been split into two sections: simple dataset and complex dataset. In all experiments

the relation is self-joined. Each section shows the results using various duration and λ

values for both the CPU cost model and I/O cost model accuracy using synthetic data.

4.5.1 Simple Dataset Self-Join

The dataset default properties are λ = 10 and d = 10 unless stated otherwise.

CPU Cost Model Accuracy. The cost model accuracy test uses the same syn-

thetic data generator from the performance testing in Section 3.4. While the interval data

properties for each relation have been varied for each accuracy test, the same performance

interval join queries have been used for these five algorithms. Table 4.4 shows the percent

error (|v−vestimate
v | ∗ 100% where v is the observed number of comparisons) using the simple
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Duration DIP FS OIP SM TS

Duration of 1 0.01% 0.001% 1.81% 0.00% 0.00%

Duration of 5 0.01% 1.12% 2.33% 1.11% 0.01%

Duration of 10 0.01% 0.57% 2.78% 0.53% 0.01%

Duration of 50 0.01% 0.35% 7.57% 0.11% 0.01%

Duration of 100 0.01% 0.55% 11.79% 0.06% 0.01%

Table 4.4: CPU Cost Model error for a dataset with a λ = 10 and duration is shown.

model, where intervals arrive with the same arrival rate; their duration d varies from 1 to

100 time instants. The CPU Cost Model Accuracy builds on the join size estimation accu-

racy from Section 4.3. Many of the CPU cost models use the join size estimation formula

and add the unproductive comparison to create the cost model.

Overall, the errors are typically below 3% with the exception of a few OIP scenar-

ios. DIP and TS show consistent low error values. DIP has unproductive comparisons but

are predictable and accounted for accurately. TS does not have unproductive comparisons,

so the accuracy is based on the join size estimation. OIP’s error comes from assuming all

partitions have the same size and number of tuples. If the relation’s range is not evenly

divisible by the k value, that implies that some partitions will be of different size and have

an alternate number of tuples. The error size is related to many of these alternate size par-

titions exist. Table 4.5 shows the percent error from various lambda queries. The results

are similar (the error is less than 5.04%) to the ones varying the duration.
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Lambda DIP FS OIP SM TS

Lambda of 1 0.01% 5.04% 1.90% 5.01% 0.01%

Lambda of 5 0.01% 1.09% 0.72% 1.05% 0.01%

Lambda of 10 0.01% 0.57% 2.78% 0.53% 0.01%

Lambda of 50 0.01% 0.15% 3.31% 0.11% 0.01%

Lambda of 100 0.01% 0.10% 0.47% 0.06% 0.01%

Table 4.5: CPU Cost Model error for a dataset with a d = 10 and lambda is shown.

Duration DIP FS OIP SM TS

Duration of 50 1.65% 2.28% 0.31% 3.08% 1.77%

Duration of 100 1.71% 0.99% 1.00% 1.81% 3.28%

Table 4.6: I/O Cost Model error for a dataset with a fixed λ = 10 and two durations.

I/O Cost Model Accuracy The interval joins for the I/O cost models follow

the performance I/O queries from Section 3.4.3. The experimental settings were selected to

ensure all the available join memory is used and the algorithm must spill for all cases. The

accuracy is only shown for the two longer intervals and two larger arrival rates since these

were the only settings where all five interval joins spilled. The results are shown in Tables

4.6 and 4.7. Again OIP shows larger error (for λ = 100) since the simplified model assumes

all partitions have the same size and number of tuples.
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Lambda DIP FS OIP SM TS

Lambda of 50 0.48% 7.93% 2.61% 0.51% 2.79%

Lambda of 100 0.49% 3.06% 28.82% 0.32% 7.69%

Table 4.7: I/O Cost Model error for a dataset with a fixed d = 10 and two arrival rates.

4.5.2 Complex Dataset Self-Join

To create a complex dataset we add a second subrelation (with different d and λ)

to the relation that is self-joined. Thus the relation now has two types of intervals: a fixed

sub-relation with a λ1 = 5 and d1 = 5 and a second sub-relation whose λ and d change

for each experiment. In the duration experiments, the second subrelation uses λ2 = 10 and

varies d2, while in the arrival rate experiments, the second subrelation uses d2 = 10 and

varies λ2.

CPU Cost Model Accuracy Table 4.8 shows the model accuracy results for the

complex dataset case, where the duration of the second subrelation is changed. While the

error of the complex dataset self-join is higher that the simple dataset case, the numbers are

still below 4% error except for a two OIP experiments. The accuracy results while changing

the second subrelation λ appear in Table 4.9. Again the error is low, showing the accuracy

of our models holds for the complex case as well.

I/O Cost Model Accuracy The I/O cost model accuracy tests for the complex

dataset appear in Table 4.10 (while changing the second subrelation’s duration), and in

Table 4.11 (changing the second subrelation’s arrival rate). Excluding TS and OIP, the

errors for the duration experiments are below 3%. In the arrival rate experiments the error
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Duration DIP FS OIP SM TS

Duration of 1 2.33% 3.53% 3.48% 1.20% 3.52%

Duration of 5 1.11% 1.48% 2.46% 1.47% 1.47%

Duration of 10 0.67% 3.33% 2.09% 1.26% 0.85%

Duration of 50 0.11% 0.53% 5.20% 0.28% 0.20%

Duration of 100 0.05% 0.09% 9.37% 0.14% 0.11%

Table 4.8: CPU cost model error for a dataset with two types of interval data: λ1 = 5,
d1 = 5, λ2 = 10 and various d2 values.

Lambda DIP FS OIP SM TS

Lambda of 1 3.68% 3.06% 1.42% 3.04% 3.04%

Lambda of 5 0.01% 5.59% 3.41% 2.10% 1.42%

Lambda of 10 0.67% 3.33% 2.09% 1.26% 0.85%

Lambda of 50 3.40% 0.76% 1.44% 0.29% 0.21%

Lambda of 100 4.04% 0.36% 3.34% 0.14% 0.11%

Table 4.9: CPU Cost Model error for a dataset with two types of interval data: λ1 = 5,
d1 = 5, d2 = 10 and various λ2 values.
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Duration DIP FS OIP SM TS

Duration of 50 0.42% 1.26% 0.35% 1.21% 16.33%

Duration of 100 6.98% 1.93% 2.58% 1.00% 18.78%

Table 4.10: I/O Cost Model error for a dataset with two types of interval data: λ1 = 5,
d1 = 5, λ2 = 10 and two d2 durations.

Lambda DIP FS OIP SM TS

Lambda of 50 0.74% 7.15% 46.49% 2.23% 4.51%

Lambda of 100 0.07% 3.80% 29.88% 0.03% 6.68%

Table 4.11: I/O Cost Model error for a dataset with two types of interval data: λ1 = 5,
d1 = 5, d2 = 10 and two λ2 values.

is higher, but generally less then 8% except for the OIP results. OIP continues to have a

higher error rate for large arrival rates for I/O experiments similar to the simple dataset

case.

4.6 Predicting Spilling

When picking an algorithm for the best performance, an optimizer should pick an

algorithm that avoids spilling due to the significant increase in execution time. The join

memory estimate may be used to identify which algorithm will spill to disk. In Figures 4.12

and 4.13, two graphs are shown that detail when different algorithms will spill based on the

interval data. Note that the partitioning algorithms spill based on the size of the data and

were thus left out of the figures. The non-partitioning algorithms spill based on the interval

data properties. Consider two datasets R and S. In Figure 4.12, dataset R has a fixed
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Figure 4.12: The graph’s x and y coordinates represent λS and dS for the S dataset and the
R dataset is fixed with dR = 5 and λR = 10. The shaded regions represent when algorithms
will spill: SM is red, TS is black, and FS is blue.

arrival rate λR = 10 and a fixed duration dR = 5. Dataset S’s arrival rate λ is shown on the

X axis while the interval duration for S is on the Y axis. The shaded regions depict when

an algorithm will spill during the join. The red region represents when the SM algorithm,

the black region represents TS algorithm and blue region represents the FS algorithm.

The figure represents how the spilling formulas can be used to pick an algorithm

that does not spill. As an example, if dataset S had λS = 40 and dS = 40, it would

correspond to a point in the black region, which means that TS would spill for this dataset,

while SM or FS would not spill.

In Figure 4.13 we depict the spilling scenarios for a dataset R with duration dR =

15, while keeping a fixed arrival rate λR = 10. These graphs are hosted on Demos and can

be visualized at the following URL in the references [31].
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Figure 4.13: The graph’s x and y coordinates represent λS and dS for the S dataset and
the R dataset is fixed with dR = 15 and λR = 10. The shaded regions represent when
algorithms will spill: SM is red, TS is black, and FS is blue.

4.7 Conclusions

We presented a interval join size estimation formula that accurately predicts the

number of results with an error of less than one percent. The CPU cost models for the five

interval algorithms show relatively good accuracy for various durations and arrival rates.

The I/O cost model is not as accurate because the model is based on worst case scenarios.

Overall, the spilling formulas can be used to pick an algorithm that avoids spilling, as

this drastically affects performance. These cost models became a valuable check point

when implementing the various join algorithms. Often an issue with the implementation

was highlighted by the cost model giving a wildly different value. These updates helped

optimized and confirm the implementation by comparing them to the cost model. The

cost models can be integrated into a cost-based query optimizer when integrating these an
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interval join into a database system. Since spilling is costly for a query, the primary goal

should be to use the cost models to avoid spilling.
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Chapter 5

Lessons Learned From

Implementing the Overlapping

Interval Join Algorithms

There were various lessons learned from implementing, building cost models and

testing the five interval join algorithms (FS, SM, TS, OIP and DIP) for the overlapping

relationship. The non-partition algorithms (FS, SM, and TS) have similar spill processes

and only differ slightly in the way they manage tuples in memory during the join process.

This is also confirmed by the cost models for the non-partition algorithms which predict

close CPU and I/O costs. The SM algorithm was simple to implement and performs well

in many scenarios. SM is the only non-partitioning algorithm that is designed to only spill

one dataset. The FS and TS algorithms may spill both datasets depending on the input

data. Note these non-partitioning algorithms share the same spill process for freeing a
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dataset from memory. The FS and TS implementation uses an updated memory manager

in AsterixDB that can process two datasets in memory by adding/removing tuples from

both. The TS algorithm’s approach of keeping active tuples in memory made it the top

performer in many of the experiments due to the reduced number of CPU comparisons.

The partitioning algorithms’ approach for determining matching tuples involves

pre-partitioning each dataset which requires some amount of I/O during processing each

query. A disadvantage of the DIP algorithm it that it may create large number files so as to

manage all the algorithm’s partitions. This may require adjusting the number of open files

that a system can handle if one decides to implement this algorithm. As the join memory

decreases, the DIP algorithm is the first to show performance degradation due to early

spilling. The DIP cost model confirms that the algorithm uses significantly higher I/O for

similar join queries when compared to the non-partitioning algorithms. As for the other

partitioning approach, OIP, we found that its performance is connected to selecting a good

number of slots (k value). The formula to calculate k depends on the algorithm’s input

settings based on the given CPU speed and disk I/O speed.

In an effort to summarize the behavior of each algorithm, we compiled all the

experiments from Section 3.4 into Figure 5.1 and (its detailed version) Figure 5.2. All 63

experiments have been compiled into these figures. The x-axis represents the experiments,

numbered from 1 to 63, following the same order as they appear in Section 3.4. That is,

the first experiment comes from Figure 3.18 from the “Count Only” query, followed by the

second experiment which corresponds to the “Empty Result” from the same figure, and

so on. Each of the five algorithms is represented by a different dot. The position of a
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Figure 5.1: The overlapping join experiments where each algorithm’s performance is de-
picted as a ratio to the performance of the fastest algorithm for that query.

Figure 5.2: The overlapping join experiments of Figure 5.1 focusing on ratios between 1
and 1.5.

particular dot (algorithm) on the y-axis represents this algorithm’s performance as a ratio

to the fastest query time in that performance. Here the dot with value 1 corresponds to
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the algorithm with the fastest performance; an a dot with value 1.25 corresponds to an

algorithm that was 25% slower than the fastest for that experiment.

Figure 5.1 shows that the DIP and OIP algorithms were much slower in several

experiments (in many cases between 5 and 45 times slower). To better visualize the per-

formance of the best performing algorithms, Figure 5.2 zooms on the algorithms that were

up to at most 1.5 slower than the fastest algorithm in the particular experiment (i.e., up to

50% slower).

Overall, the TS algorithm was the fastest in 43 of the experiments, followed by OIP

which was the fastest in 17 and SM in 3. Based on its robust performance the TS algorithm

would be a top choice for implementing a interval join algorithm. Even when it is not the

best performing algorithm, its performance was consistently at most 10% worse than the

best algorithm (except in one experiment where it was 20% worse). The performance of

SM was no worse than 26% slower from TS and the performance of FS was no worse than

35% slower than TS. SM is an easy algorithm to implement and it may take advantage of

an existing interval order. The second top performer was OIP in several of the experiments.

Yet as the record size increased, the algorithm’s performance was noticeably slower than

the non-partitioning algorithms due to spilling. In 11 experiments the OIP was more than

two times slower than the fastest algorithm.

Another important performance characteristic is that when spilling occurs, all

algorithms slow down significantly (when compared with the non-spilling case performance)

as their speed is now dependent on I/O. Figure 5.3 shows the last seven of the experiments

(experiment 57 to 63 from the previous Figure) where all algorithms spill. Experiment 57
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corresponds to the case with record of size 2,222 bytes from Figure 3.31; all experiments

after that have large record size so all algorithms spill. In particular, when the DIP spills, it

has a significantly higher I/O than the rest. Among the rest, the performance is within 25%

of the best algorithm (except for one case where OIP is 38% worse). This can be observed in

the detailed Figure 5.4 that shows the same experiments in the performance ratio between

1 and 1.5. As a result, the first choice for an optimizer is to select an algorithm that avoids

spilling (see Section 3.31). If there are many candidate algorithms that do not spill, the

optimizer can use the CPU-based cost model to choose the best non-spilling algorithm.

Figure 5.3: The spill overlapping join experiments where each algorithm’s performance is
depicted as a ratio to the performance of the fastest algorithm for that query.
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Figure 5.4: The spill overlapping join experiments of Figure 5.3 focusing on ratios between
1 and 1.5.
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Chapter 6

Scaling Joins Involving Allen’s

Interval Algebra

6.1 Introduction

Most previous work on interval joins have focused on the overlapping relationship

(i.e. if two intervals share a common part), since it is very generic. Nevertheless, Allen’s

algebra defines thirteen interval relationships [2] that describe all possible ways one interval

can relate to another, using the start and end points of the two intervals. The formula

that describes overlapping is shown in Table 6.1 while the formulas describing Allen’s rela-

tionships are shown in Table 6.2, respectively. Note that we use the AsterixDB join terms.

That is “ends,” corresponds to Allen’s “finishes”; “ended-by” corresponds to “finished-by”;

“covers” replaces “during”; and “covered-by” is used in place of “contains”.
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Interval Join Formula

overlapping(tR,tS)
(tR.start <= tS .start&& tR.end > tS .start)

|| (tR.end >= tS .end&& tR.start > tS .end)

Table 6.1: Overlapping interval formula.

Interval Join Formula

before(tR,tS), after(tS ,tR) tR.end < tS .start

ends(tR,tS), ended-by(tS ,tR) tR.end = tS .end&& tR.start >= tS .start

equals(tR,tS) tR.start = tS .start&& tR.end = tS .end

meets(tR,tS), met-by(tS ,tR) tR.end = tS .start

starts(tR,tS), started-by(tS ,tR) tR.start = tS .start&& tR.end <= tS .end

covers(tR,tS), covered-by(tS ,tR) tR.start <= tS .start&& tR.end >= tS .end

overlaps(tR,tS), tR.start < tS .start&& tR.end < tS .end

overlapped-by(tS ,tR) && tR.end > tS .start

Table 6.2: Formulas for Allen’s interval algebra (using AsterixDB join terms).
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While each of the formula’s in Table 6.2 detail a join condition for an interval join,

these conditions do not always require a special interval join operator. For example, the

first two relationships, before and after, can each be addressed as a traditional relational

inequality join, which can be optimized by appropriate partitioning (based on the start or

end of the relation intervals). [20] actually creates a new partitioning strategy just for this

type of join to reduce the long running time of processing the last partition. While these

joins may be time consuming, their unique features are not specifically related to intervals.

The next seven relationships (ends, ended-by, equals, meets, met-by, starts and

started-by) include at least one condition with an equality. Thus, they can all be addressed

by existing (and very efficient) equi-join algorithms (with a post filter for applying any

other join condition). For example, the starts interval join could use hash partitioning on

the tR.start = tS .start condition and then later filter the join results for the inequality part

of the condition (tR.end <= tS .end). The hash partitioning would ensure intervals with the

same start time instance are grouped in the same partition (using the time points from the

equal condition). Using the hash partition operator would mean the dataset does not need

to be sorted.

The remaining relationships, covers, covered-by, overlaps and overlapped-by search

for shared parts between the two intervals and are thus closer to the overlapping relationship

we have examined. In this chapter we look at the five overlapping interval algorithms

(previously discussed in Chapter 3) and show how they can be modified to support each

of these four Allen’s join conditions. Note that an algorithm that can solve the covers join

condition can be used (through simple rewriting) to also solve the covered-by join condition.
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Similarly, for the overlaps and overlapped-by join conditions. This is comparable to how

current systems implement left-outer-join by the same algorithm used for the right-outer-

join, by changing the order of the relations. As a result, in Section 6.2 we concentrate on

the covers and overlaps join conditions. In particular, we first detail how the SM algorithm

can be modified to answer covers and overlaps and then highlight the changes needed for

the other interval join algorithms to address them. Section 6.3 presents performance results

for covers and overlaps joins using the modified SM algorithm, following a similar set of

experiments as in Chapter 3. Finally, the Section 6.4 concludes this chapter.

6.2 Covers and Overlaps Interval Join Algorithms

Covers and Overlaps interval joins deal with joining intervals over a range of values

similar to an overlapping interval join. An overlapping interval join includes all the results

for overlaps, overlapped-by, covers, and covered-by. A simple implementation would be to

execute an overlapping interval join and then filter for the alternate interval join predicate

for Allen’s relation: overlaps or covers. While using the overlapping interval join algorithms

would get the correct answer, many extra interval comparisons would be made for pairs that

are not part of the result. In addition, these intervals would take up space in memory, thus

decreasing the efficiency and increasing the chance of spilling during the join. Since the

Allen’s intervals all have tighter requirements, the algorithms may be able to use memory

more efficiently and reduce unnecessary join comparisons.

The query plan must choose an efficient global partitioning strategy for Allen’s rela-

tions. Fortunately [20] has provided a global partitioning strategy for Allen’s relations shown
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Interval Join Inverse Global Partitioning Schemes

Before(tR, tS) After(tS , tR) Replicate(tR) & Project(tS)

Ends(tR, tS) EndedBy(tS , tR) Project(tR) & Project(tS)

Equals(tR, tS) Project(tR) & Project(tS)

Meets(tR, tS) MetBy(tS , tR) Project(tR) & Project(tS)

Starts(tR, tS) StartedBy(tS , tR) Project(tR) & Project(tS)

Covers(tR, tS) CoveredBy(tS , tR) Split(tR) & Project(tS)

Overlaps(tR, tS) OverlappedBy(tS , tR) Split(tR) & Project(tS)

Table 6.3: Global join partitioning strategies for Allen’s interval algebra joins for datasets
R and S (taken from [20]).

in Table 6.3. While the overlapping interval join (from section 3.2) required both datasets

to be globally Split partitioned (that is, Split(tR) & Split(tS)), overlaps, overlapped-by, cov-

ers, and covered-by all use Split partitioning for each tuple tR from relation R and Project

partitioning for each tuple tS from relation S (i.e., Split(tR) & Project(tS)). Project par-

titioning corresponds to range partitioning from Section 2.4, using the interval’s start point

as the partitioning key. In comparison with the Split partitioning, no intervals are repli-

cated in the Project partitioning scheme, thus there is less network communication and

fewer intervals in each partition.

Using these interval global partitioning schemes, the interval join algorithms focus

on managing memory by keeping only interval tuples which can possibly match with other

intervals. An algorithm’s conditions for adding and removing the intervals from memory

may need to be updated for these new interval relationships. The new condition for man-
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a)stop stream b)keep in memory c)drop from memory

Figure 6.1: Overlapping intervals: a) stop processing stream, b) keep in memory for future
stream tuples, and c) may remove from memory since no future stream tuples will be joined.

aging memory should minimize the unnecessary interval join checks for the updated query

predicates. The next section will take a deep look at modifying the Sort-Merge Interval

Join and then a brief look at how to apply similar techniques to the other interval join

algorithms.

6.2.1 Base Case: Sort-Merge Interval Join

Recall that in the Sort-Merge Interval Join (SM) algorithm, tR tuple is selected

from the Dataset R and then joined with all possible tuples from Dataset S. Since the

input source is a stream of data, tuples from S must be stored in memory so that future

tuples from R may be joined. Three scenarios are important to consider for managing these

two input streams and the available join memory. First, the time instance when the tuple

tR will no longer match with any future tuple from S. This condition identifies when the

join can move on to the next tuple t′R in the stream of R. The next two conditions focus

on managing when a tuple from S is added or removed from memory. When a tuple tS is

processed from the stream, the second condition checks to see if the tuple needs to be kept

in memory for future matches. The final condition identifies when an in-memory interval

tS will no longer match with any future tuples from the stream of R.
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The three conditions are highlighted in the following Figures 6.1 - 6.5. In all figures,

the bold black line above the dotted line represents the active stream interval tR. The lines

below the dotted line represent the stream of tuples from Dataset S. The stream data is

ordered by start point followed by end point for each tuple. The vertical line represents the

condition in the three Figures.

First, the overlapping condition is shown in Figure 6.1. In particular, the vertical

line in Figure 6.1a shows when intervals from Dataset S no longer match with the selected

interval from Dataset R. The black lines under the dotted line show which tuples start after

the vertical line and are not overlapping the selected interval from Dataset R. Figure 6.1b

shows all the tuples from S that could match with future tuple from the stream of Dataset

R. Future tuples will always start at the same time or later than the selected tuple. Figure

6.1c shows all the tuples that could be removed from memory since any future tuple from

the stream of Dataset R will not be overlapping.

Figures 6.2, 6.3, 6.4, and 6.5 demonstrate the same three conditions for the rest

of the joins (including, for reference, overlapped-by and covered-by). Sub-figure (a) does

not change for the five interval joins. The primary difference comes for sub-figures (b) and

(c). For example, Figure 6.2b and 6.4b do not include intervals from S that start before

tR. Figure 6.2c and 6.4c do include intervals from S that start before tR (instead of strictly

end before tR as in overlapping). This means fewer tuples need to be stored in memory for

overlaps and covers. Figures 6.3 and 6.5 show the same properties but with Dataset R and

S switched.
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a)stop stream b)keep in memory c)drop from memory

Figure 6.2: Overlaps intervals: a) stop processing stream, b) keep in memory for future
stream tuples, and c) may remove from memory since no future stream tuples will be
joined.

a)stop stream b)keep in memory c)drop from memory

Figure 6.3: Overlapped By intervals: a) stop processing stream, b) keep in memory for
future stream tuples, and c) may remove from memory since no future stream tuples will
be joined.

a)stop stream b)keep in memory c)drop from memory

Figure 6.4: Covers intervals: a) stop processing stream, b) keep in memory for future stream
tuples, and c) may remove from memory since no future stream tuples will be joined.

a)stop stream b)keep in memory c)drop from memory

Figure 6.5: Covered By intervals: a) stop processing stream, b) keep in memory for future
stream tuples, and c) may remove from memory since no future stream tuples will be joined.
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Interval Join More Matches Add To Memory Drop From Memory

Overlapping tR.end > tS .start tR.start < tS .end tR.start >= tS .end

Overlaps tR.end > tS .start tR.start <= tS .start tR.start > tS .start

Overlapped-By tR.start <= tS .start tR.start <= tS .end tR.start > tS .end

Covers tR.end > tS .start tR.start <= tS .start tR.start > tS .start

Covered-By tR.start <= tS .start tR.start <= tS .end tR.start > tS .end

Table 6.4: Conditions for managing join memory of R and S.

Figures 6.1 - 6.5 help us identify the changes in the SM algorithm memory man-

agement (during the local join); these changes are depicted in Table 6.4. Interestingly, the

conditions for the four Allen’s relations are similar (if not the same) to the conditions for

overlapping (also shown in the Table). The differences are based on the tighter requirements

that Allen’s interval algebra has with the interval join definition.

6.2.2 Modifying the Other Join Algorithms

The Time-Sweep Interval Join keeps all active tuples at a single point in time

in memory. Since this is unrelated to the join predicate implemented, no changes are

made to the algorithm except for which join predicate to check. However the algorithm’s

memory management can be improved by only storing one dataset in memory instead of

two. Consider the covers(tR, tS) join condition; this condition is not symmetric. That is,

if a tuple tR covers a tuple tS the opposite may not be true. This is in contrast to the

overlapping relation, where if a tuple tR is overlapping tuple tS , then tS is overlapping
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with tR as well, and thus the algorithm benefits from storing tuples from both relations in

memory. As a result, the TS algorithm needs only to load tuples from R in memory and

stream tuples from S. By keeping tuples from only one relation in memory decreases the

chances that the algorithm will spill. The same applies also to the overlaps condition.

The Forward-Scan Interval Join selects the next time ordered tuple from either

dataset and loads possible future matching tuples into memory. Similar to the TS algorithm,

the join will produce results for all Allen’s relations by only changing the join predicate.

Moreover, the FS algorithm also only needs to store one dataset in memory instead of two

for the same reason as TS.

The partitioning join algorithms require a different approach due to their alternate

memory strategy. The Overlapping Interval Partition Join works by picking appropriate

partitions to join. The join process itself does not need to change, just which partitions are

chosen to be joined (which is implied by the Allen’s relation considered).

The Disjoint Interval Partition Join creates partitions where the tuples in each

partition do not overlap with tuples in that partition. As a result, it does not require any

changes except for which predicate to implement. This implies that for DIP, the number of

comparisons and disk accesses will be the same for all four Allen’s relations.

6.3 Performance

We have conducted a set of performance experiments to look at how the updated

SM algorithm performs in a real database system, AsterixDB, using the same cluster hard-

ware and configuration. Three sets of experiments review different aspects of measuring
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the algorithm’s performance: speed-up (when sufficient memory is available), scale-up (in-

creasing data size and available resources), and scale-up with spilling (when limited memory

requires the use of disk space). The following performance figures depict the join predicate

covers and overlaps, (as well as overlapping for comparison purposes) for each test.

Note that a self-join using covers as the interval join predicate, will not produce

any results since all intervals are of the same length. Thus dataset R has been updated so

that each interval has a duration twice the length of an interval in Dataset S. The rest of

the data properties have been left the same. The specific interval data is detailed for each

experiment below. Again queries report the average query time for the top 100 results.

6.3.1 Speed-Up Non-Spilling Experiments

We start with testing on a single node, followed by multi-node experiments.

Single Node Speed-Up. Figure 6.6 shows the modified SM algorithm on two synthetic

datasets each with 10,000 records evenly distributed over a time range of 1,000 units (λ =

10). The tuples in Dataset R have a fixed interval duration of dR = 20, while the tuples

in Dataset S have a smaller duration of dS = 10. The size of a tuple from each relation

is 74 bytes. As before, the local node has four cores. In this experiment we start with

one thread and one partition, and continue to double the threads and partitions. Because

of hyper-threading, we can go up to 8 threads (and 8 partitions). All queries show good

speed-up (except for when using hyper-threading which is expected since the node has only

four cores). Note that overlapping takes consistently more time than covers and overlaps,

due to the larger join result.
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Figure 6.6: Single node speed-up performance of the modified SM algorithm on synthetic
data (λR = 10, λS = 10, dR = 20 and dS = 10).

In Figure 6.7, the cardinality in both datasets has been increased ten times, while

the time range and other properties have not been changed. As a result, there are ten times

more tuples in relation R, and each such tuple will match with S tuples that are ten times

more. This results to 100 times more comparisons; as it can be seen in the figure the query

time has increased similarly, when compared to the query time in Figure 6.6. Again, the

modified SM algorithm shows good speed-up in all queries.

In Figure 6.8, the duration for both datasets has been increased ten times (that

is, dR = 200 and dS = 100). As a result, each tuple in R will now match with ten times as

many S tuples. Since the number of tuples has not changed (when compared with Figure

6.6) the number of comparisons increases by ten times. The modified SM algorithm shows

again good speed up for all three queries.

Figure 6.9 examines the effect of large records on the modified SM algorithm’s

performance. The same interval relations as in Figure 6.6 are used but here the record size
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Figure 6.7: Single node speed-up performance of the modified SM algorithm on synthetic
data (λR = 100, λS = 100, dR = 20 and dS = 10).

Figure 6.8: Single node speed-up performance of the modified SM algorithm on synthetic
data (λR = 10, λS = 10, dR = 200 and dS = 100).
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Figure 6.9: Single node speed-up performance of the modified SM algorithm on synthetic
data with large records (2296 bytes) (λR = 10, λS = 10, dR = 20 and dS = 10).

in both relations has increased to 2296 bytes. The key difference is that the amount of data

that is pushed through the join operator has increased thus resulting in higher query times

as compared to Figure 6.6. The modified SM algorithm continues to show good speed-up

for all three interval joins.

Finally, we experimented with a TPC-H generated dataset. (Note that the Infec-

tious real dataset we considered in Section 3.4 will not produce results for the covers query

since all its intervals have the same 20sec length). As before, the TPC-H generated data

has durations of varying length (from 1 to 30). The query performance is shown in Figure

6.10; the modified SM algorithm has again good speed-up performance.

Multi-Node Speed-Up. The local speed-up tests show that we can benefit from adding

partitions and threads up to the number of cores (4) on the system. The next set of speed-

up experiments focuses on adding nodes to the cluster (“scaling out”) while the number of

partitions per node has been fixed to four.
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Figure 6.10: Speed-up performance of the modified SM algorithm for a TPC-H generated
dataset.

Figure 6.11 shows the first cluster speed-up experiment. The synthetic datasets R

and S have 100,000 records, and time range of 10,000 instances, with λR = 10, λS = 10) and

duration dR = 20 and dS = 10. The query execution times improve as the number of cluster

nodes is increased from 1 to 8. However, the performance gain is slightly less than when

adding threads in a single node because the network traffic from global partitioning starts

to impact performance while increasing the cluster’s aggregate processing power. Figures

6.12, 6.13, and 6.14 show cluster speed-up results while changing cardinality, duration and

record size respectively. Again, the modified SM algorithm shows good speed-up for all

three queries in the cluster environment.

6.3.2 Scale-Up Non-Spilling Experiments

Scale-up experiments demonstrate how the system handles large data by keeping

the data size the same per partition as the number of partitions is increased. We first run
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Figure 6.11: Speed-up performance of the modified SM algorithm on a cluster with synthetic
data (λR = 10, λS = 10, dR = 20 and dS = 10).

Figure 6.12: Speed-up performance of the modified SM algorithm on a cluster with synthetic
data (λR = 100, λS = 100, dR = 20 and dS = 10).

scale-up experiments on a single node. In the non-spilling scale-up case, we are interested

in how the CPU is scaling by adding threads as more fixed-size partitions are assigned.

We also run scale-up experiments for multiple nodes with a fixed number of partitions per
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Figure 6.13: Speed-up performance of the modified SM algorithm on a cluster with synthetic
data (λR = 10, λS = 10, dR = 200 and dS = 100).

Figure 6.14: Speed-up performance of the modified SM algorithm on a cluster with synthetic
data using large records (2296 bytes) (λR = 10, λS = 10, dR = 20 and dS = 10).

node. A single partition in the R and S datasets has 10,000 records, a time range of 1,000,

a density of λR = 10 and λS = 10, and duration of dR = 20 and dS = 10. Figure 6.15

shows how the modified SM algorithm scales up on a single node (with 4 cores) using one to
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Figure 6.15: Single node scale-up while increasing the number of equal sized partitions (1,
2, 4 and 8).

eight partitions. As it can be seen in the Figure, the modified SM algorithm exhibits good

scaling performance up to four partitions, since the node has four dedicated cores and uses

hyperthreading for the case of eight partitions. As the query workload doubles from four

to eight partitions while the number of cores stays constant at four, the query time doubles

from four to eight partitions.

Figure 6.16 shows the multi-node scale-up experiment using one node (four parti-

tions), two nodes (eight partitions), four nodes (16 partitions), and eight nodes (32 parti-

tions). The queries on two or more nodes include network data transfer between nodes to

arrange the data for local join processing. This additional network traffic increases the query

time. However, overall the modified SM algorithm exhibits good scale-up performance in a

cluster, non-spilling environment.
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Figure 6.16: Cluster scale-up for 1, 2, 4, and 8 nodes; each node holds four equal sized
partitions.

6.3.3 Scale-Up Spilling Experiments

The scale-up spilling experiments examine how the modified SM algorithm per-

forms with limited memory. Since we are interested in the I/O performance, the available

memory for the join processing is limited to 2MB. Further, the cluster configuration has

been updated to map one partition to a single disk. Each partition of dataset R and S

has 100,000 records, a time range of 10,000, a density of λR = 10 and λS = 10, a duration

of dR = 200 and dS = 100, and a record size of 2,222 bytes. As partitions are added, the

cumulative time range is increased accordingly.

For the local scale-up experiments, we only show results for one and two partitions

since a node is limited to only two physical disks. The results of the single node scale-up

experiments are shown in Figure 6.17. The modified SM algorithm shows good local scale-up

spilling behavior for all three interval join conditions.
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Figure 6.17: Scale-up from 1 to 2 partitions on a single node with large records and spilling.

Figure 6.18 shows the multi-node scale-up experiment which allocated one parti-

tion per node, as follows: one node (one partition), two nodes (two partitions), four nodes

(four partitions), and eight nodes (eight partitions). Again, the modified SM algorithm

shows good scale-up from one node to eight nodes.

6.4 Conclusions

In this chapter, we showed how to implement four Allen’s relations, namely: covers,

covered-by, overlaps and overlapped-by by modifying the sort-merge interval join algorithm.

The algorithm modifications focus on the edge cases that arise from using Allen’s interval

algebra for the join condition. The experimental evaluation demonstrated that the modified

SM algorithm exhibits good speed-up and scale-up performance for the above four Allen’s

interval joins. We further summarized changes that can be applied to the other interval

join algorithms (FS, TS, OIP and DIP) so as to support the four Allen’s relations.
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Figure 6.18: Scale-up from 1, 2, 4, and 8 nodes where each nodes holds on partition with
large records and spilling.
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Chapter 7

A Scalable Parallel XQuery

Processor

7.1 Introduction

There are various native open-source XQuery processors (Saxon [35], Galax [28],

etc.), they have been optimized for single-node processing and do not support scaling to

many nodes. To create a scalable XQuery processor, one could 1) add scalability to an

existing XQuery processor, 2) start from scratch, or 3) extend an existing scalable query

framework to support XQuery. Unfortunately, existing XQuery processors would require

extensive rewriting of their core architecture features to add parallelism. Similarly, building

an XQuery processor from scratch would involve the same complex scalable programming

(some unrelated to the XML data model). The last option, extending an existing scalable
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framework to support XQuery, seems advantageous since it combines the benefits of proven

parallel technology with a shorter time to implementation.

Among the several scalable frameworks available, one could use a relational parallel

database engine and take advantage of its mature optimization techniques. However, using

a framework entails the overhead of translating the data/queries to the relational model and

back to XML; moreover, long XML path queries may result in many joins. Another approach

is to build an XQuery processor on top of the MapReduce [22] framework. Examples include

ChuQL [37], which is a MapReduce extension to XQuery built on top of Hadoop [15], and

HadoopXML [21], which combines many XPath queries into a few Hadoop MapReduce

jobs. Similarly, Apache MRQL [27] translates XPath queries into an SQL-like language

implemented through MapReduce operators. However, these Hadoop-based approaches are

limited in that they can only use the few MapReduce operators available (i.e., map, reduce,

and combine).

Recently, frameworks have been proposed that generalize the MapReduce execu-

tion model by supporting a larger set of operators to create parallel jobs (including Hyracks

[12], Spark [49], and Stratosphere [1]). Such ”dataflow” systems [9] typically include flexi-

ble data models supporting a wide range of data formats (relational, semi-structured, text,

JSON, XML, etc.) which makes them easy to extend. In this chapter, we utilize Hyracks

as our parallel framework and use Algebricks [13], a language agnostic compiler toolbox, to

implement XQuery.

Our implementation is available as open source at the ASF [8]. We have performed

an experimental evaluation using a large (500GB) real dataset (an NOAA weather dataset
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from [41]) and various selection, aggregation, and join XML queries that show the efficiency

of our XQuery processor, both in terms of speed up and scale up.

The rest of this chapter is organized as follows: Section 7.2 reviews current ap-

proaches for querying large XML data repositories while Section 7.3 covers the Apache

VXQuery software stack that builds upon the Hyracks and Algebricks framework and how

the data model, parser, and runtime were extended for XQuery support. Given the specifics

of XQuery, we had to extend existing Algebricks rewrite rules and introduce new ones; this

discussion appears in Section 7.4. Finally, Section 7.5 presents the results of our experi-

ments on Apache VXQuery’s performance as well as a comparison with two open-source

XML processors: the single-threaded SaxonHE and the parallel Apache MRQL.

7.2 Related Work

Hadoop [6] provides a framework for distributed processing based on the MapRe-

duce model. The MapReduce model leaves a significant implementation burden on the

application programmer. As a result, a number of languages have been proposed on top of

Hadoop (e.g., Hive [46], PigLatin [42], and Jaql [10]); however, popular high-level MapRe-

duce languages do not support the XML data model. Recent approaches to close this gap

include ChuQL, Apache MRQL, HadoopXML, and Oracle XQuery for Hadoop.

ChuQL [37] extends XQuery to include MapReduce support for processing native

XML on Hadoop. In ChuQL, a MapReduce expression is included as an XQuery function,

allowing the query writer to specify the MapReduce job definition in XQuery. In contrast,
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VXQuery hides all parallel processing details from the query writer while still using standard

XQuery constructs.

Apache MRQL (MapReduce Query Language) [26, 27] is an SQL-like language

designed to run big data analysis tasks. The language supports parsing XML data from

Hadoop through a source expression defining the XML parser, XML file, and XML tags.

The XML parser processes the XML file and returns all elements matching these tags;

Apache MRQL then translates these elements into the Apache MRQL data model. Each

query is translated to an algebra expression for the Apache MRQL cost-based optimizer,

which builds upon known relational query and MapReduce optimization techniques. The

algebra uses a small number of physical operators to create a more efficient MapReduce job

than directly writing it using the MapReduce operators.

HadoopXML [21] processes a single large XML file with a predetermined set of

queries (each currently in a subset of XPath). The engine identifies the query commonalities

(paths that are common) and executes those once; it then shares the common results and

augments them with the non-common parts per query. This processing is performed using

MapReduce jobs. When a query is executed, the query optimizer determines the optimum

number of jobs to execute the requested query.

Recently, Oracle released Oracle XQuery for Hadoop (OXH) [47], which runs

XQuery data transformations by translating them into a series of MapReduce jobs.

In summary, the above approaches share the MapReduce framework and are thus

limited to using only the available MapReduce operators. Apache VXQuery differs in that

it is built on top of a more general scalable framework (Hyracks) and can match XQuery
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computational tasks to Hyracks’ richer existing operators (e.g., join); this matching, in turn,

provides better performance. As will be seen in our experimental section, our rewrite rules,

together with Hyracks’ efficiency, provides over twice the performance of approaches that

perform XML processing on top of MapReduce.

PAXQuery [18] implements XQuery top of Stratosphere [1] (a dataflow system

that is similar to Hyracks). The system translates XQuery queries into an internal XQuery

algebra and then into Parallelization Contracts (PACTs) while Apache VXQuery translates

the query into a language agnostic algebra (Algebricks) and then into a Hyracks job for

execution. PAXQuery builds on previous unnesting optimizations for tuple-based XQuery

algebras [11, 23, 40, 45]. Since Apache VXQuery also uses a tuple-based algebra, the same

optimization techniques can be applied to the Algebricks query plans. PAXQuery was not

available for comparison as of the writing of this chapter. Similarly, the Apache MRQL

group is currently working on supporting Apache MRQL on top of Apache Flink [5] (which

evolved from the Stratosphere project), but at the time of this writing that implementation

was still under development.

7.3 Apache VXQuery’s Stack

Apache VXQuery’s software stack can be represented in three layers, as shown

in Figure 7.1. The top layer, Apache VXQuery, forms an Algebricks logical plan based

on parsing a supplied XQuery. The initial Algebricks logical plan is then optimized and

translated into an Algebricks physical plan that maps directly to a Hyracks job. The
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Algebricks Algebra Layer

Hyracks Data-Parallel Platform

Apache VXQuery

XQuery

AsterixDB

AQL

Hyracks 
Job

Figure 7.1: The layers of the Apache VXQuery stack.

Hyracks platform executes the job and returns the results. Figure 7.1 also shows AsterixDB

[3], another system that uses the Hyracks and Algebricks infrastructure.

Apache VXQuery utilizes additional Algebricks logical operators covered in this

chapter. The field names in the query plans are represented by $$ followed by a number in

remaining text. The following Algebricks logical operators are commonly used in VXQuery:

The ASSIGN operator executes a scalar expression on a tuple and adds the result

as a new field in the tuple.

The AGGREGATE operator executes an aggregate expression to create a result

tuple from a stream of input tuples. The result is held until all tuples are processed and

then returned in a single tuple.

The UNNEST operator executes an unnesting expression for each tuple, creating

a stream of single item tuples.

The SUBPLAN operator executes a nested plan for each tuple input.
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The NESTED-TUPLE-SOURCE operator is used as the initial operator in nested

plans. The operator links the nested plans with the input to the operator (such as a

SUBPLAN) defining the nested plan.

The Algebricks operators are each parameterized with custom expressions. The

expressions map directly to specific language functions or support runtime features. Each

expression is an instance of one the following expression types: scalar, aggregate, and

unnesting. Most operators use a scalar expression while the AGGREGATE and UNNEST

operators have their own expression types. The three expression types differ in their input

and output cardinalities. Scalar expressions operate on a single value and return a single

value. Aggregate expressions consume many values to create a single result. Unnesting

expressions consume a single (usually structured) value to create many new values. Corre-

spondingly, the AGGREGATE and UNNEST operators change the cardinality of the tuple

stream.

Apache VXQuery extends the language agnostic layer provided by Algebricks to

create a scalable XQuery processor. Apache VXQuery provides a binary representation of

the XQuery Data Model (XDM) (an example can be found at the Apache VXQuery website

[8]), an XQuery parser, an XQuery optimizer, and the data model dependent expressions.

VXQuery can process data that is supplied in non-fragmented XML documents partitioned

evenly throughout a cluster. A SAX-based XML parser translates the XML documents at

runtime into XDM instances. Hyracks base types were extended to build untyped XDM

instances for the XQuery node types and the XQuery atomic types. (All XQuery types

used are listed in Table 7.1.)
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Hyracks Base boolean, byte, short, integer, long,

double, float, UTF8 string

XQuery Atomic binary, decimal, date, datetime, time,

duration, QName

XQuery Node attribute, comment, document, element,

processing instruction, text

Table 7.1: Apache VXQuery builds on the Hyracks Base types to create the XQuery Atomic
and Node data types.

Query evaluation proceeds through the usual steps. The query is parsed into

an abstract syntax tree (AST) and is then analyzed, normalized, and translated into a

logical plan. The logical plan consists of Algebricks data model independent operators

parameterized with Apache VXQuery data model dependent expressions. The logical plan is

then optimized using both generic rewrite rules provided by Algebricks and XQuery specific

rewrite rules provided by Apache VXQuery (discussed in Section 7.4). After rewriting the

logical plan, it is translated into a physical plan and optimized further (physical optimization

includes such things as the selection of join methods or the distribution of the plan). Finally

the physical plan is translated into a Hyracks job that is executed. Similar to Algebricks

operators that have physical representations based on Hyracks operators, Apache VXQuery

provides executable functions that implement Apache VXQuery’s data model dependent

expressions.
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VXQuery	  CLI	  XQuery	   Cluster	  Controller	  

Data	  Nodes	  

Figure 7.2: The VXQuery cluster configuration.

Special attention is required regarding how the XDM defines a set of items as a

sequence. In Apache VXQuery, an XDM sequence can have two forms: a sequence item

or a tuple stream. A sequence item holds all the values in a single tuple field; a tuple

stream represents the sequence using a field with the same name in multiple tuples. To

switch between these representations, we provide the iterate and the create_sequence ex-

pressions. The iterate unnesting expression works with Algebricks’ UNNEST operator to

convert a tuple field that holds a sequence item into a stream of individual tuples. The

create_sequence aggregate expression executes within Algebricks’ AGGREGATE operator

to consume a tuple stream and create a sequence item for inclusion in a single output tuple.

The two expressions are used during the logical rewrite process to switch between formats

to enable further optimization rules to be applied to the query plan.

At runtime, the Apache VXQuery cluster processes a query using the Apache

VXQuery Client Library Interface (CLI), a Hyracks Cluster Controller, and some Hyracks

Data Nodes (as shown in Figure 7.2). The process starts with a user submitting an XQuery
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statement to the Apache VXQuery CLI for parallel execution. The CLI parses and optimizes

the query and submits the generated Hyracks job to the cluster controller, which manages

and distributes tasks to each of the data nodes for evaluation. Each data node contains

XML files, an XML parser, and the XQuery runtime expressions used to evaluate the node’s

tasks. Finally, the cluster controller collects the data nodes’ results and sends the result

back to the Apache VXQuery CLI, which returns the result to the user.

7.4 Rewrite Rules

Algebricks provides generic rules for both Logical-to-Logical and Logical-to-Physical

plan optimizations. These rules include actions that consolidate, push down, and/or remove

operators based on the operators’ properties and the query plan. In addition, to build the

XQuery optimizer we needed to implement XQuery-specific rules; these rules fall into two

categories. The Path Expression Rewrite Rules attempt to remove subplans that are intro-

duced by the unnesting required to evaluate path expressions. The Parallel Rewrite Rules

transform the plan to enable parallel evaluation for specific XQuery constructs (aggregation,

join, and data access) using both pipelined and partitioned parallelism.

7.4.1 Path Expression Rewrite Rules

The normalization phase of query translation introduces explicit operations into

the query plan that ensure the correctness of the plan (for example, sorting to maintain

document order). However, some of these operations may not be required based on knowl-

edge of the structure of the plan and the implementation of operators and expressions. The
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following XML segment is based on the sample XML tree from the W3Schools tutorial [48]

for XQuery and will be used to outline the path expression rewrite rules.

<?xml version=” 1 .0 ” encoding=”ISO−8859−1”?>

<bookstore>

<book id=”1” category=”COOKING”>

< t i t l e lang=”en”>Everyday I t a l i a n</ t i t l e>

<author>Giada De L a u r e n t i i s</ author>

<year>2005</ year>

</book>

<book id=”2” category=”CHILDREN”>

< t i t l e lang=”en”>Harry Potter</ t i t l e>

<author>J K. Rowling</ author>

<year>2005</ year>

</book>

. . .

</ bookstore>

Consider the following simple query.

doc ( ”book . xml” ) / bookstore /book

The query reads data from the document book.xml located in the file system using

the XQuery doc function. Next, the first child path step expression (”/bookstore”) is applied

to the document node. Three stages are used when applying the child path step expression

to a tuple: each input node is iterated over, any matching child nodes are put into a single
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Figure 7.3: Example query dataflow DAG before applying rewrite rules.

sequence, and the sequence is then sorted in document order. The same path step process is

applied to each resulting ”bookstore” element node for the second child path step expression

(”/book”). Finally, each ”book” element node is then returned in the final query result.

VXQuery creates the initial plan shown below (after removing unused variables);

here the curly braces represent nested plans that are executed for each of the SUBPLAN’s

input tuples. Schematically this plan, which is read bottom-up, corresponds to the dataflow

DAG in Figure 7.3. The DAG is a single path of execution in this case. Each DAG

is initialized with an EMPTY-TUPLE-SOURCE operator and collects its results into a

DISTRIBUTE-RESULT operator.

DISTRIBUTE−RESULT( $$13 )

UNNEST( $$13 : i t e r a t e ($$12) )

ASSIGN( $$12 : s o r t −d i s t i n c t −nodes−asc−or−atomics ($$11) )

SUBPLAN {

AGGREGATE( $$11 : c reate_sequence ( c h i l d ( t r e a t ($$9 , element_node ) ,

”book” ) ) )
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UNNEST( $$9 : i t e r a t e ($$7) )

NESTED−TUPLE−SOURCE

}

ASSIGN( $$7 : s o r t −d i s t i n c t −nodes−asc−or−atomics ($$6) )

SUBPLAN {

AGGREGATE( $$6 : c reate_sequence ( c h i l d ( t r e a t ($$4 , element_node ) ,

” bookstore ” ) ) )

UNNEST( $$4 : i t e r a t e ($$2) )

NESTED−TUPLE−SOURCE

}

ASSIGN( $$2 :doc ( promote ( data ( ” books . xml” ) , s t r i n g ) )

EMPTY−TUPLE−SOURCE

The plan’s EMPTY-TUPLE-SOURCE operator creates the initial empty tuple.

The doc expression in the ASSIGN operator (line 15) returns a document node using the

string URI argument and adds a new field – $$2:document node – to the tuple. The promote

and data expressions ensure the doc URI argument will be a string. The SUBPLAN operator

(line 10) uses a nested plan to implement the first and second stages of the /bookstore path

step. The subplan’s nested plan ensures the correct dynamic context for the path step and

provides an ”inner focus” to evaluate the expression on each item in the sequence for the next

step (if any). The NESTED-TUPLE-SOURCE operator (line 13) connects the nested plan

to the SUBPLAN’s input dataflow. The input tuple is passed on to the UNNEST operator

(line 12) where each $$2:document item is iterated over and added as $$4:document. For the
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Figure 7.4: Dataflow segment for the last UNNEST operator.

root path step expression, there is only one item in the sequence. The inner focus is closed

with AGGREGATE (line 11) processing all SUBPLAN tuples using the create_sequence

(child(treat($$4, element_node), ”bookstore”)) expression. The expression ensures that

child expression’s argument is of type ”element_node” (treat), finds all ”bookstore” child

nodes (child), and creates a sequence of all the results (create_sequence). The resulting tuple

now holds two fields: $$2:document node and $$6:”bookstore” node. All the SUBPLAN

variables are discarded except the final operator’s result (in this case, AGGREGATE $$6).

The third stage of the path step is completed though the ASSIGN operator (line 9) with

sort−distinct−nodes−asc−or−atomics($$6). The expression creates a new field with nodes

that are in document order and duplicate free from $$6:”bookstore” node. Since there is

only one item, the ”bookstore” node is copied over to $$7.
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The next SUBPLAN (line 4) creates the inner focus for the /book path step

expression. Similar to the /bookstore path step, the nested plan iterates over the input

tuples and saves all child nodes {book:1, book:2, ...} to $$11. The ASSIGN (line 3) ensures

document order in the child ”book” node sequence by removing duplicates and sorting the

sequence. Finally, each item in $$12:{book:1, book:2, ...} is unnested by UNNEST (line 2)

to create a tuple stream for the DISTRIBUTE-RESULT operator (line 1). See Figure 7.4

for a graphic representation of the tuples before and after this UNNEST operator.

The initial query plan is inefficient and can be improved in several ways: we

can (i) remove the computationally expensive sort operators (as document order is not

changed by any of the other operators) and (ii) remove the SUBPLAN operators (since

each SUBPLAN corresponds to a simple step expression the inner focus is not required).

After these optimization rules, the plan can be cleaned further by (iii) enabling unnesting

(improves operator efficiency) and (iv) merging the path step unnesting operators (reduces

number of operators). Due to space constraints, a detailed explanation of these path step

expression rewrite rules can be found in our technical report [19].

After applying these rewrite rules recursively to the sample query plan, the re-

sulting plan only uses only a single UNNEST operator to represent the two child path step

expressions. The path expression rewrite rules create the following updated sample query

plan:

DISTRIBUTE−RESULT( $$13 )

UNNEST( $$13 : c h i l d ( c h i l d ($$2 , ” bookstore ” ) , ”book” ) )

ASSIGN( $$2 :doc ( ” books . xml” ) )
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EMPTY−TUPLE−SOURCE

7.4.2 Parallel Rewrite Rules

After applying the path expression rewrite rules, the plan is optimized for parallel

XQuery processing. Hyracks allows for both pipelined and partitioned parallelism. We thus

introduce rules to enable the use of Hyracks’ parallel execution features. To take advantage

of pipelining in Apache VXQuery, we create fine grained data items. For example, the

DATASCAN operator introduced next does not compute a whole collection at once, but

instead it computes chunks that can be fed to the remaining operators. As a side effect, the

needed buffer size (Hyracks’ frame) is reduced between the operators in the pipeline. To

introduce partitioned parallelism, we use partitioned data access for physically partitioned

data ,and we use partitioned parallel algorithms for join and aggregation.

Introduce the DATASCAN Operator

To query a collection of XML documents, XQuery defines a function called collec-

tion that maps a string to a sequence of nodes. Apache VXQuery interprets the string as a

directory location, reads in data from the files in the directory, and returns all nodes as a

single sequence value. Since the collection query considers many documents, it can produce

a large number of query results. Instead of gathering all nodes into a single sequence, we

would like to send one node at a time through the pipeline. To avoid this problem, we

combine the collection expression with an iterate expression (typically inserted because of

a path step or a for clause) to split the large document sequence into many single docu-
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ment tuples, thus reducing the size of the materialized result. Below is a sample collection

query similar to the previous single document query example, followed by the query plan

generated after the path expression rules have been applied.

c o l l e c t i o n ( ”/books ” ) / bookstore /book

DISTRIBUTE−RESULT( $$13 )

UNNEST( $$13 : c h i l d ( c h i l d ($$4 , ” bookstore ” ) , ”book” ) )

UNNEST( $$4 : i t e r a t e ($$2) )

ASSIGN( $$2 : c o l l e c t i o n ( promote ( data ( ”/books ” ) , s t r i n g ) ) )

EMPTY−TUPLE−SOURCE

The path expression rules have conveniently moved an UNNEST iterate above

the ASSIGN collection, creating a stream of XML document tuples. Algebricks offers a

DATASCAN operator to directly create a stream of tuples based on a data source. Since

collection already defines the data source, the DATASCAN operator can be used to replace

UNNEST iterate and ASSIGN collection. The updated query plan is:

DISTRIBUTE−RESULT( $$13 )

UNNEST( $$13 : c h i l d ( c h i l d ($$4 , ” bookstore ” ) , ”book” ) )

DATASCAN( c o l l e c t i o n ( ”/books ” ) , $$4 )

EMPTY−TUPLE−SOURCE

The finer grained tuples reduce the buffer size between operators during the query

execution. Note that the above rewrite rule allows Apache VXQuery to process any amount

of XML data provided that the largest XML document in the collection can fit in Hyracks’

frame size. This constraint can be further reduced to the largest subtree under the query
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path expression. This rule is possible when the UNNEST child expression is the consumer of

a DATASCAN operator. The child expression can be merged into the DATASCAN operator

to provide even smaller tuples. The query plan is updated to show that the DATASCAN op-

erator has a third argument specifying the child path expression; the updated DATASCAN

operator includes the path expression within the collection:

DISTRIBUTE−RESULT( $$4 )

DATASCAN( c o l l e c t i o n ( ”/books ” ) , $$4 , ”/ bookstore /book” )

EMPTY−TUPLE−SOURCE

In addition to the improved pipeline, the DATASCAN operator offers a way to

introduce partitioned parallelism simply by specifying Apache VXQuery’s partition details

to this operator. In Apache VXQuery, data is partitioned among the cluster nodes. Each

node has a unique set of XML documents stored under the same directory specified in

the collection expression. The Algebricks’ physical plan optimizer uses the details of these

partitioned data properties to distribute the query execution. For example, path ”/books”

defined in the collection expression is located on each node and represents a unique set of

XML documents for the query. These partition properties are added to the DATASCAN

operator although these properties is not shown in the query plan. Adding these proper-

ties allows Apache VXQuery to achieve partitioned parallel execution without any parallel

programming.

169



Replace Scalar with Aggregate Expressions

The XQuery aggregate expressions (avg, count, max, min, and sum) use a default

scalar implementation in a normalized query plan. This plan implies that the whole result

is first stored in a sequence which is then processed to produce the aggregate. Instead

of materializing the sequence, we can match the XQuery aggregate expression with an

Algebricks AGGREGATE operator. When the Algebricks AGGREGATE operator is used

with an XQuery aggregate expression, the result will be incremental aggregation instead of

materializing all records in the operator’s buffer. Consider a query that counts the number

of book elements in an XML collection and the query plan produced using the previous

rules:

count (

f o r $x in c o l l e c t i o n ( ”/books ” ) / bookstore /book

return $x

)

DISTRIBUTE−RESULT( $$17 )

UNNEST( $$17 : i t e r a t e ($$16) )

ASSIGN( $$16 : count ($$15) )

SUBPLAN {

AGGREGATE( $$15 : c reate_sequence ($$4) )

DATASCAN( c o l l e c t i o n ( ”/books ” ) , $$4 , ”/ bookstore /book” )

NESTED−TUPLE−SOURCE

}
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EMPTY−TUPLE−SOURCE

The XQuery aggregate expression count is within an ASSIGN operator (line 3).

The SUBPLAN finds the bookstore nodes and uses an AGGREGATE operator (line 5) to

store them in a sequence. However, there is no UNNEST directly above the SUBPLAN

(as shown in our technical report for the path expression rewrite rules) and thus the SUB-

PLAN cannot be removed. However, the scalar count expression applies its calculation on

the produced XQuery sequence to create $$16’s value. Instead, the aggregate count expres-

sion can replace the create_sequence within the Algebricks AGGREGATE operator, thus

performing aggregation incrementally instead of first generating a large XQuery sequence.

The updated query plan becomes:

DISTRIBUTE−RESULT( $$17 )

UNNEST( $$17 : i t e r a t e ($$16) )

SUBPLAN {

AGGREGATE( $$16 : count ($$4) )

DATASCAN( c o l l e c t i o n ( ”/books ” ) , $$4 , ”/ bookstore /book” )

NESTED−TUPLE−SOURCE

}

EMPTY−TUPLE−SOURCE

The new plan keeps the pipeline granularity and enables partitioned aggregation

processing. An additional Apache VXQuery rule annotates the AGGREGATE operator

with local and global aggregate expressions, enabling the use of Algebricks’ support for

two-step aggregation: each partition calculates its local aggregate result on its data and
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then transmits the result to a central partition for the global computation. As a result,

partitioning also reduces communication thus improving parallel processing efficiency.

Introduce the JOIN Operator

In XQuery, two distinct datasets can be connected (matched) through a nested for

loop. The normalized query plan follows the same nested loop, which can be very expensive;

we can do better by using a relational-style join. We note that Algebricks provides a JOIN

operator as well as a set of language independent rewrite rules to optimize generic query

plans. We can thus use these provided rewrite rules to translate the nested loop plan in to

a join plan. Consider a query that takes two bookstores (Ann and Joe) and finds books

with the same title, and its query plan below:

f o r $ r in c o l l e c t i o n ( ”/ann−books ” ) / bookstore /book

f o r $ s in c o l l e c t i o n ( ”/ joe−books ” ) / bookstore /book

where $ r / t i t l e eq $ s / t i t l e

re turn $ r

DISTRIBUTE−RESULT( $$32 )

UNNEST( $$32 : i t e r a t e ($$27) )

SELECT( boolean ( value−eq ($$27 , $$28) ) )

ASSIGN( $$28 :data ( c h i l d ($$26 , ” t i t l e ” ) ) )

ASSIGN( $$27 :data ( c h i l d ($$13 , ” t i t l e ” ) ) )

DATASCAN( c o l l e c t i o n ( ”/ joe−books ” ) ,$$26 , ”/ bookstore /book” )

DATASCAN( c o l l e c t i o n ( ”/ann−books ” ) ,$$13 , ”/ bookstore /book” )
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EMPTY−TUPLE−SOURCE

In this example each dataset is identified and accessed by a DATASCAN operator

while the SELECT operator contains the condition for connecting the two datasets (which

effectively will become the join condition). The two ASSIGN operators (line 4 and 5) find

the title child node and return the atomic value of the node. Three Algebricks language-

independent rules are used to introduce the JOIN operator. The first rule converts the

nested DATASCAN operator into a cross product; it identifies that each data source is in-

dependent and adds the JOIN operator with a condition of true (basically a cross-product).

The second Algebricks rule manipulates the DAG to push down operators that only affect

one side of the join branch (selection, assign, etc). The third rule then merges the SELECT

and JOIN operators so the join condition (from the SELECT) is within the JOIN operator.

In the final plan, the JOIN operator has one branch from each data source, which allows

each branch to be processed locally and then joined together globally.

DISTRIBUTE−RESULT( $$32 )

UNNEST( $$32 : i t e r a t e ($$27) )

JOIN( boolean ( value−eq ($$27 , $$28) ) )

{

ASSIGN( $$28 :data ( c h i l d ($$26 , ” t i t l e ” ) ) )

DATASCAN( c o l l e c t i o n ( ”/ joe−books ” ) ,$$26 , ”/ bookstore /book” )

EMPTY−TUPLE−SOURCE

} {

ASSIGN( $$27 :data ( c h i l d ($$13 , ” t i t l e ” ) ) )
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DATASCAN( c o l l e c t i o n ( ”/ann−books ” ) ,$$13 , ”/ bookstore /book” )

EMPTY−TUPLE−SOURCE

}

Going from here to the final logical plan does not require any custom Apache

VXQuery rules, but the physical plan needs more information to choose the most efficient

join algorithm. The equality comparison in our sample query allows the use of a more

efficient partition-based algorithm. If Algebricks understands the condition characteristics,

it can choose an optimal hash-based join. For Algebricks to identify the join condition,

this condition must be represented by a boolean Algebricks expression, in this case the

Algebricks’ equal expression for a hash-based join. (Other Algebricks generic expressions

include and, or, not, less than, greater than, less than or equal, greater than or equal, not

equal.) As the extraction of the XQuery’s Effective Boolean Value of the value-comparison

in the previous plan (boolean(value−eq(...))) is equivalent to Algebricks’ equal expression,

we convert one to the other thus enabling Algebricks to identify the join. After running

the physical optimization rules, the Algebricks expression is converted back to the original

XQuery expressions for runtime evaluation. As a result, Hyracks will now use a Hybrid-Hash

Join algorithm to achieve efficient partitioned parallelism.

7.5 Apache VXQuery Performance

To examine the scalability of our XQuery implementation we have performed an

experimental evaluation using publicly available weather XML data. We have also per-
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formed a comparison of Apache VXQuery with two open-source XML processors: Saxon

[35] and Apache MRQL [7, 27].

7.5.1 Weather Data

The NOAA website [41] offers weather data via an XML-based web service. For

our queries, we chose the Global Historical Climatology Network (GHCN)-Daily dataset

that includes daily summaries of climate recordings. The core data fields report high and

low temperatures, snowfall, snow depth, and rainfall. The complete data definition and

field list can be found on NOAA’s site [41]. The date, data type, station id, value, and var-

ious attributes (i.e., measurement, source, and quality flags) are included for each weather

report. In addition, a separate web service provides additional station data: name, latitude,

longitude, and date of first and last reading. The datasets used had four different sizes,

ranging from 500MB up to 500GB.

7.5.2 Queries

Here we consider three basic types of XQuery queries: selection, aggregation and

join. The complete benchmark results include additional query variations, but due to space

constraints some are shown only in our technical report [19]. For consistency, the queries

below follow the same numbering as [19].

Selection: Query 7.2 finds all readings that report an extreme wind warning. Such

warnings occur when the wind speed exceeds 110 mph. (The wind measurement unit, tenths

of a meter per second, has been converted to miles per hour.)
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1 f o r $r in c o l l e c t i o n ( ”/ sensors ” )/ dataCol lect ion /data
2 where $r/dataType eq ”AWND”
3 and decimal ( data ($ r/value ) ) gt 491.744
4 return $r

Query 7.2: Extreme Wind Warming

Aggregation: Query 7.4 finds the highest recorded temperature in the weather data

set. The Celsius temperature is reported in tenths of a degree.

1 max(
2 f o r $r in c o l l e c t i o n ( ”/ sensors ” )/ dataCol lect ion /data
3 where $r/dataType eq ”TMAX”
4 return $r/value
5 ) div 10

Query 7.4: Highest Recorded Temperature

Join: Query 7.6 finds the highest recorded temperature (TMAX) for each station

for each day during the year 2000.

1 f o r $s in c o l l e c t i o n ( ”/ s tat ions ” )/ stat ionCol l ec t ion / stat ion
2 f o r $r in c o l l e c t i o n ( ”/ sensors ” )/ dataCol lect ion /data
3 where $s/ id eq $r/ stat ion
4 and $r/dataType eq ”TMAX”
5 and year−from−dateTime(dateTime( data ($ r/date ) ) ) eq 2000
6 return ($ s/displayName , $r/date , $r/value )

Query 7.6: High Temperature per Station

Join and Aggregation: In Query 7.8 we join two large collections, one that main-

tains the daily minimum temperature per station and one that contains the daily maximum

temperature per station. The join is on the station id and date and finds the daily temper-

ature difference per station and returns the average difference over all stations.

7.5.3 Experimental Results

Our performance study explores Apache VXQuery’s ability to scale locally with

the number of cores and then in a cluster with the number of nodes. In the single node
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1 avg(
2 f o r $r_min in c o l l e c t i o n ( ”/sensors_min” )/ dataCol lect ion /data
3 f o r $r_max in c o l l e c t i o n ( ”/sensors_max” )/ dataCol lect ion /data
4 where $r_min/ stat ion eq $r_max/ stat ion
5 and $r_min/date eq $r_max/date
6 and $r_min/dataType eq ”TMIN”
7 and $r_max/dataType eq ”TMAX”
8 return $r_max/value − $r_min/value
9 ) div 10

Query 7.8: Average Daily Temperature Differential

tests, the number of data partitions is varied to demonstrate nodes scaling up to the number

of available cores. For these tests, partitions represent data splits and each partition has a

separate query execution thread. In the cluster tests, the number of partitions per node has

been fixed (to one partition per core), and only the number of nodes is varied. The tests

were all executed on an eight-node gigabit-connected cluster. Each node has two dual-core

AMD Opteron(tm) processors, 8GB of memory, and two 1TB hard drives.

Single Node Experiments

Our single node experiments used one cluster node and repeated each query five

times. The reported query time is an average of the last three runs. (In our setting, the

first two executions are used to warm up the system.) The first single node experiment

compares Apache VXQuery with Saxon [36], which is a highly efficient open-source XQuery

processor. The freely available Saxon Home Edition (SaxonHE 9.5) is typically limited to

a single thread processing data that can fit into one fifth the size of the machine’s memory.

A group of weather stations were selected to create query results that fit these Saxon data

restrictions. The 584MB data set has been partitioned on a single hard drive. The speed-up

177



test keeps the total data set size constant while varying its number of data partitions and

corresponding query processing threads.

Figure 7.5: Single node speed-up comparison for Saxon and Apache VXQuery (584MB
dataset; varying Apache VXQuery partitions).

Figure 7.5 shows the single node speed-up performance results for Apache VXQuery

and Saxon. Only a single experiment is shown for Saxon since multi-threading is not avail-

able in the SaxonHE 9.5 version. Apache VXQuery outperforms Saxon when it uses two or

more partitions. The single partition results are slower due to overhead introduced for par-

allel and distributed query processing. The join queries (Query 7.6 and 7.8) are translated

into hash-based joins for Apache VXQuery, thus giving better performance than Saxon’s

nested-loop join. Saxon’s result for Query 7.8 is not reported since the large number of

joined records caused it to never complete (and based on our other results, this query could

take several months to complete). For the rest of the queries (Query 7.2, 7.4, and 7.6),

when using 4 or more partitions, Apache VXQuery performed on average about 3.5x faster

than Saxon. The Apache VXQuery performance for 8 partitions is similar to its 4 partitions

performance, which is when the CPU becomes saturated.
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Figure 7.6: Single node Apache VXQuery speed-up (15.2GB dataset).

To further test single node speed-up for Apache VXQuery, we also used a dataset

larger than the node’s memory (8GB). For this experiment, we used an XML weather data

subset, the GCOS Surface Network (GSN) stations containing 15.2GB of XML data. The

results appear in Figure 7.6. As with the previous figure, Apache VXQuery scales well up

to the node’s number of cores (4). Similar to the single node 584MB experiments, the CPU

is saturated when using 4 or more partitions. While profiling our experiments, we observed

that Apache VXQuery is CPU-bound here, despite the larger data size, due to the overhead

of parsing the XML document for each query. The CPU-bound process is also evident from

the improvement in performance when increasing threads.

Cluster Experiments

Based on the single node speed-up results, the cluster experiments used eight nodes

and four partitions per node. The first cluster tests used the U.S. Historical Climatology

Network (HCN) stations dataset which holds 57GB of XML weather data. This dataset

179



exceeds the available cluster memory when using less than eight nodes. For each experiment,

the dataset was equally divided among the nodes participating in the experiment.

The cluster speed-up results for Apache VXQuery (as well as for Apache MRQL,

to be discussed later) appear in Figure 7.7; the Apache VXQuery query times are depicted

by the circles inside the corresponding bars (full bars represent Apache MRQL query times).

As can be observed, adding nodes to the cluster proportionally lowers the query time.

We next tested the scale-up characteristics of Apache VXQuery. We started by

using a dataset that fits in the memory of each node (i.e., 7.2GB of data per node). The

results appear in Figure 7.8 (again, Apache VXQuery query times correspond to the circles).

While nodes and data are added to the query, the query time remains comparable, that is,

the additional data is processed in the same amount of time. Apache VXQuery thus scales

up well for Queries 7.2, 7.4, 7.6, and 7.8 on XML data.

Figure 7.7: Apache VXQuery and Apache MRQL cluster speed-up (57GB dataset); circles
mark the respective Apache VXQuery times.
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Figure 7.8: Apache VXQuery and Apache MRQL cluster scale-up (7.2GB per node); circles
mark the respective Apache VXQuery times.

The next scale-up test utilizes all 528GB of weather data; here each node has 66GB

of data split evenly on two local disks. The results appear in Figure 7.9; Apache VXQuery

clearly scales-up well even for very large XML datasets.

Figure 7.9: Apache VXQuery cluster scale-up (66GB per node).

Our final experiment sought to evaluate Apache VXQuery’s performance against

other open-source parallel XML processors. Among them, we chose Apache MRQL [27]
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as it was readily available. Using the HCN (57GB) dataset, we ran speed-up and scale-

up tests for the same queries on Apache MRQL running on top of Hadoop 1.2.1 using

MapReduce. Hadoop was configured with a 128MB block size and a replication factor of

1 (to reduce space on the cluster). Apache VXQuery outperforms Apache MRQL on all

queries in terms of both scale-up and speed-up (Figures 7.7 and 7.8). Apache VXQuery’s

performance advantage comes partly from reading and parsing XML about two times faster

than Apache MRQL. In addition, its richer set of operators provides for better performance.

For example, VXQuery utilizes a Hybrid Hash Join algorithm that can keep a partition in

main memory. Being MapReduce-based, Apache MRQL divides the join responsibility:

partitioning is done by the mapper while the reducer joins the individual partitions. These

two steps do not share state, yielding a traditional Grace Hash Join. On average over

all experiments, VXQuery is 2.5x faster than Apache MRQL on Hadoop, validating the

fact that building XQuery on top of a dataflow environment like Hyracks provides more

opportunities for optimization and parallelism.

7.6 Conclusions

Apache VXQuery is a scalable open-source XQuery processor that we have built on

top of Hyracks and Algebricks. We have described its implementation, including the XML

data model dependent rewrite rules. These rules facilitate existing, data model independent

Algebricks optimizations that serve to create efficient and parallel Hyracks jobs. We have

demonstrated using a real 500GB dataset that VXQuery can scale out to the number

of nodes available on a cluster for various XML selection, aggregation, and join queries.
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Comparatively, Apache VXQuery is about 3.5x faster than Saxon on a single node and

around 2.5x faster than Apache MRQL on a cluster in terms of scale-up and speed-up. The

VXQuery source code is available at the Apache Software Foundation [8]; the current release

contains approximately 100K LOC. We plan to add XQuery 3.0 features that support the

analysis of Big Data, such as the group by and window clauses and to utilize indexing for

increased query performance. Apache VXQuery developers are also adding support for

large XML documents stored on a distributed file system and further optimizing the query

compiler.
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Chapter 8

Conclusions

In this dissertation, we looked at two types of data: data in the form of intervals

and semistructured data stored as XML documents. Starting with interval data in Chapter

3, we examined five overlapping interval join algorithms. These state-of-the-art interval

join algorithms were implemented in a real big data management system, Apache Aster-

ixDB. This allowed us to check the algorithm performance under various scenarios within

a memory budget. A series of experiments demonstrated that the algorithms showed good

speed-up and scale-up performance on a single node and multi-node cluster (with a few

exceptions). Different algorithms had the best performance on various scenarios, based on

the characteristics of the joined relations. In Chapter 4, we describe CPU and I/O cost

models for each interval join algorithm which can be used in a cost-based query optimizer

to select the appropriate interval join algorithm. During algorithm implementation, the

cost model either confirmed that the algorithm matched the expected efficiency, or helped

us identify and correct inefficiencies with the implementation. In Chapter 5 we discussed
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our experiences based on the lessons learned from the implementation and testing of all

algorithms. To experiment with all algorithms on Apache AsterixDB, we had to perform

various changes to the system. These include support for selecting an interval join in the

query language, a query compiler that creates an interval join query plan, data partitioning

for interval data, and an efficient interval join operator. Among all algorithms, Time-

Sweep Interval Join (TS) showed the most robust overall performance. The performance

of Forward-Scan Interval Join (FS) and Sort-Merge Interval Join (SM) was very close (and

SM is the simplest algorithm to implement.) Further, Overlap Interval Partition Join (OIP)

showed good performance as long as the record size is small for limited memory, but the

performance drastically deteriorated for large records. In our experimental setting, Disjoint

Interval Partitioning (DIP) was the first one of the algorithms to spill. It is important for an

optimizer to pick an algorithm that does not spill, since when spilling the performance slows

down due to disk accesses. Based on the above, until a cost-based optimizer is available in

Apache AsterixDB, we plan to implement TS and (for its simplicity and in case ordering is

needed, SM). More algorithm choices can be added when the cost-based query optimizer is

available.

Chapter 6 extends the work on overlapping interval joins to include Allen’s rela-

tions, covers and overlaps (and their inverse, covered-by and overlapped-by). We presented

detailed changes on how to modify the Sort-Merge Interval Join (SM) algorithm so as to

support Allen’s relations. The other algorithms can be similarly modified. A series of speed-

up and scale-up experiments demonstrated good performance for modified SM algorithms

on the covers and overlaps join conditions. A modified version of the TS algorithm that
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supports Allen’s relations will also be available on the Apache AsterixDB project website

[4].

Next we looked at creating scalable queries using XQuery on XML data in Chapter

7. As a result, we created Apache VXQuery which is a scalable open-source XQuery pro-

cessor built on top of Hyracks and Algebricks. We have demonstrated using a real 500GB

dataset that VXQuery can scale out to the number of nodes available on a cluster for various

XML selection, aggregation, and join queries. Comparatively, Apache VXQuery is about

3.5x faster than Saxon on a single node and around 2.5x faster than Apache MRQL on a

cluster in terms of scale-up and speed-up. The VXQuery source code is available at the

Apache Software Foundation [8]; the current release contains approximately 100K LOC.

Apache VXQuery developers are continuing to add additional support for things like large

XML documents stored on a distributed file system.
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