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Abstract
The COVID-19 pandemic brought diagnostics into the spotlight in an unprecedented way not only for case management 
but also for population health, surveillance, and monitoring. The industry saw notable levels of investment and accelerated 
research which sparked a wave of innovation. Simple non-invasive sampling methods such as nasal swabs have become widely 
used in settings ranging from tertiary hospitals to the community. Self-testing has also been adopted as standard practice 
using not only conventional lateral flow tests but novel and affordable point-of-care molecular diagnostics. The use of new 
technologies, including artificial intelligence-based diagnostics, have rapidly expanded in the clinical setting. The capacity 
for next-generation sequencing and acceptance of digital health has significantly increased. However, 4 years after the pan-
demic started, the market for SARS-CoV-2 tests is saturated, and developers may benefit from leveraging their innovations 
for other diseases; tuberculosis (TB) is a worthwhile portfolio expansion for diagnostics developers given the extremely high 
disease burden, supportive environment from not-for-profit initiatives and governments, and the urgent need to overcome 
the long-standing dearth of innovation in the TB diagnostics field. In exchange, the current challenges in TB detection may 
be resolved by adopting enhanced swab-based molecular methods, instrument-based, higher sensitivity antigen detection 
technologies, and/or artificial intelligence-based digital health technologies developed for COVID-19. The aim of this article 
is to review how such innovative approaches for COVID-19 diagnosis can be applied to TB to have a comparable impact.
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Introduction

“Squarely put, the drugs are in the north and the disease is 
in the south,” stated the former World Health Organization 
(WHO) director general Gro Harlem Brundtland in response 
to the AIDS epidemic in the late 1990s [1]. The same prin-
ciple still holds true for innovative tools from drugs to 
diagnostics today. The COVID-19 pandemic exposed the 
strengths and weaknesses of the present research and devel-
opment (R&D) system. While R&D progressed at an unpar-
alleled rate, access to its products outside of the global north 
and novel technology usage for diseases associated with 
poverty primarily affecting the global south have remained 
restricted. One of these diseases, tuberculosis (TB), stands 
to gain significantly from the diagnostic industry’s surge of 
innovation brought on by the pandemic. In this review, we 
explore how the cutting-edge solutions created for COVID-
19 diagnosis may be applied to TB to truly impact how TB 
is diagnosed.
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COVID‑19: a new era in diagnostics

Unprecedented speed and money

In the early stages of the pandemic, WHO established 
access to the COVID-19 Tools Accelerator (ACT-A) part-
nership [2] with a budget of $1.5 billion USD (all dollar 
amounts are given in USD hereafter) [3] for its diagnostic 
pillar. In the United States (US) alone, the National Insti-
tutes of Health (NIH) allocated more than $1.5 billion to 
the Rapid Acceleration of Diagnostics (RADx®) initiative 
[4–6]. The large investments and sizeable market pros-
pects led to expedited diagnostic research and a surge of 
innovation. Three months after COVID-19 was declared 
a pandemic, WHO listed the first two molecular assays 
for emergency use [7]. As of October 15, 2023, FIND, the 
global alliance for diagnostics, COVID-19 Test Directory 
lists 2195 tests including laboratory, point-of-care (POC), 
and at-home/over-the-counter (OTC) tests, while the Johns 
Hopkins Centre for Health Security Antigen and Molec-
ular-based Tests Tracker lists 208 commercial and 143 
laboratory-developed tests (as of March 30, 2022) [8, 9].

The best of innovation: new sampling methods 
and testing technologies

COVID-19 diagnostic test development does not only 
stand out for its sheer number of tests but also for ver-
satility in terms of targets, sample types, and operational 
characteristics. Reverse-transcription quantitative poly-
merase chain reaction (RT–qPCR) on isolated RNA from 
nasopharyngeal (NP) specimens has been the gold stand-
ard for SARS-CoV-2 detection since the beginning of 
the pandemic; however, the variety of samples and tests 
expanded quickly in response to the need for effective 
and practical testing in many contexts and situations. NP 
swabs were the sample of choice despite sputum having 
higher average viral load levels because not all patients can 
produce sputum [10, 11]. Several swab types (e.g., nylon 
flocked swabs) and swab samples (e.g., NP, oropharyngeal, 
and nasal swabs) have been evaluated for SARS-CoV-2 
detection to optimize sample collection and processing for 
follow-up molecular or antigen testing [10, 11].

The number and variety of fully-integrated, cartridge-
based, rapid molecular platforms that use swabs for sam-
pling has also increased dramatically for COVID-19. As of 
October 15, 2023, the FIND test tracker includes 34 such 
commercial tests from 27 companies [8]. The majority of 
these tests require minimal sample preparation, operate on 
portable or easily transportable equipment, and provide 
results during a single clinical visit (within two hours of 

sample collection) [12]. Reverse transcription loop-medi-
ated isothermal nucleic acid amplification (RT-LAMP) 
has emerged as the method of choice among the various 
isothermal techniques due to its low resource requirement 
and relative simplicity [13]. The main contributing factor 
to a rise in LAMP-based diagnostics has been the expira-
tion of Eiken Chemical’s key patent on LAMP [29, 30]. 
The US FDA has authorized the emergency use (EUA) of 
18 COVID-19 RT-LAMP-based products by 14 develop-
ers (as of October 19, 2023) [14]. Among them are at-
home/OTC diagnostic tests and systems utilizing clustered 
regularly interspaced short palindromic repeat (CRISPR)-
Cas (CRISPR-associated protein) for detection after RT-
LAMP amplification. As reviewed elsewhere [15–19], 
CRISPR-Cas shows promise of low-cost, simple, quick, 
and accurate molecular tests. However, only a small num-
ber of CRISPR tests have been approved for use in Clinical 
Laboratory Improvement Amendments of 1988 (CLIA)-
certified laboratories [8, 14], due primarily to its subpar 
application for POC up to this point.

COVID-19 antigen detection tests have been used for 
screening and triage throughout the pandemic because they 
are faster, less expensive than molecular tests, and simple 
enough to allow for self-testing. Despite their inferior sen-
sitivity compared to PCR, some new POC-applicable instru-
ment-based antigen tests outperformed their conventional 
lateral flow counterparts [20, 21]. For instance, a systematic 
review and meta-analysis found the SARS-CoV-2 antigen 
test from UK-based LumiraDx to be the most sensitive test, 
with a pooled sensitivity of 82.7% (95% confidence inter-
val [CI] 73.2–89.4%) [20]. Multiple instrument-based, fully 
automated, POC antigen detection platforms now have US 
FDA EUA [22] or Conformité Européene (CE)-marking [8].

Breath tests could potentially detect COVID-19 earlier 
because volatile organic compounds (VOCs) first appear in 
breath during the early stages of infection [23]; however, 
only a few breath-based tests have been approved for clinical 
use [24, 25]. US-based InspectIR Systems obtained US FDA 
EUA for its Breathalyzer test, which uses a portable gas 
chromatography-mass spectrometry (GC–MS) instrument 
to detect five VOCs associated with SARS-CoV-2 infection 
in exhaled breath [24]. Additionally, the companies Deep 
Sensing Algorithms (DSA; Finland) and Imspex Diagnos-
tics (UK) received CE-marking for their spectroscopic-based 
breath tests to determine a person’s metabolic response to 
COVID-19 [26, 27]; however, their real-world effectiveness 
and applicability remain to be seen. Moreover, although still 
in the preclinical stages, exhaled breath aerosol (XBA) col-
lection paired with SARS-CoV-2 molecular detection is 
showing promise [28–31]. Unlike VOCs, direct nucleic acid 
or antigen-based pathogen detection in XBA has the poten-
tial to be highly specific and is associated with the trans-
mission of respiratory pathogens. Although highly technical 
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and resource-intensive, current tools can effectively collect 
XBAs and detect pathogens [32]. The COVID-19 pandemic 
has sparked research into simpler, filter-based XBA collec-
tion devices that can be implemented in clinical settings such 
as face masks with embedded biosensors and blow tubes [28, 
33, 34]. Simple blow tubes may offer a more scalable solu-
tion with faster sampling. A silicon chip-based sample col-
lector for subsequent molecular detection of SARS-CoV-2 
virus particles is being developed for this reason by IMEC, 
a Belgian R&D organization, in collaboration with industry 
partners [35, 36].

Putting diagnostic ownership into patients’ hands: 
self‑testing

The availability of simple, easy-to-use, rapid, and affordable 
diagnostics, and evidence showing that easy-to-collect sam-
ples like saliva and nasal swabs are clinically valid, has made 
self-testing a viable option. WHO recommended COVID-
19 self-testing using rapid antigen tests as a supplemental 
testing approach in March 2022 [37]. Importantly, for the 
first time, four molecular test developers received US FDA 
EUA for self-testing [14]. These tests can be performed with 
self-collected nasal swabs using portable, battery-powered 
devices that return results within 20–60 min [8, 38–41]. 
Although technological and regulatory advancements in this 
area have been promising, it is still unclear how frequently 
and effectively molecular home tests are used.

Next‑generation sequencing

Throughout the pandemic, the SARS-CoV-2 genomic 
surveillance relied heavily on next-generation sequencing 
(NGS), and when new variants of concern emerged, NGS 
capabilities swiftly expanded globally [42]. NGS eventu-
ally also proved useful for diagnosing the COVID-19 dis-
ease, especially when new variants emerged. FDA EUAs for 
SARS-CoV-2 NGS tests that may be used in CLIA-certified 
laboratories for diagnostic purposes have so far been granted 
to two products [14].

Increased use of digital health technologies: 
digitization

In the fight against COVID-19, digitally connected diagnos-
tic tests have proven critical for timely case identification 
and public health surveillance by enabling instant and accu-
rate patient data transmission to health management infor-
mation systems, real-time monitoring of disease patterns, 
and assessment of operational needs. As a result, connectiv-
ity is now actively considered when developing diagnostics. 
In addition, the artificial intelligence (AI) community has 
developed patient triage and diagnosis support software with 

a focus on a variety of targets, including chest X-ray (CXR) 
and ultrasound images, cough, and lung sounds [43–49]. 
However, the small size and low quality of algorithm train-
ing data and the difficulty of the regulatory pathways for 
such solutions have been a barrier for developers, prevent-
ing the tools from reaching clinical settings [50]. Never-
theless, the US FDA has granted EUA to three COVID-19 
screening devices using machine learning [51]. Moreover, a 
smartphone-based cough sound app for COVID-19 screen-
ing (ResApp Health, AU) with a CE-mark and approval from 
the Australian Therapeutic Goods Administration (TGA) 
now establishes a precedent for the regulatory approval of 
AI-based tools for infectious disease detection [52, 53].

What about TB?

TB still claims 1.5 million lives every year, despite COVID-
19 having displaced it as the world’s most lethal infec-
tious disease [54]. Delayed and absent diagnoses provide 
a substantial barrier to the improvement of individual TB 
outcomes and control. Each year, more than one-third of 
all cases of TB go undiagnosed. This diagnostic gap has 
widened due to COVID-19 [54]. Sputum smear microscopy 
is still the most widely used TB microbiological test, even 
though WHO recommends rapid molecular testing first 
[55]. The varying clinical performance of smear micros-
copy, together with the difficulties in collecting sputum from 
patients and access to healthcare, is one of the primary rea-
sons for missed TB diagnosis.

To foster innovation in TB diagnostics and to link end-
user demands with test targets and specifications, WHO 
released high-priority target product profiles (TPPs) for 
novel TB diagnostics in 2014 [56]. In order to address the 
local demands at all levels of healthcare in high-TB settings, 
a variety of technologies in the field of TB diagnostics are 
required, as reflected by the WHO TPPs (Fig. 1). Despite 
this, no TB test has satisfied these targets. Accelerated inno-
vation is critically needed to ensure that novel, effective, and 
fit-for-purpose diagnostics reach the market and aid in the 
search for the “missing millions” [54, 57].

Money and investment

UN member states recognized the need for an annual TB 
budget of US$ 2 billion in 2018 [58]; nonetheless, funding 
for TB research has not increased since then [59]. Moreo-
ver, the amount of money spent globally on TB research 
remained at US$ 915 million in 2020, falling short of even 
half of the UN target or the total budget for the ACT-A diag-
nostics pillar [54]. In reality, it is estimated that in the next 
2 years, about US$10 billion will be required, US$ 613 mil-
lion of which will go towards diagnostics research [59].
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Globally, an estimated 10.6 million people fell sick with 
TB in 2021, nearly 90% live in 30 high TB burden coun-
tries, all of which are LMICs [54]. An analysis of the smear-
replacement market from 2014 pegged the market's size at 
30.8 million tests, with a potential annual market value of 
US$ 154 million, assuming a US$ 5-unit cost [60]. This 
estimate only considers the initial diagnosis; non-sputum, 
biomarker-based tests, screening or drug susceptibility test-
ing are not included. In addition, Kik et al. conducted a 
thorough analysis to estimate the market potential of a non-
sputum-based biomarker test for the high-burden countries 
of South Africa, Brazil, China, and India, and they estimated 
a potential value of US$ 56–84 million and 14 million tests 
for these four countries [61–64]. The market for non-sputum, 
biomarker-based tests is predicted to reach US$ 406 mil-
lion by 2026, growing at a compound annual growth rate 
(CAGR) of about 6%, applying the same assumptions across 
all LMICs. Moreover, in high-burden countries, TB diagnos-
tics are purchased for the public healthcare sector through 
national health ministries, which are financially backed by 
global health donors; however, there is also a sizable private 
healthcare sector that requires TB diagnostics, aside from 
the heavily involved public sector.

Despite this market potential, companies steer clear of the 
TB diagnostics sector, fearing substantial opportunity costs 
associated with prioritizing products for the LMIC market. 
Nonetheless, it is worthwhile to consider that any developer 
is likely to benefit from economies of scale by producing 
low-margin, but high-volume products and expanding its 
portfolio, as Cepheid did in the case of GeneXpert Dx Sys-
tem (Cepheid, CA, USA) GeneXpert System. Besides, some 
of the countries with high TB burden are emerging markets 
[65]. Moreover, several clinical platforming initiatives offer 
developers in-kind contributions, reducing development 
costs and accelerating time to market. Through its ‘Feasi-
bility of Novel Diagnostics for TB in Endemic Countries 
(FEND for TB)’ program, the NIH is currently funding three 

such initiatives; ENDxTB (http://​www.​endxtb.​com), R2D2 
TB Network (http://​www.​r2d2t​bnetw​ork.​org), and FEND-TB 
(http://​www.​fend-​tb.​org) [66]. Additionally, global organiza-
tions like FIND and Stop TB Partnership provide developers 
interested in neglected, poverty-related diseases with ongo-
ing support and guidance for development, validation, and 
scale-up [67, 68]. These resources provide diagnostic devel-
opers, including academic groups, start-ups, and companies, 
with access to clinical samples and clinical evaluations for 
TB diagnostic technologies at any stage of development. 
Such initiatives are likely to continue. For instance, the Sup-
porting, Mobilizing, and Accelerating Research for Tuber-
culosis Elimination (SMART4TB) project, recently funded 
by the US Agency for International Development (USAID), 
intends to support the next step toward large-scale imple-
mentation of innovative tools [69].

To ensure a sustainable supply of diagnostics in set-
tings of need, it is crucial to leverage such initiatives to also 
advance local R&D and manufacturing in LMICs, as dem-
onstrated for COVID-19 with the IPD/DiaTROpix project 
in Senegal [70–72]. Increased collaboration between LMIC-
based diagnostic developers and clinical platform networks 
like those mentioned above, as well as with international 
groups like FIND and the Stop TB Partnership, is likely to 
give them the support they need to enter the global diagnos-
tics scene and eventually reduce reliance on high-income 
country-based companies for TB tests.

Challenge: the bug

The biology of SARS-CoV-2 permitted the development of 
rapid, POC diagnostics, but the adaptation to TB presents 
technical challenges. The lipid-rich cell wall of the Myco-
bacterium tuberculosis (MTB) bacterium makes chemical 
and enzymatic lysis methods mostly ineffective, often neces-
sitating mechanical lysis methods like bead-beating and son-
ication instead. The yield and quality of genomic DNA are 

Fig. 1   A summary of TB diagnostic needs along the care cascade (adapted from 160 with author permission). DST drug-susceptibility testing.  
Figure created with BioRender.com

http://www.endxtb.com
http://www.r2d2tbnetwork.org
http://www.fend-tb.org
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consequently frequently adversely affected. Further reducing 
the amount of MTB genomic DNA available for subsequent 
molecular detection is the low bacterial load in accessible 
clinical samples (e.g., oral swabs). The design of PCR assays 
is further complicated by the high guanine/cytosine content 
of the MTB genome. Because of these issues, the meth-
odologies for sample selection, bacterial lysis, nucleic acid 
extraction, and PCR design must be carefully considered 
when working with MTB.

Compared to well-defined, easily detectable viral anti-
gens, few antigenic biomarkers have been identified for 
MTB, with lipoglycan lipoarabinomannan (LAM) being the 
most researched, most promising and conveniently accessi-
ble from an easy-to-collect sample, urine [73]. LAM is eas-
ier to detect with acceptable performance in individuals with 
advanced HIV in those with disseminated TB [74]. LAM, 
however, shows structural variations among MTB complex 
species and different bodily fluids [75, 76]. Additionally, 
current research suggests that cultured LAM is not entirely 
representative of LAM in patients [77], making the use of 
purified urinary LAM crucial for R&D.

Technical innovation: sampling

Sample type is an important consideration when applying 
novel technologies to TB. Sputum is the sample of choice for 
TB, but it is difficult to work with and challenging to collect, 
especially from children and people living with HIV. As a 
result, the R&D focuses on moving away from sputum and 
towards more accessible and easy-to-collect samples for TB 
diagnosis [56] (Fig. 2).

Rapid, POC molecular platforms compatible with swab 
samples have been extremely useful for COVID-19 testing. 
Oral swabs have emerged as an appealing sample choice 
for TB testing as well. The feasibility of employing oral 
swabs for TB testing has already been documented in the 
literature [78–91]. The sensitivity of Xpert MTB/RIF Ultra 
(Xpert Ultra; Cepheid, CA, USA) when used with oral 
swabs ranged from 45% (95% CI 29–62%) to 77.8% (95% 
CI 64.4–88.0%) compared to a sensitivity of ~ 90% for spu-
tum [80, 83, 92]. The performance discrepancies can largely 
be explained by the diverse swabbing and sample-handling 
strategies employed. For instance, the Cangelosi and Franke 
groups showed that tongue swabs yield stronger signals than 
cheek or gum swabs and that various swab brands can differ 
by up to two-fold in the bacterial mass they can capture [79, 
85, 87]. This suggests that performance is likely to increase 
with swab type, collection, and storage optimization. In line 
with this, multiple concurrent efforts from several groups 
are underway to optimize and standardize the collection 
and handling of oral swabs for TB testing. Once an optimal 
sampling protocol is devised, swabs are expected to make 
it easier to adapt a COVID-19 test strategy to TB. Even if 
the sensitivity does not reach that of sputum, swab-based 
TB tests may reach high diagnostic yields through increased 
sample availability and be helpful when sputum cannot be 
obtained for molecular testing. Moreover, swabs collected in 
communities could be used for high-throughput testing with 
WHO-approved moderate-complexity molecular technolo-
gies, which had more installed bases during the pandemic, 
if the sample referral network was improved. This would 
facilitate the annual community-wide TB screenings, which 
have been shown to lower the prevalence [93]. Addition-
ally, COVID-19 has also helped to improve swab sampling’s 
acceptance and perception. The use of swabs for sample col-
lection for diagnostic purposes is now commonplace among 
populations worldwide. This could be leveraged to increase 
swab uptake and acceptability as a sample for TB diagnosis.

Breath has long been an attractive diagnostic sample 
for TB due to its non-invasive collection and link to TB 
transmission. VOC-based detection in exhaled breath and 
condensate, which is sensitive to fluctuations in exogenous 
and endogenous variables, has long been the focus of breath-
based testing for TB [23, 94–96]. While other VOC-based 
breath tests had a wide range of sensitivity (62% to 100%) 
and specificity (11% to 84%), electronic nose tests were 
reported to have an estimated summary sensitivity and speci-
ficity of 92% (95% CI 82–97%) and 93% (95% CI 88–96%), 
respectively [97]; however, clinical use of breath-based TB 
testing has not yet reached its full potential. The main bar-
rier to its introduction into clinical settings and broad use 
has been the lack of standardization of breath samples and 
analysis, which results in high test performance variability 
[95]. The development and application of VOC-detecting 

Fig. 2   Clinical samples and targets proposed for TB testing. Figure 
created with BioRender.com
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breath tests for TB may be sped up by the innovative meth-
odologies and detecting techniques that have just hit the 
market during the COVID-19 period. Alternatively, XBA 
bears the promise of being a sensitive and highly specific 
diagnostic specimen due to its capacity to carry pathogens, 
thereby enabling pathogen detection via molecular tests [95, 
98]. The key challenge to detect pathogen nucleic acids in 
XBA is their low abundance. Efficient aerosol collection for 
MTB detection has up until now required intensive techni-
cal efforts or lengthy sampling periods and has only been 
used in academic research. The respiratory aerosol sam-
pling chamber (RASC), a 1.4 m3 cleanroom chamber where 
patients sit for XBA sampling that requires active pumping 
of large volumes of air, serves as an illustration of this [99]. 
Although TB was detected in 97% of patients after 10 min 
of sampling, such complex instrumentation is unsuitable for 
low-cost POC use. Face mask sampling and filter-bearing 
blow tubes, which have been suggested for COVID-19 
detection, could be further developed to detect TB as more 
POC solutions, particularly in light of the currently avail-
able proof-of-concept data for the applicability of face mask 
sampling to TB [100–104].

The suitability of other sample types for TB testing (e.g., 
urine, blood, stool) has also been assessed. Since LAM is 
found in TB patients’ urine, urine has been the sample of 
choice for antigen detection tests [105]. Although the use 
of urine as a sample type for molecular TB testing has also 
been investigated, the results show that it is less accurate 
than sputum-based testing, with a pooled sensitivity of 55% 
(95% CI 36–72%) [106]. Host blood transcriptomic TB bio-
markers for diagnostic, prognostic, and treatment monitoring 
purposes are also being investigated [107–109]. Despite this, 
they are still a long way from being implemented in clinical 
settings due to their variable performance, as well as the 
high cost and complexity of the currently available detection 
tools [108]. Cell-free DNA (cfDNA) is another biomarker 
possibly found in urine and blood (cfDNA). Currently, the 
pooled sensitivity of cfDNA for TB diagnosis using various 
sample types is reported to be 68% (95% CI 52–80%) [110]; 
however, with optimized pre-analytical conditions and more 
sensitive detection methods, as seen in COVID-19, this is 
anticipated to improve [111–113]. Additionally, proof-of-
concept for the detection of MTB cfDNA using CRISPR in 
both adults and children with TB has been achieved, opening 
the door for the use of future CRISPR-based POC solutions 
for TB [114]. Given the challenges in collecting sputum 
samples from children, WHO advised utilizing Xpert MTB/
RIF (Xpert; Cepheid, CA, USA) testing of stool samples 
as a primary diagnostic test for TB in children presenting 
pulmonary TB signs and symptoms in 2020 [115]. Its appli-
cation in adults has also been researched, and the pooled 
sensitivity of stool PCR was reported to be 89.7% (95% CI 
81.4–95.9%) [116].

Technical innovation: instrumentation

Molecular testing

Since its introduction in 2010, the GeneXpert Dx System 
(Cepheid, CA, USA), an integrated, single-use cartridge-
based diagnostic system, has been the molecular diagnostic 
test of preference for TB [117]. MTB DNA and mutations 
linked to rifampicin resistance are detected by the Xpert and 
Xpert Ultra cartridges, the latter of which is an upgraded 
model with greater sensitivity [117, 118]. The current global 
access price of the GeneXpert 10-color module is less than 
US$ 10,000, while the Xpert and Xpert Ultra cartridges 
cost about US$ 7.97 apiece, according to the Stop TB Part-
nership Global Drug Facility (GDF) Diagnostics, Medical 
Devices and Other Health Products Catalog [119]. Xpert 
is, nonetheless, not a true POC solution because it requires 
constant power, high maintenance due to high susceptibility 
to dust, and low operating temperatures [120]. GeneXpert 
Omni System (Omni), a sample-to-result molecular diag-
nostics system that can run all of the company’s molecular 
diagnostic test cartridges, was introduced by Cepheid in 
2015 as a genuine POC substitute. It is easy to use, portable, 
battery-operated, and smartphone-controlled [121]. Despite 
Omni’s demonstrated clinical performance in independent 
studies [121], Cepheid recently halted Omni’s development 
following several delays [122]. This leaves a sizable market 
for innovative, near-patient molecular POC solutions for TB 
testing.

The Truenat™ System (Molbio Diagnostics, India) is now 
the sole POC option for TB. Truelab™ is a chip-based micro-
PCR device that can perform a 40-cycle real-time PCR in 
35 min, while Trueprep® is an automated device that extracts 
DNA from sputum in under 20 min. Both are portable, 
battery-operated, and robust even in harsh environmental 
conditions (i.e., 40 ℃, 80% relative humidity) [123, 124]. 
The Truenat™ MTB and MTB Plus assays for TB detection 
and the MTB-RIF Dx reflex assay for RIF resistance detec-
tion are three assays that may be run on Truelab™ utiliz-
ing the DNA eluate from Trueprep®. WHO recommended 
Truenat as an initial test for TB and rifampicin resistance 
detection after independent clinical trials showed that the 
assays have comparable accuracy to Xpert and Xpert Ultra, 
even when used in primary health care clinics [55]. The Stop 
TB Partnership supports the introduction of Truenat™ with 
301 devices and 580,000 tests in countries with a high TB 
burden [125]. Truelab™ Uno Dx Workstation is listed as 
costing US$ 10,000 in the Stop TB Partnership GDF cata-
log, whereas single MTB and MTB Plus tests are listed as 
costing US$ 7.9 apiece [119].

Less than 40% of all notified TB patients undergo an ini-
tial rapid diagnostic test, creating a significant diagnostic 
gap [126]. The TB field would benefit immensely from a 
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variety of POC solutions employable in community or at-
home settings, notwithstanding the promise of Truenat™ as 
a near-patient TB test. For more accessible TB diagnosis, 
instrument-free molecular tests compatible with such use 
cases are highly desirable. Once the oral swab procedures 
for TB testing are refined and made widely applicable by 
diagnostic developers, the swab-based nature of these tests 
makes their application to TB easier. Nevertheless, TB-
related technical challenges persist. The preferred site for TB 
swab collection, the dorsum of the tongue, appears to have a 
lower bacterial load than sputum. Consequently, highly sen-
sitive systems are needed. CRISPR could enable such higher 
sensitivities when combined with isothermal methods, but 
its POC application would require one-pot techniques and 
automation [127].

The COVID-19 POC tests’ current price, nonetheless, 
is a deterrent to their adoption in LMICs; however, large-
scale manufacturing spurred by promising market opportu-
nities and bulk purchases for LMIC markets combined with 
a tiered pricing approach is likely to drive the test prices 
down, at least for high-burden settings in need. Addition-
ally, the current WHO recommendation for the adoption 
of LAMP-based tests for TB would make it easier for any 
future LAMP tests to be prequalified and get access to the 
market [55]. Besides, the expansion of COVID-19 molecular 
platforms installed globally would facilitate the quick adop-
tion of the newly developed TB assays for these platforms. 
In addition, using open source tools, such as the no-cost 
licenses provided by UC Berkeley and Lawrence Livermore 
National Lab for the best primer sets for a TB LAMP assay 
that they identified using a comparative genomics method, 
can also help to ease the adoption of LAMP-based novel 
testing for TB (unpublished data).

Antigen testing

The first urinary antigen detection test for TB was the Alere 
Determine™ TB LAM Ag test (Abbott, IL, USA), which was 
recommended by WHO for TB diagnosis and screening in 
people living with HIV [128, 129]. The test was an intrigu-
ing alternative for usage in resource-limited situations, 
because of its quick turnaround time (< 30 min), instrument-
free operation, and minimal training requirements with its 
global access price at US$ 3.70 per test [119, 130]. It was 
also the only commercially available non-sputum-based TB 
test since it detected LAM in urine; however, its adoption, 
even in settings with a high HIV/TB burden, remained lim-
ited due to its suboptimal performance [131]. In an effort to 
enhance analytical and clinical performance, Fujifilm (JP), 
with support and guidance from FIND, developed a new 
LFA called Fujifilm SILVAMP TB LAM that also detects 
LAM in urine and returns results in under an hour [132]. 
The test performance of this next-generation of LAM-based 

urine tests approaches the WHO TPP for a non-sputum-
based, biomarker test (≥65% sensitivity; ≥98% specificity) 
[56, 133]. Improved performance of the test as compared to 
its Alere equivalent was made possible by the employment 
of higher affinity monoclonal antibodies and a silver-ampli-
fication phase that boosts the visibility of the test and control 
lines [134, 135]. The limit of detection (LoD) of a rapid, 
affordable POC LAM detection test that can detect TB in 
all patient groups and meet the WHO TPP is projected to be 
5 pg/mL in comparison to the current tests’ LoD of > 25 pg/
mL [136]. Instrument-based, high-sensitivity antigen detec-
tion approaches, such as those utilized for COVID-19, are 
therefore more likely to hit this target than conventional 
LFAs; therefore, fully automated, instrument-based POC 
antigen detection tools developed for COVID-19 would be 
worth exploring for their performance in detecting LAM 
in TB patients. Moreover, well-characterized monoclonal 
antibodies [76, 134, 137], well-described LAM concentra-
tion ranges [136], and readily available and easily acces-
sible biobanks [138, 139] can all be advantageous for the 
development of next-generation LAM tests with improved 
performance.

Sequencing

The right choice of TB treatment, where drug resistance 
is a serious issue and a factor in high morbidity and mor-
tality, depends on the detection of clinically relevant drug-
resistance genes along with the disease. Molecular and 
conventional culture-dependent phenotypic methods (i.e., 
the BD BACTEC™ MGIT™ 960 system) are currently used 
in drug-susceptibility testing (DST) for TB [55]; however, 
culture methods are labor- and time-intensive, and molecu-
lar methods can only target a limited number of genes and 
mutations. WHO reported a total of 196 individual clini-
cally relevant mutations linked to resistance to 12 TB drugs 
in its 2021 Catalogue of mutations in MTB complex and 
their association with drug resistance [140]. NGS technol-
ogy is anticipated to aid in addressing these challenges by 
enabling comprehensive, rapid DST [141]; however, the use 
of NGS for TB has so far been constrained by its high cost. It 
can, nonetheless, be envisaged that NGS-based DST for TB 
will prove to be cost-effective when and if it can be imple-
mented into the current COVID-19 workflows. Additionally, 
the application of NGS for TB is projected to be facilitated 
by the COVID-19-driven expansion of global sequencing 
capacity, availability of qualified staff, experience in using 
NGS for clinical purposes, and readily-available data analy-
sis and storage solutions [142]. It is, though, necessary to 
develop NGS solutions that can be applied straight from 
sputum (or any other clinical sample) or that are simple to 
plug into newly developed molecular TB diagnostics.
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Digital health technologies

The use of digital technology in the field of TB diagnos-
tics has thus far been restricted to the use of computer-
aided detection (CAD) software for automatically reading 
and interpreting chest X-ray (CXR) images, obviating the 
need for expert readers (radiologists) [143, 144]. COVID-
19-driven advances in digital innovation and data science 
have created new opportunities for better TB care. For 
instance, the COVID-19 pandemic has accelerated health-
care workers’ digital transformation [145, 146], which 
can and should be extended to the TB field. Despite evi-
dence of improved data quality and patient management 
when using digital records and tools, adoption of digital 
health technologies aimed at healthcare workers has been 
slow in the TB field [147], in part due to a lack of focus 
on making them acceptable to intended users and feasible 
to implement and sustain in low-resource, high-burden 
settings. The COVID-19 experience, however, is likely 
to facilitate transitioning to digital, case-based, real-time 
surveillance systems for TB as advocated by WHO [148]. 
Therefore, in the post-COVID-19 era, the need for novel 
TB diagnostic tests with connectivity features is greater 
than ever.

Building off of the COVID-19 experience, access-
related barriers to TB diagnosis may also be addressed 
by AI-based digital solutions. In fact, several tools to 
detect and classify cough and lung sounds are being 
developed now, for applications like TB screening and 
triage [149–151]. Yet, despite the promise of machine 
learning algorithms to support clinical decision-making 
and improve healthcare delivery [152], there are currently 
no digital tools for TB to help healthcare workers in low-
resource settings with patient management that use AI-
based prediction models to provide a personalized clinical 
recommendation based on a TB risk assessment.

The demand for data, however, threatened to further 
fragment an already complex information landscape 
with multiple actors and overlapping activities including 
those who needed to analyze available data and those who 

wanted to commercially exploit it. There remain many 
challenges that hamper the effective sharing, analysis and 
use of data for country decision-making, including the 
lack of any prevailing business model for sustainability. 
While the development and evolution of standards appli-
cable to DHTs continue, gaps still persist in the ecosys-
tem, such as infrastructure support and human capacity to 
introduce, scale up, and sustain these tools. Only if these 
efforts continue will the diagnostic platforms that were 
developed during the pandemic and included connectivity 
be useful for TB.

Conclusion

Early in the pandemic, the COVID-19 diagnostic market was 
flooded with technologies because of lucrative funding pos-
sibilities and alluring market prospects; however, the mar-
ket is now saturated. The decision of an increasing number 
of companies to reduce workforces and close facilities is 
a reflection of a drop in the demand for COVID-19 test-
ing [153, 154]. The developers, funders, and most crucially 
the patients in need would all benefit more if the existing 
potential was directed on diseases like TB where there is a 
significant need for novel diagnostic tools.

The search for a “key” that unlocks all the doors to the 
diagnostic conundrum of TB has long been a focus in this 
field (155, 156). The long-sought solution was initially 
believed to be Xpert, then Omni; however, the failure of 
such bets on individual technologies to address all needs for 
controlling or preventing the complex medical and socio-
economic challenges caused by TB should be clear by this 
point. Instead, a variety of diagnostic possibilities embedded 
in clinical algorithms are necessary in order to meet local 
needs in high TB burden settings. With the breadth and vari-
ety of technological innovation sparked by the pandemic, 
COVID-19 presents a unique opportunity in this regard 
(Fig. 3). Political will and similar investments are required 
to encourage developers’ interest in the LMIC sector, which 
is the primary market for TB diagnostics. Long-term success 
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in the TB diagnostics field will also depend on funding local 
R&D and production and knowledge transfer to LMIC to 
guarantee a sustainable supply of TB diagnostics.
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