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Abstract

Hydrodynamic Modeling, Optimal Control, and Performance Evaluation
of an Array of Ocean-Wave Energy Converters

by

Qian Zhong

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ronald W. Yeung, Chair

The wave power resource along the U.S. shelf edge is enormous. It was estimated that
in the U.S. the total recoverable wave resource, more than 40% of the total available wave
power, could cover around 30% of the electricity used in the country each year. A large va-
riety of wave-energy extraction technologies has been proposed, with relatively few designs
reaching commercial scales. Wave farm, an array of wave-energy converters (WECs), has
been proposed as a solution for commercializing the wave-energy extraction technology. How-
ever, wave-interaction effects among the WEC devices in the farm introduce uncertainties in
the estimation of the power production from the wave farm and hence the levelized cost of
energy (LCOE). This can present hurdles in promoting wave-energy extraction technology.

This dissertation focuses upon the realistic estimation of the optimal power generation
for a wave farm. A semi-analytical method based on potential-flow theory is developed
to efficiently obtain the hydrodynamic properties of the devices in a WEC array with the
“exact” wave-interference effects taken into account. The newly-derived Haskind relation is
applied to multiple floating bodies to obtain the diffraction properties of individual bodies
based on the solution to the radiation problem. With the knowledge of the hydrodynamic
properties of individual devices, maximal power production from the WEC array is computed
for arrays of different configurations in waves of all frequencies and incident angles. However,
physical constraints on the system are not able to be accounted for in this phase of modeling.

To investigate the optimal power production of a WEC array in constrained conditions, a
constrained optimal control method using model-predictive control (MPC) is developed for
an array of heaving point absorbers. Wave-interaction effects among the devices are included
in the dynamic model. The cost function of the proposed optimization model for this WEC
problem is developed to be convex, which enables the efficient computation of the optimal
control outputs for multiple coordinated devices. The proposed MPC is demonstrated for
real-time implementation on a single point absorber and applied to a point-absorber array.
Results show that with constraints on the motion amplitudes of the devices and the power
take-off forces considered, the array would produce less power than the case that they were
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operated individually in isolation in the majority of wave conditions. Effects of the spacing
among devices, wave-incidence angle, and array configurations on the power performance
are discussed and compared to those predicted by the frequency-domain analysis where
constraints were not applied.

Furthermore, a method is proposed to implement the optimal control force obtained by
the MPC, using an in-house designed permanent magnetic linear generator (PMLG). The
proposed MPC needs to use the PTO force as the optimizing variable to attain the convex
formulation of the optimization problem, which results in reactive power defined as the power
flowing from the PTO system to the absorber. This would require the PTO to be both a
generator and a motor and would significantly complicate the PTO design. To resolve this
issue, an additional constraint is added to the PTO force in the optimization problem such
that the reactive power can be eliminated and the convexity of the problem can be retained.
The optimal PTO force obtained by this modified MPC is then realized by using the PMLG
with a time-varying damping. Simulation results are presented for a three-device array with
the optimal PTO forces implemented by the PMLG, operated in irregular sea states at seven
sites in the west coast of the U.S.

In conclusion, this dissertation developed a set of tools to reduce uncertainties in eval-
uating the annual power production of a WEC array. Results show that wave-interaction
effects appear to be destructive for common sea states in the west coast of the U.S., with
physical constraints of the systems considered. The loss of absorbed power caused by the
wave-interference effects is less than 5% when the spacing among devices is larger than 3
body diameters. Considering the permitted area of occupancy, mooring-line arrangements,
and reduction of production cost with the increase of the array size, we conclude that a
relatively close-spacing wave farm consisting of more than 10 devices can be beneficial to the
commercialization of the wave-energy extraction technology.
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Chapter 1

Introduction

A transition of the energy infrastructure is happening worldwide to tackle the increasing
seriousness of the air-pollution, climate, and energy-security problems. Wave power was
brought to researchers’ attention by Stephen Salter’s paper published in Nature [54] in
1970s. Ocean waves, generated by the influence of wind on the ocean surface, have high
power density and can be accurately predicted more than 48 hours in advance, which make
this energy source especially attractive for electricity generation compared to other renewable
energy such as solar and wind.

1.1 Background

Wave Energy Technology

With 70% of the earth covered by the ocean, the potential for wave power as the energy re-
source is very promising, especially on west-facing coasts in either hemisphere with latitudes
between 40o and 60o. In Europe, Denmark, Ireland, Norway, Portugual, Sweden and the
United Kingdom have been actively engaged in wave energy utilization under government
support for more than three decades [13]. In the U.S., the Electric Power Research Institute
(EPRI) conducted rigorous estimations of the wave energy resource along the U.S. coastline
in 2004 and 2011. According to the 2011 report [34], the total available wave energy re-
source along the U.S. continental shelf edge is estimated to be 2, 640 terawatt-hours per year
(TWh/yr), which is roughly half of U.S. electricity consumption. California, in particular,
has more than 1, 200 km of useable coastline, and the annual deep water average power flux
is over 300 TWh/yr, according to California Energy Commission’s report in 2007 [56]. It
is technically possible to meet about 23% of California’s electricity needs with ocean wave
energy.

Over the past 50 years, there are more than 1000 patents filed for wave power converters
(WECs). A number of devices have been proved to have technical and commercial potential.
Conventionally, WECs can be classified based on the installation location or the type of
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operation. Detailed descriptions of different categories of WECs can be found in literature
reviews [2, 17, 60]. In general, the WECs are classified into four categories: attenuator,
terminator, overtopping, and point absorbers. Attenuator is aligned in parallel to the wave
direction. Terminator has a principal axis perpendicular to the wave incident direction to
intercept waves. Overtopping device has a reservoir above the sea level. The water captured
in the reservoir from waves is released into the ocean through a low-head hydraulic turbine,
which generates electrical power. The point absorber is defined to have a small dimension
relative to the wave length (< 1/20) and generate electricity from motions excited by waves.
Fig. 1.1 shows a few well-known devices with mature development status with their categories
described in the caption. A summary of critical dimensions and power capacity of the
devices [56] is provided in Table. 1.1. A database for existing WEC designs and estimated
performance was presented in [3].

Figure 1.1: Wave-energy converters of different categories: 1. Pelamis (Attenuator), 2. En-
ergetech OWC (Terminator), 3. Wave Dragon (Overtopping), 4. WaveBob (Point absorber)

Relative to the large number of WEC designs, few devices achieve the stage of commercial-
scale deployment. Traditionally, investment in marine energy has been assessed in terms of
LCOE, or levelised cost of electricity. A report from Sandia National Laboratory [49] in
2014 presented a LCOE study for different types of marine energy devices, where the LCOE
estimated for a heaving point absorber, referred to as RM3, is $1.45/kWh, which is much
higher than other alternative energy sources, for example, offshore wind with mean LCOE
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Table 1.1: Main specifications of the WECs shown in Fig. 1.1

Device Width (m) Length (m) Annual Production (MWh)

Pelamis 3.5 120 1337
Energetech OWC 35 18 2275
Wave Dragon 260 150 12,000
WaveBob 15 15 1147

being e0.152/kWh [16]. It was pointed out in [49] that the lack of experiences and tools
available for developing the wave energy technology is the primary reason for the high LCOE.

To encourage the design of techno-economical WEC devices, Department of Energy
(DOE) sponsored in 2015 the the Wave Energy Prize [52] (the Prize), an 18-month pub-
lic design-build-test competition with the goal to double the energy captured from ocean
waves compared to the current designs and ultimately reduce the cost of wave energy. The
first placed team, AquaHarmonics, built a point absorber with latching/declutching control
and surpassed the goal with a fourfold increase in the captured energy compared to the
reference device RM3.

Wave Farm Development

The point absorber (PA) is considered one of the most promising WEC design because its
power performance is independent of the wave direction and its small size is favored from the
viewpoint of the development cost. However, the small size also limits the power production
capability of the PA. Taking into account the PTO capacity and the WEC’s maximum
swept volume to set the upper bounds for absorbed power in the ‘Budal diagram’, Falnes
and Hals concluded in [26] that for a PA, a power capacity of only about 0.3MW matches
well to a typical offshore wave climate. As reported in [27], the average production for WECs
in the most common sea states is usually around 1/10 of the installed generator capacity,
which means the generated power will be below 100kW even for large point absorbers with
diameters of 15 20 meters. Hence, for a sizeable wave-power plant, an array consisting of a
number of WECs, so-called wave farm as shown in Fig. 1.2, is in great needs.

In the meantime, development of the technology and tools for designing a wave farm is
still in a preliminary stage. For a wave farm, wave interactions among the units can have
significant effects on the power production of the array, compared to the one produced by
multiple isolated devices, in particular when the devices are closely spaced. Avoiding such
effects requires the WECs placed farther apart, which can increase the cost of production
and maintenance. Hence, to optimize the design of a WEC array, wave-interaction effects
need to be considered to provide a practical estimate of the power generated from an array.

Furthermore, control strategy plays an essential role in making the WECs economically
viable. The majority of existing control strategies are developed for a single device. Few
studies have discussed how control strategies would affect the power absorption when it comes
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Figure 1.2: Artist conception of a community of WEC working in consonance, in communi-
cation with a global controller or among one another (Artwork credit: Lu Wang, Ph.D.)

to a wave farm. What is the condition for a WEC array to generate the maximal power
as a whole in a given wave environment? How would the wave-interaction effects affect
the power production of the array, particularly when physical constraints on the devices,
including motion amplitudes and PTO capability, were taken into account? Would there
be any difference in the power production from the array if the devices were doing the
best for the group and if they are doing the best for their individual selves? Would it be
possible to construct an array configuration such that the array can produce more power
than isolated devices with the help of interacting waves among the array, as predicted by
the frequency-domain hydrodynamic study for the array? How is the energy extraction
distributed among different devices in the array? All the questions are left open. There
are hence lots of uncertainties remain in the process of assessing the performance of a wave
farm, which essentially increases the LCOE for a wave farm and impact the competitiveness
of the wave technology to other forms of alternative energy. In this work, we will formulate
a complete scheme to efficiently account for the exact wave-interaction effects on a wave
farm and develop an optimal control strategy applicable to a constrained WEC array with
guaranteed computation efficiency.

1.2 Scope and Objectives

The Berkeley Marine Mechanics Lab has been devoting to the development of a heaving
point absorber since 2010, including the analysis, design, and geometry optimization of
the floater, in-house PTO design, advanced controller design, manufacture, and model test
for the integrated system [63, 64, 65]. Fig. 1.3 shows the illustration of the optimized
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design, a co-axial cylinder point absorber. The power take-off (PTO) system is an in-
house designed permanent magnetic linear generator (PMLG), which consists of an array of
magntets mounted on the (outer) floater, moving relative to a set of coils attached to the
inner cylinder. The bottom of the floater adopted the shape of The Berkeley Wedge1 shape,
which has been demonstrated to effectively reduce viscous effects by 70% [40]. It can be
shown that this device is able to produce 300 kW peakpower in 3 m height waves with a 12
m diameter floater, with estimated overall wave-to-wire efficiency of 32% [60].

Figure 1.3: Overview of the developed co-axial cylinder system.

With the fully-developed single point absobrer, the current work will investigate the
performance of an array of heaving point absorbers. Emphasis is to be put on the difference
between the performance of a WEC array and that of multiple isolated devices. First of
all, a general method for efficiently computing hydrodynamic coefficients and wave-exciting
forces for an array of oscillating truncated cylinders will be proposed. The cylinders will
be allowed to have six degrees of freedom individually. Power production for WEC arrays
in optimal operating condition will then be evaluated for a large range of wave frequencies
and wave-incident angles with the assumption of no physical constraint considered. To find
out how practical constraints on the devices affect the power production, a constrained
optimal controller was formed based on the Model-Predictive Control (MPC). With the
goal of applying the controller to an array of devices, computational efficiency of the MPC

1Energy-capturing floating breakwater, USPTO #9,416,766
http://pdfpiw.uspto. gov/.piw?Docid=09416766.



CHAPTER 1. INTRODUCTION 6

needs to be considerably improved, with real-time implementation possibilities. Effectiveness
of the controller will be first tested on a single heaving point absorber and validated by
comparisons with the existing simulation results for the developed co-axial cylinder absorber.
Then, the controller will be applied to a wave farm. Results will provide insights on how
the individual devices behave in a farm mode to generate an optimal result for the group.
Furthermore, implementation of the control strategy using the developed PMLG will be
discussed. With the wave-interaction effect taken into account, constrained optimal control
applied, and control inputs implemented by hardware PTO systems, realistic simulations
will be performed in the end for a WEC array operating in sea states of seven sites in the
westcoast of the U.S.

1.3 Outline of the Dissertation

The work is outlined in the following chapters.
Chapter 2 develops a semi-analytical method to investigate surface-wave interactions

among an array of truncated cylinders. The matched eigen-function expansions method is
applied to solve the wave radiation problem. A new, generalized form of the Haskind relation
for an array of arbitrary configuration is derived and used to evaluate wave-exciting forces
and moments on an individual cylinder or a group of cylinders, situated among an array,
which only requires the solution to the radiation problem. Such efficient computation then
enables the study on a wide range of factors that impacts the optimal power production from
a heaving point-absorber array, including wave frequencies, wave-incident angles, the number
of devices, the spacing among the devices, and the layout geometry on power extraction.

Chapter 3 describes a constrained optimal control method based on the model-predictive
control (MPC). The problem of maximizing the energy production from WECs with restric-
tions is modeled as a constrained optimization problem, which is then cast into a Quadratic
Programming (QP). A new penalty term was introduced in the cost function, which is used
to guarantee the convexity of the QP. Effectiveness and efficiency of the formed MPC are
verified by performing simulations with the model of co-axial cylinder and compraring results
with previously developed nonlinear MPC. Also discussed is the effect of reactive power.

Chapter 4 presents a coordinated control strategy for an array of WECs based on the
MPC developed in Chapter 3. The QP formulation with the convexity guaranteed makes
the problem of finding optimal control inputs for a WEC array practically solvable. Wave-
interaction effects among the element devices were taken into account in the dynamic model.
Discussions of the results focus on the wave-interaction effects on the optimal performance
of an array with constraints taken into account. Also, how individual devices would react at
the optimal operating condition in waves of different angle and frequency.

Chapter 5 discusses the implementation of the coordinated control using the in-house
designed PMLG. The MPC will take into account a new constraint to eliminate the require-
ment of the reactive power and have the optimization problem remained as a convex QP, at
a cost of reduced absorbed power. The reactive power is defined as the power flowing from
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the PTO unit to the absorber. Additionally, such a control force input will be approximately
achieved in a form of a varying PTO damping, multiplied by the current heaving velocity of
the absorber, and realized by the PMLG. Comparisons will be made among the results using
the nonlinear MPC which directly takes the PTO damping as the optimal variable, the newly
formed MPC with no requirement on the reactive power, and such a MPC with the control
force achieved by the varying PTO damping. Lastly, the performance of a three-device array
with the PMLG controlled by the MPC will be evaluated in sea states of seven sites in the
west coast of the U.S.

Chapter 6 concludes the dissertation with a summary and contributions and proposes
future work.
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Chapter 2

Hydrodynamics of a Wave-Energy
Converter Array

2.1 Overview

Economic decision drives the operation of ocean-wave energy converters (WEC) to be in a
“farm mode”. For a wave farm, wave interactions among the units can have significant effects
on the power production of the array, compared to the one produced by multiple isolated
devices, when the devices are closely spaced. Avoiding those effects requires the WECs placed
farther apart, which can increase the cost of production and operation. Thus, for optimizing
the layout design of a WEC array, wave-interaction effects need to be considered to accurately
estimate the generated power from an array. In 1980s, expressions for evaluating optimal
power generated by an array of oscillating bodies were obtained by Evans [20] and Falnes [23]
respectively, where an interaction factor q was defined as the ratio of the power per device
in the array to the power produced by a single device. The q factor is later widely used
as an indicator for the power-capture capability of a WEC array in the layout-optimization
study [12, 57]. However, solving hydrodynamic properties for each device in an array, which
are required to compute the optimal power, can be a complex problem because of scattering
waves among the array.

Review on existing methods for solving such hydrodynamic problems of wave interactions
among a cylinder array can be found in [46, 51]. Numerical methods [10, 37] can be directly
applied, but the computational cost may become prohibitive with the increase of the size
of the array. Semi-analytical method based on linear theory is hence preferred for faster
computation, and it also provides physical insights into the problem. In this category, point-
absorber approximation used in [20, 23] and plane-wave approximation applied in [47, 59] can
estimate hydrodynamic properties of an array of cylinders in a substantially simplified way.
Yet, errors can be significant. As a result, these methods may not be applicable to study
detailed performance of the array of absorbers. Multiple scattering method [42, 53], based
on an multi-level iterative scheme, is able to achieve any order of accuracy in principle, by
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increasing the order of scattering waves taken into account. Indeed, Ohkusu’s [53] approach is
well known. However, even for low order of accuracy, the amount of computations associated
with iterations will become infeasible with increase of the number of cylinders. Kagemoto
& Yue proposed an interaction theory [35] to study hydrodynamics of an arbitrary array
based on the diffraction properties of its individual elements. Such an interaction theory
fully takes into account the effect of multiple scattering waves, including the interaction of
evanescent modes, which is considered “exact” in the context of linear theory and adopted in
other studies [29, 58, 75]. In this paper, we show that the interaction of evanescent modes of
scattering waves is negligible for the majority of practical cases; most importantly, neglecting
evanescent modes can reduce computational efforts in solving this problem, which is essential
in efficiently evaluating hydrodynamic properties and estimating power production for an
arbitrary WEC arrays. This approach was pursued by Yeung & Sphaier [73] in studying
tank-wall interferences.

For computing the optimal power for a WEC array, both damping coefficients from
solving the radiation problem and wave-exciting forces from solving the diffraction problem
are required, as explained in [20, 23]. In existing studies of WEC arrays, the two problems
were treated separately. A method mentioned above will be applied twice to solve the two
problems and obtained the required coefficients, which can be computationally costly for the
array problems. While for a single body, it is well-known that the Haskind relation [32] can
be used to obtain wave-exciting forces and moments, which does not require knowledge of
diffraction properties of the structure, but rather, depends on radiation potential of the body
in the far field, (see Newman [50] and Wehausen [68]). Applications can be found in Yeung
[71] for a truncated vertical cylinder and Chau & Yeung [11] for dual coaxial cylinders. Here,
we generalize the Haskind relation and apply it to an array of cylinders, so that all of the
first-order hydrodynamic coefficients can be obtained by only solving the radiation problem,
which are then used to find the optimal power of the array.

In this Chapter, a cohesive semi-analytical method is developed and used to investigate
wave interaction among multiple truncated circular cylinders in arbitrary configurations.
Each cylinder is considered dynamically independent with six degrees of freedom. Following
Yeung [71] and others, we let the velocity potential of the flow field be obtained by matching
eigen-function expansions for separated fluid domains. To achieve fast computation, we will
indeed assume that evanescent modes of scattering waves from one cylinder will not signif-
icantly affect the pressure field around the other cylinders. These effects of neglecting the
evanescent modes in the interaction will be assessed. Then the newly generalized Haskind
relation will be derived for an individual, or a group of cylinders, situated among an array
of cylinders. Results from this formula will be compared with those from directly solving
the diffraction problem, a much more lengthy procedure. Added mass, damping coefficients
and wave-exciting loads for arrays of different configurations will be presented as results to
demonstrate the importance of interference effects. Most importantly, the wave-interaction
effects on the optimal power captured by an array, represented by the “q” factor, was com-
puted for arrays of up to 24 heaving point absorbers in various configurations with different
wave conditions. Discussion is made regarding achieving configurations of constructive wave-
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interaction effects.

2.2 Modeling Analysis of a System of Bodies

Within the context of linearized potential flow theory, consider N floating vertical cylinders
of finite draft d, oscillating harmonically in water of depth h. We define N local cylindrical
coordinates (rj, θj, z) (j = 1, 2, . . . , N) fixed in the undisturbed free surface with the origin
Oj on the axis symmetry of the body and z-axis pointing upwards, as shown in Fig. 2.1.
The motion of j-th cylinder in q-th mode can be described by:

ζjq (t) = Re
[
ζ̄jqe
−iσt] , q = 1, 2, . . . 6 (2.1)

where ζ̄, being time-independent, is the complex amplitude of motion of cylinder, with
q = 1, 2, . . . , 6 corresponding to surge, sway, heave, roll, pitch, and yaw, σ the angular
frequency of the motion, and i =

√
−1. The velocity potential of the fluid can be expressed

Figure 2.1: Illustration of a group of truncated vertical cylinders

by
Φ(r, θ, z, t) = Re

[
φ(r, θ, z)e−iσt

]
(2.2)
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where φ(r, θ, z) is the complex spatial potential and it needs to satisfy the following governing
equations

∇2φ = 0 (2.3a)

∂φ

∂z
− νφ = 0 at z = 0 (2.3b)

∂φ

∂z
= 0 at z = −h (2.3c)

∂φ

∂nj
= U j

n on Sj, j = 1, 2, . . . , N (2.3d)

with ν = σ2/g where g is the gravitational acceleration. Here U j
n =

6∑
q=1

U j
qn

j
q is the normal

velocity of the surface of cylinder j, with the unit normal vector pointing into the body; and
U j
q as the complex amplitude of the velocity can be obtained from (2.1) as:

U j
q = −iσζjq, q = 1, 2, . . . , 6 (2.4)

An additional radiation condition at large radial distance r from the structural array needs
to be satisfied:

lim
r→∞

√
r

(
∂φ

∂r
− ik0φ

)
= 0 (2.5)

where k0 is wave number related with σ by dispersion relation to be discussed later.
Following Yeung [71], we divide the fluid domain into two kinds of regions, interior regions

underneath the cylinders and an exterior region surrounding all the cylinders, as shown in
Fig. 2.2, then use matched eigen-function expansions method to find the velocity potential
in each domain.

Expressions in Interior Regions

The interior solution for the region under cylinder j, denoted by φ(Ij), can be written as the

sum of a homogeneous solution φ
(Ij)
H and a particular solution φ

(Ij)
P :

φ(Ij) = φ
(Ij)
H + φ

(Ij)
P (2.6)

with φ
(Ij)
H and φ

(Ij)
P satisfying following boundary conditions:

∂φ
(Ij)
H

∂z

∣∣∣∣∣
z=−dj

= 0,
∂φ

(Ij)
H

∂z

∣∣∣∣∣
z=−h

= 0 (2.7a)

∂φ
(Ij)
P

∂z

∣∣∣∣∣
z=−dj

= U j
nb
,

∂φ
(Ij)
P

∂z

∣∣∣∣∣
z=−h

= 0 (2.7b)
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Figure 2.2: Decomposition of the fluid domain

where nb denotes the normal vector at the bottom of the cylinder.
Separation of variables in cylindrical coordinates yields the following homogeneous solu-

tion:

φ
(Ij)
H (rj, θj, z) =

∞∑
m=−∞

eimθj

[
αjm0

2

(
rj
aj

)|m|
+

∞∑
s=1

αjms
Im(λsrj)

Im(λsaj)
gs(z)

]
(2.8a)

gs(z) = cos(λs(z + h)), λs =
sπ

h− dj
(2.8b)

with the coefficients αjms (s = 0, 1, . . . ) to be determined, and Im being the m-th order
modified Bessel function of the first kind.

To find the particular solution, we first compute the normal velocity at the bottom of

cylinder as U j
nb

=
6∑
q=1

U j
qn

j
b,q = U j

nb
= U j

3 + U j
4r sin θ − U j

5r cos θ, where U j
q (q = 3, 4, 5) is

obtained in (2.4), and njb,q is the q-th component of unit normal vector at the bottom. We

write φ
(Ij)
P as

φ
(Ij)
P (rj, θj, z) =

∞∑
m=−∞

eimθϕ
(Ij)
P,m(rj, z) (2.9)

as shown in [58]. Then substitution of (2.9) and U j
nb

in (2.7b) yields

∂φ
(Ij)
P

∂z

∣∣∣∣∣
z=−dj

=
∞∑

m=−∞

eimθ
∂ϕ

(Ij)
P,m

∂z
(2.10)
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where

∂ϕ
(Ij)
P,m

∂z

∣∣∣∣∣
z=−dj

=


U3 m = 0
−1

2
U5r − 1

2
imU4r m = ±1

0 otherwise

Based on potentials for a single cylinder [71], the particular solution satisfying (2.10) can be
expressed as

φ
(Ij)
P =

∞∑
m=−∞

eimθϕ
(Ij)
P,m (2.11)

where

ϕ
(Ij)
P,m =


U3 · 1

2(h−dj)
[(z + h)2 − r2] m = 0

(−1
2
U5 − 1

2
imU4) · 1

2(h−dj)
[(z + h)2r − r3

4
] m = ±1

0 otherwise

Substituting homogeneous solution (2.8a) and particular solution (2.11) in (2.6), we can
obtain φ(Ij) as

φ(Ij) =
∞∑

m=−∞

eimθ

[
ϕ

(Ij)
Pm +

αjm0

2

(
rj
aj

)|m|
+
∞∑
s=1

αjms
Im(λsrj)

Im(λsaj)
gs(z)

]
(2.12)

with gs(z) given earlier by (2.8b) and ϕ
(Ij)
P,m by (2.11).

Expression in Exterior Region

The exterior region, as shown in Fig. 2.2, has boundaries at the bottom of sea, the free
surface, the side of all of cylinders, interfaces with all of interior regions, and a surface at
infinity. The total potential is the summation of potentials for scattering waves from all the
cylinders, i.e.

φ(E) =
N∑
j=1

φ(ej) (2.13)

where φ(ej) is potential for scattering waves from cylinder j and can be expressed in j-th
local coordinates as:

φ(ej) = f0(z)
∞∑

m=−∞

eimθjβjm0

H
(1)
m (k0rj)

Hm(k0aj)

+
∞∑
p=1

fp(z)
∞∑

m=−∞

eimθjβjmp
Km(kprj)

Km(kpaj)

(2.14)

where H
(1)
m and Km are the m-th order Hankel function of the first kind and modified Bessel

function of the second kind respectively, βmp unknown wave coefficients, f0(z) and fp(z) the
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depth function. The first term in (2.14) represents propagating wave modes which has a
slow decaying rate with distance from the center of cylinder j, while the second term is for
evanescent modes, and decays fast with the increase of the distance. Functions f0(z) and
fp(z) form a normalized orthogonal set and can be written as

f0(z) =
cosh k0(z + h)

(N0h)1/2
, N0 =

1

2

[
1 +

sinh(2k0h)

2k0h

]
(2.15a)

fp(z) =
cos kp(z + h)

(Nph)1/2
, Np =

1

2

[
1 +

sin(2kph)

2kph

]
(2.15b)

where wave numbers k0 and kp, p = 1, 2, . . . , are positive and real roots obtained from the
dispersion relations:

k0 tanh k0h = ν (2.16a)

kp tan kph = −ν, p = 1, 2, . . . (2.16b)

Direct substitution of (2.14) in (2.13) will yield the total potential

φ(E) =
N∑
k=1

f0(z)
∞∑

m=−∞

eimθkβkm0

H
(1)
m (k0rk)

Hm(k0ak)

+
N∑
k=1

∞∑
p=1

fp(z)
∞∑

m=−∞

eimθkβkmp
Km(kprk)

Km(kpak)

(2.17)

To apply boundary conditions (2.3d) on cylinder j, we will use Graf’s addition theorem
[67] to express (rk, θk) in terms of (rj, θj). Before we proceed with this transformation, we
take advantage of the fact that the evanescent modes decay fast with the increase of distance,
and neglect the ones induced by one cylinder in the near field of its neighboring cylinders;
then (2.17) yields

φ(E) =
N∑
k=1

f0(z)
∞∑

m=−∞

eimθkβkm0

Hm(k0rk)

Hm(k0ak)

+
∞∑
p=1

fp(z)
∞∑

m=−∞

eimθjβjmp
Km(kprj)

Km(kpaj)

(2.18)

Since the leading evanescent mode is governed by the value of k1r where k1 satisfies k1h >
π/2, the neglected terms would be of the order exp(−πL/2h), i.e. exponentially decays with
the increase of the spacing between two cylinders, L. Direct calculation based on the ratio
of L and water depth h can show that the requirement on spacing between cylinders can be
satisfied by the majority of practical cases. Most importantly, neglecting evanescent modes
in wave interaction enables us to reduce the number of unknowns required to be solved
simultaneously, which saves considerable computational time and memory, especially for a
large group of cylinders.
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Figure 2.3: Illustration for Graf’s Addition Theorem

Graf’s Addition Theorem (Watson [67]) is applied to transform coordinates for (2.18),
which has the form of

Hm(k0rk)e
imθk =

∞∑
l=−∞

Hm−l(k0Rjk)e
iθjk(m−l)Jl(k0rj)e

ilθj (2.19)

where Rjk is the distance between the origins Oj and Ok, θjk the azimuthal angle of Ok

relative to Oj, as shown in Fig. 2.3, and Jl is the Bessel function of the first kind of order l.
Then (2.18) can be written as

φ(E)(rj, θj, z) =f0(z)
∞∑

m=−∞

eimθjβjm0

Hm(k0rj)

Hm(k0aj)

+
∞∑
p=1

fp(z)
∞∑

m=−∞

eimθjβjmp
Km(kprj)

Km(kpaj)

+
N∑
k=1
k 6=j

f0(z)
∞∑

m=−∞

βkm0

∞∑
l=−∞

Hm−l(k0Rjk)

Hm(k0ak)
ei(m−l)θjkJl(k0rj)e

ilθj

(2.20)

The obtained exterior potential (2.20) needs to satisfy boundary conditions (2.3d) on
the side surface of body j (j = 1, 2, . . . , N). Similarly to the analysis for interior potential,
we computed the normal velocity on that surface, denoted by U j

ns
, by U j

ns
= −U j

1 cos θj −
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U j
2 sin θj +U j

4z sin θj−U j
5z cos θj and write the boundary condition (2.3d) for φE in (2.20) as

∂φ(E)

∂nj

∣∣∣∣
sj

=
∞∑

m=−∞

eimθj
∂ϕ

(E)
m

∂nj

∣∣∣∣∣
sj

, j = 1, 2, . . . , N (2.21)

where
∂ϕ

(E)
m

∂nj

∣∣∣∣∣
sj

=

{
1
2
U j

1 − 1
2
miU j

2 + 1
2
U j

5z + 1
2
miU j

4z m = ±1
0 otherwise

Matching Interface Conditions

φ(Ij) (2.12) and φ(E) (2.20) and their normal derivatives need to satisfy continuity conditions
on interfaces of exterior region and interior regions for pressure and local fluxes:

φ(E)
∣∣
Sj
itf

= φ(Ij)
∣∣
Sj
itf

, j = 1, 2, . . . , N (2.22a)

∂φ(E)

∂nj

∣∣∣∣
Sj
itf

=
∂φ(Ij)

∂nj

∣∣∣∣
Sj
itf

, j = 1, 2, . . . , N (2.22b)

where Sitf denotes the interfaces. If we write (2.22) in the form of∫ −d
−h

φ(E)
∣∣
rj=aj

gs(z)dz =

∫ −d
−h

φ(Ij)
∣∣
rj=aj

gs(z)dz (2.23a)∫ 0

−h

∂φ(E)

∂nj

∣∣∣∣
rj=aj

fp(z)dz =

∫ −dj
−h

∂φ(Ij)

∂nj

∣∣∣∣
rj=aj

fp(z)dz

+

∫ 0

−dj

∂φ(E)

∂nj

∣∣∣∣
sj

fp(z)dz (2.23b)

and use the orthogonality of the depth function fp(z) (2.15) and gs(z) (2.8b):∫ 0

−h
fu(z)fv(z)dz =

{
h u = v
0 u 6= v

(2.24a)

∫ −d
−h

gr(z)gs(z)dz =


h− d r = s = 0
1
2
(h− d) r = s 6= 0

0 r 6= s
(2.24b)

we can obtain a linear system of equations for αjms, β
j
m0, and βjmp with j = 1, 2, . . . , N ,

m = 0,±1,±2, . . . , p = 1, 2, . . . , and s = 0, 1, . . . . Particularly, the βjm0 for all the cylinders
(j = 1, 2, . . . , N) are coupled, and need to be solved simultaneously. Truncating m to be
±Nm, s to be Ns, and p to be Np, we then solve (2.23) for the unknowns and obtain the
potential functions for the whole fluid domain.



CHAPTER 2. HYDRODYNAMICS OF A WAVE-ENERGY CONVERTER ARRAY 17

Hydrodynamic Coefficients

The fluid pressure p can be expressed with respect to the velocity potential by using the
linearized Bernoulli equation:

p = −ρ∂Φ

∂t
= Re

{
iσρφ(r, θ, z)e−iσt

}
where the second equation is upon (2.2). The first-order hydrodynamic forces (moments) on
cylinder j, denoted by Fj (Mj) can be obtained by direct integration of the pressure over
the body surface Sj, which yields that{

Fj

Mj

}
=

∫∫
Sj

p

{
nj

r× nj

}
dS

= Re


∫∫
Sj

iσρe−iσtφ(r, θ, z)

{
nj

r× nj

}
dS

 (2.25)

where φ is the radiation potential obtained from § 2.2.
In particular, in terms of added mass and damping coefficients, the p-th component of the

hydrodynamic force (p = 1, 2, . . . , 6) induced by the motion of k-th cylinder in q-th direction
can be expressed as

F jk
pq = Re

{
−(−iσ)2ζ

k

q(µ̄
jk
pq + i

λ̄jkpq
σ

)e−iσt

}
(2.26)

where µ̄jkpq and λ̄jkpq are (dimensional) added mass and damping coefficients for the j-th cylin-
der. Substitution of (2.26) in (2.25) yields that

µ̄jkpq + i
λ̄jkpq
σ

=
iρ

ζ̄kq σ

∫∫
Sj

φkqn
j
pdS (2.27)

where φkq denotes the unit potential induced by the q-mode motion of cylinder k.

2.3 Wave-Exciting Forces and Moments

With potential theory, wave-exciting forces and moments on a number of cylinders can be
obtained by (

Fex

Mex

)
= Re

iσρe−iσtA
∫∫
S

(φ0 + φ7)

(
n

r× n

)
dS

 (2.28)

where A is the amplitude of incident waves, φ0 and φ7 are unit-amplitude potentials for inci-
dent waves and diffracted waves respectively, and S denotes the surface of the cylinders. The
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governing equations (2.3a)(2.3b)(2.3c) and the radiation condition (2.5) should be satified
for φ7; and on the surface of body j, denoted by Sj,

∂(φ0 + φ7)

∂nj

∣∣∣∣
Sj

= 0 j = 1, 2, . . . , N (2.29)

Given φ0, solving for φ7 to obtain wave-exciting forces can take the same amount of
computational efforts as solving for the radiation potential. Haskind developed a relation
[32] for an arbitrary body such that wave-exciting loads on the structure can be obtained
based only on the radiation potential, as explained in [50] and [68]. Where, we generalize
the Haskind relation to be applicable to a finite number of 3D bodies in arbitrary shape, and
apply it to evaluate wave-exciting forces (moments) on either an individual cylinder, or a
group of cylinders, situated among an array of cylinders using only the radiation potentials.
Application of this relation can considerably simplify the computation for hydrodynamic
properties of a cylinder array.

The l-th component of excitation loads in (2.28) can be written as

Fexl
= Re{AXle

−iσt}, l = 1, 2, . . . , 6 (2.30)

with

Xl = iσρ

∫∫
S

(φ0 + φ7)nldS (2.31)

where Xl is the complex amplitude of the unit wave-exciting force in direction l with nl being
the corresponding normal vector. With the application of Green’s theorem, it can be shown
that

Xl = iσρ

∫∫
SB

(
φ0
∂φl
∂n
− φl

∂φ0

∂n

)
dS (2.32)

where SB =
N∑
j=1

Sj, denoting the surface of all the cylinders in the array, and φl is the unit

radiation potential for cylinders of interest regarding computing the wave-exciting force,
which can be either an individual cylinder, or a group of cylinders as a unit, oscillating in
l-th mode among the array. As expressed in (2.32), Xl only depends on the incident wave
potential, which is considered known, and the radiation potential obtained in §2.2. The
evaluation of Xl can be taken to the far field and further simplified by

Xl = −iσρ
∫ 0

−h

∫ 2π

0

[
φ0
∂φl
∂r
− φl

∂φ0

∂r

]
@r=R

Rdθdz (2.33)

where SR was taken as a vertical circular cylinder about the z-axis of large radius R in the
global coordinate system yields that in polar coordinates (r, θ, z). φl in (2.33) needs to be
expressed in the global coordinates, for which the Graf’s addition theorem was applied and
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it takes a form different from (2.19) in the far field. The details of how Xl can be evaluated
are provided in the Appendix A.

We consider Equation (2.33) is the generalized Haskind relation for a cylinder array.
It is a remarkably simple expression for computing wave-exciting forces and moments for
an individual or a group of cylinders, requiring the far field behavior of the corresponding
radiation potential in the global coordinates.

2.4 Results of Hydrodynamic Study

To validate the present method and investigate wave interference effects on multi-cylinder
structures, a computational solver was developed based on the theory in §2 and §3, and
applied to a number of configurations shown in Fig. 2.4, where waves progress in a direction
that makes an angle β with the x-axis. We compare results with boundary integral method
by Matsui & Tamaki [41] and interaction theory by Kagamoto & Yue [35]. These methods
are considered to have obtained the exact solution to the hydrodynamic interaction problem
within the context of linear potential theory. The comparisons show good agreements and
improved computational efficiency.

1 2

a.

L a

O
x

y

1

2

3
b.

a

O
x

y

1 2 3

4 5

6 87
d.

L L

L
L

a

O
x

y

L

L

1

2 3

4

c.

L a

O
x

y

L

𝛽𝛽

Figure 2.4: Configurations of arrays of cylinders
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Analysis of Efficiency

To solve the problem, the infinite series in (2.12) and (2.20) were truncated to Nm circum-
ferential modes, Ns radial modes for the interior solution, and Np evanescent modes for the
exterior solution, leading to linear systems of equations regarding unknown coefficients αms,
βm0, and βmp (m = 0,±1, . . . ,±Nm, s = 0, 1, . . . , Ns, p = 1, 2, . . . , Np). In the process of
solving the linear equations, the primary computational effort is to solve for the interaction
coefficients βm0, of which the (2Nm + 1) unknowns per cylinder need to be solved simulta-
neously for the whole array, which results in a system with the total number of unknowns
being NT = N(2Nm + 1). For the “exact” interaction theory by Kagemoto & Yue [35], such
number will increase to be NT,K&Y = Np × N(2Nm + 1) since both the propagating mode
and the evanescent mode were considered in the wave interaction. Further, if an iterative
scheme as in [53] were applied to study the multiple-scattering phenomenon, the number of
corresponding unknowns will be multiple larger than NT,K&Y , depending on the number of
iterations. Assuming the Gaussian elimination was used to solve the linear system, we were
able to reduce computational flops by N3

p times, compared to the “exact” interaction theory,
and (NpNit)

3 times, compared to the iterative-scheme method with Nit being the number
of iterations. This fact is particularly favorable for solving the problem of a relatively large
group of cylinders. As an example, with the number of cylinders being N = 30 and typical
numbers of truncated terms being Nm = 6, Np = 60, Ns = 60, it can be obtained that
NT = 390 for the current method, while NT,K&Y = 23, 400 for the interaction theory.

Analysis of Accuracy

We first implemented the method to compute hydrodynamic properties for two configura-
tions: two individual cylinders computed by Matsui & Tamaki [41] and a four-cylinder array
as a unit computed by Kagemoto & Yue [35]. Good agreements of results validates the
assumption of neglecting evanescent mode in our method and the newly-derived generalized
Haskind relation. In the following, hydrodynamic coefficients and wave-exciting forces are
non-dimensionalized by

µjkpq = µ̄jkpq/ρπa
2
jdj p, q = 1, 2, 3 (2.34a)

λjkpq = λ̄jkpq/σρπa
2
jdj p, q = 1, 2, 3 (2.34b)

(2.34c)

where we recall that aj is the radius of cylinder j, and dj the draft.
We consider two identical cylinders in tandem, as shown in Fig. 2.4(a), with radius a,

draft d/a = 0.5, and water depth h/a = 10. Two cases of spacing ratio, L/a = 3 and
L/a = 5, were simulated, where L is center-to-center spacing between the two cylinders.
An example of convergence tests regarding Nm, Np, and Ns is shown in Table 2.1, where
added mass and damping coefficients and wave-exciting force of cylinder 1 in surge direction
with the presence of cylinder 2 and were computed. Presented cases are for k0a = 1.0 and
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Table 2.1: Convergence behavior: relative error (%) of hydrodynamic coefficients of two
truncated columns with L/a = 5, d/a = 0.5, h/a = 10, k0a = 1.0

No. of terms µ11
11 λ1111 |X1

1 |

Nm = 2 Np = 240 Ns = 240 2.04× 10−2 8.42× 10−2 27.62
Nm = 3 8.20× 10−4 6.15× 10−4 17.96
Nm = 6 6.55× 10−9 2.53× 10−9 0.45
Nm = 25 Np = 30 Ns = 240 2.85 2.60 1.44

Np = 60 0.82 0.80 0.44
Np = 120 0.27 0.27 0.15

Nm = 25 Np = 240 Ns = 30 1.20 1.51 0.86
Ns = 60 0.52 0.61 0.34
Ns = 120 0.20 0.22 0.12

L/a = 5. We chose Nm = 2, 3, 6, 25, Np = 30, 60, 120, 240, and Ns = 30, 60, 120, 240. We
assumed the set of Nm = 25, Np = 240, Ns = 240 gave the “exact” solution and computed
relative errors in percentage for each set of parameters. As a result, Nm = 6, Np = 60, and
Ns = 60 was chosen for this sample case, achieving 1% accuracy. We performed the same
convergence analysis for all the cases we present in this paper and found that in general:
large Np and Ns is needed for large depth-to-radius ratio; and large Nm is needed to compute
wave-exciting forces and moments when wave-interaction effects get stronger.

Fig. 2.5 and Fig. 2.6 show comparisons of the hydrodynamic coefficients with those ob-
tained by Matsui & Tamaki [41] where boundary-integral method was applied; new results
were presented for high frequencies. In particular, µ12

11 and λ12
11 represented interacting hydro-

dynamic coefficients, i.e. the added mass and damping coefficients of cylinder 1 induced by
the motion of cylinder 2. Good agreements were obtained over a large range of frequencies.
Deviances are more noticeable when two cylinders are closer to each other (L/a = 3), where
neglecting evanescent modes may be less valid. The result also indicates consistency with
the fact that evanescent modes affect added mass more than damping coefficient, as larger
discrepancies occur in µ rather than λ.

The generalized Haskind relation (2.33) is applied to obtain wave-exciting surge force on
each individual cylinder. Fig. 2.7 shows that Cyl. 1 experienced larger surging force than an
isolated cylinder due to the interaction effects of cylinder 2, while smaller surge force is acting
on Cyl. 2 because of the sheltering effects of Cyl. 1. Good agreements were obtained in the
comparison. More results on hydrodynamic coefficients in heave direction were presented in
[76].

The increase in the number of devices will increase the complexity of the wave-interaction
effects. To further verify the presented method, we computed hydrodynamic coefficients of a
four-cylinder array, as shown in Fig. 2.4(c), moving in surge direction as a whole by simply
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Figure 2.5: Hydrodynamic forces on cylinder 1 induced by surge motion of cylinder 1
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Figure 2.6: Hydrodynamic interaction forces (surge force on cylinder 1 induced by surge
motion of cylinder 2)
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Figure 2.7: Wave-exciting surge force on cylinder 1 and 2
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setting the motion of the four to be in phase and of the same amplitude. The water depth
is h/a = 4, the draft of the cylinders d/a = 2, and the center-to-center spacing L/a = 4.
Results of the hydrodynamic coefficients, as well as the surge wave-exciting force obtained
by the newly generalized Haskind relation, averaged over the number of cylinders, were
compared with those obtained by Kagemoto & Yue [35] and shown in Fig. 2.8 and Fig. 2.9.
It can seen that results match excellently even the spacing between cylinders are relatively
small (L/a = 4).
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Figure 2.8: Surge hydrodynamic coefficients of a four-cylinder array
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Figure 2.9: Surge wave-exciting forces on a four-cylinder array

Applications of the Generalized Haskind Relation

As can be seen from Fig. 2.9, the wave-exciting force drops to nearly 0 at certain frequencies.
This is particularly interesting regarding using wave-interference effects to reduce wave loads
on structures. Applying the generalized Haskind relation, we computed wave-exciting forces
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for a four-cylinder array and an eight-cylinder array with configurations as shown in Fig. 2.4
(c) and (d), in heave and roll directions. The water depth is h/a = 10, the draft of the
cylinders d/a = 2, and the side length of the square l/a = 8. Fig. 2.10 shows the damping
coefficients of the two array and Fig. 2.11 presents the wave-exciting force and moment.
Since the wave-exciting moment in roll of such symmetric arrays would be 0 in waves of
heading angle 0, results for roll direction was shown for the wave angle being 45o.
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Figure 2.10: Damping coefficients of the square arrays in heave and roll motion.
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Figure 2.11: Wave-exciting moments in heave and roll direction on the square arrays with
the incident-wave angle β = 0o for heave and β = 45o for roll.

It can be seen that the heave force on the array drop down to zero at the frequencies where
the damping coeffients are close to zero. In addition, the eight-cylinder array, with cylinders
added on sides of the square, has in general smaller wave-exciting force for each cylinder.
This is especially the case for the roll moments with waves come in the 45o direction.
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2.5 Power Extraction from a WEC Array

The proposed method takes advantage of the cylindrical shape of a body and efficiently
computes hydrodynamic properties for a system of independently oscillating bodies with
high-order accuracy. It well fits the need of a quick estimation of wave-interaction effects for
a preliminary design of a WEC array. It has been derived in [20] and [23] that the optimal
power extracted by an array of oscillating bodies from regular waves can be computed as

Popt =
1

8
F ∗excB

−1Fexc (2.35)

which is achieved when the velocity of cylinders satisfies

Uopt =
1

2
B−1Fexc (2.36)

where Fexc is a vector of wave-exciting forces (moments) on individual cylinders in the array
with superscript asterisk denoting complex conjugate operation, and B is the NM -by-NM
damping matrix, presumably non-singular, with N being the number of cylinders and M
the degrees of freedom for each cylinder. For instance, given an array of heaving devices,
the i-th element of Fexc will be AX i

3 where A is the amplitude of incoming waves, and Xj
3

obtained by (2.33); the element Bij in the i-th row and the j-th column of B will be λ̄ij33,
i.e. the dimensional heave damping coefficient of cylinder i induced by the heave motion of
cylinder j, obtained by (2.27).

An important measure of the power-extraction ability of an array compared to a single
device is the interaction factor q, which is defined as the ratio of the power captured by the
array to the one captured by isolated bodies of the same number. By definition, q can be
computed by

q =
lmax,N

lmax,0

=

(
1

N

Popt

Pw

)
/lmax,0 (2.37)

where lmax,N and lmax,0 are the (average) capture widths for an array of cylinders and a
single cylinder respectively, and Pw = 1/2ρgA2cg is the wave power with cg being group
velocity of incident waves. For a heaving cylinder, lmax,0 = λ/2π. The q factor has been
widely used to evaluate the wave interaction effects on power production of a WEC array as
in [12, 43, 57]. As shown in [69], the property holds for an array of heaving axisymmetric
devices that the integration of the q factor over the wave-incident angle from 0 to 2π is a
constant, given a wave frequency. This indicates that constructive effects from interacting
waves at a certain wave condition comes along with the same amount of destructive effects
at other wave conditions. Hence, evaluating the performance of an array at a specific wave
condition may not be sufficient when it comes to comparing different designs of the array.

It should be pointed out that no constraint is considered in expressions (2.35) and (2.36)
for evaluating the optimal power. In more practical scenarios, constraints on movements
of the WECs and the machinery limits of devices can significantly affect the power per-
formance of the array and need to be considered in the PTO control strategy. Not many



CHAPTER 2. HYDRODYNAMICS OF A WAVE-ENERGY CONVERTER ARRAY 26

Table 2.2: Properties of the array with the maximal interaction factor

No. of cylinders qmax β k0L RAO
arg(ζj3)−arg(F j

exc)
π

Two 1.66 π
2 ,

3π
2 3.39 6.95, 6.95 0, 0

Two (L = 8) 1.67 π
2 ,

3π
2 3.68 8.80, 8.80 0, 0

Two (L = 10) 1.67 π
2 ,

3π
2 3.69 10.79, 10.79 0, 0

Three 1.51 0, 2π
3 ,

4π
3 3.68 3.32, 9.95, 9.95 -1.3, -0.03, -0.03

Three (5%L off) 1.60 1.35π 3.59 10.19, 10.20, 3.84 -0.11, -0.09, -4.13
Three (10%L off) 1.67 1.35π 3.51 10.33, 10.28, 4.28 -0.10, -0.14, -4.21

Four 1.59 0, π
2 , π, 3π

2 3.68 9.31, 9.31, 5.72, 5.72 -0.38, -0.38, 1.07, 1.07

methods exist for controlling a WEC array coordinatedly to consider the wave-interaction
effect. A Model-Predictive Control strategy will be developed in Chapter 3 to optimize the
power production and satisfy hard constraints on a system of heaving point absorbers, where
the current method was applied to take into account the wave-interaction effect in the dy-
namic model. Results suggested that wave-interaction effects on a WEC array became less
significant with motion constraints considered, but had similar changing trend over the wave
frequency compared to the unconstrained case. In the current study, with the control strat-
egy applied to an array of devices being the same as that applied to a single device, though
unconstrained, the focus is to provide insights into wave-interaction effects brought by the
array configurations with the frequency-domain analysis. This fast-evaluation method can
be used at the preliminary design stage for a wave farm before running more costly simula-
tions and enable discussions on, for example, whether more destructive or more constructive
effects are to be seen for a given array at various sea states.

In the following sections, we will discuss wave-interaction effects induced by the number
of devices, spacing between devices, and geometric symmetry of the layout, and perform
estimations of the interaction effects on power production for an array of 24 heaving point
absorbers. Simulations were first performed for arrays consisting of two, three, and four
heaving absorbers in configurations as shown in Fig. 2.4(a), (b), and (c), in various wave
conditions. Then changes were made to the original layouts by (1) increasing the spacing
between devices and (2) moving the position of one device to break the symmetry of the
layout. The maximal value of q and the corresponding wave-incident angle β, as illustrated
in Fig. 2.4, and wave frequency for each configuration are listed in Tab. 2.2; also presented
are the RAO and the phase difference between the heaving velocity and the wave-exciting
force for each cylinder in the array in such a wave condition. For all configurations, the
property that the q factor averaged over the wave angle is 1 holds.
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(a) Two cylinders

(b) Three cylinders (c) Four cylinders

Figure 2.12: Contour plots of q for arrays of two, three, and four cylinders

Effects of Number of Devices

Fig. 2.12 presents the interaction factor for the array consisting of two, three, and four
cylinders, changing with wave-incident angle β and non-dimensional wave frequency k0L.
The spacing was set to L = 5a. Taking advantage of the symmetry of the configuration,
we only showed results for β being from 0 to π. The upper limit of the wave frequency was
chosen such that the damping coefficient of the individual cylinder approximately reached 0.
For all of the three layouts with the same spacing between closest cylinders, the maximum
q was attained when waves come perpendicularly towards one side of the polygon defining
the layout at the frequency k0L around 3.5. As shown in Tab. 2.2, the cylinder(s) hit first
by waves oscillated with a larger amplitude than the ones in the back along the propagation
direction. In addition, because of the interacting waves, the velocity of an oscillator in an
array can have a phase difference with the wave-exciting force on it at its optimal condition.
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It should be pointed out that since no motion constraint is considered, the RAO required to
achieve qmax may exceed the physical limits of the absorbers.

Effects of the spacing among devices

(a) L = 8a (b) L = 10a

Figure 2.13: Contour plots of q for two cylinders with the spacing being L = 8a and L = 10a.

Contour plots for the q factor of the two-cylinder array with the spacing changed to
L = 8a and L = 10a are presented in Fig. 2.13. From comparisons with Fig. 2.12(a)
(with L = 5a), it is interesting to find that the interaction factor of arrays with different
separating distances have very similar changing patterns with respect to the nondimensional
wave frequency k0L. Simulations also showed that this similarity holds for arrays of three
and four cylinders. This suggests that certain interaction effects, for example, the most
constructive or the most destructive effect, will occur at a lower wave frequency if the devices
have larger spacing L. In addition, with the increase of the distance, the two cylinders
oscillate with a larger amplitude when achieving the maximum interaction q factor as shown
in Tab. 2.2, which can be attributable to weaker interaction effects when cylinders are farther
apart.

Effects of asymmetric layouts

Considering uncertainties in positioning the absorbers in real sea, we studied the power
performance for a three-cylinder array of an equilateral triangle shape but with the cylinder
1, as shown in Fig. 2.4(b), moved along the positive y-axis by 5%L and 10%L respectively.
Results are presented in Fig. 2.14. As the symmetry no longer exists, computations were
performed for β from 0 to 2π. The wave frequency was non-dimensionalized by L = 5a.
With the cylinder placed off-centerline, the maximum q factor occurred at the incident angle
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(a) 5%L off (b) 10%L off

Figure 2.14: Contour plots of q for three cylinders with the cylinder 1 positioned off the
centerline.

of 243o, which is approximately perpendicular to the shortest side of the triangle. Compared
to the interaction factor for the array of symmetry, as shown in Fig. 2.12(b), the q factor for
the asymmetric layout has similar regions of destructive or constructive wave effects with
different extent of interaction effects. With the increase of the “misalignment” of the cylinder
1, the maximal interaction factor qmax was increased. Results suggested that a small amount
of changes (less than 10%L) in the relative positions of cylinders should not significantly affect
the prediction of power performance of the array; in addition, the asymmetry can strengthen
wave-interaction effects regionally and affect the wave condition of the occurrence of qmax.
This fact can be used to adjust a symmetric configuration to accommodate the dominant
wave direction at a real site.

Wave interaction among an array of 24 point absorbers

To realize commercialization of wave energy, a large WEC array is of high interests. The
world’s first grid-conneted wave-energy array, developed by Carnegie Clean Energy, consists
of three submerged absorbers in a triangular configuration and has a peak rated capacity of
5MW [19]. It is possible to form a large WEC farm using multiple units of such an array, as
illustrated in Fig.2.15, analogous to a wind farm consisting of 5MW wind turbines. Exam-
ple array configurations are shown in Fig. 2.15, where the previously computed equilateral
triangular array was used as the unit array. If the spacing between units are relatively large,
the current method can be combined with the point-absorber approximation [20] to further
gain computational efficiency in estimating the interaction effects. The basic assumption of
the point-absorber approximation is that the device is small enough, relative to the wave-
length of the incident waves, for it to be a weak scatter, so that scattering waves can be
neglected. Regarding the combination of the current method and the point-absorber approx-
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Figure 2.15: Illustration of multiple units of a three-cylinder array.

imation, full interaction effects will be considered for cylinders in each unit array, while the
point-absorber approximation will be used to account for interaction effects among units.
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Figure 2.16: The interaction factor for three units of a triangular array with the distance
between the units L = 10r.

To verify the accuracy of the combined method, Fig. 2.16 and Fig. 2.17 compared the
interaction factor obtained by the current method considering full wave interaction and by
the combined method for arrays shown in Fig. 2.15a, with the spacing between centers of the
triangular units set to L = 10r and L = 20r respectively, where r is the radius of the excircle
of the triangle for a single unit, and the wave-incident angle β is defined as in Fig. 2.4. It
can be seen that good agreements were achieved, and that the accuracy of the combined
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Figure 2.17: The interaction factor for three units of a triangular array with the distance
between the units L = 20r.

method increased with the increase of the spacing between units. The combined method
was then used to estimate the q factor for a large array in all wave conditions, which consists
of 8 units and hence 24 cylinders, as shown in 2.15b. The center-to-center spacing between
units is set to L = 20r. To evaluate the accuracy of the estimation, the q factor averaged
over the wave angle β was presented in Fig. 2.18a, of which the value should be 1 if full
interaction effects were considered. The relative difference of the presented parameter to 1
stays under 10% for most of the cases, except for the low-frequency range where the ratio of
the wavelength and the spacing between units is too large that the assumption of the point
absorber approximation is no longer valid. Fig. 2.18b shows the contour plot of the q factor
for the 24-cylinder array in all wave conditions computed by the combined method. The
maximum q reached 2.4 at k0 = 0.62 and β = π/3, π, and 5/3π, which is 140% more than
the one achieved by isolated absorbers.

It should be noticed that the optimum q is achieved by applying impedance-matching
control to the WEC array, where the impedance matrix has non-zero off-diagonal elements
which can be hard for implementation. More advanced control strategies will be preferred
to optimize the power from a global point of view and satisfy hard constraints.

2.6 Summary Remarks

In this Chapter, the computational problem of waves interacting with an array of WECs, each
modeled as a truncated cylinder, in arbitrary configurations is solved by the matched eigen-
function expansion method. Graf’s addition theorem was applied to transform coordinates
and express the presence of a multitude of scattering waves. To improve computational
efficiency, we argued that evanescent modes generated by one cylinder are negligible in the
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Figure 2.18: Wave-interaction effects on eight units of a triangular array with the distance
between the units L = 20r.

near field of its neighboring cylinders, whereas the far-field radiating waves are allowed
to interact. Theoretical analysis showed that the neglected terms exponentially decayed
with the increase of the spacing among cylinders. Newly generalized Haskind’s relation was
developed to obtain wave-exciting forces and moment on an individual cylinder, or even a
group of cylinders, situated among the array, without having to solve diffraction properties
of the structure.

Extensive demonstrative results for added-mass and damping coefficients, and wave-
exciting loads were presented for various configurations. Comparisons with numerical method
and the method of “exact” interaction theory showed good agreements in a wide range
of frequencies, even for arrays with relatively small spacing (the spacing-to-radius ratio
L/a & 4). The computed hydrodcynamic properties including damping coefficients and
wave-exciting forces were then used to study the optimal power and the interaction factor
q for an array of heaving point absorbers in various configurations and wave conditions.
Effects of the spacing between devices, the layout symmetry, and the wave-incident angle
on power extraction of the array were investigated. Also studied is a layout consisting of
multiple smaller groups of point-absorber devices. A type of hierarchical method is applied
to a medium size array of 24 devices, where the current method to consider intereference
effects among devices in the group and the point-absorber approximation to account for the
interaction among the groups, The optimal power absorption of the array under all wave
conditions is presented. Key details of this research are reported in [79].
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Chapter 3

MPC Control of a Single WEC

3.1 Overview

Control of a wave-energy converter (WEC) is becoming one of the key issues for wave-energy
extraction to achieve higher efficiency and lower cost. Various control strategies have been
developed and implemented on WECs, including resistive control, approximate complex-
conjugate control, phase control by latching or clutching, etc. A comparison of selected
control strategies can be found in overview articles of [5, 30].

In practice, most WECs will be subject to limitations placed on physical motion of the
absorber and the capabilities of the device. These raise the need for constrained optimal
control [18, 21]. In such a category of approach, model-predictive control (MPC) is attracting
more and more attention because of its capability in handling hard constraints on states and
inputs, which serves the objectives of maximizing wave-energy extraction and satisfying
machinery requirements for safety and operations. Differing from other optimal controllers,
MPC solves a constrained optimization problem on-line based on the current state of the
plant, rather than determining off-line a feedback policy that provides the optimal control for
all states [44]. In a real-sea environment, an on-line control strategy can better account for
state changes and reject disturbances. However, this leads to the requirements that the open-
loop optimal control problem has to be solvable in a reasonable amount of time (compared
with plant dynamics) and that a wave-prediction unit be simultaneously incorporated to
predict the dynamics of the system. In this study, we assume that there exists a wave
predictor, e.g. [7, 28, 48], which can estimate the wave profile for a certain future period.

Various methods were proposed to implement an MPC on WEC systems which are known
to be nonlinear and non-causal. One popular approach is to form the optimization problem
in a Quadratic Programming (QP) form, so that efficient optimization algorithms can be
directly applied. Nevertheless, the question of whether the constructed QP is convex or
not is commonly left open. Hals et al. [31] used the heaving velocity of the WEC as the
optimizer and cast the optimization problem into a QP. An arguable point for this method
is that the objective function was modified such that there existed one sampling instant
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delayed from the input to the output in the computation of the energy output, and the
resulting QP was assumed convex. However, as shown in [38], the convexity of such a QP
is not guaranteed. More importantly, the modified cost function can result in suboptimal
solutions and hence less energy extraction. In addition, optimizing over the state velocity is
not the same as directly optimizing over the control input in the sense that there may not
be a feasible control force to achieve the “optimal velocity.”

Taking the machinery force, generated by the PTO system, as the optimizer, Li and
Belmont formed a novel MPC with a QP of guaranteed convexity [38]. The novelty lay in
their cost function where two additional penalty terms were introduced to (a) convexify the
problem, (b) penalize the consumed energy, and (c) penalize a state to ensure the feasibility
of the solution. However, in their dynamic model, the wave-exciting force was assumed to be
just proportional to elevation of the incoming wave, while the effects of diffracted waves were
neglected, which is justifiable only for “infinitely-long waves.” For long but not infinitely
long waves, it can be shown that a term of order kA0, with kA0 being the wave slope, will
contribute to the wave-exciting force. This represents the effect from the vertical acceleration
of the fluid, which is derived in the Appendix A. With the less accurately predicted wave
load, the generated control law would be different from the one that achieves the optimal
power extraction in the certain wave condition, which also results in a sub-optimal oscillating
behavior of the absorber. It should also be noticed that penalizing the heaving displacement,
which can lead to an additional energy loss, may not be necessary for all cases. In the work of
[14], the slew rate of the machinery force was used as the optimizer, which, in our view, can
generate a less aggressive control input and hence less requirements on machines. However,
convexity of the formulated problem in [14] was not guaranteed. All of the aforementioned
strategies are based on a linear model. A nonlinear MPC (NMPC) for a WEC was developed
first by Tom and Yeung [64], where the power-take-off (PTO) damping was used as the
optimizer for the purpose of practical implementations. As a follow-on work, an improved
NMPC, which took into account the mechanical-electrical energy conversion efficiency, was
proposed and applied [61] to generate optimal damping profiles (time histories) off-line for
a co-axial point absorber in various wave conditions.

In terms of validation by physical model tests, some pioneering work has been carried out
to assess and validate the numerical simulations. PTO damping profiles generated offline by
the NMPC [64] were applied to a model-scale point absorber with their in-house designed
permanent magnetic linear generator (PMLG) as a PTO unit [65]. The improved NMPC was
also tested in [60]. Results showed noticeable improvements on enhancing energy-extraction
performance and reducing response amplitude ratio (RAO) of the absorber, compared to a
simpler resistive control. Sandia National Laboratories compared various control strategies,
including resistive control, latching control, linear MPC, etc., on a heaving point absorber [5].
Simulation results showed that linear MPC has strong potential for enhancing wave-energy
extraction as it could produce more than twice the amount of the power on an annual basis,
compared to the case with the resistive control. Recently, they conducted a wave-tank test
to identify a WEC model as the first step of implementing control strategies on the WEC
[4]. In the test, the machinery force was generated by a linear actuator acting as the PTO
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system.
In this Chapter, a convex QP based on the dynamic model of a heaving point absorber will

be presented, which then forms a MPC with the machinery force used as the control input
and the optimizer. Such a QP can be readily applied to other types of WECs with single
degree of freedom, and straightforwardly extended to systems of multi-degree of freedom.
The cost function of the QP is set to maximize the extracted power and penalize changes
in the control input to relieve slew-rate requirements on the PTO. It will be shown that the
convexity of the problem can be guaranteed by adjusting the weight of the penalty term.
Constraints on the machinery force and the oscillatory amplitude of the absorber will be
added. At each time step, a standard QP solver can be adopted to efficiently obtain the
(global) optimal solution of such a constrained optimization problem. Performances of the
current MPC will be compared with those obtained from using impedance matching and
existing MPC strategies in both regular and irregular wave conditions, lending credibility to
our formulation. Reactive power required by the current MPC will be discussed. Part of the
work has been presented in [77].

3.2 State-space Model of a Point Absorber

For demonstration, we here form the problem for a heaving point-absorber type WEC. In
time domain, the equation of motion for a heaving point absorber can be written as

mζ̈3 = fe(t) + fr(t) + fh(t) + fm(t) (3.1)

where m and ζ3(t) are mass and heave position of the absorber. Additionally, fe(t), fr(t),
fh(t), and fm(t) are wave-exciting, wave radiation, hydrostatic restoring, and machinery
forces, where fh(t) and fr(t) have forms of

fh(t) = −Kζ3(t) (3.2a)

fr(t) = −µ33(∞)ζ̈3(t)− λ33(∞)ζ̇3(t)−
∫ t

−∞
Kr(t− τ)ζ̇3(τ)dτ (3.2b)

where K is the hydrostatic stiffness coefficient, µ33 and λ33 are added-mass and damping
coefficients, and Kr(t) is known as the retardation function. Kr(t) can be obtained by taking
the inverse Fourier transform of the damping coefficients as

Kr(t) =
2

π

∫ ∞
0

[λ33(σ)− λ33(∞)] cos(σt)dσ (3.3)

Substitution of Eqn. (3.2) into Eqn. (3.4) yields

(m+ µ33(∞))ζ̈3(t) + (λ33(∞) + λvis)ζ̇3 +Kζ3(t)

+

∫ t

−∞
Kr(t− τ)ζ̇3(τ)dτ = fe(t) + fm(t)

(3.4)
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where a corrective linear viscous damping coefficient λvis obtained from experiments [64]
was included to account for fluid viscosity. λ33 approaches 0 as t → ∞ in general. The
convolution of Kr(t) and ζ̇3(t), denoted by yr, can be approximated by a state-space model:

żr(t) = Arzr(t) +Brζ̇3(t) (3.5a)

yr = Crzr(t) +Dr(t)ζ̇3(t) (3.5b)

where zr ∈ Rnr with nr being the number of states in this model.
Thus, the state-space model of the dynamic system Eqn. (3.4) can be expressed as

ẋ = Acx+Bc(u+ w) (3.6a)

y = Ccx (3.6b)

z = Czcx (3.6c)

where the state vector x := [ζ3, ζ̇3, zr]
T , y := ζ̇3, z := ζ3, u := fm, and w := fe,

Ac =

 0 1 0
−K/M −(λvis +Dr)/M −Cr/M

0 Br Ar


Bc = [0, 1/M, 01×nr ]

T Cc = [0, 1, 01×nr ] Czc = [1, 0, 01×nr ]

(3.7)

with M := m+ µ33(∞).
The state-space model Eqn. (3.7) is discretized using zero-order hold [31], where inputs

are assumed to be piecewise constant over the sampling time Ts. As a result, we obtained
the discrete-time model:

xk+1 = Axk +B(uk + wk) (3.8a)

yk = Cxk (3.8b)

zk = Czxk (3.8c)

where the subscript k indicates the time instant k.

3.3 Model-Predictive Control Formulation

The optimization problem

We assume that at each sampling instant wave profile for a certain future period of time can
be estimated by wave prediction algorithms. The goal is to maximize the energy E extracted
by the PTO system over a predicted time horizon Th, where

E =

∫ Th

0

P (t)dt =

∫ Th

0

−fm(t)ζ̇3(t)dt (3.9)
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Using the discrete-time model Eqn. (3.8), E can be written as E = Ts
N−1∑
k=0

(−ukyk), where N

is the number of sampling time instants during the time horizon Th, i.e. Th = NTs. Hence,
the objective is to find a series of inputs uk (k = 0, 1, . . . , N − 1) such that

max
[u0,u1,...,uN−1]

E = min
[u0,u1,...,uN−1]

(−E) = min
[u0,u1,...,uN−1]

Ts

N−1∑
k=0

ukyk (3.10)

which is equivalent to set the cost function to be

J0 =
N−1∑
k=0

ukyk (3.11)

and minimize J0 over the control inputs. For safety and long-term operation, constraints on
the heaving motion of the absorber z and the machinery force u need to be included:

|zk| ≤ ζ3,max (3.12a)

|uk| ≤ fm,max (3.12b)

where k = 0, 1, . . . , N − 1. However, it can be shown that the constrained optimization
problem formed by Eqn. (3.11) and Eqn. (3.12) will result in a non-convex QP [38], for
which the global optimal solution is not guaranteed. One alternative approach is to use a
modified objective function as shown in [14, 31]: Japprox =

∑N−1
k=0 ukyk+1. Nevertheless, the

convexity of the resulted QP cannot be guaranteed, and the one-step time delay in u can
cause significant loss of extracted energy in certain cases, as demonstrated in [38].

In this paper, we construct the cost function to be:

J =
N−1∑
k=0

(ukyk + r|∆uk|2) (3.13)

where ∆uk = uk − uk−1 for k = 0, 1, 2, . . . , N − 1. ∆u0 := u0 − u−1 where u−1 is defined
as the control input obtained in the previous time horizon, and u−1 = 0 initially. In [38],
the cost function included a penalty term on the control input, of which the penalty weight
was used to convexify the problem. In a similar way, the convexity of the current cost
function J in Eqn. (3.13) can be guaranteed: when r is tuned to be larger than a certain
value, the Hermitian matrix in the QP will be positive definite. Such a value of r can be
determined by checking the minimal eigenvalue of the Hermitian matrix. In addition, the
current controller can achieve a smaller slew rate and hence less energy consumption, by
having a larger penalty weight r, instead of adding constraints on the slew rate; the latter
can induce additional computational costs. Nevertheless, it should be pointed out that a
larger weight r on penalizing the slew rate can result in a larger loss in the energy extraction.
For cases simulated here, a small r (r << 1) is sufficient to guarantee the convexity of the
cost function. With the smallest r, the impact of the term on energy extraction is negligible.
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Quadratic programming formulation

We will cast the problem into a QP. The following notations will be used:

U0 := [u0, u1, . . . , uN−1]T W0 := [w0, w1, . . . , wN−1]T (3.14)

which represent the series of inputs u and w at time instants k = 0, 1, . . . , N − 1, where we
recall that u and w denote the machinery force and the wave-exciting force respectively. The
optimization problem can then be written as

min
U0

J = min
U0

N−1∑
k=0

(ukyk + r|∆uk|2) (3.15a)

subj. to |zk| ≤ ζ3,max k = 0, 1, . . . , N − 1 (3.15b)

|uk| ≤ fm,max k = 0, 1, . . . , N − 1 (3.15c)

where xk, yk, zk, and uk (k = 0, 1, . . . , N − 1) should satisfy the dynamic equation Eqn.
(3.8).

To form a QP, we can propagate the state equation Eqn. (3.8a) and use Eqn. (3.8b) to
obtain

ŷ(k + i|k) = CAixk +
i−1∑
j=0

CAi−j−1B(û(k + j|k) + ŵ(k + j|k)) (3.16)

where i = 0, 1, 2, . . . , N − 1, ŷ(k + i|k) denotes the state yk+i estimated at time k, and the
same meaning holds for û(k+ j|k) and ŵ(k+ j|k). If we stack the output state ŷk+i to form
a vector, i.e. Y N−1

0 = [ŷ(k|k), ŷ(k + 1|k), . . . , ŷ(k + N − 1|k)]T , we can express Y N−1
0 in a

matrix form as:
Y N−1

0 = Sxxk + Su(U0 +W0) (3.17)

where

Sx =


C
CA
CA2

...
CAN−1

 , Su =


0

CB 0

CAB CB
. . .

...
...

. . . 0
CAN−2B CAN−3B . . . CB 0

 (3.18)

In a similar form, we can express the vector of states ẑ(k+ i|k), i = 0, 1, . . . , N − 1, denoted
by ZN−1

0 as
ZN−1

0 = Sx,zxk + Su,z(U0 +W0) (3.19)

where we substitute Cz for C in Eqn. (3.18) to obtain Sx,z and Su,z. In matrix form, the
slew input vector ∆U := [∆u0,∆u1,∆u2, . . . ,∆uN−1]T can be written as

∆U = T∆U0 − gu (3.20)
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where

T∆ =


1
−1 1

−1
. . .
. . . 1
−1 1


N×N

, gu =


u−1

0
...

0


N×1

(3.21)

with u−1 being the control input applied to the system currently and u−1 = 0 initially. In
the MPC, u−1is the input obtained from the previous receding-horizon computation.

The cost function J in Eqn. (3.15a) can then be written in a compact form:

J = UT
0 Y

N−1
0 + (T∆U0 − gu)TR(T∆U0 − gu) (3.22)

with R = r×IN−1. Substituting Eqn. (3.17) and Eqn. (3.20) in Eqn. (3.22) and neglecting
the constant term, we can write J in a quadratic form

J =
1

2
UT

0 HU0 + fTU0 (3.23)

where

H := Su + STu + 2SR (3.24a)

f := Sxxk + SuW0 − 2Sg (3.24b)

with SR := (T∆)TRT∆ and Sg = (T∆)TRgu.
It can be seen that without penalizing the slew rate, the cost function will have a corre-

sponding Hessian matrix H0 = Su + STu where Su in Eqn. (3.18) has zero diagonal elements,
which leads to an indefinite H0 and hence a non-convex problem. The addition of SR, aside
from controlling the slew rate, adds positive values on the diagonal of the matrix H Eqn.
(3.24a). By tuning r such that the minimal eigenvalue of H is larger than 0, we can have a
positive definite H and hence a convex J .

The constraints Eqn. (3.15b) and Eqn. (3.15c) can be written in a component-wise
inequality

AuU0 ≤ bu (3.25)

where, using Eqn. (3.19)

Au =


I
−I
Su,z
−Su,z

 , bu =


Umax

Umax

Zmax − Sx,zxk − Su,zW0

Zmax + Sx,zxk + Su,zW0

 (3.26)

with Umax = fm,max × [1, . . . , 1]T︸ ︷︷ ︸
N

and Zmax = ζ3,max × [1, . . . , 1]T︸ ︷︷ ︸
N

.
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In summary, the QP with the cost function Eqn. (3.23) subject to the constraints Eqn.
(3.25) can be written as

min
U0

J =
1

2
UT

0 HU0 + fTU0 (3.27a)

subject to AuU0 ≤ bu (3.27b)

MPC scheme

The MPC scheme is as follows: at time instant k, with the knowledge of estimated states and
the predicted wave profile, the QP in Eqn. (3.27) is solved, and a sequence of optimal control
inputs U∗0 = argmin(J) is generated; the first control input in the sequence is applied; the
system dynamics is then moved forward to the next time step, and the optimization procedure
is repeated. In this paper, we will assume the knowledge of a certain future period of the
incoming waves.

3.4 Simulation Results in Regular Waves

We applied the MPC formulated in Section 3.3 to point-absorber models. Results are shown
for both unconstrained and constrained cases. Comparisons will be made to a nonlinear MPC
which has been implemented off-line for wave-tank tests. The quadprog solver in MATLAB
was used to solve the QP. All simulations were performed on a Thinkpad W550s, 2.60 GHz.

Under linear theory, the wave-exciting force induced by a regular wave of frequency σ
can be obtained by

fe(t) = A0<{|X3(σ)|eiδ} sin(σt) (3.28)

where A0 is the amplitude of an incoming wave, and X3 is the complex amplitude of the
wave-exciting force corresponding to a unit-amplitude wave of frequency σ. X3 = |X3|eiδ
with δ being the phase of the force relative to wave elevation, which can be obtained from
frequency-domain hydrodynamic analysis of an absorber [68]. In the discrete-time model,
the wave-exciting force is obtained by

wk = A0<{|X3(σ)|eiδ} sin(σkTs) (3.29)

where k = 0, 1, . . . , N − 1.

Unconstrained and constrained MPC

We first apply the MPC with no constraints on a cylindrical point absorber of radius 5 m
and draft 8 m floating in deep water, The same model was used in [14]. The hydrodynamic
coefficients of the cylinder and wave-exciting forces are obtained by an in-house code using
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the method in [71]. No viscosity is considered, i.e. λvis = 0. A fifth order state-space model
for the radiation subsystem is used, of which the impulse response denoted by Kr,SS(t), was
shown in Fig. 3.1 and compared to the Kr(t) obtained by the inverse Fourier transform in
Eqn. (3.3). Also presented in Fig. 3.1 is the damping coefficient λ33 obtained in the frequency
domain. For simulations in this section, the sampling time Ts is set to 0.05 s, and the weight
r = 10−5 to guarantee the convexity and also reduce the impact of the penalty term on the
energy absorption to a minimum.

0 5 10 15 20 25 30
-10

0

10

20

0 0.5 1 1.5 2 2.5
0

20

40

Figure 3.1: Impulse response of the radiation subsystem and damping coefficients with re-
spect to wave frequency.

Fig. 3.2 shows a comparison of the averaged absorbed power P a obtained by the current
MPC, the MPC constructed by Cretel et. al [14], and the impedance matching method [24].
Results are obtained for prediction horizon Th being Tw and 2Tw where Tw = 2π/σ is the
wave period. P a is computed by

P a =
1

T

∫ T0+T

T0

[Pe(t)− Pr(t)− Pl(t)] dt

=
1

T

∫ T0+T

T0

[fe(t)− fr(t)] ζ̇3(t)dt (3.30a)

where Pe and Pr are excitation power and radiation power respectively, and Pl is the lost
power due to friction, etc., and assumed to be 0. T is chosen to be 5Tw, and the starting
time T0 can be any point after the system reaches the steady state. As Pa,opt = 1

2
λ33|ζ̇3,opt|2

based on the impedance matching theory [24], P a indicates the optimal amplitude of the
heaving velocity of the absorber.

Good agreements are obtained for relatively high frequencies. In low frequencies, the less
power absorbed by the current MPC can be explained by the additional penalty term on the
slew rate of the control input. It can be shown that an extremely large oscillation amplitude
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Figure 3.2: Averaged absorbed power by an unconstrained point absorber plotted over the
angular frequency.
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Figure 3.3: Time histories of ζ̇3 (blue), ζ3 (black, dash-dotted), and fe (red, dashed) on
the left, and fm (grey, dash-dotted) and fe on the right, for the absorber in regular waves
with amplitude of 1 m and period of 9 s. Constraints, if any, are shown by dashed lines,
values of which are set to ζ3,max = 5m, and fm,max = 2 MN. Simulated cases are (a) no
constraints, (b) constraints on the heaving motion, (c) constraints on the machinery force,
and (d) constraints on both of the heaving motion and the machinery force.
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of the absorber is required to achieve the optimal absorbed power in the low-frequency range.
For example, at σ = 0.4 rad/s, the RAO of the absorber needs to be approximately 65. As a
result, large control inputs and hence large slew rates are required given a fixed Ts, which is,
however, penalized in the cost function. In terms of implementations, the cases of large RAO
are impractical because of machinery restrictions. Hence, the optimal absorbed power in the
unconstrained condition can be hardly achieved in real applications. It is interesting to notice
that results from Cretel et al. [14] indicates a longer prediction horizon can yield a better
performance for capturing energy, though the authors also pointed out such an observation
needs to be treated with caution. It is shown by current results that this observation is not
always the case. The averaged absorbed power is approximately the same for Th being one
wave period and two wave periods. This may be explained by the fact that the incoming
waves for these cases are regular and the interval T for computing P a is a multiple of Tw. For
demonstrative simulations presented in this section, Th = Tw was used to save computational
time.

If a larger penalty weight r were used in the MPC, there would be less absorbed power,
especially at low wave frequencies; nevertheless, the trend of P a with respect to σ as shown
in Fig. 3.2 would be followed. This can be explained by the fact that at low frequencies,
with no constraints added, a large RAO is required for the absorber to achieve the optimal
condition for power extraction, which would require large control inputs and hence large slew
rates of the inputs given a fixed time interval. Increasing the penalty weight means placing
more restrictions on the control input, and hence the optimal condition can no longer be
satisfied at certain frequencies. This leads to reduced extracted energy. More discussion on
effects of the penalty weight r will be presented in Section 3.4.

Fig. 3.3(a) shows the heaving motion ζ3 and velocity ζ̇3 of the absorber in the wave of
amplitude 1 m and period 9 s, as well as the wave-exciting force fe and the control input,
machinery force fm, acting on the absorber. It can be seen that the optimal phase condition
was achieved: the velocity of the absorber is in phase with the wave-exciting force. However,
the heaving amplitude under the optimal condition is too large for operations. We hence
applied constraints on the heaving motion or the machinery force, or both, to investigate
effects of constraints on the dynamics and power extraction of the WEC system. Results are
shown in Fig. 3.3(b)-(d). It can be seen that all the constraints were satisfied.

It is observed that for all of the constrained cases, the phase of the velocity is driven to
match the phase of the wave-exciting force by the control input. Because of the penalty on
the change in fm, the slew rate of fm is relatively small, which is favorable for implementa-
tions. Restricting only the machinery force yields a bang-bang type of control with a milder
changing slope. For the four cases, the absorbed power is respectively (a) Pa = 6.17× 105W,
(b) Pa = 5.36× 105W, (c) Pa = 6.12× 105W, and (d) Pa = 5.38× 105W. It is expected that
adding constraints decreases the absorbed energy; nevertheless, more than 75% of maximal
absorbed energy, obtained by the impedance matching theory for the unconstrained case, is
achieved for the most restrictive case (d). In terms of computational time, obtaining solu-
tions for one wave period takes twice as long on average for the case with both constraints
added.
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Comparisons with a nonlinear MPC

A nonlinear MPC (NMPC) with a non-negative damping coefficient as the control input
was developed in [64] and implemented off-line in a wave-tank test [65]. This MPC was
then applied to a co-axial cylinder WEC [62] with the bottom shape modified such that the
viscous effect was significantly reduced. By using the non-negative dapming coefficient as
the optimizer in the MPC, no reactive power will be generated in the process. However,
solving the resulted nonlinear and nonconvex problem can be computationally demanding.
As a comparison, the convex formulation for the optimization problem of the current MPC
can enhance the computational efficiency; however, it is required that the PTO system of
the WEC act as a motor since it is the machinery force that was used as the control input,
which generates reactive power. We here compare the current MPC to the NMPC regarding
the energy-capture capability, the required reactive power, and the computational time.
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Figure 3.4: Schematic of the dual coaxial-cylinder system in [62].

The WEC model was shown in Fig. 3.4 from [62], of which the (outer) cylinder has radius
of 0.254m and draft of 0.635m with water depth being 1.5m. The total mass, including the
added mass, of the WEC device is 103.63 kg, and the hydrostatic stiffness coefficient is 1285.6
N/m. Additionally, the linear-viscous damping factor λvis = 1.7λ33 = 9.68N · s/m obtained
from experiments [62] is adopted. A 4-th order state-space model was used to approximate
the radiation subsystem, for which the radiation damping coefficients were obtained by an
in-house code [11]. The case “Active, ηel = 1” in [62] is simulated here, for which the
power-conversion efficiency is not taken into account. In order to make the comparison, the
oscillating amplitude of the absorber for current cases is constrained to be no larger than
the maximal RAO obtained by the NMPC [62]: ζ3,max = 5.1A0. In addition, the maximal
machinery force is computed by fm,max = Bg,maxζ3,maxσ, where σ is the angular frequency of
incident waves and the maximal damping Bg,max = 150 N·s/m according to [62]. The waves
have amplitude of A0 = 0.0254m. The simulations were carried out for 20Tw with 80 time
steps per wave period. The sampling time was chosen such that the restrictive effect of the
cost function on the slew rate is small at the minimal value of r.
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Figure 3.5: Comparisons of capture width by current method with those using NMPC.
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Figure 3.6: Comparisons of RAO by current method with those using NMPC.
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Simulations were conducted for the penalty weight r being 0.01, 0.05, and 0.1 respectively
with 0.01 being the minimum to guarantee convexity, so that the effect of r on performances
of WEC and PTO system can be investigated. Results are shown in Fig. 3.5 and Fig. 3.6
and compared with those obtained by NMPC, where the non-dimensional capture width Cw,
the RAO of the absorber, and the non-dimensional frequency σ are defined by

Cw =
Cw
2a

=
1

2a

Pu(t)

Pwave

, RAO =
|ζ3|
A0

, σ = σ

√
a

g
(3.31)

with a being the radius of the cylinder, g the gravitational acceleration, Pwave the wave
power, and Pu(t) = 1

T

∫ T0+T

T0
fm(t)ζ̇3(t)dt the time averaged useful power, indicating the en-

ergy extracted by the PTO unit. For a regular wave of amplitude A0 and group velocity vg,
the wave power can be obtained by Pwave = 1/2ρgA2

0vg, where vg = 1
2
g
σ

in deep water. It
should be noticed that since the input fm(t) is not sinusoidal in general, the energy stored in
the WEC system is not 0, and hence the useful power Pu(t) is not the same as the absorbed
power Pa(t).

It is observed that the current MPC broadened capture-width bandwidth for all three
values of r. Near the resonance frequency σres = 0.5668, the RAO of the absorber reaches its
maximal value, and Cw stays around 0.63, close to the maximum obtained by the NMPC.
The larger r, indicating more penalty on the changing rate of the control input, leads to
a smaller RAO of the absorber, but also a loss of the useful power. At frequencies farther
away from the resonance, the current MPC was able to extract more useful power than the
NMPC. However, it should also be pointed out that the current MPC requires consuming
power as a motor in order to achieve the optimal conditions, while the NMPC does not have
such a requirement.

Fig. 3.7 presents the ratio of the power flowing from the PTO unit to the absorber
(reactive power P react) to the power flowing from the absorber to the PTO unit (so-called
“active power” P act) at various frequencies. The useful power is the net power of the two,
i.e. P u = P act − P react. No reactive power is required for the NMPC, which was plotted
for comparison. It can be seen that by using the current MPC, more than 50% of the
“active power” turns to useful power for most of the cases. The closer the frequency is to
the resonance frequency, the less the reactive power is. At resonance, more than 95% of
the “active power” serves as the useful power, with the rest consumed to accomodate the
constraints and the penalty on the slew rate of the control input. At a higher frequency,
much more reactive power is required to drive the absorber to match the phase of the
incoming waves, where more than 70% of the “active power” may be needed to achieve
the most power extraction with r = 0.01. With the increase in r, the reactive power ratio
is noticeably reduced, especially at frequencies far away from the resonance. As the PTO
conversion efficiency is never perfect, tuning r to achieve a balance between the consumed
power and extracted power can provide a more practical solution to the problem.

To evaluate the enhancement in computational efficiency by the convex formulation of
the current MPC, we compare the computational time used by the current MPC and the
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Figure 3.7: The ratio of the reactive power to the power flowing from the absorber to the
PTO unit (so-called “active power”).

NMPC in Fig. 3.8. The “tic” and “toc” functions in MATLAB were adopted to record the
time used for computation. The nonlinear programming (NP) for the NMPC was formulated
according to [62]. The same solver, the Ipopt [66] solver, was adopted to solve the NP with
the same simulation settings as in [62], including the time horizon, the time interval, etc. We
here used the Multi-Parametric Toolbox 3.0 [33] and the OPTI Toolbox [15] to run the Ipopt
solver in MATLAB. As shown, the ratio of the computational time per wave period to the
wave period obtained by the current MPC was approximately 2 orders smaller than the one
obtained by the NMPC. Further, the computational time for generating control law for one
wave period is approximately in the same order of the wave period. With code optimization
and the scaling ratio between the prototype and the model test taken into account, the
current MPC has great potential for real-time applications.

3.5 Simulation Results in Irregular Waves

The proposed MPC was then applied to study the performance of a WEC in irregular wave
conditions. A modified Pierson-Moskowitz spectrum for fully developed seas was used to



CHAPTER 3. MPC CONTROL OF A SINGLE WEC 48

0.3 0.4 0.5 0.6 0.7 0.8
10-1

100

101

102

103

104

Figure 3.8: Computational time for simulated cases of regular waves.

construct the irregular wave profile:

S(σ) = H2
sT1

0.11

2π

(
σT1

2π

)−5

exp

[
−0.44

(
σT1

2π

)−4
]

(3.32a)

T1 = 0.7713Tp (3.32b)

A(σj) =
√

2S(σj)∆σ (3.32c)

η(t) =
N∑
j=1

A(σj) sin(σjt+ εj) (3.32d)

fe(t) =
N∑
j=1

|X3(σj)|A(σj) sin(σjt+ δj + εj) (3.32e)

where Hs, Tp, Aj, and δj are the significant wave height, peak period, wave amplitude,
and phase angle of the wave-exciting force the jth-component, respectively, and εj is the
random phase angle of the the wave components. The random phase angles are uniformly
distributed between 0 and 2π and constant with time. The range of angular frequencies
used in the construction of Eqn. (3.32) was between 0.1 rad/s and 8.75 rad/s spaced at
0.05 rad/s. The simulation runs for Hs = 7.62 cm (3.0 in) and varying Tp, carried out for
1000 peak wave periods with 40 time steps per peak period and Th = 2Tp. The RAO is
constrained to be half of the significant wave height, i.e. ζ3,max = Hs/2, which was the
maximal RAO obtained by the NMPC. The maximal machinery force is computed in the
same way as in 3.4 with σ = 2π/Tp, and the penalty weight r was 0.01, 0.05, and 0.1
respectively. Results of the time-averaged useful power at different Tp and the ratio of the
reactive power to the “active” power are shown in Fig. 3.9 and Fig. 3.10. When the minimal r
was used, more than 25% increase in the useful power was achieved compared to the results
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Figure 3.9: Time-averaged useful power in irregular waves.
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Figure 3.10: The ratio of reactive power to “active power” in irregular waves.

of NMPC. As the resonance frequency of the WEC system corresponds to Tres = 1.784s,
higher useful power was obtained when Tp is closer to Tres. It can also be observed that in
general less reactive power ratio was required in irregular waves than in regular waves. This
is expected as the composition of waves of different frequencies reduces the efforts required
from the PTO unit to drive the absorber in phase with waves, compared to the case where the
frequency of the monochronic wave is substantially different from the resonance frequency.
This fact is favorable for applications in real-sea environments. In addition, r also serves as a
tuning parameter to adjust the reactive power ratio. The computational time was shown in
Fig. 3.11. For all simulated cases, the ratio of the computational time per peak wave period
to the peak wave period is not larger than 1, by using just a 2.60GHz Thinkpad W550s, and
approximately 2 orders smaller than that of the NMPC. Fig. 3.12 shows the time histories
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for the velocity and position of the absorber, the wave-exciting force, and the machinery
force at Tp = 2.2s. It can be seen that the phase of the velocity is driven to match the phase
of the exciting force and mild slew rates are attained for the control input fm.
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Figure 3.11: Computational time for simulated cases of irregular waves.
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Figure 3.12: Time histories of ζ̇3, ζ3, and fe on the left, and fm and fe on the right, for the
absorber in irregular waves of Tp = 2.2 s.

3.6 Summary remarks

In this Chapter, an MPC formulation was proposed to generate the optimal control law for
maximizing the energy extraction of a WEC under constraints. The constrained optimization
problem was formed as a Quadratic Programming (QP). A newly added penalty term on
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the slew rate of the PTO force was used to guarantee the convexity of the formed QP, which
ensures the computational efficiency of the MPC.

The MPC was tested on a single heaving point absorber. Comparisions between the
unconstrained MPC and the impedance matching theory showed that good agreements were
obtained in the high-frequency range. Differences at lower frequencies were explained by
the fact that the added penalty term prevented large changes in the PTO force, i.e. the
control input, which are required for achieving the maximal absorbed power, from happening.
Constraints were added to the RAO of the absorber and the machinery force (fm). More than
75% of the optimal power obtained for the unconstrained case, was achieved by the current
MPC when both constraints on RAO and the PTO force were considered. Comparisons were
also made between the current MPC and a nonlinear MPC using the variable PTO damping
as the control input. Results showed that the current MPC is able to broaden the bandwidth
of the capture-width, at the cost of recurring reactive power. In irregular wave, becaused
of the spread of sea states, the amount of required reactive power was in general reduced
compared to simulation cases in regular waves, which makes it favorable for implementations
in a real-sea environment.

In terms of the computation efficiency, the amount of the computational time for obtain-
ing the control law for one wave period cost by the current MPC was in the same order of
the wave period, and 2 orders smaller than the time cost by the NMPC. With code opti-
mization and the scaling ratio between the prototype and the model test taken into account,
the current MPC has great potential for real-time applications. Highlights of this research
is reported in [77].
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Chapter 4

MPC Control of a WEC Array

4.1 Overview

Because of the wave interference effects happening among the WEC array, the optimal power
generated by the array, especially with physical constraints of the mechanical system con-
sidered, has raised lots of research interests since 1980s. The maximal power generated
by a point-absorber array, with no constraint added on the devices, has been obtained by
frequency-domain analysis as derived independently by Evans [20] and Falnes [23], where the
control strategy used is known as the complex-conjugate control or impedance-matching con-
trol. Wave-interaction effects were taken into account in the hydrodynamic properties of the
array, including damping coefficients and wave-exciting forces for devices in the array. Those
coefficients are commonly obtained by boundary-element solvers, for example, WAMIT and
Nemoh, which can take the full wave-interaction effect into account but can also be computa-
tionally extensive. This approach of estimating the maximal power has been widely applied
for evaluating and comparing energy-absorption capabilities of different WEC arrays (e.g.
[25], [45], [69], etc.). However, in addition to the inherent difficulties in handling motion and
machinery constraints, the complex-conjugate control also has difficulties in dealing with
the nonzero off-diagonal elements in the radiation-resistance matrix, which represents the
resistance caused by radiating waves from one device on the others. In some studies of
optimal configurations for a WEC array [1, 12], resistive control was applied instead, as a
sub-optimal solution, where the damping coefficients of the power take-off (PTO) units on
individual devices show up as tuning parameters for achieving optimal power generation of
the entire array.

As described in Chapter 3, recent developments of wave-energy technology has revealed
the need to controlling a WEC array with physical and machinery constraints. Model-
predictive control (MPC) is attracting more and more attention because of its capability of
handling hard constraints and generating optimal control inputs in real time given future
predictions of wave conditions [22]. While studies showed that operating the devices in a
coordinated manner can improve the array performance compared to independent control
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actions on isolated devices [6, 39], MPC can be computationally demanding, if not imprac-
tical, when it comes to an array of WEC devices. Li and Belmont applied the centralized
MPC with a convex formulation as developed in [38] to an array of two cylinders in irreg-
ular sea waves [39]; a distributed MPC was also presented and applied to a seven-cylinder
array. This is a novel approach in the area of controlling a WEC array by MPC. However,
wave-interaction effects were underestimated because the point-absorber approximation [24]
adopted in this study assumes that only radiating waves from the motion of the devices need
to be considered and all scattering waves caused by the presence of neighboring devices can
be neglected. Nevertheless, the convex formulation was shown as a desired and necessary
property for applying the MPC to a WEC arrray.

The MPC formed in Chapter 3 has the convexity of the optimization problem guaranteed
by adjusting the penalty weight on the slew rate of the control input, which eliminates the
necessity of penalizing the power consumption and having negatively impacts on the power
absorption. Additionally, the method developed in Chap. 2 was used for fast computation
of the wave-interaction effects among a WEC array. Because of the high computational
efficiency, the hydrodynamic modeling in Chap. 2 is particularly attractive for evaluating
relatively large arrays in real-sea waves.

In this Chapter, the MPC developed in the Chapter 3 for a single WEC is applied
to an array of WECs, in both regular and irregular waves, further, in conjunction with
full interaction hydrodynamics by the fast computation method developed in Chap. 2. To
investigate the optimal operating condition for an array of WECs in real-sea states and
with constraints considered, we will form a central controller for a WEC array subject to
constraints applied on the control force and the oscillation amplitude of each device. We will
also adopt the PA approximation to consider the wave-interaction effects in the plant model
of the controller. The optimal control input obtained for the PA model will be fed into the
“exact” dynamic model with the exact wave forces taken into account. By comparing the
results, we will quantify the effect of the model inaccuracy induced by the PA approximation
on the power generation estimation. Also studied is the difference in energy absorption of
individual devices in the group. Since the MPC requires that a wave-prediction unit be
simultaneously incorporated to predict the dynamics of the system, we will assume in this
work that there exists a wave predictor, e.g. [28] and [48], which can estimate the wave
elevation at a designated location for a certain future time window with a good degree of
confidence.

4.2 Modeling an Array of Point Absorbers

A farm of wave-energy devices can act independently in a seaway or in a coordinated manner
with possible communication among themselves. Ideally, we assume the incident wave field
is known and if a global controller is intelligent enough, the system may act cohesively to
achieve the best global performance subject to some hardware or physical constraints. It
is not difficult to envision each device may have its own controller communicating with a
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global controller. In what follows, we set up a framework so that the master controller would
direct the members to act in “the best interest of the community.”

The Equations of Motion

Without loss of generality, we consider the bodies in the array to be different in size. As
initially described in Chapter 3, the equations of motion of a heaving point absorber, the
j-th in an array of N bodies, can be written in the time domain as

mj ζ̈j3 = f je (t) + f jr (t) + f jh(t) + f jm(t) (4.1)

where mj and ζj3(t) are mass and heave displacement of the absorber. Here, f je (t), f jr (t),
f jh(t), and f jm(t) are wave-exciting (“e”), wave-radiation (“r”), hydrostatic restoring (“h”),
and applied machinery forces (“m”) on the cylinder j, respectively. Here, f jh(t) and f jr (t)
take the forms:

f jh(t) = −Kjζ
j
3(t) (4.2a)

f jr (t) = −µjj33(∞)ζ̈jj3 (t)−
N∑
l=1

∫ t

−∞
Kjl
r (t− τ)ζ̇ l3(τ)dτ (4.2b)

with Kj being the hydrostatic stiffness coefficient, and µjj33 the added-mass coefficients at
infinite frequency. The convolution integrals represent the fluid memory effects where Kjl

r (t)
(j, l = 1, 2, . . . , N) is the impulse response function with the superscripts indicating the effect
of cylinder l on cylinder j. The Kjl

r can be obtained by the inverse Fourier transform of the
damping coefficients in frequency domain (see [68]) as

Kjl
r (t) =

2

π

∫ ∞
0

[λjl33(σ)− λjl33(∞)] cos(σt)dσ (4.3)

Note that wave damping at infinite frequency vanishes, i.e. λjl33(∞) = 0. For l 6= j, the λjl33

represents the effect of the motion of the cylinder k on the wave forces of cylinder j. The
wave-exciting force can be expressed as:

f je (t) =

∫ ∞
−∞

Kj
e(t− τ)η(0, t)dτ , (4.4)

for a given η(0, t), which denotes the incident-wave elevation at the vertical axis of the body.
The impulse response function Kj

e(t) of j-th cylinder can be evaluated by the inverse Fourier
transform of the complex amplitude Xj

3 of the wave-exciting force induced by unit-amplitude
waves of frequency σ as:

Kj
e(t) =

1

2π
<
{∫ ∞
−∞

Xj
3(σ)eiσtdσ

}
(4.5)
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As full knowledge of the incoming waves is presumed in this paper, we will compute the
wave forces based on the frequency-domain analysis under linear wave theory, see e.g. [64].

Substituting Eqn. (4.2) into Eqn. (4.1), we obtain

(mj + µj33(∞))ζ̈j3(t) + λvisζ̇
j
3 +Kjζ

j
3(t)

+
N∑
l=1

∫ t

−∞
Kjl
r (t− τ)ζ̇ l3(τ)dτ = f je (t) + f jm(t)

(4.6)

where a corrective linear viscous damping coefficient λvis, obtained from experiments [64],
is included to account for viscosity-based dissipation. Here, Kjl

r and f je contain the effects
of interacting waves; the corresponding coefficients λjk33 and Xj

3 will be obtained by solving
the radiation problem for the array and applying the new Haskind relation by the method
described in Chapter 3.

State-Space Model

To form a state-space (SS) model for the controller based on the dynamics presented in
Eqn. (4.6), we denote the convolution of Kjl

r and ζ̇3(t) by yjlr , and approximate it using the
following linear sub-system: u

żjlr (t) = Ajlr z
jl
r (t) +Bjl

r ζ̇
l
3(t) (4.7a)

yjlr = Cjl
r z

jl
r (t) +Djl

r (t)ζ̇ l3(t) (4.7b)

where zjlr ∈ Rnjl
r with njlr being the number of states in this model. Since λjl33 = λlj33 which

implies Kjl
r = K lj

r per Eqn. (4.3), the two can be modeled by the same sub-system, i.e.
Ajlr = Aljr , Bjl

r = Blj
r , Cjl

r = C lj
r , and Djl

r = Dlj
r . A reduced-order model obtained by

MATLAB function balmr was used to reduce the number of states and in the meantime
capture the characteristics of the impulse responses.

Following the notation in [39] and using Eqn. (4.7), we can write the equation of motion
for the j-th cylinder as:

ẋj = Ajx
j +

N∑
l=1, l 6=j

Fjlx
l +Bj(u

j + wj) (4.8a)

yj = Cjx
j (4.8b)

zj = Cz,jx
j (4.8c)
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where y := ζ̇j3 , z := ζj3 , uj := f jm, wj := f je , and

Aj =



0 1 0 0 . . . 0 0 . . . 0

−Kj

Mj
− (λvis+Djj

r )
Mj

−Cjj
r

Mj
−Cj1

r

Mj
. . . −Cjj−1

r

Mj
−Cjj+1

r

Mj
. . . −CjN

r

Mj

0 Brjjr Arjjr 0 . . . 0 0 . . . 0

0 0 0 Aj1r 0 . . . . . . . . . 0
...

...
... 0

. . . 0 . . . . . . 0
...

...
... 0 . . . Ajj−1

r 0 . . . 0
...

...
... 0 . . . 0 Ajj+1

r . . . 0
...

...
... 0 . . . . . . . . .

. . . 0
0 0 0 0 . . . . . . . . . . . . AjNr



Fjl =



0 0 0 0 . . . 0

0 −Djl
r

Mj
0

... . . .
...

0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 Bjl
r 0

... . . .
...

... 0
...

... . . .
...

...
...

...
... . . .

...
0 0 0 0 . . . 0


Bj = [0, 1/M,01×Nj

r
]T Cj = [0, 1,01×Nj

r
], Cz,j = [1, 0,01×Nj

r
]

where M := mj + µj33(∞), Bjl
r occupies the same rows as Ajlr , and N j

r =
N∑
l=1

njlr is the total

number of states for the “interaction” radiation subsystems.
The centralized model for a system of N WECs can be written as

ẋ = Acx +Bc(u + w) (4.9a)

y = Ccx (4.9b)

z = Cz,cx (4.9c)
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where x = [x1;x2; . . . ;xN ], u = [u1;u2; . . . ;uN ], w = [w1;w2; . . . ;wN ], and

Ac =


A1 F12 . . . . . . F1N

F21 A2 F23 . . . F2N

F31 F32 A3 . . . F3N
...

...
...

. . .
...

FN1 FN2 FN3 . . . AN


Bc = blkdiag(B1, B2, . . . , BN)

Cc = blkdiag(C1, C2, . . . , CN)

Cz,c = blkdiag(Cz,1, Cz,2, . . . , Cz,N)

where blkdiag is a command in MATLAB that constructs a block diagonal matrix with the
input matrices.

The state-space model Eqn. (4.9) is discretized using zero-order hold ([31]), where inputs
are assumed to be piecewise constant over the sampling time Ts. As a result, we obtain the
following discrete-time model:

xk+1 = Axk +B(uk + wk) (4.10a)

yk = Cxk (4.10b)

zk = Czxk (4.10c)

where the subscript k indicates the time instant k.

Point-Absorber Approximation

The hydrodynamic coefficients used in the formulated SS model have considered the full
wave-interference effects. Yet, because of the complexity of solving such a hydrodynamic
problem, the point-absorber approximation was oftentimes adopted to model the WEC sys-
tem. As indicated in [45], the basic assumption of the point absorber approximation is that
the devices are small enough, relative to the wavelength of the incident waves, for the struc-
ture to be a weak scatterer. Based on this assumption, only the far-field radiating waves
induced by the motion of one device on the other were considered; all scattered waves were
neglected in the computation of interaction effects. The wave-exciting force on an individual
device is hence the same as the one on an isolated body except for a potential phase change
dependent on the coordinate origin of the device. The damping coefficient λjj33 representing
the hydrodynamic force induced by the motion of the j-th cylinder itself will also not be
affected by interacting waves. The “interaction” damping coefficient λjl33 with j 6= l, rep-
resenting the force on the body j caused by the motion of the body k, will be considered
and dependent on the relative position of two neighboring devices. As derived in [20], the
damping coefficients λjl33 with the j-th cylinder located at a global (cylindrical) coordinates
(rj, αj) and the l-th cylinder at (rl, αl) can be expressed as

λjl33 = λ33J0(kdjl) (4.11)
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where λ33 is the radiation damping coefficient for the isolated cylinder, J0 is the zero-th order
Bessel function, k is the wave number of the incoming waves, and

djl =
√
r2
j + r2

l − 2rjrl cos(αm − αn)

is the distance between the j-th and l-th body with j, l = 1, 2, . . . , N . Note that λjl33 = λ33

if j = l, and λjl33 = λlj33. Substitution of Eqn. (4.11) into Eqn. (4.3) yields the retardation
function Kjl

r (t). In addition, as derived by [20], the complex amplitude Xj
3 of the wave-

exciting force on cylinder j with a phase shift because of the location of the cylinder j can
be obtained by

Xj
3(σ) = X3(σ)eikrj cos(β−αj) (4.12)

where β is the incident angle of the waves measured from the x-axis and X3 is the complex
amplitude of the wave force for an isolated cylinder, which can be obtained from frequency-
domain hydrodynamic analysis [68] of the single device.

It can be seen that the PA approximation significantly simplifies the hydrodynamic prob-
lem and provide a straightforward estimation for hydrodynamic properties of individual de-
vices in an array. However, the model inaccuracy induced by the PA approximation may
affect the array performance. To investigate such an effect, we will form a second SS model as
expressed in (4.10) with the damping coefficient λjl33 obtained in (4.11) and the wave-exciting
force Xj

3 in (4.12) and proceed the MPC procedure.

4.3 Model-Predictive Control Formulation with

Convexity

A convex formulation for the model-predictive control on a single WEC was proposed in
Chapter 3. With the state-space model constructed in Section 4.2, we can apply the same
procedure of the MPC formulation as described in Chapter 3 to build a MPC controller for
multiple WECs.

The Optimization Problem

The goal is to maximize the total energy E extracted by all of the PTO systems over a
predicted time horizon Th, where

E =

∫ Th

0

P (t)dt = −
∫ Th

0

N∑
j=1

f jm(t)ζ̇j3(t)dt (4.13)

With the use of the discrete-time model Eqn. (4.10), E can be written asE = Ts
Nh−1∑
k=0

(−uTk yk),

where Nh is the number of sampling time instants during the time horizon Th, i.e. Th = NhTs.
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Hence, the objective is to find a series of inputs uk (k = 0, 1, . . . , Nh − 1) such that

max
[u0,u1,...,uNh−1]

E = min
[u0,u1,...,uNh−1]

(−E)

= min
[u0,u1,...,uNh−1]

Ts

Nh−1∑
k=0

uTk yk

(4.14)

This is equivalent to setting the cost function to be

J0 =

Nh−1∑
k=0

uTk yk (4.15)

and minimize J0 over the control inputs. For safety and long-term operation, constraints on
the heaving motion of the absorber z and the machinery force u need to be included:

|zjk| ≤ ζ3,max (4.16a)

|ujk| ≤ fm,max (4.16b)

where k = 0, 1, . . . , Nh − 1 and j = 1, 2, . . . , N . However, it has been shown in [38] that
the constrained optimization problem formed by Eqn. (4.15) and Eqn. (4.16) will result in a
non-convex QP, for which a global optimal solution is not guaranteed.

In this paper, we construct the cost function to be:

J =

Nh−1∑
k=0

(uTk yk + r1||∆uk||22 + r2||uk||22) (4.17)

where ∆uk = uk − uk−1 for k = 0, 1, 2, . . . , Nh − 1, || · ||2 represents the l2 norm, and r1, r2

(≤ 0) are penalty weights. ∆u0 := u0 − u−1 where u−1 is defined as the control input
obtained in the previous time horizon, and u−1 = 0 initially. To attain a convex QP, we
set r2 = 0 and tune r1 so that the Hermitian matrix for the cost function Eqn. (4.17) is
positive definite, in a way similar to [38]. In this way, the QP is convex regardless of the
value of r2 which serves as the second tuning parameter for penalizing energy consumption.
For cases simulated here, a small r1 (r1 << 1) is sufficient to guarantee the convexity of the
cost function. Compared to directly increasing the penalty on the power consumption to
convexify the cost function as proposed in [38], the current approach of penalizing the slew
rate of the control input can better avoid over-penalizing the energy consumption, which
sacrifices absorbed energy.

Quadratic Programming Formulation

We will cast the problem into a QP. The following notations will be used:

U0 := [u0;u1; . . . ;uNh−1]

W0 := [w0;w1; . . . ;wNh−1]
(4.18)
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which represent the series of inputs u and w at time instants k = 0, 1, . . . , Nh − 1, where we
recall that u and w are column vectors denoting the machinery forces and the wave-exciting
forces on all of the WECs, as defined in Eqn. (4.9). The optimization problem is composed
of the cost function Eqn. (4.17) and constraints Eqn. (4.16) with the dynamics in Eqn. (4.10)
satisfied.

To form the QP, we propagate the state equation Eqn. (4.10a) and use Eqn. (4.10b) to
obtain ŷ(k + i|k), which denotes the state yk+i estimated at time k and stacks the output
states to form the vector Y Nh−1

0 := [ŷ(k|k), ŷ(k + 1|k), . . . , ŷ(k +Nh − 1|k)]T . Y Nh−1
0 can

then be expressed in a matrix form as:

Y Nh−1
0 = Sxxk + Su(U0 +W0) (4.19)

where
Sx =

[
C;CA;CA2; . . . ;CANh−1

]

Su =


0

CB 0

CAB CB
. . .

...
...

. . . 0
CANh−2B CANh−3B . . . CB 0


(4.20)

In a similar manner, we can express the vector of states ẑ(k + i|k), i = 0, 1, . . . , Nh − 1,
denoted by ZNh−1

0 as
ZNh−1

0 = Sx,zxk + Su,z(U0 +W0) (4.21)

where we substitute Cz for C in Eqn. (4.20) to obtain Sx,z and Su,z. In matrix form, the
slew input vector ∆U := [∆u0; ∆u1; ∆u2; . . . ; ∆uNh−1] can be written as:

∆U = T∆U0 − gu (4.22)

where

T∆ =



1
. . .

0 1
−1 0 1

. . . . . . . . .

−1 0 1


NNh×NNh︸︷︷︸

N

gu =
[
u−1; 0; . . . ; 0

]
NNh×1

(4.23)

with u−1 being the control input applied to the system currently and u−1 = 0 initially. In
the MPC, u−1is the input obtained from the previous receding-horizon computation.
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The cost function J in Eqn. (4.17) can then be written in a compact form:

J = UT
0 Y

N−1
0 + (T∆U0 − gu)TR1(T∆U0 − gu) + UT

0 R2U0 (4.24)

where Ri = ri×I(NNh) (i = 1, 2) with I being the identity matrix. Substituting Eqn. (4.19)
and Eqn. (4.22) in Eqn. (4.24) and neglecting the constant term, we can write J in a quadratic
form

J =
1

2
UT

0 HU0 + fTU0 (4.25)

where

H := Su + STu + 2SR (4.26a)

f := Sxxk + SuW0 − 2Sg (4.26b)

with SR := (T∆)TR1T∆ +R2 and Sg = (T∆)TR1gu.
It can be seen that without penalizing the slew rate, the cost function will have a corre-

sponding Hessian matrix H0 = Su + STu where Su in Eqn. (4.20) has zero diagonal elements,
which may lead to an indefinite H0 and hence a non-convex problem. The addition of SR,
aside from controlling the slew rate, adds positive values on the diagonal of the matrix H
per Eqn. (4.26a). By setting r2 = 0 and tuning r1 such that the minimal eigenvalue of H is
larger than 0, we can have a positive definite H and hence a convex J .

The constraints Eqn. (4.16) can be written in a component-wise inequality. Thus

AuU0 ≤ bu (4.27)

where it can be shown, with the use of Eqn. (4.21), that

Au =


I
−I
Su,z
−Su,z

 , bu =


Umax

Umax

Zmax − Sx,zxk − Su,zW0

Zmax + Sx,zxk + Su,zW0

 (4.28)

with Umax = fm,max × [1, . . . , 1]︸ ︷︷ ︸
NNh

T and Zmax = ζ3,max × [1, . . . , 1]︸ ︷︷ ︸
NNh

T .

In summary, the QP with the cost function Eqn. (4.25) subject to the constraints
Eqn. (4.27) can be written as:

min
U0

J =
1

2
UT

0 HU0 + fTU0 (4.29a)

subject to AuU0 ≤ bu (4.29b)
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MPC Scheme Implementation

The MPC scheme as presented is implemented as follows: at time instant k, with the knowl-
edge of estimated states and the predicted wave profile, the QP in Eqn. (4.29) is solved, and
a sequence of optimal control inputs U∗0 = argmin(J) is generated; the first set of the control
inputs in the sequence is applied; the system dynamics is then moved forward to the next
time step, and the optimization procedure is repeated. In this paper, we will assume the
knowledge of a certain future period of the incoming waves is available.

Regarding the study of the PA approximation, the plant model in the MPC controller
is built with the hydrodynamic coefficients obtained under the approximation. The control
inputs generated from the MPC will be fed into the “real” dynamic model of the WEC array
where the wave-interaction effects were accurately captured as formed in §4.2.

4.4 Performance of a Constrained WEC Array

We will apply the MPC formulated in Section 4.3 to arrays of point-absorber type WECs
with configurations shown in 4.1. The heaving point absorber adopted for simulations in
this paper is shown in Fig. 4.2, which was developed in [64, 72] with both simulations and
model tests. The cylinder or floater has a radius of a = 0.1365 m and a draft of d = 0.6126
m, and the WEC device has a total mass of M = 42.1 kg (including the added mass), and
hydrostatic stiffness coefficient of K = 574.2 N/m. The water depth is 1.5 m. In addition,
an equivalent linear-viscous damping factor λvis = 5.0N · s/m was used, which was obtained
from experiments in [64]. In this section, performances of three devices shown in 4.1(b) will
be evaluated in both regular and irregular wave conditions. Power absorbed by the array
with the current MPC formulation will be compared with those obtained by passive damping
control. Also discussed is the performance of the array, with wave interacting among devices,
compared to that of isolated devices. For such purpose, an interaction factor q will be used,
which presents the ratio of the power absorbed by an array averaged over the number of
devices and the power absorbed by a single cylinder, as defined in the following

q =
Pu

NPu,s
(4.30)

where Pu is the useful power obtained by multiple absorbers, Pu,s is the power absorbed by
a single or isolated absorber, and N the number of devices. For the passive controller, it
is assumed that each WEC will be equipped with a simple linear damper of nonnegative
damping coefficient. As described in [24], the optimal linear damping of the j-th cylinder in
regular waves can be obtained by

Bj
g(σ) =

√
(λj33(σ) + λvis)2 + (σ · (mj + µj33(σ))− Kj

σ
)2 (4.31)
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Figure 4.1: Birdseye view of the configuration of two to four identical WEC devices, separated
by a distance of L as defined, with incident waves striking at an angle β.

where λ33 and µ33 are hydrodynamic coefficients for the j-th cylinder as in isolation. The
PTO force can be obtained by

f jg (t) = −Bj
g ζ̇
j
3(t) (4.32)

In irregular waves, the Bg will be tuned to correspond to the peak period of the wave
spectrum.

To illustrate the modeling of effects of radiating waves, the radiation subsystem for Kjl
r

(j, l = 1, 2, 3) of a three-cylinder array is presented in Fig. 4.3 as an example, where Kjj
r

indicates the radiation forces on device j caused by the motions of itself and Kjl
r (l 6= j)

indicates the radiation forces caused by device j on its neighbor l. The impulse response
Kjl
r (t), obtained by inverse Fourier transform (IFT) of the corresponding damping coefficients

λjl33(σ) was plotted with the response of reduced-order state-space (SS) models. A sixth-order
state-space model was used to approximate the subsystem for K11

r and a seventh-order state-
space model for K12

r to achieve an accuracy of 0.999, evaluated by the method described in
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Figure 4.2: Schematic of the heaving point absorber and the PTO system developed in [64].

[62]. Because of the equilateral layout, the array has the property of K12
r = K13

r . Here, L
denotes the center-to-center spacing.
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Figure 4.3: Impulse response of the radiation subsystems and the damping coefficient in
heave for three cylinders with the spacing L = 5a. Coupling hydrodynamics is shown as
superscript 12 and 13

Constraints for the devices are considered as: (1) the maximum response amplitude
operator (RAO) of absorbers is 3, i.e. ζ3,max = 3A0 with A0 being the wave amplitude, and
(2) the maximal machinery force is fm,max = Bg,maxζ3,maxσ with Bg,max = 50 N·s/m, where
σ is the angular frequency of incident waves, according to [64]. We set the penalty weight ri
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(i = 1, 2) to be ri = ri/T
2
w, where the scaling factor T 2

w with Tw being the wave period was
used to eliminate the effect of the selected time interval. In the current study, r1 = 10−0.9

was chosen to be the minimal value such that the cost function Eqn. (4.17) is convex, and
r2 = 10−2 was chosen to be the weight penalizing power consumption. The quadprog solver
with the interior point algorithm in MATLAB was used to solve the QP for the MPC, which
has polynomial time complexity [70] for solving convex QP.

Results in Regular Waves

Using linear theory, we can write the wave-exciting force induced by a regular wave of
frequency σ on the cylinder j as:

f je (t) = A0<{Xj
3(σ)e−iσt}, j = 1, 2, . . . , N (4.33)

with A0 being the wave amplitude. Here, we recall that Xj
3 contains wave-interaction effects

among the cylinders and was obtained by the method developed in Chapter 2. The wave
amplitude was set to A0 = 0.061 m in simulations. The wave-exciting force on cylinder j,
for the discrete-time model in Eqn. (4.10), is obtained by

wjk = A0<{Xj
3(σ)e−iσkTs} (4.34)

where wjk denotes the f je at time instant k with k = 0, 1, . . . , Nh−1. Simulations were carried
out for 20Tw with 80 time steps per wave period.
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Figure 4.4: Nondimensional capture width of three WECs in regular waves with the spacing
ratio L/a = 5 and L/a = 10.
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Figure 4.5: Maximal RAO of three WECs in regular waves with the spacing ratio L/a = 5
and L/a = 10.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4.6: The ratio of the reactive power to the power flowing from the absorbers to the
PTO units (so-called “active power”) for a three-WEC array with the spacing ratio L/a = 5
and L/a = 10.
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We present results for the non-dimensional capture width Cw, the maximal response
amplitude operator (RAO) of absorbers in the array, and the non-dimensional frequency σ,
which were defined by

Cw =
Cw
2a

=
1

2a

P u/N

Pwave

(4.35a)

RAOmax = max(
ζ1

3

A0

,
ζ2

3

A0

, . . . ,
ζN3
A0

) (4.35b)

σ = σ

√
a

g
(4.35c)

with g being the gravitational acceleration, Pwave the incident-wave power flux, and

Pu(t) =
1

T

∫ T0+T

T0

f jm(t)ζ̇j3(t)dt

representing the time-average energy extracted by the WEC array, which is summed over j,
then averaged over N bodies. Fig. 4.4-Fig. 4.6 show results for a three-cylinder array with
the spacing to radius ratio L/a = 5 and L/a = 10 respectively in head seas (β = 0); also
shown were results obtained by the (unconstrained) passive control.

It can be seen that the MPC significantly out-performed the passive controller in terms
of broadening the capture-width bandwidth, even with strictly restricted RAOs and control
inputs. It should be noted that the current MPC, taking the machinery force as the control
input, will require power to motor the system, i.e. the so-called “reactive power” is employed,
while the passive control of the damping do not need driving power. In Fig. 4.6, we present
the ratio of the reactive power (P react) to the power flowing from the absorbers to the
PTO units (so-called “active power” P act). Near the resonance frequency σ = 0.4356 of
the single device, the MPC was able to produce nearly the same amount of power as the
one produced by the passive controller, with the RAO constrained and the consumed power
being approximately 0. This result suggests that the current MPC is capable of maximizing
the extracted energy and satisfying hard constraints on the absorbers. Also, by penalizing
energy consumption in the cost function, the reactive power required by the MPC system is
controlled to be less than 30% of the total power, i.e. more than 70% of the absorbed power
can be transformed to the useful power. When the spacing among the devices increases to
10a, i.e. 5 diameters, the difference caused by the wave-interaction effects appears to be very
small. More discussion on the wave-interaction effects on power production from the array
will be presented in a later section.

Time histories of heaving velocities of the three devices with spacing ratio L/a = 5 in
head seas (β = 0) in the Fig. 4.7, as well as the instantaneous power and the machinery force,
i.e. the control force. Because of the geometric symmetry, Cyl.2 and Cyl.3 behaved the same
in waves of β = 0. Wave-interaction effects can be seen from the phase difference between
the heaving velocity and the wave-exciting force for the array in waves of a frequency near
the resonant frequency of the device, which has a period of Tw = 1.7s. If there were no
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Figure 4.7: Time histories of the heaving velocity ζ̇3, the wave-exciting force fe, the instan-
taneous power P , and the machinery force fm for a three-device array at two selected wave
periods, showing rather different behavior (L/a = 5).

wave interference, the two should be in phase at the resonance. Also, in such waves, Cyl.1
extracted less power than Cyl.2&3 because of sheltering effects from the upstream cylinders.
In waves of Tw = 2.3s, at the frequency σ = 0.322 corresponding to longer waves, cylinders
in the upsteam and downstream behaved as independent and attained similar amounts of
extracted energy; also, the constraint on the control force was active, which resulted in a
bang-bang type of control. This suggests that at lower frequencies, effects of constraints
played a more dominant role than the wave-interaction effects. In addition, in Fig. 4.7, it
can be seen that there exists phase differences among the instantaneous power extracted
by individual devices. Such phase differences may be used to achieve a more stable power
output from the array to the grid.

Results in Irregular Waves

The performance of the controlled WEC array was evaluated in irregular waves. A modified
Pierson-Moskowitz spectrum for fully developed seas was used to construct the irregular
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wave profile:

S(σ) = H2
sT1

0.11

2π

(
σT1

2π

)−5

exp

[
−0.44

(
σT1

2π

)−4
]

(4.36a)

T1 = 0.7713Tp (4.36b)

A(σj) =
√

2S(σj)∆σ (4.36c)

η(t) =
N∑
j=1

A(σj) sin(σjt+ εj) (4.36d)

fe(t) =
N∑
j=1

|X3(σj)|A(σj) sin(σjt+ δj + εj) (4.36e)

where Hs, Tp, Aj, and δj are the significant wave height, peak period, wave amplitude,
and phase angle of the wave-exciting force the jth-component, respectively, and εj is a
random phase angle of wave components. The random phase angles are uniformly distributed
between 0 and 2π and constant with time. The range of angular frequencies used in the
construction of Eqn. (4.36) was between 0.1 rad/s and 8.75 rad/s spaced at 0.05 rad/s.
The simulation runs for Hs = 7.62 cm (3.0 in) and varying Tp, carried out for 500 peak
wave periods with 50 time-steps per peak period and the time horizon Th = 2Tp. In this
application, the RAO is constrained to be 1.5 times the significant wave height, i.e. ζ3,max =
1.5Hs and the Bg,max = 50 N·s/m. The maximal machinery force is computed in the same
way as described in Section 4.4 with σ = 2π/Tp. The same penalty weights r1 = 10−0.9/T 2

p

and r2 = 10−2/T 2
p as in regular waves were used.

Results of the averaged useful power and the ratio of the consumed power for the three-
WEC array with two spacings in head seas (β = 0) are shown in Fig. 4.8F̃ig. 4.9, and
compared with arrays controlled by passive controllers, as described in Eqn. (4.31), and
the single device with the MPC control. Performance of the MPC in irregular waves is
significantly better than the passive controller. Destructive wave-interaction effects were
observed for all simulated wave conditions. Increasing the spacing between devices can
reduce the destructive effects by a factor of 2. Meanwhile, with the composition of waves
of different frequencies, the variance of interaction factor q with the wave periods tends to
be flatter, compared to that in the regular-wave cases. In irregular waves, the ratio of the
reactive power increases with the increase of the peak wave period and approaches to 0.33
for the array, less than the value of 0.4 for the single device. The less portion of reactive
power for array arrangements may be attributable to the energy transfer among the group
members.

Computational Time

The box plot of the computational time for simulations of the coordinated control of two,
three, and four devices in model scale are plotted over the number of devices in the array,
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Figure 4.8: Averaged useful power for three WECs in irregular waves.
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Figure 4.9: The ratio of reactive power to active power for three WECs in irregular waves.



CHAPTER 4. MPC CONTROL OF A WEC ARRAY 71

as shown in Fig. 4.10. All simulations were performed on AMD Threadripper 16-core CPU
running at 3.4 GHz. Simulations for irregular-wave cases were carried out for 500Tp with
50 time steps per wave period. The prediction horizon used in the MPC is 2 wave periods.
Regarding the mean values of the computational time per peak wave period, increasing the
number of devices can increase the computational time by an order of magnitude. Neverthe-
less, the results show increase in the numbder of devices did not make the computational cost
prohibitively high. In addition, with code optimization and scaling ratio between prototype
and model test taken into account, the method can be used for a fast evaluation of the power
performance of a medium-size array.

1 2 3 4

N

100

101

Figure 4.10: Box plot of the computational time for irregular-wave cases plotted over the
number of cylinders.

4.5 Wave-Interaction Effects on Power Performance

of a Constrained WEC Array

In studies of optimal wave-array configurations, constructive wave-interference effects is a
primary criterion for determining the favorable configurations. However, existing studies
normally do not consider physical constraints on a WEC array and oftentimes simplify
hydrodynamic effects from interacting waves in the modeling. The resulted interaction factor
q can differ by more than 50% in waves of different frequency and wave-incidence angles. To
investigate wave-interaction effects on the power performance of a constrained array in the
optimal operating condition, we here performed simulations for two, three, and four devices.

Fig. 4.11 shows the interaction factor q obtained for the three-device array with the
spacing to radius ratio L/a = 5 and L/a = 10 under the MPC control (with constraints)
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Figure 4.11: The q factor for three devices with constrained MPC control and (unconstrained)
complex-conjugate (CC) control in head seas (β = 0).

and under the complex-conjugate (CC) control (without constraints) as described in [20] and
[23]; also presented is the mean RAO of the three devices in the array. It can be seen that
wave-interaction effects on the optimal power output were in general reduced with constraints
added on devices, particularly in the low-frequency region, where an impractically large RAO
was required to achieve the optimal power with unconstrained control. For a constrained
array, the strongest wave-interaction effects appear near the resonance frequency of a single
WEC device. While at low frequencies, the effects of constraints will become dominant over
the interaction effect, which makes the individual cylinders behave as almost independent.
The spacing among devices noticeable affects the wave-interaction effects. When the spacing
distance between the three cylinders increases from L = 5a to L = 10a, the maximal
interaction effect was reduced approximately from 20% to 10%.

We also investigated the effect of wave-incidence angle on the power production of a
constrained array. As shown in the results from Chapter 2, the power performance of a
WEC array vary largely with the wave-incidence angle. Additionally, it was shown in [69]
that the integration of the q factor over the wave angle from 0 to 2π should be equal to 1
for an array of heaving point absorbers under optimal unconstrained control. This means
that there will be the same amount of constructive effects and destructive effects induced
by waves from all directions. In the design of a wave farm, an array is normally placed such
that regional waves come in the direction that makes the array generate the most power.

Such differences induced by the wave angle appeared in a different form when constraints
were applied to the system. We plot the mean power generated by the array and the ones
generated by individual devices for arrays consisting of two, three, and four cylinders in the
waves of various incident angles, as shown in Fig. 4.12. It can be seen that the averaged
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(a) Two-device array in waves of β = 0 and β =
π/2
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(b) Three-device array in waves of β = 0, β =
π/3, and β = π/2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.5

0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

(c) Four-device array in waves of β = 0 and β =
π/4

Figure 4.12: Power extracted by a two-device array: the upper plot shows the averaged
capture width for the array and the lower ones show the capture width for individual devices.
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power generated by the whole array does not appear much differences when incident waves
are from different directions. However, the distribution of the absorbed energy among array
elements are largly affected by the wave-incidence angle. The devices confronted with waves
first, represented by the solid symbols, were able to absorb the most power in all cases, while
the absorbers that are the farthest in the downstream, indicated by the hollow symbols, has
the least energy absorption. The results may also be explained that when the configuration
of the array has less wave-direction preferences, or in other words, appears more like a circle,
the total energy that can be extracted from the array will tend to be the same amount
for waves of all directions, but with the energy distributed differently among the members.
Therefore, in optimizing the array configuration, it can be worthwhile to consider the energy
extraction difference in individual devices, in addition to maxmizing the total energy output.

4.6 Effects of the Point-Absorber Approximation

The point-absorber (PA) approximation was commonly used in the study of control strategies
for WECs because it is straightforward to apply and can provide an estimation for wave-
interaction effects. In this section, we compared simulation results using a model with the
“exact” wave-interaction effects and using the one with the point-absorber approximation.
The evaluation was performed with the use of irregular-wave conditions for realistic scenarios.

Results for arrays of different spacing ratios are presented, since the spacing between
devices will affect the accuracy of the PA approximation, i.e. the larger the spacing, the
more valid the assumption of neglecting effects of scattering waves. Fig. 4.13 shows the
useful energy P u and the reactive power P react, obtained for the array of L/a = 5 with wave-
interaction effects modeled by the PA approximation and the exact method respectively. It
can be seen that with the “exact” wave-interaction model, the array generated 5−15% more
energy than the one with the PA-approximation model with a similar amount of energy
consumption (reactive power). This suggest that the more information about the wave
forces on the array can benefit the energy absorption of the system. With a larger spacing
ratio, L/a = 10, the “exact” model still outperformed the PA-approximation model but
the difference in the energy absorption with the two models is less than 5%, as shown in
Fig. 4.14. Hence, if devices in an array have relatively large spacings, the PA approximation
can be a fast and good way to consider wave-interaction effects on the power performance
of the array.

4.7 Summary Remarks

In this Chapter, the MPC developed in Chapter 3 was applied to arrays of heaving point
absorbers such that the absorbers will act coordinatedly to maximize the energy extraction
of the whole array, with wave interactions among the devices taken into account in the
dynamic model. Constraints were considered on the motion amplitudes and the PTO forces
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Figure 4.13: Comparisons of the performance of a three-WEC array in irregular waves
with the wave-interaction effect modeled by the PA approximation and an “exact” method
(L/a = 5).
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Figure 4.14: Comparisons of the performance of a three-WEC array in irregular waves
with the wave-interaction effect modeled by the PA approximation and an “exact” method
(L/a = 10).
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of individual devices. The power consumption, caused by using the PTO force as the control
input to ensure a linear dynamic system, was penalized with the weight acting as a free tuning
parameter. Full wave-interaction effects among the array, evaluated by the fast computation
method developed in Chapter 2, was taken into account in the dynamic model of the whole
array.

Simulation showed that the MPC strategy successfully optimized the energy genera-
tion from a point-absorber array and satified hard contraints on the devices. Compared to
the unconstrained optimal-damping control strategy, the MPC significantly broadened the
capture-width bandwidth and generated nearly the same amount of maximal energy but
with constraints satisfied. Additionally, the wave-interaction effect on the power production
is considerably reduced because of the restricted oscillatory motion of the devices, when com-
pared to that of unconstrained cases which is commonly used as an indicator of the power
production capability of an array. Hence, the phase matching condition for indicating the
condition of maximal energy extraction for an absorber, though in principle not valid for an
array because of wave interferences, was approximately achieved even when the devices were
less than 3 diameters apart. The interaction effects were seen as destructive, indicating the
less the interaction effects, the better the power performance of the array given the design.
Simulations of the array in irregular waves were also performed, enabled by the efficient
computation of the convex QP formulation of the MPC; and the power consumption by the
PTO systems were discussed. The ratio of computational time per peak wave period to
the wave period plotted over the number of devices showed the computational efficiency of
the current method and its potential in real-sea applications. Highlights of this research is
reported in [78].
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Chapter 5

Implementation of the control
strategy on a WEC array

5.1 Overview

As it can be seen from Fig. 4.6 and Fig. 4.9, reactive power will be required during the active
control process of the heaving absorber, which causes two-direction energy flow. Comparing
to the resistive control by tuning the PTO damping, we observe the advantage of the current
controller is that it can act an arbitraty, and desired, amount of forces on the devices, less
affected by the oscillations of the devices themselves. As demonstrated in the previous
Chapters, this property is able to effectively broaden the capture-width bandth of the heaving
absorbers. However, the requirement of generating reactive power will add complexity on
the PTO design and increase the production cost of the WECs. In addition, since the PTO
system in practice is non-ideal, which means that it will send less power to the grid than that
absorbed by the WEC when acting as a generator, and need more electrical power supply
than the required amount when it acts as a motor. Therefore, with a non-ideal PTO, less
absorbed power will be converted to useful power compared to the amount obtained with
ideal PTO systems.

The useful power transimitted to the grid, with a non-ideal PTO taken into account, can
be expressed by

Pgrid = η1Pact −
1

η2

Preact (5.1)

where the PTO is assumed to have the efficiency of η1 as a generator and η2 as a motor. Recall
that Pact denotes the active power flowing from the absorber to the grid and Preact denotes
the reactive power. Fig. 5.1 shows the grid power captured by a single point absorber with an
ideal PTO and also a non-ideal PTO with η1 = η2 = 0.7; also plotted is the power captured
by the system using a nonlinear MPC which directly optimizes a non-negative PTO damping
[64] and would not produce reative power. It can be seen that with an ideal PTO, allowing
for the reactive power can increase the capture width especially in wave frequencies farther
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away from the device’s resonance frequency. However, when the PTO efficiency lowers to
70%, such an advantage of a system with reactive power allowed becomes small. The system
with NMPC, without allowing the reactive power, transferred similar amounts of power to
the grid as those generated by a system allowing for reactive power flow. Increasing the
penalty on the power consumption, by increasing r2 in Eqn. (4.17), can reduce the reactive
power, but not fully eliminate the need of reactive power in the process.
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Figure 5.1: Capture width based on the grid power obtained by a single point absorber.

In this chapter, we will propose a modified optimization problem, which seeks optimal
control forces under the condition that no reactive power need be generated. Comparisons of
the useful power generated with a non-ideal PTO will be made between this new MPC and
the MPC formed in Chapter 4. With no requirement on reactive power, such control forces
can be implemented “approximately” by an in-house designed Permanent Magnetic Linear
Generator (PMLG). The implementation and the resulted performance of the array will also
be discussed. Finally, performances of a three-device array located in seven U.S. Pacific
Coast regions, chosen for evaluating the Wave Energy Prize sponsored by the Department
of Energy (DOE) in 2015, will be presented. Given the sea states representing the seven
locations, simulations will be conducted for the array equipped with non-ideal PMLG PTO
units and the coordinated control strategy. The results will significantly reduce uncertainties
existing in the evaluation of technology performance level (TPL) of an array of heaving point
absorbers.
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5.2 Eliminating the Reactive Power

To eliminate reactive power in the system, we can directly add the following constraints to
the optimization formulation in Eqn. (3.15)

ukyk ≤ 0 k = 0, 1, . . . , N − 1 (5.2)

This can be expressed in a vector form as

diag(U0)Y N−1
0 ≤ 0 (5.3)

where diag indicates the diagonal matrix with U0 on the diagonal; U0 = [u0;u1; . . . ,uN−1] as
defined in Eqn. (4.18) and Y N−1

0 = Sxxk + Su(U0 +W0) as defined in Eqn. (4.19). However,
substituting Y N−1

0 in Eqn. (5.3) reveals that such a constraint is quadratic in uk with a
non-convex matrix Su as expressed in Eqn. (4.20). The resulted optimization problem is
known to be hard to solve with considerably increased computational time.

Instead, if we add the constraint only on the first control input, which is the one to
be applied to the system, the convexity of the optimization problem will pertain because
y0 = Cx0, not dependent on u0, resulting in an additional l inear constraint. The new
optimization problem then became

min
U0

J =
1

2
UT

0 HU0 + fTU0 (5.4a)

subject to ÃuU0 ≤ b̃u (5.4b)

with H and f the same as in Eqn. (4.26) and

Ãu =


t1
I
−I
Su,z
−Su,z

 , b̃u =


0

Umax

Umax

Zmax − Sx,zxk − Su,zW0

Zmax + Sx,zxk + Su,zW0

 (5.5)

where t1 ∈ RN×N and t1 = diag([y0; 0; . . . ; 0]) with y0 = Cx0. This optimization problem
can then be implemented in the MPC scheme.

With no requirement of generating reactive power, the design of the PTO system can be
considerably simplified. It needs to be pointed out that constraining the first control input
and resulting with no reactive power leads to an optimization problem essentially different
from that of finding the optimal control law for a system with no capability of generating
reactive power. In fact, the current scheme assumes that the system has the capability and
only that it will not the reactive power at the first time step. This formulation is a variation
of the optimization problem formed in Chapter 4.

Simulation results of the capture width, computed for the grid power Pgrid as expressed
in Eqn. (5.1), of a three-device array with the two control formulations are presented in
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(a) Ideal PTO (η1 = η2 = 1.0)
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(b) Non-ideal PTO (η1 = η2 = 0.70)

Figure 5.2: Capture width based on the grid power for a three-WEC array MPC control
with (blue markers) or without (red markers) reactive-power occurrence (L/a = 10, head-
sea condition)
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Figure 5.3: The ratio of the reactive power to the “active” power for the three-WEC array
shown in Fig. 5.2.
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Fig. 5.2, where Fig. 5.2a is with an ideal PTO, i.e. η1 = η2 = 1, and Fig. 5.2b is with a
non-ideal PTO system and η1 = η2 = 0.70. Also presented is the ratio of the reactive power
for the two control strategies. It can be seen that the strategy of adding constraints on the
first control inputs eliminates the power consumption. In general, the WEC array with the
ability to handle reactive power can produce more useful power. Nevertheless, with the PTO
efficiency taken into account, the difference in the capture width generated by a WEC array
with and without reactive power becomes noticeably smaller. When the efficiency decreases
to 70% as shown in Fig. 5.2b, the array with the no-reactive-power MPC had the same or
even better performance compared to the other. With consideration of both increasing the
energy production and reducing the cost, the MPC with no reactive power and the convex
formulation may be a favorable alternative solution.

5.3 Implementation of the MPC

A Permanent Magnetic Linear Generator (PMLG), serving as the PTO unit for a point
absorber, was developed, built, and tested in a model tank at the Berkeley Marine Mechanics
Lab (see [63, 64, 65]). The PMLG consists of an array of magntets mounted on the floater,
moving relative to a set of coils attached to the supporting structure inside the floater. The
generator damping is adjusted by varying the load resistance R and the magnet-coil gap
width wgap of the PMLG. With no requirement on generating reactive power, the optimal
control force obtained in §5.2 can be realized by the PMLG, except for the instants at which
the heaving velocity of the device is too small that the required damping value exceeds its
limit.

For such a scheme, additional constraints need to be added for the PTO force on each
device so that

|u0| = |fm| ≤ Bg,maxy0 = Bg,maxCx0 (5.6)

where the scalar Bg,max (> 0) is the maximal value of the PTO damping. Based on
Eqn. (5.4a), the optimization problem with this additional constraint can be written as

min
U0

J =
1

2
UT

0 HU0 + fTU0 (5.7a)

subject to ÂuU0 ≤ b̂u (5.7b)

where

Âu =


t1
I
−I
Su,z
−Su,z

 , b̂u =


0

Ũmax

Ũmax

Zmax − Sx,zxk − Su,zW0

Zmax + Sx,zxk + Su,zW0

 (5.8)

with
Ũmax = [Bg,maxCx0; fm,max × [1, . . . , 1]︸ ︷︷ ︸

(N−1)Nh

]



CHAPTER 5. IMPLEMENTATION OF THE CONTROL STRATEGY ON A WEC
ARRAY 82

We first compared the performance of a single WEC controlled by the MPC with the
convex formulation in Eqn. (5.7) and by a Nonlinear MPC with the PTO damping Bg as
the control input as presented in [64]. Regarding the MPC setting for the comparison, both
of the current MPC and the NMPC have added a term to penalize the slew rate of the
control input and have the same limit on the PTO damping, while the current MPC allows
for smaller heaving oscillations (RAO ≤ 3) than the NMPC (RAO ≤ d/A0 ≈ 10 with d
being the draft of the device). The selected NMPC case for comparisons had the best power
performance among all simulated cases in [64]. As shown in Fig. 5.4a, the current MPC is
able to attain similar amount of power production compared to the NMPC where the PTO
dampng should be optimized based on the nonlinear dynamics of the system. In addition,
the current MPC, with the convex formulation of the optimization problem and hence the
global optimal solution, leads to a broadened capture-width bandwidth for the WEC array.
This may be explained by the fact that, at certian frequencies, the NMPC only returns to
a local optimum rather than the global one. This is also seen in the facts that the highest
energy absorption in the NMPC case was at a frequency lower than the resonance frequency
and that the oscillating amplitude of the device did not reach its maximal capacity.
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(b) Maximal RAO

Figure 5.4: Comparisons of the capture width of a single WEC under MPC control with and
without constraints on the PTO damping.

Fig. 5.5a and 5.5b show results of the three devices compared to those obtained with no
limit on the PTO damping, i.e. the controller formulated in §5.2. It can be seen that with
the generator damping restricted, the energy absorption was noticeably reduced especially
at frequencies farther from the resonance frequency. The reason may be that restricting
the damping coefficient Bg,max not only limits the actual control force fm = −Bg ζ̇3 being
applied, but also affect the amplitude of heaving velocity of the absorber. As shown in the
5.5a, increasing the limit on the damping coefficient to Bg,max = 100 can increase the power
absorption.
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(b) Maximal RAO

Figure 5.5: Comparisons of the results for a three-WEC array under MPC control with and
without constraints on the PTO damping (L/a = 10, head-sea condition).

Simulations in irregular sea waves were also performed. Results of the capture width and
RAO are shown in Fig. 5.6a and 5.6b. All the implemented control strategy does not require
the PTO to handle reactive power. In irregular waves, the advantage of the MPC over the
constant optimal damping control becomes even more significant. In addition, doubling the
capacity of the PTO damping can have a 25% on average increase in the capture width.
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Figure 5.6: Comparisons of the results for a three-WEC array in irregular waves under MPC
with damping control and force control (L/a = 10, head-sea condition).
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Table 5.1: Full-Scale Properties of the Unidirectional Sea States used to calculate ACCW

Sea State Tp (s) Hs (m) Direction (deg)

IWS 1 7.31 2.34 10.00
IWS 2 9.86 2.64 0.00
IWS 3 11.52 5.36 -70.00
IWS 4 12.71 2.06 -10.00
IWS 5 15.23 5.84 0.00
IWS 6 16.50 3.26 0.00

5.4 Performance Evaluation of a Three-Device Array

in the West Coast U.S.

One of the challenges in promoting the wave-energy technology is the considerable amount
of uncertainties in implementing the design at real-sea sites. With the efficient constrained
optimal control strategy developed, wave-interaction effects accurately captured, and the
hardware implementation method available for a WEC array, we can provide an accurate
estimation of the power performance of the array in irregular waves of potential deployment
sites.

The sites are the ones selected for performance evaluation of the WEC designs in the Wave
Energy Prize sponsored by the U.S. Department of Energy in 2015. The Wave Energy Prize
[52] (the Prize) is an 18-month public design-build-test competition, aimed to encourage
the design of techno-economical WEC devices that double the energy captured from ocean
waves compared to the current designs, which in turn would reduce the cost of wave energy,
making it more competitive with other energy solutions. For quantifying the energy-capture
capability of the proposed WEC concepts, the average climate capture width (ACCW ) was
defined and computed for each design, where the ACCW represents the absorbed power of
the device (kW ) devided by the wave energy flux per meter crest width in kW/m, which
operates in typical West Coast wave climates.

Specifically, ACCW is calculated for six (i = 1 : 6) unidirectional long-crested irregular
wave states (IWS) that are representatives of the West Coast of the U.S., including Alaska
and Hawaii [55]. The full-scale sea state parameters from [55] are listed in Table 5.1, for
which the select methodology is to apply the k-means algorithm on the data provided by
National Data Buoy Center (NDBC), of which the details is described in [9]. These wave
parameters were used with the Joint North Sea Wave Project (JONSWAP) spectrum to
synthesize the wave time-series used in the simulation. The JONSWAP gamma value was
assigned to 1 for each of the spectra (e.g., a Bretschneider spectrum). Hence, the wave
spectrum as a function of the wave frequency σ is described by

S(σ) =
1

2π

5

16
H2
sTp

(
σTp
2π

)−5

exp

[
−5

4

(
σTp
2π

)−4
]

(5.9)
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Table 5.2: Weighting factors used to calculate the ACCW and the full-scale average annual
wave energy flux for the seven sites in the west coast of U.S. [9]

Sea State Factors for each climate, Ξij
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IWS 1 0.243 0.137 0.155 0.175 0.207 0.152 0.328

IWS 2 0.332 0.277 0.307 0.268 0.230 0.270 0.245
IWS 3 0.075 0.041 0.056 0.058 0.012 0.014 0.001
IWS 4 0.200 0.338 0.344 0.295 0.466 0.391 0.133
IWS 5 0.024 0.022 0.037 0.034 0.16 0.010 0.0
IWS 6 0.012 0.045 0.042 0.054 0.064 0.095 0.013

Average Annual Wave Energy Flux (kW/m)

Cp,j 35.5 32.7 39.3 37.9 31.5 31.2 16.8

where Hs and Tp are the significant wave height and peak period of the sea state.
With the energy absorption obtained for devices in each IWS, the ACCW of the devices

at the jth location (j = 1, 2, . . . , 7) will be computed as a linear combination of results of
the six states with weighting factors of the states listed in the Table 5.2, which was obtained
in the sea state selection study [9]. Then the ACCW at each site, denoted by ACCWj, and
the averaged ACCW , denoted by ACCW can be computed by

ACCWj =

∑6
i=1 ΞijAPi
Cp,j

ACCW =
1

7

7∑
j=1

ACCWj

(5.10)

where APi is the average power absorbed by the WECs for the sea state i. The Prize then
used the ACCW to compute the ACE, a parameter defined for evaluating the cost-effective
performance of the design. Publicized is the ACE value of each awarded team, but not the
ACCW value. In [3], a database was built for existing WEC designs. The capture width
ratio (%), denoted by η1 was introduced to present the power performance of the design,
which is defined as the following:

η1 =
CW

B
(5.11)
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Table 5.3: Specifications of the Controller

Controller 1 Controller 2 Controller 3

Bg,max = 100
RAOmax = 3

Bg,max =∞
RAOmax = 3

Fg,max = Bg,max ∗A0RAOmax with Bg,max = 100
RAOmax = 3

A0: wave

amplitude

Table 5.4: Capture width ratio η1 (%) of a three-WEC array (L/a = 5) with different
controller settings in sea states of seven sites in the West Coast of the U.S.
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Controller 1 25.8% 25.0% 24.8% 24.4% 42.9% 23.9% 23.8%
Controller 2 29.4% 29.1% 29.1% 28.7% 53.7% 28.3% 26.0%
Controller 3 40.3% 40.4% 40.5% 40.0% 77.6% 39.2% 33.8%

Here, CW is the capture width. For the seven sites in the West Coast, CW = ACCWj

at location j. The B is the charateristic length of the device; for a heaving buoy, B is the
diameter of the device.

We conducted simulations for a three-device array and computed the η1 for the array in
the seven sites. The mean diameter of a single heaving point absorber, according to [3], is
about 10 − 12m, and the one for devices in a point-absorber array is about 8m. Given the
diameter of the model tested in the BMML being 0.2703m, a scaling factor of 30 was used to
scale the results to the full size by using Froude scaling [8]. The applied controller and the
corresponding specifications are listed in Tab.5.3. Controller1 was formed as in Eqn. (5.7)
with a limit on the PTO damping. Controller2 was formed as in Eqn. (5.4) where the
reactive power was eliminated from the system and there is no limit on the PTO damping.
Controller3 was formed as in Eqn. (4.29) in §4 where the PTO was assumed to be capable
of handling reactive power and constraints were added on the PTO force. Simulation results
of the CWR (%) are listed in the Table. 5.4 for the array with spacing ratio L/a = 5. The
corresponding q factors, averaged over the seven locations, are listed in the Table. 5.5 to
compare the performance of the array with different controllers and different spacing ratios.

It can be seen from Table. 5.4 that the array has the best power performance in the
Northern California site, which can be explained by the fact that the heaving absorber was
designed for sea states in Northern California. For performances of different controllers, with
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Table 5.5: Mean value of the interaction factor q over the seven sites obtained with different
controllers

Mean q factor Controller 1 Controller 2 Controller 3

Spacing ratio L/a = 5 0.964 0.966 0.9177
Spacing ratio L/a = 10 1.001 1.01 0.9655

the PTO capable of handling reactive power, the power absorption was increased by 60−80%
compared to the case with no reactive power allowed. The wave-interaction effects on the
power production of the array appear to be mostly destructive, especially for arrays having
smaller spacing ratio and experiencing larger interaction effects. When the spacing ratio
increases to 5 diameters, the interaction effects are negligble when constraints on the PTO
damping were applied (Controller 1). Comparing the results of Controller 3 and Controller
1, we observed that the more power the array absorbs, the more loss of energy the array
experienced due to the wave-interference effects. Nevertheless, such loss of energy is relatively
small: less than 5% for the damping control PTO and less than 10% for the force control
PTO. In the meantime, the cost of production will be greatly reduced by the enlargement
of the array size. Fig. 5.7 from [49] are the CaPex (capital cost) and OpEx (operations and
maintenance cost) for arrays of different sizes, which shows a substancial decrease in the cost
with an increase in the array size. With the spline interpolation, an array of size three can
reduce the cost by 20%. Hence, taking into account the effects from both the destructive
wave effects and the cost reduction, we can confirm that the wave farm will play a pivotal
role in advancing the commercialization of wave energy technology.

Figure 5.7: CaPex (left) and OpEx (right) contributions to LCOE (cents/kWh) per deploy-
ment scale [49].



CHAPTER 5. IMPLEMENTATION OF THE CONTROL STRATEGY ON A WEC
ARRAY 88

5.5 Summary Remarks

In this Chapter, a modified MPC was proposed to compute optimal PTO forces that will
not require the use of reactive power, based on the coordinated MPC for the WEC array
in Chapter 4. Such control forces were realized by varying the PTO damping so that the
product of the damping and the heaving velocity at the current state provides the required
amount of the control force. The varied PTO damping was implemented by an in-house
designed permanent magnetic linear generator (PMLG). Simulations compared the power
obtained by the original MPC and by the modified MPC with no reactive power genera-
tion. The optimized PTO force from the latter was realized by changing the PTO damping,
with which the power production was compared with that obtained by a nonlinear MPC
(NMPC) which directly optimized the PTO damping [64]. Firstly, applying the PTO damp-
ing resulted from the MPC with convex QP achieved approximately the same amount of
energy absorption as applying the NMPC, but with sigfinicantly improved computational
efficiency, as demonstrated in Chapter 3. In addition, the advantage of the modified MPC
was present when the PTO efficiency was taken into account. With the two-way energy flow
required by the orginal MPC, the PTO system needs to consume more power when it acts
as a motor and converts less power when it is a generator. As a result, the original MPC
had better performance at wave frequencies away from the resonance frequency of the single
device but produced similar amount of effective power compared to the damping-controlled
MPC when the PTO effciency was decreased to 70%. Lastly, performances of a three-device
array were evaluated in irregular sea states chosen to represent the seven sites near west coast
in the U.S. The capture-width ratio and the interaction factor for the array were presented.
We found that wave-interaction effects appear to be destructive in the simulated sea states.
Nevertheless, the destructive efffects were less than 5% when the devices are 3 diameters
apart, and less than 1% when the spacings are more than 5 diameters.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A study of the roadmap to the 100% clean and renewable all-sector energy for 139 countries
by 2050 considered the contribution of the offshore wind, wave, and tidal power. It indicates
that if 410, 000 wave-power plants with each power capacity of 750kW were installed, they
would meet 0.58% of all-purpose load. It can be seen that (1) wave power is considered as
a practical energy source and the commercialization of wave-power conversion techonlogy
will likely be realized in the form of large-size wave farms and (2) the contribution of wave
power to the renewable energy profile will be small in 2050 because of the low capacity
factor of the wave energy devices and the current relatively immature development stage of
the wave-energy extraction technology. This suggests that more human power and resources
are needed to expedite the wave power extraction, since this clean ocean power has shown
its enormous potential in satisfying many current energy needs.

This dissertation developed a complete set of tools for a realistic evaluation of the power
performance of a point absorber array with constrained optimal control in irregular sea waves.
A semi-analytical method based on potential-flow theory and linear theory were developed to
compute wave-interaction effects among an arbitrary WEC array, which were incorporated in
the dynamic model of the WEC controller. A model-based optimal control strategy was pro-
posed with the energy optimization problem formulated as a convex Quadratic Programming
(QP), where real-time inplementation was demonstrated successfully. The implementation
of the optimized control force on the point absorber, obtained from the controller, was ap-
plied using an in-house designed permanent magnetic linear generator. Simulations were
performed for a three-device array with constrained optimal control at seven sites near the
west coast of the U.S.. Results showed that wave-interference effects appeared to be destruc-
tive; nevertheless, the enegy loss was less than 5% when the devices were 2.5 diameters apart
and less than 1% when the spacing increased to be 5 diameters. With the cost reduction
increased with the array size, we summarized that a relatively close-spacing wave farm con-
sisting of more than 10 devices can be beneficial to the commercialization of the wave-energy
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extraction technology.
Key findings are summarized below.

• Hydrodynamic modeling of a wave farm.

– The new Haskind relation derived for an array of arbitrary geometric shape and
in arbitrary layout is very useful and efficient in estimating the wave-interaction
effects on the power production of the array with no constraint.

– When there is no motion constraint, the wave-interaction effects could be either
constructive or destructive, i.e. the array could extract more power than multiple
isolated devices or less, depending on the wave frequency and the wave-incident
angle.

– The increase in the power absorption caused by wave-interference effects can be
more than 50%. However, the integration of the interaction factor q with re-
spect to the wave-incident angle yields a constant. This suggests that the array
that experiences large constructive wave effects in waves of a certain direction
can experience similar amount of destructive effects when waves come in other
directions.

• constrained optimal control of a wave farm.

– MPC is a powerful strategy in handling constraints and provides an approach to
investigate the optimal power production of an array under constraints. How-
ever, the computationally-demanding property makes the MPC less attractive
in real-time implementation. By using the PTO force as the control input and
reformulate the optimization problem, the computational efficiency was consid-
erably increased, with which the MPC showed potential in real-time application,
especially for a single device.

– In terms of convexifying the cost function, penalizing the slew rate of the control
input has less impacts on the energy absorption than directly penalizing the power
consumption, which also left the penalty weight of the latter as a free parameter
for tuning the control.

– Adding motion constraints significantly reduced the extent of wave-interaction
effects on the power performance. Most importantly, the wave effects appear to
be destructive for all simulation cases including different configuration, different
wave frequencies, and wave-incident angles. This may lead to the preliminary
conclusion that the interference effect would have negative impact on the power
performance and need to be avoided. Increasing the spacing among element de-
vices can be the simplest way, which, however, would be restricted by the acreage
of the permitted area and the cost of production and operation. Optimal control
may be able to take such factors into account in the future.
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– Coordinated control with a central controller was used as the primary tool in this
dissertation since one of the main goals is to provide some insights on the coopera-
tive actions of the devices at the optimal operating condition. However, it should
be pointed out that taking into account the radiation forces in the system model
would be increasingly hard with an increase of the WEC devices because of the
complexity caused by relative positions of individual devices. Furthermore, the
large number of optimization variables and constraints would make the real-time
implementation less practical, even with the convex QP formulation. Simulation
results show that neglecting the radiation effects, i.e. the devices acting inde-
pendently with their own controllers but the surrounding waves were predicted
“correctly” with scattering waves taken into account, will have less than 1% im-
pacts on the amount of absorbed power but induce an approximate 10% increase
in the reactive power. Also, the energy absorbed by each device will be less evenly
distributed in particular near the resonance frequency of the device. Distributed
MPC control can be a potential solution for a large wave farm consisting of hun-
dreds of devices.

• Implementation of the optimal control force.

– The MPC proposed with the PTO force used as the control input had an inherent
“drawback” of generating reactive power. This requires that the PTO system to
be both a generator and a motor, which can be hard to realize with existing PTO
designs. A modified MPC was then proposed, which sacrificed a certain amount
of energy capture-capability and achieved no reactive power generation with the
convex formulation retained.

– The control force obtained from the modified MPC was realized by the in-house
designed permanent magnetic linear generator by varying the PTO damping.

– Simulation results showed that the modified MPC with control force realized by
changing PTO damping can achieve the same amount of energy extraction as a
nonlinear MPC which directly optimizes the PTO damping. The latter leads to a
nonconvex and nonlinear problem and have a two-order increase in computational
time.

– Performance evaluation of three point absorbers equipped with the advanced con-
trol and the PMLG at seven west-coast sites showed that the reduction in the ab-
sorbed power caused by the wave-interaction effects is less than 5%. The economic
and environmental issues may play an essential role in the array desgin.

6.2 Future Work

The current study suggests that wave-interaction effects will reduce the power production
of the array and need to be avoided. Increasing spacings among devices can be the simplest
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way to reduce the interaction effects. This may not be practical since the area available for
wave-farm deployment can be restricted by the usage of commercial and navy purposes, the
enviromental consideration, the cost of operation and maitenance, etc. Since the levelized
cost of production (LCOE) is the key parameter to determine the commercialization readiness
level of a technology, an economic study for a wave farm regarding effects of the array size
on the LCOE is of vital importance for determining the configuration of a wave farm.

Many other interesting problems arise in the wave-farm study:

• The hydrodynamic theory can be extended to consider devices of a more general ge-
ometry by combining the wave-interaction theory with a boundary element method
[74].

• Since wave-interaction effects does not have very significant effect on the power pro-
duction of the array under constraints in irregular sea states, a decentralized MPC
controller may have sufficiently good performance in maximizing the power and, more
importantly, further reduce the computational costs such that the MPC can be applied
to wave farms of hundreds of devices.

• Wave prediciton is essential to the effectiveness of the MPC. A wave-prediction unit
can be incoorporated into the current controller scheme, of which the effect on the
power production needs to be investigated.

• The current study is based on theoretical analysis and computational simulation. Ex-
perimental validation for the proposed controller would be pivotal to demonstrate the
applicability of the strategy.

In addition, the grid integration of the extracted wave power and the life-cycle perfor-
mance of a wave farm are also critical problems that need to be looked into. In all, technology
breakthroughs are greatly desired for promoting the ocean-wave technology, which will surely
benefit the energy structure and the society.
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Appendix A

Appendix

Development of the Haskind Relation for a Cylinder Array
In this Appendix, we develop the Haskind Relation for a cylinder array. Under linear

theory, the radiation potential φ for a cylinder array can be written as a sum of the potentials
in six modes of motion for each cylinder, i.e.

φ =
N∑
k=1

6∑
q=1

Uk
q φ

k
q (A.1)

where Uk
q is the complex amplitude of velocity, and φkq the unit-velocity potential, for the

q-th mode motion of the cylinder k while the other cylinders are stationary. And on the
surface of body j, φkq should satisfy that

∂φkq
∂nj

=

{
0, if k 6= j

njq, if k = j
(A.2)

Applying (A.2), we can write Xl (l = 1, 2, . . . , 6) in (2.31) as

Xl =

NG∑
j=1

iσρ

∫∫
Sj

(φ0 + φ7)
∂φjl
∂nj

dS =

NG∑
j=1

iσρ

∫∫
SB

(φ0 + φ7)
∂φjl
∂n

dS (A.3)

with NG being the number of oscillating cylinders. Further, (A.3) can be written as

Xl = iσρ

∫∫
SB

(φ0 + φ7)
∂φl
∂n

dS (A.4)

where φl :=
NG∑
j=1

φjl denotes the radiation potential when the group of cylinders oscillates as

a unit with unit velocity.
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Applying Green’s theorem on a closed control surface Sctrl consisting of bodies’ surfaces
SB, free surface SF , sea bottom Sh, and a control surface at far field SR, we obtain that∫∫

Sctrl

(
φ7
∂φl
∂n
− φl

∂φ7

∂n

)
dS = 0 (A.5)

The integrand is cancelled on SF and SR, since both φ7 and φl satisfy the linearized free-
surface condition (2.3b) and radiation condition (2.5); it also vanishes on Sh because of the
non-penetrating condition at sea bottom (2.3c). Hence, (A.5) yields∫∫

SB

φ7
∂φl
∂n

dS =

∫∫
SB

φl
∂φ7

∂n
dS (A.6)

Substituting (A.6) in (A.4) and applying the boundary condition (2.29) lead to the expression
(2.32).

To further simplify the computation, we can take the evaluation of wave-exciting forces
to the far field. Applying Green’s theorem to φ0 and φl on the control surface Sctrl yields
that ∫∫

SB+SR

(
φ0
∂φl
∂n
− φl

∂φ0

∂n

)
dS = 0 (A.7)

where the integrand vanishes on Sh and get cancelled on SF . Hence, (2.32) can be rewritten
as

Xl = −iσρ
∫∫
SR

(
φ0
∂φl
∂n
− φl

∂φ0

∂n

)
dS (A.8)

Taking SR a vertical circular cylinder about the z-axis of large radius R in the global coor-
dinate system yields the Haskind relation (2.33) in polar coordinates (r, θ, z).

In (2.33), the radiation potential φl can be obtained by evaluating the exterior potential
φ(E) in (2.18) in the far field (R→∞), where all of the evanescent modes can be neglected
as they decay fast with the increase of distance. This yields that

φl =
N∑
k=1

f0(z)
∞∑

m=−∞

eimθkβkm0

Hm(k0rk)

Hm(k0ak)
(A.9)

which should satisfy corresponding boundary conditions in (2.21). It should be noted that
φl was expressed using local coordinates in (A.9). To transform coordinates to the global
coordinates, the Graf’s addition theorem takes a different form from (2.19) under the con-
dition of rj � Rjk and rk � Rjk at far field, which was applied in [36] and is shown in the
following

Hm(k0rk)e
imθk =

∞∑
l=−∞

Jm−l(k0Rjk)e
iθjk(m−l)Hl(k0rj)e

ilθj (A.10)
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Substituting (A.10) in (A.9) yields that

φl =
N∑
k=1

f0(z)
∞∑

m=−∞

βkm0

∞∑
l=−∞

Jm−l(k0ROk)

Hm(k0ak)
ei(m−l)θOkHl(k0r)e

ilθ (A.11)

where ROk and θOk is the polar coordinates of the global origin in the local cooridinates of
the cylinder k.

For regular incident waves of unit amplitude, progressing in a direction which makes an
angle β with the x-axis, the velocity potential φ0 expressed in coordinates of j-th cylinder
can be written as

φ0 =
−ig
σ

cosh k0(z + h)

cosh(k0h)

∞∑
m=−∞

Ije
im(π/2−β)Jm(k0rj)e

imθjj (A.12)

where Ij = eik0(xj cosβ+yj sinβ) is a phase factor associated with cylinder j locating at (xj, yj).
To conclude, Xl can be evaluated by substituting φ0 (A.12) and φl (A.11) in (2.33).
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