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.'F'requency and Wave-Vector-Dependent Dielectric
Function for Silicon”
by
John P. Waltert and Marvin L. Cohen
Department Qf Physics, University of California
and | -
Inorganic Materials Research Division, Lawrence Radiation Laboratory
| Berkeley, California 94720
Abstract
The frequency and wave-vector- dependent
-complex dielectric function. e(a,w)’ is calculated
for silicon. The energy eigenvalues and eigenvec-
tors which are used have been .obtai.néd from energy-
 band calculations based on the empirical pseudo-

.. potential method. Explicit results ar'e given in the
[100] direétion in the range 0 < q < (2w/a) and
O<m<24eV. A .comparison is made betWee.n the
present results and the results of a calculétion of
e(q,w) for a free electron gas in the random phase

approximation.



I. Introduction -

We haVe calculated the frequency and Wa've—':\'zé-_:jctor-'dependent
dielectric fuhgition e.(a,m) in the [100] direction fc';r silicon. ' This is the
first calcul’éi_tibn of e(a,w) for é sefniconductor in_W‘hiCh r'ealistic_ eﬁergy
eigenvalues -vand eigenvectdrs are‘ used. Previous calculations of dielectric
functions __h'a.v'e concentrated eithér oh thevwave-véc_ftér.—dependent dielectric |
function] for zero frequency e(a,w =0) or on theA'f_r_.'éQuency;de'pendent -_
dielectric fuhn.ction2 ve(a =0,w). The former case 1s important in defer—
mmmg .'Vthéi_static screenin;j; of electric fields, and the latter case is impor-
tant in anaiyZing the optical properties of semiconductors bécause q is
approximatél_y zero for optical Wave—vectbrs. The more general dielectric
function e(E,'w) describes the screening of a iongitﬁdinal-field Which va.ries
in both space and time. A knowledge of e(a,w) permits us 'tb obfaih’the
following.prop.erties' of the solid: the response toylw,eak e}tternai lorigitudinal
' .fields; the density-fluctuation excitation spectrun'.i_}(_energy- loss of a fast.
charged pa.pticle) ;. 'and the time-dependent correlatibfi"_S between the density
fluctuations (plasmon modes).

In fhe present caléulation the réal part of-.tv}{e, dielectric function
_ €1(§,a>) is c_aléulated directly, and the‘imaginaryrparvt' ez(a ,Aw) is calculated

using the .Kramers-Kanig t‘ranéformation. The- f_ﬁncﬁions el(a,w) and
 €2(5’®) are tﬁen usé'd to calculate the imaginary‘ p'ar'tv:of thé 'in\\/erse dieiéctric
function ‘Im-e—l(a,w), which is'propo'rftional for small q to l;he en‘grgy— loss

function of a fast charged particle passing through the solid.
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.- The defails of the calculatibn are given mSec IT along with thé results
fof silicon. In Sec! I the silicpn calculatibns are compared with a calcula-
tion of €l(q,,w), 62(q,m) and Im e_l(q,w) for a free Iellectron gas in the
random phase approximation, that is, the Lindhar_d? dielectric function. :

A compariéoh, of the various dielectric functions for éiliccn and the fre'e
electron gés iilustrates the principal difference between ‘Athe two cases.

. Ca lculatlons

First we calculate the longitudinal wave-vector- dependent and frequency—
dependent dielectric function e(q,w) for silicon which describes the
response-bf a crystal to an electric field parallel to a and varying
sinusoidally in time:

' Det (q r - o) = e(&,w)ﬁeiﬁ'i: - at) . (2.1)
%Jsmg the expression for el(a,w) given by Ehrenreich and Cohen4,

we obtain

el(_a,w) = 14 e s ‘EZ [c3 CIk+q,V>| |
: 8§29 c,V . (2.2)

x {[E_® - E EJ - no] 1 + [E'C(E) - B (F + 1]},

where _]E-‘-i_s sumr'ned} over the fifst Brillouin zorie, v labels the valence
barids, and c labels the conduction bands. For the purposes of calculation

Eq. (2.2) is written as follows



-. | 2 |
el(Q:w) = 1+ 41T§ 2 : | <k:C'k+q; V)' (Ak
’ ' q (2Tr) Ak,c,v
| | (2. 3) |
x {[E,® - EV(EE+6) N R [E,® - E ) + ] } e

where the summation is over cubes of volume (Ak)3 in the first Brillouin
zone, With' suitable t_ru.ncations at the zone boundaries: The summation’
index v spans the top four valence bands and the index ¢ spans the bottom

eleven conduction bands. E (E)‘ is the energy eigenvalue of band n at

state k and Ik n) is the correspondmg elgenvector

The- energy eigenvalues and elgenvectors are callculated ustng the
empirical\-'pseudopotential méthod, as described in féef. 2. Since spin-orbit
effects are small for silicon, they have not been includ’ed in this calculation.
The pseudopotent1al form factors have been adjusted SO that the reflectivity
and the prmc;pal optlcal gaps agree with experlmental measurements 5f 6
Fifteen energy elgenvalues and elgenvectors are computed for ‘each of 3360 .
pomts in the Brllloum zone. The coordmates of the gr1d of calculated points
are given by T]é (2s+1, 2m+1, 2n+1) in units of Zﬂ/a?_ where S, m, and n
are integers? v_ ‘

For a.n arbitrary direction of q, the summation in Eq. (2.3) must
be performed over the entire Brillouin zone, Fortunately, symmetry proper-
ties can be exploited to reduce the computation time by a factor of 8 in the
[100] direction. The computation time for a particul_ar value of q can be
reduced by an additional factor of 15 1f »E;’»is chosen' s_uch that (E+a) ‘also

lies on the grid of calculated points.
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_ Fornc'év'rtain values of ¢, v, K, q and w, [EC(E)-- EV(E+E) - 1’1»].:1 |

can have sinéularitiés and it vafieé rapidly as k varies over the cube of
.v_olume (Ak).3__. | For such cases, the cube is divided inf:o 216 equal sub-cubes.
The contributions of (EC - Ev - ﬁw)-] are calculated by interpolation and
‘are added tqgether and multiplied by the new volume .of~ (Ak) 3/2]6. The
values of [(E,c |E+Ei, v)‘|2 and [EC(E) - EV(E) + ﬁw]-_l which is not singular
very much. more slowly and are given the values théy'assume at the center
of the large’r cubes. |

| Aftér :W.e calculate el(a,m), ‘the imaginary part of the dielectric
function ez(a,é) is calculated by a Kramers-Krbnig transform of €1(E,.w)-
The ime.gin.ary. part of the inverse dielectric functioh Im e_l(a,co) is then
easily computed. Figs. 2-6 display plots of el(Ef,aS), ez(a’,w) and Im e-l(Ef,co)

as a function of w fq»r~q_v=_~0, 1/4, 1-/?, 3/4, and 1 in units of 2nw/a in the

[100] direction. In Ref. 1 we have shown that e

l(a;w=0) is nearly isotropic
with only minor deviations for a parallel to the [1,1,1] direction. There-
fore, we eicpect that e(a,co) does not change signifiéahtly in shape for other
directions of a |

| An indication of the accuracy of the present calculation of el(q¥0,w)
is given by a comparison with a much more accurate calculation done in
conjunction i)vith the wo'rk on silicon presented in Ref; 6. In this previous
calculation.3.56 points in 1/48 of the Rrillouin zone were accurately computed

and then the enerqgy eigenvalues and the dipole matr‘i'x elements were both

determined on a much finer grid of 175,000 points in 1/48 of the Rrillouin




zone by m'eaﬂns_ of an interpolation scheme. The c'o’mparison in F'1g 1.shows
~that the present calculation of el(a=0.,®) is approximately correct, and this,

in turn, indic'ates the accuracy of our calculations of 'é(a,' ).

The numer1ca1 accuracy of the Kramers- Krdnlg transform is excellent -
however, the reader should notice that 62(q ,w) is negatlve for q=0, 1/4, for
small w whereas it should be zero because of the energy gap. This mcorrect
result is caused by small errors in the calculatlon of € (q,m) Small errors
in el and ¢ 5 can cause larger errors in Ime 1, and for this vreasOn th‘e smaller

structure in the plots of Ime-] is not to be zegarded as accurate.

III. Discussion

\

In this section we compare the results for the silicon € (a,m) .
2(q,oo) and the Im [e (q,w)] with these functions calculated for a free

electron gas in the random phase approxnrnatlon Th1s RPA or Lindhard

dielectric function has the form

| © 2
61(6,6) :_-='-1 + 2{[1 -(B+7) ]log hg":f . |
8Bq” | _
- (8.1
[1 - (¢-1% 1og 1= *§+ | 45} | |
and o 5, whenB <1 and &< [48% - 48| ;
Ky®  }1-(@- 7 when |47 - 4|< 5< 467+ 48]
€g(3,6) = —= x | g - (3.2)
' 83q 0, when & > |4B + 48]

o | |
0, when'8 > 1 and & < l462 - 48|

i
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o C . inverse ' |
where B = q/21<F , 0= m/EF, v = 8/48, KS is the/Fermi-Thomas screening

length, k.F-is the free electron Fermi wavevector, and E

F is the Fermi

| energy.

eiﬁ’,'w) for silicon is displayed in a perspective plot (Fig. 7) Which
c - - Fig. 8 we give a
more clearly illustrates how €, varies in the (q,®) plane. In/similar plot

of the Lmdhard el(q,m) obtained from evaluating Eq. (3.1) for a density
of free electfons that give a plasma frequency (up i-denticall to the calculated
silicon valué.__ (The plasma frequency wp is givén by the high-frequency
zero .of 61(3,(0)).

For g =0 andw small, the silicon € arid the Lindhard e, differ

1 1

markedly. In particular, the Lindhard . assumes the familiar form

1
el(q =0,0) =1 - copz/wz, which has a singularity at w =0. This is in com-

plete contrast with the silicon €1’ which is an increasing positive function for

small®w, The significant difference between the two functions at g =0 is

~ that the lower‘ zero of the silicon €, occurs at about»tl'-. 5 eV, whereas the
zero of the.‘ Lindhgrd €4 occurs at zero. The behav:ior of the lower zero in
elis disclu‘ssevd later in gregter detail. For small » at all non-zero values
of q, the »si.lic.:on €4 increases with o until the fuﬁction reaches a maxixﬁum,
but for the_ Lindhard case, €4 decreases with increasing w, so that the
maﬁcimum‘val_ue of the Lindhard €4 always occurs at w =0,

At high w for all g the silicon and Lindhard e 1 functions are similar.
This is reasonable since at high @ (such that hw is much larger than the

energy gap), ‘we expect silicon to resemble a free electron gas because

the high-‘ener'qy excited states correspond to loosely bound electrons.
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In__Fig.'s. 9 and 10 ez(q,w) is plotted for the _éiiicon and Lirild‘har‘d |

cases. Because of the gap, the silicon e, is identically zero at smallw

2
while in the Lindhard case €q

hard ez(q)) first increases linearly and then falls qiiadratically with w for each q

.(see Eq. (3.2)). The quadratic dependence is not'_qlearly visible in Fig; 10
because of the perspective riaJ:ure of the graph @d'the rapid depéndence of
€9 on @ ih_'thése région;. As in the case of el(q,.@b) , 'tﬁe dﬁf_erences in
ez(q,w) bef\a}feén the silicon and Lindhard cases are most prominent at low

hant

q and w.

Figs. 11 and 12 show Im[e-l(a,co)]for the silicon and Lindhard cases.

These.casés differ considérjably. In the Lindhard case the function approaches

zZero as q'and w approach zero except for th;'chax.'.acteristic 5-function at

W = wp. It b'é_comes finite and‘ 1irllcre'ases in magnitudé as q and W become
larger. T'hve sum rules a‘re‘ Satisfied. by appropriate ._contributiorlls at wI;(Q):
The function;Become's finite for eaéh .non—zero q ‘a's‘v@ -incr:eases from zero,
whereas fér‘ silicon the gap in the €, spectrum c’éﬁs{es the Im[e-l(q,w)] func;,
tion to be zero at small w. Comparison with experiment can be made With
optical .Work’7 and electron energy loss measurement's:’. 8 The agreefnent

is good wit_ﬁ_f-espect to amplitude, width and positiorn olf the peak, 'but- we
caution thve:.r.'ead'er against takiﬁg the small struc:.tu'rel near wp serioqsly.in
Fig. 11. In this energy rémge € and €q are close Vto',zero- Iand small errors

are magnified in the Im[e-l(a,w)] function.

For the Lindhard case (Fig. 12) pair excitation (lower w) contributions

———— . — e —— e e

differs from zero for'small w for all q. The Lind-~ -
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to .Lm[e-]]-é_Véntually merges with the plasmon contfibution at largéf q. Ths
occurs fox.*~ q’s where the w(q) line satisfying el[q,,m(q)] = 0 enters the c.ontinuum
For the present case this happens when 1.176 < qa/2w < 1.177. The upper end
of the spectruin is still sharply peaked resembliﬂg a .plasmon- l'1_ke contribﬁt-ion.
For silicon (Fig. 11) this occurs even at q = 0 and the €q coming from: pair
excitatioﬁs darhps the plasmon peak.
It 1s interesting to examine the q and w dependence of the zeros of

the el(q,w) function in the (q,m) plane. The results are given in Fig. 13.

For the Lindhard case the loWer Zero wq of €q oécurs_ at frequencies_

which are linear in q. This can be seeﬁ by expanding the Lindhard function

given in} Eq (3.1) for small g and w. An easier method is to us'e the

.precursorvt'o Eq. (3.1):

2 f(l_{’+a’).- f(l?) :
4me ; :
2 ; EER) - B® - - @3

e(qw) = 1+
For small q, the difference in the Fermi factdr.s be_comes

— -~ 0 .
) - K0 = §-9p~ audlk- k) (3.4)

where

. ———— et e e
e 4 e =

Dropp'mg t_érms in qz in the integrand, the dielectric function becomes



y ' S dj |
elg,w) = 1+ —5 HA g, (27- v log

22)) . ea

S
% o1 M- 2q2 :

\ ‘ »

where Y =w/qu. The lower zero (which looks like é damped traflsverse-

like modé in the continuum)arises when

Tf_z‘l - - (3.9)

2 =+vlog

This condition requires a fairly linear w(q) curve, i.e.

- _g Lo _: | | 4(3. 2
which agrées well with the computer calculations.

For siiicon the lower zero does not resglt from a. linear diSpersion :
curve, but -'a gap appears in the spectrum. This 1sthe most significant di.fferénce
betwéen the two dielectric functions. At higher q, the two curves tend t6
mefge, but 1t "is fnore difficult- to caiculate the zéros of ‘el in ;his region
of the plane. In oiher words it is the gap in the sbeqtrum.at smaller q which

distinguish‘es.the silicon case from the free electron gas case as expected.
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Figqure Captions

1. Compari'sbn of two silicon calculations el-(qzo,co). vThe 70-point calculation -

_ Plots of}_ €.

is perfoAr'.m’ed as described in this paper -and is thevless'accu'rate of t‘he two. «
The 356-p01nt calculation uses flve tlmes as many grld points and a much
finer mterpolated gr1d of 175,000 points on whlch to perform the mtegratlon
Plots of el, € and Im € -1 for silicon as a functlon of hw for q = (O 0, O)

Plots of e"l, €, and Im ¢! for silicon as a functlon of hw for g = (1/4,0, O)21r/a.
Plots of €9 ezrand Im e-l for silicon as a functlon of hw for q =(1/2,0,0)21/a.
i, .62 and Im e_l for siliconas a functlon of hw for q = (3/4,0,0)21T/a.
Pl(_)ts of 'ei,’ €4 and Im €-] for silicon as a func?ior_x of hw for a =(1,0,0)2n/a.
Perspective plot of él(a,w) for silicon ‘ |
Perspe¢£iv¢ plot of ei(a,w) for a free electron"gas'.,

Perspec:tive' plot for éz(a,é) for ‘s'ilicon.

Perspe'c_t.iv'e plo}: of ez(a,w) for a free electron gas A

Perspeétive plot of 'I_m'[g-l(a,w)] for silicon. |

Perspec;f:ivé plot of Imle-l(q,co)[ for a free ele(itr_ori gas.

Plots of th“e zeros of ei(a,w) for silicon and a fré‘e.electron gas in thé

(q ,w) pl'ahe.
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