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ABSTRACT OF THE DISSERTATION

Interval Joins for Big Data
by
Eldon Preston Carman, Jr.

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2020
Dr. Vassilis J. Tsotras, Chairperson

The main part of this dissertation considers how to scale interval join queries.
To provide scalable query processing for such joins, we adapted five recently published
overlapping interval join algorithms and modified them to work in a shared-nothing big data
management system (AsterixDB) under a memory budget. We developed a cost model for
each algorithm to predict when an algorithm will spill to disk (run out of memory). Our
experimental evaluation shows that the cost models are accurate and can be used to pick
the most efficient algorithm for the given input data. The adapted interval join algorithms
are shown to scale for large datasets using both synthetic and real datasets. Finally, we
further adapt these algorithms to support several new types of interval joins, specifically
overlap and contains, as defined by Allen’s interval algebra. We detail how to abstract the
memory management from these algorithms.

As a by-product we also implemented a scalable parallel processor, namely Apache
VXQuery, that extends a stack consisting of Hyracks, a parallel execution engine, and

Algebricks, a language-agnostic compiler toolbox. VXQuery provides an implementation of
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the XQuery specifics (data model, data-model dependent functions and optimizations, and a
parser). We describe the architecture of Apache VXQuery, its integration with Hyracks and
Algebricks, and the XQuery optimization rules applied to the query plan to improve path
expression efficiency and to enable query parallelism. An experimental evaluation using a
real 500GB dataset with various XML selection, aggregation, and join queries shows that

Apache VXQuery performs well both in terms of scale-up and speed-up.
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Chapter 1

Introduction

Today’s applications create many types of data. In this dissertation, we consider
two types of data: data with intervals and data stored in XML. For the first data type,
consider jobs running on a supercomputer, songs played on a streaming site, and network
files transferred as a few examples where the activity includes a start and end time, thus
creating an interval that describes the duration of the activity. The existence of interval data
leads to interesting queries. One of the most processing-intensive queries is the ‘interval-
join’, where tuples from two relations are joined together if their respective intervals satisfy
some query-specified condition. There are various join conditions between two intervals
(overlaps, covers, covered_ by, etc.), as defined by Allen’s relationships [2]. The second
type of data comes from the widespread acceptance of XML as a standard for document
management and data exchange, which has enabled the creation of large repositories of
XML data. An interesting problem is to efficiently query such large data collections while

taking advantage of parallelism.



In this dissertation we consider scenarios where data is very large (as, for example,
in log-related applications that keep track of what happened in an application logs). As a
result, solutions to interval joins or XML data need to scale to the data size. The dissertation
starts by looking at interval join and then wraps up by considering XML data. While
there are many recent works presenting various interval-join algorithms, they are limited to
running on a single (possibly multi-core) machine, and often all in main memory. Here we
consider how these algorithms can be extended to work in a standard big data environment,
where data can reside on many different processing nodes with bounded memory working,
under a shared-nothing framework. In particular, we implement our interval join algorithms
on AsterixDB, an open-source, shared-nothing distributed environment. In Chapter 2| we
review the shared-nothing architecture of AsterixDB and its basic join query structure.

One basic interval join condition is for the tuple intervals to overlap; we call this
query the ‘overlapping interval join’ [29] and it is the focus in Chapter|3] Given two relations
whose tuples include intervals, an overlapping interval join finds all pairs of tuples from the
two relations whose intervals share at least one time instant. Since a given tuple’s interval
may overlap with many intervals in the other relation, the join results tend to be large,
often larger than the input relations.

The state-of-the-art algorithms for interval overlapping joins can be divided in two
categories; ones that further partition data to perform the interval join and those that do
not use partitioning. The non-partitioning interval join algorithms — sort-merge (SM) (as
described by [38]), time-sweep (TS) (a modified algorithm from [43]) and forward scan (FS)

[16] — and the partitioning interval join algorithms—overlap interval partition join (OIP)



[24] and disjoint interval partitioning (DIP) [17]-are reviewed in Chapter 3| Chapter [3|also
looks at each algorithm’s memory usage and how to run the algorithm when memory is
insufficient for in-memory operations. Experiments were performed to show how different
interval properties affect these algorithms and consider both varied data input and query
output characteristics. Since each algorithm uses its memory budget in different ways, we
created cost models to enable these algorithms to be integrated into a cost-based query
optimizer. Chapter [4] describes the cost models for predicting the processing associated
with Memory, CPU, and I0. We include a model for determining the join size estimation,
which predicts how many tuples will be created from an interval join.

Recent publications on interval joins have focused on the overlapping join condi-
tion. There are, however, many types of interval joins, as defined by Allen’s thirteen interval
algebra relationships [2]. These thirteen relationships define all possible ways that one in-
terval can relate to another interval and thus allow for more descriptive interval queries. In
Chapter [6] we describe how to extend the five state-of-the-art interval join algorithms to
process four of Allen’s interval algebra relationships, namely: covers, covered-by, overlaps,
and overlapped-by. We focus on these four relationships since their predicates involve both
the start and end points of the two intervals; relationships like starts, finishes, or meets in-
volve one interval end point and are thus easier to process — using, for example, traditional
indexes like B-trees or hashing. The five state-of-the-art interval join algorithms have been
updated to process four of Allen’s interval algebra relationships. Using Sort Merge Interval
Join as a test case, we show experiments that explore how these Allen interval joins are

impacted through speed up, scale up and handle limited memory.



Chapter [7] turns from intervals to semistructured data and in particular to how
to build a scalable processor for querying XML data, using the same interval frameworks
that support AsterixDB. To efficiently query such large XML data collections, a scalable
implementation of XQuery (the standard XML query language) is needed that can take
advantage of parallelism. The result is the Apache VXQuery processor, which builds upon
two other open-source Asterix frameworks: Hyracks, a parallel execution engine, and Alge-
bricks, a language agnostic compiler toolbox. Apache VXQuery provides an implementation
of the XQuery specifics (data model, data-model dependent functions and optimizations,
and a parser) and is currently available as open source at the Apache Software Foundation
[13]. We describe the architecture of Apache VXQuery, its integration with Hyracks and
Algebricks, and the XQuery optimization rules applied to query plans to improve path ex-
pression efficiency and to enable query parallelism. We have performed an experimental
evaluation using a large (500GB) real dataset (a NOAA weather dataset from [14]) and
various XML selection, aggregation, and join queries that show the efficiency of our parallel

XQuery processor, both in terms of speed up and scale up.



Chapter 2

Background: The AsterixDB

Software Stack

In this chapter, we introduce the AsterixDB software stack and explain how a
traditional (i.e., non-interval) join query is currently optimized and executed. This chapter
will serve as a background for Chapters [3| and [6], where we describe how AsterixDB was
extended to support interval joins. AsterixDB’s software stack can be represented in three
layers, as shown in Figure After parsing a supplied SQL++ query statement, the top
layer, AsterixDB, builds an Algebricks logical plan. The Algebricks logical plan is then
optimized and translated into an Algebricks physical plan that maps directly to a Hyracks
job. A brief explanation of each layer in the stack follows in the next subsections. Figure
also shows how other systems, such as the Apache VXQuery processor [33], can use
the layers of the Algebricks and Hyracks infrastructure. Chapter [7| will present details of

building the Apache VXQuery processor using Algebricks and Hyracks.
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Figure 2.1: The layers of the Asterix architecture.

AsterixDB is an open-source, shared-nothing distributed platform for big data
management. A shared-nothing architecture consists of many nodes where each node has
its own processes, memory, and disks. AsterixDB runs on a cluster of commodity hardware.
A cluster controller manages the cluster and handles incoming queries’ requests. Figure
shows the components of the AsterixDB cluster and node controllers which work together
to orchestrate the query execution. In the following sections we will describe these pieces,

starting from the bottom of the stack.

2.1 Hyracks

Hyracks is a data-parallel execution platform that builds upon mature parallel
database techniques and modern big data trends [12] 30]. This generic platform offers a
framework to run dataflows in parallel on a shared-nothing cluster. The system was designed
to be independent of any particular data model. Hyracks processes data in partitions

of contiguous bytes, moving data in fixed-sized frames that contain physical records. It
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Figure 2.2: The components of the AsterixDB system architecture.

also defines interfaces that allow users of the platform to specify the data-type details for
comparing, hashing, serializing and de-serializing data. Hyracks provides built-in base data
types to support storing data on partitions or when building higher level data types (first
row of Table .

A Hyracks job is defined by a dataflow directed acyclic graph (DAG) with opera-

tors (nodes) and connectors (edges). During execution, the operators allow the computation

Hyracks Base Types | boolean, byte, byte array, short, integer, long,

double, float, UTF8 string, void

AsterixDB Types Interval, List, Record

Table 2.1: AsterixDB builds on the Hyracks Base types to create more advanced data types.



to consume an input partition and produce an output partition while the connectors re-
distribute data among partitions. The dataflow among Hyracks operators is push-based:
each source (producer) operator pushes the output frames to a target (consumer) operator.
The extensible runtime platform provides a number of operators and connectors for use in
forming Hyracks jobs. While each operator’s operation is defined by Hyracks, the operator
relies on data-model specific functionality provided by the client of (next level above) the

platform.

2.2 Algebricks

Algebricks [13], [14] is a parallel framework providing an abstract algebra for par-
allel query translation and optimization. This language-agnostic toolbox complements the
lower-level extensible Hyracks platform. Implementations of data-intensive programming
languages can extend Hyracks’ model-agnostic algebraic layer to create parallel query pro-
cessors on top of the Hyracks platform. A language developer is free to define the language
and data model when using the Hyracks platform and the Algebricks toolkit. Algebricks
features a rule-based optimizer and data-model-neutral operators that allow for language
specific customization. Figure shows each of the components that Algebricks provides
and the components contributed by the language implementation.

A system that uses Algebricks for its query processing provides its own parser and
translator to translate a query to a query plan that uses Algebricks’ logical operators as an
intermediate representation. The Algebricks rule-based optimizer then transforms the query

plan over three stages. The first is a Logical-to-Logical plan optimizer that creates alternate
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logical plans. Once the logical plan is finalized, the Logical-to-Physical plan optimizer
converts the logical operators into a physical plan. Then, the physical optimizer considers
the operator characteristics, partition properties, and data locality to choose the optimal
physical implementation for the plan. Algebricks provides generic language-independent
rewrite rules for each stage and allows for the addition of other rules. Finally, a Hyracks
job is generated and submitted for execution on a Hyracks cluster.
Algebricks’ intermediate logical algebra uses logical operators that map onto Hyracks’

physical operators. A logical operator’s properties are considered when determining the best
physical operator. For example, a join query that has an equijoin predicate allows a hash-

based join instead of the default nested-loop join. The Algebricks logical operators exchange



data in the form of logical tuples, each of which is a set of fields. The following Algebricks
logical operators are used in a basic AsterixDB query plan:

The DATASCAN operator reads from a data source and returns one tuple for each
item in the data source.

The DISTRIBUTE-RESULT operator collects the final query results on each par-
ticipating data node. Once the job is completed, the controller will request each local result
and transfer it back to the user to create a complete result.

The EMPTY-TUPLE-SOURCE operator contributes the first tuple without any
fields. Algebricks uses this operator to start all DAG dataflow paths.

The JOIN operator matches and combines tuples from two streams of input tuples.

The ORDER operator sorts tuples in the local partition.

The Algebricks operators are each parameterized with custom expressions. The
expressions map directly to functions provided by the higher level (which can be built-in
functions or custom functions). These operators are linked by connectors that are respon-
sible for transporting data from one operator to the next. The following are common
connectors:

The 1:1 EXCHANGE connector reads from an operator and sends the data to
another operator.

The 1:1 PARTITION EXCHANGE connector reads from an operator and applies
a partitioning function to determine the next operator to which to send the data.

The 1:M BROADCAST EXCHANGE connector reads from an operator and sends

the same data to a specified collection of M operators.

10



2.3 AsterixDB Runtime(s)

AsterixDB extends the language-agnostic layer provided by Algebricks to create a
scalable SQL++ processor. An AsterixDB cluster configuration defines the number of nodes
and the number of partitions in each node. The system supports having multiple disks on
each node and any number of partitions on each disk. The hardware and workload determine
how the cluster is configured. Two options are typically considered for determining the
number of partitions on a node. If the process is disk-intensive, then assigning one partition
per disk allows for optimal 10. The log storage should also have a separate disk. If the
process is computationally intense, like interval joins, then choosing the number of partitions
should be related to the number of cores available on each node. A good practice, even
for computational intense workloads, to keep one disk (or disks) designated for data with a
separate disk for the logs.

Hyracks data storage and processing uses the AsterixDB — provided binary rep-
resentation of various data types, including an interval (see Table . The data is sharded
across all partitions on all nodes in the cluster based on hashing the primary key and dis-
tributing the records evenly throughout the cluster as shown in Figure Let’s call the
result of this sharding process global partitioning. If an operator (such as an interval join)
uses partitioning to further partition the data, we call this local partitioning. The data does
not move to another remote partition and is only partitioned to make the local processing
more efficient.

Query evaluation proceeds through the usual steps. The query is parsed into

an abstract syntax tree (AST) and is then analyzed, normalized, and translated into a
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Figure 2.4: Global partitioning of a dataset in AsterixDB for interval join.

logical plan. The logical plan consists of Algebricks data-model-independent operators
parameterized with Asterix data-model-dependent expressions. The logical plan is then
optimized using both generic rewrite rules provided by Algebricks and AsterixDB — specific
rewrite rules. After rewriting the logical plan, it is translated into a physical plan and
optimized further (physical optimization includes such rules as the selection of join methods
or the distribution of the plan). Finally, the physical plan is translated into a Hyracks job
that is executed. Similar to Algebricks operators that have physical representations based on
Hyracks operators, AsterixDB provides executable functions that implement AsterixDB’s
data-model-dependent expressions.

At runtime, the AsterixDB cluster processes a query that arrives via the web

interface or the RESTful query API served from the cluster controller. The process starts
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with a user submitting a SQL4++ query statement to AsterixDB for parallel execution. The
cluster controller parses and optimizes the query and then submits the generated Hyracks
job to the cluster controller, which manages and distributes tasks to each of the data nodes
for evaluation. Each data node contains the globally hash-partitioned records as well as
the AsterixDB runtime expressions used to evaluate the node’s tasks. Finally, the cluster
controller collects the data nodes’ results and sends the result back to the cluster controller,

which returns the result to the user.

2.4 Partitioning for Parallel Join Query Plans

The AsterixDB query optimizer is responsible for recognizing join queries and
implementing the logical join operator. After the logical optimization step is finished, the
physical optimizer will select the physical join operator. The physical operator describes
the global partitioning and local data properties required to complete the operator’s task
in a shared-nothing architecture. Each physical join operator creates the join results for its
partition; they are then combined together to form the complete result. The data must be
globally partitioned and ordered in a way that allows the physical operator to create the
complete result. Table[2.2]shows a list of example joins and their required global partitioning
properties.

The physical join operator must pick a global partitioning strategy that ensures
that the overall join process will yield the complete join result when all result partitions
are combined. Consider the nested-loop join, a brute force join operator, which compares

every tuple in the left (or build) dataset with every tuple in the right (or probe) dataset.
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Join Name

Physical Operator

Left Dataset

Right Dataset

Nested Loop

Block Nested Loop

Hash Partition

Broadcast Partition

Hash Join

Hybrid Hash Join

Hash Partition

Hash Partition

Broadcast Join

Hybrid Hash Join

Broadcast Partition

Hash Partition

Locally Sorted

Merge Join Merge Join Hash Partition, Hash Partition,
Locally Sorted Locally Sorted
Sort Merge Join | Merge Join Range Partition, Range Partition,

Locally Sorted

Table 2.2: Various parallel joins and their required data partitioning strategies.

The global partitioning strategy for the physical nested-loop join operator ensures that each
tuple in the left dataset can be matched with each tuple in the right dataset. The physical
nested-loop join operator must be able to apply its local join process to each joined partition
and guarantee that all join results will be created. That is, each tuple in the left partition
must be compared to every other tuple in right partition. To scale this join approach, the
system must ensure that the global partitioning strategy allows for every tuple in the left
dataset is be compared with all possible matching tuples in right dataset. One way to scale
this join to many nodes is to HASH PARTITION the left (or build) dataset to allow for
minimal data in each join operator partition, as shown in Figure The right (or probe)
dataset is BROADCAST (which is stored using a globally HASH PARTITION strategy) to

make each global partition hold the whole right dataset, as shown in Figure While a
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Figure 2.5: Hash partitioning applies a partition function to the data and re-partitions
based on the hash results.
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Figure 2.6: Broadcast partitioning sends each partition to all other partitions to create the
full dataset in each partitions. The figure shows how the resulting partitions grows to hold
the whole dataset.

copy of the right dataset is distributed to all partitions, pieces of the left dataset are spread
evenly across partitions.

Using the BROADCAST connector means the right dataset is sent over the net-
work to every other partition and each local join computation must process the whole right
dataset. For join predicates that can be supported by hash join, the partitioning for the
right dataset could also use HASH PARTITIONING, thus reducing the network and local
processing for the join, not to mention using a faster (hash-based) local join algorithm.

Sort-merge join is an alternate approach to a hash-based join. The sort-merge
join requires that the global partitions hold all tuples that could be matched and locally

sorted. For data that is already locally sorted, the global partitioning strategy could either
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Figure 2.7: Range partitioning creates partitions where each partition holds a specific range
of join key values.

be hash-partitioned or range-partitioned. Both of these global partitioning schemes ensure
that the join key from each dataset will be located in same partition. Figure shows
a range partitioned layout which keeps the partitions with a global time range order as
compared to hash partitioning where partitions do not have a global order.

The local join operators use different global partitioning schemes to ensure the
correct overall join result. Traditional joins use the global partitioning schemes discussed
in this chapter. Chapter |3|describes an additional global partitioning scheme that could be

added to Apache AsterixDB to support interval joins.
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Chapter 3

Scaling Overlapping Interval Joins

3.1 Introduction

For the purposes of this dissertation, time is assumed to be discrete and is described
by a succession of consecutive non-negative integers. A time interval is represented by two
integers: start and end, where start < end. Further we assume that an interval is semi-
closed as in [start, end), meaning that it contains all the time instants starting from start,
but not including the end time instant. For the remainder of this dissertation we will use
the terms “time instant” and “point” interchangeably. If data is too large for a node’s
main memory computation, it may “spill” to disk to be processed later. Such spilling can
significantly impact the join algorithm’s performance, especially since we do not assume the
existence of any indexing or other data structures on the data to be joined.

In a shared-nothing environment, each node has a part of the data (called a data
partition) and operates on it independently. The system uses local processes to execute

query plans which are made up of operators and connectors. When implementing an interval
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join on a shared-nothing big data management system, the parallel interval join approach
involves three phases of query processing: a global partitioning (where data may be sent to
other nodes), a local sort, and a local join. The local phases use operators which only have
access to local partitions of data. Note that there are typically two stages where data is
distributed among nodes. First, there is an initial distribution of the interval data among
the nodes before the query begins (i.e., for data storage); this has traditionally been done
using a hashing scheme on the tuple key. Second, there is a subsequent distribution (global
partitioning, sometimes called repartitioning) of interval data from the node that initially
hosted the data to any other node(s) that may need the data to perform the requested join
operation. (Improving this distribution approach is the focus of later discussion.) The global
partitioning phase ensures that all interval data (whether from the local node or remote
nodes) is grouped based on their time instances for the local join operator. Then the local
sort phase proceeds by sorting each local partition’s interval data. For the sorting phase, we
sort intervals lexicographically based on the start point followed by the end point. Finally,
the interval join is processed using sorted interval data. The distributed result operator
collects all partition results from all nodes to build the complete result.

The state-of-the-art algorithms for interval overlapping joins can be divided into
two categories, namely algorithms that utilize local partitioning and those that do not
further partition the data; these are called partitioning and non-partitioning algorithms,
respectively. The non-partitioning interval join algorithms — sort-merge (SM) (as described
by [38]), time-sweep (TS) (a modified algorithm from [43]) and forward scan (FS) [16] —

have been extended by us to work within a memory budget. The partitioning interval
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join algorithms — overlap interval partition join (OIP) [24] and disjoint interval partitioning
(DIP) [17] — come from papers that included descriptions of the query processing for both
in-memory and on-disk data. The on-disk descriptions from these papers are used in our
work when the memory budget is insufficient for in-memory operations.

This chapter makes three contributions to overlapping interval joins: (i) we imple-
ment various state-of-the-art overlapping interval join algorithms on AsterixDB, an open-
source shared-nothing big data management system; (ii) in doing that, we had to extend
AsterixDB to include an interval partitioning connector and update the query optimizer to
recognize and construct an interval join query plan; and (iii) we extend the non-partitioning
algorithms to support “spilling”, i.e., to work under a limited memory scenario.

We proceed by describing the changes applied to AsterixDB so as to support an
interval join query plan in Section Section details how each considered algorithm
is extended to work within a memory budget and its implementation in AsterixDB. The

performance of the overlapping interval joins are evaluated in Section and conclusions

appear in Section

3.2 Extending AsterixDB for More Efficient Interval Joins

Prior to our work, the query language of AsterixDB supported interval expres-
sions that can be used to create an interval join query. Consider two datasets, Staff and
Students, each with an interval data field. The Staff dataset has fields name(string) and

employment(interval), while Students has fields name(string) and attendance(interval). In
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Figure 3.1: The initial query plan for Interval joins in AsterixDB.

each dataset the primary key is the field name. Using these datasets, a sample SQL++

interval join query is the following:

SELECT element{ ‘staff’:f, ‘student’:d }
FROM Staff AS f, Students AS d
WHERE interval—overlapping (f.employment, d.attendance);

Running this join query on AsterixDB before our work would have selected a
nested-loop join operator since the optimizer did not support specific interval joins. The
join operators and connectors for a simplified plan generated from this query are shown in
Figure[3.1] The logical join operator uses a nested-loop physical join operator which defines
the global partitioning properties needed for the join operation. With this approach, the
data will be distributed among the nodes only once, before the join operation starts. One
dataset (shown on the left of the figure) is broadcast so that the entire dataset exists on all
partitions while the other dataset (on the right) transfers data using a 1:1 exchange which
just copies its portion of the data locally to the next operator while keeping its original

hash partitioning on the primary key (wherein each node contains a part of this dataset).
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The initial BROADCAST exchange connector in Figure creates multiple copies
of the left dataset, one for each partition. This level of network traffic and data duplication
impose a significant overhead, and the local join algorithm (a brute-force, nested loop join
that compares all tuples) is not optimal. To address these inefficiencies, we implemented
both a new partitioning scheme and a new join operator which we describe next.

Chawda et al. [20] describes how a generic Map-Reduce interval join can be run
on multiple machines in the Hadoop world and defines how to globally partition interval
joins (the map phase) for many different types of interval joins using Allen’s interval alge-
bra [2]. In particular, they demonstrated how to map data into partitions for independent
local join processing with replicated interval data so as not to create duplicate join results.
Three partitioning schemes were proposed (PROJECT, SPLIT, and REPLICATE) that
each distribute the tuples based on an interval’s start time and end time (so that a tuple
can be distributed to multiple nodes) rather than on a hash of the tuple key. Each par-
tition is designed to be a non-overlapping temporal range defined by a set of split points
given in a query hint. PROJECT partitioning transfers an interval to a global partition
whose temporal range holds the interval’s start point (or end point, depending on the join
condition) as shown in Figure The range partitioning from Figure can be used to
perform PROJECT partitioning by selecting the partitioning key to be either the interval’s
start or end point. In contrast, SPLIT partitioning (partially) broadcasts an interval to
all global partitions whose temporal range overlaps the interval as shown in Figure [3.3

Finally, REPLICATE partitioning transfers an interval to the global partition whose tem-
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Figure 3.2: PROJECT partitioning is the same as range partitioning with the interval start
point as the key.
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Figure 3.3: SPLIT partitioning is similar to range partitioning, but includes additional
values that overlap multiple partitions.

poral range holds the interval’s start point and then (partially) broadcasts the interval to
all subsequent (later in time) partitions as shown in Figure

The Map-Reduce interval join of [20] focuses on the global partitioning (mapping
phase) of interval joins, while its local join process (reducer phase) only utilizes a nested-loop

join. AsterixDB supports many traditional database operators, like aggregate and join. The
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Figure 3.4: REPLICATE partitioning is similar to range partitioning, but partially broad-
casts each interval to all partitions with its start point and subsequent partitions.
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global partitioning from [20] can instead be paired with a specialized local join operator that
is more focused on applying an efficient join algorithm to a local partition. Other supporting
operators are discussed later in this section when we introduce an AsterixDB interval join
query plan. This dissertation utilizes the global partitioning from Map-Reduce interval join
but connects it with five different interval join algorithms for local join processing.
Chawda’s SPLIT partitioning for Allen’s interval algebra can be used to partition
interval data for overlapping interval joins. Consider the following self-join example which
uses the data from Figure [3.3] The two identical datasets have been labeled R and S in
Figure to show a join scenario. (The two look "similar” because the example assumes
a self-join where R and S are actually the same interval collection.) Each dataset has
two partitions divided into two non-overlapping temporal ranges identified by the red lines.
The join process needs to create the complete overlapping interval join result for the labeled
intervals, which is [(a,w), (b,x), (b,y), (b,2), (¢,x), (¢,y), (d,x), (d,2z)]. The two first temporal
range partitions, the top left and top right partitions, have been assigned intervals based
on the intervals’ start times. The first temporal range partitions creates the following
overlapping intervals: [(a,w), (b,x), (b,y), (¢,x), (¢,y)]. The bottom two partitions represent
the second temporal range and create a few scenarios that need to be addressed by using
SPLIT partitioning. The long interval b in dataset R have been sent to both the first and
second temporal ranges, similarly for x in dataset S. The two duplicated intervals (b and x)
are needed to ensure that they will be joined with the short intervals (d and z, respectively)
in the second temporal range. First, consider b; it must be in temporal range one for

matching with y and x and in temporal range two for matching with z. Similarly for x, it
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must be in temporal range one for matching with b and ¢ and in temporal range two for
matching with d. As a result of b and x being in temporal range two, the following pairs are
created: [(b,x), (b,z), (d,x), (d,z)]. Using SPLIT partitioning strategy ensures that local
join processing can create all the interval join results. However, note that duplicating the
long interval (b and x) has created two (b,x) results: one in the first and one in the second
temporal range. To ensure no duplicate results, the join algorithm must not create interval
pairs for intervals whose start times are before their partition’s designated temporal range.
In this case, the second temporal range partition would then not create the (b,x) pair and
the overlapping interval join results would not have any duplicates.

Using the SPLIT partitioning scheme from [20], Figure shows an updated
interval join query plan. The primary-key-partitioned data is read with a DATASCAN
operator and uses a 1:1 EXCHANGE to connect to the next operator. The FORWARD
operator reads the split points from a query hint (defined by the query writer) and shares
the split points with an M:N SPLIT MULTICAST EXCHANGE connector to partition
the intervals. The data is redistributed using the M:N SPLIT MULTICAST EXCHANGE
connector to put the data in an ordered partition layout based on the SPLIT partitioning
details. Since all the local interval join methods described in this chapter require the data
to be sorted before starting the joining phase, the ORDER operator has been added after
M:N SPLIT MULTICAST EXCHANGE connector to do the required sorting on each local
partition. On each node, the data is then streamed into a join operator that computes a

local interval join. The result may be streamed to another node (to be merged with results
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Figure 3.5: A sample join for Datasets R and S (where R and S have the same data) each
with two partitions created using global SPLIT partitioning.

from other nodes), or maybe left on the current node for later retrieval and viewing, as
determined by the distributed result operator.

Our new interval join algorithms required the addition of several new items to the
AsterixDB code base. A new connector, called M:N SPLIT MULTICAST EXCHANGE,
was implemented to apply a new SPLIT partition function that defines to which N operators
(on the same or other nodes) the data is sent. To incorporate the range split points into
the SPLIT partitioner, a FORWARD operator was introduced for reading the range query
hint and sharing the range split points with the M:N SPLIT MULTICAST EXCHANGE
connector.

The SM, TS, and FS algorithms require a more dynamic memory manager than
existed with AsterixDB. The previous memory manager allows tuples to be added to the join
operator’s memory and once they had been used, the join’s memory was completely wiped.
These three interval join operators need the ability to add and remove tuples as needed due
to the interval properties and the algorithms process. The new memory manager supports
dynamically adding and removing manages tuples while minimizing garage collection. The

manager also includes an iterator for processing the available tuples.
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1:1 Exchange 1:1 Exchange

Figure 3.6: Updated query plan for AsterixDB interval join ordered partitioning and local
sorting with SPLIT partitioning.

Finally, the five interval join algorithms utilize the previous JOIN logical operator
and extend a new stream join physical operator that works at a more granular (and thus
more efficient) level. Specifically, the previous join physical operators had a blocking edge
between the processing of the two input join streams. As a result, all data from one dataset
had to be processed ("built”) before starting the join process ("probe”). The new stream
join operator is able to start the join processing with the first tuple in the data stream, that
is, neither branch needs to be fully processed to start the join process. Note that partitioned
interval joins still use the previous (non-steam) join approach because such joins can only

occur after one side has been completely partitioned.
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3.3 Overlapping Interval Join Algorithms

The join operator shown in Figure [3.6| can support many different local join meth-
ods. In this section, we present five options for local interval join methods: sort-merge (SM),
time-sweep (TS), forward-scan (FS), overlap interval partition join (OIP), and disjoint in-
terval partitioning (DIP). Each method has been implemented in AsterixDB, optimized in
order to scale, and runs within a memory budget. For the following algorithmic descriptions,
consider an overlapping interval join between two datasets: R and S. For each algorithm,
we will describe the in-memory method and then explain how, when memory is full, the

algorithm completes the join using a spilling phase.

3.3.1 Sort-Merge Interval Join

An interval join algorithm for parallel processing was first defined by Leung and
Muntz [3§]. They defined a three phase (replication, join, and merge) process for doing a join
on interval data that works well in a shared-nothing environment. The Leung and Muntz
algorithm was designed only for a single machine and did not consider limited memory.
Their replication phase is similar to our Split partitioning, while the join and merge phases
resemble the local sort-merge interval join operator we discuss in this section. Instead, our
SM algorithm scales to many nodes, works within a memory budget, and does not need to
remove duplicates after the join due to the partitioning scheme used before the join.

Note that the behavior of a sort-merge interval join is similar to a traditional sort-
merge join when many duplicate keys are present. The difference is that while duplicate

keys in a traditional sort-merge will only match with the same key, in interval joins each
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Figure 3.7: Sort-merge interval join actions for the in-memory mode. A) move a tuple from
the stream of S to memory; B) move a tuple from the stream of R to memory; D) move a
tuple from the spill file of R to memory; E) remove an active tuple in memory from S; and
F) put the merged the tuples from R and S in to the result stream.

interval matches with all tuples with overlapping intervals. The basic idea for SM is to
sort the two datasets and then merge the result by picking an interval from dataset R and
testing it for overlapping tuples in S. The process is repeated for every tuple in dataset R.
Since the tuples are in sorted order, the matching process does not need to scan the whole
dataset S, instead scanning only the range of tuples that are in the overlapping area. The
algorithm has a low number of extra comparisons since the algorithm stops processing an
interval tz once the process finds a interval tg that starts after ¢t ends.

The SM algorithm requires both dataset streams to be sorted by the interval start-
point followed by end-point. First, a single tuple (tg) from R is loaded into memory from
the stream, as shown by the B arrow in Figure [3.7} Tuples from the S stream are loaded
into memory (as shown by the A arrow in Figure and, as each tg tuple is loaded into

memory, the tuple tg in memory is compared to the interval of tg and, if they overlap,
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Figure 3.8: Sort-merge interval join actions for the spilling mode. B) move a tuple from the
stream of R to memory; C) copy the R tuple from memory to the spill file for R; D) move
a tuple from the spill file of R to memory; E) remove an active tuple in memory from S;
and F) put the merged the tuples from R and S into the result stream.

the join result is produced as shown by the F arrow in Figure Once a new tuple
(tg) is loaded into memory that does not overlap with tg, the loading stops since no more
tuples from S will match with the tuple t{p in memory due to data sorting. The process
repeats by loading the next tuple from R into memory. Each interval in memory from S
is compared with the new tuple tp. If tg’s end-point is before tg’s start-point, then it is
purged from memory, as shown by the E arrow in Figure If tg overlaps tg, a join result
is created. After going through all memory tuples, new tuples from S are added to memory
and compared with tz. The process continues for all the tuples in S. Once all tuples in R
have gone through this process and been compared with tuples from S that are in memory,
the join is complete.

The SM algorithm may run out of memory if ¢ is overlapping with more tuples

from S than can fit in memory (when there is no more space to hold a tuple in Active Tuples
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From S). When memory is used up, the algorithm can no longer continue processing the
join in memory. In this case, the memory used for active tuples from .S could overlap with
future tuples from R so they cannot be permanently eject from memory. The spill algorithm
will start by continuing to load individual tuples from R (as shown in the B arrow in Figure
and compare them with the active tuples from S in memory. Since these tuples from
R may overlap data in the S stream, these tuples will be written to a replay spill file, as
shown by the C arrow in Figure No new tuples from S are added to memory during
this process, but tuples from S are purged when they no longer match with R (as shown in
the E arrow in Figure . The process continues until all active tuples from S have been
removed from memory. At this point, the in-memory join method may resume with one
condition. While S will stream tuples into memory, dataset R must start by loading tuples
from the replay spill file (as shown in the D arrow in Figure and then continue into
the R stream. The process repeats each time memory is full, and the S stream is paused

to free up memory.

3.3.2 Time-Sweep Interval Join

Instead of scaling up resources (more memory per node or more nodes), another
approach is to speed up interval join queries through the use of an index. For example, [34]
uses the Timeline Index, while [25] uses the Rl-index for the interval join; however, these
indexing methods are created before executing a join. This requirement is unattractive
because we are looking for algorithms that can run ad hoc interval joins on AsterixDB
without any changes to existing stored datasets. Instead, Piatov [43] defines an end-point

based interval join algorithm, that uses a sweep-based approach focused on compact memory
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management to maximize cache utilization. The algorithm runs in memory and requires
an in-memory index that can be built on-the-fly. The algorithm builds the end-point index
in memory and then uses a second pass to perform the join using the index. [43] outlines
a few optimizations to minimize cache misses during the joining phase. Our time-sweep
algorithm alters the end-point interval join of [43] in two ways, so that it can be performed
in a single pass when the memory budget is sufficient and so that it also works when memory
is limited.

Like most of the other interval join algorithms, this algorithm requires interval
data to be sorted by [begin | end] point before starting the time-sweep interval join. Our
implementation has a few key differences. In particular, our algorithm utilizes the incoming
sorted interval data as the index for start-points and only builds a simple min heap for the
end-points while they are stored in memory, shown as "Delete Order” in Figure [3.9] The
Delete Order data structure is also used to speed up memory clean up which incorporates
the optimizations discussed in [43]. Doing this allows the join process to only perform one
pass over the dataset. The algorithm has also been extended to work when memory is
limited by using a similar process to SM to up free memory.

The algorithm starts with the first interval in time order from either dataset.
Assume that R has the first time-ordered interval ¢i. The interval is added to R’s active
tuples in memory (as shown by the B arrow in Figure , and the interval end-point is
added to the Delete Order data structure structure. The next operation is based on where
the lowest remaining end-point is found, which may come from the Delete Order, stream

R, or stream S. If the interval is from dataset S, it is added to memory (as shown by the
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Figure 3.9: Time-sweep interval join actions for the in-memory mode. A) move a tuple from
the stream of S to memory; B) move a tuple from the stream of R to memory; D) move a
tuple from the spill file of R to memory; E) remove an active tuple in memory from S; F)
remove an active tuple in memory from R; and G) put the merged the tuples from R and
S into the result stream.

A arrow in Figure , joined with all active tuples in memory from R (as shown by the
G arrow in Figure , and added to the Delete Order. The reverse is true for adding a
tuple from dataset R’s stream. If the next time ordered end-point is from the Delete Order,
then the tuple linked to that end-point is removed from memory, as shown by the E or F
arrow in Figure 3.9 Tuples are added and removed so that only tuples that hold active
intervals during the time sweep are in memory. No additional comparisons are needed as
the time-sweep algorithm properties ensure that they are overlapping.

If the number of active tuples from both datasets exceeds the available memory,
the algorithm must stop the in-memory join. In an effort to free the most memory, the
algorithm picks the memory partition with the most active tuples. As an example, assume
that S’s memory partition has the most tuples. Since the S active tuples in memory may

match with future tuples from R, all active tuples from S must be joined with R’s data
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Figure 3.10: Time-sweep interval join actions for the spilling mode. B) move a tuple from
the stream of R to memory; C) copy the R tuple from memory to the spill file for R; D)
move a tuple from the spill file of R to memory; E) remove an active tuple in memory from
S; and G) put the merged the tuples from R and S into the result stream.

stream. The R data stream is processed tuple by tuple (as shown by the B arrow in Figure
, comparing tuples with S’s active tuples in memory. Similar to the SM process of
freeing memory, R’s data stream is written to a replay spill file (as shown by the C arrow in
Figure , and S’s active tuples in memory that no longer match are removed both from
memory and the Delete Order, as shown by the E arrow Figure Once S’s memory
partition is emptied, memory has been freed and the in-memory join can resume. The
algorithm will continue to load tuples from the S stream and start with the R replay spill
file and then continue with R stream, as shown in Figure D and B, respectively. While
Figure [3.10] only shows a replay file for R, the spill process could be conducted for either

dataset, depending on which dataset has more active tuples in memory.
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3.3.3 Forward-Scan Interval Join

The Forward-Scan Interval Join [16] is based on the classic Plane Sweep Algorithm
[44] and takes a different approach than the time-sweep interval join [43]. Forward-Scan
showed how to scale up to many threads on a single machine using several different parti-
tioning strategies. For this dissertation we focus on implementing the Forward-Sweep local
join process in AsterixDB (a multi-node shared-nothing database system) and extend it for
working within a memory budget.

The Forward-Scan join performs a sweep through the sorted (by start points)
intervals dataset. The algorithm continues to pick the interval with the next start point,
matches it with all overlapping intervals in the other dataset, and then the initially-selected
interval is removed from memory. The process repeats, picking the interval with the next
start point and matching all overlapping intervals in memory. The process first joins tuples
in memory and then loads any new tuples, as needed from the stream, to complete the join.

Consider two datasets R and S where R has the first time-ordered interval tpy.
The interval ¢y is added to R’s active tuples in memory, as shown by the B arrow in Figure
The active tuples from S are scanned to find all overlapping tuples with ¢z and added
to the result set. Tuples from stream S are added to memory (as shown by the A arrow in
Figure and matched with ¢ until a tg tuple is found that starts after the ¢’s interval
ends. If during the scan of the active tuples from S, a tuple tg is found that does not match
with a future tuple from R, it is removed from memory as shown by the E arrow in Figure

Once tuple tr has been matched with all overlapping tuples, tr is removed as shown
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Figure 3.11: Forward-Scan join actions for the in-memory mode. A) move a tuple from the
stream of S to memory; B) move a tuple from the stream of R to memory; D) move a tuple
from the spill file of R to memory; E) remove an active tuple in memory from S; F) remove
an active tuple in memory from R; and G) put the merged the tuples from R and S into
the result stream.

by the F arrow in Figure The next tuple in time order is picked (from either dataset).
The process continues until all tuples have been loaded from both streams.

The join process collects active tuples through loading future tuples that overlap
the tuple being processed into memory. If the number of active tuples from both datasets
is going to exceed the memory budget, the algorithm must stop the in-memory join. In this
case, the algorithm picks the dataset with the most active tuples to free up the maximum
amount of space in memory and allow the join to continue. The spill process takes over and
pauses the in-memory time-sweep algorithm. The process used to free memory is same as
for the TS algorithm and can be used for either dataset, depending on which dataset has
more active tuples in memory. One difference for F'S is that there is no Delete Order data

structure to be updated during the spill process.
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Figure 3.12: Forward-Scan join actions for the spilling mode. B) move a tuple from the
stream of R to memory; C) copy the R tuple from memory to the spill file for R; D) move
a tuple from the spill file of R to memory; E) remove an active tuple in memory from S;
and G) put the merged the tuples from R and S into the result stream.

3.3.4 Overlap Interval Partition Join

The non-partitioning interval join algorithms all generally have similar memory
management, while the partitioning algorithms’ memory management approaches are quite
diverse. Overlap Interval Partition Join (OIP) [24] outlines how to create temporal parti-
tions and perform an overlapping join. This partitioning method groups intervals with a
close starting point and similar duration into separate local partitions. OIP focuses on a
join process that is efficient for interval data with a few long duration intervals among many
short intervals and that works in memory or on disk. The paper claims that the algorithm
can outperform other disk-resident interval join algorithms due to the way that its join
process incorporates statistics on the machine’s CPU and I/O. The algorithm takes a set of
parameters (the longest expected interval, the number of tuples in each dataset, the speed

of the CPU, and the speed of an I/O request) which are used to determine the optimal
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number of partitions to be used during the join. OIP is the only interval join algorithm
discussed in this dissertation that requires additional parameters besides the range partition
split points given in the query hint.

Prior to the join process, OIP evenly splits the temporal range into slots. The
number of slots is based on a formula using the longest expected interval, the number of
tuples in each dataset, the speed of the CPU, and the speed of an 1/O request. The OIP uses
these slots to create an overlapping temporal partitioning where each partition is defined by
its start and end slot. Consider a case where three slots are used for partitioning, Figure|3.13
shows the temporal partitions with their identifiers, composed of the start slot followed by
the end slot. The algorithm begins by partitioning the data into these temporal partitions.
The partitioning process maps an interval’s start point to a slot and the end point to a slot
which together determines the interval’s overlapping temporal partition. Then, a nested-
loop join is performed for overlapping temporal partitions to produce the final result. The
algorithm uses a nested-loop join for joining partitions since, if partitioned well, most of the
intervals will match and be in the result. Since our queries are executed in a multi-node
environment using Split partitioning, the first and last slots were overloaded with intervals
that either start before or after the temporal range for this join operator. Thus, we added
two special slots to create separate partitions for these intervals that extend beyond the
nodes’ responsible temporal range: one for intervals with start points before the range and
a second one for intervals with end points after the range.

Sorting on the tuples assigned starting slot followed by ending slot results in group-

ing the overlapping temporal partitions together. Figure [3.14] shows how tuples from the
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Figure 3.13: Temporal partitioning with partition identifiers when using three slots.

stream R (A arrow) are added to memory. Once the interval’s temporal partition is deter-
mined, the interval is written to a partition file (as shown by B arrow in Figure and
the partition count is updated. If this is a new temporal partition, the file’s location for
the partition start (as shown by the blue triangles in Figure is saved in the partition
locations data structure. The partitioning process is complete when all intervals from the
stream have been written to the partitioning file. The process is repeated for dataset S.
After each dataset has been partitioned in this manner; the join uses the partition
counts to calculate all overlapping temporal partitions to be joined. The join starts by
reading the first tuple tg from the partition file of R into the active tuples from R, as
shown by the B arrow in Figure [3.15] Using the precalculated list of join partitions, all
relevant partitions from S are loaded into memory as shown by the A arrow in Figure|3.15
The partition order is maintained to ensure that the join can be completed with a single

scan of partition file S with the partition represented by tz. The tg tuple is matched with
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Figure 3.14: Overlapping interval join activities during partitioning. A) Move a tuple from
the stream of R to memory; and B) move a tuple from the memory to a partition file of R.

all active tuples for S, creating results for overlapping intervals, as shown by the C arrow
in Figure [3.15] The process repeats for each tuple in R’s partition until all its tuples have
been joined. Once the R partition has completed all overlapping partition joins, the next
partition in R loads its first tuple into memory and the process repeats.

When dataset S is larger than memory, the join will no longer be able to calculate
all results using a single pass of dataset R. As a result, the join begins by loading as
many tuples from overlapping partitions from .S into memory, then a single scan of the R
partitions is done to complete the join process all S tuples in memory. The join continues
by loading the next set of overlapping partitions from S into memory and then joins with
a single pass over R. The process basically becomes a block nested-loop join, but the join
only needs to compare temporal partitions that are overlapping. Finally, note that S will be
processed in one pass while R will be loaded as many times as necessary for the overlapping

partitions.
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Figure 3.15: Overlapping interval join actions for the joining. A) move a tuple from the
partition file of S to memory; B) move a tuple from the partition file of R to memory; and
C) put the merged the tuples from R and S into the result stream.

3.3.5 Disjoint Interval Partitioning Join

Disjoint Interval Partitioning (DIP) ensures a simple partition merge join
without backtracking like in sort-merge join. The number of disjoint interval partitions
needed is limited to the largest number of intervals that are active at the same time. The
limit becomes a constant factor used by the join’s cost model to give an upper bound on the
number of data scans used during an interval join. The algorithm can be done in memory
or from disk and uses two activities: one for partitioning and one for doing a merge join.
The merge join process here has an advantage of only reading partitions in sequential order.

The algorithm’s partitioning process begins by loading the first tuple (¢g) from
stream R into memory as shown by the A arrow in Figure tr’s partition is determined

by finding a partition that does not create overlapping intervals within the partition. A list
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Figure 3.16: Disjoint Interval Partition Join activities during partitioning. A) Move a tuple
from the stream of R to memory; and B) move a tuple from the memory to a partition file
of R.

of partition end points is saved in decreasing order, and the partitioner simply picks the next
partition based on the lowest interval end-point. tg is then moved into that partition file
for R as shown by the B arrow in Figure[3.16] and the Partition End Points data structure
is updated with ¢g’s end point for the partition that it was added to. If tr overlaps this
lowest end-point, then all existing partitions will overlap and a new partition is created.
The process continues loading new stream R tuples and processing them until all intervals
have been assigned a partition. The partitions for dataset R are written to disk and then
the partition process is repeated for to dataset S.

Once both datasets have been partitioned, the merge join starts by picking a single
partition from R and merge-joining this partition with every .S partition. The first tuple
tg is loaded into memory from an R partition, as shown by the B arrow in Figure [3.17} All
partitions for S are loaded into memory as shown by the A arrow in Figure [3.17] The first

tuple tg is checked against the first tuple for each partition from S in memory. If tuple
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Figure 3.17: Disjoint interval partition join actions for the joining. A) move a tuple from
the partition file of S to memory; B) move a tuple from the partition file of R to memory;
and C) put the merged the tuples from R and S in to the result stream.

tr is after tg, then the pointer for the S partition is advanced. If they are overlapping,
then they are sent to the result as shown by the C arrow in Figure and the pointer
for the S partition is then advanced. This continues until the tuple tg start point is later
then tg’s end point. Then the next partition in S is selected and the process repeats for
each partition in S. After merging tr all S partitions, the next tuple in R is selected and
merged with every partition of S starting at the partition marker. The process continues
until all of the tuples in R have been processed or the partition marker is at the end of
each S partition. The next partition in R is selected and its first tuple tr is loaded into
memory, the S partition markers are reset to the beginning of the partition and the merge
process is repeated. The join is complete after processing all partitions of from R with the

S partition in memory.
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If dataset S is larger than memory, the partition and join process is altered to
manage memory. During partitioning, instead of keeping the whole partition in memory,
only the last frame is kept in memory while the other frames are written to disk. Using one
frame per partition maximizes the number of partitions (M - 1) that can be processed. A
single frame is used to track all intervals that could not be assigned an overflow partition.
Once all intervals have been assigned a partition or added to the overflow partition, all
partition frames are flushed to disk and the process is repeated for the remaining tuples in
the overflow partition. The process is repeated as many times as necessary until all tuples
added to the overflow partition have been assigned a partition.

When limited memory exists during the merge join activity, batches of S partitions
in memory will be processed at one time. The algorithm will need multiple passes over the
partitions in R to complete the join. The work is now split up into sets of partitions which
can be processed together by filling the available memory (M - 1). Each S partition set
should only be scanned once for each R partition that is being joined. A page of memory
is designated for the first R partition, and the remaining memory pages are devoted to sets
of S partitions. The first tuple in R will be merge-joined with the first tuples in the first
frame of the S partitions loaded in the first memory batch. The merge process continues
until all of the R partitions have been processed or the partition marker is at the end of
each S partition. Then the next partition from R is loaded, and the S partition pointers are
reset to the beginning of their partition. The process continues for all R partitions. Once
they are complete, the next block of S partitions are loaded, and the process is repeated

for all R partitions.
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An important distinction among the two partitioning algorithms is due. In DIP,
each algorithm created partition is written in a separate file (for example, Figure
shows two such partition files for R). Instead, OIP writes all algorithm partitions in a
single partition file (see Figure [3.14)). This is possible for OIP, since it first determines the
number of slots, and sorts the tuples based on their starting and ending slots. Tuples are
written to the partition based on this sort order. In contrast, in DIP, a tuple is assigned on
the fly to one of the active partition files, based on the tuple’s overlapping with the active
partitions. If it overlaps with all active partitions, then a new partition file is created for
this tuple. Important here is that we do not know when a partition is done (neither the
size of a partition) until the whole relation is considered. Hence the DIP algorithm needs to
create a separate file per partition. Based on the tuple interval characteristics, the number
of partition files created can become large.

As we will see in the experimental evaluation, a large number of partition files
can directly affect the DIP algorithm’s spilling performance in two ways. First, during
partitioning, each partition file requires a separate frame in memory; if not enough memory
is available, partitioning will take extra passes. Second (and more important), during

joining, each partition file has to be joined with all partition files from the other relation.

3.4 Performance

We have conducted a set of performance experiments to look at how these five
algorithms perform in a real database system, AsterixDB. Three sets of experiments review

different aspects of measuring their performance: speed-up (when sufficient memory is
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available), scale-up (increasing data size and available resources), and scale-up with spilling
(when limited memory requires the use of disk space). All of the experiments were run on
an eight-node gigabit-connected cluster. Each node has two dual-core AMD Opteron(tm)
processors, 8GB of memory, and two 1TB hard drives. AsterixDB was configured to use
one drive for data and one for logging. The number of partitions per node was defined in
each experiment.

When preparing our experiments, we attempted to compare our performance to
that reported in previously published papers. However, those algorithms were mostly imple-
mented with bare minimum C++ code and only worked with collections of 64-bit integers.
Their custom custom code was essentially a count query for an interval join. We found that
such a custom-built application cannot be directly compared to a database implementation.
To show these differences, we also set up a simple one-node experiment to sort one million
random 64-bit integers using direct C++ code vs. using a database system.

The baseline experiment that used the C++ sorting code that was included in the
Forward Scan algorithm, and it timed the process for sorting one million 64-bit integers
using native C+4 functions and data. Next, the same sorting process was applied to
two database applications on the same list of random integers: a popular SQL database,
PostgresSQL, written in C++, and AsterixDB, which is written in Java. Table [3.1] shows
the times for sorting under each of these scenarios. The C++ library is roughly 14 times
faster than either of the databases. The AsterixDB time is fairly close to the PostgresSQL

time even though AsterixDB was written in Java. The experiment shows that the data

45



Method Language Time

Vector Library | C++ 67 ms
PostgresSQL C++ 890 ms
AsterixDB Java 914 ms

Table 3.1: Sorting using different libraries and systems.

generality and overhead of handling full records in a DBMS does this with a performance
price.

Since interval join queries tend to produce a large number of results, the exper-
iments reported have been designed to measure the join execution time on a query with
human-readable results. Figure |3.18| shows six variants of interval join queries where only
the number of results returned has been changed. The query time is shown for the six
different result sizes using a log scale. The first count only query uses an aggregate count
to return the number of joined intervals. The empty result query creates all the interval
joined pairs, but immediately after the join operator a filter has been added that will al-
ways be false, and thus no results will be returned. The top-k queries limit the result to k
interval pairs by picking the interval pairs with the most overlap. The top-k queries include
a constant time operation for each tuple to determine the interval overlap. The full result
query returns all of the interval-joined pairs. Its time includes the cost of result generation,
but does not include the time to download the result from the cluster. The count only
query is the fastest due to only having to perform the join and apply no additional logic

besides counting. The top-k queries are each slower than the empty result query due to
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the calculation of the interval overlap. The sorting for the top-k queries starts to impact
the performance after exceeding 1,000 result reads. Since any small value of k has similar
performance, we will choose k = 100 going forward since a person (an analyst) would be

able to consume the results.

B Count Only
100000 [l Empty Result
B Top1
50000 B Top 100

@ Top 100,000
B Full Result

Average Query Time (microseconds) in log scale

10000
5000 || || || || |‘
1000 I| I| I| I| II
DIP FS OIP SM TS

Figure 3.18: An overlapping interval join query on a single partition with various result
sizes.

The final interval join query, full result, creates a new record using id, interval,
and filler fields from each dataset. The filler field is used during the experiment to change
the size of the tuple being processed in the join operator. An ORDER BY and LIMIT limit
the results to the top 100 join results with the largest overlap. The actual SQL++ interval

join query is the following:

SELECT element{ ¢idl’:dsl.id, ‘id2’:ds2.id,
‘intervall ’:dsl.interval, ‘interval2 ’:ds2.interval,
‘fillerl ’:dsl. filler , ‘filler2 ’':ds2.filler}
FROM Datasetl AS dsl, Dataset2 AS ds2
WHERE interval__overlapping(dsl.interval, ds2.interval)
ORDER BY duration from interval(
get_overlapping interval(dsl.interval, ds2.interval)) DESC
LIMIT 100;
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The performance section continues by showing how the different algorithms speed-
up with sufficient memory (non-spilling experiments). The speed-up section considers the
number of partitions both on a single node and for many nodes. The scale-up experiments
demonstrate the ability to add more data and corresponding processing with consistent
performance. The last experiment reviews the case when memory is not sufficient and the

system must spill to disk during the join.

3.4.1 Speed-Up Non-Spilling Experiments

For non-spilling experiments, we looked at how the queries speed-up locally using
both synthetic and real data. We also considered speed-up experiments in a multi-node
cluster using a synthetic dataset. We use the synthetic datasets to explore how the algo-
rithms are affected by controlling one property of the data: cardinality, duration, or record
size. The cardinality experiment represents changing the number of tuples in the dataset,

P13

by changing the intervals’ “arrival rate” (\). Changing the cardinality will affect the num-
ber of tuples in an interval’s overlapping region. Similarly, changing the duration of a query
will affect the number of join results due to the increased overlapping among tuples. The
last property, record size, will not change the number of results but will affect the amount
of memory required to process each join.

Local Speed-Up on Synthetic Data. Figure shows the performance of
the algorithms on a single node, using an overlapping interval join query over a synthetic
dataset with 10,000 records evenly distributed over a time range of 1,000 units (A = 10).

Fach interval has a duration d equal to 10 and the tuple the size is 74 bytes. The overlapping

join query is a self-join, so the same dataset is used on both sides of the join. All algorithms
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show good speed-up until eight partitions, at which point the processing node uses hyper-

threading since it only has four cores.
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Figure 3.19: Single node speed-up performance for the baseline overlapping interval join
query on synthetic data (A = 10 and d = 10).

In Figure[3.20] the dataset cardinality has been increased ten times, while the time
range and other properties have not been changed. As a result, the dataset has 100,000
records, a time range of 1,000, a density of A = 100, and duration of d = 10. There are
ten times as many in tuples in the dataset, and each such tuple will match (self-join) with
tuples that have been increased by ten times. This results in 100 times more comparisons;
as it can be seen in the figure the query time has increase similarly, when compared with
Figure|3.19) Again each algorithm shows good speed-up.

In Figure the dataset duration has been increased ten times. The self-joined
dataset has now 10,000 records, a time range of 1,000, a density of A = 10, and duration
of d = 100. As a result, each tuple will now match with ten times as many tuples. The

number of comparisons has increased by 10 times (when compared with Figure [3.19)) due
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Figure 3.20: Single node speed-up performance for an overlapping interval join on synthetic
dataset (A = 100, and d = 10).

to the increased overlapping tuples while keeping a fixed cardinality of 10,000 tuples. The
DIP results for this test are a special case. For each thread DIP creates 1,000 algorithm
partitions; each of these algorithm partitions requires one frame (page) in memory. Since
the available join memory has only 256 frames, the algorithm spills to disk. This happens for
every thread. Except for DIP that is affected by spilling, the other algorithms show good
speed-up performance under this scenario, too. We examine DIP’s spilling performance
further, in the scale-up experiments of this section.

Figure shows how large records affect the performance in the local speed-up
experiments. The same interval characteristics as in Figure [3.19| are used but here the
record size has increased to 2,296 bytes. The key difference is the amount of data that must
be pushed through the join operator has increased thus resulting in higher query times as
compared with Figure The non-partitioning algorithms (FS, SM and TS) show good

speed-up. The partitioning algorithms have an issue with the amount of memory needed to
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Figure 3.21: Single node speed-up performance for an overlapping interval join on synthetic
dataset (A = 10 and d = 100).

perform efficiently. DIP spills again to disk, but for a different reason. DIP creates the same
number of algorithm partitions per thread as in Figure thus there are enough frames
for all algorithm partitions in memory; however, these frames spill because the records
are much larger. Since there are enough memory frames the algorithm has fewer passes
over the data than the previous spilling case. Overall, it shows good speed-up (affected
though by disk contention since there is a single disk resource). OIP also spills for these
experiments and the total I/O does not change as more threads are added. Since the cluster
configuration uses only a single disk, the I/O bound OIP query time remains the same as
threads are added.

Real Datasets. We used two datasets, infectious and TPC-H, to show how the
algorithms perform on more realistic data. The infectious dataset provides a real dataset
with many short intervals with a low number of overlaps. The infectious dataset comes from

an experiment tracking people’s contact in an office building hallway. The researchers were
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Figure 3.22: Single node speed-up performance for an overlapping interval join on synthetic
dataset large records (2,296 bytes) (A = 10 and d = 10).

looking into how epidemics spread in populations. The dataset holds pairs of people’s ids
and the starting time point of their contact. A contact corresponds to a 20-second interval
where the two objects were both in the hallway (if a contact lasted for more than 20 seconds,
a new record would appear). The dataset has 400 thousand records of contacts and at most
50 active contacts at each time instant. The dataset takes about 80 MB of disk space.
The performance of the algorithms for the infectious dataset appears in Figure All
algorithms exhibit good speed-up performance on this dataset. Since the OIP algorithm
was designed for joins that contain some long intervals, OIP had the worse query times on
this dataset which has only small intervals.

The next dataset