UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Parsing Compounds and Pseudocompounds at the Fovea

Permalink

https://escholarship.org/uc/item/7x56p8pn

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors

Salehi, Kyan de Almeida, Roberto G. Antal, Caitlyn

Publication Date

2022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Parsing Compounds and Pseudocompounds at the Fovea

Kyan Salehi

Concordia University, Montreal, Quebec, Canada

Roberto de Almeida

Concordia University, Montreal, Quebec, Canada

Caitlyn Antal

McGill University, Montreal, Quebec, Canada

Abstract

Is the visual word recognition system sensitive to compound (e.g., SNOWBALL) and pseudocompound (e.g., CARPET) constituents? To answer this question, we employed red-blue anaglyphs glasses to parse red-blue colored (pseudo)compounds at the fovea—by hypothesis split along the vertical meridian—and allowing for the independent processing of word segments in the visual word form area. Seventy-one participants performed a visual masked lexical decision task with 133 millisecond stimuli presentations. Compounds and pseudocompounds were either split at the (pseudo)morpheme boundary (legally-split) or within a (pseudo)morpheme (illegally-split). We found a statistically significant interaction effect between word type and legality. Planned comparisons revealed an advantage in accuracy for legally-split compounds and pseudocompounds over their respective illegal splits. Furthermore, legally-split compounds elicited more accurate responses than legally-split pseudocompounds. In line with previous findings supporting a purely morphoorthographic prelexical process with faster presentation times, these findings suggest a temporally distinct mechanism during visual word recognition.