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ISC. The ISC starts from 1Ẽ, whose geometry at local energy minima
can have C3v and Cs symmetries, and ends at 3Ã2 of C3v symmetry. The
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1Ẽ →3 Ã2), the scaled

version, k, is used to illustrate how the optimization behavior of ODMR
contrast changes with the variation in the k⊥/z(
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Abstract

Excited-State Dynamics in Solid-State Spin Defects and Spin Dynamics of

Carriers in Solids from First-Principles

by

Kejun Li

The spin degree of freedom can be controlled in systems of solid-state spin

defects or via the spin of carriers in solids. To achieve effective control, it requires

in-depth understanding of the excited-state dynamics in spin defects, and the mech-

anisms by which carrier spin relaxes and dephases in solids. This thesis presents the

development and application of advanced first-principles methods that accurately de-

scribe the electronic structures and interaction processes, providing a comprehensive

understanding of excited-state dynamics.

For the solid-state spin defects, the challenges include identifying the chem-

ical structure of spin defects and predicting their spin-dependent photoluminescence

(PL) contrast. Regarding the defect identification, we use the density functional theory

(DFT) and many-body perturbation theory to calculate a complete set of static and

dynamical properties of spin defects, including exciton-defect coupling and electron-

phonon coupling. We demonstrate that certain spin defects candidates that can explain

experimental observations. For predicting the spin-dependent PL contrast, we develop

and implement the first-principles optically-detected magnetic resonance (ODMR). We

show the prediction of spin-orbit coupling (SOC) and intersystem-crossing (ISC) with

xv



multi-reference electronic states. With this first-principles tool and accurate descrip-

tion of the excited-state dynamics, we achieve accurate prediction of the ODMR of spin

defects.

For the spin of carriers in solids, understanding the mechanisms of spin dynam-

ics and the intrinsic properties of solids requires accurate simulation of spin lifetimes

(τs) for spin relaxation and dephasing. We utilize our developed first-principles real-

time density-matrix (FPDM) approach to simulate spin dynamics in general solid-state

systems. This approach provides a complete first-principles description of light–matter

interactions and scattering processes, including electron–phonon, electron–impurity, and

electron–electron scatterings with self-consistent spin-orbit coupling. By employing this

method, we successfully reproduce experimental results for spin relaxation lifetime (T1)

and spin dephasing time (T ∗2 ). Our findings demonstrate that the Frohlich interaction,

which primarily governs carrier relaxation, has minimal impact on spin relaxation. We

also show that the dynamical Rashba effect results in anisotropy of spin lifetime and

provide insights into how symmetry affects spin relaxation and transport.
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Chapter 1

Introduction

Solid-state spin defects and the spin of carriers in solids are two different plat-

forms for the control of spin degree of freedom in solid-state systems. A defect can be

created by vacancies, substitutions, or interstitial atoms in a solid. When the net spin

is nonzero in a defect, it is referred to spin defect, characterized by localized spin. In

contrast, spin of carriers is an ensemble excitation in solid, which is delocalized and can

transfer across solids. To achieve effective control of the spins in the two platforms, it

requires a deep understanding of the excited-state dynamics within spin defects and the

mechanisms governing spin relaxation and dephasing in solids, respectively.

For solid-state spin defect, one of the primary challenges in studying solid-

state spin defects is identifying their chemical structures. The complexity of identifying

the chemical structures can be due to the following factors. First, a large number of

spin defects have been observed from experiments in both two dimensional (2D) and

three dimensional (3D) semiconductors, including but not limited to hexagonal boron

1



nitride [21, 22], TMD [23], silicon carbide [24], diamond [25, 26]. Second, there are

a great number of spin defect candidates possibly responsible for the single-photon

emission [27, 28]. Besides defect identification, optical approaches, which characterize

spin-dependent photoluminescence (PL) contrast, are crucial for controlling spin in spin

defects. There is a lack of a general theoretical tool for predicting their spin-dependent

PL contrast. To overcome the challenges, we not only need to understand the static

properties of spin defects, such as their excitation energies, zero field splitting, hyperfine

interactions, but also their dynamical properties, including their excited state lifetimes

and transition rates.

For spin of carriers, many types of solids, including 2D materials and their het-

erostructures [29, 30], topological and magnetic materials [31, 32] and perovskites [33,

34], have been considering as the platform for controlling spin in order to realize spin-

tronics, which is a new generation of electronics that possesses low-energy dissipation.

However, there is a lack of a predictive tool for new materials design. In addition,

understanding the mechanisms of spin dynamics and the intrinsic spin properties of

materials requires precise simulations of spin lifetimes.

This thesis reports the first-principles studies of the solid-state spin defects

and spin of carriers, motivated by the above challenges. The focus of the thesis is on

the development and application of advanced first-principles computational methods

that provide accurate descriptions of electronic structures and interaction processes. In

the following sections, the thesis offers a comprehensive understanding of excited-state

dynamics in solid-state spin defects and an in-depth exploration of the mechanisms
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governing spin relaxation and dephasing for carrier spins in solids.

The structure of this thesis as follows. Chapter 2 introduces the density func-

tional theory for electronic structure, many-body-perturbation theory, and the methods

for transition rates and ODMR. Chapter 3 introduces the fundamental of group theory

and its application to spin defects, specifically for defects of C3v symmetry. Chapter 4

presents the work on the identification of spin defects based on the comparison between

theory and experimental observations in terms of many aspects of the optical properties.

Chapter 5 presents the study of excited-state dynamics of solid-state spin defects, par-

ticularly the prototypical NV center in diamond. Chapter 6 presents the study of spin

relaxation and dephasing in perovskites using the FPDM approach, which is general for

spin of carriers in solids. Chapter 7 presents the study of the anistropy of spin lifetime

due to symmetry breaking of perovskites.
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Chapter 2

Theoretical Methods

2.1 Density Functional Theory for Electronic Structure

2.1.1 The Many-Body Problem

The solid-state systems involve a large number of interacting particles, includ-

ing nuclei and electrons that make up atoms. The physical properties of the solids are

determined by the complex many-body interactions, which can be well described and

solved by the time-independent many-body Schrödinger equation,

ĤΨ = EΨ (2.1)

Ĥ = T̂N + V̂N−N + T̂e + V̂e−e + V̂ext (2.2)

where Ĥ is the Hamiltonian operator, Ψ is the many-body wavefunction that depends

on electronic position r and nuclear position R, and E is the energy of the state. The

Hamiltonian contains many terms for different interactions, including T̂N the kinetic

energy of nuclei, V̂N−N the nucleus-nucleus Coulomb repulsion, T̂e the kinetic energy of
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electrons, V̂e−e the repulsive electron-electron Coulomb interaction, and V̂ext the exter-

nal potential which includes V̂e−N as the attractive interaction between the negatively

charged electron and positively charged nucleus. Writing the interactions explicitly in

the SI unit, we can have

T̂N = −
∑
I

~2

2MI
∇2
I (2.3)

V̂N−N =
1

2

∑
I,J

ZIZJe
2

4πε0|RI −RJ |
(2.4)

T̂e = − ~2

2me

∑
i

∇2
i (2.5)

V̂e−e =
1

2

∑
i 6=j

e2

4πε0|ri − rj |
(2.6)

V̂e−N = −
∑
i,I

ZIe
2

4πε0|ri|
(2.7)

where ~ is the Planck’s constant, M is the mass of nucleus, ∇2 is the Laplacian operator,

Z is the charge of nucleus, R is the nuclear coordinate, ε0 is the permittivity of the free

space, e is the electron unit change and r is the electron position. The i and j indices

sum over the interactions involving electrons, and the I index sums over the interaction

involving nuclei.

The Schrödinger equation in Eq. (2.1) is fundamental and adequate for under-

standing materials. However, the exact solution of the many-body Schrödinger equation

is almost an impossible task due to the tremendous degree of freedom of a solid-state sys-

tem. Some practical approximations are desired to enable the solutions of the quantum

mechanics while retaining the main features of the complex solid-state systems [35].

The first approximation widely adopted is the Born-Oppenheimer approxima-
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tion that allows the separation of nuclear degree of freedom from the electronic degree

of freedom, considering that the mass of a nucleus is a lot heavier than the mass of elec-

tron and that nuclei are nearly frozen while electrons are moving in solids. With this

approximation, With this approximation, we can drop off the T̂N term in Eq. (2.2), and

the remaining problem is find the solution of the many-electron Schrödinger equation,

(
T̂e + V̂e−e + V̂ext + V̂N−N

)
Ψ(r1, r2, ...rN) = EΨ(r1, r2, ...rN) (2.8)

The ground state energy of the electronic Hamiltonian, therefore, depends on the nuclear

coordinates and forms a potential energy surface (PES) as a function of the nuclear

coordinate.

Second, the large degree of freedom of electrons still is still a big challenge for

a practical solution of the many-electron system. As will be discussed in Sec. 2.1.2, this

big challenge is resolved by the density functional theory (DFT).

2.1.2 Density Functional Theory

Instead of solving Eq. (2.8), the density functional theory [36], which is proved

by Hohenberg and Kohn, together with the Kohn-Sham (KS) ansatz [37], offers a practi-

cal solution for the ground state of an electronic system by minimizing electronic energy.

The well-known Hohenberg-Kohn theorem shows that

• The electron density n0(r), which is the probability of finding an electron at

position r, can uniquely determine all the information in the ground state many-

electron wavefunctions. This uniqueness ensures the one-to-one correspondence

between the Vext (or Hamiltonian) and electron density.
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• The total energy of a system is a functional of the electron density for any given

external potential Vext. The ground state electron density can be obtained by

minimizing the total energy globally. This provides a variational principle for

looking for the ground state electron density.

On the other hand, the Kohn-Sham ansatz maps the many-body problem in

the interacting picture onto an independent-particle problem in the non-interacting

picture. This mapping essentially requires an auxiliary Hamiltonian (ĤKS) consist of

the kinetic operator (−1
2∇

2) and an effective potential (Veff(r)) for the independent

electron. Without specifically writing spin, the Hamiltonian is expressed as

ĤKS = −1

2
∇2 + Veff(r) (2.9)

Veff(r) = Vext(r) + VHartree[n] + Vxc[n] (2.10)

where the effective potential contains the external potential Vext(r), the potential for

the Hartree interaction VHartree[n], and the potential of the exchange-correlation energy

Vxc[n]. The potentials are functionals of the independent electron density. The many-

body Schrödinger equation is replaced by so-called Kohn-Sham equation,

[
− 1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r) (2.11)

The solution of this equation is the electron density of independent particle n(r) and

total energy EKS[n],

n(r) =
∑
i

fi|ψi(r)|2 (2.12)

EKS[n] = Ts[n] + Eext[n] + EHartree[n] + Exc[n] + EN−N (2.13)
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where fi is the electron occupation number of i-th KS state and ψi is the wavefunction

of the i-th KS state. Ts[n], Eext[n], EHartree[n], Exc[n] and EN−N are the kinetic energy,

energy due to the external potential, Hartree energy, exchange-correlation energy and

nuclear-nuclear interaction energy, respectively. All the energy are functionals of the

electron density except EN−N , which is in general treated classically. Explicitly, their

functionals are written as

Ts[n] = −1

2

∑
i

fi

∫
dr|∇ψi(r)|2 (2.14)

Eext[n] =

∫
drVext(r)n(r) (2.15)

EHartree[n] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
(2.16)

EN−N =
1

2

∑
I,J

ZIZJ
|RI −RJ |

(2.17)

It can be found that only the exchange-correlation energy, which describes the many-

body exchange-correlation interaction, does not have an exact expression in the non-

interacting picture. Therefore, it is indispensable to get an approximate form of exchange-

correlation functional. When the approximate form is adequate to reproduce the true

exchange-correlation in the interacting picture, the electron density of the independent

particle can exactly describe the ground state of the many-body problem. More details

can be found in Sec. 2.1.3.
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Initial guess n(r)

Calculate effective potential Veff(r) = Vext(r) + VHartree[n] + Vxc[n]

Solve Kohn-Sham equation
[
− 1

2∇
2 + Veff(r)

]
ψi(r) = εiψi(r)

Obtain new electron density n(r) =
∑

i fi|ψi(r)|2

Self-consistent?

Self-consistent electron density n0(r) and ground-state energy E[n0]

No

Yes

Figure 2.1: Self-consistent cycle for first-principle calculations.

With the Hohenberge-Kohn theorem and the Kohn-Sham ansatz, the electron

density can be solved with the Kohn-Sham equation over sufficient number of self-

consistent cycles until the self-consistent condition of energy threshold is satisfied, as

shown in Fig. 2.1. All information of the ground state can be obtained subsequently

with the ground-state electron density.
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2.1.3 Exchange and Correlation Functionals

Currently, we can only approximate the form of the exchange-correlation func-

tional in the Kohn-Sham equation to capture the true many-body exchange-correlation

interaction. It becomes important to find the form that provides best description. The

most frequently adopted functionals include the local density approximation (LDA) [38]

and the generalized gradient approximation (GGA) [39].

The common feature between LDA and GGA is the ability to separate the

exchange and correlation terms.

Exc = Ex + Ec (2.18)

The LDA is a local exchange-correlation approximation with a homogeneous

electron gas of density n [40]. It is expressed as

Exc =

∫
drεLDA

xc (n(r))n(r) (2.19)

where εLDA
xc (n(r)) is the exchange-correlation energy density that represents the energy

per electron at r. The LDA is generated with an analytical exchange energy and a

highly accurate correlation energy calculated from Monte Carlo [38, 41]. It has been

successful in describing the lattice constants of solids, but it highly overestimates the

atomization energies [42].

The semi-local GGA functional is developed, which further includes the gra-

dient of electron density to account for the variation or inhomogeneity of electron den-
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sity [42].

Exc =

∫
drεGGA

xc (n(r),∇n(r))n(r) (2.20)

The well-known and widely used functional PBE [39] have been successfully providing

reasonable atomization energy and accurate description of geometries of solids. How-

ever, there is a known issue that PBE underestimates bandgap because of the derivative

discontinuity of the exchange-correlation energy and inaccurate correction to the self-

interaction energy[43, 44]. Consequently, the excitation energies of spin defects, which

are a focus of this thesis, can be inaccurate.

Hybrid functional, which incorporates the Hartree-Fock (exact exchange) and

and an exchange-correlation functional, can greatly improve the accuracy by eliminating

the self-interaction error in the exchange interaction [45]. One of the commonly used

hybrid functionals is PBE0(α), which is expressed as

EPBE0(α)
xc = αEHF

x + (1− α)EPBE
x + EPBE

c (2.21)

where α is the fraction of the exact exchange EHF
x that mixes with the exchange EPBE

x

of the PBE exchange part, and EPBE
c is the correlation part. Another hybrid functional

HSE(α) separates the short-range (SR) and long-range (LR) exchange in the PBE and

only mixes the short-range exchange with the Hartree-Fock [46, 47],

EωPBEh(α)
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (2.22)

where SR and LR stand for short-range and long-range interactions, respectively. ω is

a parameter used for adjusting the extent of the short-range interaction.
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The hybrid functionals show significant improvement in the description of the

excitation energies with the trade-off of higher computational cost and poor convergence

with the k-point sampling in the Brillouin zone. Nevertheless, they have been shown to

provide better prediction for many spin defects in solids with respect to their excitation

energies, compared to PBE [48, 49, 50, 51, 52]. A appropriate fraction α needs to be

determined for the hybrid functionals for spin defects. Koopman’s theorem provides

a way for this determination. With the assumption that α depends on the long-range

dielectric screening of the host materials rather than the specific defects, Koopman’s

theorem states that the electron affinity (EA) of the system with one less charge should

equal the ionization energy (IP) of the system of one more charge, expressed as EAq+1 =

IPq [2].

2.2 Many-Body Perturbation Theory

The exchange-correlation interaction in the non-interacting picture is accounted

by the Vxc in Eq. (2.9). However, the approximation of the exchange-correlation func-

tionals may not be sufficiently accurate to account for the error due to the self-interaction.

Moreover, DFT that describe well for the ground state of an electronic system, but may

be inadequate to describe the excited state properties from measurements such as elec-

tron loss spectrum and optical absorption.

To address the above issues, the many-body perturbation theory beyond the

Hartree-Fock approximation in DFT is usually applied. The basic idea of many-body

perturbation theory is to map the strong bare Coulomb interaction between electrons
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into a weaker effective interaction between a dressed electron and its surrounding en-

vironment. This dressed electron is known as a quasiparticle, which results from the

strong electron-electron repulsion. Due to the repulsion, a positive charge cloud sur-

rounding the electron is created such that electrons are screened or dressed. Using the

quasiparticle concept, there is immediate similarity between the quasiparticle equation

below compared to Eq. (2.9),

[T + Vh + Vext]Ψi(r) +

∫
dr′Σ(r, r′;Ei)Ψi(r

′) = EiΨi(r) (2.23)

where Σ is the self-energy operator replacing with the exchange-correlation energy

Vxc(r)δ(r − r′) in DFT, and Ei is the quasiparticle energy at state i. The Hamilto-

nian describing the quasiparticle is non-Hermitian, leading to the quasiparticle having

a finite lifetime.

The challenge turns to solve the self-energy of the excitation of quasiparticle,

and a general solution is the Green’s function [53, 54]. The one-particle Green’s func-

tion is sufficient for calculating the self-energy. However, when coming to the optical

measurement where electron and hole quasiparticles are excited and form excitons, the

one-particle Green’s funciton is not suffient to account for the interaction between the

electron and hole. At his point, it needs two-particle Green’s function, which is also

called Bethe-Salpeter equation (BSE) [55] to further account for the excitonic effect due

to the interaction between electron and hole. The derivation in this section follows the

derivation in Ref. [53, 54, 55, 56, 57].
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2.2.1 Hedin’s Equations

The solution of one-particle Green’s function for the many-body problem starts

from the many-body Hamiltonian in Eq. (2.2), which is simplified with only the elec-

tronic terms as below

H0 =

∫
drψ†(r)h(r)ψ(r) +

1

2

∫
drdr′ψ†(r)ψ†(r′)v(r, r′)ψ(r′)ψ(r) (2.24)

with the perturbation Hamiltonian given by

H ′(t) =

∫
drψ†(r)vp(r, t)ψ(r) (2.25)

where ψ†(r) and ψ(r) are the creation and annihilation field operators, respectively.

h(r) is the one-particle Hamiltonian, v(r, r′) is the bare Coulomb potential between two

particles, and vp(r, t) is the time-dependent perturbative potential.

As can be seen in Sec. 2.3.1, in the interaction picture, the time-dependent per-

turbation can cause the time-dependent states by the time-evolution operator Eq. (2.72),

and affects the field operators,

ψ(r, t) = UI(t0, t)ψ(r)UI(t, t0) (2.26)

Also, the time-evolution operator allows to define the S matrix, which will be used later

in writing the Green’s function,

S = S(t, t′) = T exp
[
− i
∫ t

t′
dt1H

′(t1)
]

(2.27)

where T is the Wick time-ordering operator which places the operators with larger time

on the left. The Schrödinger equation of the time-dependent field operator is

i
∂ψ(r, t)

∂t
= UI(t0, t)

[
ψ(r), Ho +H ′

]
UI(t, t0) (2.28)
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Then, the following equation of motion can be derived with considering the anticom-

mutation relationship between the field operators {ψ(r), ψ†(r′)} = δ(r, r′),[
i
∂

∂t
− h(r)− vp(r, t)

]
T
[
ψ(r, t)ψ†(r′, t′)

]
−
∫
dr′′v(r, r′)T

[
ψ†(′′r, t)ψ(r′′, t)ψ(r, t)ψ†(r′, t′)

]
= iδ(r, r′)δ(t, t′)

(2.29)

This operator has the following effect on the field operators,

T
[
ψ(r, t)ψ†(r′, t′)

]
= θ(t− t′)ψ(r, t)ψ†(r′, t′)− θ(t′ − t)ψ†(r′, t′)ψ(r, t) (2.30)

where θ(t) is the Heaviside step function, whose time derivative results in delta function

dθ(t)/dt = δ(t).

By defining the one-particle and two-particle Green’s functions with the time

operator and S matrix in Eq. (2.27),

G(1, 2) = −i 〈N |T [Sψ(1)ψ†(2)]|N〉
〈N |T [S]|N〉

(2.31)

G(1, 2; 1′, 2′) = (−i)2 〈N |T [Sψ(1)ψ(2)ψ†(2)ψ†(1)]|N〉
〈N |T [S]|N〉

(2.32)

where |N〉 represents the ground state of N electrons, the indices 1 and 2 stand for

space-time coordinates 1 = (r1, t1) and 2 = (r2, t2). Then, the equation of motion can
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be simplified to the equations below [56],[
i
∂

∂t1
− h(1)

]
G(1, 2)−

∫
d(3)vp(1, 3)G(3, 2) + i

∫
d(3)v(1, 3)G(1, 3+; 2, 3++)

= δ(1, 2)

(2.33)

[
− i ∂

∂t2
− h(2)

]
G(1, 2)−

∫
d(3)G(1, 3)vp(3, 2) + i

∫
d(3)v(2, 3)G(1, 3−−; 2, 3−)

= δ(1, 2)

(2.34)

The expressions show that the one-particle Green’s function depends on the two-particle

Green’s function, and the two-poarticle Green’s function has dependency on higher-order

Green’s function and so on. This dependency is simplified and resolved by introducing

the expression of two-particle Green’s function by the one-particle Green’s function plus

the external potential derivative of the one-particle Green’s function,

G(1, 3; 2, 3′) = G(1, 2)G(3, 3+)− δG(1, 2)

δvp(3)
(2.35)

This expression enables to write the equation of motion for the one-particle Green’s

function,

[
i
∂

∂t1
− h(1)− V (1)− i

∫
d(3)v(1+, 3)

δ

δvp(3)

]
G(1, 2) = δ(1, 2) (2.36)

where V (1) is the total potential,

V (1) = vp(1) +

∫
d(2)v(1, 2)G(2, 2+) (2.37)

Using the total potential with the following inverse of the Green’s function, the inverse

dielectric matrix ε−1, the irreducible polarizability χ0, electron density n and the chain

16



rule,

∫
d(3)G(1, 3)G−1(3, 2) = δ(1, 2) (2.38)

ε−1(1, 2) =
δV (1)

vp(2)
(2.39)

χ0(1, 2) =
δn(1)

δV (2)
= −iδG(1, 1+)

δV (2)
(2.40)

we can define a few quantities, including the vertex function Γ, the polarizability χ, the

screened Coulomb potential W , and the self-energy Σ as below,

Γ(1, 2; 3) = −δG
−1(1, 2)

δV (3)
(2.41)

χ(1, 2) =
δn(1)

δvp(2)
= −iδG(1, 1+)

δvp(2)
= −i

∫
d(3)

δG(1, 1+)

δV (3)

δV (3)

δvp(2)

= χ0(1, 2) +

∫
d(3)χ0(1, 3)ε−1(3, 2)

= χ0(1, 2) +

∫
d(34)χ0(1, 3)v(3, 4)χ(4, 2)

(2.42)

W (1, 2) =

∫
d(3)ε−1(1, 3)v(3, 2) =

∫
d(3)v(1, 3)ε−1(2, 3) (2.43)

Σ(1, 2) = i

∫
d(34)G(1, 3)Γ(3, 2; 4)W (4, 1+) (2.44)

These quantities allow the equation of motion to be rewritten as

[
i
∂

∂t1
− h(1)− V (1)

]
G(1, 2)− i

∫
d(3)Σ(1, 3)G(3, 2) = δ(1, 2) (2.45)
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Finally, the well-known Hedin’s equations can be derived as below,

Σ(1, 2) = i

∫
d(34)G(1, 3)Γ(3, 2; 4)W (4, 1+) (2.46)

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (2.47)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3) (2.48)

χ0(1, 2) = −i
∫
d(34)G(1, 3)G(4, 1+)Γ(3, 4; 2) (2.49)

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)χ0(3, 4)W (4, 2) (2.50)

The loop of Hedin’s equations can be solved self-consistently but is difficult. Some

approximations need to make to reduce the complexity of the solution, including the

random phase approximation (RPA) and GW approximation.

2.2.2 Random Phase Approximation and GW Approximation

By neglecting the vertex corrections and retaining the first term in Eq. (2.48),

we make the random phase approximation,

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) (2.51)

and the polarizability becomes

χ0(1, 2) = −iG(1, 2+)G(2, 1+) (2.52)

χ(1, 2) = χ0(1, 2) +

∫
d(3)χ0(1, 3)[1− vχ0]−1(3, 2) (2.53)

It is clear that χ0 is the response of density to total potential is from the one-particle

Green’s function of the non-interacting electron-hole pair. χ is the RPA response func-
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tion of electron density to the perturbation potential, which is useful for optical re-

sponse and electron screening. By plugging Eq. (2.52) into Eq. (2.46), we can find the

self-energy is reduced to

Σ(1, 2) = iG(1, 2)W (1+, 2) (2.54)

which contains only G and W . Thus, the approximation is called GW approximation.

The Green’s function is implemented with the Lehmann representation,

G(r, r′;ω) =
ψi(r)ψ∗i (r

′)

ω − Ei + iη
(2.55)

where ψi(r) and ψ∗i (r
′) are the i-th KS wavefunctions at DFT, Ei is the corresponding

eigenvalue of the KS state, η is a real infinitesimal that takes a negative value for

occupied states and a positive value for unoccupied states. Subsequently, the self-energy

can be evaluated.

2.2.3 Bethe-Salpeter Equation

The optical absorption is an excitation process of electron-hole pair, which

contains the interaction between electron and hole. This is so-called excitonic effect and

can be described by the two-particle Green’s function, also known as Bethe-Salpeter

Equation, which is defined as

L(1, 2; 1′, 2′) = −G(1, 2; 1′, 2′) +G(1, 1′)G(2, 2′) (2.56)

It includes the correlated propagation of an electron and a hole in the first term, while

the second term eliminates the uncorrelated propagation of the two particles, which
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can be electron and electron, hole and hole, electron and hole, or hole and electron,

depending on the time ordering of the field operators. By Eq. (2.35), the equation can

be rewritten as

L(1, 2; 1′, 2′) =
δG(1, 1′)

δvp(2′, 2)
= −

∫
d(33′)G(1, 3)

δG−1(3, 3′)

δvp(2′, 2)
G(3′, 1′)

= G(1, 2′)G(2, 1′) +

∫
d(33′)G(1, 3)

δΣ(3, 3′)

δvp(2′, 2)
G(3′, 1′)

(2.57)

where the self-energy contains the Hartree potential and exchange-correlation self-

energy, i.e. Σ = vHartree + Σxc. With defining the two-particle propagator L0 and

the two-particle interaction kernel Ξ as below,

L0(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) (2.58)

Ξ(3, 2, 3′, 2′) = −iδ(3, 3′)δ(2, 2′+)v(3+, 2) +
δΣ(3, 3′)

δG(2′, 2)
(2.59)

we can obtain the BSE

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) +

∫
d(33′44′)L0(1, 3′; 1′, 3)Ξ(3, 4, 3′, 4′)L(4′, 2; 4, 2′)

(2.60)

which is a Dyson equation of the two-particle propagator. In the solution of the BSE

on top of GW, the kernel can be simplified with the GW approximation in Sec. 2.2.2.

2.3 Transition Rate Formula

The optical measurement of spin defects is involves many transition processes,

including excitation, radiative recombination, intersysten crossing and internal conver-

sion. During the excitation, spin defects absorb photons and promote from the ground
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state to excited states. Subsequently, radiative recombination occurs with emitting pho-

tons in the process. Besides, spin defects in the excited state can undergo nonradiative

recombination processes to electronic states of lower energy via heat dissipation to lat-

tice vibration. One is intersystem crossing (ISC), a nonradiative recombination process

between states of different spin multiplicity. The other is internal conversion (IC), a

spin-conserving nonradiative recombination process. These processes are critical in the

excited-state dynamics of spin defects and collectively influence their optical properties

and measurements.

We use Fermi’s golden rule, a fundamental theory derived from time-dependent

perturbation theory, to calculate excited-state transition rates by determining the prob-

ability of quantum state transitions induced by perturbations.

2.3.1 Time-Dependent Perturbation Theory

In the time-dependent perturbation theory [58], a time-dependent perturbation

V (t) is included to the unperturbed Hamiltonian H0, which does not contain time

explicitly or not time-dependent, such that the system is influenced by the external

perturbation. As a result of the time-dependent perturbation, there is probability as a

function of time for the system to be found in |n〉 with the initial state |i〉 (n 6= i).

H = H0 + V (t) (2.61)

If V (t) = 0, one can derive the eigenstate |n〉 and eigenenergy En of H0

H0(t) |n(t)〉 = Ene
−iEnt/~ |n〉 (2.62)
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If V (t) 6= 0, H will evolve with time, and the time-evolution operator will be no longer

as simple as e−iHt/~.

Let |α, t0; t0〉 be a linear combination of all the pure state kets at t0, and

|α, t0; t〉 be the time-evolved state ket in Schrödinger picture at t of a physical system

whose state ket at t0 was found to be |α〉

|α〉 = |α, t0; t0〉 =
∑
n

cn(t0) |n〉 (2.63)

|α, t0; t〉S = e−iHt/~ |α, t0; t0〉 = e−i(H0+V (t))t/~ |α, t0; t0〉 =
∑
n

cn(t)e−iEnt/~ |n〉 (2.64)

It can be seen that cn(t) evolves with time due to the time-dependent perturbation V (t),

and the probability of finding |n〉 at t is

Pn(t) = | 〈n|α, t0; t〉 |2 = |cn(t)|2 (2.65)

Starting from here, the goal is derive cn(t), which is more convenient in the interaction

picture (Dirac picture), where states evolve slowly with the perturbation V (t) and op-

erators evolves as in Heisenberge picture dAI
dt = 1

i~ [AI , H0]. In this picture, both state

and perturbation operator are time dependent, which are written as,

|α, t0; t〉I = eiH0t/~ |α, t0; t〉S =
∑
n

cn(t) |n〉 (2.66)

VI(t) = eiH0t/~V (t)e−iH0t/~ (2.67)

and the time-evolution of a state in the interaction picture is described by the Schrödinger-

like equation,

i
∂

∂t
|α, t0; t〉I = VI(t) |α, t0; t〉I (2.68)
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Therefore, in the interaction picture, we can obtain cn(t) for the transition probability,

i~
∂

∂t
cn(t) =

∑
m

ei(En−Em)t/~ 〈n|V (t)|m〉 cm(t)

=
∑
m

ei(En−Em)t/~Vnm(t)cm(t) .

(2.69)

When a system has many states (more than two), Eq. (2.69) becomes a large set of linear

equations, and an exact solution of cn(t) is hardly available. In order to get solutions of

cn(t), Eq. (2.69) is approximated with the initial condition c
(0)
n = δni, with expansion of

c
(t)
n , and with the application of the time-evolution operator UI(t, t0) which is defined

as,

cn(t) = c(0)
n + c(1)

n + c(2)
n + . . . (2.70)

|α, t0; t〉I = UI(t, t0) |α, t0; t0〉I (2.71)

By plugging Eq. (2.71) into Eq. (2.68), we can find the following integral equation,

which can be written into Dyson series, allowing UI(t, t0) to be computed to any finite

order of perturbation theory, regardless of convergence issues,

UI(t, t0) = 1− i

~

∫ t

t0

VI(t
′)UI(t

′, t0)dt′

= 1− i

~

∫ t

t0

VI(t
′)

[
1− i

~

∫ t′

t0

VI(t
′′)UI(t

′′, t0)dt′′

]
dt′

= 1− i

~

∫ t

t0

dt′VI(t
′) +

(
−i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′VI(t
′)VI(t

′′) + . . .

(2.72)

cn(t) can be found connected with UI(t, t0) by Eq. (2.66) and Eq. (2.71),

〈n|α, t0; t〉I = 〈n|UI(t, t0)|i〉 = cn(t) (2.73)

The above gives rise to the probabilty amplitude which can be expanded as below,

cn = 〈n|UI(t, t0)|i〉 = ei(En−Ei)t/~ 〈n|U(t, t0)|i〉 (2.74)
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c(0)
n = 〈n|U (0)

I (t, t0)|i〉 = δni (2.75)

c(1)
n = 〈n|U (1)

I (t, t0)|i〉

= − i
~

∫ t

t0

dt′ei(En−Ei)t
′/~ 〈n|U(t′, t0)|i〉

(2.76)

c(2)
n = 〈n|U (2)

I (t, t0)|i〉

=

(
−i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′
∑
m

ei(En−Em)t′/~ 〈n|U(t′, t′′)|m〉 ei(Em−Ei)t′′/~ 〈m|U(t′′, t0)|i〉

(2.77)

Finally, the Fermi’s golden rule that describes the rate of transition can be

derived from the time-derivative of the transition probability. The first- and second-

order transitions are expressed as below,

ki→[n] =
2π

~

∣∣∣∣∣Vni +
∑
m

VnmVmi
Ei − Em

∣∣∣∣∣
2

ρ(En)|En'Ei

=
2π

~

∣∣∣∣∣Vni +
∑
m

VnmVmi
Ei − Em + iε

∣∣∣∣∣
2

ρ(En)|En'Ei (2.78)

which is also written as

ki→[n] =
2π

~

∣∣∣∣∣Vni +
∑
m

VnmVmi
Ei − Em + iε

∣∣∣∣∣
2

δ(En − Ei) (2.79)

with the density of states being integrated
∫
dEnρ(En) to a delta function δ(En − Ei).

2.3.2 Radiative Recombination

The radiative recombination is a result of electron-photon interaction. The

rate of electronic transition with the emission of a photon can be described by the
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following formula [59, 60],

kR(Q,q, εq,λ) =
2π

~

∣∣∣ 〈G, 1q,λ|Hint|S(Q, 0)〉
∣∣∣2δ(~Ω(Q)− ~cq) (2.80)

where Hint is the electron-photon interaction Hamiltonian, |S(Q, 0)〉 represents the state

of exciton in the absence of photon, |G, 1q,λ〉 represents the ground state in the presence

of a photon, and δ(~Ω(Q) − ~cq) ensures the energy conservation during the radiative

recombination process. Within each part of the equation, Q is the exciton wavevector,

q is the photon wavevector, λ is for the two perpendicular traverse polarization modes

of photon, ~ is the Planck’s constant, and c is the speed of light.

Because of the zero dimension (0D) of point defects, the exciton wavevector is

zero. This results in no temperature dependence and the reduced radiative recombina-

tion rate equation as below in the SI unit [59],

kR =
1

τR
=
nE3

0µ
2
e−h

3πε0c3~4
(2.81)

where n is the refractive index of host solid (1 for 2D material and 2.4 for diamond),

ε0 is the vacuum permittivity, E0 is excitation energy and µ2
e−h is the modulus square

of exciton dipole moment. The excitation energy and oscillator strength of defects can

be obtained from the many-body perturbation theory(G0W0 − BSE) [59]. We have

employed similar method to calculate the radiative rates of defects in two dimensional

(2D) and three dimensional (3D) materials [59, 61, 62, 49], which have shown good

agreement with experiments.
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2.3.3 Nonradiative Recombination: Intersystem Crossing

Using the Fermi’s golden rule for the first-order transition, the ISC rate be-

tween electronic states with different spin multiplicities can be calculated as

kISC =
2π

~
g
∑
n,m

pin| 〈fm|Hsoc|in〉 |2δ(Efm − Ein). (2.82)

where |in〉 and |fm〉 are the n-th vibrational level of the initial state |i〉 and the m-th

vibrational level of the final state |f〉, respectively. |in〉 and |fm〉 implicitly contain the

electron coordinate r and nuclear coordinate R.

Under Born-Oppenheimer approximation, the vibronic state is separable and

can be written as the direct product of the electronic part and the vibrational part,

|fm〉 = |f〉 ⊗ |m〉

|in〉 = |i〉 ⊗ |n〉 (2.83)

Under static coupling approximation, we can write the matrix element by Tayler ex-

pansion in terms of the k-th phonon mode denoted by qk =
√
ωk/~Qk to the first

order [63, 64],

〈fm|Hsoc|in〉 = (〈m| ⊗ 〈f |)Hsoc (|i〉 ⊗ |n〉)

= 〈f |Hsoc|i〉 〈m|n〉︸ ︷︷ ︸
direct spin-orbit coupling

+
∑
k

[(
∂

∂qk
〈f |Hsoc|i〉

) ∣∣∣∣
qk=0

〈m|qk|n〉

]
︸ ︷︷ ︸

vibronic spin-orbit coupling

+o(qk)

(2.84)

The zero-order term named direct spin-orbit coupling is forbidden when it does not

contain the totally symmetric component. However, electron-phonon coupling by pseudo
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Jahn-Teller effect [65] can lead to mixed state and non-vanishing SOC, as can be seen

in Sec. 3.8. In principle, by considering the non-vanishing SOC perturbatively to the

first-order q derivative which is so-called vibronic spin-orbic coupling [64], we can obtain

the SOC matrix element with full phonon interaction completely from first-principles.

Alternatively, the scattering matrix 〈fm|Hsoc|in〉 including electron-phonon

interaction can be treated as the product of an effective SOC matrix element and an

effective phonon overlap, which is discussed in Sec. 3.8. Therefore, the ISC rate equation

is expressed as

kISC =
2π

~
gλ2X̃if (2.85)

λ = 〈ψf |Hsoc|ψi〉 (2.86)

X̃if =
∑
n,m

pin(T )| 〈φm|φn〉 |2δ(m~ωf − n~ωi + ∆Eif ) (2.87)

where g is the degree of degeneracy on equivalent structural configuration, λ is the

effective SOC matrix element, and X̃if is the temperature-dependent phonon term rep-

resenting the phonon contribution. |ψ〉 is the linear combination of possible electronic

states after considering pseudo JT effect, and |φ〉 denotes the phonon wavefunction

under the harmonic oscillator approximation.

In this expression, we make the 1D effective phonon approximation [66, 67, 48]

for the ISC rate. Compared to the full-phonon method used in Ref. [52, 68], an advantage

of this 1D effective phonon method is that it enables the use of different values for the

phonon energy of initial state (~ωi) and the one of final state (~ωf ), and enables finite

temperature occupation for both states.
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2.3.4 Nonradiative Recombination: Internal Conversion

The internal conversion is a spin-conserving nonradiative transition, which is

generally expressed as

kIC =
2π

~
g
∑
n,m

pin| 〈fm|Heph|in〉 |2δ(Efm − Ein). (2.88)

Under the static coupling approximation and one-dimensional effective phonon approx-

imation, the equation of nonradiative transition rate is written as [66, 67]

kIC =
2π

~
g|Wif |2Xif (T ) (2.89)

Wif = 〈ψi(r,R)|∂H
∂Q
|ψf (r,R)〉

∣∣∣
R=Ra

≈ (εf − εi)
〈
ψi(r,R)

∣∣∣∣∂ψf (r,R)

∂Q

〉 ∣∣∣∣
R=Ra

(2.90)

Xif =
∑
n,m

pin(T )
∣∣∣ 〈φfm(R)|Q−Qa|φin(R)〉

∣∣∣2δ(m~ωf − n~ωi + ∆Eif ). (2.91)

Here the rate equation is expressed as a product of the electronic term Wif and the

the one-dimensional (1D) phonon term Xif at static coupling approximation [67]. ψ

and φ are the electronic wavefunction and phonon wavefunction, respectively. ε is the

single-particle electron eigenvalue. The effective phonon energy ~ω can be obtained

from fitting the potential energy surface of the electronic states along the configuration

coordinate. i and f stands for the initial and final electronic states, respectively. m and

n are the vibrational quantum numbers in the f state and i state, respectively.

28



2.4 Master Equation for Optically Detected Magnetic Res-

onance

Here, we show the full derivation of the ODMR model based on the master

equation [4, 69], which integrates all transition rates and allows the simulation of the

dynamics of states populations. First is the conventional definition of ODMR contrast,

C(B) = 1− Ī(t,B, kMW)

Ī(t,B, kMW = 0)
(2.92)

where Ī(t,B, kMW) is magnetic-field dependent photoluminescence (PL) intensity at

steady state in the presence of microwave field (MW) that drives the rotation of popu-

lation between any two spin sublevels, and Ī(t,B, kMW = 0) is PL intensity at steady

state in the absence of the microwave field. As the microwave field directs the optical

cycle to the nonradiatively preferred channel which intersystem crossing (ISC) is faster,

the steady-state PL intensity is different between these two conditions. It is worth not-

ing that Ī(t) is constant with time elapsing after it reaches the steady state. Here, kMW

is the Rabi frequency of a microwave field that is applied for rotating the populations of

spin sublevels [70]. It is a parameter in the model as it scales with the square root of the

laser intensity. For clarity, when E = 0, the spin sublevels are |0〉, |−1〉 and |+1〉. When

E 6= 0, the spin sublevels are |0〉, |−〉 and |+〉. Refer to Eq. (2.102) and Eq. (2.103).

The steady-state PL intensity depends on the radiative recombination rate and

the excited state populations at the steady-state,

Ī(t,B) = η
∑
i∈ES

∑
j∈GS

kij(B)n̄i(t,B) (2.93)
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In general, the time-resolved PL intensity in non-equilibrium is written as

I(t,B) = η
∑
i∈ES

∑
j∈GS

kij(B)ni(t,B) (2.94)

where η is the collection coefficient dependent on experimental setup, kij(B) is the

magnetic-field dependent transition rate between electronic state |i〉 and |j〉. ni(t,B) is

the population of state |i〉 at time t under magnetic field B. During optical excitation,

ni(t,B) can be numerically solved by using the Euler method as below,

ni(tm+1,B) = ni(tm,B) +
dni
dt

(tm,B)dt (2.95)

dni(t,B)

dt
=
∑
j

[kji(B)nj(t,B)− kij(B)ni(t,B)] (2.96)

where m represents time step m. After optical excitation (t = 0), the populations of

states ni(t,B) decay exponentially according to their lifetime τi(B) = 1/
∑

j kij(B).

Therefore, we can express the PL after optical excitation,

I(t,B) =
∑
i∈ES

∑
j∈GS

kij(B)ni(0,B)e−t/τi(B) (2.97)

After all, the PL intensity and continuous-wave ODMR are essentially depen-

dent on the rates kij(B). First, we can evaluate the transition rate k0
ij at zero magnetic

field (denoted by the superscript 0) for the transition from the initial state
∣∣i0〉 to the

final state
∣∣j0
〉

using Fermi’s golden rule except Rabi frequency,

k0
ij =

2π

~
∣∣ 〈i0∣∣Hint

∣∣j0
〉∣∣2 δ(∆E0

ij + n~ω) (2.98)

where Hint is the interaction Hamiltonian that generally represents electron-photon

coupling for radiative recombination, electron-phonon coupling for internal conversion,
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and spin-orbit coupling for intersystem crossing. δ(∆E0
ij + n~ω) ensures the energy

conservation in transition
∣∣i0〉 → ∣∣j0

〉
, with ∆E0

ij being the energy difference between

states
∣∣i0〉 and

∣∣j0
〉
, and ~ω being the energy gain or loss of the system in the manner

of either photon or phonon.

Second, we need to consider zero-field splitting (ZFS) and the Zeeman effect

as the Hamiltonian in Eq. (2.99), which is the source of magnetic field dependency and

the splitting of the spin sublevels.

H = D(S2
z −

S2

3
) + E(S2

x − S2
y) + gµBB · S (2.99)

where Si is the spin-1 operator along i axis, D in the first term is the axial zero-field

splitting (ZFS) parameter, E in the second term is the rhombic ZFS parameter, g is the

electron g-factor whose value is ∼2 in the case of the NV center, µB is Bohr magneton,

and B is the magnetic field vector. By expanding the Hamiltonian with using Kronecker

product of Pauli’s matrices, we can find

H =



D/3 + gµBBz gµB(Bx − iBy)/2 gµB(Bx − iBy)/2 E

gµB(Bx + iBy)/2 −D/3 −D/3 gµB(Bx − iBy)/2

gµB(Bx + iBy)/2 −D/3 −D/3 gµB(Bx − iBy)/2

E gµB(Bx + iBy)/2 gµB(Bx + iBy)/2 D/3− gµBBz


(2.100)

When the magnetic field in along the z direction, we can find the eigenvalues and
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eigenvectors as follows,

λ1 = −2D/3 λ2 = D/3−
√
E2 + (gµBBz)2 λ3 = D/3 +

√
E2 + (gµBBz)2 λ4 = 0.

(2.101)

|ν1〉 =
1√
2



0

1

1

0


|ν2〉 =

1√
E2 + C ′2



E

0

0

−C ′


|ν3〉 =

1√
E2 + C ′2



C ′

0

0

E


|ν4〉 =

1√
2



0

1

−1

0


(2.102)

where C ′ = gµBBz +
√
E2 + (gµBBz)2. |ν1〉 is the zero spin projection |0〉 of triplet

state, and |ν4〉 is a singlet state which can be dropped off as it does not have spin-spin

interaction. The eigenvectors |ν2〉 and |ν3〉 are respectively |−〉 and |+〉 of triplet states,

which are the linear combination of |+1〉 and |−1〉. Particularly, in the high magnetic

field limit, we have

lim
Bz→∞

|ν2〉 = − |−1〉

lim
Bz→∞

|ν3〉 = |+1〉 .
(2.103)

In the case where the rhombic ZFS E = 0, then |−1〉 and |+1〉 are degenerate at zero

magnetic field, and separated with no spin mixing in the presence of a nonzero magnetic

field along z direction.

ZFS lifts the degeneracy of spin sublevels, and Zeeman effect specifically can

lead to the mixing of the original spin sublevels at zero magnetic field. Thus, when
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there is magnetic field, the eigenstates |i〉 of the Hamiltonian Eq. (2.99) are the linear

combination of the eigenstates
∣∣j0
〉

at zero magnetic field, with mixing coefficient αij(B).

|i〉 =
∑
j

αij(B)
∣∣j0
〉

(2.104)

The spin mixing has direct effect on transition rates. While the energy change by the

ZFS and Zeeman effect is negligible compared to the energy difference between the

electronic energy levels, the condition of energy conservation remains nearly the same,

i.e. ∆Eij ≈ ∆E0
pq. As a result, the transition rates are magnetic field dependent and

expressed as

kij(B) =
2π

~
∣∣ 〈i|H int|j〉

∣∣2 δ(∆Eij + ~ω)

≈ 2π

~
∑
p,q

∣∣ 〈p0
∣∣α∗ip(B)H intα(B)jq

∣∣q0
〉∣∣2 δ(∆E0

pq + ~ω)

=
∑
p,q

|αip(B)|2|αjq(B)|2k0
pq. (2.105)

As for the radiative recombination, we only consider the spin-conserving case. Then the

mixing of the spin sublevels of the triplet states |αip(B)|2|αjq(B)|2 will lead to decreased

spin-conserving and enhanced spin-flip radiative recombination between triplet ground

state and excited state. Thus, the radiative recombination rate between triplet states

decreases with magnetic field. In terms of the radiative recombination between two

singlet states, the rate is not changed by magnetic field because there is no spin mixing

within singlet states. The same rule applies to internal conversion (IC). For ISC, the

mixing of the spin sublevels reduces the contrast between the axial and nonaxial ISC

rates, resulting in decrease of ODMR contrast.
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2.5 First-Principles Density-Matrix Dynamics

The first-principles density-matrix dynamics (FPDM) is an advanced approach

that allows long-time simulation for open quantum systems in non-equilibrium state. In

the following sections, the basic of the FPDM approach is presented, and the derivation

details can be found from Ref. [71, 72, 73, 74, 75].

This theory starts from the Liouville-von Neumann equation in the Schrödinger

picture,

dρ (t)

dt
= − i

~
[H, ρ (t)], (2.106)

H = H0 +H ′, (2.107)

where H, H0, and H ′ are total, unperturbed and perturbation Hamiltonians, respec-

tively. A few approxmiation are considered in this framework to allow pratical simul-

taions of ultrafast dynamics, including single-particle approximation for the density

matrix [76], a proper truncated BBGKY (Bogolyubov-Born-Green-Kirkwood-Yvon) hi-

erarchy [77, 78] and the Mar kov approximation. The whole density matrix can be

decomposed into the coherent part and the scattering part as below,

dρ

dt
=
dρ

dt
|coh +

dρ

dt
|scatt, (2.108)

where dρ
dt |coh describes the coherent dynamics of electrons including the free-particle

dynamics, the laser-induced dynamics, electric field-induced dynamics and magnetic

field-induced dynamics. dρ
dt |scatt includes all the decoherence processes, such as electron-

electron interaction, electron-phonon interaction and electron-impurity interaction.
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Some important findings by using this approach are presented in Chapter 6 and

Chapter 7 for perovskites. The ongoing development of this approach includes incor-

porating a complete description of electron-electron interactions in coherent dynamics,

which was previously missing, and addressing the band renormalization effect.
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Chapter 3

Application of Group Theory

3.1 Group Theory for Spin Defects: the NV Center Ex-

ample

The NV center in diamond, characterized by its robust and clear structure,

bright emission, high contrast in optically-detected magnetic resonance (ODMR), and

high sensitivity to external magnetic fields, is a prototypical example in the realm of

spin defects. Understanding the NV center is, therefore, crucial for studying spin defects

and discovering new defects to enhance their performance.

In this chapter, we focus on the symmetry of the NV center, derive the irre-

ducible representations of the electronic states and spin-orbit coupling operators, un-

derstand whether an SOC matrix element is allowed or forbidden from the symmetry

point of view, and finally estimate the result of the coupling between the Jahn-Teller

effects and the SOC.
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The full derivation, combined with the first-principles calculations presented

in this thesis, will provide a comprehensive understanding of the NV center and allow

to clarify many previously unclear experimental observations, including the allowed

radiative recombination, intersystem crossing, internal conversion, and ODMR contrast.

3.2 Introduction to Group Theory

In this section, we introduce the basic concepts of group theory that are es-

sential for the symmetry analysis of spin defects, following the approach in the book by

Dresselhaus et al. [79]. Only the necessary derivations will be presented here, and the

fundamental proofs can be found in the referenced book. The C3v point group will be

shown as an example.

3.2.1 Definition of a Group

A group is a collection {A,B,C,D...} of elements that satisfy the following

four conditions [79]:

• Closure: the product of any two elements of the group is also an element of the

group. Mathematically, this is expressed as AB = C.

• Association: A(BC) = (AB)C.

• Identity element: there exists an element E such that for any element of the group,

the relationship EA = AE = A holds.
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• Inverse element: for any element A in the group, there exists an element A−1 such

that AA−1 = A−1A = E.

3.2.2 Multiplication of Symmetry Operations

Table 3.1: Table of multiplication of symmetry operations of C3v group. The result is

the multiplication of row element by column element. In total there are six symmetry

operations or six elements in the group.

C3v E C3 C−1
3 σv σ′v σ′′v

E E C3 C−1
3 σv σ′v σ′′v

C3 C3 C−1
3 E σ′v σ′′v σv

C−1
3 C−1

3 E C3 σ′′v σv σ′v

σv σv σ′′v σ′v E C−1
3 C3

σ′v σ′v σv σ′′v C3 E C−1
3

σ′′v σ′′v σ′v σv C−1
3 C3 E

By the multiplication of all the elements in the C3v set, we can demonstrate it

to be a group because it satisfies the conditions of closure, association, identity element

and inverse element. The details of the multiplication of the group elements can be seen

in Sec. 3.4.

By definition, the order of a group is equivalent to the number of elements in

the group. According to Table 3.1, the order of C3v is h = 6.
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3.2.3 Conjugation and Class

The definition of conjugation: an element B is conjugate to A if B is defined

as B ≡ XAX−1, where X is an arbitrary element of the group.

A class is defined as the set of all elements that can be obtained from a given

element through conjugation.

These concepts of conjugation and class are always used in the character table

for categorizing symmetry operations or elements that correspond to distinct kinds of

symmetry operation. By these definitions, we can categorize the elements of C3v group

into three classes:

• E (identity symmetry element)

• C3 and C−1
3 (rotation operations of 2π/3 about the C3 axis)

• σv, σ′v and σ′′v (reflection operations about the three equivalent planes)

3.3 Theory of Group Representation and Orthogonality

Theorem

The concept of representation, especially irreducible representation, is impor-

tant and useful in describing eigenstates or energy levels. By labeling eigenstates with

the irreducible representation, to which it transforms, we can immediately understand

the degeneracy of the eigenstates, and obtain the result of symmetry operations without

knowing the explicit expressions of the eigenstates.
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The subsequent orthogonality theorem serves as a key application of group

theory in quantum mechanics.

3.3.1 Group Representation

The concept of representation is introduced with the definition of homomor-

phism. In general, a representation Γ of a group G in a vector space V is defined by a

homomorphism,

Γ : G→ GL(V ) (3.1)

where GL(V ) is the group of invertible linear operators on V . This abstract group

representation can be more intuitive when we take the form of the matrix representation

D(Γ) of a group G with the homomorphism,

D(Γ) : G→ GL(n,F) (3.2)

where GL(n,F) is the general linear group of degree n over a field F (F = R or C), the

set of n× n invertible matrices. The dimensionality of a representation is equal to the

degree or dimensionality n of each of its matrices.

However, a matrix representation can be non-unique when it is equivalent

to other matrices by a similarity transformation, and the non-uniqueness introduces

ambiguity in its application, like labeling eigenstates. This kind of representations are

so-called reducible representations, whose matrices can be written as the combination
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of the blocks as below, D(Γ1)(R) O

O D(Γ2)(R)

 (3.3)

where O = (m × n) matrix of zeros, R is the symmetry operation, Γ1 and Γ2 are the

irreducible representations, which can be either distinct or identical.

The irreducible representations and character in Sec. 3.4 are introduced and

defined in order to eliminate such ambiguity. It can be clear by the example of Eq. (3.3),

an irreducible representation cannot be decomposed or reduced into smaller, non-trivial

representations. In other words, the dimensionality of an irreducible representation

cannot be further reduced.

3.3.2 Orthogonality Theorem

For the purposes of applying group theory, we will omit the rigorous proof

of the orthogonality theorem, which relies on Schur’s lemma. The statement of the

orthogonality theorem is given as below,

∑
R

D
(Γj)
µν (R)D

(Γj′ )

µ′ν′ (R−1) =
h

lj
δΓj ,Γj′ δµµ′δνν′ (3.4)

where D(Γj) and D(Γj′ ) represent the matrices of the representations Γj and Γj′ that

has dimensionalities of lj and lj′ , respectively. The summation over R includes all the

h elements of the group. µ, ν, µ′ and ν ′ are the row and column indices of the matrix

representations.
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3.4 C3v Point Group and the Character Table

By definition, the character of the matrix representation χ(Γj)(R) for a symme-

try operation R in a representation D(Γj)(R) is given by the trace of the representation

matrix,

χ(Γj)(R) = Tr(D(Γj)(R)) =

lj∑
µµ

D(Γj)(R)µµ (3.5)

where lj is the dimensionality of the representation Γj , and j is a representation index.

It can be proved that the character for each element in a class is the same.

With the definition of character in Eq. (3.5) and the orthogonality theorem in

Eq. (3.4), we can prove the orthogonality theorem for character as follows,

∑
R

χ(Γj)(R)χ(Γj′ )(R−1) =
∑
R

χ(Γj)(R)

[
χ(Γj′ )(R)

]∗
= hδΓj ,Γj′ (3.6)

∑
Γj

χ(Γj)(Ck)
[
χ(Γj)(Ck′)]

]∗
= hδkk′ (3.7)

where the summation are over the symmetry operation R and class C, respectively, and

the index k′ is the k′-th component of a k-dimensional vector. Also, we can obtain the

following very useful theorems for constructing a character table,

• Theorem: a reducible representation can be decomposed into a direct sum of the

irreducible representations,

χ(Ck) =
∑
Γj

ajχ
(Γj)(Ck) (3.8)

where aj is the number of the irreducible representation Γj that is contained in

the reducible representation.
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• Theorem: the number of irreducible representations is equal to the number of

classes.

The above definitions and theorems allow us to perform the following deriva-

tion.

Table 3.2: C3v character table. Each character is the trace of the irreducible matrix

representation.

C3v E 2C3 3σv
linear functions

rotations

quadratic functions

A1 1 1 1 z x2 + y2, z2

A2 1 1 -1 Rz –

E 2 -1 0 (x, y), (Rx, Ry) (x2− y2, xy), (xz, yz)

In the character table, E is the identical operation, 2C3 including C3 and C−1
3

are the rotation symmetry operation, and 3σv including σv, σ
′
v and σ′′v are the reflection

symmetry operations.

By the convention1, the rotation operation is applied on the object rather than

the coordinates. Because the counterclockwise rotation of the object corresponds to the

clockwise rotation of the coordinate, the Cartesian representation of Cn, the rotation

operation by 2π/n on the coordinate about the principle rotation axis (z-axis here), is

1see Sec. 2-2. on page 8 and Chap. 4 on page 64 of Ref. [80]
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expressed as

Cn =


cos(2π/n) sin(2π/n) 0

−sin(2π/n) cos(2π/n) 0

0 0 1

 . (3.9)

2

And σv denotes the reflection operation with respect to the xz-plane, equivalent

to a rotation through π about y-axis followed by an inversion symmetry operation [81].

Therefore, σv keeps x-axis and z-axis unchanged meanwhile reflect y-axis with respect

to the xz-plane. It should be noticed that the symmetry operation on the coordinates

is the inverse of that on the object PRf(x) = f(R−1x). Therefore, σ′v = σvC3(obj) on

the object is equivalent to σ′v = C3(coord)σv on the coordinates.

Following Eq. (3.9), the irreducible matrix Cartesian representations of E′

under each symmetry operation upon coordinates are as follows [82],

E =

1 0

0 1

 C3 =

 −1
2

√
3

2

−
√

3
2 −1

2



C−1
3 =

−1
2 −

√
3

2

√
3

2 −1
2

 σv =

1 0

0 −1



σ′v = C3σv =

 −1
2 −

√
3

2

−
√

3
2

1
2

 σ′′v = C−1
3 σv =

−1
2

√
3

2

√
3

2
1
2



(3.11)

2The rotation matrix of Cn on the object counterclockwise

Cn(obj) =

cos(2π/n) −sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1

 (3.10)
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We summarize the irreducible representations of C3v with symmetry operations on the

coordinates in Table 3.3.

Table 3.3: Table of the irreducible matrix representations of C3v for symmetry opera-

tions on the Cartesian coordinates (x, y) [17]. The coordinates transform under sym-

metry operation as PR(x, y)T → R−1(x, y)T , where R−1 is the representation matrix of

symmetry operation PR.

C3v E C3 C−1
3

A1 1 1 1

A2 1 1 1

E

1 0

0 1


 −1

2

√
3

2

−
√

3
2 −1

2


−1

2 −
√

3
2

√
3

2 −1
2



C3v σv σ′v σ′′v

A1 1 1 1

A2 -1 -1 -1

E

1 0

0 −1


 −1

2 −
√

3
2

−
√

3
2

1
2


−1

2

√
3

2

√
3

2
1
2



Likewise, we can also write down the table of the matrix representations for

the symmetry operation on an object.
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Table 3.4: Table of the irreducible matrix representations of C3v for symmetry opera-

tions on the object. The object transforms under symmetry operation as PR(x, y) →

(x, y)R, consistent with Eq. (3.12). R is the representation matrix of symmetry opera-

tion PR.

C3v E C3 C−1
3

A1 1 1 1

A2 1 1 1

E

1 0

0 1


−1

2 −
√

3
2

√
3

2 −1
2


 −1

2

√
3

2

−
√

3
2 −1

2



C3v σv σ′v = σvC3 σ′′v = σvC
−1
3

A1 1 1 1

A2 -1 -1 -1

E

1 0

0 −1


 −1

2 −
√

3
2

−
√

3
2

1
2


−1

2

√
3

2

√
3

2
1
2



3.5 Projection Operator

If ϕ
(j)
κ is a basis function of the κ-th column (κ is defined as row index conven-

tionally [80]) of the j-th irreducible representation Γj , and ϕ
(j)
λ is the basis function’s

partner completing the basis for ϕ
(j)
κ , then the symmetry operation PR of any element
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R on ϕ
(j)
κ can be expressed as a linear combination of ϕ

(j)
κ and its partners ϕ

(j)
λ [80],

PRϕ
(j)
κ =

lj∑
λ=1

ϕ
(j)
λ D(Γj)(R)λκ (3.12)

Projection operator P(j)
λκ can be derived from the above with the great orthogonality

theorm,

P(j)
λκ =

lj
h

∑
R

D(Γj)(R)∗λκPR (3.13)

where lj is the dimensionality of the matrix of the irreducible representation Γj , h is the

number of elements in the group or the order of the group, D(Γj)(R)λκ is the character

belonging to the λ-th row and κ-th column of the matrix reprentation of Γj for the

element R 3, and PR is the symmetry operator. The projection operator can be used

to extract a function that transforms as Γj(R)λκ,

ϕ
(j)
λ = P(j)

λκϕ
(j)
κ =

lj
h

∑
R

D(Γj)(R)∗λκPRϕ
(j)
κ (3.14)

Because of the orthogonality property of the projection operator, ϕ
(j)
λ is expected to

be either transforming as D
(Γj)
λ or 0 after the projection P

(j)
λκ on the basis function

ϕ
(j)
κ . The result of the projection on different basis functions ϕ

(j)
κ , which belong to κ-th

column of the D(Γj), can differ by a factor of constant. The factor does not influence

the symmetry and can be eliminated by normalizing the projection result. Therefore, a

single projection onto a known or constructed basis ϕ
(j)
κ will be sufficient to determine

ϕ
(j)
λ if the projection is nonzero.

If dealing with the direct product of multiple bases, we can perform the fol-

3It should be noticed that κ-th column is explained as κ-th row on page 40 of Ref. [80]
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lowing,

PRϕ
(i)
κ ⊗ PRϕ(j)

µ =

li∑
λ=1

ϕ
(i)
λ D

(Γi)(R)λκ ⊗
lj∑
ν=1

ϕ(j)
ν D(Γj)(R)νµ

=

li∑
λ=1

lj∑
ν=1

ϕ
(i)
λ ϕ

(j)
ν D(Γi)(R)λκD

(Γj)(R)νµ

=

li∑
λ=1

lj∑
ν=1

ϕ
(i)
λ ϕ

(j)
ν Γ(R)λν,κµ

= PR ⊗ PRϕ(i)
κ ϕ

(j)
µ

(3.15)

3.6 Representations of Electronic States

The final electronic states contain both the orbital part and the spin part.

The projection operator above allows us to construct an electronic state that satisfy a

certain symmetry, in other words, determine the expression of an electronic state that

transforms as a certain irreducible representation. Because the electronic states can

be expressed as the linear combination of the atomic orbitals and spins, we need to

first understand the number of orbitals and spins that can be significant and should be

involved in an active space.

3.6.1 Representation of Single-Particle Wavefunction

The NV center is comprised of one N atom substituted for a C atom, one

vacancy by removing a C atom, and one electron from the external that results in

the negatively charged defect. As shown in Fig. 3.1, four dangling bonds are formed by

removing a C atom, three of which form as the σ4 bonds located at the nearest neighbor

4The σ notation for chemical bonds is only used in this sub section, and should be not confused with
σ in the other sections for the Pauli’s matrices.
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C atoms, denoted as σ1, σ2 and σ3. The other one forms as the σ bond located at the

N atom, denoted as σN . Furthermore, one can notice the additional two electrons, one

from the N atom and one from the external. These two electrons may form a lone pair

that have less contribution to the active space. Therefore, the minimal active space that

can give rise to meaningful result should contains at least four electrons, or equivalently

two holes for the triplet NV center [1, 83].

Here, we show how the derivation of single-particle wavefunction with only the

orbital part from the atomic orbitals in the chosen active space.

Figure 3.1: Schematic diagram of dangling bonds σ1, σ2, σ3 and σN of NV centers with

the symmetry axis pointing along the N-V axis, which is out-of-plane [1].

The irreducible matrix representations of the C3v point group on the four-

dimentional space formed by the four bases of orbitals are shown in Table 3.5.

49



Table 3.5: Table of the irreducible matrix representations of C3v for symmetry opera-

tions on the coordinates σd, σe, σf and σn, or upon the bases of orbitals σ1, σ2, σ3 and

σN . If operating the coordinates, the bases vector transform under symmetry operation

as PR(σd, σe, σf , σn)→ R(σd, σe, σf , σn)T ; if operating the the object, the bases vector

transform under symmetry operation as PR(σ1, σ2, σ3, σN ) → (σ1, σ2, σ3, σN )R. Here

R is the symmetry operation matrix.

E C3 C−1
3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1





0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1



σv σ′v = σvC3 σ′′v = σvC
−1
3

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1





0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1





0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


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Table 3.6: The transformation of dangling bonds of NV center under the symmetry

operations of C3v point group.

PR E C3 C−1
3 σv σ′v σ′′v

σ1 σ1 σ2 σ3 σ1 σ3 σ2

σ2 σ2 σ3 σ1 σ3 σ2 σ1

σ3 σ3 σ1 σ2 σ2 σ1 σ3

σN σN σN σN σN σN σN

According to Figure 3.1 and Table 3.6, it is obvious that dangling bond σN

transforms as totally symmetric representation A1 (PA2σN = PExσN = PEyσN = 0).

By using the projection operator technique Eq. (3.14), the single-particle wavefunction

can be expressed as

a1 = ϕa11 = PA1(α′σ1 + β′σN )

=
1

6

[(
PE + PC3 + PC−1

3
+ Pσv + Pσ′v + Pσ′′v

)
α′σ1

+
(
PE + PC3 + PC−1

3
+ Pσv + Pσ′v + Pσ′′v

)
β′σN

]
=

1

6

(
α′σ1 + α′σ2 + α′σ3 + α′σ1 + α′σ3 + α′σ2 + 6β′σN

)
=

1

3
α′(σ1 + σ2 + σ3) + β′σN

(3.16)

where α′ and β′ are factors of weight.
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ex = ϕex1 = PExσ1

=
2

6

{[
Exx(E)σ1 + Eyx(E)σ1

]
+
[
Exx(C3)σ2 + Eyx(C3)σ2

]
+
[
Exx(C−1

3 )σ3 + Eyx(C−1
3 )σ3

]
+
[
Exx(σv)σ1 + Eyx(σv)σ1

]
+
[
Exx(σ′v)σ3 + Eyx(σ′v)σ3

]
+ (Exx(σ′′v )σ2 + Eyx(σ′′v )σ2)

}
=

2

6

[
(1 + 0)σ1 + (−1

2
−
√

3

2
)σ2 + (−1

2
+

√
3

2
)σ3

+ (1 + 0)σ1 + (−1

2
−
√

3

2
)σ3 + (−1

2
+

√
3

2
)σ2

]
=

1

3
(2σ1 − σ2 − σ3)

(3.17)

ey = ϕ
ey
1 = PEyσ1

=
2

6

{[
Exy(E)σ1 + Eyy(E)σ1

]
+
[
Exy(C3)σ2 + Eyy(C3)σ2

]
+
[
Exy(C

−1
3 )σ3 + Eyy(C

−1
3 )σ3

]
+
[
Exy(σv)σ1 + Eyy(σv)σ1

]
+
[
Exy(σ

′
v)σ3 + Eyy(σ

′
v)σ3

]
+
[
Exy(σ

′′
v )σ2 + Eyy(σ

′′
v )σ2

]}
=

2

6

[
(0 + 1)σ1 + (

√
3

2
− 1

2
)σ2 + (−

√
3

2
− 1

2
)σ3

+ (0− 1)σ1 + (−
√

3

2
+

1

2
)σ3 + (

√
3

2
+

1

2
)σ2

]
=

1√
3

(σ2 − σ3)

(3.18)

The single-particle wavefunction can be renormalized. Similarly, one can use the pro-

jection operator technique Eq. (3.14) to extract the multi-electron configuration and

spin-orbit wavefunctions.
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3.6.2 Representation of Two-Particle Wavefunction

For simplicity, we consider to use the hole representations to extract the or-

bital part of the total electronic wavefunction. We apply symmetry operations on the

coordinate to find the irreducible representations of the single-particle states.

Let ex and ey be the vectors along x-axis and y-axis, respectively.

ex =

1

0

 ey =

0

1

 . (3.19)

By doing symmetry operations on the coordinates as Table 3.3, we can find

that ex and ey transform as follows

PC3ex = C3ex = −1

2
ex +

√
3

2
ey PC3ey = C3ey = −

√
3

2
ex −

1

2
ey (3.20)

PC−1
3
ex = C−1

3 ex = −1

2
ex −

√
3

2
ey PC−1

3
ey = C−1

3 ey =

√
3

2
ex −

1

2
ey (3.21)

Pσvex = σvex = ex Pσvey = σvey = −ey (3.22)

Pσ′vex = σ′vex = −1

2
ex −

√
3

2
ey Pσ′vey = σ′vey = −

√
3

2
ex +

1

2
ey (3.23)

Pσ′′v ex = σ′′vex = −1

2
ex +

√
3

2
ey Pσ′′v ey = σ′′vey =

√
3

2
ex +

1

2
ey (3.24)
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Table 3.7: C3v symmetry operations on the single-particle wavefunction based on

Eq. (3.11) and Table 3.4.

PR E C3 C−1
3 σv σ′v σ′′v

a1 a1 a1 a1 a1 a1 a1

ex ex −1
2ex +

√
3

2 ey −1
2ex −

√
3

2 ey ex −1
2ex −

√
3

2 ey −1
2ex +

√
3

2 ey

ey ey −
√

3
2 ex −

1
2ey

√
3

2 ex −
1
2ey −ey −

√
3

2 ex + 1
2ey

√
3

2 ex + 1
2ey

Table 3.7 shows that single-particle wavefunction a1 transforms as A1, and

that ex has its partner ey. ex and ey form the bases of orbitals that transform as the

irreducible representation E and are doubly degenerate. Then, we adopt the notation

ϕ1 and ϕ2 to denote the two particles. Next, we can derive the transformation of

two-particle wavefunctions, which will be used to construct the orbital part of total

wavefunctions. Below, the example of ϕex1 ϕ
ex
2 is shown,

PEϕ
ex
1 ϕ

ex
2 = Pσvϕ

ex
1 ϕ

ex
2 = ϕex1 ϕ

ex
2 (3.25)

PC3ϕ
ex
1 ϕ

ex
2 = Pσ′′vϕ

ex
1 ϕ

ex
2

=

(
−1

2
ϕex1 +

√
3

2
ϕ
ey
1

)(
−1

2
ϕex2 +

√
3

2
ϕ
ey
2

)

=
1

4
ϕex1 ϕ

ex
2 −

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
+

3

4
ϕ
ey
1 ϕ

ey
2

(3.26)
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PC−1
3
ϕex1 ϕ

ex
2 = Pσ′vϕ

ex
1 ϕ

ex
2

=

(
−1

2
ϕex1 −

√
3

2
ϕ
ey
1

)(
−1

2
ϕex2 −

√
3

2
ϕ
ey
2

)

=
1

4
ϕex1 ϕ

ex
2 +

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
+

3

4
ϕ
ey
1 ϕ

ey
2

(3.27)

By using the projection operator technique Eq. (3.13), we are able to derive

the following two-particle wavefunctions (spin eigenstates, only orbital part) as a linear

combination of two-particle bases ϕ1ϕ2 in Table 3.8, transforming like the irreducible

representations of C3v point group in Table 3.2. Two examples of different projectors

PA1 and PEx are shown below for the details of derivation,

PA1ϕex1 ϕ
ex
2 =

1

6

(
PE + PC3 + PC−1

3
+ Pσv + Pσ′v + Pσ′′v

)
ϕex1 ϕ

ex
2

=
1

6

[
ϕex1 ϕ

ex
2

+
1

4
ϕex1 ϕ

ex
2 −

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
+

3

4
ϕ
ey
1 ϕ

ey
2

+
1

4
ϕex1 ϕ

ex
2 +

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
+

3

4
ϕ
ey
1 ϕ

ey
2

+ ϕex1 ϕ
ex
2

+
1

4
ϕex1 ϕ

ex
2 +

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
+

3

4
ϕ
ey
1 ϕ

ey
2

+
1

4
ϕex1 ϕ

ex
2 −

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
+

3

4
ϕ
ey
1 ϕ

ey
2

]
=

1

2

(
ϕex1 ϕ

ex
2 + ϕ

ey
1 ϕ

ey
2

)

(3.28)
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PExϕex1 ϕ
ex
2 =

2

6

[
Exx(E)PE + Exx(C3)PC3 + Exx(C−1

3 )PC−1
3

+ Exx(σv)Pσv + Exx(σ′v)Pσ′v + Exx(σ′′v )Pσ′′v

]
ϕex1 ϕ

ex
2

=
2

6

(
PE −

1

2
PC3 −

1

2
PC−1

3
+ Pσv −

1

2
Pσ′v −

1

2
Pσ′′v

)
ϕex1 ϕ

ex
2

=
1

6

[
2ϕex1 ϕ

ex
2

− 1

4
ϕex1 ϕ

ex
2 +

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
− 3

4
ϕ
ey
1 ϕ

ey
2

− 1

4
ϕex1 ϕ

ex
2 −

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
− 3

4
ϕ
ey
1 ϕ

ey
2

+ 2ϕex1 ϕ
ex
2

− 1

4
ϕex1 ϕ

ex
2 −

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
− 3

4
ϕ
ey
1 ϕ

ey
2

− 1

4
ϕex1 ϕ

ex
2 +

√
3

4

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)
− 3

4
ϕ
ey
1 ϕ

ey
2

]
=

1

2

(
ϕex1 ϕ

ex
2 − ϕ

ey
1 ϕ

ey
2

)

(3.29)
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Table 3.8: Irreducible representation of two-particle orbital wavefunctions. Here ϕ1 and

ϕ2 are adopted to denote two particles.

Electronic configuration Γ Two-particle wavefunction

ee

A1
1
2

(
ϕex1 ϕ

ex
2 + ϕ

ey
1 ϕ

ey
2

)
A2

1
2

(
ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2

)
Ex

1
2

(
ϕex1 ϕ

ex
2 − ϕ

ey
1 ϕ

ey
2

)
Ey

1
2

(
ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2

)

a1e

A1 –

A2 –

Ex ϕa11 ϕ
ex
2

Ey ϕa11 ϕ
ey
2

3.6.3 Spin Symmetry Operation and C3v Double Group

Spin has SU(2) symmetry. Its rotation is generated by Pauli matrix σ̂ about

the norm direction n̂.

Rn̂(θ) = exp(− i
2
n̂ · σ̂θ)

= Icos(θ/2)− i(n̂ · σ̂)sin(θ/2)

(3.30)

where θ is the counterclockwise (positive) rotational angle, and

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1

 (3.31)
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The matrix of rotation on spin wavefunction in space is

R(α, β, γ) = Rẑ′(γ)Rŷ′(β)Rẑ(α)

= [Rŷ′(β)Rẑ(γ)R−1
ŷ′ (β)]Rŷ′(β)Rẑ(α)

= Rŷ′(β)Rẑ(γ)Rẑ(α)

= [Rẑ(α)Rŷ(β)R−1
ẑ (α)]Rẑ(γ)Rẑ(α)

= Rẑ(α)Rŷ(β)Rẑ(γ)

=

exp(−iα+γ
2 )cos(β2 ) −exp(iγ−α2 )sin(β2 )

exp(iα−γ2 )sin(β2 ) exp(iα+γ
2 )cos(β2 )



(3.32)

There are two ways of rotating spin. One is rotate the coordinates and fix the spin. If

rotating the coordinates, ŷ′ will be the new y-axis after the first rotation by α about ẑ,

ẑ′ will be the new z-axis following the second rotation by β about ŷ′, and γ will be the

third rotation about ẑ′. The other is rotate the spin and fix the coordinates, which is

shown by Eq. (3.32) that it is equivalent to the rotation on the Cartesian coordinates.

Because the rotation on the object is the inverse of that on the coordinates [80], γ, β and

α become the first, second and third rotations about ẑ, ŷ and ẑ, respectively [58, 81].

Here we follow the convention that symmetry operations act on the object in a space-

fixed coordinates for convenience5.

Because the rotation period of a fermion is 4π, twice as that of spatial wave-

function, the ordinary point group like Table 3.2 is insufficient to describe the symmetry

of a fermion. One need to use a double group, which contains double number of ele-

ments as the ordinary group, to describe wavefunctions when there is half-integral spin.

5See page 101 and Table 5-1 on page 112 of Ref. [80]
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A double group contains the additional irreducible representations that half-integral

spin wavefunctions transform as. The characters of the irreducible representation of

the spin 1/2 wavefunction can be evaluated using Eq. (3.32). For the irreducible rep-

resentation D1/2 of spin 1/2 wavefunction of C3v symmetry, the matrix representations

are,

E = Rẑ(0)Rŷ(0)Rẑ(0) =

1 0

0 1

 (3.33)

C3 = Rẑ(0)Rŷ(0)Rẑ(
2π

3
) =

e−iπ/3 0

0 eiπ/3

 (3.34)

C−1
3 = Rẑ(0)Rŷ(0)Rẑ(−

2π

3
) =

eiπ/3 0

0 e−iπ/3

 (3.35)

σv = Rẑ(0)Rŷ(π)Rẑ(0) =

0 −1

1 0

 = iσy = −i

0 −i

i 0

 (3.36)

σ′v = σvC3 =

 0 −eiπ/3

e−iπ/3 0

 =

 0 e−i2π/3

e−iπ/3 0

 (3.37)

σ′′v = σvC
−1
3 =

 0 −e−iπ/3

eiπ/3 0

 =

 0 ei2π/3

eiπ/3 0

 (3.38)
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Ē = Rẑ(0)Rŷ(0)Rẑ(2π) =

−1 0

0 −1

 (3.39)

C̄3 = Rẑ(0)Rŷ(0)Rẑ(
2π

3
+ 2π) = ĒC3 =

−e−iπ/3 0

0 −eiπ/3

 =

ei2π/3 0

0 e−i2π/3


(3.40)

C̄−1
3 = Rẑ(0)Rŷ(0)Rẑ(−

2π

3
+ 2π) = ĒC−1

3 =

−eiπ/3 0

0 −e−iπ/3

 =

e−i2π/3 0

0 ei2π/3


(3.41)

σ̄v = Rẑ(0)Rŷ(π)Rẑ(2π) = Ēσv =

 0 1

−1 0

 (3.42)

σ̄′v = Ēσ′v =

 0 eiπ/3

−e−iπ/3 0

 =

 0 eiπ/3

ei2π/3 0

 (3.43)

σ̄′′v = Ēσ′′v =

 0 e−iπ/3

−eiπ/3 0

 =

 0 e−iπ/3

e−i2π/3 0

 (3.44)

The characters of D1/2 can be obtained from the above representation matrices.

A two-electron wavefunction transforms as the direct product D1/2⊗D1/2 [79].

Because D1/2 ⊗D1/2 = A1 ⊕ A2 ⊕ E, we expect to find two non-degenerate spin-orbit
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states A1 and A2, and the degenerate spin-orbit states E′ in the ground state manifold,

which can consist of triplet and singlet states.

Table 3.9: The character table of C3v double group.

C3v E 2C3 3σv Ē 2C̄3 3σ̄v

A1 +1 +1 +1 +1 +1 +1

A2 +1 +1 -1 +1 +1 -1

E +2 -1 0 +2 -1 0

1D3/2 +1 -1 i -1 +1 -i

2D3/2 +1 -1 -i -1 +1 i

D1/2 +2 1 0 -2 -1 0

3.6.4 Symmetry Operation on One Spin Wavefunction

Let α denote spin up and β denote spin down. With the matrix representations,

we find how the spin transforms under the symmetry operations in Table 3.10.

61



Table 3.10: C3v symmetry operations on the one spin wavefunction based on Eq. (3.32).

PR E C3 C−1
3 σv σ′v σ′′v

α α e−iπ/3α eiπ/3α β e−iπ/3β eiπ/3β

β β eiπ/3β e−iπ/3β −α e−i2π/3α ei2π/3α

PR Ē C̄3 C̄−1
3 σ̄v σ̄′v σ̄′′v

α −α ei2π/3α e−i2π/3α −β ei2π/3β e−i2π/3β

β −β e−i2π/3β ei2π/3β α eiπ/3α e−iπ/3α

3.6.5 Representation of Two-Spin Wavefunction

Subsequently, we can derive the transformation of the two-spin wavefunctions

using the matrix reprentations in Sec. A.1. The result is summarized in Table 3.11.
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Table 3.11: C3v symmetry operations on the two-spin wavefunction based on Eq. (3.32)

and Table 3.10.

PR E C3 C−1
3 σv σ′v σ′′v

αα αα e−i2π/3αα ei2π/3αα ββ e−i2π/3ββ ei2π/3ββ

αβ αβ αβ αβ −βα −βα −βα

ββ ββ ei2π/3ββ e−i2π/3ββ αα ei2π/3αα e−i2π/3αα

PR Ē C̄3 C̄−1
3 σ̄v σ̄′v σ̄′′v

αα αα e−i2π/3αα ei2π/3αα ββ e−i2π/3ββ ei2π/3ββ

αβ αβ αβ αβ −βα −βα −βα

ββ ββ ei2π/3ββ e−i2π/3ββ αα ei2π/3αα e−i2π/3αα

Furthermore, by using the projection operator, we can derive the represen-

tation that a spin wavefunction transforms to, as shown in Table 3.12. Below is one
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example,

PA1(αα, αβ, βα, ββ) =
1

12

 PE + PC3 + PC−1
3

+ Pσv + Pσ′v + Pσ′′v

+PĒ + PC̄3
+ PC̄−1

3
+ Pσ̄v + Pσ̄′v + Pσ̄′′v

 (αα, αβ, βα, ββ)

=
1

6

(
PE + PC3 + PC−1

3
+ Pσv + Pσ′v + Pσ′′v

)
(αα, αβ, βα, ββ)

=
1

6
(αα, αβ, βα, ββ)

×



1 + e−i2π/3 + ei2π/3 0 0 1 + ei2π/3 + e−i2π/3

0 2 −2 0

0 −2 2 0

1 + e−i2π/3 + ei2π/3 0 0 1 + ei2π/3 + e−i2π/3



=
1

6
(αα, αβ, βα, ββ)



0 0 0 0

0 2 −2 0

0 −2 2 0

0 0 0 0


=

1

3
(0, αβ − βα,−αβ + βα, 0)

=
1√
2

(0, αβ − βα,−αβ + βα, 0)

(3.45)

This example indicates that only ±(αβ − βα) transforms as A1.
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Table 3.12: Irreducible representation of two-spin wavefunctions.

Γ Two-particle wavefunction

A1 1/
√

2(αβ − βα)

A2 1/
√

2(αβ + βα)

Ex 1/
√

2(αα+ ββ)

Ey −i/
√

2(αα− ββ)

3.6.6 Representation of Total Wavefunction

After deriving all the irreducible representations of the orbital and spin parts,

we are ready to write the total wavefunctions, which are useful for understanding the

spin-orbit interaction matrix elements. The derivation procedure is similar but the
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projection operator works on the orbital part and spin part simultaneously.

PA1(ϕex1 ϕ
ex
2 ⊗ αα) =

1

12

[
PE + PC3 + PC−1

3
+ Pσv + Pσ′v + Pσ′′v

+ PĒ + PC̄3
+ PC̄−1

3
+ Pσ̄v + Pσ̄′v + Pσ̄′′v

]
(ϕex1 ϕ

ex
2 ⊗ αα)

=
1

6

[
3

4
(ϕex1 ϕ

ex
2 − ϕ

ey
1 ϕ

ey
2 )⊗ αα+ i

3

4
(ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2 )⊗ αα

+
3

4
(ϕex1 ϕ

ex
2 − ϕ

ey
1 ϕ

ey
2 )⊗ ββ − i3

4
(ϕex1 ϕ

ey
2 + ϕ

ey
1 ϕ

ex
2 )⊗ ββ

]

=
1

8

[
(ϕex1 ϕ

ex
2 − ϕ

ey
1 ϕ

ey
2 )⊗ (αα+ ββ)

+ i(ϕex1 ϕ
ey
2 + ϕ

ey
1 ϕ

ex
2 )⊗ (αα− ββ)

]

= 0

(3.46)

The zero result of the projection on ϕex1 ϕ
ex
2 ⊗ αα cannot be a basis function of total

wavefunction that transform as A1. In contrast, ϕex1 ϕ
ey
2 ⊗ αβ is a basis function which

can be used to generate its partner functions, and the linear combination of the basis

and its partner forms as total wavefunction that transforms as A1.

PA1(ϕex1 ϕ
ey
2 ⊗ αβ) =

1

12

[
PE + PC3 + PC−1

3
+ Pσv + Pσ′v + Pσ′′v

+ PĒ + PC̄3
+ PC̄−1

3
+ Pσ̄v + Pσ̄′v + Pσ̄′′v

]
(ϕex1 ϕ

ex
2 ⊗ αβ)

=
1

6

[
3

2
(ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2 )⊗ αβ

+
3

2
(ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2 )⊗ βα

]

=
1

4
(ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2 )⊗ (αβ + βα)

(3.47)

It is important to notice that while group theory provides information about
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symmetry and degeneracy, doesn’t ensure the antisymmetry that is required by Pauli’s

principle for fermions. Therefore, the total wavefunction must be verified for anti-

symmetry after performing the projection. Likewise, we can perform A2, Ex and Ey

projections, and the results are summarized in Table 3.13 and Table 3.14.

Table 3.13: Irreducible representation of ground state two-particle total wavefunctions.

The wavefunctions are normalized. For conciseness, the following notations are adopted

in this table, xy ± yx ≡ ϕex1 ϕ
ey
2 ±ϕ

ey
1 ϕ

ex
2 and xx± yy ≡ ϕex1 ϕ

ex
2 ±ϕ

ey
1 ϕ

ey
2 . The symmetry

of orbital part and spin part can be found in Table 3.8 and Table 3.12, respectively.

This table is consistent with that in Ref. [18, 1].

Electronic Total Symmetry Label SΓms

configuration wavefunction Γtot = Γorb ⊗ Γspin

ee

1
2

(xy − yx)⊗ (αβ + βα) A1 = A2 ⊗A2
3A0

2

1
2

(xy − yx)⊗ (αα− ββ) Ex = A2 ⊗ Ey 3A1
2 −3 A−1

2

1
2

(xy − yx)⊗ (αα+ ββ) Ey = A2 ⊗ Ex 3A1
2 +3 A−1

2

– A2 –

1
2

(xx− yy)⊗ (αβ − βα) Ex = Ex ⊗A1
1Ex

1
2

(xy + yx)⊗ (αβ − βα) Ey = Ey ⊗A1
1Ey

1
2

(xx+ yy)⊗ (αβ − βα) A1 = A1 ⊗A1
1A1
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Table 3.14: Irreducible representation of excited state two-particle total wavefunctions.

The wavefunctions are normalized. For conciseness, the following notations are adopted

in this table, a1x± xa1 ≡ ϕa11 ϕ
ex
2 ± ϕex1 ϕ

a1
2 and a1y ± ya1 ≡ ϕa11 ϕ

ey
2 ± ϕ

ey
1 ϕ

a1
2 . The

symmetry of orbital part and spin part can be found in Table 3.8 and Table 3.12,

respectively. This table is consistent with that in Ref. [18, 1].

Electronic Total Symmetry Label SΓms

configuration wavefunction Γtot = Γorb ⊗ Γspin

a1e

1
2
√
2

[
(a1x− xa1)⊗ (αα+ ββ)

+i(a1y − ya1)⊗ (αα− ββ)

] Ex = Ex ⊗ Ex − Ey ⊗ Ey 3E±1
x

1
2
√
2

[
(a1x− xa1)⊗ (αα− ββ)

+i(a1y − ya1)⊗ (αα+ ββ)

] Ey = Ex ⊗ Ey + Ey ⊗ Ex 3E±1
y

1
2

(a1y − ya1)⊗ (αβ + βα) Ex = Ey ⊗A2
3E0

x

1
2

(a1y − ya1)⊗ (αβ + βα) Ey = Ex ⊗A2
3E0

y

1
2
√
2

[
(a1x− xa1)⊗ (αα+ ββ)

−i(a1y − ya1)⊗ (αα− ββ)

] A1 = Ex ⊗ Ex + Ey ⊗ Ey 3A±1
1

1
2
√
2

[
(a1x− xa1)⊗ (αα− ββ)

−i(a1y − ya1)⊗ (αα+ ββ)

] A2 = Ex ⊗ Ey − Ey ⊗ Ex 3A±1
2

1
2

(a1x+ xa1)⊗ (αβ − βα) Ex = Ex ⊗A1
1E′x

1
2

(a1y + ya1)⊗ (αβ − βα) Ey = Ey ⊗A1
1E′y

3.7 Spin-Orbit Coupling

Spin-orbit coupling (SOC) is important because it not only splits degenerate

states by energy splitting, but also couples electronic states of different spins and en-

ables intersystem crossing transition. We perform the symmetry analysis in order to
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understand the two points below,

• whether an SOC matrix element is allowed or forbidden

• what the SOC strength is based on the spin-orbit Hamiltonian and the total

wavefunctions.

The SOC arises from the interaction between the magnetic moment of an

electron’s spin and the magnetic field induced by its motion within the electric field of

a nucleus [84],

Hsoc =
1

2m2
ec

2
(∇V × p) · S

=
e

2m2
ec

2
(∇φpot × p) · S

(3.48)

where ~ is the Planck constant, me is the mass of electron, c is the speed of light,

V = eφpot is an electric potential, p = −i~∇ is momentum, S is the spin angular

momentum. Hsoc can be rewritten in terms of L · S with L standing for the orbital

angular momentum,

Hsoc =
e~

2m2
ec

2
L · S (3.49)

The orbital part L resembles (eya1 − a1ey,−exa1 + a1ex, exey − eyex) of the orbital

wavefunctions in Table 3.8. Also, by using the projection operator with an example as

below, we can label each component of L by the irreducible representations to which it

transforms

PA2∂xφpotpy =
1

6

(
PE + PC3 + PC−1

3
− Pσv − Pσ′v − Pσ′′v

)
∂xφpotpy (3.50)

= (∂xφpotpy − ∂yφpotpx) (3.51)
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The same as for the spin angular momentum with Sz = 1
2(|α〉〈α|−|β〉〈β|) as an example,

PA2Sz =
1

6

(
PE + PC3 + PC−1

3
− Pσv − Pσ′v − Pσ′′v

)
Sz (3.52)

=
1

2
(|α〉〈α| − |β〉〈β|) (3.53)

Then, we can write down the expression of the Hsoc in terms of the irreducible repre-

sentations as follows,

Hsoc =
e~

2m2
ec

2
(LEy ,−LEx , LA2) · (SEy ,−SEx , SA2)

=
e~

2m2
ec

2
(LEySEy + LExSEx + LA2SA2)

(3.54)

Hsoc =
λ⊥
2

(L+S− + L−S+) + λzLzSz

= λ⊥(LEySEy + LExSEx) + λzL
A2SA2

(3.55)

Here, L± and S± are the ladder operators for orbital angular momentum and spin

angular momentum, respectively. They are associated with the nonaxial part λ⊥ of

SOC, while Lz and Sz are associated with the axial part λz of the SOC.

Then we use the selection rule to determine if an SOC matrix element is

vanishing or not. Because only the matrix element that is invariant under all symmetry

operations can survive, a matrix element can be nonvanishing if and only if the direct

product of the matrix element includes the total symmetry irreducible representation

A1, i.e. the result of direct product A1 ∈ {Γ(f)
α ⊗ Γint ⊗ Γ

(i)
β }, where Γint denotes the

representation of the interaction Hamiltonian 6 [79].

The following procedures help understand whether an SOC matrix element is

nonvanishing:

6See details on page 359 of Ref. [79]
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1. If Hsoc transforms as A1 [85], then it will require A1 ∈ Γ
(f)
α ⊗ Γ

(i)
β

2. If step 1 is satisfied, it will need to check the representation of the orbital matrix

element and spin matrix element by using theWigner-Echkart theorem

The SOC hamiltonian above is general and contains the contribution from

both the one-particle SOC and two-particle SOC [86]. For the defects like the NV

center whose SOC interaction is weak, we consider the spin of electron mainly interacts

with its own orbital. Therefore, we can write

LS = L1S1 + L2S2 (3.56)

Then we can use the Wigner-Eckart theorem with the Clebsch–Gordan coeffi-

cients (CGC) to estimate the SOC strength [85]. The Wigner-Eckart theorem enables

the decomposition of a total wavefunction into the product of the orbital part and the

spin part, which can be further decomposed into the product of CGC, a unitary matrix,

and the part that is independent of angular momentum orientation.

〈
Ψ(Γr)α

∣∣∣Hsoc

∣∣∣Ψ(Γs)α
〉

=
2∑
j=1

∑
p,β

〈
Ψ(Γr)α

∣∣∣L(Γp)β
j S

(Γp)β
j

∣∣∣Ψ(Γs)α
〉

=

2∑
j=1

∑
p,β

∑
γ,λ,γ′,λ′

Γk Γl Γr

γ λ α


∗Γk′ Γl′ Γs

γ′ λ′ α


×
〈
φ(Γk)γ

∣∣∣L(Γp)β
j

∣∣∣φ(Γk′ )γ′
〉 〈

ν(Γl)λ
∣∣∣S(Γp)β
j

∣∣∣ν(Γl′ )λ′
〉

(3.57)

where α, r and s indicate that the total wavefunctions belong to the α-th row of the

r-th and s-th representations, j denotes the particle index, p and β indicate that the

orbital angular momentum L and spin angular momentum S belong to the β-th row of
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p-th representation, k and γ denote the γ-th row of k-th representation that the orbital

wavefunction transforms, and l and λ denote the λ-th row of l-th representation that

the spin wavefunction transforms.

The Clebsch–Gordan coefficient is obtained by decomposed the total wave-

function as the product of the orbital part and the spin part,

∣∣∣Ψ(Γr)
α

〉
=
∑
γ,λ

k l Γr

γ λ α

∣∣∣φkγ〉 ∣∣∣νlλ〉 (3.58)

In Sec. 3.7.1, the analytic expression of Clebsch–Gordan coefficient is presented, along

with the explicit CGC for C3v symmetry. Similar table of CGC can be found in Ref. [85,

82].

3.7.1 Clebsch–Gordan Coefficients

The formulas of CGC can be drived by the orthogonality and completeness,Γj Γj′ Γ

α0 β0 γ0

 =

√√√√ lΓ
h

∑
g∈G

D
(Γj)
α0α0(g)D

(Γj′ )

β0β0
(g)D

(Γ∗)
γ0γ0(g) (3.59)

Γj Γj′ Γ

α β γ

 =
1Γj Γj′ Γ

α0 β0 γ0


lΓ
h

∑
g∈G

D
(Γj)
αα0 (g)D

(Γj′ )

ββ0
(g)D(Γ∗)

γγ0 (g) (3.60)

The CG coefficients of C3v group can be derived as follows,A1 A1 A1

1 1 1

 =

A1 A2 A2

1 1 1

 = 1 (3.61)
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A2 A1 A2

1 1 1

 =

A2 A2 A1

1 1 1

 = 1 (3.62)

A1 E E

1 µ ν

 =

E A1 E

µ 1 ν

 =

1 0

0 1


µν

(3.63)

A2 E E

1 µ ν

 =

E A2 E

µ 1 ν

 =

 0 1

−1 0


µν

(3.64)

E E A1

µ ν 1

 =
1√
2

1 0

0 1


µν

(3.65)

E E A2

µ ν 1

 =
1√
2

 0 1

−1 0


µν

(3.66)

E E E

µ ν 1

 =
1√
2

1 0

0 −1


µν

(3.67)

E E E

µ ν 2

 =
1√
2

0 1

1 0


µν

(3.68)

3.7.2 SOC Matrix Elements 〈3A0
2|Hsoc|1A1〉

Here, we evaluate the
〈

3A0
2

∣∣Hsoc

∣∣1A1

〉
matrix element, which will be shown

critical for the intersystem crossing 1Ẽ →3 Ã2 [68, 65]. Let Φ be two-particle wave-

function and ν be two-spin wavefunction, we can write the SOC matrix element as
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follows,

〈
3A0

2

∣∣Hsoc

∣∣1A1

〉
=
〈

3A0
2

∣∣LEySEy + LExSEx + LA2SA2
∣∣1A1

〉

=

A2 A2 A1

1 1 1


∗A1 A1 A1

1 1 1

 〈
ΦA2

∣∣LA2
∣∣ΦA1

〉 〈
νA2
∣∣SA2

∣∣νA1
〉

=
〈
ΦA2

∣∣LA2
∣∣ΦA1

〉 〈
νA2
∣∣SA2

∣∣νA1
〉

(3.69)

Using Eq. (3.57), we can decompose the matrix element into two one-particle matrix

element like Ref. [85],

〈
ΦA2

∣∣LA2
∣∣ΦA1

〉 〈
νA2
∣∣SA2

∣∣νA1
〉

=
( 〈

ΦA2
∣∣LA2
j=1

∣∣ΦA1
〉 〈
νA2
∣∣SA2
j=1

∣∣νA1
〉

+
〈
ΦA2

∣∣LA2
j=2

∣∣ΦA1
〉 〈
νA2
∣∣SA2
j=2

∣∣νA1
〉 ) (3.70)

Explicitly,

〈
ΦA2

∣∣LA2
j=1

∣∣ΦA1
〉

=
〈
ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2

∣∣LA2
j=1

∣∣ϕex1 ϕex2 + ϕ
ey
1 ϕ

ey
2

〉
=
( 〈
ϕex1 ϕ

ey
2

∣∣LA2
j=1

∣∣ϕex1 ϕex2 〉+
〈
ϕex1 ϕ

ey
2

∣∣LA2
j=1

∣∣ϕey1 ϕey2 〉
−
〈
ϕ
ey
1 ϕ

ex
2

∣∣LA2
j=1

∣∣ϕex1 ϕex2 〉− 〈ϕey1 ϕex2 ∣∣LA2
j=1

∣∣ϕey1 ϕey2 〉 )
=
( 〈
ϕex1 ϕ

ey
2

∣∣LA2
j=1

∣∣ϕey1 ϕey2 〉− 〈ϕey1 ϕex2 ∣∣LA2
j=1

∣∣ϕex1 ϕex2 〉 )
=
( 〈
ϕex1
∣∣LA2
j=1

∣∣ϕey1 〉− 〈ϕey1 ∣∣LA2
j=1

∣∣ϕex1 〉 )
(3.71)
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and

〈
ΦA2

∣∣LA2
j=2

∣∣ΦA1
〉

=
〈
ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2

∣∣LA2
j=2

∣∣ϕex1 ϕex2 + ϕ
ey
1 ϕ

ey
2

〉
=
( 〈
ϕex1 ϕ

ey
2

∣∣LA2
j=2

∣∣ϕex1 ϕex2 〉+
〈
ϕex1 ϕ

ey
2

∣∣LA2
j=2

∣∣ϕey1 ϕey2 〉
−
〈
ϕ
ey
1 ϕ

ex
2

∣∣LA2
j=2

∣∣ϕex1 ϕex2 〉− 〈ϕey1 ϕex2 ∣∣LA2
j=2

∣∣ϕey1 ϕey2 〉)
=
( 〈
ϕex1 ϕ

ey
2

∣∣LA2
j=2

∣∣ϕey1 ϕey2 〉− 〈ϕey1 ϕex2 ∣∣LA2
j=2

∣∣ϕex1 ϕex2 〉)
=
( 〈
ϕ
ey
2

∣∣LA2
j=2

∣∣ϕex2 〉− 〈ϕex2 ∣∣LA2
j=2

∣∣ϕey2 〉)
(3.72)

Here LA2
j=1 and LA2

j=2 are the orbital angular momentum operators acting on particle 1 and

2, respectively. Using particle 1 as an example, it can be seen that
〈
ϕex1 ϕ

ey
2

∣∣LA2
j=1

∣∣ϕex1 ϕex2 〉
and

〈
ϕ
ey
1 ϕ

ex
2

∣∣LA2
j=1

∣∣ϕey1 ϕey2 〉 vanish because Ex ⊗ A2 ⊗ Ex = Ey ⊗ A2 ⊗ Ey = 0. The

nonzero matrix elements in one-particle format can be further reduced by using the CG

coefficients,

〈
ϕex1
∣∣LA2
j=1

∣∣ϕey1 〉 =

E A2 E

2 1 1

 〈ψe|LA2
j=1|ψ

e〉 = −〈e||LA2 ||e〉 (3.73)

〈
ϕ
ey
1

∣∣LA2
j=1

∣∣ϕex1 〉 =

E A2 E

1 1 2

 〈ψe|LA2
j=1|ψ

e〉 = 〈e||LA2 ||e〉 (3.74)

Therefore, the orbital angular momenta of particle 1 and 2 between states
∣∣3A2

〉0
and∣∣1A1

〉
are

〈
ΦA2

∣∣LA2
j=1

∣∣ΦA1
〉

= −2 〈e||LA2 ||e〉 (3.75)

〈
ΦA2

∣∣LA2
j=2

∣∣ΦA1
〉

= 2 〈e||LA2 ||e〉 (3.76)
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Next we evaluate the spin matrix element in the same way as for the orbital part by

using the spin wavefunctions in Table 3.12 and Table 3.13,

〈
νA2
∣∣SA2
j=1

∣∣νA1
〉

= ~ 〈αβ + βα|SA2
j=1|αβ − βα〉

= 〈αβ|SA2
j=1|αβ〉 − 〈αβ|S

A2
j=1|βα〉+ 〈βα|SA2

j=1|αβ〉 − 〈βα|S
A2
j=1|βα〉

= 〈αβ|~
2

(|α〉〈α| − |β〉〈β|)j=1|αβ〉 − 〈βα|
~
2

(|α〉〈α| − |β〉〈β|)j=1|βα〉

=
~
2

(〈α|α〉 〈α|α〉+ 〈β|β〉 〈β|β〉)

= ~

(3.77)

and〈
νA2
∣∣SA2
j=2

∣∣νA1
〉

= ~ 〈αβ + βα|SA2
j=2|αβ − βα〉

= 〈αβ|SA2
j=2|αβ〉 − 〈αβ|S

A2
j=2|βα〉+ 〈βα|SA2

j=2|αβ〉 − 〈βα|S
A2
j=2|βα〉

= 〈αβ|~
2

(|α〉〈α| − |β〉〈β|)j=2|αβ〉 − 〈βα|
~
2

(|α〉〈α| − |β〉〈β|)j=2|βα〉

=
~
2

(−〈β|β〉 〈β|β〉 − 〈α|α〉 〈α|α〉)

= −~

(3.78)

Finally, by summing over the product of the orbital part and the spin part of par-

ticles 1 and 2, and taking the CGC (the value is 1) and the normalization factor

(|Ψ〉 = 1/
√
Nλ!a†λ |0〉, Nλ denotes the number of creator a†λ, so the value is 1/2) of

the wavefunction into consideration, we can find

〈
3A0

2

∣∣Hsoc

∣∣1A1

〉
= −2~ 〈e||LA2 ||e〉 (3.79)

The value −2~ 〈e||LA2 ||e〉 is the same as that in Tabel 2 and Table 4 of Ref. [18].
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3.7.3 SOC Matrix Elements
〈

3A1
2 −3 A−1

2

∣∣Hsoc

∣∣1E ′x〉
This

〈
3A1

2 −3 A−1
2

∣∣Hsoc

∣∣1E′x〉 SOC matrix element is found critical for the

1Ẽ →3 Ã2 ISC transition when
〈

3A1
2 −3 A−1

2

∣∣Hsoc

∣∣1Ex〉 is forbidden. Below is the

evaluation.〈
3A1

2 −3 A−1
2

∣∣Hsoc

∣∣1E′x〉 =
〈

3A1
2 −3 A−1

2

∣∣LEySEy + LExSEx + LA2SA2
∣∣1E′x〉

=

A2 E E

1 2 1


∗E A1 E

1 1 1


×
〈
ΦA2

∣∣LEy ∣∣ΦEx
〉 〈
νEy

∣∣SEy ∣∣νA1
〉

= −
〈
ΦA2

∣∣LEy ∣∣ΦEx
〉 〈
νEy

∣∣SEy ∣∣νA1
〉

= −

E E A2

2 1 1


E A1 E

2 1 2


×
〈

ΦA2

∣∣∣∣∣∣∣∣LE∣∣∣∣∣∣∣∣ΦE

〉 〈
νE
∣∣∣∣∣∣∣∣SE∣∣∣∣∣∣∣∣νA1

〉
=

1√
2

〈
ΦA2

∣∣∣∣∣∣∣∣LE∣∣∣∣∣∣∣∣ΦE

〉 〈
νE
∣∣∣∣∣∣∣∣SE∣∣∣∣∣∣∣∣νA1

〉

(3.80)

where the matrix element can be further reduced as below,

〈
ΦA2

∣∣LEy ∣∣ΦEx
〉

=

E E A2

2 1 1

 〈
ΦA2

∣∣∣∣∣∣∣∣LE∣∣∣∣∣∣∣∣ΦE

〉

= − 1√
2

〈
ΦA2

∣∣∣∣∣∣∣∣LE∣∣∣∣∣∣∣∣ΦE

〉 (3.81)

Using Eq. (3.57), we can decompose the matrix element into two one-particle matrix

element like Ref. [85],〈
ΦA2

∣∣LEy ∣∣ΦEx
〉 〈
νEy

∣∣SEy ∣∣νA1
〉

=
( 〈

ΦA2
∣∣LEyj=1

∣∣ΦEx
〉 〈
νEy

∣∣SEyj=1

∣∣νA1
〉

+
〈
ΦA2

∣∣LEyj=2

∣∣ΦEx
〉 〈
νEy

∣∣SEyj=2

∣∣νA1
〉) (3.82)
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〈
ΦA2

∣∣LEyj=1

∣∣ΦEx
〉

=
〈
ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2

∣∣LEyj=1

∣∣ϕa11 ϕ
ex
2 + ϕex1 ϕ

a1
2

〉
= −

〈
ϕ
ey
1 ϕ

ex
2

∣∣LEyj=1

∣∣ϕa11 ϕ
ex
2

〉
= −

〈
ϕ
ey
1

∣∣LEyj=1

∣∣ϕa11

〉
= −

E A1 E

2 1 2

 〈ψe|LEj=1|ϕ
a1
1 〉

= −〈e||LE ||a1〉

(3.83)

〈
ΦA2

∣∣LEyj=2

∣∣ΦEx
〉

=
〈
ϕex1 ϕ

ey
2 − ϕ

ey
1 ϕ

ex
2

∣∣LEyj=2

∣∣ϕa11 ϕ
ex
2 + ϕex1 ϕ

a1
2

〉
=
〈
ϕex1 ϕ

ey
2

∣∣LEyj=2

∣∣ϕex1 ϕa12

〉
=
〈
ϕ
ey
2

∣∣LEyj=2

∣∣ϕa12

〉
=

E A1 E

2 1 2

 〈ϕe2|LEj=2|ϕ
a1
2 〉

= 〈e||LE ||a1〉

(3.84)

On the other hand, the spin matrix elements evaluated in the same way as for the orbital

part by using the spin wavefunctions in Table 3.12, Table 3.13 and Table 3.14 are as
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follows,

〈
νEy

∣∣SEyj=1

∣∣νA1
〉

= 〈αα− ββ|SEyj=1|αβ − βα〉

= 〈αα|SEyj=1|αβ〉 − 〈αα|S
Ey
j=1|βα〉 − 〈ββ|S

Ey
j=1|αβ〉+ 〈ββ|SEyj=1|βα〉

= −〈αα|~
2

(|α〉〈β|+ |β〉〈α|)j=1|βα〉 − 〈ββ|
~
2

(|α〉〈β|+ |β〉〈α|)j=1|αβ〉

= −〈α|~
2

(|α〉〈β|+ |β〉〈α|)j=1|β〉 − 〈β|
~
2

(|α〉〈β|+ |β〉〈α|)j=1|α〉

= −~
2

(〈α|α〉 〈β|β〉+ 〈β|β〉 〈α|α〉)

= −~

(3.85)

and

〈
νEy

∣∣SEyj=2

∣∣νA1
〉

= 〈αα− ββ|SEyj=2|αβ − βα〉

= 〈αα|SEyj=2|αβ〉 − 〈αα|S
Ey
j=2|βα〉 − 〈ββ|S

Ey
j=2|αβ〉+ 〈ββ|SEyj=2|βα〉

= 〈αα|~
2

(|α〉〈β|+ |β〉〈α|)j=2|αβ〉+ 〈ββ|~
2

(|α〉〈β|+ |β〉〈α|)j=2|βα〉

= 〈α|~
2

(|α〉〈β|+ |β〉〈α|)j=2|β〉+ 〈β|~
2

(|α〉〈β|+ |β〉〈α|)j=2|α〉

=
~
2

(〈α|α〉 〈β|β〉+ 〈β|β〉 〈α|α〉)

= ~

(3.86)

By summing up the SOC of the two particles and taking the CGC (the value is 1/
√

2)

and normalization factor (the value is 1/2) of the wavefunctions into consideration, the

total SOC matrix element is

〈
3A1

2 −3 A−1
2

∣∣Hsoc

∣∣1E′x〉 =
1√
2
~ 〈e||LE ||a1〉 (3.87)
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The value 1/
√

2~ 〈e||LE ||a1〉 is the same as that (1/
√

2~ 〈e||λE ||a1〉) in Tabel 2 and

Table 4 of Ref. [18].

3.7.4 〈3A0
2|Hsoc|1A1〉 vs

〈
3A1

2 −3 A−1
2

∣∣Hsoc

∣∣1E ′x〉
We obtain the SOC matrix element

〈
3A0

2

∣∣Hsoc

∣∣1A1

〉
in Eq. (3.79), and SOC

matrix element
〈

3A1
2 −3 A−1

2

∣∣Hsoc

∣∣1E′x〉 in Eq. (3.87). They are expressed in terms

of the reduced one-particle matrix elements. Ignoring the factor of 1/
√

2 from CGC

for
〈

3A1
2 −3 A−1

2

∣∣Hsoc

∣∣1E′x〉, they differ by a factor of 1/2, which is simply due to the

different number of reduced matrix elements. Specifically,
〈

3A0
2

∣∣Hsoc

∣∣1A1

〉
has four

reduced one-particle matrix elements being nonzero, and
〈

3A1
2 −3 A−1

2

∣∣Hsoc

∣∣1E′x〉 only

has two out of four being nonzero.

In Ref. [18], the unit SOC strengths for the axial and nonaxial components are

defined based on the reduced one-particle matrix elements, i.e.

λz = −i~ 〈e||LA2 ||e〉 (3.88)

λ⊥ = − i√
2
~ 〈e||LE ||a1〉 (3.89)

With these unit SOC, we can find

〈
3A0

2

∣∣Hsoc

∣∣1A1

〉
= −2iλz (3.90)

〈
3A1

2 −3 A−1
2

∣∣Hsoc

∣∣1E′x〉 = iλ⊥ (3.91)

According to the SOC matrix elements are evaluated with one-particle wavefunctions,

we can understand the factor of 2 for
〈

3A0
2

∣∣Hsoc

∣∣1A1

〉
, as well as the factor of 1 for〈

3A1
2 −3 A−1

2

∣∣Hsoc

∣∣1E′x〉 that are adopted for ISC rate calculations in Ref. [68].
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However, we directly evaluate the SOC matrix elements with wavefunctions

that already include multi-reference character in our calculation, instead of using the

one-particle wavefunctions. Therefore, we do not need to consider the number of reduced

matrix elements and the CGC but only focus on whether an SOC matrix element is

allowed or forbidden.

3.7.5 Axial SOC
〈

1A1

∣∣Hsoc

∣∣3E0
x/

3E0
y

〉
Here we show that the

〈
1A1

∣∣Hsoc

∣∣3E0
x/

3E0
y

〉
SOC matrix element is zero. By

using the Wigner-Eckart Theorem and wavefunctions in Table 3.13 and Table 3.14, the

matrix element is written as

〈
1A1

∣∣Hsoc

∣∣3E0
x/

3E0
y

〉
=

2∑
j=1

〈
1A1

∣∣LA2
j SA2

j

∣∣3E0
x/

3E0
y

〉

=
2∑
j=1

2∑
i=1

A1 A1 A1

1 1 1


∗E A2 E

i 1 k


×
〈
ϕa11

∣∣LA2
j

∣∣ψEi〉 〈νA1
∣∣SA2
j

∣∣νA2
〉

(3.92)

i and k in the equation can take values 1 or 2 which corresponds to x or y, respectively.

The above Clebsch–Gordan coefficients can be found in Sec. 3.7.1. Because the orbital

matrix element transforms as {A1 ⊗ A2 ⊗ E} = {E} which does not include the total

symmetry A1, the matrix element vanishes.

3.7.6 Axial SOC in the Excited Triplet Manifold

All the SOC matrix elements of interest are estimated and summarized in

Table 5.2. One thing we can notice is that the following SOC splits the excited triplet
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manifold {3E±1
x , 3E±1

y , 3E0
x,

3E0
y ,

3A±1
1 , 3A±1

2 ,1E′x,
1E′y},

〈
3E±1

x

∣∣Hsoc

∣∣3E±1
x

〉
6= 0 (3.93)

〈
3E±1

y

∣∣Hsoc

∣∣3E±1
y

〉
6= 0 (3.94)

〈
3A±1

1

∣∣Hsoc

∣∣3A±1
1

〉
6= 0 (3.95)

〈
3A±1

2

∣∣Hsoc

∣∣3A±1
2

〉
6= 0 (3.96)

〈
3E0

x

∣∣Hsoc

∣∣3E0
x

〉
= 0 (3.97)

〈
3E0

y

∣∣Hsoc

∣∣3E0
y

〉
= 0 (3.98)

Below is the reason that some are nonzero but the others are zero. In terms of the

reduced one-particle format, we can write

〈
3E±1

x

∣∣Hsoc

∣∣3E±1
x

〉
=
〈

3E±1
x

∣∣LEySEy + LExSEx + LA2SA2
∣∣3E±1

x

〉
=
〈
ΦEx ⊗ νEx − ΦEy ⊗ νEy

∣∣LEySEy + LExSEx + LA2SA2
∣∣ΦEx ⊗ νEx − ΦEy ⊗ νEy

〉
=
( 〈

ΦEx
∣∣LA2

∣∣ΦEx
〉 〈
νEx

∣∣SA2
∣∣νEx〉+

〈
ΦEy

∣∣LA2
∣∣ΦEy

〉 〈
νEy

∣∣SA2
∣∣νEy〉 )

−
( 〈

ΦEx
∣∣LA2

∣∣ΦEy
〉 〈
νEx

∣∣SA2
∣∣νEy〉+

〈
ΦEy

∣∣LA2
∣∣ΦEx

〉 〈
νEy

∣∣SA2
∣∣νEx〉 )

=−
〈
ΦEx

∣∣LA2
∣∣ΦEy

〉 〈
νEx

∣∣SA2
∣∣νEy〉− 〈ΦEy

∣∣LA2
∣∣ΦEx

〉 〈
νEy

∣∣SA2
∣∣νEx〉

(3.99)
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Because
〈
ΦEx

∣∣LA2
∣∣ΦEx

〉
=
〈
ΦEy

∣∣LA2
∣∣ΦEy

〉
= 0, the first two terms are zero. Applying

the same method for the orbital part, we can have

〈
ΦEx

∣∣LA2
j=1

∣∣ΦEy
〉

=
〈
ϕa11 ϕ

ex
2 − ϕ

ex
1 ϕ

a1
2

∣∣LA2
j=1

∣∣ϕa11 ϕ
ey
2 − ϕ

ey
1 ϕ

a1
2

〉
=
〈
ϕex1 ϕ

a1
2

∣∣LA2
j=1

∣∣ϕey1 ϕa12

〉
=
〈
ϕex1
∣∣LA2

∣∣ϕey1 〉
=

A2 E E

1 2 1

 〈e||LA2 ||e〉

= −〈e||LA2 ||e〉

(3.100)

〈
ΦEx

∣∣LA2
j=2

∣∣ΦEy
〉

=
〈
ϕa11 ϕ

ex
2 − ϕ

ex
1 ϕ

a1
2

∣∣LA2
j=2

∣∣ϕa11 ϕ
ey
2 − ϕ

ey
1 ϕ

a1
2

〉
=
〈
ϕa11 ϕ

ex
2

∣∣LA2
j=2

∣∣ϕa11 ϕ
ey
2

〉
=
〈
ϕex1
∣∣LA2

∣∣ϕey1 〉
=

A2 E E

1 2 1

 〈e||LA2 ||e〉

= −〈e||LA2 ||e〉

(3.101)

and the spin part is as follows,

〈
νEx

∣∣SA2
j=1

∣∣νEy〉 =
~
2
〈αα+ ββ|(|α〉〈α| − |β〉〈β|)j=1|i(αα− ββ)〉

= i
~
2

( 〈αα|(|α〉〈α|)j=1|αα〉+ 〈ββ|(|β〉〈β|)j=1|ββ〉)

= i~

(3.102)

83



〈
νEx

∣∣SA2
j=2

∣∣νEy〉 =
~
2
〈αα+ ββ|(|α〉〈α| − |β〉〈β|)j=2|i(αα− ββ)〉

= i
~
2

( 〈αα|(|α〉〈α|)j=2|αα〉+ 〈ββ|(|β〉〈β|)j=2|ββ〉)

= i~

(3.103)

Finally. by considering the two-particle wavefunction normalization factor (1/2) and

the number of reduced one-particle matrix elements (in total 4), the SOC strength that

splits the triplet states is

〈
3E±1

x

∣∣Hsoc

∣∣3E±1
x

〉
= i~ 〈e||LA2 ||e〉 = −λz (3.104)

which is same as the result in Ref. [85, 18]. It should be noticed that here is the hole

representation of the wavefunctions used for the evaluation of SOC matrix elements,

there is sign reversed for the value7. The other axial SOC matrix elements that split

the triplet excited states can be evaluated likewise.

The nonaxial component is claimed to vanish because the orbital part of Hsoc

is Hermitian and purely imaginary, and the wavefunctions are real [85]. Mate et al.

state that the wavefunctions are numerically proven to be real [87], but the numerical

result is not found anywhere. The SOC matrix element for the states 3E0
x/

3E0
y is shown

to be zero because the spin part does not transform as A1,〈
3E0

x

∣∣Hsoc

∣∣3E0
x

〉
=
〈

3E0
x

∣∣LEySEy + LExSEx + LA2SA2
∣∣3E0

x

〉
= 〈Ey ⊗A2|LEySEy + LExSEx + LA2SA2 |Ey ⊗A2〉

= 〈Ey|LEy − LEx + LA2 |Ey〉 〈A2|SEy − SEx + SA2 |A2〉

= 0

(3.105)

7Mentioned in Ref. [1, 83] as “If a hole representation is chosen, some care must be taken, as some
interactions reverse their sign, such as the spin–orbit interaction.”
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This explains why the SOC Hamiltonian that describes splitting the triplet excited

states [1] can be written as

Hsoc = λz
(∣∣3A±1

1

〉〈
3A±1

1

∣∣+
∣∣3A±1

2

〉〈
3A±1

2

∣∣− ∣∣3E±1
x

〉〈
3E±1

x

∣∣− ∣∣3E±1
y

〉〈
3E±1

y

∣∣) (3.106)

Finally, the SOC matrix elements of interest are derived and tabulated in

Table 3.15.
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Table 3.15: SOC matrix element of NV center from group theory. Because Hsoc is

Hermitian, the upper half of the matrix element is sufficient. The result is consistent

with Table 2 in Ref. [18]. λz(λ⊥) denotes the nonzero matrix element due to axial

(nonaxial) SOC. The matrix elements here are expressed in terms of the reduced one-

particle matrix elements, λz = −i~ 〈e||LA2 ||e〉 and λ⊥ = −(i/
√

2)~ 〈e||LE ||a1〉. See the

derivation details in Sec. 3.7.2 and 3.7.3.

3A0
2

3A−1
2

3A1
2

1Ex 1Ey 1A1
3E±1

x
3E±1

y
3E0

x
3E0

y
3A±1

1
3A±1

2
1E′x

1E′y

3A0
2 0 0 0 0 0 −2iλz 0 0 0 0

√
2λ⊥ 0 0 0

3A−1
2 0 0 0 0 0 0 0 −λ⊥ −λ⊥ 0 0 iλ⊥ iλ⊥

3A1
2 0 0 0 0 0 0 −λ⊥ −λ⊥ 0 0 iλ⊥ iλ⊥

1Ex 0 0 0 −
√

2iλ⊥ 0 0 0 0 0 0 0

1Ey 0 0 0 −
√

2iλ⊥ 0 0 0 0 0 0

1A1 0 0 0 0 0
√

2iλ⊥ 0 0 0

3E±1
x −λz 0 0 0 0 0 0 0

3E±1
y −λz 0 0 0 0 0 0

3E0
x 0 0 0 0 −iλz 0

3E0
y 0 0 0 0 −iλz

3A±1
1 λz 0 0 0

3A±1
2 λz 0 0

1E′x 0 0

1E′y 0
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3.8 Configuration Interaction, Pseudo Jahn-Teller Effect

and Dynamical Jahn-Teller Effect on SOC

3.8.1 Configuration Interaction and Pseudo Jahn-Teller Effect on SOC

It can be noticed that all intersystem crossing transitions of interest turn

out to have finite values from experiments [88, 89, 4]. This implies that the axial〈
3E
∣∣Hsoc

∣∣1A1

〉
, nonaxial

〈
1E
∣∣Hsoc

∣∣3A2

〉
and axial

〈
1E
∣∣Hsoc

∣∣3A2

〉
SOC matrix elements

can be allowed. The discrepancy observed between experimental findings and the cur-

rent predictions of group theory highlights the need for finding underlying mechanisms

governing SOC. It implies that there might be transformative processes altering the

symmetries of these relevant electronic states, ultimately triggering significant changes

in the strength of the SOC.

Previous studies suggest that the mechanisms are configuration interaction [20]

and pseudo Jahn-Teller (JT) effect [68]. First, the configuration interaction leads to

electron-electron correlation in the singlet ground state
∣∣1E〉 and singlet excited state∣∣1E′〉 (singlet state of a1

1e
3 configuration), and causes mixing between

∣∣1E〉 and
∣∣1E′〉 [18,

1, 20]. In addition,
∣∣1A1

〉
and

∣∣1A′1〉 (singlet state of e4 configuration) were also claimed

to be coupled by configuration interaction, which could explain the blueshift of the

phonon side bands of
∣∣1A1

〉
→
∣∣1E〉 with respect to those of

∣∣3A2

〉
→
∣∣3E〉 [20]. This
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mixing of states results in the following linear combinations

∣∣1Ē〉 = C1

∣∣1E〉+
√

1− C2
1

∣∣1E′〉 (3.107)

∣∣1Ā1

〉
= C2

∣∣1A1

〉
+
√

1− C2
2

∣∣1A′〉 (3.108)

where C1 and C2 are the mixing coefficients. Our CASSCF calculation shows the

configuration interaction by the mixing coefficients, which can be seen in Table 3.16.

The effect of the configuration interaction on SOC is turning the originally symmetry-

forbidden λ⊥(1E,3A2) and λ⊥(1E,3E) into allowed, as can be seen in Table 3.17.

Table 3.16: Electronic configurations of the multi-particle states from SA(6)-

CASSCF(6,6) calculation using the C33H36N−1 cluster model. The composition of the

electronic configurations includes orbitals a1N , a1C , ex, ey, e
′
x and e′y. a1N is the a1

type orbital around the N atom, and a1C is the a1 type orbital around the C atom.

State
Configuration

Weight (%) Note
a1N a1C ey ex e′x e′y

3A2

↑↓ ↑↓ ↑ ↑ 94 Group theory prediction

↑↓ ↓ ↑ ↑ ↑ 1 –

3E

↑↓ ↑ ↑↓ ↑ 87 Group theory prediction

↑↓ ↑ ↓ ↑ ↑ 3 –

↑↓ ↑ ↑ ↑↓ 87 Group theory prediction

↑↓ ↑ ↓ ↑ ↑ 3 –
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State
Configuration

Weight (%) Note
a1N a1C ey ex e′x e′y

1E

↑↓ ↑↓ ↑ ↓ 77 Group theory prediction

↑↓ ↑ ↑↓ ↓ 17

1E − 1E′ coupling

due to configuration interaction

↑↓ ↑↓ ↑↓ 38 Group theory prediction

↑↓ ↑↓ ↑↓ 39 Group theory prediction

↑↓ ↑ ↓ ↑↓ 16

1E − 1E′ coupling

due to configuration interaction

1A1

↑↓ ↑↓ ↑↓ 33 Group theory prediction

↑↓ ↑↓ ↑↓ 33 Group theory prediction

↑↓ ↑↓ ↑↓ 21

1A1 − 1A′1 coupling

due to configuration interaction

and double excitation

↑↓ ↑ ↓ ↑ ↓ 3 Double excitation

The current theory with configuration interaction, however, does not fully ex-

plain experiments which show finite values for all the intersystem crossing between

triplet and singlet electronic states. In order to account for experimental observed

SOC, as suggested by Ref. [68], we can take pseudo JT effect to account for the ex-

perimental observation. Let the vibronic wave funciton expressed as below under the

Born–Oppenheimer approximation,

∣∣∣Ψ̃〉 =
∑
i,j,Γ

CΓ
i,j |ψi〉 ⊗

∣∣χΓ
i,j

〉
(3.109)

∣∣χΓ
i,j

〉
=

j−1∑
n+m=0

|nm〉Γ (3.110)

where
∣∣∣χΓ
i,j

〉
represents the vibrational wave functions that compose n active ex phonons
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Table 3.17: Summary of SOC matrix elements predicted by group theory, calculated at

the theory levels of CASSCF and TDDFT in this work, calculated in previous work at

DFT with HSE functional, and from experiments. The unit is GHz. “CI” stands for

configuration interaction that mixes
∣∣1E〉 and

∣∣1E′〉. Pseudo JT effect mixes
∣∣1A1

〉
and∣∣1E〉 through electron-phonon coupling, leading to nonzero SOCs. “–” denotes value

that does not exist or that is not found.

λz(3E,3 E) λ⊥(1A1,3 E) λz(1A1,3 E) λ⊥(1E,3 E) λz(1E,3 E)

Group Theory
1 ±λz i

√
2λ⊥ 0 −i

√
2λ⊥

nonzero

by CI

SA(10)-CASSCF(4,6) 7.56 2.04 0 7.95 1.562

SA(6)-CASSCF(6,6) 14.21 3.96 0.06 11.66 3.332

TDDFT – 6.12 0.001 9.38 8.90

(w/ pseudo JT) λz(3Ẽ,3 Ẽ) λ⊥(1Ã1,3 Ẽ) λz(1Ã1,3 Ẽ) λ⊥(1Ẽ,3 Ẽ) λz(1Ẽ,3 Ẽ)

Group Theory1 ±λz nonzero
nonzero by

pseudo JT

nonzero
nonzero

by CI

Effective SOC

SA(10)-CASSCF(4,6)

7.56 3.96 0.39 8.20 1.51

Effective SOC

SA(6)-CASSCF(6,6)

14.21 6.75 0.83 12.28 3.22

HSE [52, 68] 15.83 56.34 – – –

Expt. [88, 90] 5.33 6.47 – (nonzero) – –

90



λ⊥(3A2,1 A1) λz(3A2,1 A1) λ⊥(3A2,1 E) λz(3A2,1 E)

Group Theory
1 0 −i2λz

nonzero

by CI

0

SA(10)-CASSCF(4,6) 0 31.78 4.292 0

SA(6)-CASSCF(6,6) 0 31.09 5.222 0.03

TDDFT 1.87 0.001 8.18 50.37

(w/ pseudo JT) λ⊥(3Ã2,1 Ã1) λz(3Ã2,1 Ã1) λ⊥(3Ã2,1 Ẽ) λz(3Ã2,1 Ẽ)

Group Theory1
nonzero by

pseudo JT

nonzero
nonzero

by CI

nonzero by

pseudo JT

Effective SOC

SA(10)-CASSCF(4,6)

1.07 30.76 4.15 7.94

Effective SOC

SA(6)-CASSCF(6,6)

1.31 30.10 5.05 7.77

HSE [52, 68] – – 18.965 15.86

Expt. [88, 90] – – – (nonzero) – (nonzero)

1. The matrix elements here are expressed in terms of the reduced one-particle matrix elements, λz =

−i~ 〈e||LA2 ||e〉 and λ⊥ = −(i/
√

2)~ 〈e||LE ||a1〉.

2. The matrix element is nonzero because 1E coupled with singlet excited state 1E′ through configuration in-

teraction, and λz(3E,1 E′) is allowed. This coupling exists in CASSCF solutions, as can be seen in Table 3.16.

3. λz(3E,3 E) was calculated by 〈e+|Hsoc|e+〉 (with |e+〉 = 1√
2

(|ex〉+ i |ey〉)) at HSE [52]. The matrix element

reduced to 4.8 by a reduction factor.

4. λ⊥(1A1,3 E) was calculated by 〈e+|Hsoc|a1〉 (with |e+〉 = 1√
2

(|ex〉 + i |ey〉)) at HSE [52], assuming single-

particle picture and that KS wavefunctions constructed 3E and 1A1 did not differ [26].

5. λ⊥(3Ã2,1 Ẽ) was a parameter estimated by taking λ⊥(3Ã2,1 Ẽ)/λz(3Ã2,1 Ẽ) = 1.2 for matching it with

experiment [68].

6. λz(3Ã2,1 Ẽ) was calculated according to
〈
3E
∣∣Hsoc∣∣3E〉 = 〈e+|Hsoc|e+〉 [52, 68].

7. The matrix element is estimated by using the ratio λ⊥(→ 1A1)/λz(→ 1A1) = 1.2 [26].
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and m active ey phonons belonging to the i-th electronic state. The corresponding

structure distortion has Γ symmetry. CΓ
i,j is the amplitude or coefficient that weights

the vibronic state, and will be specifically replaced by cj , dj , fj , gj for electron-phonon

coupling from strong to weak. As only e phonons essentially break the symmetry by

geometry distortion, we only consider the JT-active e phonon modes in the phonon

configuration. For simplicity, electron coordinate and nuclear coordinate are included

implicitly. The vibronic wave function of
∣∣3A2

〉
is the direct product of the electronic

wave function and the vibrational wave functions since it is nondegenerate. As for
∣∣3E〉,

even though there is dynamical JT effect on 3E, the mixing degenerate electronic states

does not influence the SOC matrix elements other than λz(
3E,3E) which is discussed

in Sec. 3.8.2. Therefore, we also write its vibronic wave function as the direct product

of the electronic wave function and vibrational wave function. In addition, the pseudo

JT effect can be weak when the bandgap between the electronic states of interest are

large [65, 68]. Because
∣∣3A2

〉
and

∣∣3E〉 are separated by a large energy 1.945 eV, the

pseudo JT effect for these states be minuscule. Here, we write the vibronic states for

3A2 and 3E as,

∣∣∣3Ã2

〉
=
∣∣3A2

〉
⊗
∞∑
i=1

[
c′′′i

∣∣∣χA1
i

〉
+ d′′′i

∣∣∣χE+

i

〉
+ f ′′′i

∣∣∣χE−i 〉
+ g′′′i

∣∣∣χA2
i

〉]
(3.111)

∣∣∣3Ẽ〉 =
∣∣3E〉⊗ ∞∑

i=1

[
c′′i

∣∣∣χA1
i

〉
+ d′′i

∣∣∣χE+

i

〉
+ f ′′i

∣∣∣χE−i 〉
+ g′′i

∣∣∣χA2
i

〉]
(3.112)

The singlet states 1Ā1 and 1Ē are actually coupled by the electron-phonon
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coupling due to pseudo JT effect [68, 7]. The pseudo JT Hamiltonian is

H =


Λ 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

He

+
K

2
(Q2

x +Q2
y)︸ ︷︷ ︸

Hosc

+


0 FQx FQy

FQx 0 0

FQy 0 0


︸ ︷︷ ︸

HPJT

(3.113)

F =
〈

1A1

∣∣ ∂V
∂Qx

∣∣1Ex〉 =
〈

1A1

∣∣ ∂V
∂Qy

∣∣1Ey〉 (3.114)

Here, Λ is the energy gap between 1A1 and 1E. 1A1, 1Ex and 1Ey form the bases of the

Hamiltonian. F is the linear vibronic coupling constant. Due to the pseudo JT effect,

the eigenstates become the linear combination of the bases. By retaining the symmetry,

we can write the vibronic wave functions as below,

∣∣∣1Ẽx〉 =

∞∑
i=1

[
ci
∣∣1Ēx〉⊗ ∣∣∣χA1

i

〉
+ di

∣∣1A1

〉
⊗
∣∣∣χExi 〉

+
fi√

2

( ∣∣1Ēx〉⊗ ∣∣∣χExi 〉− ∣∣1Ēy〉⊗ ∣∣∣χEyi 〉)+ gi
∣∣1Ēy〉⊗ ∣∣∣χA2

i

〉] (3.115)

∣∣∣1Ẽy〉 =
∞∑
i=1

[
ci
∣∣1Ēy〉⊗ ∣∣∣χA1

i

〉
+ di

∣∣1A1

〉
⊗
∣∣∣χEyi 〉

+
fi√

2

( ∣∣1Ēx〉⊗ ∣∣∣χEyi 〉+
∣∣1Ēy〉⊗ ∣∣∣χExi 〉)+ gi

∣∣1Ēx〉⊗ ∣∣∣χA2
i

〉] (3.116)

∣∣∣1Ã1

〉
=
∞∑
i=1

[
c′i
∣∣1A1

〉
⊗
∣∣∣χA1
i

〉
+

d′i√
2

( ∣∣1Ēx〉⊗ ∣∣∣χExi 〉+
∣∣1Ēy〉⊗ ∣∣∣χEyi 〉)

]
(3.117)

These functions are written according to the quadratic functions in C3v point group

that x2− y2 and xz transform as Ex, that xy and yz transform as Ey, and that x2 + y2

and z2 transform as A1. Because the vibronic wave function
∣∣∣1Ẽx〉 and

∣∣∣1Ẽy〉 are
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degenerate, each term of
∣∣∣1Ẽx〉 has the same amplitude as that of

∣∣∣1Ẽy〉. Alternatively,

we can rewrite these vibronic wave functions according to the other notation |E±〉 =(
|Ex〉 ± i |Ey〉

)
/
√

2. Since

|E±〉 ⊗ |E∓〉 =
1

2

(
|Ex〉 ± i |Ey〉

)
⊗
(
|Ex〉 ∓ i |Ey〉

)
=

1

2

(
|Ex〉 ⊗ |Ex〉+ |Ey〉 ⊗ |Ey〉

) (3.118)

|E±〉 ⊗ |E±〉 =
1

2

(
|Ex〉 ± i |Ey〉

)
⊗
(
|Ex〉 ± i |Ey〉

)
=

1

2

[
|Ex〉 ⊗ |Ex〉 − |Ey〉 ⊗ |Ey〉 ± i

(
|Ex〉 ⊗ |Ey〉+ |Ey〉 ⊗ |Ex〉

)]
(3.119)

we can find∣∣∣1Ẽ±〉 =
1√
2

( ∣∣∣1Ẽx〉± i ∣∣∣1Ẽy〉)
=
∞∑
i=1

[
ci
∣∣1Ē±〉⊗ ∣∣∣χA1

i

〉
+ di

∣∣1A1

〉
⊗
∣∣∣χE±i 〉

+ fi
∣∣1Ē±〉⊗ ∣∣∣χE±i 〉

± igi
∣∣1Ē∓〉⊗ ∣∣∣χA2

i

〉]

=
∞∑
i=1

[
ci
∣∣1Ē±〉⊗ ∣∣∣χA1

i

〉
+ di

∣∣1A1

〉
⊗
∣∣∣χE±i 〉

+ fi
∣∣1Ē±〉⊗ ∣∣∣χE±i 〉

+ gi
∣∣1Ē∓〉⊗ ∣∣∣χA2

i

〉]

(3.120)

∣∣∣1Ã1

〉
=
∞∑
i=1

[
c′i
∣∣1A1

〉
⊗
∣∣∣χA1
i

〉
+

d′i√
2

( ∣∣1Ē+

〉
⊗
∣∣∣χE−i 〉

+
∣∣1Ē−〉⊗ ∣∣∣χE+

i

〉)]
(3.121)

Here, a factor of ±i is implicitly contained in the amplitude gi in Eq. (3.120) when using

the E± notation. The normalization factor of 1/
√

2 is implicitly contained in all the

coefficients.

The states mixing due to the configuration interaction and pseudo JT effect

turn the originally forbidden SOC matrix elements into nonzero by the sum of multiple
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SOC components. Here, we write down the nonzero matrix elements which contain the

totally symmetric component than transforms as A1,〈
1Ã1

∣∣∣Hsoc

∣∣∣3Ẽ〉 =

∞∑
i,j=1

[
c′ic
′′
j

〈
1A1

∣∣Hsoc

∣∣3E〉⊗ 〈χA1
i

∣∣∣χA1
j

〉
+
d′if
′′
j√
2

〈
1Ē+

∣∣Hsoc

∣∣3E〉⊗ 〈χE−i ∣∣∣χE−j 〉
+
d′id
′′
j√
2

〈
1Ē−

∣∣Hsoc

∣∣3E〉⊗ 〈χE+

i

∣∣∣χE+

j

〉]
(3.122)

〈
3Ã2

∣∣∣Hsoc

∣∣∣1Ẽ±〉 =
∞∑

i,j=1

[
cjc
′′′
i

〈
3A2

∣∣∣Hsoc

∣∣∣1Ẽ±〉⊗ 〈χA1
i

∣∣∣χA1
j

〉
+ dj

〈
3A2

∣∣Hsoc

∣∣1A1

〉
⊗
(
d′′′i

〈
χ
E+

i

∣∣∣χE±j 〉
+ f ′′′i

〈
χ
E−
i

∣∣∣χE±j 〉)
+ fj

〈
3A2

∣∣Hsoc

∣∣1Ē±〉⊗ (d′′′i 〈χE+

i

∣∣∣χE±j 〉
+ f ′′′i

〈
χ
E−
i

∣∣∣χE±j 〉)
+ gjg

′′′
i

〈
3A2

∣∣Hsoc

∣∣1Ē∓〉⊗ 〈χA2
i

∣∣∣χA2
j

〉]

(3.123)

〈
1Ẽ±

∣∣∣Hsoc

∣∣∣3Ẽ〉 =
∞∑

i,j=1

[
cic
′′
j

〈
1Ē±

∣∣Hsoc

∣∣3E〉⊗ 〈χA1
i

∣∣∣χA1
j

〉
+ di

〈
1A1

∣∣Hsoc

∣∣3E〉⊗ (d′′j 〈χE±i ∣∣∣χE+

j

〉
+ f ′′j

〈
χ
E±
i

∣∣∣χE−j 〉)
+ fi

〈
1Ē±

∣∣Hsoc

∣∣3E〉⊗ (d′′j 〈χE±i ∣∣∣χE+

j

〉
+ f ′′i

〈
χ
E±
i

∣∣∣χE+

j

〉)
+ gjg

′′
i

〈
1Ē∓

∣∣Hsoc

∣∣3E〉⊗ 〈χA2
i

∣∣∣χA2
j

〉]
(3.124)

〈
3Ã2

∣∣∣Hsoc

∣∣∣1Ã1

〉
=

∞∑
i,j=1

[
c′jc
′′′
i

〈
3A2

∣∣Hsoc

∣∣1A1

〉
⊗
〈
χA1
i

∣∣∣χA1
j

〉
+
d′jf
′′′
i√
2

〈
3A2

∣∣Hsoc

∣∣1Ē+

〉
⊗
〈
χ
E−
i

∣∣∣χE−j 〉
+
d′jd
′′′
i√
2

〈
3A2

∣∣Hsoc

∣∣1Ē−〉⊗ 〈χE+

i

∣∣∣χE+

j

〉]
(3.125)
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Separating the parallel and perpendicular parts of the SOC matrix element

according to symmetry analysis by group theory, it can be found that

〈
1Ã1

∣∣∣Hsoc

∣∣∣3Ẽ〉
z

=

∞∑
i,j=1

[
d′if
′′
j√
2

〈
1Ē+

∣∣Hsoc

∣∣3E〉
z
⊗
〈
χ
E−
i

∣∣∣χE−j 〉

+
d′id
′′
j√
2

〈
1Ē−

∣∣Hsoc

∣∣3E〉
z
⊗
〈
χ
E+

i

∣∣∣χE+

j

〉] (3.126)

〈
1Ã1

∣∣∣Hsoc

∣∣∣3Ẽ〉
⊥

=
∞∑

i,j=1

[
c′ic
′′
j

〈
1A1

∣∣Hsoc

∣∣3E〉⊥ ⊗ 〈χA1
i

∣∣∣χA1
j

〉
+
d′if
′′
j√
2

〈
1Ē+

∣∣Hsoc

∣∣3E〉⊥ ⊗ 〈χE−i ∣∣∣χE−j 〉
+
d′id
′′
j√
2

〈
1Ē−

∣∣Hsoc

∣∣3E〉⊥ ⊗ 〈χE+

i

∣∣∣χE+

j

〉]
(3.127)

〈
3Ã2

∣∣∣Hsoc

∣∣∣1Ẽ±〉
z

=
∞∑

i,j=1

dj
〈

3A2

∣∣Hsoc

∣∣1A1

〉
z
⊗
(
d′′′i

〈
χ
E+

i

∣∣∣χE±j 〉
+ f ′′′i

〈
χ
E−
i

∣∣∣χE±j 〉)

(3.128)

〈
3Ã2

∣∣∣Hsoc

∣∣∣1Ẽ±〉
⊥

=

∞∑
i,j=1

[
cjc
′′′
i

〈
3A2

∣∣Hsoc

∣∣1Ē±〉⊥ ⊗ 〈χA1
i

∣∣∣χA1
j

〉
+ fj

〈
3A2

∣∣Hsoc

∣∣1Ē±〉⊥ ⊗ (d′′′i 〈χE+

i

∣∣∣χE±j 〉
+ f ′′′i

〈
χ
E−
i

∣∣∣χE±j 〉)
+ gjg

′′′
i

〈
3A2

∣∣Hsoc

∣∣1Ē∓〉⊥ ⊗ 〈χA2
i

∣∣∣χA2
j

〉]

(3.129)
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〈
1Ẽ±

∣∣∣Hsoc

∣∣∣3Ẽ〉
z

=
∞∑

i,j=1

[
cic
′′
j

〈
1Ē±

∣∣Hsoc

∣∣3E〉
z
⊗
〈
χA1
i

∣∣∣χA1
j

〉
+ fi

〈
1Ē±

∣∣Hsoc

∣∣3E〉
z
⊗
(
d′′j

〈
χ
E±
i

∣∣∣χE+

j

〉
+ f ′′i

〈
χ
E±
i

∣∣∣χE+

j

〉)
+ gjg

′′
i

〈
1Ē∓

∣∣Hsoc

∣∣3E〉
z
⊗
〈
χA2
i

∣∣∣χA2
j

〉]

(3.130)

〈
1Ẽ±

∣∣∣Hsoc

∣∣∣3Ẽ〉
⊥

=
∞∑

i,j=1

[
cic
′′
j

〈
1Ē±

∣∣Hsoc

∣∣3E〉⊥ ⊗ 〈χA1
i

∣∣∣χA1
j

〉
+ di

〈
1A1

∣∣Hsoc

∣∣3E〉⊥ ⊗ (d′′j 〈χE±i ∣∣∣χE+

j

〉
+ f ′′j

〈
χ
E±
i

∣∣∣χE−j 〉)
+ fi

〈
1Ē±

∣∣Hsoc

∣∣3E〉⊥ ⊗ (d′′j 〈χE±i ∣∣∣χE+

j

〉
+ f ′′i

〈
χ
E±
i

∣∣∣χE+

j

〉)
+ gjg

′′
i

〈
1Ē∓

∣∣Hsoc

∣∣3E〉⊥ ⊗ 〈χA2
i

∣∣∣χA2
j

〉]

(3.131)

〈
3Ã2

∣∣∣Hsoc

∣∣∣1Ã1

〉
z

=
∞∑

i,j=1

c′jc
′′′
i

〈
3A2

∣∣Hsoc

∣∣1A1

〉
z
⊗
〈
χA1
i

∣∣∣χA1
j

〉
(3.132)

〈
3Ã2

∣∣∣Hsoc

∣∣∣1Ã1

〉
⊥

=

∞∑
i,j=1

[
d′jf
′′′
i√
2

〈
3A2

∣∣Hsoc

∣∣1Ē+

〉
⊥ ⊗

〈
χ
E−
i

∣∣∣χE−j 〉

+
d′jd
′′′
i√
2

〈
3A2

∣∣Hsoc

∣∣1Ē−〉⊥ ⊗ 〈χE+

i

∣∣∣χE+

j

〉] (3.133)

The exact evaluation of the matrix elements requires all the state-mixing co-

efficients and all phonons of the electronic states 3A2, 1E, 1A1 and 3E. This is highly

computation-intensive even though it is possible with the optimized geometry of the sin-

glet states 1Ē and 1A1 by spin-flip TDDFT [7]. Alternatively, we can take the effective

one-dimensional (1D) phonon approximation, which greatly simplifies the evaluation of
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spin-mixing coefficients. The approximation is valid when the electron-phonon coupling

is not weak or moderate [66, 91]. A comparison between the 1D Huang-Rhys (HR)

factor and the full-phonon HR factor is shown for validation of this approximation in

Table 3.18.

Table 3.18: Comparison between one-dimensional Huang-Rhys factor (S1D) and full-

phonon Huang-Rhys factor (Sfull). For these HR factors, the optimized geometries at

HSE are used. The phonon modes are calculated at PBE since phonon modes at PBE

and HSE are similar [19].

Cell size HR factor 3E →1 A1
1E →3 A2

3× 3× 3
S1D 0.45 3.38

Sfull 0.42 3.12

Under this approximation, we can separate the spin-orbit-phonon entangled

SOC matrix elements into the effective SOC matrix elements and the effective phonon
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wavefunction overlap
〈
χΓf

∣∣χΓi
〉
. With the effective SOC matrix elements,

λz(
1Ã1,

3 Ẽ) = d′eff
〈

1Ē±
∣∣Hsoc

∣∣3E〉
z

(3.134)

λ⊥(1Ã1,
3 Ẽ) = c′eff

〈
1A1

∣∣Hsoc

∣∣3E〉⊥ + d′eff
〈

1Ē±
∣∣Hsoc

∣∣3E〉⊥ (3.135)

λz(
3Ã2,

1 Ẽ±) = deff
〈

3A2

∣∣Hsoc

∣∣1A1

〉
z

(3.136)

λ⊥(3Ã2,
1 Ẽ±) = ceff

〈
3A2

∣∣Hsoc

∣∣1Ē±〉⊥ + feff
〈

3A2

∣∣Hsoc

∣∣1Ē±〉⊥
+ geff

〈
3A2

∣∣Hsoc

∣∣1Ē∓〉⊥
(3.137)

λz(
1Ẽ±,

3Ẽ) = ceff
〈

1Ē±
∣∣Hsoc

∣∣3E〉
z

+ feff
〈

1Ē±
∣∣Hsoc

∣∣3E〉
z

+ geff
〈

1Ē∓
∣∣Hsoc

∣∣3E〉
z

(3.138)

λ⊥(1Ẽ±,
3Ẽ) = ceff

〈
1Ē±

∣∣Hsoc

∣∣3E〉⊥ + deff
〈

1A1

∣∣Hsoc

∣∣3E〉⊥
+ feff

〈
1Ē±

∣∣Hsoc

∣∣3E〉⊥ + geff
〈

1Ē∓
∣∣Hsoc

∣∣3E〉⊥
(3.139)

λz(
3Ã2,

1Ã1) = c′eff
〈

3A2

∣∣Hsoc

∣∣1A1

〉
z

(3.140)

λ⊥(3Ã2,
1Ã1) = d′eff

〈
3A2

∣∣Hsoc

∣∣1Ē±〉⊥ (3.141)

where ceff and deff are the effective state-mixing coefficients, which have been nor-

malized and satisfy |ceff |2 + |deff |2 = 1. And the same for d′eff , c′eff , f ′eff , g′eff , with

|c′eff |2 + |deff |2 + |f ′eff |2 + |g′eff |2 = 1. Because gi, g
′
i, g
′′
i and g′′′i coefficients are usually

small, the terms consisted of these coefficients are negligible [68]. Then Eq. (3.137) is

simplified to

λ⊥(3Ã2,
1 Ẽ±) ≈ c′eff

〈
3A2

∣∣Hsoc

∣∣1Ē±〉⊥ + f ′eff
〈

3A2

∣∣Hsoc

∣∣1Ē±〉⊥ (3.142)

where |c′eff |2 + |g′eff |2 + |f ′eff |2 = 1.
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3.8.2 Dynamical Jahn-Teller Reducing λz(
3E,3E)

The SOC matrix element λz(
3E,3E) does not contribute to any ISC involed

in the excitation and relaxation processes of optically detected magnetic resonance

(ODMR). As a consequence, λz(
3E,3E) is not a key factor to consider for ODMR.

At low temperature, the 3E state manifests the character of orbital doublet and spin

triplet [90, 92, 93]. However, the orbital doublet can be smeared out at room tem-

perature, and only spin triplet retains. At room temperature, the electron spin-spin

interactation induced zero-field splitting (ZFS) becomes significant and λz(
3E,3E) can

be ignored.

In Eq. (3.112) we don’t consider the mixing of 3Ex and 3Ey due to the electon-

phonon coupling described by the dynamical JT effect because it does not affect the

SOC λz/⊥(3Ẽ,1 Ã1). If we care about λz(
3E,3E), the dynamical JT effect can reduce

the magnitude and needs to be taken into account. To do that, we rewrite the vibronic
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triplet excited state 3Ẽ as the linear combination of 3Ẽx and 3Ẽy,∣∣∣3Ẽx〉 =

∞∑
i=1

[
c′′i
∣∣3Ex〉⊗ ∣∣∣χA1

i

〉
+
f ′′i√

2

( ∣∣3Ex〉⊗ ∣∣∣χExi 〉− ∣∣3Ey〉⊗ ∣∣∣χEyi 〉)

+ g′′i
∣∣3Ey〉⊗ ∣∣∣χA2

i

〉] (3.143)

∣∣∣3Ẽy〉 =

∞∑
i=1

[
c′′i
∣∣3Ey〉⊗ ∣∣∣χA1

i

〉
+
f ′′i√

2

( ∣∣3Ex〉⊗ ∣∣∣χEyi 〉+
∣∣3Ey〉⊗ ∣∣∣χExi 〉)

+ g′′i
∣∣3Ex〉⊗ ∣∣∣χA2

i

〉] (3.144)

∣∣∣3Ẽ±〉 =
1√
2

(
∣∣∣3Ẽx〉± i ∣∣∣3Ẽy〉)

=
1√
2

∞∑
i=1

[
c′′i

( ∣∣3Ex〉± i ∣∣3Ey〉)⊗ ∣∣∣χA1
i

〉
+
f ′′i√

2

( ∣∣3Ex〉⊗ ∣∣∣χExi 〉− ∣∣3Ey〉⊗ ∣∣∣χEyi 〉± i ∣∣3Ex〉⊗ ∣∣∣χEyi 〉± i ∣∣3Ey〉⊗ ∣∣∣χExi 〉)
+ g′′i

( ∣∣3Ey〉± i ∣∣3Ex〉)⊗ ∣∣∣χA2
i

〉]

=
c′′i√

2

∣∣3E±〉⊗ ∣∣∣χA1
i

〉
+
f ′′i
2

∣∣3E±〉⊗ ∣∣∣χE±i 〉
± i g

′′
i√
2

∣∣3E∓〉⊗ ∣∣∣χA2
i

〉
= c′′i

∣∣3E±〉⊗ ∣∣∣χA1
i

〉
+
f ′′i√

2

∣∣3E±〉⊗ ∣∣∣χE±i 〉
+ g′′i

∣∣3E∓〉⊗ ∣∣∣χA2
i

〉
(3.145)

In the last step, we merge the imaginary i into the coefficient g′′i as it won’t affect any

conclusion of symmetry, and implicitly consider 1/
√

2 in all the coefficients. By using

Eq. (3.145) and Eq. (3.121), we can derive the following equation,〈
1Ã1

∣∣∣Hsoc

∣∣∣3Ẽ〉 =
∞∑

i,j=0

[
c′ic
′′
j

〈
1A1

∣∣Hsoc

∣∣3E±〉⊗ 〈χA1
i

∣∣∣χA1
j

〉
+
d′if
′′
j√
2

(〈
1Ē+

∣∣Hsoc

∣∣3E±〉⊗ 〈χE−i ∣∣∣χE±j 〉
+
〈

1Ē−
∣∣Hsoc

∣∣3E±〉⊗ 〈χE+

i

∣∣∣χE±j 〉)]
(3.146)
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This can be seen essentially no difference from Eq. (3.122) if tracing off the f ′′i coefficient,

demonstrating that dynamical JT in 3E does not affect the SOC that couples 3E and

1A1.

Then we can look at how this dynamical JT reduces the SOC that breaks the

degeneracy of 3E.

〈
3Ẽ±

∣∣∣Hsoc

∣∣∣3Ẽ±〉 =

∞∑
i,j=0

(
c′′i c
′′
j

〈
3E±

∣∣Hsoc

∣∣3E±〉⊗ 〈χA1
i

∣∣∣χA1
j

〉
+
f ′′i f

′′
j

2

〈
3E±

∣∣Hsoc

∣∣3E±〉⊗ 〈χE±i ∣∣∣χE±j 〉
+ g′′i g

′′
j

〈
3E∓

∣∣Hsoc

∣∣3E∓〉⊗ 〈χA2
i

∣∣∣χA2
j

〉)

=
∞∑
i=0

[(
|c′′i |2 +

|f ′′i |2

2

)〈
3E±

∣∣Hsoc

∣∣3E±〉+ |g′′i |2
〈

3E∓
∣∣Hsoc

∣∣3E∓〉 ]

=
∞∑
i=0

[(
|c′′i |2 +

|f ′′i |2

2

)〈
3Ex ∓ i3Ey

∣∣Hsoc

∣∣3Ex ± i3Ey〉
+ |g′′i |2

〈
3Ex ± i3Ey

∣∣Hsoc

∣∣3Ex ∓ i3Ey〉 ]

=
∞∑
i=0

[(
|c′′i |2 +

|f ′′i |2

2

)(〈
3Ex

∣∣Hsoc

∣∣3Ex〉+
〈

3Ey
∣∣Hsoc

∣∣3Ey〉
± i
〈

3Ex
∣∣Hsoc

∣∣3Ey〉∓ i 〈3Ey
∣∣Hsoc

∣∣3Ex〉)
+ |g′′i |2

(〈
3Ex

∣∣Hsoc

∣∣3Ex〉+
〈

3Ey
∣∣Hsoc

∣∣3Ey〉
∓ i
〈

3Ex
∣∣Hsoc

∣∣3Ey〉± i 〈3Ey
∣∣Hsoc

∣∣3Ex〉)]

=
∞∑
i=0

[(
|c′′i |2 +

|f ′′i |2

2
+ |g′′i |2

)(〈
3Ex

∣∣Hsoc

∣∣3Ex〉+
〈

3Ey
∣∣Hsoc

∣∣3Ey〉)

± i
(
|c′′i |2 +

|f ′′i |2

2
− |g′′i |2

)(〈
3Ex

∣∣Hsoc

∣∣3Ey〉− 〈3Ey
∣∣Hsoc

∣∣3Ex〉)]

(3.147)
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For the SOC matrix elements within 3E, they are all axial. As a consqeunce, the first

two terms are zero. Then based on the CGC of C3v in Eq. (3.60),
〈

3Ex
∣∣Hsoc

∣∣3Ey〉 =

−
〈

3Ey
∣∣Hsoc

∣∣3Ex〉, and this results in a factor of 2 which will cancels out with the

wavefunction normalization factor in Eq. (3.145). Finally, the SOC matrix elements

within 3E is expressed as

〈
3Ẽ±

∣∣∣Hsoc

∣∣∣3Ẽ±〉 = ±i
∞∑
i

(
|c′′i |2 +

|f ′′i |2

2
− |g′′i |2

)〈
3Ex

∣∣Hsoc

∣∣3Ey〉 (3.148)

∑∞
i

(
|c′′i |2 +

|f ′′i |2
2 − |g′′i |2

)
is the same as the reduction factor that is discussed in

Ref. [52]. In this expression, only the orbital part of wavefunction is considered for

simplicity, and the spin part needs to be taken into account for a full derivation.

3.8.3 Pseudo Jahn-Teller Effect Between 3E and 3A2

It is possible that 3E couples with 3A2 by the pseudo JT effect.

H =


Λ 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

He

+
K

2
(Q2

x +Q2
y)︸ ︷︷ ︸

Hosc

+


0 FQx FQy

FQx 0 0

FQy 0 0


︸ ︷︷ ︸

HPJT

(3.149)

F =
〈

3A2

∣∣ ∂V
∂Qx

∣∣3Ex〉 =
〈

3A2

∣∣ ∂V
∂Qy

∣∣3Ey〉 (3.150)
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Let’s write the vibronic wavefunctions of 3Ẽ and 3Ã2 with retaining the overall symme-

try.

∣∣∣3Ẽ±〉 =
∞∑
i=0

c′′i
∣∣3E±〉⊗ ∣∣∣χA1

i

〉
∓ id′′i

∣∣3A2

〉
⊗
∣∣∣χE∓i 〉

+
f ′′i√

2

∣∣3E±〉⊗ ∣∣∣χE±i 〉
± ig′′i

∣∣3E∓〉⊗ ∣∣∣χA2
i

〉
= c′′i

∣∣3E±〉⊗ ∣∣∣χA1
i

〉
+ d′′i

∣∣3A2

〉
⊗
∣∣∣χE∓i 〉

+
f ′′i√

2

∣∣3E±〉⊗ ∣∣∣χE±i 〉
+ g′′i

∣∣3E∓〉⊗ ∣∣∣χA2
i

〉
(3.151)

∣∣∣3Ã2

〉
=

∞∑
i=0

c′′′i
∣∣3A2

〉
⊗
∣∣∣χA1
i

〉
+
d′′′i√

2

( ∣∣3Ex〉⊗ ∣∣∣χEyi 〉− ∣∣3Ey〉⊗ ∣∣∣χExi 〉)

= c′′′i
∣∣3A2

〉
⊗
∣∣∣χA1
i

〉
+

d′′′i√
2i

( ∣∣3E−〉⊗ ∣∣∣χE+

i

〉
−
∣∣3E+

〉
⊗
∣∣∣χE−i 〉) (3.152)

This pseudo JT effect that couples 3E and 3A2 will give rise to additional SOC compo-

nent c′effd
′′′
eff

〈
1A1

∣∣Hsoc

∣∣3A2

〉
z

to λz(
1Ã1,

3 Ẽ) besides Eq. (3.134), and SOC component

d′effd
′′′
eff

〈
1A1

∣∣Hsoc

∣∣1Ē〉⊥ to λ⊥(1Ã1,
3 Ẽ) besides Eq. (3.135). Similarly, one can find the

additional SOC components that contribute to λz/⊥(3Ã2,
1 Ẽ) due to the pseudo JT

effect. Furthermore, the pseudo JT effect can lead to some correction to the internal

conversion because of the mixing of states. However, this pseudo JT effect should be

very small because the pseudo JT effect can disappear when the energy splitting is too

large and ∆E(3E−3A2) ≈ 2∆E(1A1−1E) [65]. In conclusion, we don’t need to consider

the pseudo JT effect that couples 3E and 3A2.
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3.9 Conclution

We evaluate SOC using group theory to comprehensively understand the al-

lowed and forbidden SOC matrix elements from a symmetry perspective. This helps

determine the validity of first-principles calculations and clarify experimental observa-

tions by considering underlying mechanisms that might have been overlooked.

1. We have evaluated all the SOC matrix elements of interest, including the SOC

matrix elements that couples the singlet ground state 1E and triplet ground state

3A2,
〈

3A0
2

∣∣Hsoc

∣∣1A1

〉
for λz and

〈
3A1

2 −3 A−1
2

∣∣Hsoc

∣∣1E′x〉 for λ⊥. We reproduce

the SOC matrix elements in previous literature Ref. [18], and further derive all

the effective SOC with considering the Jahn-Teller effects.

2. Because the SOC module implemented in ORCA already includes the multi-

reference character, normalization factor and CGC of electronic states [94, 95],

there should be no need to consider additional factor to enter into the scattering

matrix of the intersystem crossing formula, Eq. 2.82.

3. For calculating SOC, the previous studies [52, 68] use single-particle wavefunction

for the SOC matrix elements so only one-particle SOC is included. However,

ORCA evaluates SOC by using the spin-orbit mean-field (SOFM) operator [94]

approximates to the Breit-Pauli operator and takes into account both both one-

particle and two-particle SOC 8. Therefore, our evaluation of the SOC matrix

elements are believed more complete and accurate.

8See Eq. (11) on page 2 and “The SOFM operator used in this study was developed as an approxi-
mation to the Breit-Pauli operator” on page 5 of Ref. [94]
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Chapter 4

Identifying Solid-State Spin Defects

This chapter focuses on the identification of solid-state spin defects. In par-

ticular, spin defects in the 2D hBN. The problem is critical for the application of spin

defects for quantum information technology and nanoscale measurement. The unknown

chemical structures of spin defects hinder the in-depth study, deterministic generation

and precise control for their piratical use.

First-principles methodologies enable to provide comprehensive profiles of de-

fect candidates from many aspects, the ease of defect formation, the static properties

including possible charge states, excitation energies and PL spectrum, the dynamical

properties including transitions due to radiative recombination and nonradiative recom-

bination. The theoretical study identifies the carbon trimer defect C2CN to be the most

likely defect candidate responsible for the experimentally observed 2 eV single-photon

emitter, out of many possible defect candidates.

106



4.1 Introduction

A single-photon emitter (SPE) is a crucial building block in quantum informa-

tion technologies, such as linear-optical quantum information processing [96], quantum

simulation [97], and quantum communication [98]. Hexagonal boron nitride (hBN) is a

two-dimensional (2D) material with a wide band gap (∼6 eV) [99, 100], and can host

stable and bright color centers which possess single-photon emission [22]. Meanwhile,

the manipulation of the optoelectronic properties of singe-photon emitters has garnered

special interest [101, 102]. These properties imply a great potential of hBN in developing

quantum applications. Being able to select and purify single-photon emitters is criti-

cal for generating controllable and narrow line width single-photon emission. Hence,

the identification of the atomic origin of the single-photon emitters is crucial to the

development of this field.

Since 2016 [103], numerous experimental results have been reported on the pho-

toluminescent properties of the single-photon emitters at ∼2 eV in hBN [104, 105, 106,

103, 3, 107, 101, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 111]. In

Table 4.1, we summarize the range and averaged values of photoluminescent properties

observed in experiments, including the zero-phonon line (ZPL), phonon-sideband en-

ergy (PSE), Huang-Rhys factor (HR factor), and the photoluminescence lifetime (τPL).

Typically, a ∼2 eV single-photon emitter in hBN exhibits a photoluminescence (PL)

spectrum comprised of a sharp ZPL and one or two moderate phonon sidebands (PSB)

at room temperature. The PSE is the energy separation between the ZPL and the first

PSB peak. The electron-phonon coupling is estimated by either the HR factor (S) or
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Debye-Waller (DW) factor (DW = e−S) [121]. The HR factor is typically ∼1, which

indicates weak electron-phonon coupling. Furthermore, the PL lifetime is of the order

of a few ns, and quantum yield (QY, η) is reported to be 6∼12% [102]. The PL life-

time (τPL) reflects the lifetime of an excited state, determined by radiative (τR) and

nonradiative recombination together [τNR, τPL = 1/(1/τR + 1/τNR)]. On the other

hand, QY (η) reflects the proportion of radiative recombination rates with respect to the

total recombination rates, and is related to the PL lifetime through τPL = τR ∗ η. PL

lifetime and QY underscore the importance of studying both radiative and nonradiative

recombination lifetimes.
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Table 4.1: Summary of the zero-phonon line (ZPL), phonon sideband (PSE), Huang-

Rhys (HR) factor, and photoluminescence (PL) lifetime (τPL) for ∼2 eV single-photon

emitters in h-BN from experimental measurements and our calculated two carbon de-

fects.

ZPL (eV) PSE (meV) HR factor τPL (ns)

Range(exp.) 1.56-2.241 30-2002 0.63-1.933 0.38-19.74

Mean(exp.) 2.00± 0.191 156± 332 1.19± 0.433 2.6± 1.54

C2CN(calc.) 2.135 180 1.35 2.19

C2CB(calc.) 1.425 175 1.25 3.83 ∗ 102

1. From Ref. [104, 105, 106, 122, 103, 3, 107, 101, 108, 109, 110, 123, 111, 112, 113, 114,

124, 115, 116, 117, 118, 119, 120, 111].

2. From Ref. [105, 106, 122, 3, 107, 101, 108, 110, 123, 112, 113, 114, 115, 116, 117, 118,

119].

3. From Ref. [104, 123, 116].

4. From Ref. [104, 105, 106, 103, 101, 108, 109, 110, 113, 114, 124, 116, 117]. As 19.7 ns

in Ref. [124] is far from the other data points, it is removed when evaluating the mean.

5. From the excitation energy at G0W0 − BSE@PBE and taking into account the

Franck-Condon shift.

Finally, many of the reported single-photon emitters ∼ 2 eV possess linearly

polarized excitation and emission [122, 103, 3, 108, 109, 110, 111, 112, 124, 125, 116],

indicating the anisotropic structural symmetry of the corresponding defects [59, 126],
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i.e., possibly belonging to the C2v, C2, or Cs groups.

In terms of the atomic origin of these single-photon emitters, annular dark-

field images have shown that carbon substitutions are abundant in hBN [127]. Recently,

Mendelson et al. [3] identified that various techniques of incorporating carbon into hBN

yield ∼2 eV single-photon emitters. Moreover, x-ray photoelectron spectroscopy mea-

surements show that more C-B bonds exist than that of C-N bonds [3]. This is an

evidence that carbon substitution of nitrogen is more likely than carbon substitution of

boron.

Theoretically, several defects have been proposed to be possibly responsible for

single-photon emission, such as CBVN [128, 22], boron dangling bonds [129], NBVN [67],

and carbon trimers [28]. Based on experimental observations [3], we focus on carbon

defects in this work. Among the carbon defects, CBVN has high formation energy that

is 3∼6 eV higher than other carbon defects such as carbon dimer and trimers [27].

Carbon trimers including C2CN and C2CB, theoretically proposed by Jara et al. [28],

were found to be energetically favorable and in good agreement with experimental PSE

and PL [28]. However, some important information is still missing to confirm carbon

trimers as a SPE candidate theoretically. For example, only the ZPL for the lowest

transition was calculated, about 0.4 eV smaller than the mean of ZPL in Table 4.1. And

other important properties such as HR factor, PL lifetime, and QY, as the experimental

characteristics of ∼2 eV single-photon emitters, were not calculated. Therefore, further

study of these properties is desired to unveil the role of carbon trimers as experimentally

observed SPEs.
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In this Letter, electronic and optical properties of the carbon trimers C2CN

and C2CB are calculated from both first-principles many-body perturbation theory

and density functional theory (DFT) levels. We evaluate both the static and dynam-

ical properties of radiative and phonon-assisted nonradiative recombination, including

exciton-defect and electron-phonon interactions. Our results demonstrate that C2CN

has remarkable agreement with experimental observations of 2 eV single-photon emit-

ters, including ZPL, PL lifetime, PSE, HR factor, and PL spectrum. We emphasize the

importance of comparing all key signatures between theory and experiments for defect

identification and validations.

4.2 Computational Methods

We employ the open-source plane-wave code Quantum ESPRESSO [130] for

structural relaxation and phonon calculations of carbon defects in monolayer hBN. We

note that experimentally multilayer or bulk hBN are often used instead of monolayer

hBN. However, increasing the number of layers will decrease both the quasiparticle

(electronic) gap and exciton binding energy, which result in optical gaps or ZPL with

minimum changes, as discussed in Refs. [131, 132]. Additionally, prior theoretical [51,

133] and experimental [134] works have shown negligible changes when comparing the

ZPL of point defects such as boron dangling bonds in monolayer and multilayer hBN.

More detailed studies of the layer dependence of carbon defects and its effects on optical

spectra and excited-state lifetime are needed.

We use the optimized norm-conserving Vanderbilt (ONCV) pseudopotentials [135]

111



and a 55 Ry wave-function energy cutoff. We choose a supercell size of 6×6 which shows

good convergence, as tested in Refs. [67, 136, 137]. Charged defect correction is included

to eliminate the spurious electrostatic interaction by using the techniques developed in

Refs. [138, 139] and implemented in the JDFTx code [140]. Total energy, defect for-

mation energy, and geometry are obtained with the Perdew-Burke-Ernzerhof (PBE)

exchange-correlation functional [39]. The charged defect formation energy Eqf (d) with

the charge state q is calculated by

Eqf (d) = Eqtot(d)− Etot(p)−
∑
i

Niµi + qEFermi + Ecorr, (4.1)

where Eqtot(d) is the total energy of the charged defect, Etot(p) is the total energy

of the pristine system, Ni is the number of atoms of atomic species i that is added

(Ni > 0) or removed (Ni < 0), µi is the chemical potential of the atomic species i,

EFermi is the electron chemical potential, and Ecorr is the charged defect correction.

The chemical potentials of B, N, and C are obtained as follows. In the N-rich condition,

µN−rich
N = 1/2Etot(N2) where Etot(N2) is the total energy of the N2 molecule. In the N-

poor condition, µN−poor
B = Etot(B) where Etot(B) is one atom’s total energy in a boron

crystal. µN−poor
N and µN−rich

B are calculated according to the constraint µN +µB = µBN,

where µBN is the total energy of BN with one unit cell. µC, on the other hand, is one

atom’s total energy in graphene.

We evaluate the electronic structures under the GW approximation with the

PBE eigenvalues and wave functions as the starting point by using the Yambo code [141].

The starting wavefunctions at PBE are sufficient for accurate descriptions of current sp

defect wavefunctions by comparing with the ones at hybrid functionals (see the Supple-
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mental Material (SM) Fig. S1 [142] for the wave-function comparison [143, 144, 137]).

Prior studies of hBN by the GW plus Bethe-Salpeter equation method (GW-BSE)

have been mostly started from single-particle states at local and semilocal functionals,

and have shown excellent agreement with experimental electronic and optical proper-

ties [132, 131, 145, 146, 147, 148, 149]. In the single-shot GW (G0W0) calculations in

this work, the Godby-Needs plasmon-pole approximation (PPA) [150, 151] is used to

calculate the dielectric matrices with the plasmon frequency ωp = 27.2 eV. Then, the

Bethe-Salpeter Equation (BSE) is further solved on top of the GW approximation to

include the electron-hole interaction in the absorption spectra. Coulomb truncation for

2D systems [152] is applied to the out-of-plane direction, and k-point sampling is set to

3× 3× 1 for 6× 6× 1 supercells in all of the G0W0 and BSE calculations. More details

on convergence tests can be found in Sec. II of the SM [142].

The method in Ref. [59] based on Fermi’s golden rule and solving BSE is applied

to calculate the radiative lifetime of intradefect transitions that include exciton-defect

coupling. The nonradiative recombination lifetime is also calculated with electron-

phonon matrix elements in the static coupling approximation. The method of fixing

bulk atoms [136] is used to speed up the supercell convergence of the nonradiative

lifetime. The details of the nonradiative recombination can be found in Refs. [66, 67].

The generating function approach, which is detailed and introduced in Ref. [19], is

applied to the calculation of the PL line shape.
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4.3 Charged Defect Formation Energy

When nitrogen and boron atoms are unevenly substituted by atomic impuri-

ties, the formation energy of the defects depends on the elemental chemical potentials,

i.e., different at the N-rich (B-poor) and N-poor (B-rich) conditions. In the N-rich con-

dition, C2CB is more likely to form than C2CN because of the smaller formation energy

of C2CB, as shown in Fig. 4.1(b). On the other hand, C2CN is more likely to form in

the N-poor condition. It is also found that both defects can be stable in charge states

of q = 0,±1 at a range of electron chemical potentials within the electronic band gap.

Without losing generality, we investigate both C2CN and C2CB in all possible charge

states of q = 0,±1, and we find that the q = ±1 charge states have ZPL either too

large or too small, away from the experimental range (details found in the SM, Table

S1 [142]). Thus, we focus on the neutral state of the defects. In particular, we find

that the neutral C2CN have good agreement with experiments on all properties of ∼ 2

eV single-photon emitter, so we mainly discuss the neutral C2CN in the following. The

results of C2CB can be found in Sec. III of the SM [142] and summarized in Table 4.1.

We find that the major discrepancy of C2CB to experiments is in the ZPL and PL

lifetime.

4.4 Electronic Structure and Optical Properties

The single-particle diagram in Fig. 4.2(a) shows the defect-related electronic

energy levels with their wave functions, and the host monolayer hBN band edges at
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Figure 4.1: Charged defect formation energy of defects C2CN and C2CB as a function

of Fermi level at (a) N-poor and (b) N-rich conditions.
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the GW approximation, referenced to the vacuum level. One unoccupied defect state

(2a2) and three occupied defect states (2b1, 1a2, 1b1) in the spin-down channel can lead

to intradefect transitions via radiative recombination or nonradiative recombination.

To obtain optical transitions (or two-particle excitations), we calculate the absorption

spectra by solving the BSE, which uses GW quasiparticle energies as inputs and includes

the excitonic effect. Details of numerical convergence tests can be found in Sec. II of the

SM [142]. Here, only spin-conserved transitions are considered. We then calculate the

radiative lifetimes of the intradefect recombination via Fermi’s golden rule by Eq. (4.2)

(with dielectric constant equal to unity for monolayer 2D systems),

τR =
3c3

4E3
0µ

2
e−h

, (4.2)

where E0 is the excitation energy, and µ2
e−h is the modulus square of the exciton

dipole moment in atomic units. The derivation detail of this equation can be found

in Refs. [60, 59]. We find two strong absorption peaks due to the optically allowed

intradefect transitions in Fig. 4.2(b) and summarize the optical properties in Table 4.2.

In particular, only the transition 2a2↓ → 1a2↓ shows a relatively short radiative lifetime

that possibly falls into the range of experimental values. The other transition has an

order-of-magnitude-longer radiative lifetime. Therefore, we mainly focus on the former

transition. Its shorter lifetime (i.e., 51.9 ns) is because of stronger oscillator strength

and higher excitation energy (shown in Table 4.2). Note that the excitonic effect at the

defect is comparable or stronger than its host materials [132, 153], e.g., over one eV

exciton binding energy Eb for both transitions in Table II. The exciton wave function

in the SM, Fig. S3 [142], shows that the exciton is localized and bound to the carbon
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defect C2CN and a few neighboring BN atoms, consistent with its large exciton binding

energy. In order to compare with the experimental PL lifetimes in Table 4.1, we also

need to compute the nonradiative lifetime as follows.

Table 4.2: Radiative recombination of C2CN. Excitation energy (E0), square modulus

of dipole moment (µ2
e−h), radiative lifetime (τR), and exciton binding energy (Eb) of

the C2CN defect for the two transitions that are prominent in the optical excitations

below the optical gap.

Transition E0 (eV) µ2
e−h (a.u.) τR (ns) Eb (eV)

2a2↓ → 2b1↓ 1.34 4.90 ∗ 10−1 7.95 ∗ 102 2.08

2a2↓ → 1a2↓ 2.33 1.43 5.19 ∗ 101 1.58

4.5 Nonradiative Recombination

The nonradiative lifetime (τNR) is a measure of how fast the nonradiative

recombination happens between the final state |f〉 and initial state |i〉. The phonon-

assisted nonradiative recombination is influenced by several factors and also evaluated

via Fermi’s golden rule as below,

1

τNRif

=
2π

~
g
∑
n,m

pin| 〈fm|He−ph|in〉 |2δ(Efm − Ein)

(4.3)

where He−ph is the electron-phonon coupling Hamiltonian, g is the degeneracy factor of

the final state that depends on the number of equivalent atomic configurations, and pin
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Figure 4.2: (a) Single-particle diagram of the ground state 2
0A2 at the level of

G0W0@PBE, and (b) G0W0 − BSE@PBE of C2CN. VBM and CBM are -7.431 and

-0.400 eV, respectively [2]. The defect states in the band gap are denoted by the irre-

ducible representations of the C2v symmetry group based on the corresponding wave-

function symmetry. The isosurface of the wavefunctions (PBE) is 3% of the maximum.

In the G0W0−BSE@PBE spectra, the absorption peaks are labeled by the correspond-

ing intradefect transitions. x and y are the in-plane directions that are perpendicular

and parallel to the C2 axis, respectively, and z is the out-of-plane direction. The spectral

broadening is 0.02 eV.
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is the occupation number of the vibronic state |in〉 following the Boltzmann distribution.

Under the static coupling approximation with one-dimensional (1D) phonon

approximation [66, 67], we can rewrite Eq. (4.3) as

1

τNRif

=
2π

~
g|Wif |2Xif (T ) (4.4)

Wif = 〈ψi(r,R)|∂H
∂Q
|ψf (r,R)〉 |R=Ra (4.5)

Xif =
∑
n,m

pin| 〈φfm(R)|Q−Qa|φin(R)〉 |2

× δ(m~ωf − n~ωi + ∆Eif ). (4.6)

Equation (4.4) is separated into the electronic term (Wif ), which depends on the elec-

tronic wave function (ψ) overlap, and the phonon term (Xif ), which describes the

strength of the phonon contribution. The phonon term includes the energy conser-

vation between the initial and final vibronic states with vibrational frequencies of ωi

and ωf , and φ is the phonon wave function. The detailed derivation can be found in

Refs. [66, 67].

We summarize the nonradiative recombination lifetime of the intradefect tran-

sitions, along with ZPL, HR factor of the final state [Sf (1D)] in Table 4.3. Note that the

HR factor from the nonradiative recombination calculation is with 1D effective phonon

approximation. Its comparison with the full-phonon HR factor (S, including all phonon

eigenmodes) can be found in Sec. VI of the SM [142]. The calculated 1D HR factor,

is close to the full-phonon HR factor as can be seen by comparing Table 4.3 (1D) with

Fig. 4.3 (full phonon). ZPL is evaluated by two methods: one is using the vertical

neutral excitation energy obtained from BSE with subtracting the Frank-Condon shift
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in the excited state [ZPL(BSE)], and another is from constrained DFT (CDFT) at the

PBE level with geometry optimization [ZPL(CDFT)]. The ZPL from two methods has

0.1 and 0.4 eV energy difference for the first two transitions, respectively. We used the

CDFT in the nonradiative lifetime calculation to be consistent with other quantities in

the equation. The nonradiative recombination of 2
2A2 → 2

0A2 is fast due to the following

reason. The electronic term Wif of 2
2A2 → 2

0A2 is large because it is symmetry allowed,

about four orders of magnitude larger than the other two transitions. Since τNR is

inversely proportional to the square of Wif according to Eq. (4.4), the difference of Wif

dominates over the phonon contribution in Xif . The nonradiative lifetime of 2
2A2 → 2

0A2

(2.29 ns) is several orders shorter than the other two transitions.

We note that different from Jara et al. [28], which focuses on the first transition,

we focus on the second transition at 2.13 eV (BSE) in Table 4.3, which gives much better

agreement with experiments for several parameters. A more detailed comparison with

Ref. [28] with hybrid functionals can be found in the SM, Table S4 [142].

4.6 PL Lifetime and Quantum Yield

Next we will compute the PL lifetime and quantum yield [129] using the radia-

tive and nonradiative recombination lifetime from Table 4.2 and Table 4.3, respectively.

We list them along with the full-phonon HR factors calculated with the method in

Ref. [19], and quantum yield (η) computed by Eq. (4.7) [154] in the multiplet diagram
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Table 4.3: Properties of nonradiative recombination of the intradefect transitions. The

transitions are denoted using the multielectron wavefunction notations. The ZPL(BSE)

are evaluated by subtracting the Franck-Condon shift (EFC) from the excitation energies

from G0W0 − BSE calculations. The ZPL(CDFT) are obtained by constrained DFT

calculations at the PBE level, which are used as the energy input for the nonradiative

lifetime. ∆Q is the nuclear coordinate change between the initial and final states. ~ωf is

the phonon energy of the final state. Sf (1D) is the HR factor with 1D effective phonon

approximation. Wif and Xif are the electronic and phonon terms, respectively. The

nonradiative lifetimes are calculated with a 6× 6 supercell at 300 K at the PBE level.

Here, 2
1B1 → 2

0A2 is related to the transition 2a2↓ → 2b1↓ in the single particle picture;

transition 2
2A2 → 2

0A2 is related to the transition 2a2↓ → 1a2↓; transition 2
2A2 → 2

1B1 is

related to the transition 2b1↓ → 1a2↓.

Transition EFC ZPL(BSE) ZPL(CDFT) ∆Q ~ωf

(eV) (eV) (eV) (amu1/2�A) (meV)

2
1B1 → 2

0A2 0.13 1.21 1.16 0.26 122

2
2A2 → 2

0A2 0.20 2.13 1.70 0.27 145

2
2A2 → 2

1B1 0.01 – 0.55 0.19 128
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Transition Sf (1D) Wif Xif τNR

(eV/(amu1/2�A)) (amu·�A2
/eV)

2
1B1 → 2

0A2 0.95 1.34 ∗ 10−4 7.17 ∗ 10−6 ∼1 ms

2
2A2 → 2

0A2 1.26 3.13 ∗ 10−1 4.69 ∗ 10−7 2.29 ns

2
2A2 → 2

1B1 0.67 5.58 ∗ 10−5 1.05 ∗ 10−2 3.20 µs

Fig. 4.3,

η =
1

τR
/(

1

τR
+
∑
i

1

τNR
i

), (4.7)

where i denotes the ith nonradiative pathway for the transition from the initial state.

In addition, we calculate the PL lifetime which is the inverse of the total recombination

rate by Eq. (4.8),

τPL = 1/(
1

τR
+
∑
i

1

τNR
i

) = τR ∗ η. (4.8)

For transition 2
2A2 → 2

0A2, the nonradiative lifetime is nearly 10 times shorter

than the radiative lifetime. By including the nonradiative recombination 2
2A2 → 2

1B1,

the overall recombination leads to the quantum yield of 4.23%, about 2% lower than

the experimental quantum yield range 6∼12% [102]. More importantly, the PL lifetime

of transition 2
2A2 → 2

0A2 from Eq. (4.8) is calculated to be 2.19 ns, exactly within the

experimental range of the PL lifetimes [Table 4.1 and Fig. 4.5(a)]. In addition, the

calculated full-phonon HR factor of this transition is 1.35, indicating weak electron-

phonon interaction and good agreement with the experimental HR factor in Table 4.1

and Fig. 4.5(b).
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Figure 4.3: Multiplet structure and important physical parameters of C2CN in hBN. 2
0A2

is the ground state, and 2
1B1 and 2

2A2 are the excited states. The red solid lines denote

radiative recombination and the blue dashed lines denote nonradiative recombination. S

is the HR factor with full-phonon calculations. τR and τNR are the radiative lifetime and

nonradiative lifetime, respectively. η and τPL are the QY and PL lifetime, respectively.
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4.7 Phonon Modes of C2CN in hBN

To get more insight into the electron-phonon coupling of C2CN in hBN, we

calculate the spectral function [S(~ω)] of 2
2A2 → 2

0A2 with the partial HR factor (Sk)

of phonon mode k, as shown in Fig. 4.4. The phonon modes spread over the range

0∼190 meV, and the phonon modes around 180 meV have the largest contribution to

the spectral function. In particular, the 187 meV phonon mode has the largest partial

HR factor among these modes. By visualizing this phonon mode shown by the inset

in Fig. 4.4, we find it to be an out-of-phase phonon mode. The atoms involved in this

phonon mode include not only defect-related atoms, but also many B and N atoms

around and away from the defect. Hence, the 187 meV phonon mode is quasilocal.

To quantitatively characterize the localization of dominant phonon modes, we estimate

the number of atoms involved in the vibration of a phonon mode, by projection of the

inverse participation ratio (IPR) on this phonon mode k [19],

IPRk =
1∑

α(
∑

i ∆r2
k;α,i)

2
, (4.9)

where ∆rk;α,i is a normalized vector that describes the displacement of the atom α

along the direction i in the phonon mode k between the initial and final states. We then

estimate the localization of the phonon mode by the localization ratio β,

βk = NAT/IPRk, (4.10)

where NAT stands for the total number of atoms in the supercell. The larger the

localization ratio is, the more localized the phonon mode is. We find that the IPR of

the 187 meV phonon mode is 46 for the 6x6 supercell calculation, and the localization
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ratio β is ∼2. The IPR of this mode increases as a function of supercell sizes, but

the localization ratio keeps constant, as can be seen in the SM, Table S4 [142]. This

again reflects the nature of this mode being a mixture of defect and bulk phonons or a

“quasilocal” mode. Besides the 187 meV phonon, the 60 meV phonon is pronounced in

the low-energy range of the spectral function, as an in-phase phonon mode (see the inset

in Fig. 4.4). It also has a large IPR of 48 and β of ∼2. Comparing the calculated phonon

mode energies with the experimental ones for 2eV single-photon emitters [101, 155], the

187 meV phonon mode is in good agreement with the ∼180 meV longitudinal optical

phonon that leads to the pronounced PSB.

4.8 Comparison between C2CN Defect and Experiments

To further validate that C2CN is a possible candidate of experimentally ob-

served single-photon emitters, we calculate the PL of C2CN for transition 2
2A2 → 2

0A2

and compare it with the PL spectra of ∼2 eV SPEs [3] in Fig. 4.5. The details of the PL

calculation can be found in Sec. V of the SM [142, 156, 157, 158]. The calculated PL

shows similar PSB peaks to the experimental PL [3], as can be seen in Fig. 4.5(d). A

weak PSB peak next to the first PSB peak can be seen in both the calculated and exper-

imental PL spectra. This peak has been found to be more visible when the brightness is

enhanced in an as-prepared array [155]. In addition, phonon-sideband energy can be a

measure of the averaged phonon energy, found to be 180 meV, within the experimental

range in Table 4.1 and Fig. 4.5(c). The excellent agreement between the calculated

and experimental physical parameters including ZPL, PL lifetime, HR factor, PSE, and
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Figure 4.4: Spectral function that shows the distribution of phonon modes and the

contribution of phonon modes to the electron-phonon interaction of the C2CN defect in

hBN. The left vertical axis and black solid line are for the spectral function, and the

right vertical axis and red dots are for the partial HR factor as a function of phonon

energy. The inset figures are the low-energy phonon mode (60 meV) and dominant

phonon mode (187 meV) of C2CN for transition 2
2A2 → 2

0A2. The red arrows show the

atom displacement of the corresponding phonon modes.
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PL spectrum strongly suggests that the C2CN defect is one possible source of ∼2 eV

single-photon emission.

According to our theoretical calculations, as shown in Fig. 4.3, besides the

emission around 2 eV , there is a near-infrared (near-IR) emission which can be another

identifier of the C2CN defect. Note that besides the PL lifetime, photon detection rate

I can be another experimentally measurable quantity,

I = αΓR (4.11)

where α is the photon collection coefficient, and ΓR is the radiative rate or emission

rate [159, 160].

To estimate the photon detection rate of the near-IR emission, we first calculate

the emission rate, which is 1.26 × 106 counts/s based on the radiative lifetime 795

ns in Table 4.2. Second, we estimate the photon collection coefficient from existing

experiments [101], which is 0.31, by taking the ratio of the experimental photon detection

rate (6 × 106 counts/s) of the 2 eV emission [101] to the theoretical emission rate

(1.93 × 107 counts/s) of C2CN at 2.13 eV (radiative lifetime 51.9 ns in Table 4.2).

Assuming the photon collection coefficient is the same between the 2 eV and the near-

IR emission, the photon detection rate estimates to be 3.92×105 counts/s for the near-IR

emission. This is experimentally measurable with sufficiently long acquisition time.

Finally, we note that the variation in experimental results shown in Table 4.1

can be from several sources of single-phonon emitters and possible internal strains due

to material preparation. Further defect identification including spin-related properties

can be through calculations of optically detected magnetic resonance (ODMR), which
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measures the spin-dependent optical contrast and is directly related to the information

readout of spin qubits [161].

4.9 Conclusions

In conclusion, we investigated the possibilities of carbon defects for 2 eV single-

photon emission in hBN, by comparing key physical properties from first-principles cal-

culations with experiments, including ZPL, PL lifetime, and line shape, as well as HR

factor. We showcase the importance of considering multiple key signatures including

both static and dynamical properties when identifying defects through theory and ex-

perimental comparison. We found that C2CN has the best agreement with experiments

for all concerned properties. In particular, we show that the radiative lifetime can be

an order longer than the experimentally observed PL lifetime; but after including non-

radiative processes, the agreement with the experimental PL lifetime is much better.

We show the electron-phonon coupling in C2CN is moderate with small HR factor and

the dominant phonon mode at ∼180 meV is quasilocal with significant participation of

bulk atoms. The near-infrared emission can be another identifier of C2CN, which can be

used for experimental verification of the nature of SPEs. Our work provides insight into

the ∼2 eV single-photon emission from the theoretical perspective, which is important

for unraveling the unknown chemical nature of defects in hBN, manipulating defects,

and developing quantum applications.

Besides hBN, other 2D materials such as black phosphorus and graphene have

shown highly tunable light emission properties [162, 163, 164], which may be promising
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Figure 4.5: The calculated properties of C2CN along with the experimental values which

are summarized in Table. 4.1. (a) PL lifetime vs ZPL; (b) HR factor vs ZPL; (c) PSE

vs ZPL; (d) comparison between the theoretical PL spectrum (this work) and the ex-

perimental PL spectrum (Expt) [3]. In (a), (b), and (c), the blue dots are for the exper-

imental values of ∼2 eV single-photon emitters, the green dot is for the experimental

PL lifetime of ∼20 ns, and the red dots are for the calculated values. The calculated

ZPL here is from the G0W0−BSE@PBE calculation. The comparison shows that ZPL,

PL lifetime, HR factor, and PSE are all in the experimental range. The calculated

PL spectrum also matches well with the experimental PL of the ∼2 eV single-photon

emission [3].
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for single-photon emission and spin qubit applications as well. For better spatial control

and emission tunability of quantum defects in 2D materials, promising pathways have

been suggested by interfacing quantum emitters with metasurfaces [165, 166], coupling

with microcavities [167] and far-field patterns [168].
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Chapter 5

Excited-State Dynamics of Solid-State

Spin Defects

In Chapter 4, the first-principles methodologies and their application to defect

identification are presented. This chapter focuses on the advanced development of first-

principles method and simulation model for characterizing spin polarization of spin

defects via the spin-photon interface. Many important questions related the excited-

state dynamics of the NV center in diamond are unambiguously answered. Deeper

insight into the excited-state dynamics from the theoretical point of view is provided

for many spin defects that share common characteristics with the NV center. Chapter 3

presents the details of symmetry study of spin defects.
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5.1 Introduction

Point defects in solids as spin qubits offer multiple avenues to quantum tech-

nologies, in particular quantum sensing and quantum networking [169]. The promising

candidates exhibit long quantum coherence times [170, 171, 172], essential for perform-

ing multi-step quantum operations with high fidelity. They are relatively scalable and

easy to integrate into existing technologies due to their solid-state nature [173]. Fur-

thermore, they can be optically initialized and reliably read out in a wide temperature

range [174, 175, 176], through the spin-photon entanglement [177]. While discover-

ing and exploring new spin defects beyond the extensively-studied negatively-charged

nitrogen-vacancy (NV) center in diamond [82] has been a key interest in recent years,

reliable theoretical predictions of optical readout properties remain challenging, which

hinder rapid progress.

The first outstanding issue is the missing link between experimental observ-

able and first-principles simulations for the spin polarization processes. The experi-

mental tool to study spin polarization is through optically detected magnetic resonance

(ODMR) [4, 92, 93, 178], by recording photoluminescence contrast with and without

microwave radiation as a function of magnetic field. This requires to solve the kinetic

equations for excited-state populations of different spin sublevels. The excited-state

population is determined by kinetic processes in the polarization cycle, including ra-

diative and nonradiative recombination between different spin states. Previously, only

model simulations with experimental rates and energy levels to describe ODMR have

been reported [4, 92, 93, 178]. A first-principles formalism and computational tool is
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yet to be developed in order to interpret experiments or predict ODMR of new spin

defect systems.

To perform first-principles ODMR, predictions of optical excitation energies,

zero-field splitting, radiative and nonradiative recombination rates are required. Various

first-principles electronic structure methods have been proposed to calculate excitation

energies of spin defects. The key consideration is to accurately capture the electron

correlation of defect states. For instance, mean-field theory such as constrained DFT

(CDFT) [68] could provide reasonable structural and ground state information, but GW

and solving the Bethe-Salpeter Equation (GW-BSE) can provide more accurate quasi-

particle energies and optical properties including electron-hole interactions [48, 139]. On

the other hand, if the defect states have strong multi-reference nature, such as open-

shell singlet excited state of the NV center, theories like quantum-defect-embedding

theory (QDET) for solids [179, 180] or multi-reference wavefunction methods [181] may

be more appropriate. Note that such theory still requires substantial development in

order to study dynamical and spin-orbit properties.

The first-principles theory for excited-state kinetic properties of spin defects

has recent advancement as well. For example, the radiative recombination rates have

been calculated at finite temperature with inputs from many-body perturbation theory

for a better description of excitons [179, 59]. The nonradiative recombination tran-

sitions, in particular intersystem crossing (ISC) that requires spin-flip transition and

phonon-assisted internal conversion (IC), can be obtained from phonon perturbation

to electronic states [67, 48, 52, 68]. However, these calculations have not considered
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the multi-reference nature of the electronic states and complex Jahn-Teller (JT) effects

coupled in the kinetic processes.

In this work, we have developed the first-principles ODMR theory and com-

putational tool to directly predict ODMR contrast without prior input parameters as

shown in Fig. 5.1(a). We note that such tool is fully general to all solid-state defect

systems, although we first use the NV center as a prototypical example. By combining

advanced electronic structure methods and group theory analysis, we provide a com-

plete set of SOC constants for ISC processes which has not been shown before, and a

comprehensive picture of excitation and relaxation dynamics of the NV center. We dis-

cuss the significance of configuration interaction, pseudo JT and dynamical JT effects

to the SOC, ISC and IC. The consideration of these effects facilitates the interpretation

of the experimentally observed ISC rates that essentially contribute to spin polariza-

tion. Particularly, we provide a definitive answer to the longstanding question regarding

the axial ISC of 3E →1 A1: why symmetry predicts it to be forbidden in the first or-

der [182, 1, 18], experiments show it to be nonzero [88, 4, 89]. Our work demonstrates

a tight connection between theoretical predictions and experimental observations for

various experimental observables, including excitation energy, radiative recombination

rate, SOC, ISC, IC and ODMR. Our theoretical results show qualitative or quantita-

tive agreement with experimental data, depending on properties. We note that, for the

quantities related to the open-shell excited states, a proper treatment of possible mul-

tireference character is necessary. Additionally, our calculated SOC values complement

those difficult to measure experimentally. Importantly, we explain why the transition
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1A1 →1 E is predominantly nonradiative by estimating the IC rates between two singlet

states. We predict the ODMR contrast as a function of an external magnetic field fully

from first-principles, in good agreement with experimental results. We demonstrate

that these simulations are invaluable for predicting spin-polarization mechanism and

provide control strategy on high fidelity optical initialization and readout.

5.2 Computational Methods

We carry out first-principles calculations of structural and ground-state prop-

erties using the open-source plane-wave code Quantum Espresso [130]. The NV center

defect is introduced into a simple cubic diamond crystal with 3 × 3 × 3 supercell size,

containing 216 atoms. Only Gamma point is sampled in the Brillouin zone of the defect

supercells for all calculations, except for the G0W0 − BSE calculations for the radia-

tive lifetime, where a k-point sampling of 2 × 2 × 2 is used. We use the optimized

norm-conserving Vanderbilt (ONCV) pseudopotentials [135] with the wavefunction en-

ergy cutoff of 70Ry. The lattice constant is optimized by using the exchange-correlation

functional with the Perdew-Burke-Ernzerhof (PBE) generalized gradient approxima-

tion [39]. For geometry optimization and excitation energies, we mainly use the range-

separated hybrid function proposed by Heyd, Scuseria, and Ernzerhof (HSE) [47, 46],

and part of the results using PBE functional are for comparison with HSE, presented

in the supplementary material (SM). The HSE functional has been shown to better

describe the electronic structure of the NV center in diamond compared to the PBE

functional [183, 184, 91]. We calculate the excitation energies using three different
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methods, constrained DFT (CDFT), single-shot GW plus the Bethe-Salpeter Equation

(G0W0−BSE), and complete active space self-consistent field method with second order

perturbation theory (CASSCF-CASPT2) [185].

The many-body perturbation theory calculations are performed by using the

WEST code [186, 187], which takes the advantage of various techniques [188, 189] and

GPU parallelization to enable large-scale computaions. The Bethe-Salpeter Equation

(BSE) is solved within the density matrix perturbation theory (DMPT) formalism, and

the projective dielectric eigenpotentials (PDEP) technique is utilized to compute the

screened exchange integral, avoiding the need for empty bands. The number of PDEP

is converged to 2000 (about 2 times the number of electrons) as determined from our

test with GW. The details of the G0W0 − BSE calculations can be found in Sec. II.

Due to the multi-reference character of the 3E, 1E, and 1A1 excited states

of the NV center, a single Slater determinant description in DFT is incomplete. To

overcome this problem, we use the CASSCF method [185] to construct the state wave-

functions as linear combinations of multiple Slater determinants. Each determinant

describes a particular occupation of single-electron orbitals. We use the C33H36N−1

cluster model, which is considered in Ref. [181]. The cluster model is cut from the 3A2

ground state geometry of 3×3×3 supercell, and the C atoms that have dangling bonds

are terminated H atoms with standard C-H bond length of 1.09 �A. In the CASSCF

method, the orbital space is partitioned into subspaces of the inactive, active, and vir-

tual orbitals. The occupation of the active orbitals is allowed to change to generate

all possible spin- and symmetry-allowed determinants for a particular electronic state.
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A choice of a partition of the orbital space, that is the choice of a number of active

orbitals and active electrons, determines the CASSCF active space. The active space of

(6e, 6o) is chosen to include two molecular orbitals of the a1 (a1N and a1C) symmetry

and two orbitals of the e symmetry (ex, ey, e
′
x, and e′y), all localized near the vacancy

defect. Inclusion of the e′x and e′y orbitals in the active space is necessary for accurate

description of the correlation between electrons near the defect [181]. We use the state-

average (SA) version of the CASSCF method as implemented in ORCA [190, 191] to

obtain state wavefunctions for calculations of SOC matrix elements. The 3A2, 3E, 1A1,

and 1E electronic states, involved in the spin polarization cycle [52, 68], are included in

state-averaging. Accurate prediction of the excitation energies requires correction of the

CASSCF energies for the dynamic electron correlation. In this work, we use the fully

internally contracted (FIC) version of the complete active space second order pertur-

bation theory (CASPT2) [192] and N-electron valence state second order perturbation

theory (NEVPT2) [193] as implemented in the ORCA 5.0 program package. The sec-

ond order Douglas-Kroll-Hess (DKH2) Hamiltonian [194] and the cc-pVDZ-DK basis

set [195, 196] were used to account for the scalar relativistic effects. The spin-orbit

mean-field operator was used [197].

5.3 ODMR Theory, Implementation, and Benchmark

The basic mechanism of ODMR is related to the excited-state populations

of spin sublevels. Therefore, we begin with the Hamiltonian that describes the spin
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Figure 5.1: Numerical implementation of ODMR contrast and its benchmark with the

NV center in diamond regarding the experiment [4], where the magnetic field is applied

at an angle of 74° with respect to the NV axis. (a) The continuous-wave (cw) ODMR and

its simulation workflow with first-principles inputs. (b) Schematic diagram depicting

the energy levels and excited-state kinetic processes of the NV center in diamond. |0〉,

|−1〉 and |+1〉 denote the spin sublevels in the triplet states. The spin sublevels |+1〉 and

|−1〉 are degenerate under zero magnetic field. (c) The time-evolved populations of the

states reach a steady-state plateau with sufficiently long time, in the presence (w/MW,

left panel) or absence (w/o MW, right panel) of microwave field. (d) Transition rates

(k) for different processes vary differently with magnetic field B. (e) Simulated ODMR

contrast as a function of magnetic field (solid line) and compared with the experiment

(dots) [4]. The experimental data is extracted from a figure by using WebPlotDigitizer

tool [5].
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sublevels of triplet states as in Fig. 5.1(b),

Hs = D(S2
z −

S2

3
) + E(S2

x − S2
y) + geµBB · S (5.1)

B · S = SzBcosθB + SxBsinθBcosφB + SyBsinθBsinφB (5.2)

where Si is the spin-1 operator along i axis, D in the first term is the axial zero-field

splitting (ZFS) parameter, E in the second term is the rhombic ZFS parameter, ge is the

electron g-factor or gyromagnetic ratio whose value is ∼2 in the NV center, µB is Bohr

magneton, and B is the external magnetic field. The ZFS lifts the spin degeneracy. The

third term describes the Zeeman effect occuring under magnetic field (B) and further

leading to the mixing of the original spin sublevels. θB and φB denote the misaligned

angle of the magnetic field regarding the NV axis and the azimuthal angle in the x-y

plane, respectively. Since in this work, we consider the symmetry retained in the x-y

plane for ZFS, the ODMR does not depend on φB. Let αij be the mixing coefficient of

original spin sublevels |i〉 and |j〉, then we can write the transition rates under magnetic

field kij(B) to be a function of mixing coefficients and the rates at zero magnetic field

(k0
pq),

kij(B) =
∑
p,q

|αip(B)|2|αjq(B)|2k0
pq. (5.3)

The spin mixing will be shown below to be the source of the magnetic field-dependent

ODMR.

We then numerically implement the ODMR contrast based on the kinetic mas-

ter equation [4, 69], which integrates all transition rates and allows to simulate the dy-

namics of states populations, photoluminescence (PL) intensity, as well as continuous

139



wave (cw) or time-resolved ODMR. The model starts with the conventional definition

of ODMR contrast,

C(B) = 1− Ī(t,B, kMW)

Ī(t,B, kMW = 0)
(5.4)

Ī(t,B) = η
∑
i∈ES

∑
j∈GS

kij(B)n̄i(t,B) (5.5)

where Ī(t,B, kMW) is the magnetic-field dependent PL intensity at the steady state

in the presence of microwave resonance (MW), which is different from the case in the

absence of microwave resonance (kMW = 0). Here, kMW is the Rabi frequency of a

microwave field that is applied for rotating the populations of spin sublevels, and is a

parameter in the model as it scales with the amplitude of the microwave field [70]. η

is the collection coefficient parameter for PL intensity which depends on experimental

setup but does not affect ODMR. The optical saturation parameter β seen in Fig. 5.1(b)

and SM Sec. I plays a role in the optical excitation. Both kMW and β are determined

according to the experimental range [4]. The PL intensity evolves with time depending

on ni(t,B), the population of spin level |i〉 at time t, and can be solved numerically

using the Euler method.

To validate the ODMR contrast implementation for triplet systems, we firstly

simulate the ODMR of the prototypical system NV center, as shown in Fig. 5.1(b), using

the experimental values of ZFS and rates [4, 20, 69]. The purpose of this benchmark is to

confirm the numerical implementation of ODMR contrast from Eq. (5.1) to Eq. (5.5),

independent of the accuracy of electronic structure and kinetic rates, which will be

discussed in detail in the next sections. Values for the ODMR simulation parameters
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are tabulated in SM Table S1, and the microwave resonance is applied to drive the

rotation between
∣∣3A0

2

〉
and

∣∣3A−1
2

〉
. Since the simulated cw-ODMR is observed at

steady state, arbitrary initial populations of the spin sublevels can be used.

The system reaches the steady state after ∼104 ns, as shown in Fig. 5.1(c).

From the steady-state populations, we can find that
∣∣3A−1

2

〉
has larger population due

to the Rabi oscillation in the presence of the microwave field compared to the absence

of the microwave field. Because the optical excitation is mostly spin-conserving [89],

the population of
∣∣3E−1

〉
is subsequently larger. Because the nonaxial ISC 3E →1 A1

is symmetrically allowed and fast, as can be seen in Fig. 5.1(d), it competes with the

radiative recombination 3E →3 A2, leading to overall smaller excited-state population.

Therefore, the PL intensity in the presence of the microwave field becomes smaller, and

the ODMR contrast is positive as shown in Fig. 5.1(e).

The ODMR contrast is a result of the difference between the axial and nonaxial

ISCs, which are the transitions between spin sublevel |0〉 and |±1〉 to singlet, and vice

versa, eventually leading to spin polarization. The decrease of ODMR contrast with the

magnetic field is a consequence of the smaller difference between axial ISC rates and

nonaxial ISC rates, compared Fig. 5.1(d) to Fig. 5.1(e). The fundamental reason is the

mixing of spin sublevels, which will be discussed in details in Sec. 5.8. To understand

the magnetic field effect, first, when the magnetic field is misaligned with the NV axis,

there is mixing between spin sublevels ms = 0 and ms = ±1. Second, the spin mixing

will further mix ISC rates between different transitions as Eq. (5.3). For the NV center,

the spin polarization is mainly a result of k⊥(3E →1 A1) � kz(
3E →1 A1). When

141



k⊥(3E →1 A1) is similar to kz(
3E →1 A1) due to spin mixing, spin polarization is

weaker, ODMR contrast is smaller. In the extreme case, where the axial ISC is equal to

the nonaxial ISC, there will be no ODMR contrast because no spin polarization among

ms spin sublevels.

The excellent agreement of our simulation with experiment in Fig. 5.1(e) vali-

dates the numerical implementation of ODMR. In SM Fig. S2 and Fig. S3, we present

additional results of the benchmark regarding ODMR frequency and time-resolved PL

intensity of the NV center. More importantly, we determine that the dip of ODMR at

B = 0 is a result of nonzero rhombic ZFS E in Eq. 5.1, which is induced by symmetry-

breaking. Detailed discussion can be found in SM Sec. I, Fig. S4 and Fig. S5.

Besides triplet spin defects, singlet defects that have a triplet metastable state

can also show ODMR signal, like ST1 defect in diamond [198, 199]. In SM Table S2 and

Fig. S6, we additionally include the detailed benchmark of the ODMR model for singlet

spin defects. The benchmark for both triplet and singlet spin defects demonstrates the

generality of the ODMR model.

Next, we will discuss in detail the first-principles calculations of electronic

structure and excited-state kinetic rates at solid-state spin defects, specifically the NV

center here.
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Table 5.1: The excitation energies of the NV center from various theories along with

experiments. The energy of 3A2 is aligned to 0 eV, and the energies of the other states

are entered with respect to 3A2. Σ is the excitation energy of 1E with respect to 3A2,

and ∆ is the energy difference between 3E and 1A1, as illustrated in Fig. 5.1(b).

Method 1E or Σ (eV) 1A1 (eV) 3E (eV) ∆ (eV)

Expt. (ZPL) 0.325-0.4111
1.515-1.601

[200, 201, 20]

1.945

[202, 88, 26]

0.344-0.4302 [88, 26]

Expt. (absorption) – 1.763 [20] 2.180 [202] –

CDFT (HSE, ZPL) 0.37 – 1.95 –

GW-BSE@PBE (absorption) - - 2.40 -

SA(6)-CASSCF(6,6) (absorption) 0.66 1.96 2.30 0.34

CASPT2 (absorption) 0.55 1.57 2.22 0.65

CASSCF [181] 0.25 1.60 2.14 0.54

QDET [180] 0.46 1.27 2.15 0.88

NEVPT2-DMET [203] 0.50 1.52 2.31 0.79

CI-CRPA [204] 0.49 1.41 1.754 0.34

1. The range of 1E or Σ was determined according to the triplet ZPL 3E →3 A2, the singlet ZPL 1A1 →1 E,

and ∆.

2. The range of ∆ was extracted from the ISC rate equation in Ref. [88, 26]. It is simply for reference.

3. This energy is obtained by adding the approximate energy (0.40 eV) of 1E to the absorption energy 1E →1 A1

1.36 eV (912 nm).

4. ZPL
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5.4 Electronic Structure, Excitation Energies and Radia-

tive Recombination of NV Center

The NV center comprises a substitutional nitrogen atom and a vacancy with

one extra electron in the faced-center cubic diamond, with its local structure described

by the C3v symmetry point group. The three-fold symmetry axis is the nitrogen-vacancy

axis along the [111] direction. The ground and low-lying excited electronic states of

the NV center can be determined from two one-electron orbitals, a1 and e (ex, ey),

which transform as the A1 and E irreducible representations of the C3v point group,

respectively. These one-electron orbitals are formed by the carbon and nitrogen dangling

bonds near the vacancy defect. The a2
1e

2 configuration gives rise to the 3A2, 1E and 1A1

states, and a1e
3 to the 3E state. The states above are listed in the ascending energy

order determined experimentally and from the group theory [201, 20, 88, 68]. The total

spin-orbit irreducible representations of these states are given in SM Table S3. The

derivation of the representations can be found in literature [80, 1, 18].

Excitation energies play an important role in energy conservation in radiative

(electron-photon interaction) and nonradiative (electron-phonon interaction) recombi-

nation rates. As we discussed earlier, the excited states of defects can have multi-

reference character which is difficult to describe by conventional DFT. Therefore we

show the calculated excitation energies from several different electronic structure meth-

ods, CDFT, G0W0 − BSE@PBE, CASSCF, and CASPT2 as listed in Table 5.1. The

CASPT2 method predicts the excitation energies of the 1A1 and 3E states in the good
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agreement with the experimental values and with energies obtained using the superclus-

ters of different sizes [180, 203]. The experimental absorption energy of the 1E state

is unknown. The CASPT2 method consistently predicts the energy of the 1E state

in the range of 0.55 to 0.60 eV, see SM Table S4. This energy is in close agreement

with the value of 0.50 (0.46) eV obtained with the embedding theories [180, 203] and

with the value of 0.49 eV obtained using the configuration interaction method [204].

Therefore, the CASPT2 excitation energies are in good agreement with those obtained

using larger cluster models, and their use in the ODMR simulations is well-justified. We

find that the NEVPT2 theory systematically overestimates energies of the 1E and 3E

states, see SM Table S4. More discussion about the excitation energies can be found in

SM Sec. IIA.

With the excitation energies, we employ the Fermi’s golden rule to calculate

radiative recombination rate. The details of calculation methods can be found in our

past work [59, 67, 48] and results can be found in SM Sec. IIC. For the convenience

of comparing our calculated results with previous experiment and calculations, here we

adopt lifetime (τ), which is the inverse of rate (τ = 1/k). Using the optical dipole

moments and excitation energy from G0W0 − BSE@PBE calculations which includes

excitonic effect accurately, we obtain τR =12.44 ns for the 3E →3 A2 transition and

237 ns for the 1A1 →1 E transition. Our calculated radiative lifetime of the 3E →3 A2

transition is consistent with experiment 12 ns for 3E →3 A2 [88]. The radiative lifetime

of the 1A1 →1 E transition has not been determined experimentally and is found to

be dominated by nonradiative processes [201]. Thus, we will mostly focus on the IC
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transition for 1A1 →1 E as discussed in Sec. 5.7.

5.5 Spin-Orbit Coupling and Pseudo Jahn-Teller Effect

Spin-orbit coupling Hamiltonian can be separated into the axial/nonaxial SOC

components (λz/⊥) with the angular momentum ladder operators (L± and S±) and z

components (Lz and Sz),

Hsoc =
λ⊥
2

(L+S− + L−S+) + λzLzSz. (5.6)

Group theory provides important information of whether a SOC matrix ele-

ment is allowed or forbidden, from the symmetry point of view. And the multi-particle

representation of the SOC matrix elements can be reduced to the single-particle repre-

sentation by using the Wigner-Eckark theorem [18]. Some SOC matrix elements were

previously evaluated at the single-particle level at HSE, as shown in Table 5.2. How-

ever, because of their multi-reference character, the excited states cannot be properly

described with a single Slater determinant [181], as can be seen in SM Table S9 and

Fig. S11. Therefore, we perform CASSCF for the evaluation of SOC to take into account

the multi-reference nature of the states, in comparison with TDDFT [95] and previous

DFT results [52, 68].

As shown in Table 5.2, the SOC matrix elements from CASSCF are in accor-

dance with the group theory prediction. Specifically, within the important SOC matrix

elements listed, only λz(
3E,3E) and λ⊥(3E,1A1) are symmetry-allowed. Accordingly

we obtain finite values for these SOC matrix elements at CASSCF. We note that the
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Table 5.2: Summary of SOC matrix elements predicted by group theory, calculated at

the theory level of CASSCF and from experiment. The unit is GHz. CASSCF (C3v)

SOC constants are consistent with prediction. “CI” stands for configuration interaction

that mixes 1E and 1E′. Pseudo JT effect mixes 1A1 and 1E through electron-phonon

coupling, leading to nonzero SOCs. “–” denotes values that do not exist or are not

found.

λz(3E,3 E) λ⊥(1A1,3 E) λz(1A1,3 E) λ⊥(3A2,1 Ē) λz(3A2,1 Ē)

Group Theory (C3v)1 ±λz iλ⊥ 0 nonzero by CI 0

SA(6)-CASSCF(6,6) (C3v) 14.21 3.96 0.06 5.222 0.03

(w/ pseudo JT) λz(3Ẽ,3 Ẽ) λ⊥(1Ã1,3 Ẽ) λz(1Ã1,3 Ẽ) λ⊥(3Ã2,1 Ẽ) λz(3Ã2,1 Ẽ)

Group Theory ±λz nonzero
nonzero

by pseudo JT

nonzero by CI
nonzero

by pseudo JT

Effective SOC

SA(6)-CASSCF(6,6)

14.21 6.75 0.83 5.05 7.72

HSE [52, 68] 15.83 56.34 – 18.965 15.86

Expt. [88, 90, 26] 5.33 6.47 – (nonzero) – (nonzero) – (nonzero)

1. The matrix elements here are expressed in terms of the reduced one-particle matrix elements, λz =

−i~ 〈e||LA2 ||e〉 and λ⊥ = −(i/
√

2)~ 〈e||LE ||a1〉.

2. The matrix element is nonzero because 1E coupled with singlet excited state 1E′ through configuration in-

teraction, and λz(3A2, 1E′) is symmetry-allowed. This coupling exists in CASSCF solutions, as can be seen in

SM Table S9.

3. λz(3E, 3E) was calculated by 〈e+|Hsoc|e+〉 with |e+〉 = 1√
2

(|ex〉 + i |ey〉) at HSE [52]. The matrix element

reduced to 4.8 by a reduction factor.

4. λ⊥(1A1,3 E) was calculated by 〈e+|Hsoc|a1〉 with |e+〉 = 1√
2

(|ex〉 + i |ey〉) at HSE [52], assuming single-

particle picture and that KS wavefunctions constructed 3E and 1A1 did not differ [26].

5. λ⊥(3Ã2,1 Ẽ) was a parameter estimated by taking λ⊥(3Ã2,1 Ẽ)/λz(3Ã2,1 Ẽ) = 1.2 for matching with exper-

iment [68].

6. λz(3Ã2,1 Ẽ) was calculated according to
〈
3E
∣∣Hsoc∣∣3E〉 = 〈e+|Hsoc|e+〉 [52, 68].

7. The matrix element is estimated by using the ratio λ⊥(1A1,3 E)/λz(1A1,3 E) = 1.2 [26].
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nonzero λ⊥(3A2,
1E) at CASSCF does not contradict to the zero value from the group

theory prediction. This is because 1E couples with the higher singlet excited state

1E′ under configuration interaction, as also discussed in Refs [20, 18, 1], resulting in

1Ē = C1E + (1 − C)1E′ (C the mixing coefficient). This leads to symmetry-allowed

λ⊥(3A2,
1 Ē). In comparison, the SOC matrix elements from TDDFT do not agree with

the group theory prediction. The issue is that TDDFT does not describe the multi-

reference state correctly, as can be seen in SM Table S10. An apparent error is that the

symmetry of the wavefunction is not preserved, as can be seen in SM Fig. S12.

However, experiments show allowed axial ISC for 3E →1 A1 and 1E →3 A2 [88,

4, 205, 89]. This is contradictory to the current group theory prediction that these axial

ISC transitions are forbidden by zero λz(
3E,1A1) and λz(

3A2,
1E). It implies that an

additional mechanism may have modified the symmetry of wavefunctions. Previous

studies attribute it to the pseudo JT effect, which particularly couples nondegenerate

electronic states through electron-phonon coupling [206, 65, 68, 7, 91],

H =


Λ 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

He

+
K

2
(Q2

x +Q2
y)︸ ︷︷ ︸

Hosc

+


0 FQx FQy

FQx 0 0

FQy 0 0


︸ ︷︷ ︸

HPJT

(5.7)

F =
〈

1A1

∣∣ ∂V
∂Qx

∣∣1Ex〉 =
〈

1A1

∣∣ ∂V
∂Qy

∣∣1Ey〉 (5.8)

Here, Λ is the energy gap between
∣∣1A1

〉
and

∣∣1E〉 in the electronic Hamiltonian He .

K is the elastic vibronic constant in the harmonic oscillator Hamiltonian Hosc. F is the

linear vibronic coupling constant in the pseudo JT Hamiltonian HPJT.
∣∣1A1

〉
,
∣∣1Ex〉
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and
∣∣1Ey〉 form the basis of the Hamiltonian H. Qx and Qy are the nuclear coordinate

transform as x and y, respectively. Under the pseudo JT distortion, 1A1 is coupled with

1E with the assistance of the JT-active e phonon, denoted as (A1 +E)⊗e. The coupling

of electronic states results in the vibronic states 1Ẽ and 1Ã1 as the linear combination

of 1E and 1A1, ∣∣∣1Ẽ±〉 =
∞∑
i=1

[
ci
∣∣1Ē±〉⊗ ∣∣∣χA1

i

〉
+ di

∣∣1A1

〉
⊗
∣∣∣χE±i 〉

+ fi
∣∣1Ē±〉⊗ ∣∣∣χE±i 〉

+ gi
∣∣1Ē∓〉⊗ ∣∣∣χA2

i

〉] (5.9)

∣∣∣1Ã1

〉
=
∞∑
i=1

[
c′i
∣∣1A1

〉
⊗
∣∣∣χA1
i

〉
+

d′i√
2

( ∣∣1Ē+

〉
⊗
∣∣∣χE−i 〉

+
∣∣1Ē−〉⊗ ∣∣∣χE+

i

〉)] (5.10)

where
∣∣χΓ
i

〉
is the i-th phonon wavefunction transforming as irreducible representation

Γ, and ci, di, fi, gi, c
′
i and d′i are the amplitude of vibronic states. The states coupling

give rise to a significant change in the SOC matrix elements as listed below:

λz(
1Ã1,

3 Ẽ) = d′eff
〈

1Ē
∣∣Hsoc

∣∣3E〉
z

(5.11)

λ⊥(1Ã1,
3 Ẽ) = c′eff

〈
1A1

∣∣Hsoc

∣∣3E〉⊥ + d′eff
〈

1Ē
∣∣Hsoc

∣∣3E〉⊥ (5.12)

λz(
3Ã2,

1 Ẽ) = deff
〈

3A2

∣∣Hsoc

∣∣1A1

〉
z

(5.13)

λ⊥(3Ã2,
1 Ẽ) = (ceff + feff )

〈
3A2

∣∣Hsoc

∣∣1Ē〉⊥ (5.14)

where c′eff , d′eff , ceff , deff , feff are the normalized effective state mixing coefficients,

e.g. |c′eff |2 + |d′eff |2 = 1.

We complete the derivation for all effective SOC matrix elements of the NV

center, in complement to Ref. [68] which only provides λ⊥/z(
3Ã2,

1 Ẽ). The derivation
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details can be found in SM Sec. IVA. The pseudo JT effect results in the finite values

of λz(
1Ã1,

3 Ẽ) and λz(
3Ã2,

1 Ẽ), and a modification to λ⊥(1Ã1,
3 Ẽ) and λ⊥(3Ã2,

1 Ẽ),

as can be seen in Table 5.2. The resulting effective SOC shows much better agreement

with experiments, in contrast to other calculations by DFT or TDDFT. As will be

shown in Sec. 5.6, the nonzero SOC matrix elements lead to allowed ISC, consistent

with experimental observations.

Finally, another approach based on the Taylor expansion of SOC matrix ele-

ment in terms of coupling with phonon vibration is commonly used for the study of ISC

in molecules [63, 64]. We examine this approach by computing its first-order derivative

of SOC with respect to nuclear coordinate change. The result indicates that this ap-

proach does not apply to the NV center under the 1D effective phonon approximation.

More details can be seen in the SM Sec. IVC.

5.6 Electron-Phonon Coupling and ISC

The ISC rate between electronic states with different spin multiplicities can be

calculated as

kISC =
2π

~
g
∑
n,m

pin| 〈fm|Hsoc|in〉 |2δ(Efm − Ein). (5.15)

Here, we make the 1D effective phonon approximation [66, 67, 48] for the ISC rate.

Compared to the full-phonon method used in Ref. [52, 68], an advantage of this 1D

effective phonon method is that it enables the use of different values for the phonon

energy of initial state (~ωi) and the one of final state (~ωf ), and enables finite temper-
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Table 5.3: Electron-phonon coupling and rates of ISC 3Ẽ →1 Ã1 and 1Ẽ →3 Ã2 at 300

K. The degree of geometry degeneracy g is specified as 3. ∆Q is the nuclear coordinate

change between the initial and final states. ~ωi and ~ωf represent the phonon energy

of the initial and final states, respectively. Sf denotes the 1D Huang-Rhys (HR) factor

of the final state, which is a measure of e-ph coupling strength. X̃if is the phonon

term. In these calculations, the JT-distorted geometries of Cs symmetry are used for

the initial states 3Ẽ and 1Ẽ, and the geometry of C3v symmetry of 3Ã2 is used for the

final states 1Ã1 and 3Ã2, considering the fact that the geometry and phonon modes of

1Ã1 are similar to those of 3Ã2 [7, 20].

Transition ∆Q ~ωi ~ωf

(amu1/2�A) (meV) (meV)

Expt.

3Ẽ →1 Ã1

0.641 – 71 [20]

Calc. 0.65 73.74 67.75

Calc. [52, 68] – 77.6 66− 91.8

Expt.

1Ẽ →3 Ã2

0.341 – 64 [20]

Calc.

(X̃if at HSE)

0.23 75.85 71.04

Calc.

(X̃if at spin-flip TDDFT)

0.41 [7] 48.81 69.88

Calc. [68] – – 66
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Transition Sf X̃if k⊥ kz

(eV−1) (MHz) (MHz)

Expt.

3Ẽ →1 Ã1

3.49 [20] – 24.3 [88] < 0.62 [88]

Calc. 3.38 1.34 29.86 0.46

Calc. [52, 68] 2.612 – 243 –

Expt.

1Ẽ →3 Ã2

0.93 [20] – 2.61 [89] 3.0 [89]

Calc.

(X̃if at HSE)

0.45 1.17× 10−4 1.47× 10−3 3.47× 10−3

Calc.

(X̃if at spin-flip TDDFT)

1.46 0.20 2.49 5.89

Calc. [68] – 0.904 4.954

1. ∆Q is estimated by the Huang-Rhys factor and phonon energy, S = ω∆Q2/2~, under one-dimensional effective

phonon approximation. 2. S = 2.61 when approximating exex singlet determinant for 1Ã1, and S = 3.11 when

using 3A2 geometry for 1Ã1.

3. This HR factor is for 1Ã1 →1 Ẽ. Considering the similarity of geometry and potential surfaces between 3Ã2

and 1Ã1, we put it here for comparison with our calculations.

4. The corresponding SOC can be found in Table 5.2.
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ature occupation for both states. As already discussed in Sec. 5.5 and SM Sec. IVA,

the SOC matrix element 〈fm|Hsoc|in〉 that couples the initial vibronic state |in〉 and

final vibronic state |fm〉 can be separated into the effective SOC and effective phonon

overlap. Therefore, the ISC rate equation is expressed as

kISC =
2π

~
gλ2X̃if (5.16)

λ = 〈ψf |Hsoc|ψi〉 (5.17)

X̃if =
∑
n,m

pin(T )| 〈φm|φn〉 |2δ(m~ωf − n~ωi + ∆Eif ) (5.18)

where g is the degree of degeneracy on equivalent structural configuration, λ is the

effective SOC matrix element, and X̃if is the temperature-dependent phonon term rep-

resenting the phonon contribution. |ψ〉 is the linear combination of possible electronic

states after considering pseudo JT effect, and |φ〉 denotes the phonon wavefunction un-

der the harmonic oscillator approximation. λ has been discussed in detail in Sec. 5.5.

Therefore, our primary focus in this section will be on the phonon term X̃if . We will

show that dynamical JT effect is important to include for electron-phonon coupling in

the nonradiative intersystem-crossing transitions. Otherwise the transition rates can be

order of magnitude smaller.

In Fig. 5.2(a), we show the lower branch adiabatic potential energy surface

(APES) of 1E by fitting the Hamiltonian in Eq. (5.19) [65] to the calculated potential
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energy curves,

H =
K

2
(Q2

x +Q2
y)︸ ︷︷ ︸

Hosc

+ F (Qxσz −Qyσx) +G[(Q2
x −Q2

y)σz + 2QxQyσx]︸ ︷︷ ︸
HDJT

.

(5.19)

Here K, F and G are elastic, linear and quadratic vibronic constants, respectively.

σz and σx are Pauli’s matrices. Qx and Qy denote nuclear coordinate transform as x

and y, respectively. The APES appears as a tricorn Mexican hat under the E ⊗ e JT

distortion, which splits the doubly degenerate electronic states via the coupling with

e phonon. The symmetry of the geometry is C3v at the conical intersection, and Cs

at the three equivalent geometries of energy minima. The three-fold degeneracy of the

geometry indicates that g should be 3 in the ISC calculation. We find that the three

energy minima are separated by a minor energy barrier (δ = 2F 2|G|/(K2 − 4G2)) at

∼30 meV. Because of the small energy barrier, the system of the vibronic ground state

may be delocalized and tend to undergo a hindered internal rotation among the energy

minima like 3E [207], which is the so-called “dynamical JT effect”.

The dynamical JT effect distorts the geometries from C3v to lower symmetry.

Then the geometries of Cs symmetry become the starting points for the system to

relax from the initial states 1Ẽ (3Ẽ) to the final state 3Ã2 (1Ã1) through ISC. The

nonradiative process is depicted in Fig. 5.2(b), the configuration coordinate diagram

of 1Ẽ →3 Ã2 as an example. In the nonradiative process, the JT-active e phonon

breaks the symmetry of 1E and alters the potential energy curve of 1E. This results

in a small energy barrier between the initial and final electronic states, which is easy
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to overcome. Finally, the small energy barrier consequences in the fast nonradiative

relaxation [208, 67]. In contrast, if not considering the dynamical JT effect, only the

totally symmetric a1 type phonon would participate in the ISC, and the transition rate

would be orders of magnitude smaller due to the large energy barrier between the initial

and final electronic states. The dramatic difference between C3v-symmetry geometry

and Cs-symmetry geometry as starting point indicates that dynamical JT effect plays

an essential role in the nonradiative processes.

By listing the ISC calculation details in Table 5.3, we first find k⊥(3Ẽ →1 Ã1)

shows good agreement with experimental values. And kz(
3Ẽ →1 Ã1) becomes allowed

in the first order due to the finite SOC by the pseudo JT effect, consistent with the

nonzero ISC in experiment [88, 4, 205, 89]. On the other hand, the k⊥/z(
1Ẽ →3 Ã2) ISC

rates are three orders of magnitude smaller than experiment, but the ratio kz(
1Ẽ →3

Ã2)/k⊥(1Ẽ →3 Ã2) = 2.37 is similar to the experimental value 1.15±0.05 or 1.6±0.4 [89]

(the ratio between kz and k⊥ is more critical for spin polarization). The underestimation

of the rates can be originated from the underestimated electron-phonon coupling related

to X̃if , the phonon contribution to ISC. Recent spin-flip TDDFT calculation [7] predicts

accurate PL lineshape for the 1E →1 A1 transition, which indicates accurate electron-

phonon coupling description despite the lack of double excitation. We therefore use

spin-flip TDDFT calculation to correct the phonon term X̃if of this transition. It

can be found that the phonon term is underestimated by orders of magnitude at HSE

compared to spin-flip TDDFT.

In fact, the underestimation of electron-phonon coupling can be traced back
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to the JT effects, including the dynamical JT effect and pseudo JT effect. Our HSE

calculation captures the dynamical JT effect, giving ∆Q = 0.23 amu1/2�A. This value is

similar to the value 0.26 amu1/2�A obtained with spin-flip TDDFT [7]. However, due to

the mean-field approximation and the absence of spin-flip process in HSE, the pseudo

JT effect is relatively weak in the 1E state. This results in the lack of the additional

distortion of 1E by the pseudo JT effect in our HSE calculation. If using spin-flip

TDDFT, ∆Q is enhanced to 0.42 amu1/2�A, which is closer to the experiment 0.34

amu1/2�A that is estimated by the experiment phonon energy and Huang-Rhys factor.

With the spin-flip TDDFT data, we obtain k⊥/z(
1Ẽ →3 Ã2) in good agreement with

the experimental observation, as listed in Table 5.3.
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(a)

(b)

Energy 
barrier
0.50 eV

e phonona1 phonon

Figure 5.2: (a) Adiabatic potential energy surface (APES) of 1E of the NV center with

the dynamical JT effect. ∆Q denotes the nuclear coordinate change, the mass weighted

total nuclear displacement. x and y represent the displacement directions due to the

degenerate ex and ey phonons, respectively. (b) The configuration coordinate diagram

for the 1Ẽ →3 Ã2 ISC. The ISC starts from 1Ẽ, whose geometry at local energy minima

can have C3v and Cs symmetries, and ends at 3Ã2 of C3v symmetry. The solid line

represents the potential energy curve created by electron coupling with e phonon, and

the dashed line represents that due to electron coupling with a1 phonon. The shaded

area between the solid and dashed lines includes electron coupling with the mix of a1

and e phonons. The energy barrier is 0.50 eV. The inset is the visualization of effective

a1 and e phonons, whose arrows represent the vibration amplitude larger than the

threshold 0.005 amu1/2�A and 0.03 amu1/2�A, respectively.
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5.7 Internal Conversion

The IC represents spin-conserving phonon-assisted nonradiative transition.

Under the static coupling approximation and one-dimensional effective phonon approx-

imation, the equation of nonradiative transition rates is expressed as [66, 67]

kIC =
2π

~
g|Wif |2Xif (T ) (5.20)

Wif = (εf − εi)
〈
ψi(r,R)

∣∣∣∣∂ψf (r,R)

∂Q

〉 ∣∣∣∣
R=Ra

(5.21)

Xif =
∑
n,m

pin(T )
∣∣∣ 〈φfm(R)|Q−Qa|φin(R)〉

∣∣∣2
× δ(m~ωf − n~ωi + ∆Eif ).

(5.22)

This equation is similar to that of ISC except that the electronic term Wif replaces SOC

λ with single particle wavefunctions ψi to approximate many-electron wavefunctions,

and that the phonon term becomes Xif with additional expectation values of nuclear

coordinate change (Q−Qa).

From our calculations reported in Table 5.4, 3E →3 A2 shows long IC lifetime

(1.20 s) because a great number of emitted phonons is needed to fulfill the energy

conservation between 3E and 3A2. Therefore, this spin-conserving transition process is

dominated by the radiative recombination. On the other hand, the 1A1 →1 E transition

is likely to be nonradiative-dominant according to past experiments [201], but does

not appear in the HSE calculation where we obtain long IC lifetime. This can be a

consequence of inaccurate description of the electron-phonon coupling of multi-reference

states 1A1 and 1E, currently calculated at DFT.
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Similar to ISC, we also correct the phonon term Xif of 1E →1 A1 transition,

which is the primarily underestimated component, by using the potential energy surfaces

of 1A1 and 1E at spin-flip TDDFT@DDH. The improved electron-phonon coupling

enhances Xif and the IC rate by several orders of magnitude. The enhanced IC rate is

in good agreement with the experimental observation [200]. More details can be found

in SM Sec. VD.

Without correcting the IC rate, we find that the PL rate (kPL = kR + kIC) of

1A1 →1 E is underestimated, but still allows us to obtain qualitatively correct ODMR

contrast. When we consider the corrected kIC(1Ã1 →1 Ẽ) by using spin-flip TDDFT

data, this transition becomes dominant by nonradiative recombination, and ODMR

contrast is in better agreement with experiments. More details can be seen in Sec. 5.8.

5.8 Angle-Dependent and Magnetic-Field Dependent ODMR

The rates of radiative recombination, internal conversion and intersystem cross-

ing obtained from the calculations above set the prerequisite for the simulation of ODMR

contrast (spin-dependent PL contrast). Additionally, the ZFS of triplet ground state

and excited state are entered to account for their spin sublevels. Our calculated ZFS of

3A2 is D = 3.03 GHz by the first-principles method explained in SM Sec. VIA, similar

to the experimental value D = 2.87 GHz [48, 4, 209]. We currently use the experimental

value of D = 1.42 GHz for excited triplet state 3E [209] given methods for accurate

prediction of excited state ZFS remain to be developed. The optical saturation param-

eter β and Rabi frequency kMW are entered as parameters into the model, and their
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Table 5.4: Calculation details of internal conversion of the NV center at 300 K. The

degree of geometry degeneracy g is specified as 3. The ZPL is the energy change in

the complete nonradiative process. ∆Q denotes the nuclear coordinate change between

the initial and final states. Sf = ω∆Q2/2~ is the phonon energy of the final state. Sf

denotes the Huang-Rhys factor under 1D effective phonon approximation. Wif and Xif

are the electronic and phonon terms, respectively.

Transition ZPL ∆Q ~ωf Sf

(eV) (amu1/2�A) (meV)

3E →3 A2 1.97 0.65 67.75 3.38

1A1 →1 E

(Xif at HSE)

1.13 0.24 75.69

1Ã1 →1 Ẽ

(Xif at spin-flip TDDFT)

1.13 0.42 [7] 87.33 1.82

1A1 →1 E (Expt.) 1.19 0.31-0.35 – 0.9 [20]

Transition Wif Xif τIC kIC

(eV/(amu1/2�A)) (amu·�A2
/eV) (MHz)

3E →3 A2 16.59 1.06× 10−19 1.20 s 8.35× 10−7

1A1 →1 E

(Xif at HSE)

1.05× 10−2 4.28× 10−11 7.35 ms 1.36× 10−4

1Ã1 →1 Ẽ

(Xif at spin-flip TDDFT)

1.05× 10−2 1.52× 10−4 2.07 ns 4.82× 102

1A1 →1 E (Expt.) – – 0.9 ns2 [200] 1.11× 103 2 [200]

1. ∆Q is estimated by the Huang-Rhys factor and phonon energy in the range 63-76.4 meV, S = ω∆Q2/2~,

under one-dimensional effective phonon approximation.

2. These are the PL lifetime and rate of 1A1. Since the transition is claimed to be dominated by nonradiative

processes [201], they are approximately IC lifetime and rate.
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values are selected within the experimental range [69]. cw-ODMR, which is evaluated

at the steady state when the populations no longer change as a function of time, is

independent on the initial spin state. We then apply an oscillatory microwave field to

drive the population between |−1〉 and |0〉 spin sublevels in 3A2.
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Figure 5.3: ODMR contrast from the simulation using the calculated rates compared

with Expt. A [4] and Expt. B [6]. The angle refers to the angle of magnetic field

with respect to the NV axis along [111]. Expt. A shows an angle of 74 ± 1°. The

angle of magnetic field in Expt. B is unknown. The dashed blue curve is the ODMR

simulation using all the rates from calculations using HSE phonon. The solid blue curve

is the simulation with calculated rates using the phonon term calculated with spin-flip

TDDFT as discussed in Sec. 5.6 and Sec. 5.7.

Using the input from our first-principles calculations, we plot the simulated

ODMR contrast against magnetic field in comparison with the experiments [4, 6] in

Fig. 5.3. The simulated ODMR contrast decreases with increasing the magnetic field,
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consistent with the trend shown by the experiments (yellow dots and squares). Such

decrease of ODMR contrast is originated from the mixing of the spin sublevels under

magnetic field, as can be seen in SM Fig. S21. The mixing of the spin sublevels leads

to smaller contrast of the axial and nonaxial ISC rates, especially k⊥/z(
3Ẽ →1 Ã1).

Consequently, the spin polarization is less pronounced, manifesting as reduced ODMR

contrast.

Our simulated ODMR contrast is overestimated compared to experiments.

This is because of the underestimated ISC rates k⊥/z(
1Ẽ →3 Ã2) and IC rate kIC(1Ã1 →1

Ẽ), with detailed explanation in earlier sections. Under continuous optical excitation,

the system is easier to populate 1Ẽ and 1Ã1 through the channel 3Ẽ±1 →1 Ã1 →1 Ẽ

when there is an applied microwave field driving populations from spin sublevel |0〉 to

|−1〉. When k⊥/z(
1Ẽ →3 Ã2) and kIC(1Ã1 →1 Ẽ) are underestimated, the population

accumulates at the singlet states 1Ã1 and 1Ẽ. This results in the enhanced PL intensity

contrast between the two situations, namely in the presence and absence of a microwave

field. With the calculated rates using spin-flip TDDFT data discussed in Sec. 5.7 and

Sec. 5.6, we obtain ODMR contrast slightly underestimated but in better agreement

with the experiments.

Finally, we study the ODMR contrast dependence on the magnetic field direc-

tion. How spin sublevels mix depends on the magnetic field direction with respect to

the NV axis, which is quantified by polar angle θB. In Figs. 5.4(a) and 5.4(b), we show

both the angle dependency and magnetic-field dependency of normalized PL intensity

and ODMR contrast. The simulated normalized PL intensity at θB = 1° exhibits sim-

162



ilar sharp reduction character as the experiment [8]. This reduction shares the same

origin as the ODMR, as elaborated below. When the magnetic field is perfectly aligned

with the NV axis, the ODMR contrast is maximal since there is no spin mixing. When

magnetic field is slightly misaligned to the NV axis, we can see two positions of sharp

reductions of the ODMR contrast at B = ∼50 mT and ∼100 mT, which are related

to the ZFS in 3E and the one in 3A2, respectively. This is resulted from the excited

state level-anticrossing (ESLAC) and the ground-state level-anticrossing (GSLAC). As

can be seen in SM Fig. S21 that shows the extend to which the spin sublevels mix,

there is strong spin mixing of |0〉 to |−1〉 at ESLAC and GSLAC. When the magnetic

field is more misaligned with the NV axis, i.e. 10° < θB < 90°, the ODMR contrast

becomes highly sensitive to the magnetic field, nearly vanishing after the ESLAC. In

addition, we find that the GSLAC and ESLAC of the NV center gradually disappear

with increasing magnetic field after B > 25 mT. The vanishing GSLAC and ESLAC

can also be reflected by the ODMR frequency plots in SM Fig. S22. In general, this

result suggests our theory can reliably predict the ODMR dependence on magnetic field

direction, which is useful for setting up experiments. Considering the complexity of the

computation process, it is beneficial to outline the procedures for ODMR simulation

from first principles. Fig. 5.6 illustrates the overall workflow.
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Figure 5.4: (a) Normalized PL intensity simulated using first-principles rates with spin-

flip TDDFT data [7] against the applied magnetic field B, with a direction of 1° relative

to the NV axis. The experiment for comparison is from Ref. [8]. (b) ODMR contrast

as a function of magnetic field with an angle relative to the NV axis [111], which is the

spin quantization axis at B = 0. The strong magnetic field dependency is originated

from spin mixing. In both the normalized PL intensity and ODMR contrast, the sharp

reduction at B = ∼50 and ∼100 mT corresponds to level-anticrossing (LAC) due to

ZFS and Zeeman effect in the excited state 3E and ground state 3A2, respectively. At

θB = 0°, the ODMR contrast is optimized with no spin mixing.

164



5.9 Optimization for ODMR Contrast

The optimization of ODMR contrast is a critical step experimentally, as we

show next can be realized through tuning optical saturation parameter β (related to

excitation efficiency βkR) and tuning Rabi frequency kMW [69]. Such parameters are

cumbersome to search for experimentally but our theory can be much more efficient.

Considering that the k⊥/z(
1Ẽ →3 Ã2) rates largely vary across different exper-

iments [89, 4], and that the optimization behavior of the ODMR contrast is sensitive

to these variations, it is essential to understand the relationship between the ISC rate

and the optimization of ODMR. For clarity, we use the scale factor k/k0 to represent

the variations of k⊥/z(
1Ẽ →3 Ã2), and k0 denotes the k⊥/z(

1Ẽ →3 Ã2) rates from our

calculation in Table 5.3.

Fig. 5.5(a) shows that the ODMR is optimized at β < 0.01 when the k⊥/z(
1Ẽ →3

Ã2) rates are overestimated compared to the experimental observation. If the k⊥/z(
1Ẽ →3

Ã2) rates are close to or below experimental values, the ODMR is optimized when

the optical excitation power is ∼ 0.1 of the saturation. Despite variations in the

k⊥/z(
1Ẽ →3 Ã2) rates, the part in β > 0.1 is consistent with the experiment [69].

However, the high sensitivity of the ODMR optimization to β underscores the impor-

tance of obtaining accurate rates for the correct prediction.

Fig. 5.5(b) indicates that the ODMR contrast can reach its maximum at

kMW ≈ 5 MHz. The variations in the k⊥/z(
1Ẽ →3 Ã2) rates primarily affect the mag-

nitude of the ODMR contrast with respect to kMW. When the populations of the spin

sublevels are driven by the Rabi oscillation, the nonaxial ISC 3Ẽ →1 Ã1 becomes the
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preferential path for the relaxation from 3Ẽ. Thus, the upper bound of the ODMR con-

trast in this case is limited by the contrast between k⊥(3Ẽ →1 Ã1) and kz(
3Ẽ →1 Ã1).
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Figure 5.5: ODMR contrast can be optimized by tuning (a) optical saturation parameter

β and (b) Rabi frequency kMW. The ODMR is simulated at B = 0 and θB = 0. The

corrected rates by using the spin-flip TDDFT data are used for the ODMR simulation

to show the optimization of ODMR contrast. k0 denotes the k⊥/z(
1Ẽ →3 Ã2) rates

from our calculation. With maintaining the ratio of k⊥(1Ẽ →3 Ã2)/kz(
1Ẽ →3 Ã2), the

scaled version, k, is used to illustrate how the optimization behavior of ODMR contrast

changes with the variation in the k⊥/z(
1Ẽ →3 Ã2) rates.

5.10 Conclusion

In conclusion, we have developed general first-principles computational plat-

form for spin-dependent PL contrast and cw-ODMR, for triplet and singlet spin defects
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Electronic Structure and Optimized Geometry

(e.g. DFT, spin-flip TDDFT)

VEE+µe−h

(e.g. DFT, G0W0 − BSE)

SOC

(e.g. CASSCF)

e-ph coupling

ZFS

kR
kISC kIC α(B)

ODMR Simulation

+ Zeeman

Figure 5.6: Workflow of ODMR simulation from first-principles. VEE stands for vertical

excitation energy. µe−h represents optical dipole moment. e-ph coupling represents

electron-phonon coupling. k represents the rates which can be obtained using the Fermi’s

golden rule. α(B) represents the mixing coefficient in Eq. (5.3).

in solids. We solved the kinetic master equation to obtain steady-state excited-state

occupations. These occupations are determined by excited-state kinetic rates, which
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we implemented fully from first-principles. We then validated our implementation by

comparing with the experimental data on NV center in diamond. We show our first-

principles computational platform for ODMR is fully general and accurate, as long as

we have reliable electronic structure as inputs (including state energies, wavefunction,

and defect geometry).

The ODMR simulation from first principles requires calculations of spin sub-

levels due to ZFS, and the rates of all possible transitions i.e. radiative recombination,

ISC (spin-flip nonradiative recombination) and IC (spin-conserving nonradiative recom-

bination). In this work we examined the theory and implementation of ISC in great

detail, emphasizing accurate description of both spin-orbit coupling and electron-phonon

coupling. In particular, by using NV center in diamond as prototypical example, we

identify the coupling of 1E and 1E′ due to the configuration interaction from CASSCF

calculation and group theory, and show the corresponding effect on SOC matrix ele-

ments. We complete the derivation and calculation for the effective SOC matrix ele-

ments of the NV center considering the pseudo JT effect. As a result, we unequivocally

clarify the experimental observation of the axial ISC 3Ẽ →1 Ã1, which was thought

to be forbidden in the first order by symmetry. Importantly, we show the dynamical

JT effect in the degenerate states 3E and 1E significantly enhances the nonradiative

recombination by reducing the potential energy barrier. The results showcase the rich

physics underlying the entire excitation and relaxation cycle.

Finally, we simulate cw-ODMR of the NV center from first-principles calcu-

lations. Through our calculations, we attribute the dip in ODMR contrast at B = 0
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to the non-zero rhombic ZFS parameter E, indicating symmetry breaking of the NV

center in the experiment. We provide the optimization strategies for ODMR contrast

with respect to magnetic field, optical saturation parameter and Rabi frequency. These

are found to be informative especially for the range of conditions difficult to reach ex-

perimentally. This shows the critical role of our computational technique can play in

guiding experiments, which also enables deeper understanding to the spin polarization

of spin defects.

The study emphasizes the importance of accounting for the multi-reference

character of the electronic states, SOC and electron-phonon coupling for spin defects.

It unveils the challenge that there is a need of developing advanced first-principles theory

for accurate prediction of SOC and electron-phonon coupling in solid-state spin defects.

On the other hand, the atomic structure of many spin defects has not been determined

yet, such as ST1 defect in diamond and quantum defects in two-dimensional wide-

band gap semiconductors. Our developed computational platform can be essential for

identifying existing spin defects, and potentially applied to the design of new solid-state

spin defect important for nanophotonics and quantum information science.
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Chapter 6

Spin Relaxation and Dephasing in

Perovskites

This chapter starts to present the spin of carriers in solids, in particular per-

ovskites. In contrast to spin of solid-state defects in Chapter 4 and Chapter 5, the spin

of carriers is delocalized, the spin dynamics can be related to the properties of carrier

transport, and is momentum-dependent under magnetic field. To understand how spin

relax and dephase in perovskites, a group of materials possessing strong SOC and highly

tunable symmetry, the first-principles study is performed with the application of the

advanced approach of first-principle density-matrix dynamics. The upper bound of in-

trinsic spin lifetime is provided by this study. Important mechanisms are clarified for

spin dynamics in various perovskites across a temperature range from 4 K to 300 K and

a range of external magnetic fields.
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6.1 Introduction

The field of semiconductor spintronics aims to achieve the next generation of

low-power electronics by making use of the spin degree of freedom. Several classes of

materials for spintronic applications have been discovered, investigated and engineered

in the past decade [210, 30, 211, 212, 213]. Efficient spin generation and manipulation

require a large spin-orbit coupling (SOC), with GaAs a prototypical system, whereas

long spin lifetimes (τs) is mostly found in weak SOC materials, such as graphene and

diamond. Materials with large SOC as well as long τs are ideal for spintronic applications

but rare, presenting a unique opportunity for the discovery of new materials.

Halide perovskites, known as prominent photovoltaic [214] and light-emitting

materials [215] with remarkable optoelectronic properties, have recently attracted inter-

ests also for spin-optoelectronic properties [33, 10, 216, 9, 34, 217], since these materials

exhibit both long lifetimes and large SOC (due to heavy elements). Compared to con-

ventional spintronic materials, the optical accessibility for spin generation and detec-

tion of halide perovskites opens up a new avenue for spin-optoelectronics applications.

Additionally, with highly tunable symmetry through the organic-inorganic framework,

large Rashba splitting and high spin polarization have been realized at room temper-

ature, critical for device applications. For example, extremely high spin polarization

was produced through charge current in chiral nonmagnetic halide perovskites at room

temperature in the absence of external magnetic fields [33] (Bext), which is a hallmark

in semiconductor spintronics. Persistent spin helix states that preserve SU(2) symme-

try and that can potentially provide exceptionally long τs were recently discovered in
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two-dimensional halide perovskites [34].

Several recent experimental studies have sought to identify the dominant spin

relaxation and dephasing mechanisms to further control and elongate τs of halide per-

ovskites, [10, 216, 33, 9] e.g. via time-resolved Kerr/Faraday rotations. In particular,

the bulk halide perovskite such as CsPbBr3, which possesses one of the simplest halide

perovskite structures, is a good benchmark system to understand the fundamental phys-

ical mechanisms but already presents several outstanding questions. First, what is the

intrinsic τs of CsPbBr3? Experimentally this is not possible to isolate due to the un-

avoidable contributions from defects and nuclear spins. However, the intrinsic τs are

essential as the upper limits to guide the experimental optimization of materials. Next,

what scattering processes and phonon modes dominate spin relaxation when varying

the temperature, carrier density, etc.? This has been extensively studied for carrier

relaxation dynamics, but not yet for spin relaxation dynamics. As we show here, the

role of electron-phonon (e-ph) coupling, and especially the Fröhlich interaction known

to be important for carrier relaxation in halide perovskites [218], can be dramatically

different in spin relaxation. Lastly, how do electron and hole τs respond to Bext, and

what are the roles of their respective g-factor inhomogeneity [10, 216]?

To answer these questions, we need theoretical studies of spin relaxation and

dephasing due to various scattering processes and SOC, free of experimental or empirical

parameters. Previous theoretical work on spin properties of halide perovskites have

largely focused on band structure and spin texture [219, 220, 34], and have not yet

addressed spin relaxation and dephasing directly. Here, we apply our recently-developed
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first-principles real-time density-matrix dynamics (FPDM) approach [71, 72, 73, 221,

222], to simulate spin relaxation and dephasing times of free electrons and holes in

bulk CsPbBr3. FPDM approach was applied to disparate materials including silicon,

(bcc) iron, transition metal dichalcogenides (TMDs), graphene-hBN, GaAs, in good

agreement with experiments [71, 72, 221]. We account for ab initio Landé g-factor and

magnetic momenta, self-consistent SOC, and quantum descriptions of e-ph, electron-

impurity (e-i) and electron-electron (e-e) scatterings. We can therefore reliably predict

τs with and without impurities, as a function of temperature, carrier density, and Bext.

6.2 Theory of First-Principles Real-Time Density-Matrix

Dyanmics

We simulate spin and carrier dynamics based on the FPDM approach [71, 72].

We solve the quantum master equation of density matrix ρ (t) in the Schrödinger picture

as the following:[72]

dρ12 (t)

dt
=− i

~
[
H
(
Bext

)
, ρ (t)

]
12

+
1
2

∑
345


[I − ρ (t)]13 P32,45ρ45 (t)

− [I − ρ (t)]45 P
∗
45,13ρ32 (t)


+H.C.

 , (6.1)

where the first and second terms on the right side of Eq. 7.12 relate to Larmor precession

and scattering processes respectively. The scattering processes induce spin relaxation

via the SOC. H
(
Bext

)
is the electronic Hamiltonian at an external magnetic field Bext.
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[H, ρ] = Hρ−ρH. H.C. is Hermitian conjugate. The subindex, e.g., “1” is the combined

index of k-point and band. P is the generalized scattering-rate matrix considering e-ph,

e-i and e-e scattering processes, computed from the corresponding scattering matrix

elements and energies of electrons and phonons.

Starting from an initial density matrix ρ (t0) prepared with a net spin, we

evolve ρ (t) through Eq. 7.12 for a long enough time, typically from hundreds of ps

to a few µs. We then obtain the excess spin observable vector δStot (t) from ρ (t) (Eq.

S1-S2) and extract spin lifetime τs from δStot (t) using Eq. S3.

Historically, two types of τs - spin relaxation time (or longitudinal time) T1

and ensemble spin dephasing time (or transverse time) T ∗2 were used to characterize the

decay of spin ensemble or δStot (t) [223, 224]. Suppose the spins are initially polarized

along Bext 6= 0, if δStot (t) is measured in the parallel direction of Bext, τs is called T1;

if along ⊥ Bext, it is called T ∗2 . Note that without considering nuclear spins, magnetic

impurities, and quantum interference effects[225], theoretical τs
(
Bext = 0

)
should be

regarded as T1. See more discussions about spin relaxation/dephasing in Supporting

Information Sec. SI.

Below we first show theoretical results of T1 and T ∗2 of bulk (itinerant or de-

localized) carriers. For bulk carriers of halide perovskites, T1 are mainly limited by

Elliott-Yafet (EY) and D’yakonov-Perel’ (DP) mechanisms [226, 227]. EY represents

the spin relaxation pathway due to mostly spin-flip scattering (activated by SOC). DP

is caused by randomized spin precession between adjacent scattering events and is acti-

vated by the fluctuation of the SOC fields induced by inversion symmetry broken (ISB).
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Different from T1, T ∗2 is additionally affected by the Landé-g-factor fluctuation at trans-

verse Bext. We later generalize our results for other halide perovskites by considering

the ISB and composition effects. We at the end discuss T ∗2 of localized carriers due to

interacting with nuclear spins. By simulating T1 and T ∗2 , and determining the dominant

spin relaxation/dephasing mechanism, we provide answers of critical questions raised

earlier and pave the way for optimizing and controlling spin relaxation and dephasing

in halide perovskites.

6.3 Spin Lifetimes at Zero Magnetic Field

Intrinsic τs, free from crystal imperfections and nuclear spin fluctuation, is

investigated first, which sets up the ideal limit for experiments. At Bext = 0, bulk

CsPbBr3 possesses both time-reversal (nonmagnetic) and spatial inversion symmetries,

resulting in Kramers degeneracy of a pair of bands between (pseudo-) up and down spins.

Spin relaxation in such systems is conventionally characterized by EY mechanism [227].

To confirm if such mechanism dominates in CsPbBr3, the proportionality between τs

and carrier lifetime (τp, τs ∝ τp) is a characteristic signature, as is discussed below.

Even for intrinsic τs, varying temperature (T ) and carrier density (nc) would lead to

large change, and its trend is informative for mechanistic understanding.

Fig. 6.1a and 6.1b show theoretical τs at Bext = 0, including e-ph and e-e

scatterings, as a function of T and nc respectively, for free electrons and holes (SI Fig.

S7). Note that although bulk CsPbBr3 crystal symmetry is orthorhombic, the spin

lifetime anisotropy along three principle directions is weak (see SI Fig. S8). Therefore
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Figure 6.1: Spin lifetime τs of electrons of CsPbBr3. We compare electron and hole τs

in Supplementary information (SI) Fig. S7 and they have the same order of magnitude

at all conditions we investigated. (a) τs due to both the electron-phonon (e-ph) and

electron-electron (e-e) scatterings calculated as a function of T at different electron

densities ne compared with experimental data. In Fig. S6, we show τs versus T using

log-scale for both y- and x-axes to highlight low-T region. Exp. A are our experimental

data of T ∗2 of free electrons in bulk CsPbBr3 at a small external transverse magnetic

field. For Exp. A, the density of photo-excited carriers is estimated to be about 1018

cm−3. Exp. B are experimental data of exciton τs of CsPbBr3 films from Ref. [9].

Exp. C and Exp. D are experimental data of spin relaxation time T1 of bulk CsPbBr3

and CsPbBr3 nanocrystals measured by the spin inertia method from Ref. [10] and

[11] respectively. In Ref. [11], it was declared that quantum confinement effects do not

modify the spin relaxation/dephasing significantly (see its Table 1), so that their T1

data can be compared with our theoretical results. For Exp. C and D, the measured

lifetimes cannot be unambiguously ascribed to electrons or holes and can be considered

as values between electron and hole T1. The carrier densities are not reported for Exp.

C and D. (b) τs due to both the e-ph and e-e scatterings as a function of ne at different

T . The vertical dashed line in panel (b) corresponding to ne with chemical potential

µF,c at the conduction band minimum (CBM).
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only τs along the [001] direction is presented here. We have several major observations

as summarized below.

First, a clear decay of τs as increasing T is observed. As τs with and without e-e

scattering (SI Fig. S7) has little difference, this indicates e-ph scattering is the dominant

spin relaxation mechanism (without impurities and Bext). Note that with increasing T ,

phonon occupations increase, which enhances the e-ph scattering and thus lowers both

carrier (τp) and spin (τs) lifetime.

Next, τs steeply decreases with increasing nc at low T but is less sensitive to

nc at high T , as shown in Fig. 6.1b. The trend of T1 decreasing with nc is consistent

with the experimental observation of T1 decreasing with pump power/fluence in halide

perovskites [228, 229, 230, 231]. At 4 K, τs decreases steeply by three orders of magni-

tude with nc increasing from 1016 cm−3 to 1019 cm−3. Such phenomenon was reported

previously for monolayer WSe2 [232, 72], where spin relaxation is dominated by EY

mechanism, the same as in CsPbBr3. The cause of such strong nc-dependence at low

T is discussed below in more details, attributing to nc effects on (averaged) spin-flip

matrix elements. As a result, at low T and low nc, τs of CsPbBr3 can be rather long,

e.g., ∼200 ns at 10 K and ∼8 µs at 4 K. This is in fact comparable to the ultralong hole

τs of TMDs and their heterostructures [233, 234, 72], ≥2 µs at ∼5 K, again suggesting

the advantageous character of halide perovskite in spintronic applications.

Importantly, good agreement between theoretical results and several indepen-

dent experimental measurements is observed. Our theoretical results agree well with

experimental T1 of bulk CsPbBr3 [10] (Exp. C) assuming nc ≈ 1018 cm−3, and CsPbBr3
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nanocrystal [11] (Exp. D) assuming nc ≈ 1016 cm−3, respectively. We further compare

theoretical results with our own measured T ∗2 (at Bext=100 mT; Exp. A). Excellent

agreement is observed at T >10 K with nc around 1018 cm−3 (estimated from the ex-

perimental averaged pump power). The agreement however becomes worse at T <10

K. The discrepancy is possibly due to nuclear-spin-induced spin dephasing of carriers,

as will be discussed in the last subsection.

We then study the effects of the e-i scattering on τs for various point defects.

We find that at low T , e.g., T<20 K, the e-i scattering reduces τs, consistent with EY

mechanism (which states increasing extrinsic scatterings reduces spin lifetime). With a

high impurity density ni, e.g., 1018 cm−3, the e-i scattering may significantly reduce τs

below 10 K, seemingly leading to better agreement between theoretical τs and experi-

mental data from Exp. A, as shown in SI Fig. S9. However, as will be discussed below

in the subsection of magnetic-field effects, a relatively high ni predicts incorrect val-

ues of T ∗2 and worse agreement with experimental data (Exp. A) on Bext-dependence.

Therefore, the discrepancy between our theoretical τs and our measured T ∗2 below 10 K

is probably not explained by the impurity scattering effects.

In addition, the electron and hole τs have the same order of magnitude (Fig.

S7), consistent with experiments, but in sharp contrast to conventional semiconductors

(e.g., silicon and GaAs [235]), which have longer electron τs than hole owing to band

structure difference between valence and conduction band edges.

Finally, we also predict the spin diffusion length (ls) of pristine CsPbBr3 in the

low-density limit, which sets the upper bound of ls at different T . We use the relation
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ls =
√
Dτs, where D is diffusion coefficient obtained using the Einstein relation, with

carrier mobility µ from first-principles calculations [73] (more details in Sec. SVII).

Excellent agreement between theoretical and experimental carrier mobility is found for

CsPbBr3 (SI Fig. S12a). We find ls is longer than 10 nm at 300 K, and possibly reach

tens of µm at T ≤ 10 K (see details in Sec. SVII and Fig. S12 in SI).

6.4 Analysis of Spin-phonon Relaxation

To gain deep mechanistic insights, we next analyze different phonon modes and

carrier density effects on spin relaxation through examining spin-resolved e-ph matrix

elements.

In Fig. 6.2, we compare the contribution of different phonon modes to τs and

τp. First, we find that at a very low T - 4 K, only acoustic modes (A1-A3) contribute

to spin and carrier relaxation. This is simply because the optical phonons are not

excited at such low T (corresponding kBT ∼0.34 meV much lower than optical energy

& 2 meV). At T >10 K, optical modes are more important for both spin and carrier

relaxation (green and blue dashed lines closer to black line (all phonons) in Fig. 6.2).

In particular, from Fig. 6.2b, we find that two special optical modes - 57th

and 58th modes (O57-O58, modes ordered by phonon energy with their phonon vector

plots in SI Fig. S3) dominate carrier relaxation at T >50 K, because τp due to O57-

O58 (blue dashed line) nearly overlaps with τp due to all phonon modes (black line).

These two optical modes are mixture of longitudinal and transverse vibration as shown

in SI Fig. S3. In contrast, for spin relaxation in Fig. 6.2a, at T >10 K O57-O58 are
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Figure 6.2: Phonon-mode contribution analysis. (a) Spin lifetime τs and (b) carrier

lifetime τp due to different phonon modes. “A” and “O” denote acoustic and optical

modes respectively. The number index is ordered by increasing phonon energies. The

phonon dispersion is given in SI Fig. S2. Here carrier density nc is set to be 1018

cm−3. We note that special optical phonon modes O57 and O58 are dominant in carrier

relaxation above 50 K (panel b), consistent with the usual Fröhlich interaction picture,

but are not important in spin relaxation (panel a).
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less important than other optical modes (green dashed line). More specifically, in this

temperature range, there are tens of phonon modes (with energies ranging from 2 meV

to 18 meV), contributing similarly to spin relaxation. This is contradictory to the simple

assumption frequently employed in previous experimental studies [10, 12, 236] that a

single longitudinal optical (LO) phonon with a relatively high energy (e.g. ∼18 meV

for CsPbBr3 in Ref. [10]) dominates spin relaxation over a wide T range, e.g., from 50

K to 300 K, through a Fröhlich type e-ph interaction.

In the simplified picture of Fermi’s golden rule (FGR), τ−1
s and τ−1

p (due to

e-ph scattering) are proportional to the modulus square of spin-flip (|g̃↑↓|2) and spin-

conserving ( |g̃↑↑|2) matrix elements (ME), respectively. From Fig. 6.3a, we find that

spin-flip ME is dominated by “other optical modes” (blue line), opposite to the spin-

conserving ME in Fig. 6.3b (i.e. instead, dominated by special optical phonon modes

O57 and O58 (red line)). This well explains the different roles of optical O57-O58 modes

in carrier and spin relaxation. Moreover, spin-conserving ME for O57-O58 in Fig. 6.3b

diverges at q → 0, which indicates its dominant long-range nature, consistent with the

common long-range Fröhlich interaction picture [237], mostly driving carrier relaxation

in polar materials at high T (e.g., 300 K). On the contrary, the small magnitude of spin-

flip ME for O57-O58 modes indicates that Fröhlich interaction is unimportant for spin

relaxation. This is because all spin-dependent parts of the e-ph interaction are short-

ranged, while Fröhlich interaction is the only long-range part of the e-ph interaction but

is spin-independent. This important conclusion again emphasizes the sharp difference

between spin and carrier relaxations in polar materials.
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Figure 6.3: The analysis of the e-ph matrix elements (ME). (a) The q-resolved modulus

square of spin-flip e-ph ME |g̃↑↓|2 (q) at a high temperature - 300 K with a part of or all

phonon modes. (b) The same as panel (a) but for spin-conserving e-ph ME |g̃↑↑|2 (q).

(c) |g̃↑↓|2, |g̃↑↑|2 and |g̃↑↓|2DS of conduction electrons as a function of carrier density

at a low T - 10 K compared with the spin relaxation rates 1/τs. |g̃↑↓|2 and |g̃↑↑|2 are

the T and µF,c dependent effective (averaged around the band edge or µF,c) modulus

square of spin-flip and spin-conserving e-ph ME, respectively (see Eq. 6.12). DS is the

scattering density of states (Eq. 6.15). The vertical dashed line corresponding to µF,c

at CBM.
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To explain the strong nc dependence of τs at low T , we further analyze the T

and chemical potential (µF,c) dependent effective spin-flip ME |g̃↑↓|2 (averaged around

µF,c, see Eq. 6.12) and scattering density of states DS (Eq. 6.15). In FGR, we have the

approximate relation in Eq. 6.17, i.e. τ−1
s ∝ |g̃↑↓|2DS.

In Fig. 6.3c, we show the nc dependence of τ−1
s , compared with |g̃↑↓|2 and

|g̃↑↓|2DS. Indeed we can see τ−1
s and |g̃↑↓|2DS nearly overlapped, as the result of

Eq. 6.17. The strong increase of τ−1
s at nc >1016 cm−3 can be attributed to the

fact that both spin-flip ME |g̃↑↓|2 and scattering density of states DS increase with

nc. Interestingly, the effective spin-conserving ME |g̃↑↑|2, most important in carrier

relaxation, decreases with nc, opposite to spin-flip |g̃↑↓|2. This again emphasizes the

e-ph scattering affects carrier and spin relaxation differently, given the opposite trends

of spin-conserving and spin-flip scattering as a function of nc. When nc <1016 cm−3,

τ−1
s is insensitive to nc, which is because both |g̃↑↓|2 and DS are determined by e-ph

transitions around the band edge. In “Methods” section, we have proven that at the

low density limit, since carrier occupation satisfies Boltzmann distribution, both |g̃↑↓|2

and DS are µF,c and nc independent.

6.5 Landé g-factor and Transverse-magnetic-field Effects

At Bext, the electronic Hamiltonian reads

Hk

(
Bext

)
=H0,k + µBBext · (Lk + g0Sk) , (6.2)
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where µB is Bohr magneton; g0 is the free-electron g-factor; S and L are the spin and

orbital angular momentum respectively. The simulation of L is nontrivial for periodic

systems and the details are given in Method section and Ref. [238]. Having H
(
Bext

)
at a transverse Bext perpendicular to spin direction, T ∗2 is obtained by solving the

density-matrix master equation in Eq. 7.12.

The key parameters for the description of the magnetic-field effects are the

Landé g-factors. Their values relate to Bext-induced energy splitting (Zeeman effect)

∆Ek
(
Bext

)
and Larmor precession frequency Ωk, satisfying Ωk ≈ ∆Ek = µBB

extg̃k

with g̃k the k-resolved Landé g-factor. More importantly, the g-factor fluctuation (near

Fermi surface or µF,c) leads to spin dephasing at transverse Bext, corresponding to T ∗2 .

Fig. 6.4a shows g̃k of electrons and holes at k-points around the band edges.

g̃k are computed using ∆Ek
(
Bext

)
(Eq. 6.8 and 6.9) obtained from Hk

(
Bext

)
. Our

calculated electron g̃k are larger than hole g̃k, and the sum of electron and hole g̃k range

from 1.85 to 2.4, in agreement with experiments [10, 235]. Furthermore, g̃k are found

sensitive to state energies and wavevectors k, and the fluctuation of g̃k is enhanced with

increasing the state energy. In Figs. 6.4b and 6.4c, we show the global g-factor gΩ and

the amplitude of the g-factor fluctuation (near the Fermi surface) ∆g̃ (Eq. 6.11) as a

function of nc. Both gΩ and ∆g̃ are insensitive to nc at nc <1016 cm−3, but sensitive

to nc at nc >1016 cm−3.

In Fig. 6.4, we show ab initio g-factors computed with the PBE functional[239].

We further compare g-factors computed using different exchange-correlation functionals

(Vxc) in SI Sec. SV. It is found that the magnitude of ∆g̃ and the trend of g-factor
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Figure 6.4: The Landé g-factors of electrons and holes calculated at the PBE functional.

The external magnetic fields Bext are along [110] direction. (a) The k-dependent g-factor

g̃k (Eq. 6.8 and 6.9) at k points around the band edges. Each data-point corresponds

to a k point. (b) The global g-factor gΩ = Ω/µBB as a function of nc, where Ω is

Larmor precession frequency extracted from spin dynamics at Bext 6= 0. gΩ = ±
∣∣gΩ
∣∣

if the excess/excited spin δStot (t) precesses along ±δStot (t) ×Bext. gΩ is close to the

averaged g-factor g̃ defined in Eq. 6.10. (c) The effective amplitude of the fluctuation

of g factors - ∆g̃ defined in Eq. 6.11 as a function of carrier density at 10 K.
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Figure 6.5: The effects of transverse Bext (perpendicular to spin direction) on calculated

τs of free carriers of CsPbBr3. (a) The ratio of τs at Bext=1 T and τs at Bext=0 as a

function of T . Here electron carrier density ne=1018 cm−3. (b) Spin decay rates (τ−1
s )

of electrons and holes as a function of Bext at 4 K with nc = 1018 cm−3. (c) τ−1
s as

a function of Bext at 4 K at different ne. “Exp.” (orange open diamond) represent

our experimental data (with Bext along [010] direction), where the density of photo-

excited carriers is estimated about 1018 cm−3. The orange dashed line is the linear fit of

experimental data. The linear relation between ensemble spin dephasing rate and Bext

was frequently found and used in previous experimental measurements[10, 12, 13, 14].

change with the state energy are both insensitive to Vxc. Since T ∗2 only depends on ∆g̃,

our predictions of T ∗2 should be reliable.

Next, we discuss magnetic-field effects on τs in Fig. 6.5, calculated from our

FPDM approach, and analyze them with phenomenological models. At transverse Bext,

the total spin decay rate is approximately expressed by

τ−1
s

(
Bext

)
≈
(
τ0
s

)−1
+
(
τ∆Ω
s

)−1 (
Bext

)
, (6.3)

where
(
τ0
s

)−1
is the zero-field spin relaxation rate due to EY mechanism;
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(
τ∆Ω
s

)−1
is induced by the Larmor-precession-frequency fluctuation (∆Ω = µBB

ext∆g̃),

and can be described by different mechanisms depending on the magnitude of τp∆Ω [223,

227]:

(i) Free induction decay (FID) mechanism if τp∆Ω & 1 (weak scattering limit).

We have

(
τ∆Ω
s

)−1 ∼
(
τFID
s

)−1 ∼ C∆g∆Ω = C∆gµBB
ext∆g̃, (6.4)

where C∆g is a constant and often taken as 1 or 1/
√

2 ≈ 0.71 [240, 223, 10, 241,

12, 13, 14]. The latter assumes a Gaussian distribution of g-factors and the scattering

being completely absent [223, 241, 14].

(ii) Dyakonov Perel (DP) mechanism if τp∆Ω � 1 (strong scattering limit).

We have

(
τ∆Ω
s

)−1 ∼
(
τDP
s

)−1 ∼ τp (∆Ω)2 = τp
(
µBB

ext∆g̃
)2
. (6.5)

(iii) Between (i) and (ii) regimes, there isn’t a good approximate relation for(
τ∆Ω
s

)−1
, but we may expect that[223]

(
τDP
s

)−1
<
(
τ∆Ω
s

)−1
<
(
τFID
s

)−1
. (6.6)

From Fig. 6.5a, we find that magnetic-field effects are weak (τs
(
Bext

)
/τs (0) ≈

1) at T >20 K. This is because at high T , e-ph scattering is strong which leads to short

τp and short spin lifetime at zero field τ0
s (large (τ0

s )−1). Then the spin relaxation falls

into strong or intermediate scattering regimes ((ii) or (iii)), which give small (τ∆Ω
s )−1.

Finally, following
(
τ∆Ω
s

)−1 �
(
τ0
s

)−1
obtained above, we reach τs

(
Bext

)
/τs (0) ≈ 1

from Eq. 6.3.
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As a result, we only discuss τs at Bext 6= 0 below 20 K, specifically at 4K

afterwards. From Fig. 6.5b, we can see that magnetic-field effects on electron and hole

τs are quite similar, which is a result of their similar band curvatures, e-ph scattering,

and ∆g̃ (Fig. 6.4c), although their absolute g-factors are quite different, as shown in

Fig. 6.4a and 6.4b.

We further examine magnetic-field effects on τs at 4 K in Fig. 6.5c. As discussed

above, τ−1
s

(
Bext

)
increases with Bext. More specifically, we find that the calculated

τ−1
s

(
Bext

)
is proportional to

(
Bext

)2
at low Bext (details in SI Fig. S13) following the

DP mechanism (Eq. 6.5), but linear to B at higher B following the free induction decay

mechanism(Eq. 6.4).

The comparison of calculated τ−1
s

(
Bext

)
with experimental data (orange dia-

mond in Fig. 6.5b) is reasonable with ne around 1018 cm−3 (the experimental estimated

average nc). However, their Bext-dependence is not the same in the small Bext range,

e.g. at Bext<0.4 Tesla, the calculated τ−1
s

(
Bext

)
is proportional to

(
Bext

)2
(as shown

in SI Fig. S13), whereas the experimental τ−1
s

(
Bext

)
is more likely linear to Bext. In

principles, extremely small Bext will lead to ∆Ω small enough falling in the DP regime

((τ∆Ω
s )−1 proportional to

(
Bext

)2
). However, experimental results still keep in the FID

regime ((τ∆Ω
s )−1 linear dependent on Bext) at small Bext. This inconsistency implies ad-

ditional magnetic field fluctuation contributes to ∆Ω and/or other faster spin dephasing

processes exist at small external Bext. It may originate from nuclear spin fluctuation,

magnetic impurities, carrier localization, chemical potential fluctuation, etc. [10, 235]

in samples, which are however rather complicated for a fully first-principles description.
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In this work, we focus on spin dephasing of bulk carriers due to Zeeman effects and

various scattering processes.

Moreover, in Fig. 6.5c, we find that at Bext 6= 0, τs decreases with nc, similar

to the case at Bext = 0. But the origin of the strong nc dependence at high Bext is

very different from τs at Bext = 0. When Bext ≥0.4 Tesla, τs is dominated by the FID

mechanism (Eq. 6.4), thus its nc dependence is mostly from ∆g̃’s strong nc dependence

shown in Fig. 6.4c.

Finally, we show τ−1
s

(
Bext

)
as a function of Bext at 4 K with the e-i scat-

tering in Fig. S14. We find that with relatively strong impurity scattering (e.g, with

1017 cm−3 VPb neutral impurities), the Bext-dependence of τs becomes quite weak, in

disagreement with experiments, indicating that impurity scattering is probably weaker

in those experiments. See more discussions in Sec. SVIII.

6.6 Inversion Symmetry Broken (ISB), Composition Ef-

fects and Hyperfine Coupling

For halide perovskites, ISB may present due to ferroelectric polarization, strain,

surface, applying electric fields, etc. One of the most important effects from ISB is

inducing k-dependent SOC fields (called Bin). Bin can change the electronic energies

and spin textures, which may significantly modify the spin relaxation/dephasing. To

understand the ISB effects, we simulate τs with two important types of Bin - Rashba and

PSH (persistent spin helix) ones. Rashba SOC presents in many 2D and 3D materials,
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Figure 6.6: The effects of model SOC fields. (a) Spin textures in the kx−ky plane of the

CsPbBr3 system with model Rashba SOC. Sexp ≡ (Sexp
x , Sexp
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z ) with Sexp

i being spin

expectation value along direction i and is the diagonal element of spin matrix si in Bloch

basis. The arrow represents the spin orientation in the Sexp
x − Sexp

y plane. The color

scales Sexp
z . (b) Spin textures in the ky − kz plane of the CsPbBr3 system with model

PSH (persistent spin helix) SOC. (c) Spin lifetime τs and carrier lifetime τp of CsPbBr3

holes at 300 K considering the effects of Rashba or PSH SOC. α is the Rashba/PSH

SOC strength coefficient. Rashba fields have spin texture perpendicular to k direction,

in the same plane (xy plane here) surrounding Γ point. PSH fields have spin texture

parallel along the same axis (y axis here). The detailed forms of the model SOC fields

and Hamiltonians are given in Eq. 6.19-6.23 in “Methods” section. τs is perpendicular

to the SOC-field plane for Rashba SOC and is along the high-spin-polarization axis for

PSH SOC respectively. (d) The band structure of valence bands considering PSH SOC

with α=7 eVÅ. The color scales the Sexp
y in panel (d).
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e.g., wurtzite GaN and graphene on SiO2/hBN. PSH exhibits SU(2) symmetry [242, 243]

which is robust against spin-conserving scattering, and was recently realized in 2D

hybrid perovskites [34]. Their effects are considered by introducing an additional SOC

term to the electronic Hamiltonian perturbatively. The specific forms of Rashba and

PSH SOC Hamiltonians are given in Eq. 6.19-6.23 in “Methods” section.

From Fig. 6.6a, we find that τs is reduced by Rashba SOC and the reduction is

significant when the SOC coefficient α ≥ 0.5 eVÅ. This is because Rashba SOC induces

a nonzero ∆Ω ∝ α and then induces an DP/FID spin decay channel additional to the

EY one. Similar to Eq. 6.3, the total rate τ−1
s ≈ τ−1

s |α=0 +
(
τ−1
s

)∆Ω
. At α ≥ 0.5

eVÅ,
(
τ−1
s

)∆Ω
becomes large, so that τs is significantly reduced from τ−1

s |α=0. τs keeps

decreasing with α but its low limit is bound by τp. On the other hand, with PSH SOC, τs

(along PSH Bin - BPSH, which is along y direction here) is unchanged at α ≤ 2 eVÅ, and

increases at a larger α. The reason is: with PSH SOC, spins are highly polarized along

BPSH, so that τs along BPSH is still dominated by EY mechanism (no spin precession).

One critical effect of BPSH is then modifying the energies (spin split energies). At small

α, the energy changes are not significant compared with kBT , so that the e-ph scattering

contribution to spin relaxation is not modified much; as a result, τs is close to τs|α=0.

From Fig. 6.6b, we can see that at large α (e.g., 7 eVÅ) the band structure is however

significantly changed. The valence band maxima are now at two opposite k-points away

from Γ and with opposite spins. Therefore, at large α, spin relaxation is dominated by

the spin-flip scattering processes between two opposite valleys away from Γ. This can

lead to longer τs since the spin-flip processes within one valley (intravalley scattering) are
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CsSnBr3 as a function of temperature with carrier density 1016 cm−3.

suppressed, essentially a spin-valley locking condition is realized [73, 34]. Our FPDM

simulations with model SOC suggest that Rashba SOC likely reduces τs while PSH

SOC can enhance τs as anticipated in previous experimental study [243]. Note that in

practical materials, the ISB effects may not be completely captured by model SOC fields

as introduced here. Although in general, we include self-consistent SOC in our FPDM

calculations instead of perturbatively, but since the studied equilibrium bulk structure

has inversion symmetry, we therefore have to include model ISB SOC perturbatively to

simulate such effects induced by various causes. Therefore, further FPDM simulations

of materials with ISB structures are important for comprehensive understanding of the

ISB effects.

Furthermore, it is crucial to understand the chemical composition effects to im-

prove our understandings of spin dynamics and transport in many other kinds of halide
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perovskites beside CsPbBr3. As an initial study, we performed FPDM simulations of

τs of holes of pristine bulk CsPbCl3, CsPbI3, MAPbBr3 and CsSnBr3 as a function

of temperature, at the same carrier density. We consider the inversion-symmetric or-

thorhombic phase for all systems, the same as CsPbBr3 here, in order to study chemical

composition effect alone. From Fig. 6.7, our FPDM simulations show that the differ-

ences of τs of CsPbBr3, CsPbCl3, CsPbI3, MAPbBr3 and CsSnBr3 are mostly tens of

percent or a few times in the wide temperature range from 4 K to 300 K. Specifically,

τs of MAPbBr3 is found always shorter than CsPbBr3. τs of CsSnBr3 is found slightly

longer than CsPbBr3 at 300 K but becomes shorter than CsPbBr3 at T<100 K. A trend

of hole τs is found for CsPbX3: τs(CsPbCl3) > τs(CsPbBr3) > τs(CsPbI3), indicating

that the lighter the halogen atom, the longer the spin lifetime. This trend may be partly

due to two reasons: (i) For the band gap, we have CsPbCl3 > CsPbBr3 > CsPbI3 (1.40,

1.03 and 0.75 eV respectively at PBE), so that spin mixing due to the conduction-

valence band mixing is reduced at lighter halogen compound, which usually weakens

the spin-phonon interaction; (ii) The lighter halogen atom reduces the SOC strength

of the material (weaker SOC reduces the spin mixing between up and down states).

Additionally, we find that for all these inversion-symmetric orthorhombic materials, the

anisotropy of τs along different crystalline directions is rather weak (see SI Fig. S8).

Overall, our results indicate that the chemical composition effects on τs are not very

strong when comparing with the effects of the symmetry change (e.g. broken inversion

symmetry resulting in Rashba or PSH discussed in Fig. 6.6). A more systematic study

of the composition, symmetry, and dimensionality effects is of great importance and will
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be our future work.

Above we focus on spin relaxation/dephasing of bulk (or itinerant or delocal-

ized) electrons, for which hyperfine coupling is usually unimportant[244, 223]. In actual

samples, due to polarons, ionized impurities, etc., a considerable portion of electron

carriers are localized. It is known that hyperfine coupling can induce spin dephasing

of localized electrons through spin precessions about randomly-distributed nuclear-spin

(magnetic) fields BNuclear. When nuclear spins are weakly polarized (because of weak

Bext), T ∗2 of localized electrons - T ∗2,loc is often estimated based on FID mechanism

1/T ∗2,loc ∼ σΩN [245, 246, 247], where ΩN is Larmor frequency of a localized electron due

to BNuclear and σΩN is the parameter describing its fluctuation or determining its distri-

bution (Eq. 6.29 for Bext=0). According to Refs. [245, 246, 247, 10], σ2
ΩN
∼ C loc/V loc

(Eq. 6.31), where V loc is the localization volume. At Bext=0, C loc is determined by

hyperfine constant A, nuclear spin I, isotope abundance and unitcell volume (Eq. 6.32).

See detailed formulae and our estimates of the above quantities in “Methods” section.

Our estimated C loc is ∼180 and ∼530 nm3 ns−2 for electrons and holes respectively.

The estimated localization radii for halide perovskites are 2.5-14 nm [248, 249, 250, 251],

which lead to T ∗2,loc

(
Bext = 0

)
∼0.6-8.0 ns for electrons and ∼0.35-4.6 ns for holes. Since

bulk and localized carriers coexist in materials, T ∗2,loc roughly gives the lower bound of

the effective carrier T ∗2 .

In addition to the hyperfine coupling for spin dephasing of localized carriers

above, the fluctuation of hyperfine coupling for bulk (delocalized) carriers at different

k-points may lead to spin dephasing when nuclear spins are polarized along a non-
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zero transverse Bext. This effect is however rather complicated (probably requiring the

difficult L contribution[252] to hyperfine coupling), beyond the scope of this work.

In summary, through a combined ab initio theory and experimental study, we

reveal the spin relaxation and dephasing mechanism of carriers in halide perovskites.

Using our FPDM approach and implementing ab initio magnetic momenta and g-factor,

we simulate free-carrier τs as a function of T and Bext, in excellent agreement with

experiments. The transverse magnetic-field effects are found only significant at T<20

K. We predict ultralong T1 of pristine CsPbBr3 at low T , e.g., ∼200 ns at 10 K and

∼8 µs at 4 K. We find strong nc dependence of both T1 and T2 at low T , e.g. τs can

be tuned by three order of magnitude with nc from the low density limit to 1019 cm−3.

The reasons are attributed to the strong electronic-energy-dependences of spin-flip e-ph

matrix elements and ∆g̃ for T1 and T ∗2 respectively. From the analysis of e-ph matrix

elements, we find that contrary to common belief, Fröhlich interaction is unimportant

to spin relaxation, although critical for carrier relaxation. We further study ISB and

composition effects on τs of halide perovskites. We find that ISB effects can significantly

change τs, i.e. spin lifetime can increase with PSH SOC, but not with Rashba SOC.

The composition effect is found not very strong and only changes τs by tens of percent

or a few times in a wide temperature. Our work provides fundamental insights on how

to control and manipulate spin relaxation in halide perovskites, which are vital for their

spintronics and quantum information applications.
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6.7 Methods

Spin dynamics and transport. Spin dynamics and spin lifetime τs are

simulated by our recently developed first-principles density-matrix dynamics (FPDM)

method [71, 72, 73, 221, 222]. Starting from an initial state with a spin imbalance, we

evolve the time-dependent density matrix ρ (t) through the quantum master equation

with Lindblad dynamics for a long enough simulation time, typically from ns to µs,

varying with systems. After obtaining the excess spin observable δStot (t) from ρ (t) and

fitting δStot (t) to an exponentially oscillating decay curve, the decay constant τs and

the precession frequency Ω are then obtained (Eq. S3 and Fig. S1 in SI). All required

quantities of FPDM simulations, including electron energies, phonon eigensystems, e-ph

and e-i scattering matrix elements, are calculated on coarse k and q meshes using the

DFT open source software JDFTx [253], and then interpolated to fine meshes in the

basis of maximally localized Wannier functions [254, 255, 256]. The e-e scattering matrix

is computed using the same method given in Ref. [72]. More theoretical background and

technical details are given in Ref. [73] and [72], as well as the Supporting Information.

Using the same first-principles electron and phonon energies and matrix ele-

ments on fine meshes, we calculate the carrier mobility by solving the linearized Boltz-

mann equation using a full-band relaxation-time approximation [257] and further esti-

mate spin diffusion length based on the drift-diffusion model (SI Sec. SVII).

Orbital angular momentum. With the Blöch basis, the orbital angular
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momentum reads

Lk,mn =i

〈
∂ukm
∂k

∣∣∣∣× (Ĥ0 −
εkm + εkn

2

) ∣∣∣∣∂ukn∂k

〉
, (6.7)

where m and n are band indices; ε and u are electronic energy and the periodic part

of the wavefunction, respectively; Ĥ0 is the zero-field Hamiltonian operator. Eq. 6.7

can be proven equivalent to L = 0.5 ∗ (r× p− p× r) with r and p the position and

momentum operator respectively. The detailed implementation of Eq. 6.7 is described in

Ref. [238]. Our implementation of L has been benchmarked against previous theoretical

and experimental data for monolayer MoS2 (Table S1).

g-factor of free carriers. In experimental and model Hamiltonian theory

studies[235, 10], g-factor is defined from the ratio between either Bext-induced energy

splitting ∆E
(
Bext

)
or Larmor precession frequency Ω

(
Bext

)
to µBB. Therefore, we

define g-factor of an electron or a hole at state k,

gSk =θSk

(
B̂ext

) ∆Ek
(
Bext

)
µBBext

, (6.8)

where gSk is g-factor defined based on spin expectation values. B̂ext is the unit vector

along Bext. ∆Ek
(
Bext

)
is the energy splitting due to finite Bext. θSk

(
B̂ext

)
is the sign of

Sexp
k,h

(
B̂ext

)
−Sexp

k,l

(
B̂ext

)
, where Sexp

k,h

(
B̂ext

)
and Sexp

k,l

(
B̂ext

)
are the spin expectation

value (exp) of the higher (h) and lower (l) energy band at k projected to the direction

of B̂ext respectively.

However, in previous theoretical studies of perovskites [258, 235], g-factors

were defined based on pseudo-spins related to the total magnetic momenta Jat, which

are determined from the atomic-orbital models. The pseudo-spins can have opposite
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directions to the actual spins. Most previous experimental studies adopted the same

convention for the signs of carrier g-factors. Therefore, to compare with g-factors ob-

tained in previous theoretical and experimental studies, we introduce a correction factor

CS→J and define a new g-factor:

g̃k

(
B̂ext

)
=CS→JgSk . (6.9)

CS→J = mat
S /m

at
J with mat

J and mat
S the total and spin magnetic momenta

respectively, obtained from the atomic-orbital model [235]. CS→J is independent from

k-point, and is ∓1 for electrons and holes respectively for CsPbBr3.

g̃k is different at different k; therefore we define its statistically averaged value

(depending on temperature T and chemical potential µF,c) as

g̃ =

∑
k (−f ′k) g̃k∑
k

(
−f ′k

) , (6.10)

and its fluctuation amplitude as

∆g̃ =

√√√√√∑k

(
−f ′k

) (
g̃k − g̃

)2

∑
k

(
−f ′k

) , (6.11)

where f ′k is the derivative of the Fermi-Dirac distribution function. Here for

simplicity the band index of f ′k is dropped considering both valence and conduction

bands are two-fold degenerate.

We have further defined a more general g-factor as a tensor and its fluctuation

amplitude in SI Sec. SV. For CsPbBr3, we find different definitions predict quite similar

values (differences are not greater than 10%).

Analysis of e-ph matrix elements. For EY spin relaxation, in the simplified

picture of Fermi’s golden rule (FGR), τ−1
s is proportional to the modulus square of the
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spin-flip scattering matrix element. As the e-ph scattering plays a crucial role in spin

relaxation in CsPbBr3, it is helpful to analyze the spin-flip e-ph matrix elements.

Note that most matrix elements are irrelevant to spin relaxation and we need

to pick the “more relevant” ones, by defining a weight function related to occupation and

energy conservation. Therefore we propose a T and µF,c dependent effective modulus

square of the spin-flip e-ph matrix element |g̃↑↓|2 as

|g̃↑↓|2 =

∑
kq wk,k−q

∑
λ |g
↑↓,qλ
k,k−q|

2nqλ∑
kq wk,k−q

, (6.12)

wk,k−q =fk−q (1− fk) δ (εk − εk−q − ωc) , (6.13)

where g↑↓,qλk,k−q is e-ph matrix element, related to a scattering event between two

electronic states of opposite spins at k and k− q through phonon mode λ at wavevector

q; nqλ is phonon occupation; fk is Fermi-Dirac function; ωc is the characteristic phonon

energy specified below, and wk,k−q is the weight function. Here we drop band indices

for simplicity, as CsPbBr3 bands are two-fold Kramers degenerate and only two bands

are relevant to electron and hole spin/carrier dynamics.

The matrix element modulus square is weighted by nqλ since τ−1
s is approxi-

mately proportional to nqλ according to Eq. 5 of Ref. [71]. This rules out high-frequency

phonons at low T which are not excited. ωc is chosen as 4 meV at 10 K based on our

analysis of phonon-mode-resolved contribution to spin relaxation. The trends of |g̃↑↓|2

are found not sensitive to ωc as checked. wk,k−q selects transitions between states sep-

arated by ωc and around the band edge or µF,c, which are “more relevant” transitions

to spin relaxation.
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We also define a q-resolved modulus square of the spin-flip e-ph matrix element

|g̃↑↓|2 (q) as

|g̃↑↓|2 (q) =N−1
k

∑
kλ

|g↑↓,qλk,k−q|
2nqλ. (6.14)

Note that for spin relaxation, only states around the band edges are relevant.

Thus we restrict |εk − εedge| <180 meV for the calculation of Eq. 6.14, which is about

7kBT at 300 K relative to the band edge energy (εedge).

Analysis of the EY spin relaxation rate. According to FGR, the EY spin

relaxation rate of an electronic state should be also proportional to the density of pair

states allowing spin-flip scattering between them. Therefore, we propose a scattering

density of states DS (which is T and µF,c dependent),

DS(T, µF,c) =
2N−2

k

∑
kq wk,k−q

N−1
k

∑
k fk (1− fk)

. (6.15)

DS can be regarded as an effective density of spin-flip or spin-conserving e-ph

transitions satisfying energy conservation between one state and its pairs (considering

that the number of spin-flip and spin-conserving transitions are the same for Kramers

degenerate bands).

When ωc = 0 (i.e. elastic scattering), we have

DS =

∫
dε

(
−df
dε

)
D2 (ε) /

∫
dε

(
−df
dε

)
D (ε) (6.16)

with D (ε) density of electronic states (DOS). So DS can be roughly regarded as an

weighted averaged DOS with weight
(
−df
dε

)
D (ε).

200



With |g̃↑↓|2 and DS, we have the approximate relation for spin relaxation rate,

τ−1
s ∝|g̃↑↓|2DS. (6.17)

We then discuss µF,c dependence of τ−1
s at low nc limit. For simplicity, we only

consider conduction electrons. At low nc limit, we have exp [(ε− µF,c) / (kBT )] � 1,

thus

fk−q (1− fk) ≈exp

(
µF,c
kBT

)
exp

(
−εk−q
kBT

)
. (6.18)

Therefore, according to Eq. 6.12, 6.13 and 6.15, both |g̃↑↓|2 and DS are inde-

pendent from µF,c (as exp
(
µF,c
kBT

)
is cancelled out), so τ−1

s is independent from µF,c and

nc at low nc region, e.g. much lower than 1016 cm−3 for CsPbBr3. We can similarly

define spin conserving matrix elements |g̃↑↑|2 and |g̃↑↑|2 (q) by replacing g↑↓,qλk,k−q to g↑↑,qλk,k−q

in Eq. 6.12 and 6.14. Then we have the approximate relation for carrier relaxation rate

due to e-ph scattering, τ−1
p ∝ |g̃↑↑|2DS.

The Hamiltonian for model SOC. In general, the Hamiltonian for model

SOC reads

Hmodel
k =

−→
Ω model
k · sk, (6.19)

where
−→
Ω model
k are Larmor precession vectors induced by k-dependent Bin. sk is

spin operator. With the total electronic Hamiltonian Hk = H0,k+Hmodel
k , τs considering

the effects of model SOC is obtained by solving the density-matrix master equation in

Eq. 7.12.
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For the Rashba field,
−→
Ω model
k in Eq. 6.19 is defined in the plane (xy plane here)

surrounding Γ point,

−→
Ω model
k =αRf cut (k/kcut) ẑ × k, (6.20)

where αR is the Rashba SOC strength coefficient. f cut (k/kcut) is 1 at small k

but vanishes at large k. It is introduced to truncate the SOC fields at k > kcut smoothly

in order to avoid unphysical band structures around first Brillouin zone boundaries. It

is taken as

f cut (k/kcut) = {exp [10 (k/kcut − 1)] + 1}−1 . (6.21)

kcut is taken 0.12 bohr−1 for CsPbBr3. This value is about half of the length

of the shortest reciprocal lattice vector, about 0.28 bohr−1 for orthorhombic CsPbBr3.

We can see that f cut is almost 1 at k = Γ but almost vanishes at first Brillouin zone

boundaries.

Persistent Spin Helix (PSH) was first proposed by Bernevig et al.[242]. PSH

has SU(2) symmetry which is robust against spin-conserving scattering. In general, for

PSH SOC,

−→
Ω model
k ∝kiĵ, (6.22)

where directions i and j are orthogonal. PSH fields are all along the same axis

(y axis here). We take

−→
Ω model
k =αPSHf cut (k/kcut) kz ŷ, (6.23)
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where αPSH is the PSH SOC strength coefficient.

T ∗2,loc due to nuclear spin fluctuation. The Hamiltonian of hyperfine cou-

pling between an electron spin and nuclear spins approximately reads[246, 10]

Hhf =
−→
ΩN · s, (6.24)

−→
ΩN =Vu

∑
j

Aj |ψ (Rj)|2 Ij , (6.25)

Aj =
16πµBµj |uc (Rj)|2

3Ij
, (6.26)

where
−→
ΩN is Larmor precession vector, related to the effective hyperfine field

(called Overhauser field) generated by all nuclei and acting on electron spin. s is the

spin operator of the electron. Eq. 6.25 specifically refers to the hyperfine Fermi contact

interaction between an electron and nuclear spins. The sum in Eq. 6.25 goes over

all nuclei. Ij is the spin operator of nucleus j. Vu is the unit cell volume. Aj is

the hyperfine coupling constant considering only the Fermi contact contribution, which

was assumed to be the dominant contribution in Refs. [10, 246, 247] for CsPbBr3 and

GaAs. µj and Ij are the magnetic moment and spin of nucleus j, respectively. µB is

the Bohr magneton. ψ (Rj) and uc (Rj) are the electron envelope wave function and

the electron Bloch function at the j-th nucleus respectively, whose product gives the

electronic wavefunction Φ(Rj) = Vuψ (Rj) .uc (Rj) as in Ref. [246]. The normalization

conditions are
∫
V |ψ (Rj)|2 dv = 1 and

∫
Vu

|uc (Rj)|2 dv =1. (6.27)
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With this definition, |uc (Rj)|2 ∝ 1/Vu, therefore, from Eq. 6.26,

Aj ∝ 1/Vu. (6.28)

The value of Aj depends on the isotope of the nucleus. For CsPbBr3, it was

found that the relevant isotopes are 207Pb with natural abundance of about 22% for

holes, and 79Br and 81Br for electrons [10]. Since the total abundance of 79Br and 81Br

is almost 100% and their nuclear spins are both 3/2, 79Br and 81Br can be treated

together.

According to the proportional relation in Eq. 6.28, Aj of orthorhombic CsPbBr3

is approximately 1/4 of Aj of cubic CsPbBr3, considering that their Bloch functions at

the band edges are similar [259] (e.g., their hole Bloch functions both have significant

Pb-s-orbital contribution), and Vu of orthorhombic CsPbBr3 is about 4 times of that of

cubic CsPbBr3. Therefore, using estimated Aj of cubic CsPbBr3 in Ref. [10], we obtain

that Aj of 207Pb for holes is about 25 µeV and Aj of Br for electrons is about 1.75 µeV.

When nuclear spins are not polarized (due to Bext=0), the nuclear field is zero

on average. However, due to the finite number of nuclei interacting with the localized

electron, there are stochastic nuclear spin fluctuations, which are characterized by the

probability distribution function [245]

P
(−→

ΩN

)
=

1

(
√
πσΩN )

3 exp

(
−

Ω2
N

σ2
ΩN

)
, (6.29)

where σΩN determines the dispersion of hyperfine field, and the angular brack-

ets denotes the statistical averaging:
〈
Ω2
N

〉
= 3σ2

ΩN
/2. For the independent and ran-
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domly oriented nuclear spins, we have (at Bext=0)

σ2
ΩN

=
2V 2

u

3

∑
juξ

αξIjuξ (Ijuξ + 1)A2
juξ

∑
c

|ψ (Rjuc)|
4 , (6.30)

where ju is nucleus index in the unit cell, ξ is the isotope, and c is the unit

cell index in the whole system. αξ is the abundance of isotope ξ. Since ψ (Rjuc) usually

varies slowly on the scale of a unit cell, Vu
∑

c |ψ (Rjuc)|
4 can be replaced by an integral

in the whole system -
∫
|ψ (r)|4 dr. Define V loc = 1/

∫
|ψ (r)|4 dr. V loc is the localization

volume. Therefore (at Bext=0),

σ2
ΩN

=C loc/V loc, (6.31)

C loc =
2Vu
3

∑
juξ

αξIjuξ (Ijuξ + 1)A2
juξ. (6.32)

With σΩN , T ∗2,loc is often estimated based on FID mechanism[245, 246, 247]

(Eq. 6.4) T ∗2,loc ∼ σ
−1
ΩN

.

As αξ, Ijuξ and Vu can be easily obtained and with Ajuξ estimated above, we

obtain C loc ∼180 and ∼530 nm3 ns−2 for electrons and holes respectively. V loc can be

estimated from the localization radii rloc of localized carriers,

V loc =
4π

3

(
rloc
)3
. (6.33)

In Table S2, we listed values of the parameters used to calculate T ∗2,loc.

Experimental synthesis. Growth of CsPbBr3 single crystal: Small CsPbBr3

seeds were first prepared with fresh supersaturated precursor solution at 85 ◦C. Small

and transparent seeds were then picked and put on the bottom of the vials for large

crystal growth. The temperature of the vials was set at 80 ◦C initially with an increasing
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rate of 1 ◦C/ h, and was eventually maintained at 85 ◦C. Vials were covered with

glass slides to avoid fast evaporation of the DMSO. So the growth driving force is

supersaturation achieved by slow evaporation of DMSO solvent. After 120-170 hours,

a centimeter-sized single crystal was picked from the solution, followed by wiping the

residue solution on the surface.

Experimental Spin Lifetime Measurement. For measuring the spin life-

time in CsPbBr3 single crystals, we have used the ultrafast circularly-polarized pho-

toinduced reflectivity (PPR) method at liquid He temperature under the influence of a

magnetic field. The experimental setup was described elsewhere [260]. It is a derivative

of the well-known ‘pump-probe’ technique, where the polarization of the pump beam

is modulated by a photoelastic modulator between left (δ+) and right (δ−) circular po-

larization, namely LCP and RCP, respectively. Whereas the probe beam is circularly

polarized (either LCP or RCP) by a quarter-wave plate. The transient change in the

probe reflection, namely c-PPR(t), was recorded. The 405 nm pump beam, having 150

femtoseconds pulse duration at 80 MHZ repetition rate, was generated by frequency

doubling the fundamental at 810 nm from the Ti:Sapphire laser (Spectra Physics) using

a SHG BBO crystal. The 533 nm probe beam was generated by combining the 810

nm fundamental beam with the 1560 nm infrared beam from an OPA (optical para-

metric amplifier) onto a BBO type 2 SFG (Sum Frequency Generation) crystal. The

pump/probe beams having average intensity of 12 Wcm−2 and 3 Wcm−2, respectively

were aligned onto the CsPbBr3 crystal that was placed inside a cryostat with a built-in

electro-magnet that delivered a field strength, B up to 700 mT at temperatures down
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to 4 K. Using this technique we measured both t-PPR responses at both zero and finite

B to extract the B-dependent electron and hole spin lifetimes. From the c-PPR(B,t)

dynamics measured on (001) facet with B directed along [010] [260] (see example c-

PPR(B,t) dynamics in SI Fig. S15), we could obtain the electron and hole T ∗2 by fitting

the transient quantum beating response with two damped oscillation functions:

A1e
−t
T∗2,e cos(2πf1t+ φ1) +A2e

−t
T∗
2,h cos(2πf2t+ φ2), (6.34)

where T ∗2,e and T ∗2,h are the spin dephasing times of the electrons and holes; f1

and f2 are the two QB frequencies that can be obtained directly from the fast Fourier

transform of the c-PPR dynamics.
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Chapter 7

Anisotropy of Spin Lifetime in

Perovskites due to Symmetry Breaking

As a continuation of the study on spin dynamics in perovskites presented in

Chapter 6, the study in this chapter aims to explain the anisotropy of spin lifetime of

the hybrid inorganic-organic perovskite MAPbBr3 that is observed from experiment.

The anisotropy of spin lifetime is attributed to the dynamical Rashba splitting in the

reciprocal space, caused by symmetry breaking induced by the vibration of organic

molecule that transfers to the inorganic sublattice.

In addition, the ferroelectric MPSnBr3, which shows persistent spin helix due

to the strong electric dipole that breaks the inversion symmetry, is investigated and

found to exhibit stronger anisotropy of spin lifetime of electrons. The study of MAPbBr3

and MPSnBr3 provides more insight into the relationship between spin lifetime and

symmetry, offering guidance to the advanced design of materials for spintronics.
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7.1 Introduction

The field of spintronics has gained significant attention in recent years, due

to its application potential for low-power electronics [210, 30, 211, 212, 213]. Spintron-

ics utilizes the spin degree of freedom to encode and manipulate information, offering

a promising alternative to traditional charge-based electronics. However, one of the

primary challenges in creating efficient spintronic devices is to achieve both long spin

lifetimes and strong spin-orbit coupling (SOC) simultaneously [261, 262, 227]. These

two properties are essential for retaining stable quantum information and enabling the

precise control of spin states, respectively.

Halide perovskites have emerged as strong candidates for spintronic applica-

tions due to their unique combination of long spin lifetimes, strong SOC, and tunable

symmetry [33, 10, 216, 9, 34, 217]. Some of these materials also exhibit large Rashba

splitting [263, 261] and persistent spin helix (PSH) texture with SU(2) symmetry [34],

which highlight their potential for future spintronics applications.

In this first-principles study, we investigate the spin relaxation and dephasing

in the three-dimensional hybrid perovskite systems under zero and finite magnetic fields.

We found that the spin relaxation of centrosymmetric MAPbBr3 is nearly isotropic and

closely resembles that of CsPbBr3 [74, 216], when both materials have the same Pnma

crystal symmetry. The spin dephasing under magnetic field is slightly anisotropic due to

the weak anisotropy of the g factor fluctuation. Therefore, this alone does not explain the

large anisotropy of spin lifetime (up to 2.5) observed experimentally. Interestingly, when

the symmetry is broken due to structural dynamics such as molecular rotation (which
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has the same time scale with spin lifetime at room temperature), the spin relaxation

becomes anisotropic, attributed to the spin split induced by symmetry broken. This

trend and spin lifetime anisotropy ratio align with the experimental observation and

underscores the importance of structural dynamics and symmetry on spin relaxation.

At the end, we used the permanent symmetry broken example, MPSnBr3,

to show an significant spin lifetime anisotropy at a range of 20-50. In particular we

found such large anisotropy correlates with its PSH spin texture, and the corresponding

spin lifetime parallel to spin texture shows dominantly spin-flip Elliot-Yafet mechanism.

Our work pointed out the strong tunability of spin dynamics properties in halide per-

voskites, and provided fundamental insights to guide materials design of pervoskites for

spintronics applications.

7.2 Results and Discussion

7.2.1 Spin Lifetime of MAPbBr3 with Centro-symmetry

By employing our first-principles density-matrix dynamics (FPDM) method

(more details in computational detail), first we focus on the intrinsic spin relaxation

of centrosymmetric MAPbBr3 at Pnma crystal symmetry. This is crucial for under-

standing its behavior under more complex external conditions. For the intrinsic spin

relaxation, we include both electron-electron (e-e) and electron-phonon (e-ph) scatter-

ing processes. Since the e-e scattering process is negligible compared to electron-phonon

(shown in SM Fig. S1), its spin relaxation is mainly attributed to electron-phonon scat-

210



(a) (b) (c)

Figure 7.1: Electron Spin lifetime of centrosymmetric MAPbBr3. (a) Temperature-

dependent electron spin lifetimes τs,z from the FPDM calculations and experiments [15].

The experiment is performed at a laser power of 800 µW, corresponding to carrier con-

centration of 1018 cm−3. (b) Magnetic field-dependent spin dephasing rate of electrons

at T = 4 K, with carrier concentrations of 1 × 1018, 2 × 1018 and 1 × 1019 cm−3. The

experimental data measured at P = 100 mW, with the dashed line as a linear fit of

last three points. τs,x is measured with the external B along [001]. (c) Anisotropy of

spin dephasing rate of electrons. τs,y is measured for B ‖ [100], and τs,x is measured for

B ‖ [010] and B ‖ [001]. The data points with the blue dashed line represent the ratio

of τ−1
s (B ‖ [010])/τ−1

s (B ‖ [001]).

211



terings and spin-orbit couplings.

As shown in Fig. 7.1(a), under zero magnetic field, the spin relaxation time (T1)

in MAPbBr3 decreases with increasing temperature. This trend is primarily caused by

an increased phonon occupation at higher temperatures, and correspondingly, stronger

electron-phonon scattering strength, facilitating spin-flip transition dominated by the

Elliot-Yafet (EY) mechanism [227, 264], as can be seen in SM Fig. S3. Such temperature

dependence is similar to what we found in CsPbBr3 earlier [74].

The phonon contribution to electron-phonon interaction in MAPbBr3 involves

complex molecular-inorganic lattice hybrid vibrational modes due to the inclusion of

the organic MA molecule comparing with previous studies on CsPbBr3 [74]. Contrary

to the common assumption that LO phonons via the Fröhlich interaction are the major

contributors to spin relaxation [10, 12, 265], the spin relaxation is primarily caused by

lower-energy optical phonons in the energy range from 2-6 meV as shown by the phonon

dispersion in SM Fig. S4. This contribution of phonon is evidenced by the spin lifetimes

determined by electron interacting with different groups of phonons in SM Fig. S5(a). In

particular, the spin-flip electron-phonon matrix elements in SM Fig. S6(a) that are most

relevant to spin relaxation, show distinct phonon dependence from the spin-conserving

matrix elements. On the other hand, the Fröhlich like phonon modes, giving rise to

a large LO-TO splitting at 13 − 21 meV, consistent with the strong Raman intensity

at 12.3 meV, 12.6 meV, 16.2 meV and 22.3 ± 0.6 meV [266, 267]. They have large

contribution to carrier relaxation through spin-conserving electron-phonon scattering

processes, little to spin-flip processes or spin relaxation, as shown in SM Fig. S5(b) and
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SM Fig. S6(b).

Next, we look at the spin dynamics of MAPbBr3 at finite magnetic field. The

k-dependent spin vectors, can undergo inhomogenous precession in an external mag-

netic field that is perpendicular to its initial spin direction, leading to spin dephasing,

fundamentally because of g factor induced magnetic field fluctuations [227]. Specifically,

the interaction of spin with an external magnetic field B is described by the following

Hamiltonian approximately,

Hk (B) = H0,k + µBB · (Lk + g0Sk) (7.1)

where µB is the Bohr magneton, g0 is the free-electron g-factor, and S and L are the

spin and orbital angular momentum, respectively. We calculated L using Berry phase

formalism with details in Refs. [238, 74]. Under the external magnetic field, the total

spin decay rate under a magnetic field can be expressed as,

τ−1
s (B) ≈

(
τ0
s

)−1
+
(
τ∆Ω
s

)−1
(B) (7.2)

where (τ0
s )−1 is the zero-field spin relaxation rate, (τ∆Ω

s )−1 is the spin dephasing rate

under external B field, and ∆Ω is the fluctuation of the Larmor-precession-frequency

expressed as,

∆Ω = µBB∆g̃ (7.3)

where ∆g̃ is the fluctuation (or variation) of g factor, whose detailed derivation can

be found in Ref. [74], with result shown in SM Fig. S7. (τ∆Ω
s )−1 spin dephasing rate

has been mainly discussed with Dyakonov-Perel (DP) mechanism at strong scattering
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limit (τp∆Ω � 1), or free induction decay (FID) mechanisms at weak scattering limit

(τp∆Ω & 1) [223].

In Fig. 7.1(b), we show the spin dephasing at 4 K, at which temperature

the spin relaxation due to electron-phonon coupling is weak, where the experimental

reference in this work was carried out [74]. In comparison to the experiment, which is

carried out at P = 100 mW, corresponding to the carrier density nc = 1018 cm−3, our

theoretical results show good agreement when Bext < 0.5 T. The experimental data

locate in-between nc = 1 × 1018 cm−3 to 1 × 1019 cm−3 of the calculated results. The

onset of the linear dependence on the magnetic field (FID mechanism) occurs earlier

in experiments than theory. Additionally, a slightly higher spin dephasing rate has

been observed experimentally, consistent with previous work on CsPbBr3 [74]. This

discrepancy may be attributed to the presence of nuclear spins. By estimation, the

hyperfine interaction is mainly from the electron spin interacting with the nuclear spin

of Pb and Br atoms, which ranges from 4× 108 Hz to 6× 109 Hz. The spin dephasing

time (T ∗2 ) of localized carriers due to the hyperfine interaction is 0.6–8.0 ns for electrons

and 0.35-4.60 ns for holes, setting the upper bound of spin lifetime at B = 0 T [74]. In

Fig. 7.1(a), the discrepancy between theory and experiment at T< 10 K could also be

attributed to the hyperfine interaction-induced spin relaxation.

An interesting fact from our calculation is that the spin dephasing rate shows

slight anisotropy between [001] and [010] at a finite magnetic field, with the factor

of rate anisotropy (τ−1
s (B ‖ [010])/τ−1

s (B ‖ [001])) about 0.8, as can be seen in

Fig. 7.1(c). However, the experimental results [15] show a factor of anisotropy ∼2.5
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between B ‖ [010] and B ‖ [001]. The stronger spin relaxation anisotropy in exper-

iments indicates that some additional mechanisms may mediate spin relaxation and

dephasing as discussed below.

7.2.2 Strong Spin Lifetime Anisostropy Induced by Dynamical Sym-

metry Breaking

The dynamical Rashba effect [268, 269, 270] offers a unique perspective for

understanding the anisotropy of spin lifetime. According to the past studies [271, 272,

270, 269], the dynamical Rashba effect is induced by the local fluctuation of the organic

cation MA that associatively distorts the inorganic sublattice. The local distortion

within the nanometer scale at room temperature occurs on a sub-picosecond time scale,

which is comparable with the spin lifetime at the same temperature. Given similar

time scales of two events, the dynamical Rashba effect can inevitably affect the spin

dynamics.

To understand the Rashba effect on the spin dynamics, instead of iterating

many possible configurations of structure, we select the structure of MAPbBr3 in the

maximally polarized case, where all MA molecules nearly align in x-axis, as shown in

Fig. 7.2(a). Such a structure has broken inversion symmetry under structure distortion

due to the MA molecule. Because of the alignment of the MA molecules, a net electric

polarization occurs in nearly x-axis, which induces a large internal effective magnetic

field in y-z plane. Simultaneously, as in Fig. 7.2(b), the originally degenerate Kramer’s

pairs split (spin split at each k point), providing a Rashba-like spin texture, as shown
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Figure 7.2: (a) Crystal structures of centrosymmetric (left) and asymmetric MAPbBr3

(right), with zero and nonzero net dipole approximately pointing to x-axis, respectively.

The choice of asymmetric MAPbBr3 configuration is discussed in the main text. (b) The

band structures of the centrosymmetric MAPbBr3 (yellow) and asymmetric MAPbBr3

(blue). The latter shows a band splitting at Γ due to symmetry breaking. (c) The

Rashba-like spin texture in the y-z plane near the conduction band minimum. (d) The

internal magnetic field in the y-z plane obtained from the product of spin expectation

value and the band splitting by Eq. (7.8).
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in Fig. 7.2(c). The following Hamiltonian H in describing the interaction between the

spin and internal magnetic field (an effective Zeeman Hamiltonian) provides a way to

quantify the internal magnetic field of the asymmetric MAPbBr3,

H in =
2g0µB

~
Bin(k) · Sk (7.4)

Bin(k) = C · k (7.5)

C = Cs + Cv + Ct. (7.6)

Here µB is the Bohr magneton, g0 is the free-electron g-factor, Sk is the spin angular

momentum, Bin(k) is the internal magnetic field vector which can be represented by the

product of coefficient tensor C and k vector. The factor of 2 accounts for the relative

shift between two bands. This tensor C can be decomposed into the traceless antisym-

metric part (Rashba), the symmetric part (Dresselhaus at the linear order), and the

trace (Weyl contributions). More details see SM Sec. VI. As shown in Fig. 7.2(d), the

internal B field is Rashba-like, dominated by the Rashba effect (> 90%) with a small

mixture of Dresselhaus effect (< 10%). We find the Rashba splitting coefficient from

fitting effective Zeeman Hamiltonian to be 1.18 eV�A. Alternatively, we calculate the ef-

fective Rashba splitting coefficient from the band splitting by the conventional definition

α = ε/(2∆k) = 1.35 eV�A, where ε and ∆k are the energy difference between splitting

bands and k distance from the reference high symmetry point, respectively [269]. Note

that such definition assumes the spin split is completely from the Rashba SOC contri-

bution, which is approximately true for this system (> 90% Rashba contribution from

above). The calculated Rashba splitting coefficients from both methods are comparable
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with the coefficient 1.4 eV�A extracted from experimental data on the same system [273].

This provides some experimental justification for the asymmetric structural model we

used here.

(a)

(b)

Figure 7.3: (a) Anisotropy of electron spin lifetime due to the internal magnetic field

of asymmetric MAPbBr3 at 300 K. The general effect that splits band structure is

represented by the C tensor in Eq. (7.5), and C0 is the fitted tensor for asymmetric

MAPbBr3. (b) Spin relaxation mechanism of asymmetric MAPbBr3 at 300 K.
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As shown in Fig. 7.3(a), the spin lifetime reduces monotonically by scaling up

the coefficient C (increasing C/C0 ratio), where C0 is the coefficient directly fitted from

the internal magnetic field of the asymmetric MAPbBr3. The Rashba effect creates an

inhomogeneous distribution of magnetic field in the momentum space, which is physi-

cally equivalent to the fluctuation or variation of Larmor precession (∆Ω ∝ ∆Bin). This

becomes another cause of spin decay (
(
τ−1
s

)∆Ω
) through spin precession in addition to

the spin-flip relaxation (
(
τ−1
s

)
|∆〈Bin〉=0) as follows,

τ−1
s ≈

(
τ−1
s

)
|∆〈Bin〉=0 +

(
τ−1
s

)∆Ω
(7.7)

In particular, the Rashba-like SOC leads to the anisotropy of spin lifetime,

i.e., the spin lifetime along y or z direction (in-plane) is longer than that in x direction

(out-of-plane). The reason is that the fluctuation of internal magnetic field (∆〈Bin〉)

is stronger in the y-z plane than in the x-y and x-z planes, i.e. ∆〈Bin〉xy = 57.3 T,

∆〈Bin〉xz = 119.1 T and ∆〈Bin〉yz = 131.5 T. Here the internal magnetic field Bin is

evaluated according to

Bin
nk =

2∆nkS
exp

geµB
(7.8)

〈Bin〉i =
∑
nk

f ′nkB
in
i;nk∑

nk f
′
nk

(7.9)

∆〈Bin〉i =

√√√√∑
nk

f ′nk(B
in
i;nk − 〈Bin〉i)2∑
nk f

′
nk

(7.10)

∆〈Bin〉ij =
√

∆〈Bin〉2i + ∆〈Bin〉2j (7.11)

where Bin
nk is the internal magnetic field as the product of the band splitting ∆nk

and spin expectation value Sexp at band n and k point. 〈Bin〉i and ∆〈Bin〉i are the
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thermal average of the internal magnetic field and magnetic field fluctuation in i-th

Cartesian direction, respectively, with f ′ being the derivative of Fermi-Dirac distribution

function [73].

As the magnetic field fluctuation orthogonal to the spin direction of interest

leads to spin relaxation or dephasing, stronger ∆〈Bin〉 effectively gives rise to faster

Larmor precession and smaller spin lifetime. The weakest ∆〈Bin〉xy accounts for the

longest spin lifetime τs,z. The stronger and similar ∆〈Bin〉xz and ∆〈Bin〉yz account

for the similarity between the shorter τs,x and τs,y. Interestingly, the spin lifetime

anisotropy aligns with the experimental observation [15] of ∼2.5 across a wide range

of the internal B field coefficient, as seen in Fig. 7.3(a). This suggests that the spin

lifetime anisotropy has weak dependence on the size of Rashba coefficients, generated

by the lattice polarization from molecular rotation.

7.2.3 Strong Spin Lifetime Anisotropy from Persistent Spin Helix

Next, we will show that the PSH spin texture can give rise to a significantly

larger anisotropy in spin lifetime, using an example of MPSnBr3, which has a crystal

symmetry of Pc and a corresponding point group of Cs, as shown in Fig. 7.4(a). Com-

pared to MA molecules, the MP molecule is more polarized and less likely to rotate

around its center due to the high rotation energy barrier [274]. The highly polarized

and stable alignment of the MP molecules give rise to a strong net dipole in the x-z

plane and mostly along z-axis, which subsequently results in strong distortion in the

inorganic sublattice and a permanent symmetry breaking. This results in an effective
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Figure 7.4: (a) Crystal Structure of MPSnBr3 of Pc crystal symmetry. The net dipole

due to the alignment of the MP molecules is in the x-z plane and mostly along the

z-axis [16]. (b) Band structure of MPSnBr3, showing spin polarization projected along

the y-axis. The Sx and Sy spin polarization projection on band structure can be found

in SM Fig. S9.
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magnetic field in the x-y plane. Due to the Cs symmetry, a significant result is the

persistent spin helix in the conduction band [275, 16, 276], with spin highly polarized

in the y-axis, as shown in Fig. 7.4(b) and Fig. 7.5(a). We numerically fitted the in-

ternal B field Hamiltonian in Eq. 7.5 to confirm PSH, where Rashba and Dresselhaus

contributions are nearly equal. Details can be found in SM Sec. X.

As shown in Fig. 7.5(b), the spin lifetime of electrons in the y axis is 20-50

times longer than the spin lifetime along the x and z axes. This remarkable anisotropy

between y and the x-z plane is consistent with the strong spin polarization in the y axis.

The significantly longer spin lifetime along the y-axis, compared to the x and z axes,

can be explained by the suppression of spin scattering in the direction of PSH [277, 242].

Additionally, the spin lifetime of electrons in MPSnBr3 is generally one order of magni-

tude shorter compared to that of centrosymmetric MAPbBr3. This can be attributed

to the exceptionally large internal magnetic field (maximally 956 T in the momentum

space) of MPSnBr3 and the small range of PSH in momentum space (approximately

20% of the first Brillouin zone, SM Fig. S10), which quickly transitions to a Rashba-like

spin texture as it moves away from the band edge [16]. Consequently, there occurs the

fluctuation of internal magnetic field, and ∆〈Bin〉xz = 38.1 T is one order smaller than

∆〈Bin〉xy = 508.5 T and ∆〈Bin〉yz = 509.5 T. The fluctuation of the internal magnetic

field leads to additional spin relaxation or dephasing that reduce the spin lifetime, as

described by Eq. (7.7), and longer spin lifetime along the y direction than the z and x.

In contrast, as can be seen in SM Fig. S13(a), the spin lifetime of holes in the

VBM is less anisotropic, and similar to the spin lifetime anisotropy of the asymmetric
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(a)

(b)

Figure 7.5: (a) The PSH spin texture at CBM centered at high symmetry point X. (b)

Temperature-dependent spin lifetime of electrons in MPSnBr3 at zero external magnetic

field. The red, blue and yellow data points with solid lines represent the spin lifetime

of electrons in x, y and z axes. The blue data points with the dashed line are the

anisotropy of spin lifetime between y (parallel to PSH) and x (perpendicular to PSH)

directions.
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MAPbBr3. This anisotropy is attributed to the Rashba-like spin texture at VBM in SM

Fig. S13(b). Compared to the spin lifetime of holes, the spin lifetime of electrons in the

y direction is more intringing, highlighting the fact that the spin lifetime can be more

reliably controlled by the PSH. The attenuated protection of the PSH to spin relaxation

suggests the need of materials that exhibit a larger range of PSH in the k space.

7.3 Conclusion

In summary, we present the spin dynamics study of hybrid inorganic-organic

perovskites, MAPbBr3 and MPSnBr3, with a particular focus on elucidating the anisotropy

of spin lifetime with the dynamical Rashba effect and permanent symmetry breaking.

We first present the theoretical spin lifetime of the centrosymmetric MAPbBr3,

which agrees with experimental observations, particularly in terms of temperature and

magnetic field dependence. The EY, DP, and FID mechanisms are identified as the

primary origins of spin relaxation and dephasing under zero, weak, and strong external

magnetic fields, respectively. Besides, we reveal the distinct phonon mode dependence

in carrier and spin relaxation.

However, the anisotropy of spin lifetime in MAPbBr3 is much weaker than

what is observed experimentally, suggesting additional mechanism yet to be identified.

Specifically, we attribute the observed anisotropy to the dynamical Rashba effect due

to molecular rotation, which occurs on a similar timescale as the spin lifetime, and has

been observed in several past experiments. Our structural model for studying dynami-

cal Rashba effect is supported by the consistent Rashba coefficient between theoretical
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and experimental values. The symmetry breaking induced by the Rashba effect intro-

duces additional DP/FID spin dephasing alongside the EY mechanism, resulting in the

observed anisotropy in spin lifetime.

Finally, we calculate the spin lifetime of electrons and holes in MPSnBr3 and

find a large anisotropy of spin lifetime of electrons, as a result of permanent symmetry

breaking. A significant enhancement of spin lifetime is observed in the parallel direction

to PSH compared to the perpendicular directions. Even though the spin lifetime of

MPSnBr3 is shorter than the widely studied CsPbBr3 and MAPbBr3, our theoretical

results provide in-depth understanding of the PSH effect on spin lifetime, and insights

into the design of spintronics materials. We propose materials with strong SOC and a

wide-range of PSH in k space to enable the simultaneous effective spin control and long

spin lifetime for optimal spintronics applications.

7.4 Computational Methods

We perform electronic structure, phonon, Wannier calculations by using Quantum-

Espresso [130] and JDFTx [253]. We choose the energy cutoff of wavefunction 74

Ry using the PseudoDojo Optimized Norm-Conserving Vanderbilt (ONCV) pseudopo-

tential [278, 279]. We use the exchange-correlation functionals with Perdew-Burke-

Ernzerhof (PBE) generalized gradient approximation [39] to optimize the lattice con-

stants and internal geometry, and obtain phonon properties as well as single-particle

electronic structure. We calculate the phonon and electron-phonon interaction by using

the finite difference method with self-consistent SOC from the fully relativistic pseu-
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dopotentials. The electron-electron interaction is calculated with screened Coulomb

potential with Random-Phase-Approximation [72]. The perovskites involve the or-

thorhombic MAPbBr3 of the Pnma space group [280], and the monoclinic MPSnBr3 of

the Pc space group [274].

We simulate spin and carrier dynamics using the method of first-principles

density-matrix dynamics (FPDM) [71, 72]. This involves solving a quantum master

equation that governs the time evolution of the density matrix ρ(t), depicted as follows:

dρ12(t)

dt
=
[
H(B), ρ(t)

]
12

+
1

2

∑
345

{[
I − ρ(t)

]
13
P32,45ρ45(t)

−
[
I − ρ (t)

]
45
P ∗45,13ρ32(t)

}
+H.C.

(7.12)

Here the equation incorporates Larmor precession in the first term, and scattering pro-

cesses in the second term. Within the first term, H(B) represents the electronic Hamil-

tonian in the presence of a magnetic field B, and [H, ρ] = Hρ− ρH. The second term

includes the general mechanisms that induce spin relaxation through the spin-orbit cou-

pling (SOC). The generalized scattering-rate matrix P encompasses electron-phonon,

electron-impurity, and electron- electron scattering processes including spin-orbit cou-

plings, computed from first-principles [75]. The numeric indices are the contracted

notation for the k-point and band of electronic states. The notation of H.C. signi-

fies Hermitian conjugate. Beginning with an initial density matrix initialized with a

net spin, we evolve ρ(t) over sufficient duration, typically ranging from hundreds of

picoseconds to a few microseconds, using the Eq. 7.12. Subsequently, we compute the

spin observable S(t) from ρ(t) and determine the spin lifetime from fitting S(t). More
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theoretical background and details can be found in Ref. [75].

7.5 Experimental Methods

The MAPbBr3 thin films were prepared by using a precursor solution. Pre-

cursors CH3NH3Br and PbBr2 are mixed in a molar ratio of 1:1 in solvant N,N-

dimethylformamide, and the concentration of 0.8 mol/ml [15]. The MAPbBr3 crys-

tals were grown via antisolvent precipitation. X-ray-diffraction (XRD) measurements

confirm the crystal structure and principal axes.

The ultrafast circularly-polarized photoinduced reflectivity (c-PPR) method [260,

15] is used to measure the spin lifetime of carriers in MAPbBr3 single crystals. The

PPR method is a derivative of the pump-probe technique, where the polarization of the

pump beam is modulated by a photoelastic modulator between left circular polarization

(LCP, δ+) and right circular polarization (RCP, δ−), and the probe beam is modulated

to LCP/RCP by a quarter-wave plate. The pump beam is of 405 nm wavelength, 250

femtoseconds pulse duration, and 80 MHZ repetition rate. It is generated by frequency

doubling the fundamental at 810 nm from the Ti:Sapphire laser (Spectra Physics) using

a second-harmonic generator (SHG) barium borate (BBO) crystal. The 533 nm probe

beam was generated by combining the 810 nm fundamental beam with the 1560 nm in-

frared beam from an optical parametric amplifier (OPA) onto a BBO type 2 SFG (Sum

Frequency Generation) crystal. Using this technique we measured both t-PPR responses

at both zero and finite B to extract the B-dependent spin lifetimes of electrons.
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Chapter 8

Conclusion

This thesis presents the development and application of advanced first-principles

methods to elucidate two key topics: the excited-state dynamics of solid-state spin de-

fects and the spin dynamics of carriers in solids.

Chapter 3 introduces a group theory framework and procedure for describ-

ing spin defects, encompassing electronic states, SOC matrix elements, and Jahn-Teller

electron-phonon couplings, all from a symmetry perspective. Chapter 4 and Chapter 5

further develop and apply these first-principles approaches, along with group theory,

to provide deep insights into the chemical structure, static properties, and excited-

state dynamics of solid-state spin defects. The long-debated question of the chemical

structure of defects in hBN is addressed by identifying the C2CN defect as the candidate

responsible for the 2 eV single-photon emitter. For the NV center in diamond, this work

resolves long-standing inconsistencies between theory and experiment regarding inter-

system crossing and provides the rates of internal conversion for ODMR. The ODMR
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simulation tool developed here is demonstrated to be general and capable of providing

robust simulations for various spin defects.

Chapter 6 and Chapter 7 detail the development and application of advanced

first-principles density-matrix dynamics to study the spin dynamics of carriers in solids.

These studies incorporate critical mechanisms, including electron-electron, electron-

phonon, and electron-impurity interactions, to provide in-depth insights into the spin

dynamics of carriers in various perovskite materials with different symmetries. This

work offers valuable guidance for the design and development of spintronic materials.

There are still many challenges associated with spin defects. One is in identi-

fying additional defect candidates with varying characteristics such as ZPL, total spin,

ZFS, hyperfine parameters, and ODMR as observed in experiments. Moreover, the tem-

perature has significant influence on the PL spectrum and ODMR of the NV center,

as observed experimentally, and this is very challenging for first-principles calculations.

Challenges related to spin dynamics in solids include the need for more accurate theoret-

ical developments in electronic structure, a deeper understanding of the anharmonicity

of lattice vibration on spin dynamics, and the effects of strong external magnetic fields.
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Appendix A

Group Theory Derivation of Symmetry

A.1 Matrix Representations of the Symmetry Operations

on Two Spins

Two spin wavefunctions are constructed by direct product

(α, β)⊗ (α, β) = (α⊗ α, α⊗ β, β ⊗ α, β ⊗ β) = (αα, αβ, βα, ββ) (A.1)

Because they transform as follows under symmetry operation,

PR[(α, β)⊗ (α, β)] = (PRα, PRβ)⊗ (PRα, PRβ) (A.2)

= PR ⊗ PR(α⊗ α, α⊗ β, β ⊗ α, β ⊗ β) (A.3)

= PR ⊗ PR(αα, αβ, βα, ββ) (A.4)

the direct product of PR⊗PR can describe the transformation of two spin wavefunctions.

A corollary can be deduced from the above that ΠNPR = P 1
R ⊗ P 2

R ⊗ . . .⊗ P
N−1
R ⊗ PNR

serves as the symmetry operator for N spins.
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The matrix representations of the two-spin symmetry operations are derived

below by using the symmetry operation matrices in Sec. 3.6.5.

E ⊗ E =

1 0

0 1

⊗
1 0

0 1

 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(A.5)

C3 ⊗ C3 =

e−iπ/3 0

0 eiπ/3

⊗
e−iπ/3 0

0 eiπ/3

 =



e−i2π/3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei2π/3


(A.6)

C−1
3 ⊗ C−1

3 =

eiπ/3 0

0 e−iπ/3

⊗
eiπ/3 0

0 e−iπ/3

 =



ei2π/3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−i2π/3


(A.7)

σv ⊗ σv =

0 −1

1 0

⊗
0 −1

1 0

 =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


(A.8)
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σ′v ⊗ σ′v =

 0 e−i2π/3

e−iπ/3 0

⊗
 0 e−i2π/3

e−iπ/3 0

 =



0 0 0 ei2π/3

0 0 −1 0

0 −1 0 0

e−i2π/3 0 0 0


(A.9)

σ′′v ⊗ σ′′v =

 0 ei2π/3

eiπ/3 0

⊗
 0 ei2π/3

eiπ/3 0

 =



0 0 0 e−i2π/3

0 0 −1 0

0 −1 0 0

ei2π/3 0 0 0


(A.10)

Ē ⊗ Ē =

−1 0

0 −1

⊗
−1 0

0 −1

 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(A.11)

C̄3 ⊗ C̄3 =

ei2π/3 0

0 e−i2π/3

⊗
ei2π/3 0

0 e−i2π/3

 =



e−i2π/3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei2π/3


(A.12)
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C̄−1
3 ⊗ C̄−1

3 =

e−i2π/3 0

0 ei2π/3

⊗
e−i2π/3 0

0 ei2π/3

 =



ei2π/3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−i2π/3


(A.13)

σ̄v ⊗ σ̄v =

 0 1

−1 0

⊗
 0 1

−1 0

 =



0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


(A.14)

σ̄′v ⊗ σ̄′v =

 0 eiπ/3

ei2π/3 0

⊗
 0 eiπ/3

ei2π/3 0

 =



0 0 0 ei2π/3

0 0 −1 0

0 −1 0 0

e−i2π/3 0 0 0


(A.15)

σ̄′′v ⊗ σ̄′′v =

 0 e−iπ/3

e−i2π/3 0

⊗
 0 e−iπ/3

e−i2π/3 0

 =



0 0 0 e−i2π/3

0 0 −1 0

0 −1 0 0

ei2π/3 0 0 0


(A.16)
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It can be found that for two-spin wavefunction which can be either S = 1 or

S = 0, there is the equivalence E = Ē, C3 = C̄3, C−1
3 = C̄−1

3 , σv = σ̄v, σ
′
v = σ̄′v and

σ′′v = σ̄′′v .
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Appendix B

ZFS Parameters and Symmetry

B.1 ZFS Parameters and Symmetry

Using the traceless ZFS tensor D [281], the ZFS Hamiltonian is written as

H = S ·D · S

= DxS
2
x +DyS

2
y +DzS

2
z (B.1)

By rewriting Dx and Dy into a symmetric form and an antisymmetric form, then

H =
1

2
(Dx +Dy)(S

2
x + S2

y) +
1

2
(Dx −Dy)(S

2
x − S2

y) +DzS
2
z (B.2)

From the traceless D tensor we have

Dx +Dy +Dz = 0 =⇒ Dx +Dy = −Dz (B.3)

Decomposing the total spin into the three orthogonal components,

S2 = S2
x + S2

y + S2
z =⇒ S2

x + S2
y = S2 − S2

z (B.4)
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when we choose the z-axis as the spin quantization axis, it is easy to find that

H =
1

2
(−Dz)(S

2 − S2
z ) +

1

2
(Dx −Dy)(S

2
x − S2

y) +DzS
2
z

= D(S2
z −

S2

3
) + E(S2

x − S2
y) (B.5)

with the axial and rhombic ZFS parameters being defined as [281],

D =
3

2
Dz (B.6)

E =
1

2
(Dx −Dy) (B.7)

By replacing the operator S2 with the expectation value S(S + 1), the hamiltonian is

written as

H = D

[
S2
z −

S(S + 1)

3

]
+ E(S2

x − S2
y) (B.8)

This form of the hamiltonian is convenient for the case that a magnetic field is along the

spin quantization axis or spin principle axis (z-axis). For the case of spin quantization

along x-axis, we can write the hamiltonian as

H =
1

2
(Dy +Dz)(S

2
y + S2

z ) +
1

2
(Dy −Dz)(S

2
y − S2

z ) +DxS
2
x

=
1

2
(−Dx)(S2 − S2

x) +
1

2
(Dy −Dz)(S

2
y − S2

z ) +DxS
2
x

=
3

2
Dx

(
S2
x −

S2

3

)
+

1

2
(Dy −Dz)(S

2
y − S2

z )

(B.9)
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Here we need to express Dx and (Dy−Dz) in terms of D and E measured in experiments.

To do that, we can rewrite Eq. (B.5) in terms of S2
x as follows,

H = D

(
S2
z −

S2

3

)
+ E(S2

x − S2
y)

= D

(
S2
z −

S2
x + S2

y + S2
z

3

)
+ E(S2

x − S2
y)

=

(
E − D

3

)
S2
x −

(
D

3
+ E

)
S2
y +

2D

3
S2
z

=
3

2

(
E − D

3

)(
S2
x −

S2
x + S2

y + S2
z

3

)
+

1

2

(
E − D

3

)
(S2
y + S2

z )−
(
D

3
+ E

)
S2
y

+
2D

3
S2
z

=
3

2

(
E − D

3

)(
S2
x −

S2

3

)
− D + E

2
(S2
y − S2

z )

(B.10)

Comparing Eq. (B.9) and Eq. (B.10), we can find the expression of Dx and Dy in terms

of D by Eq. (B.6) and E Eq. (B.7) as follows,

Dx = E − D

3
(B.11)

Dy −Dz = −(D + E) (B.12)

Likewise, in the case of a magnetic field along y-axis, we can find the hamiltonian to be

H =
3

2
Dy

(
S2
y −

S2

3

)
+

1

2
(Dx −Dz)(S

2
x − S2

z ) (B.13)

H = −3

2

(
E +

D

3

)(
S2
y −

S2

3

)
− D − E

2
(S2
x − S2

z ) (B.14)

with

Dy = −
(
E +

D

3

)
(B.15)

Dx −Dz = −(D − E) (B.16)
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When there is axial symmetry, i.e. systems with x and y being degenerate,

e.g. systems described by C3v, D3h and cubic systems, it can be found that Dx = Dy

and E = 0.
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[157] M Mackoit-Sinkevičienė, Marek Maciaszek, Chris G Van de Walle, and Audrius

Alkauskas. Carbon Dimer Defect as a Source of the 4.1 eV Luminescence in

Hexagonal Boron Nitride. Appl. Phys. Lett., 115(21):212101, 2019.

[158] Luc Museur, Eduard Feldbach, and Andrei Kanaev. Defect-Related Photolumi-

nescence of Hexagonal Boron Nitride. Phys. Rev. B, 78(15):155204, 2008.

[159] Sergey I Bozhevolnyi and Jacob B Khurgin. Fundamental Limitations in Sponta-

neous Emission Rate of Single-Photon Sources. Optica, 3(12):1418–1421, 2016.

[160] Ruben Esteban, TV Teperik, and Jean-Jacques Greffet. Optical Patch Antennas

for Single Photon Emission Using Surface Plasmon Resonances. Phys. Rev. Lett.,

104(2):026802, 2010.

263



[161] Philipp Auburger and Adam Gali. Towards ab initio Identification of Paramag-

netic Substitutional Carbon Defects in Hexagonal Boron Nitride Acting as Quan-

tum Bits. Phys. Rev. B, 104(7):075410, 2021.

[162] Constantinos A Valagiannopoulos, Marios Mattheakis, Sharmila N Shirodkar, and

Efthimios Kaxiras. Manipulating Polarized Light with a Planar Slab of Black

Phosphorus. J. Phys. Commun., 1(4):045003, 2017.

[163] Xinrong Zong, Huamin Hu, Gang Ouyang, Jingwei Wang, Run Shi, Le Zhang,

Qingsheng Zeng, Chao Zhu, Shouheng Chen, Chun Cheng, et al. Black

Phosphorus-Based van der Waals Heterostructures for Mid-Infrared Light-

Emission Applications. Light Sci. Appl., 9(1):1–8, 2020.

[164] Jamison Sloan, Nicholas Rivera, Marin Soljacic, and Ido Kaminer. Tunable UV-

Emitters through Graphene Plasmonics. Nano Lett., 18(1):308–313, 2018.

[165] Pankaj K. Jha, Ghazaleh K. Shirmanesh, Hamidreza Akbari, Meir Y. Grajower,

Claudio G. Parazzoli, Benjamin E. C. Koltenbah, and Harry A. Atwater. Emitter-

Metasurface Interface for Manipulating Emission Characteristics of Quantum De-

fects. In Conference on Lasers and Electro-Optics, page FM4C.2. Optica Publish-

ing Group, 2020.

[166] Zhenisbek Tagay and Constantinos Valagiannopoulos. Highly Selective Trans-

mission and Absorption from Metasurfaces of Periodically Corrugated Cylindrical

Particles. Phys. Rev. B, 98(11):115306, 2018.

264



[167] Nicholas V Proscia, Harishankar Jayakumar, Xiaochen Ge, Gabriel Lopez-

Morales, Zav Shotan, Weidong Zhou, Carlos A Meriles, and Vinod M Menon.

Microcavity-Coupled Emitters in Hexagonal Boron Nitride. Nanophotonics,

9(9):2937–2944, 2020.

[168] Constantinos A Valagiannopoulos and Vassilios Kovanis. Judicious Distribu-

tion of Laser Emitters to Shape the Desired Far-Field Patterns. Phys. Rev. A,

95(6):063806, 2017.

[169] HJ Mamin, M Kim, MH Sherwood, CT Rettner, K Ohno, DD Awschalom, and

D Rugar. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin

Sensor. Sci., 339(6119):557–560, 2013.

[170] Colm A Ryan, Jonathan S Hodges, and David G Cory. Robust Decoupling

Techniques to Extend Quantum Coherence in Diamond. Phys. Rev. Lett.,

105(20):200402, 2010.

[171] Florian Dolde, Ville Bergholm, Ya Wang, Ingmar Jakobi, Boris Naydenov,
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[267] Martin Ledinský, Philipp Löper, Bjoern Niesen, Jakub Holovský, Soo-Jin Moon,
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