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Abstract

Collateral circulation in the circle of Willis (CoW), closely associated with disease mecha-

nisms and treatment outcomes, can be effectively investigated using one-dimensional–

zero-dimensional hemodynamic simulations. As the entire cardiovascular system is consid-

ered in the simulation, it captures the systemic effects of local arterial changes, thus repro-

ducing collateral circulation that reflects biological phenomena. The simulation facilitates

rapid assessment of clinically relevant hemodynamic quantities under patient-specific condi-

tions by incorporating clinical data. During patient-specific simulations, the impact of clinical

data uncertainty on the simulated quantities should be quantified to obtain reliable results.

However, as uncertainty quantification (UQ) is time-consuming and computationally expen-

sive, its implementation in time-sensitive clinical applications is considered impractical.

Therefore, we constructed a surrogate model based on machine learning using simulation

data. The model accurately predicts the flow rate and pressure in the CoW in a few millisec-

onds. This reduced computation time enables the UQ execution with 100 000 predictions in

a few minutes on a single CPU core and in less than a minute on a GPU. We performed UQ

to predict the risk of cerebral hyperperfusion (CH), a life-threatening condition that can occur

after carotid artery stenosis surgery if collateral circulation fails to function appropriately. We

predicted the statistics of the postoperative flow rate increase in the CoW, which is a mea-

sure of CH, considering the uncertainties of arterial diameters, stenosis parameters, and

flow rates measured using the patients’ clinical data. A sensitivity analysis was performed to

clarify the impact of each uncertain parameter on the flow rate increase. Results indicated

that CH occurred when two conditions were satisfied simultaneously: severe stenosis and

when arteries of small diameter serve as the collateral pathway to the cerebral artery on the

stenosis side. These findings elucidate the biological aspects of cerebral circulation in terms

of the relationship between collateral flow and CH.
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Author summary

Cerebral arteries generate a ring-like network that provides alternative routes for blood

supply in the case of carotid artery stenosis. This collateral circulation is closely associated

with the potential risk of stroke and treatment outcomes in patients with stenosis. In this

study, we propose a method to elucidate the cerebral circulation of individual patients

using a blood flow simulation that incorporates the patient’s clinical data. A key feature of

our approach is its capability to obtain the probability of the different outputs using simu-

lation, considering the uncertainty of patient conditions. Although this capability is essen-

tial for obtaining reliable results, the process is time-consuming and requires numerous

computer resources. We solved this problem by combining the blood flow simulation

with machine learning to perform predictions 43 000 times faster than conventional simu-

lations. We applied the proposed method to predict cerebral circulation following surgery

in three patients with stenosis and verified that the method can assess the surgical risk

almost in real-time, even on a desktop computer. Additionally, extensive prediction

results (100 000 cases for each patient) obtained using this method clarify the relationship

between collateral circulation and life-threatening surgical outcomes.

Introduction

Carotid artery stenosis is a major risk factor for stroke, one of the leading causes of death and

disability worldwide. Stroke can occur if the stenosis reduces the blood supply to the brain sig-

nificantly. In general, the severity of stenosis is a principal indicator closely associated with the

risk of stroke [1]. Despite the severity of the stenosis, most patients are asymptomatic owing to

adequate collateral circulation. Collateral circulation refers to the flow of blood through an

arterial network connecting the diseased and normal sides and is particularly abundant in

cerebral arteries that form a ring-like network. If collateral circulation is adequate, cerebral

blood flow is maintained regardless of stenosis. However, if the severity of the stenosis

increases such that the collateral circulation attains its limit or if certain arteries are absent in

the patient, cerebral blood flow on the diseased side is no longer maintained. In such cases, the

best opportunity for treatment is lost by the time the patient develops symptoms.

For predictive medicine, such as stroke prediction, a hemodynamic simulation is a promis-

ing tool that provides clinically relevant hemodynamic quantities under various conditions.

However, the clinical application of simulation tools has certain requirements. First, as stroke

is associated with aging or arteriosclerosis [2], the simulation should reflect the effects of these

factors on the entire cardiovascular system. Second, the computation time must be sufficiently

short to obtain immediate clinical feedback of the simulation results. To satisfy these require-

ments, a one-dimensional–zero-dimensional (1D–0D) model is considered practical for simu-

lations. The 1D–0D model is multi-scale and considers the entire cardiovascular system. The

model can capture the systemic effects of local arterial changes and thus reproduce hemody-

namics that reflects biological phenomena in vivo. Additionally, it facilitates rapid assessment

of the primary features of blood flow, such as flow distribution and pulse wave propagation in

the arterial network [3–6]. On comparing the 1D–0D model with typical three-dimensional

(3D) simulations [7,8], in vitro measurements [9,10], and in vivo measurements [3,11,12], it

was observed that the 1D–0D model provides accurate results for spatially averaged flow rate

and pressure. It has also been widely used to answer specific clinical questions on hemody-

namics in cerebral [13], hepatic [14], and visceral [15] arteries.
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Furthermore, the 1D–0D simulation is suitable for investigating the collateral circulation in

cerebral arteries. Over the past decade, the 1D–0D model of cerebral circulation has been

extensively developed. Cerebral arteries have been modeled in detail, including the circle of

Willis (CoW), which serves as a major collateral pathway [11,13,16]. Changes in cerebral circu-

lation caused by arterial occlusion [16], cerebral autoregulation [17], and surgeries for carotid

artery stenosis [18,19] have been increasingly investigated. Moreover, recent studies have

focused on individualizing models by incorporating patients’ clinical data. Typically, this

patient-specific approach uses geometric data obtained from medical imaging, such as com-

puted tomography (CT) or magnetic resonance imaging (MRI), to assign parameters and

assimilate the measurements of flow and pressure into the simulation [20–22]. Such individu-

alized simulations directly reflect the patients’ physiological condition in their predictions,

thus yielding precise outputs.

However, simulation-based predictions are often restricted by their deterministic nature,

wherein output quantities do not account for uncertainties in clinical data because of the limi-

tations in existing measurement techniques. Uncertainties in clinical data are generated from

various sources, including limited resolution, threshold-based lumen segmentation, measure-

ment errors, and fluctuations in blood flow. Particularly, obtaining small diameters of cerebral

arteries from medical images with limited resolution involves considerable uncertainty. More-

over, as cerebral arteries are surrounded by the skull, flow measurements are often subjected

to severe limitations, and the measured values exhibit large variations. Such uncertainties

change the geometric and physiological parameters when incorporated into the simulation,

thereby affecting the output significantly. Therefore, it is essential to assess the variability of

simulation outputs caused by uncertainties to obtain reliable results for effective decision-

making.

Typically, stochastic approaches to uncertainty quantification (UQ), such as Monte Carlo

methods, require numerous simulations to obtain the output statistics. This inevitably

increases the required computational cost for UQ, posing a major challenge to its implementa-

tion in a practical clinical setting. Therefore, several studies on hemodynamic simulation have

focused on two primary strategies to reduce the cost of UQ to a feasible scale. The first strategy

involves reducing the number of required simulations. Herein, the core idea is to explore the

stochastic space efficiently using stochastic collocation methods [23] and multi-resolution sto-

chastic expansion [24,25] to achieve faster convergence of statistics. The second strategy

involves reducing the cost of an individual simulation by employing a 1D–0D model [26–28].

Despite the considerable progress reported in recent studies, implementing UQ in routine

clinical diagnosis remains a challenge. As individual simulations generally involve iterative cal-

culations to assimilate data or obtain converged solutions, even the UQ based on 1D–0D

model is intractable in medical institutions, where time and computational resources are often

limited.

This problem can be addressed by constructing a data-driven surrogate model, obtained by

fitting a regression model to the simulation data. The surrogate model performs predictions

based on the superficial input–output relationships of well-established cardiovascular models,

which significantly accelerate the predictions while maintaining accuracy. In the context of

data-driven modeling, machine learning with deep neural networks (DNNs) has been widely

explored in recent years [29,30]. Although integrating machine learning techniques with

hemodynamic simulations has been actively researched in the past few years [31–34], most

studies focused on predicting the fractional flow reserve in coronary arteries.

In this study, we constructed a surrogate model of the cerebral circulation to replace the

existing 1D–0D simulation. This resulted in the fast execution of UQ (within a few minutes)

even on a desktop computer. We used the surrogate model to perform the UQ for investigating
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the biology of cerebral circulation, focusing on collateral circulation through the CoW. Partic-

ularly, we predicted the risk of cerebral hyperperfusion (CH) and analyzed its relationship

with collateral circulation. Similar to stroke, CH is considered to occur when collateral circula-

tion fails to function appropriately [35–38]. CH is defined as an increase of more than 100% in

the time-averaged flow rate through the cerebral arteries immediately after carotid artery ste-

nosis surgery as compared to preoperative values. Although the incidence varies (0.2–18.9%)

[38], CH can lead to intracerebral hemorrhage, which can be life-threatening as indicated by

its high mortality rate (38.2%) [39]. Therefore, it is important to identify the patients at risk in

the preoperative stage to adopt appropriate interventions for preventing hemorrhages caused

by CH [36,40].

For this, we considered three patients with internal carotid artery (ICA) stenosis and pre-

dicted the flow rate increase in the cerebral arteries when the stenosis was virtually dilated. The

predictions considered the uncertainties in the clinical data used to set the patient-specific con-

ditions. We focused on uncertainties in arterial diameters, stenosis parameters, and flow rates

derived from the patients’ clinical data. Initially, the uncertainty of these parameters was esti-

mated. Subsequently, the statistics of the flow rate increase under the uncertainty were evalu-

ated through UQ. In addition to the UQ, we performed sensitivity analysis (SA) to measure

the impact of each parameter on the flow rate increase. Based on the analysis of the UQ and

SA results, we explored the risk factors associated with CH, particularly those related to the

collateral circulation function.

Methods

Ethics statement

We used the clinical data of actual patients to

• infer a physiologically reasonable range of inputs (in the “Learning data generation”

subsection),

• verify the surrogate model (in the “Machine learning” subsection), and

• perform UQ in predicting postoperative CH (in the “Uncertainty quantification and sensi-

tivity analysis” subsection).

Seven patients who underwent endarterectomy or stenting for ICA stenosis were included in

the study (Table 1). The imaging data, measurements of inflows and outflows of the CoW, and

mean arterial pressure in the upper arm were collected for all patients before surgery. Patient

data were collected and provided in an anonymized form by the Rakuwakai Otowa Hospital

(Kyoto, Japan) and Fujita Health University Hospital (Aichi, Japan), with written informed

consent from the patients. Ethical approval for this study was granted by the Research Ethics

Committee of The University of Tokyo, the Ethics Committees for Human Research of Raku-

wakai Otowa Hospital, and the Ethics Review Committee of Fujita Health University.

Overview

In this study, we used the 1D–0D simulation to generate a large dataset comprising a pair of

anatomical and physiological conditions (inputs) and the corresponding cerebral circulation

under those conditions (outputs). The generated data were used to perform supervised learn-

ing of the DNN (Fig 1). This facilitated the construction of a surrogate model that can rapidly

predict cerebral circulation under specified anatomical and physiological conditions. The sur-

rogate model was verified by comparing the prediction results of the test data (not used for the

training) and actual patient conditions with those obtained from the 1D–0D simulation.
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Table 1. Patient characteristics.

Patient Age/Sex Lesiona Treatment Imaging Flow measurements

1 82/M RICA stenosis (59%) CEA CT PC-MRI, SPECT

2 63/M LICA stenosis (83%) Staged CAS CT US, SPECT

3 72/M RICA stenosis (91%) CEA CT PC-MRI, SPECT

4 63/M RICA stenosis (35%) CEA CT PC-MRI, SPECT

5 68/M LICA stenosis (63%), RICA stenosis (65%) CEA CT PC-MRI, SPECT

6 70/M LICA stenosis (73%) CAS CT/MRIb PC-MRI, SPECT

7 79/F LICA stenosis (86%) CEA CT/MRIb PC-MRI, SPECT

aStenosis ratio in parentheses denotes the percentage reduction in diameter to the maximum distal diameter.
bCT scan of the neck and MRI scan of the head.

CAS, carotid artery stenting; CEA, carotid endarterectomy; CT, computed tomography; LICA, left internal carotid artery; MRI, magnetic resonance imaging; PC-MRI,

phase contrast magnetic resonance imaging; RICA, right internal carotid artery; SPECT, single photon emission computed tomography; US, ultrasound.

https://doi.org/10.1371/journal.pcbi.1009996.t001

Fig 1. Overview of the proposed approach to perform uncertainty quantification. We trained a deep neural network using the datasets obtained from one-

dimensional–zero-dimensional (1D–0D) simulation. The datasets were generated by randomly sampling 60 inputs (column vector x2R60) describing the

geometry of cerebral arteries and stenoses, and collecting the corresponding 45 simulation outputs (column vector ysim2R45) of time-averaged flow rates and

pressures. After performing the data acquisition and model training in the offline phase, the surrogate model was used in the online phase to predict the

outputs rapidly. This ensured a fast and efficient uncertainty quantification.

https://doi.org/10.1371/journal.pcbi.1009996.g001

PLOS COMPUTATIONAL BIOLOGY Uncertainty quantification in cerebral circulation simulations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009996 July 22, 2022 5 / 34

https://doi.org/10.1371/journal.pcbi.1009996.t001
https://doi.org/10.1371/journal.pcbi.1009996.g001
https://doi.org/10.1371/journal.pcbi.1009996


Using the surrogate model as an alternative to the 1D–0D simulation, we performed UQ to

predict the percentage increase in the cerebral blood flow caused by the ICA stenosis surgery.

We considered the uncertainties in the input parameters derived from the patient’s clinical

data, including the arterial diameters, stenosis parameters, and flow rates. The possible range

of each uncertain parameter was defined, and the uncertainties were subsequently propagated

using the Monte Carlo method. Additionally, SA was conducted to quantify the impact of each

parameter on the predicted results.

The four primary segments of the methods used in this study include the 1D–0D simula-

tion, learning data generation, machine learning, and UQ and SA. The remaining subsections

focus on the details of the method for each segment.

1D–0D simulation

We employed the closed-loop 1D–0D cardiovascular model developed by Liang et al. [18,41]

for blood flow simulations. In this model, large arteries are represented as 1D segments, which

are assumed to be straight, axisymmetric, and deformable tubes. The arterial network com-

prises 83 segments that contribute to the systemic circulation throughout the body, including

22 segments of the cerebral circulation, as depicted in Fig 2. The inlet and outlet boundary

conditions for the 1D network were obtained by coupling the network with the 0D closed-

loop model, which represents the peripheral circulation and heart as lumped parameter net-

works. In the subsequent subsections, we briefly explain the governing equations of the mod-

els, numerical methods used to solve them, and the methods implemented for the patient-

specific setup of the simulation.

Governing equations. The governing equations for blood flow in 1D arteries are derived

from the principle of conservation of mass and momentum, as follows [5,6]:

@A
@t
þ
@Q
@x
¼ 0; ð1Þ

@Q
@t
þ
@

@x
Q2

A

� �

þ
A
r

@P
@x
¼ � KR

Q
A
: ð2Þ

Herein, t represents the time; x indicates the axial coordinate along the artery; A, Q, and P
denote the cross-sectional area of the artery, volumetric flow rate, and internal pressure,

respectively; ρ = 1060 kg m−3 indicates the blood density; and KR = 22πμ/ρ represents the resis-

tance parameter [4] with blood viscosity μ = 0.0047 Pa s. The (A, Q) system in Eqs (1) and (2)

is closed by the relationship between the pressure and cross-sectional area, derived from

Laplace’s law [3, 5] as follows:

P � P0 ¼

ffiffiffi
p
p

Eh
A0ð1 � s

2Þ

ffiffiffiffi
A
p
�

ffiffiffiffiffi
A0

p� �
; ð3Þ

where A0 denotes the cross-sectional area at reference pressure P0 = 85 mmHg, h indicates the

arterial wall thickness, E represents Young’s modulus, and σ denotes Poisson’s ratio. In this

study, σ was set to 0.5, and Eh in Eq (3) was assigned based on the empirical relationship with

the arterial radius [3].

In a stenotic artery, the abrupt changes in the cross-sectional area cause a large pressure

loss associated with flow separation and reattachment. As the 1D model alone cannot

completely describe such a pressure loss, a stenosis model, which relates pressure loss across

the stenosis (ΔP) to geometric parameters, was coupled with the 1D model. We employed the
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model reported in previous studies [42–44]:

DP ¼ RvQþ Kt
8r

p2D4
n

1

ð1 � SRÞ2
� 1

( )2

QjQj þ Ku
4rLs

pD2
n

_Q; ð4Þ

Rv ¼

Z Ls

0

128m

pfDðxÞg4
dx; ð5Þ

where Rv denotes the viscous resistance of the stenosis, evaluated considering the axial diame-

ter change D(x); Dn indicates the maximum diameter distal to the stenosis; SR represents the

stenosis ratio defined as the percentage reduction in diameter (1−Ds/Dn, with the minimum

stenosis diameter Ds); Ls denotes the stenosis length; and _Q indicates the time derivative of Q.

Fig 2. Schematic representation of the one-dimensional–zero-dimensional (1D–0D) model. The 1D network comprises 83 arterial segments, including 22

segments (blue dots) composing the cerebral circulation. Cerebral arteries form a ring-like network, referred to as the circle of Willis, which supplies blood to

the brain through the six outlets (green diamonds). The arrows indicate the direction of the flow defined as positive in the simulation. The inlet and outlet

boundary conditions for the 1D network are obtained by coupling with the 0D closed-loop model, which represents the peripheral circulation and heart.

https://doi.org/10.1371/journal.pcbi.1009996.g002
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The first, second, and third terms in Eq (4) account for the contribution of viscous friction,

flow separation, and pulsatility to the pressure loss, respectively. Although coefficients Kt and

Ku rely on the stenosis geometry, they have been empirically set to 1.52 and 1.2, respectively, in

the literature [43,45]. In this study, we considered Kt as an uncertain parameter ranging

between 1.0 and 2.699 [46], whereas Ku was maintained constant at 1.2, owing to its negligible

influence on ΔP.

The 0D closed-loop model comprises the peripheral artery, upper and lower body blocks,

and heart (Fig 2). The peripheral arteries distal to the 1D terminal arteries are represented by

the three-element Windkessel model (RCR circuit). In each upper or lower body block, the

capillaries, venules, and veins are modeled as RLC circuits in series. The heart is modeled

based on the time-varying elastance method, which provides the inlet boundary condition to

the 1D network, generating a closed-loop system. The governing equations for the 0D model

are derived by linearizing and integrating Eqs (1)–(3) along the axial direction, as follows

[47,48]:

C
dP1

dt
þ Q2 � Q1 ¼ 0; ð6Þ

L
dQ2

dt
þ P2 � P1 ¼ � RQ2; ð7Þ

where R, L, and C represent the viscous resistance, inertia of blood, and vascular compliance,

respectively; and subscripts 1 and 2 denote the quantities upstream and downstream,

respectively.

Numerical methods. The governing equations for the 1D model were solved using the

two-step Lax–Wendroff scheme. Bifurcated 1D segments were coupled by enforcing the con-

servation of mass and total pressure at the bifurcations. As this yields the coupled nonlinear

equations (see [41] for detailed formulas), we used the iterative Newton–Raphson method to

solve them [6,41]. Furthermore, simultaneous ordinary differential equations in the 0D model

were solved using the fourth-order Runge–Kutta scheme. The 1D, 0D, and stenosis models

were coupled using Riemann invariants [41].

Patient-specific modeling. Initially, all model parameters were assigned as reported by

Liang et al. [18,41]. Subsequently, certain parameters associated with cerebral circulation were

assigned or adjusted based on the patient’s clinical data. The patient-specific parameters

included the diameters and lengths of the carotid and cerebral arteries, stenosis model parame-

ters, and peripheral resistances (PRs), which represent the sums of the two resistances in the

three-element Windkessel model at the six outlets of the CoW. Additionally, the stiffness and

diameter of the aorta were adjusted based on the patient’s age, and the total PR was adjusted to

match the measured pressure.

The diameters and lengths of the carotid and cerebral arteries were extracted from medical

images (CT or MRI) and directly assigned to the corresponding parameters in the 1D model.

In the case of the stenotic artery, Rv, Dn, SR, and Ls in Eqs (4) and (5) were evaluated based on

the acquired geometry. Image processing for arterial lumen segmentation, centerline extrac-

tion, 3D reconstruction, and calculation of geometric parameters was conducted using in-

house software, namely “V-Modeler” [49]. As routine diagnostic imaging generally involves

only the diseased region (head and neck in this case), patient-specific geometries for the

remaining 1D segments could not be obtained. Therefore, we used the geometries prescribed

in the literature for these segments; however, the stiffness and diameters of the aortic segments

were modified to reflect age-related changes [50].
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At the six outlets of the CoW, including the left and right anterior, middle, and posterior

cerebral arteries, the PRs were adjusted through iterative calculations to match the measured

flow rates [20,51]. Outflow rates in these arteries were measured using single photon emission

computed tomography (SPECT) combined with phase contrast magnetic resonance imaging

(PC-MRI) or ultrasound measurement [20]. Initially, we converted the regional brain perfu-

sion map on SPECT images to the flow rates averaged over a cardiac cycle duration at the six

outlets, f�QSPECT
i g

6

i¼1
, using vascular territory templates [52]. Subsequently, these flow rates were

corrected as follows based on the measured total inflow rate to the CoW while maintaining

constant flow distribution ratios among the outlets:

�Qtarget
i ¼ �Qtotal �

�QSPECT
i

P6

j¼1
�QSPECT

j

; i ¼ 1; 2; . . . ; 6: ð8Þ

Herein, �Qtotal denotes the summation of the flow rates in the three inlets of the CoW (the left

and right ICAs and the basilar artery), which is measured either using PC-MRI or ultrasound.

Finally, we used �Qtarget
i in Eq (8) as the target value for the PR adjustment.

The total PR was adjusted to match the patient’s mean arterial pressure measured at the

upper arm [51]. This was implemented by changing the PRs of the terminal arteries, excluding

the CoW, with the scaling factor relative to the initial values.

Learning data generation

We generated a dataset of simulated cerebral circulation for 200 000 synthetic conditions

using the 1D–0D simulation. These conditions reflected the anatomical and physiological vari-

ations in patients with and without ICA stenosis and were reproduced by randomly sampling

60 input parameters within a reasonable range (as will be discussed later in the “Design of

experiments” subsection). The dataset was used for the supervised learning of the DNN. The

following subsections describe the steps for generating the learning data, which include defin-

ing inputs and outputs, designing the input space for collecting the data samples, and running

simulations.

Defining inputs and outputs. Although the 1D–0D model includes a large number of

parameters, only some have a significant impact on cerebral circulation. As described in the

“Patient-specific modeling” subsection, we set those parameters in a patient-specific manner

based on the patients’ clinical data. The parameters include

• Diameters of 22 carotid and cerebral arteries in the 1D model (22 parameters);

• Lengths of 22 carotid and cerebral arteries in the 1D model (22 parameters);

• Rv, Dn, and SR in Eq (4) for each left and right ICA stenoses (6 parameters);

• PRs at the six outlets of the CoW (6 parameters);

• Scaling factor for the total PR (1 parameter);

• Age (1 parameter);

and an uncertain parameter for the stenosis model, which is

• Kt in Eq (4) for each left and right ICA stenoses (2 parameters).

The aforementioned 60 parameters characterize the patient’s anatomical and physiological

conditions and significantly affect the cerebral circulation. We selected all these parameters as

inputs to capture their influence on the cerebral circulation. Note that we do not select the
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stenosis length, Ls, as an input. As shown in Eq (4), Ls has two effects on ΔP: one on the third

term and the other on the first term via Rv. The effect of Ls on the third term can be ignored

because the third term is negligible compared to the other terms. Furthermore, since we

selected Rv as the input representative of the stenosis geometry, encompassing the variations of

D(x) and Ls, it is unnecessary to select Ls as a separate input to be varied.

Based on the 1D–0D simulation, A(t, x), Q(t, x), and P(t, x) at each axially aligned grid

point of the 1D artery can be obtained as the output. However, according to the definition of

CH (percentage increase in time-averaged flow rate), the focus lies on the assessment of cere-

bral circulation as a “time average” in several clinical situations. Therefore, we aimed to con-

struct a surrogate model that predicts hemodynamic quantities averaged over a cardiac cycle

duration and limits the outputs to be predicted, which include

• Cycle-averaged flow rates, �Q, in the middle of the carotid and cerebral arteries (22

quantities);

• Cycle-averaged pressures, �P, in the middle of the carotid and cerebral arteries (22

quantities);

• Mean arterial pressure, which is the cycle-averaged pressure in the middle of the left subcla-

vian artery (1 quantity).

Here, cycle-averaged flow rate and pressure refer to Q and P averaged over a cardiac cycle

duration:

�Q xð Þ ¼
1

Tc

Z tsþTc

ts

Qðt; xÞdt; ð9Þ

�P xð Þ ¼
1

Tc

Z tsþTc

ts

Pðt; xÞdt; ð10Þ

where ts and Tc respectively denote the time to start averaging and cardiac cycle duration

(fixed as 1 s). In the axial direction, �Q is constant and �P decreases almost linearly unless there

is a significant axial change in �A. Therefore, �Q and �P at the middle grid point of each artery

can be regarded as the axially averaged quantities in each artery. The aforementioned 45 out-

puts are the primary clinically relevant quantities describing the cerebral circulation. Conse-

quently, we constructed a surrogate model that defines a mapping from the inputs x2R60 to

the outputs y2R45.

Design of experiments. The input–output paired learning data can be obtained by ran-

domly sampling x2R60 and performing 1D–0D simulations to obtain the corresponding

y2R45. In this step, the sampling ranges for x must be adequately prescribed. If the ranges are

extremely narrow, the trained surrogate model would be accurate only in limited input space,

restricting the model’s coverage. Particularly, the prediction accuracy of the DNN outside the

trained range decreases significantly because of its interpolative nature [53]. Therefore, we

inferred physiologically reasonable ranges for fxng
60

n¼1
by investigating the data of the seven

patients (Table 1) and reviewing the literature [54–58]. The basic policy was to calculate the

mean and standard deviation (SD) of the data to adopt a range that covers the mean ± 3SD

(details in S1 Appendix). Table 2 summarizes the ranges of inputs used to generate the learning

data.

Simulations. Learning data were generated considering four scenarios, namely (i) intact

ICAs, (ii) left ICA stenosis, (iii) right ICA stenosis, and (iv) left and right ICA stenoses. In each

scenario, x was randomly sampled in the prescribed range (Table 2); however, the stenosis
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parameters for the intact ICA were set as Rv = 0, Dn = DICA (diameter of the ICA), SR = 0, and

Kt = 0. We sampled 50 000 sets of x for each scenario and obtained the corresponding y from

the simulation. Consequently, learning data fxðsÞ; yðsÞgNdata
s¼1

were generated with the number of

samples Ndata = 200 000. We observed that certain inputs resulted in unphysical or non-physi-

ological outputs, such as �P < 0, or reversed flow in terminal arteries. Such samples were

replaced with new samples. All simulations were performed on the Oakforest-PACS super-

computer system provided by the Information Technology Center at The University of Tokyo

(Tokyo, Japan). The samples were equally allocated to 31 280 CPU cores (Intel Xeon Phi

7250). The total computation time required was approximately 25 h.

Data splitting. We split the learning dataset into training, validation, and test data in

the ratio of 6:2:2. The training data were used to construct the surrogate model, and the predic-

tion accuracy of the model was evaluated using the validation/test data. The validation data

Table 2. Sampling ranges of inputs used to generate the learning data.

Input parameters Ranges

Diameter (mm), length (mm), peripheral

resistance (mmHg s mL−1)

R. com. carotid [3.9, 11.6], [78, 222], —

L. com. carotid [3.9, 11.6], [109, 252], —

R. int. carotid I [2.3, 6.8], [120, 195], —

L. int. carotid I [2.3, 6.8], [120, 195], —

R. int. carotid II [1.9, 6.0], [2, 12], —

L. int. carotid II [1.9, 6.0], [2, 12], —

R. vertebral [1.4, 4.9], [113, 276], —

L. vertebral [1.4, 4.9], [113, 276], —

Basilar [1.6, 4.9], [15, 36], —

R. ant. cerebral I [0.1a, 3.6], [7, 31], —

L. ant. cerebral I [0.1a, 3.6], [7, 31], —

R. ant. cerebral II [1.2, 3.6], [6, 45], (0, 200]

L. ant. cerebral II [1.2, 3.6], [6, 45], (0, 200]

R. mid. cerebral [1.4, 4.3], [10, 51], (0, 100]

L. mid. cerebral [1.4, 4.3], [10, 51], (0, 100]

R. post. cerebral I [0.1a, 3.2], [2, 23], —

L. post. cerebral I [0.1a, 3.2], [2, 23], —

R. post. cerebral II [1.1, 3.2], [2, 54], (0, 250]

L. post. cerebral II [1.1, 3.2], [2, 54], (0, 250]

Ant. comm. [0.1a, 2.6], [2, 7], —

R. post. comm. [0.1a, 2.7], [4, 27], —

L. post. comm. [0.1a, 2.7], [4, 27], —

Scaling factor for the total peripheral resistance (-) [0.5, 2.0]

Viscous resistance of the stenosis Rv (mmHg s mL−1) [0, min(Rv,max, 500)b]

Maximum diameter distal to the stenosis Dn (mm) [2.9, 7.0]

Stenosis ratio SR (%) [0, 100)

Coefficient of the second term in Eq (4) Kt (-) [1.0, 2.699]

Age [25, 90]

aMissing arteries were represented as extremely narrow arteries with diameters of 0.1 mm, which enabled efficient

execution of simulations without requiring a redefinition of the arterial network topology in each case.

bThe upper bound was defined as a function of SR as 128mLs;max=pD4
n;minð1 � SRÞ4 with an upper limit of 500 mmHg s mL−1

(S1 Appendix). Herein, Ls,max denotes the maximum value of the stenosis length (assumed to be 40 mm), and Dn,min indicates

the lower bound of Dn.

https://doi.org/10.1371/journal.pcbi.1009996.t002
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were specifically used to determine the stopping point of model training (see the “Model train-

ing” subsection), whereas the test data were used to assess the performance of the trained

model.

Machine learning

Deep neural network. We used a fully connected DNN as a regression model to fit the

training data. The DNN comprises a total of Nlayer + 2 layers: an input layer, a series of Nlayer

hidden layers, and an output layer (S1 Fig). The input and output layers include nodes equal to

the number of inputs and outputs, respectively. Each hidden layer comprises an equal number

of nodes, Nnode, and each node is connected to all nodes in the adjacent layers. Initially, the val-

ues of fxng
60

n¼1
serve as input to the nodes in the input layers. Subsequently, each node in the

first hidden layer receives the weighted inputs, sums them up, adds a bias, and finally applies

the rectified linear unit (ReLU) activation. This process continues for each layer up to the last

hidden layer. The nodes in the last hidden layer and the output layer are fully connected with-

out ReLU activation. Consequently, the DNN turns into a recursive function, as follows:

yl ¼

x; ðl ¼ 1Þ

maxð0;W lyl� 1 þ bl
Þ; ð2 � l � Nlayer þ 1Þ

W lyl� 1 þ bl
; ðl ¼ Nlayer þ 2Þ

ð11Þ

8
>><

>>:

where yl, Wl, and bl denote the output vector, weight matrix, and bias vector of the l-th layer,

respectively.

Model training. The DNN was trained using the data by adjusting the weights and biases

to minimize the loss function, which is defined as the mean squared error of the outputs, as fol-

lows:

L ¼
1

Nsample
�

1

Nout

PNsample
s¼1 ky

ðsÞ
sim � yðsÞDNNk

2
; ð12Þ

where k�k denotes the Euclidean norm (l2-norm of a vector), Nout = 45 indicates the number

of outputs, Nsample represents the total number of samples used for evaluation, yðsÞsim denotes the

outputs in the training data (outputs from the 1D–0D simulation), and yðsÞDNN indicates the out-

puts predicted by the DNN. We used the gradient-based algorithm “Adam” [59] for optimiza-

tion, with an initial learning rate lr. Furthermore, mini-batch training was employed with a

batch size Nbatch, and batch normalization [60] was applied between the linear transformation

and ReLU activation in individual layers.

During the training, the coefficient of determination (R2 score), defined as

R2 ¼ 1 �

PNsample
s¼1 kyðsÞsim � yðsÞDNNk

2

PNsample
s¼1 kyðsÞsim � �ysimk

2
; ð13Þ

was evaluated based on the validation data at the end of each epoch to assess the performance

improvements. Herein, �ysim denotes the mean of yðsÞsim. The closer the R2 score is to 1, the more

precise the prediction; R2 = 1 if yðsÞDNN and yðsÞsim are equal for all s. For every 100 epochs, we moni-

tored the R2 score averaged over the latest 100 epochs; training was terminated if no improve-

ments were observed in three successive evaluations. The weights and biases with the highest

R2 scores at the epoch were selected for the trained model. The DNN and its training were

implemented using “Chainer” [61], which is a Python-based open-source framework for deep

learning.
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Training the DNN involves certain hyperparameters, namely Nlayer, Nnode, Nbatch, and lr,
which are not trainable through the optimization process as they are chosen arbitrarily.

Although the choice of hyperparameters affects the prediction accuracy of the trained model

significantly, the optimal values cannot be known in advance as they vary considerably

depending on the data. Therefore, we conducted a grid search to identify the best combination

of hyperparameters in Nlayer2{5, 7, 10, 13}, Nnode2{50, 100, 200, 400}, Nbatch2{300, 1000, 3000,

10000}, and lr2{10−3, 10−2.5, 10−2, 10−1.5}. After 44 = 256 rounds of training, the R2 scores eval-

uated by the models based on the test data were compared, and the best-performing model

was selected as the final surrogate model.

The training data were preprocessed to improve the model performance. We normalized the

inputs such that their upper and lower bounds were 1 and −1, respectively, and standardized the

outputs to ensure zero mean and unit SD. The inputs of the validation and test data were normal-

ized similar to the training data, whereas the outputs were scaled as y0 = (y−μtrain)/σtrain. Herein,

μtrain and σtrain denote the mean and SD of the outputs of the training data, respectively. The nor-

malization and standardization (also known as z-score normalization) applied to the data herein

constitute standard preprocessing in supervised learning [62].

Model verification. The surrogate model was verified by (i) assessing the prediction accu-

racy using 40 000 samples of test data, and (ii) comparing the surrogate model and 1D–0D

simulation in terms of the predicted outputs and adjusted inputs of the seven patients

(Table 1). In the second step, the procedure for assigning or adjusting the inputs based on the

patient’s clinical data during the prediction performed by the surrogate model was identical to

that of the simulation (“Patient-specific modeling” subsection). In both steps, we used the

mean absolute error (MAE)

MAEm ¼
1

Nsample

PNsample
s¼1 jy

ðsÞ
DNN;m � yðsÞsim;mj; m ¼ 1; 2; . . . ; 45 ð14Þ

in addition to the R2 score to assess the prediction accuracy of the surrogate model.

Uncertainty quantification and sensitivity analysis

We used the surrogate model to perform the UQ while predicting the risk of postoperative CH

in three patients with ICA stenosis. This demonstrated the application of the surrogate model

to the UQ problem and facilitated the investigation of the relationship between collateral circu-

lation in the CoW and CH.

Quantity of interest. CH is defined as an increase of more than 100% in the flow rate of

cerebral arteries due to ICA stenosis surgery [35–38]. Therefore, we focused on predicting the

cerebral circulation when the stenosis is dilated, to evaluate the percentage increase in outflows

of the CoW as follows:

D�Qi ¼
�Qpost

i � �Qpre
i

�Qpre
i

� 100%; i ¼ 1; 2; . . . ; 6: ð15Þ

Herein, �Qpre
i and �Qpost

i denote the cycle-averaged flow rates at the six outlets of the CoW before

and after dilating the stenosis, respectively. By definition, D�Qi > 100% represents CH.

Target patient characteristics. Three patients (Patients 1–3 in Table 1) were included in

the surgical outcome prediction. The imaging data (CT), measurements of inflows (PC-MRI

or ultrasound) and outflows (SPECT) of the CoW, and mean arterial pressure collected before

the surgery were used for the predictions. The evaluated stenosis ratios (SR) for Patients 1, 2,

and 3 were 59%, 83%, and 91%, and the corresponding Rv values (evaluated using Eq (5)) were

0.5 mmHg s mL−1, 11.3 mmHg s mL−1, and 66.6 mmHg s mL−1, respectively, exhibiting the
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same trend as the SR (see S2 Fig for the stenosis geometry). Patients 1 and 3 each had a com-

plete CoW; however, CT images of Patient 2 suggested hypoplasia (missing) of an anterior

communicating artery (ACoA). Patient 2 was identified by the surgeon as being at risk for CH

based on the collected data. To minimize the potential risk of CH, Patient 2 underwent staged

surgery, where the stenosis was pre-dilated using a balloon, followed by complete dilation with

a stent after two weeks.

Uncertainty modeling. We evaluated the uncertainty in the clinical data that were used to

assign or adjust the patient-specific inputs. We focused on uncertainties in the arterial diame-

ters and stenosis parameters, which were used directly as inputs, and those in the CoW inflow

and outflow measurements, which were used to obtain the target outputs. The arterial length is

more robustly measured than the diameter and has a minor effect on flow resistance; therefore,

the uncertainty in length was not considered.

In all three patients, arterial diameters and stenosis parameters were obtained through seg-

mentation of the arterial lumen on CT images. The geometry obtained during the segmenta-

tion can vary based on the threshold used to determine the boundary. In the case of CT, the

lumen boundary spanned 2–3 pixels, and the diameter changed by ±2 pixels based on the

threshold used. Therefore, we assumed uncertainty of ±2 pixels (±0.702–0.936 mm, depending

on image resolution) with respect to the arterial diameter obtained from the segmentation.

Similarly, uncertainties in the stenosis parameters were estimated by considering a 2-pixel

uncertainty in the underlying geometry. However, an exception was made for Patient 2, as the

ACoA was not recognized on CT images of this patient, suggesting hypoplasia of the ACoA.

Nevertheless, we could not rule out the possibility that the ACoA, hidden between the

extremely close presence of the left and right anterior cerebral arteries, might have failed to

resolve on the images (Fig 3). Therefore, we assumed uncertainty of 0.1–2.6 mm in the ACoA

diameter, thereby including the possibility of its absence as well as presence.

Uncertainties in the measured flow rates were determined based on modality. The uncer-

tainties in the measured values were assumed to be ±16%, ±35%, and ±16% for PC-MRI, ultra-

sound, and SPECT, respectively, based on the literature [19,63–68] and discussions with

surgeons. The uncertainty ranges were intentionally overestimated to maximize the chance of

including the “true” (yet unknown) value regardless of the modality used.

Uncertainty propagation. Uncertain inputs and targets were treated as random variables

with uniform distribution on the determined interval. To estimate the statistics of the pre-

dicted D�Qi under uncertainties, we used the most straightforward approach for UQ, namely

the Monte Carlo method. In each realization, uncertain inputs and targets were sampled from

Fig 3. Computed tomography (CT) images of Patient 2. (A) Transverse plane, (B) frontal plane, and (C) volume-rendered image. The ACoA was not

recognized on CT images of this patient, suggesting hypoplasia of the ACoA.

ACoA, anterior communicating artery; LACA, left anterior cerebral artery; RACA, right anterior cerebral artery.

https://doi.org/10.1371/journal.pcbi.1009996.g003
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a specified probability distribution, and D�Qi was predicted through successive steps of “preop-

erative adjustment” and “postoperative prediction” (Fig 4). In the first step, the PRs of the

CoW and scaling factor for the total PR were adjusted to match the predicted outputs to the

targets. The samples were rejected if target convergence was not attained. Subsequently, the

stenosis parameters were modified to Rv = 0, Dn = DICA, SR = 0, and Kt = 0 to reflect the com-

plete dilation of the stenosis. The modified stenosis parameters and adjusted PRs were used as

inputs in the subsequent steps to predict cerebral circulation immediately after the stenosis

surgery. Finally, D�Qi was calculated using the flow rates before and after the surgery. The sta-

tistics of D�Qi under uncertainties were estimated using the collected fD�QðsÞi g
NMC

s¼1
, where NMC

denotes the number of realizations. NMC was increased sequentially until the statistics of D�Qi

converged. As a basic policy, we increased NMC by 10 000 and ensured that the change in

mean and variance of D�Qi was within 0.1%. We also confirmed that there was no significant

change in the probability of D�Qi > 100% when NMC was increased. A detailed description of

the algorithm for uncertainty propagation is provided in S2 Appendix.

In this study, we assumed that the surgery did not alter the arterial geometry (except for ste-

nosis) and PRs. This assumption is justified because we aim to predict the cerebral circulation

immediately after the surgery. Additionally, autoregulation and remodeling of the cerebral

arteries generally prevent an abrupt change in blood flow. Therefore, our assumption is appro-

priate for predicting the maximum possible D�Qi, which is the most dangerous surgical out-

come in terms of CH.

Fig 4. Flowchart for uncertainty quantification using the Monte Carlo method. For each Monte Carlo sample, peripheral resistances of the circle of Willis and the

scaling factor for total peripheral resistance were adjusted (“preoperative adjustment”), followed by a virtual dilation of the stenosis to predict the cerebral circulation

immediately after the surgery (“postoperative prediction”). The number of samples was increased sequentially until the statistics converged. The method can be applied

to any probability density function; however, we assume a uniform distribution in this study. Additional details regarding the algorithm are provided in S2 Appendix.

https://doi.org/10.1371/journal.pcbi.1009996.g004
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Sensitivity analysis. In addition to UQ, we performed SA to measure the impact of each

parameter (uncertain input or target) on D�Qi. We adopted a variance-based global SA pro-

posed by Sobol’ [69] to consider the interaction between the parameters. In this method, the

impact of parameter xn on output y is quantified as the Sobol’ sensitivity indices [69,70]:

Sn ¼
V½E½yjxn��
V½y�

; ð16Þ

ST;n ¼ 1 �
V½E½yjx� n��
V½y�

; ð17Þ

where E½yjxn� denotes the conditional expectation of y for a fixed xn; V½y� indicates the vari-

ance of y; x−n represents all parameters except xn; Sn, the first-order sensitivity index, quantifies

the independent contribution of xn to the measured variability of y; and ST,n, the total sensitiv-

ity index, quantifies the overall contribution of xn to the variability of y, including indirect con-

tributions through interactions with other parameters. A large ST,n − Sn indicates that the

impact of xn varies significantly with the values of other parameters.

We used Saltelli’s algorithm with the Monte Carlo method to compute the sensitivity indi-

ces [70, 71]. The accuracy of the sensitivity indices in terms of the sampling error was assessed

by estimating the 95% confidence interval using the bootstrap method [72] with a sample size

of 1000. The SA was implemented using the open-source Python library “SALib” [73].

Results

Surrogate modeling

Effect of hyperparameters. Based on the grid search for 256 sets of hyperparameters, the

highest R2 score was achieved when Nlayer = 7, Nnode = 200, Nbatch = 3000, and lr = 10−2.5 (S3

Fig). Combinations with Nnode = 200 yielded an overall higher R2 score, indicating that Nnode

affects the R2 score more than the other hyperparameters.

Nlayer and Nnode determine the total number of trainable parameters (weights and biases) of

the DNN, whereas Nbatch and lr control the gradient and the rate of parameter update, respec-

tively, during the optimization process. To compare the influences of these effects on predic-

tion accuracy, we plotted the R2 score with respect to the number of trainable parameters, as

illustrated in Fig 5A, using the following equation:

Nparam ¼
PNlayerþ2

l¼2 ðNl
node � N

l� 1

node þ Nl
nodeÞ; ð18Þ

where Nl
node denotes the number of nodes in the l-th layer. Note that the index of summation

starts at 2 instead of 1 since the input layer (l = 1) has no parameters. Fig 5A indicates that the

R2 score has an inverted U-shaped relationship with Nparam. The highest R2 score was achieved

when the DNN contained 262 445 trainable parameters; increasing or decreasing the number

of parameters from this optimal number resulted in lower R2 scores. The vertical variations in

the R2 score indicate that the effects of Nbatch and lr were relatively small when the DNN com-

prised an optimal number of parameters. However, the choice of Nbatch and lr significantly

affected the prediction accuracy when training the DNN with more than 1 million parameters.

Effect of number of training samples. To investigate the effect of the number of training

samples on the R2 score, we trained the DNN with different numbers of training samples while

maintaining the hyperparameters constant in the optimal combination. Fig 5B compares the

networks’ R2 scores evaluated using identical test data. Increasing the number of training sam-

ples improved the prediction accuracy significantly, particularly with a smaller number of
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samples. However, the accuracy reached a plateau with 120 000 samples, indicating that the

accuracy cannot be improved further with more samples.

Model performance. The best-performing DNN, trained with hyperparameters Nlayer = 7,

Nnode = 200, Nbatch = 3000, and lr = 10−2.5, was selected as the final surrogate model and veri-

fied. Initially, we assessed the prediction accuracy of the model using 40 000 samples of test

data. The overall R2 scores for the flow rate and pressure were 0.9959 and 0.9973, respectively.

On average, the MAE was 2.617 mL/min for the flow rate and 0.7226 mmHg for the pressure,

which correspond to approximately 4% and 0.9% of the flow rate and pressure mean absolute

values, respectively. A detailed comparison of the flow rate and pressure in each artery pre-

dicted by the surrogate model and 1D–0D simulation are illustrated in S4 and S5 Figs.

Furthermore, to verify the model accuracy using the patients’ clinical data for assigning and

adjusting the inputs, we compared the surrogate model and 1D–0D simulation in terms of

flow rates, pressures, and adjusted PRs of the CoW for the seven patients (Fig 6). The flow

rates at the six outlets of the CoW were excluded from the evaluation, as they matched the

measured flow rates. As indicated in Fig 6, the outputs and adjusted PRs from the surrogate

model were in agreement with those from the simulation. Even in the case of patient-specific

Fig 5. Changes in the R2 score of the trained model. (A) Changes with respect to the number of trainable parameters

in the deep neural networks. The number of training samples was maintained constant at 120 000, and the R2 scores

were evaluated using 40 000 test samples. Under- or over-parameterized indicate that the networks contain fewer or

more trainable parameters than the number of training data, respectively. (B) Changes in the R2 score with respect to

the number of samples used for training.

https://doi.org/10.1371/journal.pcbi.1009996.g005
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predictions that involved iterative adjustment of inputs, the flow rate and pressure errors were

comparable to those evaluated using the test data.

Fig 7 compares the surrogate model and simulation in terms of the time required for a sin-

gle prediction. On a single CPU core (Intel Core i9-9900K, 3.6 GHz), the surrogate model

achieved a prediction time of several milliseconds, reducing the computation time of the simu-

lation by a factor of over 43 000. Furthermore, the surrogate model exhibited excellent paralle-

lization performance, particularly when executed on a GPU (NVIDIA GeForce RTX2080 Ti),

and significantly reduced the computation time per prediction. As illustrated in Fig 7, the

computation time was only five times longer when the surrogate model performed 10 000 pre-

dictions on a GPU than a single prediction on a single CPU core. Parallelization on the GPU

Fig 6. Comparison of one-dimensional–zero-dimensional (1D–0D) simulation and surrogate model predictions. The (A) flow rate, (B) pressure, (C)

adjusted peripheral resistance of the circle of Willis, and (D) adjusted scaling factor for total peripheral resistance in seven patient-specific cases are compared.

The negative flow rate indicates that the flow direction is opposite to the arrows in Fig 2. The R2 scores and mean absolute errors (MAEs) of each quantity are

depicted in the corresponding panels.

https://doi.org/10.1371/journal.pcbi.1009996.g006
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was performed using the built-in backend of Chainer [61] for CUDA-based parallel matrix

operations. The latest deep learning libraries, including TensorFlow, Keras, PyTorch, and

Chainer, support GPU execution using their built-in backends, allowing easy parallelization of

matrix operations in training and predictions.

Uncertainty quantification and sensitivity analysis

Flow rate increase following the stenosis surgery. The percentage increase in flow rate

(D�Q) following the ICA stenosis surgery was evaluated for Patients 1–3, considering the uncer-

tainties in arterial diameters, stenosis parameters, and target flow rates. The number of realiza-

tions (NMC) to obtain the statistics of D�Q was set to 100 000. The time required for the UQ was

a few minutes on a single CPU core, which was shorter than the time required for a single pre-

diction using the 1D–0D simulation. The time was reduced to less than a minute when exe-

cuted on a GPU.

Although we obtained D�Q at each outlet of the CoW, we focused only on the results at the

middle cerebral artery (MCA) on the stenosis side, which was subjected to the largest D�Q.

Fig 8 depicts the probability density of the predicted D�Q for Patients 1–3 along with the values

from the deterministic 1D–0D simulation (represented as triangles). Additionally, the figure

depicts the interval, mean, and mode (the value with the highest frequency) of D�Q and the

probability of D�Q being more than 100%. A negative D�Q indicates a decrease in the flow rate

following the surgery. This situation may be rare in actual patients with severe stenosis; none-

theless, it is not non-physiological, as observed in certain clinical cases [36].

Overall, uncertainties in the clinical data generated large variations in the predicted D�Q.

Based on the comparison of patients’ results, we observed that the mode of D�Q was close to the

D�Q predicted by the deterministic simulation and higher when stenosis was more severe

(larger SR and Rv). In all patients, the distribution of D�Q was skewed to the right, with a higher

mean than the mode. The distribution of D�Q was spread extensively to large values in Patients

Fig 7. Comparison of the time required for prediction. Computation times for a one-dimensional–zero-dimensional

(1D–0D) simulation and surrogate model on one CPU core and a surrogate model on GPU are compared.

https://doi.org/10.1371/journal.pcbi.1009996.g007
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2 and 3, wherein the stenosis was more severe than in Patient 1. The increase in the prediction

uncertainty in D�Q with higher stenosis severity is attributed to the 2-pixel uncertainty consid-

ered for the arterial diameter. With the same variation width of diameter, the uncertainty in Rv

(Eq (5)) and SR (= 1−Ds/Dn) increases with a smaller diameter, leading to a larger uncertainty

in D�Q.

However, the comparison of Patients 2 and 3 indicated that CH (D�Q > 100%) is not caused

solely by the severity of stenosis. Patient 2 exhibited a 3.8% chance of CH, whereas the corre-

sponding estimates for Patients 1 and 3 were 0% and 0.001% (only one sample out of 100 000

samples), respectively. In Patient 2, who was assumed to have a possible missing ACoA, the

variability of D�Q to values above 100% was prominent compared to Patient 3, implying that

D�Q was significantly affected by this artery.

Patient conditions causing cerebral hyperperfusion. To clarify the conditions under

which CH occurs, we further investigated the characteristics of 3796 samples in Patient 2 and

1 sample in Patient 3 with D�Q > 100%. The left column in Fig 9 depicts the relationship

between the preoperative PR of the MCA on the stenosis side (PRMCA) and D�Q in each patient.

Furthermore, the right column in Fig 9 illustrates the variation in D�Q with respect to the diam-

eters of the ACoA and the posterior communicating artery (PCoA) on the stenosis side in each

patient.

As indicated in the left column of Fig 9, D�Q exhibits an inverse relationship with PRMCA.

This is natural because D�Q / D�PMCA=PRMCA, where D�PMCA denotes pressure recovery at the

Fig 8. Probability density of the predicted value of postoperative flow increase (D�Q). Flow increase at the middle cerebral artery on the stenosis side is

illustrated for Patients 1–3. Triangles indicate the values predicted by one-dimensional–zero-dimensional (1D–0D) simulation without considering

uncertainties.

https://doi.org/10.1371/journal.pcbi.1009996.g008
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Fig 9. Postoperative flow increase (D�Q) in Patients 1–3 relative to several factors. Left column: scatter plot of D�Q at the middle

cerebral artery on the stenosis side with respect to the adjusted preoperative peripheral resistance of this artery. Samples with

D�Q > 100% are indicated in red. Right column: D�Q with respect to the diameters of the anterior communicating artery (ACoA)

and posterior communicating artery (PCoA) that form the collateral pathway to the artery on the stenosis side. Samples with

D�Q > 100% are depicted in yellow, regardless of their value. (A) (B) Patient 1; (C) (D) Patient 2; and (E) (F) Patient 3.

https://doi.org/10.1371/journal.pcbi.1009996.g009
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MCA on the stenosis side caused by the surgery. Even with the same D�PMCA, a smaller PRMCA

results in a larger D�Q. Fig 9C and 9E depict the results of Patients 2 and 3, respectively,

wherein the PRMCA is smaller than 20 mmHg s mL−1 in most samples when D�Q exceeds 100%.

However, we observed that a small PRMCA did not always result in D�Q > 100%, as D�PMCA var-

ied with respect to some factors. Samples with D�Q > 100% were associated not only with a

small PRMCA but also with small diameters of the ACoA and PCoA that form the collateral

pathway to the artery on the stenosis side (Fig 9D and 9F). Particularly, an extremely small

ACoA diameter (<1 mm) resulted in D�Q > 100%, regardless of the PCoA diameter (Fig 9D).

Fig 10 depicts the variation in the preoperative flow rate in the ACoA (left column) and

PCoA (right column) with respect to the diameter. Note that the flow rate shown in Fig 10 var-

ies both horizontally and vertically. As indicated by the relationship between ΔP and RvQ in

Eq (4), the flow rate in an artery is proportional to the pressure difference between the two

ends and is inversely proportional to the fourth power of the diameter. The horizontal varia-

tion in flow rate shown in Fig 10 is attributed to the diameter variation of the communicating

artery within the uncertainty range. On the contrary, the vertical variation is caused by varia-

tions in the pressure difference between the ends (i.e., the pressure difference between arteries

on the normal and stenosis sides) resulting from uncertainties in the diameter of other arteries,

stenosis severity, and flow measurements. As seen from the large vertical variations, the flow

rate of the communicating artery is strongly influenced not only by the diameter uncertainty

of this artery but also by other uncertainties.

As indicated in Fig 10C, the flow rate in the ACoA of Patient 2 is distributed up to 250 mL/min

regardless of the diameter when it is�1 mm. However, when the diameter< 1 mm, the flow rate

decreases rapidly, and samples withD�Q > 100% appear frequently near the upper end of the dis-

tribution. In other words, D�Q exceeds 100% when the collateral flow through the ACoA is limited

owing to the small diameter despite the large pressure difference between arteries on the normal

and stenosis sides. Conversely, no such condition was observed in Patients 1 and 3. The small

amount of collateral flow in Patient 1 indicates that the pressure difference was small, and in

Patient 3, the diameters of the ACoA and PCoA were sufficiently large.

Sensitivity of uncertain parameters. To gain further insight into the factors associated

with CH, we quantified the influence of each uncertain parameter on D�Q through SA. Accord-

ing to Saltelli’s algorithm, the number of samples required to compute the sensitivity indices

was 370 000. Fig 11 depicts the first-order (Sn) and total (ST,n) sensitivity indices. In most

parameters, ST,n is considerably larger than Sn, indicating a strong interaction between the

parameters. In all patients, the diameters of the ACoA and PCoA on the stenosis side influenced

the D�Q significantly. Additionally, the diameters of the anterior cerebral artery I (ACA I) and

posterior cerebral artery I (PCA I) exhibited substantial sensitivity. As depicted in Fig 12, these

arteries form collateral pathways to supply blood to the MCA on the stenosis side.

Furthermore, the severity of the stenosis affected the D�Q considerably. Although both Rv

and SR are measures of stenosis severity, only Rv contributed to the variance of D�Q. The

impact of Rv on D�Q was smaller in patients with highly severe stenosis. In Patient 1, the sensi-

tivity of Rv was higher than that of collateral pathway diameters, whereas the opposite behavior

was observed in Patients 2 and 3.

Discussion

Surrogate modeling approach for uncertainty quantification

Quantifying the impact of uncertainties in clinical data on predictive results is essential for

enabling the clinical application of hemodynamic simulations. However, as this task is time-
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Fig 10. Scatter plots of preoperative flow rate versus diameter of the communicating arteries in Patients 1–3. The

results for the anterior communicating artery (ACoA) and posterior communicating artery (PCoA) that form the

collateral pathway to the artery on the stenosis side are illustrated. The flow rate is indicated as a positive value if blood

flows from the artery on the normal side to that on the stenosis side. Samples with D�Q > 100% are represented in red.

(A) (B) Patient 1; (C) (D) Patient 2; and (E) (F) Patient 3.

https://doi.org/10.1371/journal.pcbi.1009996.g010
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consuming and computationally expensive, it is impractical for time-sensitive clinical applica-

tions. To address this problem, we trained a DNN using datasets obtained from the 1D–0D

simulation to construct a surrogate model that rapidly predicts cerebral circulation subjected

Fig 11. Sensitivities of uncertain parameters to the postoperative flow increase (D�Q). The first-order (Sn) and total

(ST,n) sensitivity indices are depicted as bars, and their 95% confidence intervals are represented by black lines. (A)

Patient 1, (B) Patient 2, and (C) Patient 3.

https://doi.org/10.1371/journal.pcbi.1009996.g011
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to specified geometric and physiological parameters. The DNN predicts the output by comput-

ing the input–output relationship, expressed as simple matrix-vector products (Eq (11)), rather

than integrating the governing equations through many small time steps to obtain a converged

solution. Consequently, the surrogate model reduces the prediction time by a factor of approx-

imately 43 000 in comparison with that of the simulation. In other words, flow rates and pres-

sures in the carotid and cerebral arteries are evaluated in milliseconds (Fig 7). Moreover, as

running multiple predictions in parallel only increases the array dimension by one, the surro-

gate model exhibits excellent parallelization performance. As demonstrated, UQ with 100 000

predictions can be executed nearly in real-time even on a desktop computer, requiring only a

few minutes on a single CPU core and less than a minute when using a GPU. The proposed

surrogate model facilitates the execution of the existing cost-prohibitive UQ, enabling fast

feedback of robust results to the clinic.

During the DNN training, it was evident that the choice of hyperparameters affected the

prediction accuracy. For instance, a DNN trained with 120 000 training samples can be less

accurate than that trained with only 40 000 samples with respect to the values of the hyperpara-

meters used (Fig 5). The results of the grid search verified that model complexity, which can be

represented by the total number of trainable parameters, is a major factor that affects the accu-

racy of the trained DNN. If the model is extremely simple, it is not sufficiently flexible to repre-

sent complex input–output relationships (underfitting). Conversely, if the model is highly

complex, the model lacks generalization performance despite well-fitting the training data,

resulting in low accuracy on the test data (overfitting). Additionally, the batch size and initial

learning rate influence the prediction accuracy; however, the effect is not significant as long as

the numbers of hidden layers and nodes are chosen to ensure optimal model complexity.

Fig 12. Collateral flow to the middle cerebral artery downstream of the stenosis. The middle cerebral artery

receives blood supply from the contralateral and posterior inlets to compensate for the reduced blood flow caused by

stenosis.

ACA I, anterior cerebral artery I; ACoA, anterior communicating artery; BA, basilar artery; ICA, internal carotid

artery; MCA, middle cerebral artery; PCA I, posterior cerebral artery I; PCoA, posterior communicating artery.

https://doi.org/10.1371/journal.pcbi.1009996.g012
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Furthermore, the number of training samples is important for improving the accuracy of a

DNN. The results illustrated in Fig 5B indicate that the performance of machine learning can-

not be exploited completely unless sufficient training samples are utilized. In this context,

using 1D–0D simulation can effectively obtain a large amount of data in a unified manner

with a low computational cost. Although the key to the success of machine learning lies in

large datasets, machine learning is an efficient means for surrogate modeling with a limited

number of training samples. In this study, training the DNN required 120 000 samples, which

was approximately 0.5 times the number of parameters to be determined. This is substantially

less than the number of samples required in polynomial chaos, which is a popular approach

for surrogate modeling that typically requires oversampling by a factor of 1.5–3 [74]. We also

observed that even the DNN trained with as few as 40 000 samples exhibited high performance

of R2 > 0.96.

The proposed surrogate model is capable of accurately predicting flow rates and pressures.

The predicted outputs are in agreement with those obtained from the 1D–0D simulation for

the test data (S4 and S5 Figs) and the patient-specific cases (Fig 6). Particularly, no significant

variation was observed in terms of error in cases with different conditions, such as stenosis site

and severity, validating that the model can be applied to various patient conditions. This can

be attributed to the two approaches used to generate the training data. First, the data were sam-

pled in extremely wide input space. It comprised the entire range that each input could exhibit

in an actual patient, considering the inter-patient variability reported in the literature and

found in the available clinical data and anatomical variations (S1 Appendix). Second, we con-

sidered four possible conditions, with and without ICA stenosis, and obtained sufficient sam-

ples for each condition. These approaches ensured that the surrogate model predicted using

inputs that were always within the trained input space, avoiding any extrapolation that could

significantly decrease accuracy [53].

Importance of considering clinical data uncertainties

Patient-specific simulations of cerebral circulation use medical images and measurement data

to set the geometric and physiological parameters that are appropriate to the patient’s condi-

tion. However, owing to the limitations of existing imaging technologies, it is difficult to evalu-

ate the diameter of small arteries accurately. For instance, severe stenosis has a diameter less

than the spatial resolution of CT scans (approximately 0.4 mm), which implies that a stenosis

>90% cannot be evaluated using the images. Similarly, for an ACoA with a diameter of

approximately 1.5 mm, a 1-pixel error in lumen segmentation results in a 27% change in diam-

eter. As the flow resistance in a tube is inversely proportional to the fourth power of the diame-

ter (Eq (5)), the effects of a 27% error are significant. This indicates that the UQ facilitated by

the proposed surrogate model is necessary to perform reliable predictions.

In this study, we focused on uncertainties in the arterial diameters, stenosis parameters, and

flow measurements derived from clinical data and quantified their impact on the predicted

value of flow rate increase (D�Q) resulting from the ICA stenosis surgery. The UQ results for

the three patients verified that the predicted D�Q significantly varies with uncertainty (Fig 8).

Particularly, the deterministic simulation predicted a higher D�Q in Patient 3 than in Patient 2

in proportion to the stenosis severity; however, this was reversed in the UQ results, wherein

the mean value of D�Q under uncertainty was higher in Patient 2 than in Patient 3. This vali-

dates that predictions that do not consider uncertainties provide only fragmented information,

resulting in an inaccurate risk assessment in diagnosis. Moreover, the UQ revealed that

Patient 2 had a 3.8% chance of D�Q being more than 100%, indicating a risk of CH. As pre-

dicted by the simulation, Patient 2 was identified by the surgeon as having a risk of CH and
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underwent staged surgery to lower the risk. The consistency between the predicted results and

the surgeon’s judgment further emphasizes the importance of performing UQ and confirms

the validity of the proposed approach as a diagnostic tool.

Biological implications: Cerebral hyperperfusion and collateral circulation

The CoW has a unique ring-like network, wherein the flow from the three inlets is redistrib-

uted to the six outlets via communicating arteries. Owing to this network, the MCA on the

stenosis side receives collateral flow from the contralateral and posterior inlets through the

ACA I, ACoA, PCA I, and PCoA, as depicted in Fig 12. Clinical studies report that CH after

ICA stenosis surgery is associated with the collateral function [35–38]. Poor collateral circula-

tion results in the maximal dilation of peripheral arteries of the MCA (reducing PR) through

cerebral autoregulation to compensate for the flow into the MCA. In this situation, surgical

dilation of the stenosis results in a significant increase in blood flow into the MCA, leading to

CH. The results of our study are consistent with these conventional clinical perceptions and

provide further quantitative evidence.

Based on the results of the UQ and SA, we determined that D�Q varied significantly with ste-

nosis severity. The higher the severity of the stenosis, the more its dilation reduces the flow

resistance of the ICA and the more drastic increase of the flow in this artery. Consequently, in

patients with highly severe stenosis, the distribution of D�Q shifted to larger values (Fig 8).

Among the two measures of stenosis severity, Rv was determined to affect D�Q more than

SR (Fig 11). Rv is a measure of the viscous resistance of the stenosis, which reflects the axial

diameter change and length of the stenosis (Eq (5)). In contrast, SR is the stenosis ratio, evalu-

ated using the diameters of the smallest and largest points. In clinical practice, SR is commonly

used to assess stenosis severity, as several criteria for diagnosis and treatment are defined

based on SR [1]. However, even if SR remains the same, Rv can vary considerably with respect

to the stenosis geometry; consequently, the hemodynamic significance of stenosis can differ.

Therefore, it is important to consider the viscous resistance that relies on the stenosis geometry

along with SR when assessing stenosis severity.

Remarkably, severe stenosis did not necessarily lead to CH (D�Q > 100%), as observed from

the comparison of Patients 2 and 3. This is consistent with the clinical observation that there

was no significant difference in SR between the groups with and without CH [36,37]. When

the stenosis is severe, the diameter of the arteries being the collateral pathway to the MCA on

the stenosis side (i.e., ACA I, ACoA, PCA I, and PCoA) had a more significant impact on D�Q
than the stenosis severity (Fig 11). A smaller diameter of the collateral artery limits the amount

of collateral flow (Fig 10C and 10D), causing a compensatory decrease in the PR of the MCA

(Fig 9C). Additionally, it prevents the increased flow in the ICA after surgery from being dis-

tributed to the six outlets, resulting in a large D�Q at the MCA where the flow is concentrated.

In Patient 2, the collateral flow decreased rapidly with the ACoA diameter <1 mm, and the

risk of CH increased accordingly. This result supports the use of a diameter<1 mm to define

the inadequacy of the collateral artery [75,76] and suggests that this criterion may apply to the

risk of CH. However, the flow rate in one artery is affected by the geometry (particularly the

diameter) of other arteries because the cerebral arteries form a ring-like network. Therefore,

we believe that it is necessary to perform the UQ for each patient for reliable risk assessment,

and the proposed approach is an effective tool for this purpose.

In summary, D�Q was intimately associated with the severity of the ICA stenosis and diame-

ter of the ACA I, ACoA, PCA I, and PCoA that form the collateral pathway to supply blood to

the MCA on the stenosis side. CH occurred when the following conditions were satisfied
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simultaneously: (i) the stenosis was severe and (ii) the diameter of the collateral pathway was

small.

Limitations and future directions

The limitations of this study are summarized in this subsection. First, we assumed a uniform

distribution for uncertain parameters without considering the possible differences in distribu-

tion owing to modality characteristics. The probability distribution of D�Q can change with the

assumed distribution for uncertain parameters. However, in this study, we did not aim to pre-

dict the accurate distribution of D�Q but rather to conduct a rapid assessment of the possibility

of CH (D�Q > 100%) by taking into consideration an intentionally wide range of uncertainties,

so as not to miss any patient at risk. The results verified that the upper bound of D�Q is substan-

tially lower than 100% in Patient 1 and slightly over 100% in Patient 3, which indicates that

assuming different types of distribution (such as normal and log-normal) for uncertainties

does not alter the probability of D�Q > 100% significantly.

Second, the number of patients included in the prediction of CH was small. The results of

the UQ and SA facilitated the clarification of the quantitative relationship between collateral

circulation and CH. However, further validation is needed before the method can be used in

clinical practice to assess the risk of CH. We believe that this can be achieved in the future with

the availability of more patient data.

Finally, the proposed model ignores the peripheral collateral pathways [77] that cannot be

acquired using existing imaging technology. The presence of collateral pathways other than

CoW may contribute to preventing CH. In the future, we intend to focus on modeling the

peripheral network in detail by integrating the patient geometry with mathematical models,

similar to a previous study [78].

Concluding remarks

Understanding the collateral function in cerebral circulation is essential for elucidating disease

mechanisms and reviewing treatment options. In this study, the biology of collateral circulation in

the CoW was explored by performing UQ and SA, which are the measures that stochastically eval-

uate the prediction result variability, using 1D–0D simulation that considers the entire cardiovas-

cular system. The major challenge in performing these tasks in a clinical setting is its high

computational cost. To address this problem, we constructed a machine learning-based surrogate

model trained using the 1D–0D simulation data. The surrogate model accurately predicted the

flow rate and pressure in the CoW while simultaneously reducing the prediction time to a few

milliseconds. The results verified that the surrogate model enabled the execution of UQ with

100 000 predictions in a few minutes on a single CPU core and less than a minute on a GPU.

Leveraging the low computational cost of the surrogate model, we performed UQ in pre-

dicting the risk of CH, which is a life-threatening condition that can occur after carotid artery

stenosis surgery if collateral circulation fails to function appropriately. Particularly, we pre-

dicted the statistics of the flow rate increase in the MCA after the ICA stenosis surgery, consid-

ering uncertainties in the parameters derived from the patient’s clinical data. Furthermore, we

conducted an SA to clarify the impact of each uncertain parameter on the flow rate increase.

The results indicated that the flow rate increase was greater when (i) the stenosis was severe

and (ii) the diameters of the ACA I, ACoA, PCA I, and PCoA that form collateral pathways to

supply blood to the MCA were small. When these two conditions were satisfied simulta-

neously, the PR of the MCA on the stenosis side reduced significantly, and the flow rate

increase exceeded 100%, i.e., that the surgery caused CH.
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The proposed surrogate model can be applied more broadly to the prediction of the cere-

bral circulation and is not limited to the application demonstrated in this study. The approach

facilitates the execution of computationally expensive tasks, such as UQ, SA, and extensive

case studies. This can aid in analyzing the simulation results from a statistical perspective to

gain new insights, accelerate the introduction of simulation tools into time-sensitive clinical

practices, and facilitate translational medicine. Despite the existing technical limitations of

large uncertainties in measuring cerebral circulation, the proposed approach explains the

effects of uncertainties efficiently and helps in understanding various biological aspects of cere-

bral circulation, including its physics, physiology, pathology, and treatments.
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S1 Appendix. Details on the design of experiments.
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S2 Appendix. Details on the uncertainty propagation.
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S1 Fig. Fully connected deep neural network used in this study. (A) Network architecture.

(B) Schematic of a single node.

(TIF)

S2 Fig. Arterial geometry of Patients 1–3. Three-dimensional reconstructed arterial geome-

tries obtained via lumen segmentation on computed tomography images.

(TIF)

S3 Fig. R2 scores of deep neural networks trained using different combinations of hyper-

parameters. The number of training samples was maintained at 120 000, and the R2 scores

were evaluated considering 40 000 test samples. Nlayer denotes the number of hidden layers,

Nnode indicates the number of nodes in each hidden layer, Nbatch represents the batch size for

mini-batch training, and lr denotes the initial learning rate.

(TIF)

S4 Fig. Scatter plots of flow rates (mL/min) obtained from the one-dimensional–zero-

dimensional (1D–0D) simulation and surrogate model. Flow rates in the carotid and cere-

bral arteries are depicted for 40 000 samples of test data. The negative flow rate indicates that

the flow direction is opposite to that of the arrows in Fig 2. The R2 score and mean absolute

error (MAE) of each quantity are depicted in the corresponding panels.

(TIF)

S5 Fig. Scatter plots of pressures (mmHg) obtained from the one-dimensional–zero-

dimensional (1D–0D) simulation and surrogate model. Pressures in the carotid and cerebral

arteries are depicted for 40 000 samples of test data. The R2 score and mean absolute error

(MAE) of each quantity are depicted in the corresponding panels.

(TIF)
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11. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of a one-dimensional model

of the systemic arterial tree. Am J Physiol Heart Circ Physiol. 2009; 297(1):H208–H222. https://doi.org/

10.1152/ajpheart.00037.2009 PMID: 19429832

12. Willemet M, Lacroix V, Marchandise E. Validation of a 1D patient-specific model of the arterial hemody-

namics in bypassed lower-limbs: simulations against in vivo measurements. Med Eng Phys. 2013; 35

(11):1573–1583. https://doi.org/10.1016/j.medengphy.2013.04.012 PMID: 23701843

PLOS COMPUTATIONAL BIOLOGY Uncertainty quantification in cerebral circulation simulations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009996 July 22, 2022 30 / 34

https://doi.org/10.1056/NEJM199108153250701
https://doi.org/10.1016/S2214-109X%2820%2930117-0
http://www.ncbi.nlm.nih.gov/pubmed/32353319
https://doi.org/10.1114/1.1326031
http://www.ncbi.nlm.nih.gov/pubmed/11212947
https://doi.org/10.1137/S0036139999355199
https://doi.org/10.1023/B:ENGI.0000007979.32871.e2
https://doi.org/10.1023/B:ENGI.0000007979.32871.e2
https://doi.org/10.1080/10255840600857767
http://www.ncbi.nlm.nih.gov/pubmed/17132614
https://doi.org/10.1007/s10439-010-0132-1
http://www.ncbi.nlm.nih.gov/pubmed/20661645
https://doi.org/10.1002/cnm.2598
https://doi.org/10.1002/cnm.2598
http://www.ncbi.nlm.nih.gov/pubmed/24115509
https://doi.org/10.1016/j.jbiomech.2007.05.027
http://www.ncbi.nlm.nih.gov/pubmed/17640653
https://doi.org/10.1007/s10439-019-02211-6
http://www.ncbi.nlm.nih.gov/pubmed/30673955
https://doi.org/10.1152/ajpheart.00037.2009
https://doi.org/10.1152/ajpheart.00037.2009
http://www.ncbi.nlm.nih.gov/pubmed/19429832
https://doi.org/10.1016/j.medengphy.2013.04.012
http://www.ncbi.nlm.nih.gov/pubmed/23701843
https://doi.org/10.1371/journal.pcbi.1009996
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