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Disorder-driven non-Fermi-liquid behavior in CeRhRuSi2
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We report measurements of the bulk magnetic susceptibility and 29Si nuclear magnetic resonance
(NMR) linewidth in the heavy-fermion alloy CeRhRuSi2. The linewidth increases rapidly with
decreasing temperature and reaches large values at low temperatures, which strongly suggests the
wide distributions of local susceptibilities χj obtained in disorder-driven theories of non-Fermi-liquid
(NFL) behavior. The NMR linewidths agree well with distribution functions P (χ) which fit bulk
susceptibility and specific heat data. The apparent return to Fermi-liquid behavior observed below
1 K is manifested in the vanishing of P (χ) as χ → ∞, suggesting the absence of strong magnetic
response at low energies. Our results indicate the need for an extension of some current theories of
disorder-driven NFL behavior in order to incorporate this low-temperature crossover.

PACS numbers: 71.27.+a, 75.30.Mb, 76.60.Cq.

I. INTRODUCTION

A breakdown of the standard Landau Fermi-liquid the-
ory is signaled in certain heavy-fermion metals by anoma-
lies in thermodynamic, transport, and optical properties
at low temperatures and frequencies.1 Although excep-
tions exist, the anomalous properties are usually as fol-
lows: the Sommerfeld specific heat coefficient γ(T ) =
C(T )/T diverges as − lnT ; the magnetic susceptibil-
ity χ(T ) varies as 1 − aT 1/2 or diverges as − lnT or a
weak inverse power of temperature; the electrical resis-
tivity departs linearly with temperature from its T = 0
value; and optical conductivity experiments in the non-
Fermi-liquid (NFL) alloy UCu3.5Pd1.5 indicate a trans-
port relaxation rate which varies linearly with frequency
at low temperatures.2

Attempts to understand this NFL behavior invoke one
or more characteristics common to most such systems,
viz., the possibility of an unconventional Kondo effect,3,4

proximity to a quantum critical point (QCP),5–7 struc-
tural disorder,8 or a combination of the latter two.9 Re-
cent experimental work has stressed the role that disor-
der can play. In particular, the observed inhomogeneous
broadening of copper nuclear magnetic resonance (NMR)
lines in the NFL alloys UCu5−xPdx, x = 1.0 and 1.5,
could be described by a disorder-induced spatial distribu-
tion of local susceptibilities χj .

10,11 Such a susceptibility
distribution originates in the interplay between structural
disorder and many-body effects intrinsic to f -electron
systems, such as the Kondo effect and the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction between the
magnetic moments.

It is clear that if an interaction between moments is
present the term “non-Fermi liquid” must be used with
care, since strictly speaking Fermi-liquid theory deals
only with the lowest-lying excitations of a system of in-
teracting fermions and hence is correct only in the zero-
temperature limit in the absence of a phase transition.
Any kind of magnetic phase transition or glassy spin
freezing at nonzero temperature invalidates this condi-
tion, and NFL behavior is no longer a surprise. Following
convention in this field, we nevertheless continue to des-
ignate as NFL systems materials in which the properties
mentioned above are found at intermediate temperatures,
with the proviso “nearly NFL” applied if there is evidence
for a crossover to a new state at low temperatures.

In this paper we report measurements of the magnetic
susceptibility and 29Si NMR linewidth in the nearly-
NFL12 heavy-fermion alloy CeRhRuSi2, and consider the
data in the light of two such disorder-driven scenarios:
(1) the so-called “Kondo disorder” picture of Bernal et

al.10 and Miranda, Dobrosavljević, and Kotliar,8 in which
the RKKY interaction is disregarded and the local sus-
ceptibility distribution is associated with a corresponding
distribution of single-ion Kondo temperatures TK , and
(2) a recent model by Castro Neto and co-workers9 based
on the existence of quantum Griffiths singularities13 in a
disordered system with RKKY couplings which is close
to a QCP.1,6 In the latter case Kondo and RKKY phe-
nomena compete with each other in the random environ-
ment, and the susceptibility is associated with fluctua-
tions of magnetic clusters.9 Both of these models have
been shown to account for the observed susceptibility
and NMR broadening in UCu5−xPdx,9,11 and the Kondo-
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disorder model is in agreement with the transport and op-
tical data for UCu5−xPdx alloys. The Griffiths-phase pic-
ture describes the thermodynamic properties of a number
of NFL materials.14

It should be pointed out that NFL mechanisms based
on unconventional Kondo effects3,4 have to date been
treated only for isolated f ions. It would be useful to
extend such pictures, first to the case of ordered f -ion-
based compounds and then with the inclusion of disorder
in analogy with the Griffiths-phase model.

Similarities and differences between the Kondo-dis-
order and Griffiths-phase theories of NFL behavior and
the necessity for their modification at low temperatures
are discussed in the light of our experimental data. Fits of
the theories to the temperature dependence of the bulk
susceptibility determine the parameters of each model,
each of which then predicts the temperature dependence
and size of the NMR linewidth with no further adjustable
parameters. The measured linewidths are in good agree-
ment with both models. This corroborates the conclusion
of Graf et al.,12 based on susceptibility and specific heat
measurements, that disorder-driven NFL behavior is im-
portant in this system.

The isostructural alloy system Ce(Ru1−xRhx)2Si2 ex-
hibits a variety of complex behavior associated with the
Kondo effect and magnetic interactions.15–20 The phase
diagram of this system16–18 is shown in Fig. 1. The
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FIG. 1. Magnetic phase diagram of Ce(Ru1−xRhx)2Si2.
Data from Refs. 16–18. Paramagnetic (PM) and antiferro-
magnetic (AF) regions are indicated. Circles: AF ordering
temperatures TN . Triangles: Kondo temperatures TK . The
curves are guides for the eye. The arrow indicates the con-
centration for which NFL behavior was observed by Graf et

al. (Ref. 12).

end compound CeRu2Si2 is a heavy-fermion metal which
shows no long-range magnetic order down to 20 mK,15

whereas CeRh2Si2 is an antiferromagnet16 with Néel tem-
perature TN = 36 K. Antiferromagnetism is found for
low (0.1 <∼ x <∼ 0.3) and high (0.5 <∼ x ≤ 1) rhodium dop-
ing. Neutron diffraction experiments19 in the low-doping

range show that the antiferromagnetism is incommensu-
rate (i.e., the 4f electrons are itinerant), but becomes
commensurate, indicative of local moments, for x >∼ 0.5.
For x <∼ 0.4 the specific heat indicates a characteristic
energy scale, usually associated with the average Kondo
temperature TK of the material, which is higher than TN

in this composition range.

The concentration x = 0.5 is near the critical value for
suppression of TN to zero. In spite of its stoichiomet-
ric composition CeRhRuSi2 is a disordered alloy, as the
Rh and Ru atoms occupy the same crystallographic site
and there is no evidence of superlattice formation. For
x = 0.5 Graf et al.12 found the weak divergences charac-
teristic of NFL behavior1 in γ(T ) and χ(T ) for temper-
atures between 1 and 30 K. There was no evidence for
magnetic ordering, and Graf et al. concluded that NFL
phenomena in CeRhRuSi2 are driven by structural disor-
der. To our knowledge the region 0.3 <∼ x <∼ 0.5 has not
been examined for NFL behavior.

Below 1 K γ(T ) was seen to saturate, suggesting that
CeRhRuSi2 exhibits a crossover from a region of anoma-
lous magnetic response to a Fermi-liquid ground state as
the temperature is lowered. It should be noted, however,
that recent specific heat and ac susceptibility studies of
UCu5−xPdx

21,22 suggest that saturation of γ(T ) in this
system may be associated with magnetic ordering, pos-
sibly of a spin-glass nature or in the form of superpara-
magnetic clusters. More information on the behavior of
NFL systems at low temperatures is clearly needed.

The bulk susceptibility agrees well with the Kondo-
disorder model but is overestimated by the Griffiths-
phase picture at low temperatures. This is not surprising,
since the possibility of nearly-NFL behavior is built into
the Kondo-disorder model, whereas the Griffiths-phase
theory in its present form neglects effects, such as trans-
verse Kondo fluctuations or residual interactions between
clusters, which could modify or remove the Griffiths sin-
gularities which cause the NFL behavior.

The experimental data obtained to date do not dis-
criminate clearly between the two pictures, since the dis-
tribution function P (χ) which describes the inhomoge-
neous distribution of susceptibilities contains no qualita-
tive feature sensitive to the existence of RKKY-coupled
clusters. We speculate that dynamical properties such
as nuclear spin-lattice relaxation rates may be more sen-
sitive to low-lying excitations associated with spin-spin
couplings, particularly at low temperatures, and suggest
that further measurements of spin relaxation rates be
carried out.

Sec. II of the paper describes our measurements of
bulk magnetic susceptibility and 29Si NMR spectra in
CeRhRuSi2. The relation between inhomogeneity in
the susceptibility and the NMR linewidth is reviewed in
Sec. III. Sec. IV treats the single-ion Kondo-disorder and
Griffiths-phase disorder-driven NFL mechanisms. Anal-
ysis of the susceptibility and NMR data is discussed in
Sec. V, and Sec. VI gives our conclusions.
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II. EXPERIMENT

Measurements of bulk susceptibility and 29Si NMR
spectra were carried out on unaligned and field-aligned23

powder samples of CeRhRuSi2 at a frequency of 20.220
MHz and temperatures in the range 4.2–230 K. Field-
swept NMR spectra were obtained using pulsed-NMR
spin-echo signals and the frequency-shifted-and-summed
Fourier-transform processing technique described by
Clark et al.24 The solid curve in Fig. 2 shows a 29Si
NMR spectrum from an unaligned powder sample at 4.2
K. We attempted to fit this spectrum to an anisotropic
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FIG. 2. Field-swept 29Si NMR spectra in CeRhRuSi2 for
T = 4.2 K and spectrometer frequency 20.220 MHz. Solid
curve: unaligned powder sample. Dashed curve: field-aligned
powder, H0 ‖ c. Dash-dot curve: field-aligned powder,
H0 ⊥ c.

powder pattern25 convoluted with a Gaussian broadening
function, but found a poor fit if the width of the broad-
ening is assumed independent of crystallite orientation.
The low-field side of the spectrum, which is due to those
crystallites with c axes parallel to the applied field H0

(H0 ≈ 24 kOe), is more strongly broadened than the
high-field side. Fits to the low-field region of the spec-
trum yielded a crude estimate of the extra broadening,
which becomes large at low temperatures as predicted by
the disorder-driven NFL mechanisms discussed above.

The magnetic susceptibility χ(T ) = M(H, T )/H ,
where M(H, T ) is the bulk magnetization of the system,
is strongly anisotropic in the Ce(Ru1−xRhx)2Si2 series,
with the c-axis susceptibility χc(T ) (H0 ‖ c) much larger
than the ab-plane susceptibility χab(T ) (H0 ⊥ c).16 This
suggests that the extra broadening observed for H0 ‖ c

might be due to disorder in the susceptibility similar to
that found in UCu5−xPdx, and we were motivated to
measure the linewidth in a field-aligned powder sample.23

The powder was mixed with epoxy, which was allowed to
harden in a magnetic field of 60 kOe. The torque on

the anisotropic moment aligned the c axis of each single-
crystal powder grain in the direction of the applied field
before the epoxy hardened.

The anisotropic susceptibility measured in this field-
aligned powder sample is shown in Fig. 3. These data
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FIG. 3. Temperature dependence of the anisotropic suscep-
tibility in a field-aligned powder sample of CeRhRuSi2. Cir-
cles: basal-plane susceptibility χab(T ). Triangles: c-axis sus-
ceptibility χc(T ). Solid curve: fit of single-ion Kondo-disorder
model (Refs. 10 and 11) to χc(T ). Dashed curve: fit of Grif-
fiths-phase model (Ref. 9) to χc(T ).

agree well with measurements on a small single crystal of
CeRhRuSi2 (not shown). A strong Curie-Weiss-like tem-
perature dependence is found for χc(T ), whereas χab(T )
is small and only weakly temperature dependent.26 The
curves give fits of χc(T ) to the Kondo-disorder and
Griffiths-phase models as discussed below in Sects. IVA
and IVB, respectively.

Figure 2 also gives the 29Si NMR spectra measured in
the field-aligned powder sample for H0 ‖ c and H0 ⊥
c. It can be seen that, as expected, the line is wider
for H0 ‖ c than for H0 ⊥ c. The small shoulder on
the high-field side of the H0 ‖ c line indicates that the
alignment of crystallites in this sample is not perfect. The
large linewidth anisotropy implies, however, that neither
a small misalignment of the crystallites in the sample nor
a slight misalignment of the sample with respect to H0

affect linewidth measurements appreciably for H0 ‖ c.
29Si NMR spectra from a more completely aligned but
smaller sample (not shown) confirmed this expectation.
The misalignment does, however, preclude any attempt
to obtain information about the shape of P (∆) from the
shape of the NMR line.

III. SUSCEPTIBILITY INHOMOGENEITY AND

NMR LINEWIDTH

Since the NMR frequency shift of a given nucleus is
determined by the interaction between its magnetic mo-
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ment and those of the surrounding electrons, any spatial
variation of the electronic magnetic susceptibility will be
reflected in the NMR linewidth as a distribution of fre-
quency shifts. A quantitative understanding of the sus-
ceptibility inhomogeneity requires analysis of the relation
between it and the NMR linewidth, independent of the
particular mechanism which causes the inhomogeneity.

The NMR frequency shift K measures the time-
averaged effective field produced by the local moment
at the resonating nucleus. In a paramagnet the relative
shift Ki of the ith nucleus is related to the local suscepti-
bility χj associated with the jth f -ion electronic moment
by25

Ki =
∑

j

aijχj , (1)

where aij is the hyperfine coupling constant between the
jth moment and the ith nucleus. It is straightforward to
carry out the spatial averages and show that

K = aχ , a ≡
∑

j

aij ,

where a bar designates a spatial average in this and
the following. Similarly, the rms spread of shifts δK ≡
(K2 −K2)1/2 is related to the corresponding rms spread
of susceptibilities δχ by

δK = a∗δχ ,

where a∗ is an effective hyperfine coupling constant, dis-
cussed in more detail below. As a consequence

δχ/χ = δK/(a∗χ) . (2)

If each nucleus is coupled to more than one moment
[cf. Eq. (1)], any spatial correlation between the mo-
ment susceptibilities will affect the value of a∗. There
are two extreme limits in considering this spatial cor-
relation. The term “long-range correlation” (LRC) will
be used to describe the situation where the correlation
length between local moments is much longer than the
local-moment near-neighbor spacing. Similarly, “short-
range correlation” (SRC) describes the situation where
the variation of susceptibility from site to site is random
or nearly so, i.e., where the correlation length which de-
scribes this variation is of the order of or shorter than
a lattice constant. Note that this correlation is only a
phenomenological description of the inhomogeneous sus-
ceptibility, and is not necessarily related to critical be-
havior of the system. For a given system we do not know
a priori which (if either) of these limits is applicable, al-
though in the single-ion Kondo-disorder model we might
expect that random ligand disorder would lead to rela-
tively short-range correlation.

It can be shown11 that the values of a∗ in the LRC and
SRC limits (denoted by a∗LRC and a∗SRC, respectively) are
given by

a∗LRC = |a| ; a∗SRC =





∑

j

a2
ij





1/2

.

Assuming for simplicity that the hyperfine coupling is
predominantly to an effective number neff of f -ion near
neighbors and is the same effective value aeff for each of
these neighbors, it follows that

a∗SRC =
√

neffaeff and a∗LRC = neffaeff ,

so that

a∗SRC = a∗LRC/
√

neff . (3)

In the LRC limit the fractional susceptibility inho-
mogeneity δχ/χ is given by the relative NMR line-
width δK/

∣

∣K
∣

∣. Since δK = σ/H0, where σ is the rms
linewidth in magnetic field units, we have from Eq. (2)

δχ

χ
=

δK

a∗
LRC

χ
=

δK
∣

∣K
∣

∣

=
σ

∣

∣K
∣

∣H0

(LRC limit) . (4)

Thus σ/(
∣

∣K
∣

∣H0), which can be derived from the NMR
data, is an estimator for δχ/χ in the LRC limit. The
corresponding estimator in the SRC limit can be obtained
from σ/(

∣

∣K
∣

∣H0) simply by scaling by the factor
√

neff

[Eq. (3)]:

δχ

χ
=

δK

a∗
SRC

χ
=

(

δK
∣

∣K
∣

∣

)

(

a∗LRC

a∗
SRC

)

=
√

neff

(

δK
∣

∣K
∣

∣

)

(SRC limit) . (5)

The above assumes that the coupling constants aij are
not disordered, i.e., that they have the same values for
crystallographically equivalent positions of nucleus i and
f -ion j. If this is not the case and the aij are also disor-
dered, then it can be shown11 that

δK
∣

∣K
∣

∣

=

[

(

δχ

χ

)2

+ A2

]1/2

, (6)

where A is a term which expresses the effect of the dis-
ordered aij . Now in existing disorder-driven models10,8,9

it is found that δχ/χ varies considerably with χ (with
temperature an implicit parameter), tending to a value
>∼ 1 at low temperatures and vanishing as χ → 0 (high
temperatures). On the other hand A is found to be in-
dependent of χ. Disorder in the aij will therefore result

in a nonzero intercept in a plot of δK/
∣

∣K
∣

∣ vs. χ, and
its effect can be removed by subtracting this intercept in
quadrature from the raw δK/

∣

∣K
∣

∣ data. It can be shown
that this correction is valid in both the LRC limit and
the SRC limit.

It should be stressed that this “NMR technology” is
quite independent of the specific mechanism which causes
the susceptibility inhomogeneity.
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IV. DISORDER-DRIVEN NFL MECHANISMS

In considering systems where NFL behavior is driven
by disorder it is convenient to study the spatially-
distributed local susceptibility χj . Simple linear response
theory shows that the zero-temperature local susceptibil-
ity can be associated with a characteristic local energy
scale ∆j by

χj ∝ 1

∆j
, (7)

where ∆j is essentially the excitation energy from the
ground state to the first excited state. At finite tempera-
tures T the local susceptibility χ(∆, T ) depends strongly
on the microscopic details which couple the magnetic de-
grees of freedom.

We can therefore speak of distributions of suscepti-
bilities or energy scales, characterized by distribution
functions P (∆) and P (χ), respectively; thus P (χ, T ) =
P (∆)/|∂χ(∆, T )/∂∆|. Once P (∆) [or P (χ, T )] is known
we can obtain spatial averages of physical quantities such
as the nth moment χn(T ) of the local susceptibility dis-
tribution, which is given by

χn(T ) =

∫

∞

0

χn(∆, T )P (∆) d∆ (8a)

=

∫

∞

0

χnP (χ, T ) dχ . (8b)

Knowledge of the first and second moments of P (χ, T ) is
sufficient for interpretation of the bulk susceptibility and
NMR linewidth data.

A. Single-ion Kondo disorder

We take the Ce-ion spins to be coupled to the
conduction-electron spins by a s-f exchange coupling
described by a coupling constant g = N(EF )J , where
N(EF ) is the density of conduction-electron states at the
Fermi surface and J is the Ce-ion–conduction-electron
exchange interaction. If the system is disordered on the
ligand sites, as in CeRhRuSi2, g will be randomly dis-
tributed according to a distribution function P (g). In
the simplest picture of the Kondo effect, the Kondo tem-
perature TK , which characterizes the energy scale of the
single-ion Kondo effect, is given by TK = EF e−1/g,
where EF is the Fermi energy. Thus a narrow distri-
bution of g can lead to a wide distribution of TK when g
is small. In this picture we immediately identify ∆ with
TK .

If the distribution function P (∆) = P (TK) is broad
enough so that P (TK→0) does not vanish, then at any
nonzero temperature T those f ions for which TK < T
are not compensated (i.e., are not described by Fermi-
liquid theory) and give rise to the NFL behavior. In

view of Eq. (7) one sees that regions of the system where
TK is very small (sites with very large low-temperature
susceptibility) dominate the thermal and transport prop-
erties. Miranda et al.8 have treated this picture in de-
tail, and have shown that it predicts the observed low-
temperature behavior of the Sommerfeld coefficient γ(T ),
susceptibility χ(T ), and resistivity ∆ρ(T ) = ρ(T ) − ρ(0)
(γ ∝ χ ∝ − lnT and ∆ρ ∝ T , respectively) provided
that P (TK→0) is finite.

The resulting distribution function P (TK) is given by

P (TK) = P (g)

∣

∣

∣

∣

dg

dTK

∣

∣

∣

∣

=
g2P (g)

TK
(9)

with g = 1/ ln(EF /TK). As a convenient parameteriza-
tion of the Kondo physics we take the susceptibility to
have the Curie-Weiss form

χ(T, TK) = C/(T + αTK) , (10)

where C is the Curie constant. The value of α was es-
timated by comparing this Curie-Weiss law to the exact
Bethe-ansatz solution;27 the two functional forms differ
by <∼10% for α ≈ 2.5. Assuming a Gaussian distribution
for P (g), the mean g and rms width δg of the distribution
can be found by fitting Eq. (8) with n = 1 to the mea-
sured bulk (i.e., spatially averaged) susceptibility.10,12

B. Griffiths-phase model

In the Griffiths-phase model of NFL behavior9 the
low-energy physics is dominated by rare and large clus-
ters which can tunnel over classically forbidden regions.
These correlated regions are generated by above-average
values of the RKKY interaction. The tunneling is pro-
duced by the spin-flip processes present in the Kondo
effect.9 In this scenario the Griffiths singularities ap-
pear close to a QCP below percolation threshold and are
therefore intrinsically related to QCP physics. It is intu-
itively clear that the clusters can be effectively described
in terms of two level systems, with tunneling energy E
which is distributed over the sample due to the structural
disorder. Obviously we have ∆ = E in this picture.

The distribution of E is obtained by mapping the prob-
lem onto the Ising model in a transverse field; this proce-
dure is valid in the limit of large magnetic anisotropy as
appears to be the case in CeRuRhSi2 (cf. Fig. 3). Then
it can be shown28 that

P (E) =











λ

ǫ0

(

E

ǫ0

)

−1+λ

, 0 < E < ǫ0 ,

0 , E > ǫ0 ,

(11)

where λ is an exponent that determines the behavior of
the response functions (0 ≤ λ ≤ 1), and ǫ0 is a high
energy cut-off which must be determined for each specific
system.
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As discussed above the local zero-temperature suscep-
tibility in this picture is χ(0, E) = C/E; large clusters
with small energy scales have large susceptibilities. At
high temperatures one expects the clusters to be disor-
dered and behave paramagnetically, resulting in a Curie
behavior χ(E, T ) = C/T for T ≫ E. We therefore as-
sume a Curie-Weiss interpolation formula

χ(E, T ) =
C

T + E
(12)

as for the Kondo-disorder model. But in the present
case this approximation is intended to incorporate all the
interaction effects which determine the susceptibility of
a multi-ion cluster, not just single-ion Kondo physics.

Using Eqs. (8), (11), and (12) it is straightforward to
show28 that for T ≪ ǫ0

χ(T ) =
πλC
ǫ0

(ǫ0
T

)1−λ

(13)

and

δχ(T )

χ(T )
=

[

1 − λ

2πλ

]1/2
(ǫ0

T

)λ/2

. (14)

The critical behavior is determined by the single nonuni-
versal temperature-independent exponent λ. For λ < 1
the susceptibility diverges algebraically as T → 0 (H =
0), and NFL behavior is obtained. The divergence in-
creases (i.e., the NFL behavior becomes stronger) with
decreasing λ. The case λ = 1 is marginal, and leads
to logarithmic singularities as in the Kondo-disorder
approach.8

C. Kondo disorder versus Griffiths singularities

Both the Kondo-disorder and Griffiths-singularities
pictures deal with a similar aspect of disorder, viz., the
physics of rare events with large susceptibilities. It is
clear, however, that the microscopic aspects of the two
models are very different. The Kondo-disorder model
uses non-interacting single-ion physics, and no aspect of
the RKKY interaction is present. The Griffiths-phase
approach, on the other hand, tries to take both RKKY
and Kondo phenomena into account on an equal footing,
and has a strong connection with QCP physics.

From the point of view of local properties as measured
in NMR spectra these approaches give similar results.
The spatial properties of the two approaches are very
different, however, since the formation of clusters in the
Griffiths phase requires spatially extended structure. In
this case one could look for the existence of clusters via
superparamagnetic response, which is well understood in
the context of spin glasses,29 or for a momentum depen-
dence of the inelastic neutron scattering. In addition,
one would expect cluster formation to slow down the
spin fluctuations relative to the free-ion fluctuation rate,

which is essentially TK . Experiments that are sensitive to
the fluctuation rate may therefore be able to distinguish
between the two theories.

V. RESULTS AND DISCUSSION

A. Bulk magnetic susceptibility

A fit of the Kondo-disorder model result for χ(T )
[Eq. (8) with n = 1 and ∆ = TK , and Eqs. (9) and
(10) for P (TK) and χ(T, TK)] to the experimental c-
axis susceptibility χc(T ) is shown as the solid curve in
Fig. 3. We obtain the same coupling constant distri-
bution width δg = 0.021 as Graf et al.,12 and a some-
what smaller mean g = 0.160 compared to 0.175 from
Ref. 12.30 The coupling constants are less widely dis-
tributed than in the NFL system UCu5−xPdx, x = 1.0
and 1.5,11 consistent with weaker “nearly NFL” behavior
in CeRhRuSi2.

Figure 3 also gives the Griffiths-phase model predic-
tion for χc(T ) (dashed curve), obtained by fitting χ(T )
from Eq. (8) (n = 1), with ∆ = E and using Eqs. (11)
and (12), to the bulk c-axis susceptibility. The best fit is
given by the dashed curve in Fig. 3. It can be seen that
at low temperatures the Griffiths-phase fit curve overes-
timates the experimental data slightly. This is to be ex-
pected, since in the simple Griffiths-phase model there is
no possibility of a return to Fermi-liquid behavior at low
temperatures: the system is a true NFL as long as λ < 1.
But the susceptibility data begin to exhibit the satura-
tion expected from the conclusions of Graf et al.,12 and
therefore are not well described by an algebraically diver-
gent temperature dependence. There is, however, a re-
gion of intermediate temperatures in which both Kondo-
disorder and Griffiths-singularity models agree very well
with experiment. From the Griffiths-phase fit in this re-
gion we obtain ǫ0 = 170±10 K and λ = 0.88±0.02. The
latter value is considerably larger (i.e., the NFL behavior
is weaker) than found in UCu5−xPdx

9 as in the Kondo
disorder model.

Figure 4 shows the distribution functions P (∆) which
result from the Kondo-disorder (∆ = TK) and Griffiths-
phase (∆ = E) model fits. It can be seen that the two
functions are very different. The Kondo-disorder distri-
bution function P (TK) exhibits a maximum near 12 K
and is small below ∼1 K and above ∼100 K, whereas
the Griffiths-phase distribution function P (E) is broader
and diverges weakly as E → 0. These differences are
much more marked in P (∆) than in the corresponding
fits to the susceptibility (Fig. 3); spatially-averaged ex-
perimental quantities are insensitive to the exact form of
P (∆). It is clear that the Griffiths-phase model could fit
the data better if P (E) → 0 as E → 0, which in an ex-
tended Griffiths-phase picture would occur if there were
an upper cutoff on the cluster susceptibility.
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FIG. 4. Distribution functions P (∆) of characteristic en-
ergies ∆ in CeRhRuSi2, obtained from fitting the Kon-
do-disorder (∆ = TK) and Griffiths-phase (∆ = E)
models to the bulk c-axis susceptibility (Fig. 3). Solid
curve: Kondo-disorder distribution function P (TK) [Eq. (9)].
Dashed curve: Griffiths-phase distribution function P (E)
[Eq. (11)].

Thus CeRhRuSi2 does not exhibit “true” NFL be-
havior. In the Kondo-disorder model, which shows this
most explicitly, the best fit indicates that all spins are in
a Kondo-compensated Fermi-liquid state at low enough
temperatures. This is consistent with the results of Graf
et al.12 that γ(T ) → const. and ∆ρ(T ) ∝ T 2 as T → 0.
We note again, however, that as mentioned in Sec. I the
saturation of γ(T ) does not necessarily indicate Fermi-
liquid behavior at low temperatures; other physics, such
as magnetic freezing,21,22 may be involved.

B. 29Si NMR linewidths

The 29Si c-axis NMR shift Kc and linewidth σc are
plotted against the c-axis bulk susceptibility χc in Fig. 5,
with temperature an implicit parameter. (The ab-plane
parameters Kab and σab, not shown, are small and only
weakly temperature dependent.) It can be seen that σc

varies more rapidly with χc than Kc, as expected qualita-
tively from disorder-driven theories of NFL behavior.8–10

Although the expected linear relation between Kc and
χc is observed at high temperatures (small χc), Kc(χc)
tends to a constant for large χc. This saturation is not
well understood, but may be due to a small amount of
second phase; this could have a strong Curie-Weiss-like
susceptibility but little effect on the NMR shift since the
number of nuclei in the second phase would be small.31

The observed nonlinearity is not more than ∼20% and
does not affect our conclusions significantly.

Figure 6 plots σc/(KcH0) = δKc/Kc = δKc/(a∗LRCχc)
[Eq. (4)] versus χc. As discussed in Sec. III σc/(KcH0)
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FIG. 5. 29Si c-axis NMR shift Kc (circles) and linewidth σc

(triangles) vs. c-axis susceptibility χc in CeRhRuSi2, with
temperature an implicit parameter. Spectrometer frequency
20.220 MHz (applied field ∼ 23.9 kOe). The linewidth σc

varies more rapidly with χc than Kc, as expected from disor-
der-driven theories of NFL behavior (Refs. 8–10).

is an estimator for δχ/χ in the LRC limit. The data
extrapolate to a non-zero value as χc → 0, which indi-
cates that the coupling constant aij is also disordered.
We therefore subtracted the extrapolated intercept from
the raw values in quadrature [cf. Eq. (6)] to obtain cor-
rected data in the LRC limit, also shown in Fig. 6 (tri-
angles). These corrected data represent δKc/(a∗LRCχc)
with δKc due only to susceptibility inhomogeneity. The
corresponding (corrected) values of δKc/(a∗SRCχc) were
obtained from Eq. (5) of Sec. III, with neff chosen as
described below.

For both the Kondo-disorder and Griffiths-phase mod-
els δχ/χ was calculated from Eq. (8) (n = 2) and χ(T )
with no further adjustable parameters, since P (∆) had
been previously determined by the fits to the bulk sus-
ceptibility. Figure 7 compares δKc/(a∗χc) in both limits
with the theoretical behavior of δχ/χ from these theories,
again with temperature an implicit parameter. It can be
seen that the theoretical predictions are similar and that
they both overestimate δKc/(a∗LRCχc) considerably, but
that the agreement with δKc/(a∗SRCχc) is excellent when
neff in Eq. (5) is taken to be 6.

That this value is sensible can be concluded from
examination of the Al4Ba-type crystal structure of
CeRhRuSi2, shown in Fig. 8, where it can be seen that
each Si site is coordinated by four Ce nearest neighbors
and one Ce next-nearest neighbor. Thus neff is approx-
imately the coordination number for the first two near-
neighbor shells and is therefore reasonable, given the ap-
proximation of an effective number of equally-coupled
neighbors.

For CeRhRuSi2 we do not have the independent veri-
fication of the SRC limit that was available from com-
parison of NMR and muon spin rotation (µSR) spec-
tra in the case of UCu5−xPdx.32 (For a review of the
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FIG. 6. Plot of relative spread σc/(KcH0) of c-axis 29Si
NMR shifts in LRC limit versus c-axis susceptibility χc in
CeRhRuSi2. See text for symbol definitions. Circles: raw
data before correction for disorder in the hyperfine coupling
constant. Triangles: data corrected for coupling constant dis-
order (see text).

µSR technique see, for example, Ref. 33.) The latter
alloys have a cubic crystal structure and the positive-
muon (µ+) interstitial stopping sites possess octahedral
and tetrahedral point symmetries, which are sufficiently
high to render the µ+ frequency shift isotropic. Then
the µ+ linewidth reflects the susceptibility inhomogene-
ity rather than anisotropic powder-pattern broadening.
Preliminary µSR measurements in an unaligned pow-
der sample of CeRhRuSi2

34 show that in this alloy the
anisotropic contribution dominates the powder-pattern
linewidth, much as in the unaligned-powder spectrum of
Fig. 2, and the disorder-induced broadening cannot be
determined accurately.

Unfortunately field-aligned powder samples cannot be
used in µSR experiments. The packing fraction of the
powder must be small (<∼ 20%) in order to allow free ro-
tation of the powder grains during alignment, and then
only a correspondingly small fraction of the muons stop in
the sample; the rest stop in the epoxy and give a spurious
signal. Thus we cannot confirm the SRC limit by com-
paring results between NMR and µSR. We also note that
no other nucleus in CeRhRuSi2 is favorable for NMR; sta-
ble Ce isotopes possess no nuclear magnetic moment, and
Ru and Rh isotopes have very small gyromagnetic ratios.
Nevertheless, the SRC-limit estimate of δχc/χc is in ex-
cellent self-consistent agreement with the disorder-driven
models.

VI. CONCLUSIONS

The picture that emerges from our 29Si NMR stu-
dy of CeRhRuSi2 exhibits similarities and differences
when compared to the preceding NMR investigation of
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FIG. 7. Experimental and theoretical relations between
rms susceptibility inhomogeneity and bulk susceptibility in
CeRhRuSi2. Data points: c-axis NMR estimator δKc/(a

∗χc)
of relative rms susceptibility spread δχ/χ. Circles: LRC limit
(see text). Triangles: SRC limit. Solid curve: δχ/χ in the
single-ion Kondo-disorder model. Dashed curve: δχ/χ in the
Griffiths-phase model. Agreement is found between predic-
tions of disorder-driven NFL theories and data in the SRC
limit for effective nearest-neighbor number neff = 6.

UCu5−xPdx, x = 1.0 and 1.5.10,11 The most important
similarity is the fact that in both cases the NMR data
are in excellent agreement with predictions of disorder-
driven theories of NFL behavior. Our results therefore
confirm the conclusions of Graf et al.12 that such a mech-
anism drives NFL properties in CeRhRuSi2. The most
important differences between the two systems are that
in CeRhRuSi2 (1) within the single-ion Kondo-disorder
model the disorder is not enough to prevent a return to
Fermi-liquid behavior at temperatures <∼ 1 K, and (2) the
determination of the appropriate correlation length limit
(LRC or SRC) has not been made independently of com-
parison with theory. The agreement between theory and
experiment assuming the SRC limit (Fig. 7) is satisfac-
tory.

From the experimental point of view, the relatively
small differences between the predictions of the single-
ion Kondo-disorder picture and the Griffiths-phase the-
ory show how difficult it is to discriminate between these
two mechanisms for disorder-driven NFL behavior in the
NMR linewidths. We speculate, however, that the dy-
namics of the spins will be quite different in the two cases,
particularly at low temperatures.

The single-ion Kondo disorder model predicts inhomo-
geneous relaxation due to the distributed TK . This mech-
anism yields a spatially averaged spin-lattice relaxation

rate T−1
1 (T ) =

∫

dTK P (TK)T−1
1 (T, TK). It is convenient

to approximate T−1
1 (T, TK) by

T−1
1 (T, TK) ∝

{

1/TK , T > TK ,

T/T 2
K , T < TK ,

8



FIG. 8. Crystal structure of Ce(Rh1−xRux)Si2. Each Si
site is coordinated by four Ce nearest neighbors (no. 1) in the
adjacent basal plane and one Ce next-nearest neighbor (no. 2)
in the opposite basal plane.

which captures the crossover to Fermi-liquid (Korringa)
behavior for T < TK . For a model rectangular P (TK)
given by

P (TK) =







1

TM − Tm
, Tm < TK < TM ,

0 , otherwise,

where Tm and TM are minimum and maximum values of

TK , respectively, it is straightforward to show that T−1
1

varies linearly with T for T < Tm and goes smoothly to a
constant for T > TM . Such behavior would be generally

expected to characterize T−1
1 as long as P (TK→0) = 0.

Thus in this scenario T−1
1 depends on temperature but

is independent of resonance frequency ω.
In contrast, it can be easily shown from the expression

for the dissipative dynamic susceptibility χ′′(ω) in the
Griffiths-phase theory9

χ′′(ω) ∝ ω−1+λ tanh(h̄ω/kBT )

that, assuming the validity of this picture for the very
low nuclear (muon) frequencies (h̄ω ≪ kBT )

T−1
1 ∝ ω−1+λ ,

independent of temperature. The frequency is given by
ω = γH0, where γ is the nuclear (muon) gyromagnetic

moment. Thus the dependence of T−1
1 on temperature

and H0 differs consierably between the two theories.
It should be noted that the NMR linewidths obtained

from experimental data are not necessarily true sample
rms averages, if the lines have extended shoulders which
are lost in the noise and not taken into account. The fact
that good fits are obtained with Gaussian lines seems to
make this unlikely, but it is not hard to see that at low

temperatures P (χ) should be broad and asymmetric in
both the Kondo-disorder and Griffiths-phase models. If
the experimental linewidth characterizes only “typical”
environments it will underestimate the true sample av-
erage. This would render our quantitative results some-
what uncertain, but would not invalidate the conclusion
that disorder is an important element in the NFL behav-
ior of CeRhRuSi2 above 1 K.

Finally, we discuss the relation of the disorder-
driven theories to the observed crossover to a new
regime (Fermi-liquid behavior, cluster formation, mag-
netic freezing, etc.) in CeRuRhSi2 below 1 K. The
crossover is described empirically by the Kondo-disorder
model, which by itself gives no clue as to why there should
(or should not) be a suppression of low Kondo temper-
atures. Recently, however, Miranda and Dobrosavljvić35

have reported a microscopic calculation of the form of
P (TK) for various levels of disorder. They find that the
distribution is singular only for sufficiently strong disor-
der, whereas for slightly weaker disorder P (TK) → 0 at
small TK , onsistent with a return to Fermi-liquid behav-
ior at the lowest temperatures. This feature is in at least
qualitative agreement with our results.

To explain the crossover the Griffiths-phase scenario
would have to be extended beyond its simplest form
to include a mechanism which reduces the response of
the largest clusters. The mechanism behind such a re-
duction could be the breakdown of the assumption of
strong single-ion anisotropy made in the Griffiths-phase
theory;28 transverse fluctuations of the Ce ions might
constitute a damping mechanism which rounds off the
Griffiths singularities. Alternatively, superparamagnetic
spin freezing of the clusters could occur at very low
temperatures.21,22

It is possible that similar crossovers occur in other NFL
materials, perhaps at temperatures which have not yet
been explored. In any event, our experimental findings
indicate that further development of current theories of
disorder-driven NFL behavior is required to understand
NFL phenomena at low temperatures.
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Stockert, and H. R. Ott, Phys. Rev. B 54, 13000 (1996).

33 A. Schenck, Muon Spin Rotation Spectroscopy: Principles

and Applications in Solid State Physics (A. Hilger, Bristol
& Boston, 1985).

34 D. E. MacLaughlin, R. H. Heffner, L. P. Le, J. D. Thomp-
son, Z. Fisk, G. J. Nieuwenhuys, A. Amato, A. Schenck,
and H. R. Ott (unpublished).

35 E. Miranda and V. Dobrosavljević, Physica (Amsterdam)
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