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ABSTRACT
The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we
combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of
biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simula-
tions with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC
calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a
unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The
computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field
theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0178910

I. INTRODUCTION

The self-assembly of amphiphilic molecules, such as block co-
polymers, surfactants, and biomolecules, plays a critical role in
many natural and industrial processes. Examples include the for-
mation of biological cell membranes through the assembly of lipid
molecules, the micellization of surfactants in detergents, and drug
encapsulation.1–4 In these systems, the critical micelle concentra-
tion (CMC), which is the concentration of surfactants at which

micelles begin to form, is a key design parameter that quantifies
the propensity for self-assembly. The CMC is also important for
understanding the solution phase behavior of surfactants, offering
insights into their interfacial activity, solubility, and emulsification
properties.5–7 This has been highlighted by recent simulation efforts
to predict the CMC, providing a systematic route for evaluating self-
assembly in a vast design space (chemistry, molecule architecture,
molecular weight, pH, temperature, etc.).8–15 Moreover, with the
rising emphasis on sustainable and environmentally friendly prac-
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tices in chemistry, there is a growing demand for the development
of high-throughput screening methods as chemical feedstocks shift
from petroleum- to bio-based sources. A predictive computational
approach that is suitable to explore these new chemistries can offer
an efficient means to screen and assess potential surfactant candi-
dates, facilitating the exploration of greener and more sustainable
alternatives to conventional commercial surfactants.16

Computational tools such as coarse-grained molecular dynam-
ics8 and dissipative particle dynamics9,10 are commonly used to
calculate the CMC in particle-based simulations. Most studies are
performed in the NPT or NVT ensemble and track the concentra-
tion of free surfactants to estimate the CMC. To mitigate the need
for large simulation boxes required near the CMC (typically on the
order of mM for commonly studied surfactants),9 most particle-
based simulation work is conducted at concentrations much higher
than the CMC and relies on the assumption that the free surfactant
concentration remains constant above the CMC. This assumption
has been proven to be inaccurate, especially for ionic surfactant
systems.11,17–19 Studies have shown that employing empirical cor-
rections accounting for crowding effects due to aggregate formation
can provide more accurate predictions of the CMC.11,12,20 These cor-
rections, however, are system-dependent, not known a priori, and
thus require careful investigation. Consequently, particle-based sim-
ulations remain limited in their ability to accurately calculate the
CMC, especially for strongly micellizing systems with CMC values
in the μM range. This is due to both the inaccuracy of extrapolat-
ing the free surfactant concentration from the higher concentration
regime and the high computational cost of the large simulation
boxes required near the CMC. In addition to the length-scale chal-
lenge, self-assembly involves inherently long-time-scale processes
related to diffusion and micelle fission and fusion, which occur
on the order of microseconds.21–24 While atomistic simulations
are intractable for capturing the time-scales of such phenomena,
even particle-based simulations of coarse-grained models face chal-
lenges11 in sufficiently sampling the free surfactant concentration
and equilibrium distribution of aggregate sizes required for accurate
estimation of the CMC.

In principle, a better approach is to calculate the free energy of
micelle formation in the grand canonical ensemble. This approach
directly determines the stability of the micellar state by comparing
its grand free energy with the homogeneous (non-aggregated) state
at the same chemical potential. One advantage of the grand canoni-
cal ensemble is the reduced simulation box size required for studying
micelle formation. Unlike methods that necessitate large simula-
tion boxes to accommodate multiple micelles, the grand canonical
ensemble allows for simulations in smaller boxes containing a sin-
gle micelle. A second advantage is the ability of the grand canonical
ensemble to handle fluctuations in the number of particles at a con-
stant chemical potential, which is beneficial when studying micelle
formation because prior knowledge of the aggregation number is
not required. In contrast to traditional approaches that use the free
surfactant concentration as a proxy for the CMC, the grand canon-
ical ensemble directly provides the composition at which micelle
formation begins—precisely the definition of the CMC.

While the grand canonical approach is in principle exact and
direct, it requires the matching of chemical potentials between the
two states (aggregated and homogeneous) by allowing the particle

number to fluctuate. This step is computationally expensive or even
intractable in particle-based simulations, particularly for systems
that involve macromolecules, due to the need to evaluate chemi-
cal potentials, which requires molecular insertion and relaxation.
In contrast, field theory has been successfully employed to calculate
CMCs for block copolymer and homopolymer mixtures in the grand
canonical ensemble,13 as chemical potentials and free energies can
be directly evaluated through analytical approximations, including
mean-field and Gaussian approximations25–27 or numerically com-
puted without approximation through field-theoretic simulations
via complex Langevin sampling.28,29 Furthermore, one can deter-
mine equilibrium sizes and aggregation numbers of micelles in the
field theory by minimizing the free energy at constant concentration
with respect to the simulation cell size, a task that is known to be
challenging in particle-based approaches.

In this paper, we utilize a simulation framework enabling
chemistry-specific estimation of the CMC, and we validate the
accuracy of our method through experimental comparisons. Our
demonstration focuses on a model system based on a bio-based
surfactant class inspired by intrinsically disordered protein (IDP)
sequences found in human neurons and previously studied by Klass
and co-workers.30,31 This class of bio-inspired, protein-based surfac-
tants possesses a remarkable degree of tunability, stemming from
the diverse selection of the 20 naturally occurring amino acids.
These amino acids offer a wide range of characteristics, includ-
ing hydrophobicity, charge, polarity, and aromaticity. Such a rich
chemical diversity enables precise engineering of the surfactant’s
properties, making them versatile and adaptable for various appli-
cations. In addition, IDP surfactants offer more precise control over
chain length and the individual building block sequence than their
synthetic counterparts. Importantly, prior studies demonstrated that
these surfactants possess encapsulating properties similar to com-
monly used synthetic equivalents with the CMC ∼10 μM.30,31 This
suggests that IDP surfactants are promising candidates as sustain-
able replacements for petroleum-based components in many indus-
trial applications including care formulations, coatings, and drug
delivery vehicles.

In the field theory literature, studies of bio-based
(macro)molecules are relatively limited. In many regards, this
arises from the challenges associated with obtaining accurate
chemistry-specific interaction parameters that adequately capture
the diverse amino acid compositions inherent to bio-based macro-
molecules. Previous studies often circumvented this by reducing the
complex interactions to hydrophilic and hydrophobic interactions
in simplified heteropolymer systems.32,33 Here, we employ a
simulation strategy utilizing a recent development in molecularly
informed field theory described in our previous publications.25,34–36

The method uses relative entropy coarse-graining37 to derive
chemistry-specific coarse-grained (CG) interaction parameters
from small-scale, reference all-atom (AA) simulations. Subse-
quently, the coarse particle-based model is exactly transformed
into a field-theoretic representation.38,39 Because free energies
and chemical potentials are readily calculated by operators in the
field-theoretic representation, this approach allows for the direct
determination of the grand canonical free energy and chemical
potential needed for CMC calculation while preserving important
information about the underlying chemical components.
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The paper is organized as follows: In Sec. II, we describe the
computational details and methods of the entire workflow, includ-
ing the CMC calculation in the field theory. Sec. III provides details
of the experimental procedures. The CMC predictions and analy-
sis of various surfactant models are presented in Sec. IV. Finally, we
summarize our findings and discuss future directions in Sec. V.

II. COMPUTATIONAL DETAILS AND METHODS
A. All-atom simulations

To parameterize the CG model, we employ two sets of ref-
erence AA simulations: pure water (3305 water molecules) and
aqueous solutions of the IDP surfactant fragments. The IDP sur-
factant is comprised of a hydrophilic head and hydrophobic tail, as
shown in Fig. 1(a). The hydrophilic head sequence is inspired by
the neurofilament heavy arm side-chain protein found in human
neurons, which is comprised of nh repeats of the amino acid

sequence (SPAEAKSPVEVK). The self-assembly of this surfactant
is driven by the hydrophobic tail appended to the head domain at its
C-terminus. To circumvent the long equilibration time of large IDPs
in the AA simulations, we use a short sequence of the hydrophilic
domain with nh = 2 and split the surfactant molecule into the head
and tail segments. Subsequently, at the connection point of the two
domains in the full sequence, we attach neutral C-terminal amide
(NME) and N-terminal acetyl (ACE) capping groups to the head and
tail, respectively, according to Fig. 1(a). The purpose of these cap-
ping groups is to mimic the interaction that would occur between
the amino acid at the connection and its neighboring amino acids
in the full sequence. We note that these capping groups are not
considered in the AA-to-CG mapping process. We consider two
choices of reference systems for the IDP surfactant as shown in
Fig. 2: a simulation of the head and tail fragments, and an extended
ensemble40,41 of three simulations, each containing two fragments
from the full sequence (head–head, tail–tail, and head–tail). In each
of these simulations, we solvate the two surfactant fragments with

FIG. 1. Schematic of the multi-scale simulation workflow to construct a molecularly informed field-theoretic model of IDP surfactants. (a) Species involved in the all-atom
system, which include the IDP surfactant and water. Instead of simulating the full surfactant sequence, we split the surfactant into the head (blue), composed of nh repeats
of the sequence (SPAEAKSPVEVK), and the tail (red) domains. At the connection point of the two domains in the full sequence, we attach neutral C-terminal amide (NME)
and N-terminal acetyl (ACE) capping groups to the head and tail, respectively. (b) A coarse-grained particle-based model parameterized by relative entropy minimization. (c)
An exact mapping from the coarse-grained particle-based description of the micelle to a field-theoretic model. This schematic also illustrates the CMC calculation approach,
which involves matching the chemical potentials in the micellar, μi,mic , and disordered, μi,dis, states of compositions ρi,mic and ρi,dis, respectively.
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FIG. 2. Reference AA systems and CG mapping schemes considered in construct-
ing the IDP surfactant model. Black arrows depict the biasing potential between
the centers of mass of any two amino acids (see the main text for a detailed
discussion).

25 500 water molecules and do not include explicit counteri-
ons since the hydrophilic head, while carrying charges, is overall
neutral.

Although we only simulate two short fragments of the pro-
tein, it can still be difficult to obtain accurate distributions at room
temperature with explicit solvent by conventional simulation meth-
ods because it is easy for the system to become trapped in local
minimum-energy states at low temperatures. To circumvent this, we
add a Gaussian repulsion between the centers of mass of any two
amino acids, including the bonded pairs, in all simulations involving
IDP fragments. The added repulsion has the following form:

βUbias(r) = vbiase
−r2
/4a2

, (1)

where vbias is the strength of the repulsion and a = 0.5 nm defines
the interaction range. The functional form of this repulsion is iden-
tical to the excluded volume interaction of the CG model, which
will be discussed in Sec. II B. This allows us to simply subtract the
bias term later to recover the unbiased interaction. Conceptually, the
added repulsion makes the IDP fragments less hydrophobic, reduc-
ing local minima that correspond to collapsed configurations in the
unbiased system and smoothing out the energy landscape. Since we
only consider short IDP fragments, this method serves as a practical
alternative to more computationally intensive advanced sampling
techniques like replica exchange molecular dynamics. In this work,
we select vbias = 0.25 kBT, a value sufficient to reduce the probabil-
ity of collapsed configurations, as evidenced by the reduction in the
intensity of lower peaks in the radius-of-gyration and end-to-end
distributions shown in Fig. S1 for the tail–tail simulation.

We employ the a99SB-disp force field, which was developed by
Robustelli et al. to accurately describe both folded and disordered
proteins in tandem with the modified TIP4P-D water model.42 We
conduct reference AA simulations with the OpenMM simulation
package.43 A 1 nm cutoff is employed for the direct-space non-
bonded interactions, and we use the Particle Mesh Ewald method
to compute long-range Coulomb and Lennard-Jones interactions
(LJPME method in OpenMM). In addition, we constrain the length
of all bonds that involve a hydrogen atom and employ a time step of
dt = 0.002 ps. The temperature is set to 298.15 K using the Langevin
thermostat with a friction coefficient of 5 ps−1, while the pressure
is set to 1 atm using a Monte Carlo barostat with an update fre-
quency of 1/(25 dt). We generate the initial configurations for the
simulations with the Packmol package.44

B. Bottom-up coarse-graining procedure
Although we provide details about the choice of CG potential

in previous publications,25,34–36 we briefly discuss them here. After
performing AA simulations as described in Sec. II A, we use relative
entropy coarse-graining37 with these as references to parameterize
CG interaction potentials that are amenable to direct conversion to
a field theory. In the CG model, bonded interactions in the surfactant
molecule are described using a harmonic bond potential,

βUb,αγ(r) =
3

2b2
αγ

r2, (2)

where β = 1/kBT and bαγ is interpreted as the root-mean-square
length of a bond between bead species α and γ. For simplicity, we
assume the same bond length for all amino acid pairs, bαγ ≡ b. The
excluded volume and Coulomb interactions between all site pairs,
including bonded pairs, are described by non-bonded pairwise terms
involving repulsive Gaussian and regularized Coulomb potentials,
respectively,

βUev,αγ = vαγe−r2
/2(a2

α+a2
γ), (3)

βUel,αγ =
lBσασγ

r
erf
⎛
⎜
⎝

r

2
√

a2
α/2 + a2

γ/2

⎞
⎟
⎠

, (4)

where vαγ is the excluded volume strength between bead species α
and γ, and aα and σα are the Gaussian regularization length and
charge of bead species α, respectively. Here, we set the Bjerrum
length, lB, to 0.74 nm, which is approximately the Bjerrum length of
OPC water at 298 K and 1 atm.45 The regularized Coulomb poten-
tial of Eq. (4) reduces to the conventional unscreened Coulomb
potential at large separations r but is finite at contact due to the
error function. Such regularization is necessary because of the soft-
core repulsions adopted in Eq. (3). This choice of regularized, soft
potentials is physically motivated by the desire to retain long-length-
scale physics while coarse-graining over sharp, short-length-scale
features.

We obtain mapped AA reference trajectories for coarse-
graining by mapping the center-of-mass coordinates of groups of
atoms in the AA representation to CG sites. Specifically, we map
each water molecule to a single neutral bead, and each amino acid
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is mapped to one neutral bead, with the exception of glutamic acid
(E) and lysine (K), which bear a −1 and +1 charge, respectively.
To reduce the parameter space of the CG model, we categorize the
amino acids into three CG bead types based on their hydrophobicity
and using two different trial mapping schemes, as shown in Fig. 2.
Both schemes share the same definition of bead species 3, which
includes polar [serine (S) and glutamine (Q)] and charged amino
acids [glutamic acid (E) and lysine (K)]. We note that charges of
glutamic acid and lysine are described explicitly via the electrostatic
interaction of Eq. (4). In scheme a, the small neutral amino acids are
grouped into bead species 2, while the larger amino acids are lumped
into bead species 1. On the other hand, in scheme b, CG bead
1 only includes tyrosine (Y) and tryptophan (W), which have bulky
aromatic side chains, while the rest of the hydrophobic and neutral
amino acids are mapped to CG bead 2. In principle, one can fur-
ther subdivide the amino acids into more CG bead types to achieve
greater chemical specificity. For instance, each individual amino acid
could be mapped to its own dedicated CG bead. In this scenario, the
method would follow a similar process as outlined here.

We fix the Gaussian regularization range, aα, of each CG bead
to approximately the cube root of its molecular volume. By this con-
vention, the water interaction range, aw , is set to 0.31 nm, and those
of the amino acids, a1, a2, and a3, are set to 0.5 nm in this work.
The water–water repulsion parameter is obtained from a pure water
AA simulation following the same procedure as in our previous pub-
lication.36 In this step, we derive vww in the NPT ensemble at the
CG pressure PCG of 3.218 kBT/a3

w . This determines the CG pres-
sure that we use in the subsequent coarse-graining steps of the IDP
surfactant.

We derive the remaining CG parameters (v11, v22, v33,
v12, v13, v1w , v23, v2w , v3w , and b) for the surfactant from two
choices of reference systems: a single simulation and an extended
ensemble of three simulations, as illustrated in Fig. 2. With the two
choices of reference systems (I and II) and two mapping schemes for
the surfactant (a and b), we have four candidate surfactant models
in this work: Ia, Ib, IIa, and IIb. In each of these cases, the coarse
graining is performed by running Srel minimization multiple times
to obtain replicates of the CG force field. This allows us to perform
error analysis and sensitivity assessments of the CMC that will be
discussed in Sec. IV. We tabulate the parameters in Tables SI–SV.

C. Calculating the critical micelle concentration
with field theory

The CG model defined in Sec. II B can be exactly repre-
sented and simulated in a field theoretic representation via the
Hubbard–Stratonovich–Edwards transformation.38,39 This transfor-
mation decouples the non-bonded pair interactions such that par-
ticles interact only via the bonded potential and with auxiliary
fields introduced by the transform. The result is a partition func-
tion in terms of integrals over field configurations instead of particle
coordinates,

𝒵 = ∫ drne−βU(rn
)
→ ∫ 𝒟we−H[w], (5)

where H is an effective Hamiltonian describing the statistical weight
of the auxiliary field configuration w(r) and is systematically
described elsewhere.38,39 It should be emphasized that w represents

a set of auxiliary fields that is sufficient to decouple all pairwise
interactions of the functional forms defined in Sec. II B.

In the mean-field approximation, also referred to as self-
consistent field theory (SCFT), the canonical partition function takes
the form

𝒵 ≈ e−H[w∗
]
≡ e−H∗ , (6)

where w∗ is the saddle-point value of each auxiliary field, repre-
senting the dominant field configuration contributing to the par-
tition function, and H∗ is the mean-field effective Hamiltonian.
SCFT reduces computational costs compared to sampling w field
configurations. The grand free energy Ω can be determined from
the Legendre transform of the Helmholtz free energy A ≈ H∗ as
follows:

βΩ = βA − ∑
i ∈[w,idp]

βμini, (7)

where ni is the number of molecule i. Therefore, SCFT provides a
readily accessible approximation of the grand free energy, which is
necessary for CMC calculations.

To determine the CMC, we compute the grand free energy dif-
ference between a micelle and the homogeneous phase in chemical
equilibrium with that micelle, following the procedure outlined by
Zhou and Shi.13 We initiate SCFT simulations of a micelle in the
canonical ensemble with a spherical configuration for various val-
ues of the IDP mole fraction, ϕidp, mic. We opt for spherical geometry
as an initial seed for the micelle in accordance with experimental
observations.30,31 It is worth noting that there are no constraints
imposed on the micelle geometry, and the final spherical configura-
tion of the micelles [Fig. 1(c)] naturally emerges as a result of solving
the SCFT equations. This results in a series of spherical micelles
at different IDP and water chemical potentials, μw,mic and μidp, mic,
respectively. The homogeneous disordered state that is in chemical
equilibrium with each of these micelle states is modeled by setting
the number of mesh points to 1, and its composition is determined
from a grand canonical simulation at μi,dis = μi,mic ≡ μi. This pro-
cess is illustrated in Fig. 1(c), which depicts a micelle in chemical
equilibrium with the homogeneous phase.

The grand free energy difference βΔΩ = βΩmic − βΩdis is
obtained for a series of ϕidp, mic values. Figures 3(a) and 3(b)
show examples of free-energy-difference curves as a function of
the IDP surfactant concentration in the disordered homogeneous
solution and the surfactant chemical potential, respectively. For
large surfactant densities ρidp, dis, the negative free energy difference
βΔΩ indicates the micelles are more stable than the homogeneous
state. As ρidp, dis decreases, βΔΩ increases and eventually becomes
positive. The CMC, ρidp, CMC, is defined as the surfactant concentra-
tion in the homogeneous state at which the free energy of micelle
formation is 0.

To investigate finite-size effects, we conduct micelle simula-
tions using different box sizes, ranging from ∼10 to 22 nm in side
length. We then extrapolate the CMC values against the inverse box
side length, 1/L [Fig. 3(c)], and extract the CMC at 1/L→ 0 or as
the micelle simulation box size approaches infinity (L→∞). We
repeat these steps for each surfactant model and report the mean
and median values of the CMC.
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FIG. 3. Example grand free energy difference βΔΩ between a spherical micelle
and the homogeneous phase as a function of (a) surfactant concentration in the
homogeneous phase ρidp, dis (chain and monomer basis) and (b) surfactant chem-
ical potential βμidp. (c) To account for finite-size errors, we extrapolate the CMC
linearly with respect to the inverse of the box size length.

III. DETERMINATION OF THE CRITICAL MICELLE
CONCENTRATION VIA PYRENE-BASED
FLUORESCENCE ASSAY

We determine the CMC of the surfactant with a hydrophilic
block length of nh = 6.5 experimentally by a solvatochromic pyrene-
based fluorescence assay, as described previously.30,31 In short, flu-
orescence emission intensities from the first (II) and third (IIII)

vibronic bands of pyrene are dependent on the polarity of its local
environment. For a 2 μM pyrene solution in 10 mM phosphate
buffer, the II/IIII ratio is ∼1.3 and lowers to ∼0.8 when pyrene is

FIG. 4. Pyrene II/IIII fluorescence emission ratio across concentrations of the
IDP surfactant with nh = 6.5. Solutions containing 0.1–300 μM surfactant in 2 μM
pyrene and 10 mM phosphate buffer, pH 6.5, were excited at 330 nm, and the
emission was recorded at 373 nm (II) and 384 nm (IIII).

encapsulated in the less polar hydrophobic core. The CMC was
determined by plotting triplicate measurements of the II/IIII ratio
across a range of surfactant concentrations. We fit a nonlinear least
squares regression to the following equations:

II/IIII = y0 +
c

1 + (EC50/ρidp)
n , (8)

EC50 = ECF(
100 − F

F
)

1/n
. (9)

The fitted parameters include the Hill coefficient, n, the IDP surfac-
tant concentration at the inflection point, EC50, the vertical shift, y0,
and the scaling coefficient, c. In Fig. 4, we report the CMC and its
standard error as the surfactant concentration at F% of the max-
imum signal, ECF , of this nonlinear fit, where F is 80, 50, or 20.
Importantly, prior research suggests that for surfactants with CMC
values below 1 mM, the inflection point EC50 is a more suitable
approximation.46,47

IV. RESULTS AND DISCUSSION
A. Coarse-grained model evaluation

To calculate the CMC, it is necessary to have a well-defined
homogeneous phase in coexistence with a micelle. In other words,
the system should not undergo macrophase separation at compo-
sitions near the expected CMC values. To identify the two-phase
boundary, we employ the Gibbs ensemble method and invoke the
mean-field approximation for the free energy and chemical poten-
tial calculations. A detailed discussion of this procedure can be found
in our previous publication.25 Figure 5(a) shows the binodals using
representative parameter sets for the four different IDP models. As
the number of repeating hydrophilic unit nh increases, the fraction
of hydrophilic beads also increases, resulting in a reduction in the
tendency for macrophase separation. Consequently, the two-phase
region becomes narrower.

At the hydrophilic block length of nh = 6.5, which corresponds
to the experimental system, the dilute branch of models IIa and
IIb extends down to ∼10−10 μM. This value is orders of mag-
nitude smaller than the experimentally determined CMC range
(6.201–107.7 μM). This indicates that these models are likely too
hydrophobic and will undergo macrophase separation instead of
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FIG. 5. (a) Binodals calculated from representative parameter sets for four IDP
models at varying numbers of hydrophilic repeating units, nh. The symbol denotes
the experimentally determined CMC (EC50 value) at nh = 6.5. (b) Corresponding
χ parameters against nh. The dotted line denotes χ = 0.5.

micelle formation at low IDP concentrations. In contrast, mod-
els Ia and Ib exhibit smaller two-phase regions that disappear at
nh ∼ 6. This indicates that the homogenous state remains stable over
a larger composition range when using models Ia and Ib, allowing
for the formation of micelles before reaching concentrations where
macrophase separation occurs.

To better understand the differences between the four CG
models, we simplify the parameter space by reducing the ten pair-
wise interactions to a single effective Flory–Huggins parameter,
χ.48,49 The Flory–Huggins binary interaction χ approximates the
overall affinity between IDP chains in solution and is correlated
with the mixture phase behavior; a higher value of χ indicates
a greater tendency toward phase separation. In this work, χ is
defined as

χ = vref (ρ∗wρ∗idpUidp w −
1
2
(ρ∗2

idpUidp idp + ρ∗2
w Uw w)), (10)

where the reference volume vref is taken to be the molecular vol-
ume of water, vref = (ρ∗w)

−1. The neat chain density of species i,
ρ∗i , is estimated using the mean-field approximation (detailed in the
supplementary material of Ref. 25) as follows:

ρ∗i =
−1 +

√
1 + 2UiiPCG

Uii
. (11)

Equations (10) and (11) involve the excluded volume parameter
U ij between molecules i and j, which is defined by summations over
bead and molecule species,

Uij = ∑
α,γ ∈[w,1,2,3]

∑
i,j ∈[w,idp]

uα γ fi,α fj,γNiNj , (12)

where uαγ is the integrated value of the excluded volume interac-
tion βUev,αγ between beads α and γ, i.e., uαγ = vαγ(2π(a2

α + a2
γ))

3/2.
The number fraction of bead α on chain i is denoted as fi,α,
and the chain lengths of water and surfactant are Nw = 1 and
N idp = 12nh + 20, respectively. According to this definition, the
excluded volume strength between water molecules is the same in
both the bead-basis and molecule-basis definitions, i.e., Uww = uww .

The previous observation of wider two-phase regions in mod-
els IIa and IIb is supported by the fact that they consistently have
larger χ values than those of models Ia and Ib at all values of
nh, as illustrated in Fig. 5(b). As a first approximation, phase sep-
aration typically occurs at χ ≳ 0.5,50 indicating that models with
χ values exceeding the critical threshold are more likely to undergo
macrophase separation. In such systems, the CMC is either very
small and lies to the left of the dilute branch or does not exist at all.
The distinct behavior of models IIa and IIb compared to Ia and Ib
can be attributed to the choice of the reference simulation. Reference
system II is an extended ensemble that includes the tail–tail simu-
lation. As evidenced by the small center-of-mass distance between
the tail fragments (∼1 nm, Fig. S2), the aggregated state is the dom-
inant conformation, with a little sampling of the dissociated state,
which overemphasizes hydrophobic interactions that occur in the
tail regions. In comparison to reference system I, which is composed
of the head-tail simulation, system II has a higher number of con-
tacts between IDP residues (Table SVI). Consequently, this results
in IDP models that are more hydrophobic in models IIa and IIb,
which promotes macrophase separation, as reflected in the large χ
parameter and wide binodal region. This observation suggests that
IDP models (models Ia and Ib) derived from reference system I, a
solution comprising a hydrophilic head and a hydrophobic tail frag-
ment, are more suitable for determining the CMCs; we only proceed
with these models for further analysis in Sec. IV B.

B. Critical micelle concentration
While the CMC calculation procedure with SCFT is deter-

ministic, the derivation of CG parameters via relative entropy
minimization involves stochastic sampling from short CGMD sim-
ulations, leading to CG parameter variation. Therefore, we repeated
the parameterization process 20 times and performed the necessary
calculations for each of these replicates to obtain statistically mean-
ingful values. In Table I, we present Flory–Huggins χ, as well as
the mean and median values of the CMC for the hydrophilic block
length nh = 6.5 using surfactant models Ia and Ib. The CMC dis-
tributions from the two models are right-skewed, with the mean
values larger than the medians. It is noteworthy that model Ia yields
smaller mean and median CMC values that are in better agreement
with the experimental CMC at EC50 as compared to model Ib. The
CMC value calculated from model Ia shows relatively good agree-
ment with the experimental result, particularly when considering the
median values, which are within a factor of 2 of the experimental
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TABLE I. SCFT-predicted results for IDP surfactant at nh = 6.5 and experimental data.

CMC (μM chain)

Model nh χ Mean Median Diameter (nm) nagg

Ia 6.5 0.523 ± 0.003 90 ± 25 49 17.37 ± 0.21 7.58 ± 0.58
Ib 6.5 0.503 ± 0.004 260 ± 44 237 17.08 ± 0.42 6.75 ± 0.41

Experiment 6.5 ⋅ ⋅ ⋅

6.20 ± 0.35 (EC80)
19.6 ± 4.9a

⋅ ⋅ ⋅25.84 ± 1.21 (EC50)
107.7 ± 10.1 (EC20)

aReported in Ref. 31.

EC50 value. It is important to note that micellization is not a true
thermodynamic phase transition such that properties, e.g., free sur-
factant concentration, osmotic pressure, and volume occupied by
micelles, exhibit rapid continuous changes through the CMC instead
of a sharp transition.51 Therefore, different methods of inferring the
CMC can yield slightly different values.12,52–55 Specifically, in this
case, it is reasonable to expect micelles to form at any concentra-
tion between the EC80 and EC20 values, 6.201–107.7 μM. Taking this
into account, both the median and mean values from model Ia fall
within the experimental CMC range and are both reasonable proxies
for the CMC.

The difference in the CMCs between models Ia and Ib stems
from the use of different CG mapping schemes. Grouping the
smaller amino acids (I, L, and V) with the larger aromatic amino
acids (Y and W) in CG bead 1 results in a smaller effective size of
the bead. As a consequence, model Ia’s bead 1 exhibits a smaller
excluded volume interaction, as evidenced by the ∼2 times smaller
integrated excluded volume interaction u11 compared to that of
model Ib (Fig. S3). The increase in the excluded volume of bead
1 and other bead types in model Ib leads to a less hydrophobic IDP,
thereby resulting in a higher CMC compared to model Ia.

Despite the comparable χ values at nh = 6.5, the difference in
CMC values is significant between the two models. The sensitivity of
the CMC to χ is evident from Fig. 6, where higher χ values promote
micellization, resulting in smaller CMCs. This is reflected in model

FIG. 6. CMC at nh = 6.5 calculated from 20 replicates for models Ia and Ib against
χ. The higher average χ of model Ia suggests that this model is slightly more
hydrophobic than model Ib, resulting in a lower average CMC value.

Ia, which has a higher average χ value and, therefore, exhibits a
lower CMC compared to model Ib. To further evaluate this sensitiv-
ity, we analyze the impact of perturbing individual excluded volume
parameters, v11, v33, and v13, on the CMC of a replicate in model
Ia. Figure 7 illustrates that even small perturbations in the inter-
action parameters can significantly affect the CMC. Specifically, a
mere increase of ∼0.02 kBT in the excluded volume strength between
hydrophobic bead 1 and hydrophilic bead 3, v13, can cause the CMC
to vary by up to 100%. Considering that ∼6 out of 9 excluded volume
parameters involving IDP residues exhibit variations larger than
0.02 kBT across 20 replicates for both models Ia and Ib (Fig. S4), it is
expected that the CMC will exhibit substantial variation between dif-
ferent replicates. It is important to acknowledge that these observed
uncertainties in the parameters are relatively small compared to the
typical error in solvation energies of atomistic force fields, which can
be up to 0.5 kcal/mol or ∼0.8 kBT.56

The variation in the excluded volume parameters across the
replicates arises from the inherent stochastic nature of finite-length
CGMD simulations, which are used to evaluate derivatives for
updating parameters during relative entropy minimization.37 In this
study, we use a simulation length that provides ≳50 independent
samples of the fragment end-to-end distance, which we believe is
adequate while maintaining a reasonable computational cost for
the relative entropy minimization. However, it is worth noting that
increasing the simulation time of the trial CGMD simulations could

FIG. 7. Sensitivity analysis of the CMC with respect to the change in excluded
volume parameters v11, v33, and v13. A plot that shows the percentage change in
the CMC with respect to the change in the excluded volume parameter from the
base value.
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FIG. 8. Density profile of micelles at nh = 6.5 from representative parameter sets
for models (a) Ia and (b) Ib at the corresponding CMCs. The inset is a snapshot
of the micelle from CGMD reconstructed based on the equilibrium aggregation
number calculated in the field theory.

potentially further reduce parameter variations, and this will be
carefully considered in future work.

Taking the high sensitivity of the CMC to the CG interaction
parameters into account, the proposed CMC calculation workflow
using molecularly informed field theories demonstrates good agree-
ment with experimental data, particularly when using model Ia.
Additionally, we calculate the equilibrium micelle size measured
at the corresponding CMCs from SCFT density profiles (Fig. 8).
Micelle diameter is defined as the distance where the local concen-
tration of IDP is 2.5% of the peak value at the micelle center. Using
this criterion, we find that both models produce micelles of similar
diameter to those determined by dynamic light scattering experi-
ments,31 as reported in Table I. SCFT simulations also reveal that the
average aggregation number nagg is 7.58 ± 0.58 and 6.75 ± 0.41 for
models Ia and Ib, respectively. Remarkably, this quantitative agree-
ment in CMC and micelle diameter is achieved using a simplified
CG surfactant model that reduces the complexity of the 12 unique
amino acids found in the actual IDP surfactant chemistry to only
3 CG bead types.

The ability to achieve such agreement with a reduced CG model
underscores the potential of the approach. By incorporating more
chemical detail into the CG model, such as specifying additional
CG bead types, we anticipate that even higher accuracy can be
obtained. This refinement would enhance the representation of the
molecular interactions of the surfactant systems, thereby improv-
ing the predictive capability of the CMC calculation. Furthermore,
leveraging the efficiency of the field theory in obtaining equilib-
rium micelle structures, one can readily use the predicted aggre-
gation number to reconstruct micelles in particle-based CGMD

simulations, as shown in the inset of Fig. 8. This can be performed
by pre-assembling micelles based on the SCFT-predicted aggrega-
tion numbers or by implementing a backmapping strategy proposed
by Lequieu.57 The flexibility to transform between particle and field-
theoretic representations allows for a detailed examination of micelle
conformations while overcoming the challenge of long time scales
faced by particle-based approaches.

V. CONCLUSIONS AND OUTLOOK
In this study, we have presented a workflow for calculating

the critical micelle concentration (CMC) of bio-based surfactants
using molecularly informed field-theoretic models. Our approach
incorporates chemistry-specific effects, which are often overlooked
in field-theoretic studies, by employing relative entropy coarse-
graining to systematically determine field theory parameters by
coarse-graining from all-atom simulations. We have illustrated the
effectiveness of the field-theoretic models in capturing the self-
assembly behavior of a model intrinsically disordered protein sur-
factant. Despite using a simplified coarse-grained surfactant model
with only three distinct chemical species to represent the complex
chemistry of the surfactants composed of 12 unique amino acids,
our simulations yielded a CMC that falls within the experimental
CMC range and is within a factor of 2 of the experimental EC50
value. Notably, our approach is capable of tackling a chemical space
characterized by significantly lower CMC values (in the μM range)
compared to previous simulation studies in the literature.9,10 This
highlights the potential of this approach, particularly in modeling
bio-based molecules where complex interactions could arise from a
diverse set of amino acids.

We proposed factors that affect the accuracy of the CMC
prediction, including the choice of the reference simulations for
coarse-graining and the definition of coarse-grained bead types
(Fig. 2). We have found that the coarse-grained models derived
from an extended ensemble of three simulations, each composed
of a pair of the hydrophilic head and/or hydrophobic tail domains
in water, tend to overemphasize hydrophobic interactions due to
aggregation and limited sampling in the tail regions. Consequently,
this overly promotes macrophase separation at much lower sur-
factant concentrations than the experimentally determined CMC,
suggesting that coarse-grained models parameterized by this type
of reference system are not representative of the surfactant. In
contrast, a reference system comprising a hydrophilic head and a
hydrophobic tail fragment is a more suitable reference for coarse-
graining. Coarse-grained models derived from this system exhibit
less hydrophobicity compared to those obtained from the extended
ensemble approach. This alternative reference system mitigates the
tendency toward macrophase separation at low surfactant concen-
trations, which allows micelles to form at concentrations close to
the experiments. Lastly, we have compared two schemes for defin-
ing the coarse-grained bead types; both schemes have the same
number of bead types. We found that scheme a, which groups the
aromatic and hydrophobic residues into one coarse-grained (CG)
bead type, produces better agreement in the CMC with experimen-
tal data as compared to scheme b, in which the aromatic residues
are grouped into one CG bead and the hydrophobic residues are
grouped together with neutral residues into another CG bead. Over-
all, this highlights the influence of CG bead definitions on the
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accuracy of the predicted CMC. In general, we can readily extend
the workflow to include more chemical species in the CG model.
Increasing the number of bead types is expected to enhance accuracy
by providing greater chemical specificity, but at the cost of a more
complex CG force field and potential challenges in sampling. The
latter arises from the fact that, with more bead types, the pair inter-
actions are now parsed into statistically smaller groups; therefore,
longer simulations are needed to sufficiently sample the different
contacts.

We note that the current work employs the mean-field approx-
imation, which ignores fluctuation effects in the field-theoretic
model. While this approximation is reasonable for studying surfac-
tant self-assembly based on our previous findings,34 incorporating
w-field fluctuations using techniques such as complex Langevin
sampling39,58 could improve the model’s accuracy and change the
quantitative prediction of the CMCs. The grand free energy and
chemical potential can be directly calculated in such simulations
from ensemble average operators.29

In conclusion, our study showcases the capability of molecu-
larly informed field theories to systematically predict the CMC of
bio-based molecules. Our simulation framework offers an efficient
route for calculating the CMC, particularly for strongly micel-
lizing systems, where traditional particle-based simulations face
challenges. This work opens up possibilities for employing molec-
ularly informed field theories in the study and design of bio-based
macromolecules, providing valuable insights into their self-assembly
properties, and facilitating the optimization of their performance
in various applications. Overall, our approach contributes to the
design of sustainable formulations and advances our understanding
of bio-inspired surfactant systems.

SUPPLEMENTARY MATERIAL

The force field parameters of all coarse-grained models
and additional analysis of these models are available in the
supplementary material.

ACKNOWLEDGMENTS
This work was supported by BASF Corporation through the

California Research Alliance. K.D. is also supported by the Chem-
ical Biology Graduate Program at UC Berkeley (Grant No. NIH
T32GM066698). We acknowledge Paul Huang and Kueyoung Kim
for their assistance with the surfactant synthesis and pyrene CMC
assays. G.H.F. and K.T.D. derived partial support from the National
Science Foundation CMMT Program under Grant No. DMR-
2104255. M.S.S. acknowledges funding support from the National
Science Foundation through Award No. CHEM-1800344. Use was
made of the BioPACIFIC Materials Innovation Platform computing
resources of the National Science Foundation Award No. DMR-
1933487 and computational facilities purchased with funds from the
National Science Foundation (Grant No. CNS-1725797) and admin-
istered by the Center for Scientific Computing (CSC). The CSC is
supported by the California NanoSystems Institute and the Materi-
als Research Science and Engineering Center (MRSEC; Grant No.
NSF DMR 2308708) at UC Santa Barbara.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

My Nguyen: Conceptualization (equal); Data curation (lead);
Formal analysis (lead); Methodology (lead); Validation (lead);
Visualization (lead); Writing – original draft (lead). Kate Dolph:
Data curation (supporting); Formal analysis (supporting);
Writing – original draft (supporting). Kris T. Delaney: Concep-
tualization (equal); Funding acquisition (equal); Methodology
(supporting); Software (supporting); Writing – review & editing
(equal). Kevin Shen: Methodology (supporting); Writing – review &
editing (equal). Nicholas Sherck: Conceptualization (equal); Fund-
ing acquisition (equal); Writing – review & editing (equal). Stephan
Köhler: Conceptualization (equal); Funding acquisition (equal);
Writing – review & editing (equal). Rohini Gupta: Conceptual-
ization (equal); Funding acquisition (equal); Writing – review &
editing (equal). Matthew B. Francis: Conceptualization (equal);
Funding acquisition (equal); Writing – review & editing (equal). M.
Scott Shell: Conceptualization (equal); Funding acquisition (equal);
Methodology (equal); Resources (equal); Supervision (equal). Glenn
H. Fredrickson: Conceptualization (equal); Funding acquisition
(equal); Methodology (equal); Resources (equal); Supervision
(equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article and its supplementary material.

REFERENCES
1O. G. Mouritsen and K. Jørgensen, “A new look at lipid-membrane structure in
relation to drug research,” Pharm. Res. 15, 1507–1519 (1998).
2E. Goddard, “Polymer/surfactant interaction—Its relevance to detergent
systems,” J. Am. Oil Chem. Soc. 71, 1–16 (1994).
3M. Singh, M. Briones, G. Ott, and D. O’Hagan, “Cationic microparticles:
A potent delivery system for DNA vaccines,” Proc. Natl. Acad. Sci. U. S. A. 97,
811–816 (2000).
4W. C. Blocher McTigue and S. L. Perry, “Design rules for encapsulating proteins
into complex coacervates,” Soft Matter 15, 3089–3103 (2019).
5J. H. Clint, “Micellization of mixed nonionic surface active agents,” J. Chem. Soc.,
Faraday Trans. 1 71, 1327–1334 (1975).
6W. C. Presto and W. Preston, “Some correlating principles of detergent action,”
J. Phys. Colloid Chem. 52, 84–97 (1948).
7M. J. Rosen and J. T. Kunjappu, Surfactants and Interfacial Phenomena (John
Wiley & Sons, 2012).
8S. A. Sanders and A. Z. Panagiotopoulos, “Micellization behavior of coarse
grained surfactant models,” J. Chem. Phys. 132, 114902 (2010).
9M.-T. Lee, A. Vishnyakov, and A. V. Neimark, “Calculations of critical micelle
concentration by dissipative particle dynamics simulations: The role of chain
rigidity,” J. Phys. Chem. B 117, 10304–10310 (2013).
10A. Vishnyakov, M.-T. Lee, and A. V. Neimark, “Prediction of the critical
micelle concentration of nonionic surfactants by dissipative particle dynamics
simulations,” J. Phys. Chem. Lett. 4, 797–802 (2013).
11A. Jusufi and A. Z. Panagiotopoulos, “Explicit- and implicit-solvent simulations
of micellization in surfactant solutions,” Langmuir 31, 3283–3292 (2015).

J. Chem. Phys. 159, 244904 (2023); doi: 10.1063/5.0178910 159, 244904-10

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/jcp
https://doi.org/10.1023/a:1011986613392
https://doi.org/10.1007/bf02541467
https://doi.org/10.1073/pnas.97.2.811
https://doi.org/10.1039/c9sm00372j
https://doi.org/10.1039/f19757101327
https://doi.org/10.1039/f19757101327
https://doi.org/10.1021/j150457a010
https://doi.org/10.1063/1.3358354
https://doi.org/10.1021/jp4042028
https://doi.org/10.1021/jz400066k
https://doi.org/10.1021/la502227v


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

12A. P. Santos and A. Z. Panagiotopoulos, “Determination of the critical micelle
concentration in simulations of surfactant systems,” J. Chem. Phys. 144, 044709
(2016).
13J. Zhou and A.-C. Shi, “Critical micelle concentration of micelles with differ-
ent geometries in diblock copolymer/homopolymer blends,” Macromol. Theory
Simul. 20, 690–699 (2011).
14S. Qin, T. Jin, R. C. Van Lehn, and V. M. Zavala, “Predicting critical micelle con-
centrations for surfactants using graph convolutional neural networks,” J. Phys.
Chem. B 125, 10610–10620 (2021).
15V. Sresht, E. P. Lewandowski, D. Blankschtein, and A. Jusufi, “Combined
molecular dynamics simulation–molecular-thermodynamic theory framework for
predicting surface tensions,” Langmuir 33, 8319–8329 (2017).
16M. Lechuga, M. Fernández-Serrano, E. Jurado, J. Núñez-Olea, and F. Ríos,
“Acute toxicity of anionic and non-ionic surfactants to aquatic organisms,”
Ecotoxicol. Environ. Safety 125, 1–8 (2016).
17S. A. Sanders, M. Sammalkorpi, and A. Z. Panagiotopoulos, “Atomistic simula-
tions of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates,” J. Phys.
Chem. B 116, 2430–2437 (2012).
18F. H. Quina, P. M. Nassar, J. B. Bonilha, and B. L. Bales, “Growth of
sodium dodecyl sulfate micelles with detergent concentration,” J. Phys. Chem. 99,
17028–17031 (1995).
19B. L. Bales, “A definition of the degree of ionization of a micelle based on its
aggregation number,” J. Phys. Chem. B 105, 6798–6804 (2001).
20A. Del Regno, P. B. Warren, D. J. Bray, and R. L. Anderson, “Critical micelle
concentrations in surfactant mixtures and blends by simulation,” J. Phys. Chem.
B 125, 5983–5990 (2021).
21B. Wen, B. Bai, and R. G. Larson, “Surfactant desorption and scission free
energies for cylindrical and spherical micelles from umbrella-sampling molecular
dynamics simulations,” J. Colloid Interface Sci. 599, 773–784 (2021).
22R. Becker and W. Döring, “Kinetische behandlung der keimbildung in
übersättigten dämpfen,” Ann. Phys. 416, 719–752 (1935).
23J. A. Mysona, A. V. McCormick, and D. C. Morse, “Mechanism of micelle birth
and death,” Phys. Rev. Lett. 123, 038003 (2019).
24E. Aniansson and S. N. Wall, “Kinetics of step-wise micelle association,” J. Phys.
Chem. 78, 1024–1030 (1974).
25M. Nguyen, N. Sherck, K. Shen, C. E. Edwards, B. Yoo, S. Köhler, J. C. Speros,
M. E. Helgeson, K. T. Delaney, M. S. Shell, and G. H. Fredrickson, “Predicting
polyelectrolyte coacervation from a molecularly informed field-theoretic model,”
Macromolecules 55, 9868 (2022).
26V. Y. Borue and I. Y. Erukhimovich, “A statistical theory of globular
polyelectrolyte complexes,” Macromolecules 23, 3625–3632 (1990).
27K. T. Delaney and G. H. Fredrickson, “Theory of polyelectrolyte
complexation—Complex coacervates are self-coacervates,” J. Chem. Phys.
146, 224902 (2017).
28G. H. Fredrickson, V. Ganesan, and F. Drolet, “Field-theoretic computer sim-
ulation methods for polymers and complex fluids,” Macromolecules 35, 16–39
(2002).
29G. H. Fredrickson and K. T. Delaney, “Direct free energy evaluation of classi-
cal and quantum many-body systems via field-theoretic simulation,” Proc. Natl.
Acad. Sci. U. S. A. 119, e2201804119 (2022).
30S. H. Klass, M. J. Smith, T. A. Fiala, J. P. Lee, A. O. Omole, B.-G. Han,
K. H. Downing, S. Kumar, and M. B. Francis, “Self-assembling micelles based on
an intrinsically disordered protein domain,” J. Am. Chem. Soc. 141, 4291–4299
(2019).
31S. H. Klass, J. M. Gleason, A. O. Omole, B. Onoa, C. J. Bustamante, and
M. B. Francis, “Preparation of bioderived and biodegradable surfactants based on
an intrinsically disordered protein sequence,” Biomacromolecules 23, 1462–1470
(2022).
32J. Xie and A.-C. Shi, “Formation of complex spherical packing phases in diblock
copolymer/homopolymer blends,” Giant 5, 100043 (2021).
33Y. Zhu, B. Zheng, L. Zhang, D. Andelman, and X. Man, “Formation
of diblock copolymer nanoparticles: Theoretical aspects,” Giant 10, 100101
(2022).

34M. Nguyen, K. Shen, N. Sherck, S. Köhler, R. Gupta, K. T. Delaney, M. S. Shell,
and G. H. Fredrickson, “A molecularly informed field-theoretic study of the com-
plexation of polycation pdadma with mixed micelles of sodium dodecyl sulfate
and ethoxylated surfactants,” Eur. Phys. J. E 46, 75 (2023).
35K. Shen, M. Nguyen, N. Sherck, B. Yoo, S. Köhler, J. Speros, K. T. Delaney,
M. S. Shell, and G. H. Fredrickson, “Predicting surfactant phase behavior with a
molecularly informed field theory,” J. Colloid Interface Sci. 638, 84–98 (2023).
36N. Sherck, K. Shen, M. Nguyen, B. Yoo, S. Kohler, J. C. Speros, K. T. Delaney,
M. S. Shell, and G. H. Fredrickson, “Molecularly informed field theories from
bottom-up coarse-graining,” ACS Macro Lett. 10, 576–583 (2021).
37M. S. Shell, “Coarse-graining with the relative entropy,” Adv. Chem. Phys. 161,
395–441 (2016).
38G. H. Fredrickson and K. T. Delaney, Field-Theoretic Simulations in Soft Matter
and Quantum Fluids (Oxford University Press, 2023), Vol. 173.
39G. Fredrickson et al., The Equilibrium Theory of Inhomogeneous Polymers
(Oxford University Press on Demand, 2006), Vol. 134.
40J. Mullinax and W. Noid, “Extended ensemble approach for deriving transfer-
able coarse-grained potentials,” J. Chem. Phys. 131, 104110 (2009).
41T. Sanyal, J. Mittal, and M. S. Shell, “A hybrid, bottom-up, structurally accurate,
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